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1. Introduction.

1.1. The dissertation.

This dissertation contains work from the field of financial optimization. As the name
suggests, financial optimization is optimization or operations research applied to financial
problems. In general, optimization is applicable to many different problems in science,
ranging from physics to management science, but the perspective adopted in this

dissertation is optimization in finance.

The history of optimization is long, but several milestones may be mentioned, for example
the development of differentation 300 years ago, the work on constrained optimization by
Lagrange, the development of linear programming by Dantzig and von Neuman and the
work on discrete programming. In the field of finance, a natural starting point would be
the work of Markowitz.

The applicability of optimization, expecially for large programs, has always been dependent
on existing computing possiblities. As we know, development in computer hardware and
software has accelerated in the last few decades and today compitutional possibilities exist
that were not available 20-30 years ago. Thus, the possibilities of optimization have
increased rapidly.

In chapter 2 of this dissertation, we have a look at the mean absolute deviation model and
first perform a traditional sensitivity analysis. The sensitivity analysis is performed by
using actual data from the Oslo Stock Exchange. The parameters under investigation are
the estimated expected return for each asset. The results from the traditional analysis are
compared to a traditional analysis on the mean variance model. Also in chapter 2, we
perform a simultaneous sensitivity analysis on the expected return estimates in the mean
absolute deviation using the approach suggested by Wendell (1992) and by Wodolowski
(1991). In Chapter 3 we will study portfolio optimization problems with the use of discrete
decision variables. We first study the problem in general, and then we procede to look at
two specific problems that could arise in practice. It is shown that even if the problem is
only slightly different from the traditional portfolio problem, the algorithms differ
considerably. In Chapter 4 we consider portfolio optimization using three dimensions.
The dimensions are mean, variance and the third central moment. As the resulting problem
is nonconvex a nonconvex solution procedure must be utilized. The procedure adopted
utilized special ordered sets of integer variables. This procedure is tested using actual data
from the Oslo Stock Exchange. In Chapter 5, we present a multiperiodic model that
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l. Introduction.

considers optimal decisions with periodic penalty for nonfullfillment of certain
requirements. These requirements are related to capital and return requirements often faced
by insurance companies. The model is illustrated by constructiong an example and then
solving the problem by using a progressive hedging algorithm presented by Wets and
Rockafellar (1991). In Chapter 6, which is written together with Kurt Jørnsten, Ronnie
Aboudi and Rainer Leisten, includes consideration of an alternative risk measure. The risk
measure is the mean Gini difference. In this chapter we present a solution procedure for
this portfolio problem utilizing an iterative aggregation and reclustering algorithm. The
algorithm is tested by using actual data from the CRSP (University of Chicago Center for
Research on Security Prices) database. Chapter 7, also written together with Aboudi,
Jørnsten and Leisten, presents a comparison of the mean variance, mean absolute deviation
and mean Gini model using data from the Oslo Stock Exchange. Finally, Chapter 8
presents a fast solution algorithm based upon least element theory for a type of
complementarity problems that arises in the field of American option pricing. The
remainder of this chapter provides a brief introduction to the field of optimization.

Although each of the chapters in this dissertation is meant to be self-contained, readers
may benefit from reading the papers refered to at the end of each chapter. The symbols
used in the equations could change from chapter to chapter.

1.2. Models in financial optimization.

We will now take a closer look at the various models used in financial optimization. One

problem that arises in discussing different models in this field is the set of criteria that
should be used to distinguish between the models that can be said to belong to this class
and the models that do not. In my opinion, there is no clear distinction between financial
optimization models and other optimization models, for example those used in accounting.
The reader may be of another opinion as regards the classification of the models. In the
remainder of this chapter, I will consider the different models as classified into different
types of programming.

First we shall consider linear programs, and then procede to a survey through the class of
quadratic programs. We will then take a look at integer programming, in the sense of
mixed integer linear programming. Finally we will look at stochastic programming.
Stochastic integer programming will not be discussed in this dissertation.

In each section, we will take a look at the general formulation of such problems, discuss
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1. Introduction.

solution methodologies for the problems and review some of the literature in financial
optimization that uses the optimization model in question. We will also present a simple
model from the literature in each of the programming categories.

1.3. Linear programming.

A linear program is an optimization problem in which the aim is to maximize or minimize a
linear objective function subject to linear constraints. In general, the optimization problem

is of the type[l]:

[l a] minimize c'X

subjectto:

[lb] AX=B
[l c] X:<!:O

Here X is the variables vector, C is a cost vector, A is a matrix representing the linear
constraints in the model and B is the resource constraints. We have, in the formulation
above, included slack variables in the problem, such that when the restriction in a linear
program is an inequality, the general formulation above allows for this by adding a slack
variable such that the equality holds.

Linear programs have been extensively studied in the literature, and the theory about this
class of optimization problems was developed by Dantzig and Von Neuman after the
second world war. Included in this work was the development of a solution algorithm.
This algorithm, the simplex algorithm, yields a relatively efficient way of solving the class
of linear optimization problems. The algorithm seeks the optimal solution of the problem
[1] by moving on the surface of the convex region defined by the restrictions in [lb] and
[lc] and moving towards a optimal basis, by the movement between different bases, until
the minimum of [la] is reached. In the solution to the linear problem above, the user also
obtains a set of dual prices, which give the user more information on the optimal solution.
For further information about the simplex method, see Dantzig (1963), Hadley (1971) or
Gass (1975), among others.

There is also a class of solution methods for linear programs which take into account the
duality theorem (given below) and perform the simplex procedure on this formulation.
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1. Introduction.

Such solution techniques are called primal-dual and dual algorithms.

Another interesting approach to solving linear programming problems is given by
Karmarkars interior point algorithm, Karmarkar (1984). This algorithm performs a search
through the interior of the set defined by the constraints in [1], as opposed to searching
through the surface of the set given by the simplex method. The method starts at an initial
point x'', and makes a projection towards the optimal solution. By imposing penalties on
moves towards the surface of the set, the projection is guaranteed to be in the interior of the
set defined by the restrictions. The algorithm seems to be more efficient than the older,
though still extensively used, simplex method. It also seems to avoid some undesirable

numerical properties that occur when using the simplex method in large scale linear
programmmg.

In addition to the two algorithms described above, there are others, for more information
on these see Murty (1983).

Dantzig and Von Neuman's work on linear programming is the first investigation of the
problem in what we today call linear programming. The history of the mathematics on
related topics includes Gauss's work on linear equations in the 1820's. Gauss discovered
that linear equations could be solved by what we today call Gaussian elimination. Sets of
large scale linear equations have never been trivial to solve. The recent introduction of
computers able to handle such large systems makes solving these problems easier.

Leontiefs input-output models were a step towards an application of linear programming.
Leontifs model consisted of 44 variables and equations, but at that time the solution to
such a system required enormous calculations, and due to the lack of computational
equipment in Russia, (or anywhere else), the problem was not solvable. Leontiefs
aggregated version with 10 variables and equations was more within reach, and at that time
this was the largest solvable system. Another Russian, Kantorovich, solved some
industrial type optimization problems roughly, by the using dual variables.

The Karush-Kuhn- Tucker conditions, derived in the late thirties and in the early fifties,
developed the field of optimization further, including linear programming as a subclass, by
stating optimality conditions for optimization problems. These conditions are essential in
the study of mathematical programming.

Together with each linear program on the form above, there is a related problem, the dual.
The dual of the general problem above is given by[2]:
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1. Introduction.

[2a] maximize UTB

subjectto:

[2b] ATU s; C

[2c] U ~ O

The duality theorem reads as follows:

Theorem:

If [1] and [2] have solutions, then max UTB=min CTX. If either of them has an
unbounded solution, the other has no solution.

This means that the optimal objective function value of either of the problems, if it exists, is
equal to the optimal solution of the other. Another interesting aspect of the duality theory is
that the solution vector of the dual, given by U*, is the dual prices for the constraints in the
primal problem and vice versa.

In this dissertation, we will study an optimization model that utilizes aggregation
techniques. Below we will give a short introduction to aggregation in linear programming.

Aggregation is a procedure that groups the variables in a large program into fewer
aggregate variables. The main advantage of the method is that the problem becomes
smaller and easier to solve. In brief, aggregation consists of three steps. The first step is
to determine clusters which consist of one or more of the original variables. The allocation
of the variables into clusters could be based upon different criteria. Variables that have
similar characteristics are typical candidates for the same cluster. Linear program variables
with approximately the same objective function coefficient and coefficient in the
restrictions would be candidates for the same cluster. The number of clusters to be be
created depends upon the users tradeoff between compitutional burden (few clusters) and
accuracy (many clusters).

After we have grouped the variables in the original problem into clusters, we have to assign
a weight to each of the variables in the cluster. These weights, which add up to unity for
each cluster, could be constructed on the basis of several criteria. One approach uses their
relative importance in the objective function as the criterion. Another naive method is to
give the variables equal weight. One could also select the most representative of the
variables in the cluster and give this variable weight one.
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1. Introduction.

After we have solved the aggregated problem, we have to disaggregate the obtained
solution. The disaggregation could be done by using the weights used in the aggregation
procedure, but other promising ways to do this have also been discussed. For more on this
problem, see Rogers (1986) and Zipkin (1977).

When we use aggregation techniques, we obtain an easier model to solve, at the cost of
accuracy. Thus, it is important to quantify the errors obtained by solving an aggregated
version of the model as compared to the original model. We therefore need knowledge on
error bounds in aggregation procedures. These bounds could be divided into two groups,
a priori bounds and a posterori bounds. The former are computed after we have aggregated
the problem, but before we have solved it. The latter are computed after we have solved
the aggregated problem. A priori bounds are typically larger than a posterori bounds. For
further information on aggregation, see the excelent survey by Rogers et al. (1991).

In the rest of this section, we will look at some practical implementations of linear
programming in financial optimization, and at some of the different models presented in the
literature.

Linear programming, as with all optimization, has many possible applications. Many of
the applications appear in the literature, but there are also many that are held in-house in
different commercial firms, ranging from small banks using an LP model to match input
output payments, to larger models used by large financial institutions such as Goldman
Sachs and others. Many of the models, have characteristics in common, so the search for

the original model, and the original scientist behind it, may be a difficult task.

Below we shall consider a bond investment model currently used by Salomon Brothers and
Bear Steams, among others, in advising institutional investors how on how to take
advantage of subjective predictions of yields (a measure of effective interest rate on
goverment bonds). The objective function [3a] maximizes the excess return above a
predefined index for a portfolio in a base case scenario given by the user. In adition to this,
the user provides a set of yield curve movements he believes is probable, but not dominant.
The program ensures that the optimal portfolio gives better return than the index if the
scenarios are properly selected. This is handled by the constraints [3b].
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l. Introduction.

The linear programming problem is[3]:

n

[3a] maximize ~Rixi -R~
i=l

subjectto:

n

[3b] ~R~Xi -Rf ~ O j E 1,2, ... ,T.
i=l

n

[3c] ~Xi = 1.

[3d] xi ~ O iEl ,2, ..... ,n.

The variables and symbols are:

T = Number of scenarios (not including the base case used in the objective function).
n = Total number of bonds (union of bonds in index and in investors universe).
xi= Fraction invested in bond i.
R1=Total return measured by change in market value and accrued interest on bond i in yield
curve scenario j on a percentage basis (until a predefined date).
R1=Total return, measured as above, on a predefined index in yield curve scenario j.
Rj= Total return, as measured above, on bond i in yield curve basis scenario on a
percentage basis.

R~= Total return, as measured above, on a predefined index in the yield curve basis
scenario.

The model is used in practice to find a portfolio that is tilted towards a base case scenario
but at the same time give returns above the index in the other scenarios. If the number of
scenarios is large, the optimal portfolio converges to the index used in the analysis. The
program, if used by a bond brokerage firm on the basis of input from an investor, also
gives the broker first order information regarding the customers's needs. From a financial
economics perspective, the model is poor, since the state space specified by the user must
permit arbitrage in order to obtain a objectve function value ;II! o.
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1. Introduction.

In general, there are several models in the literature, which are characterized by an
application of linear programming to financial modeling. Sharpe (1967), assuming a
market model for generating returns, formulates a linear program for mutual fund portfolio
selection. Sharpe (1971a), uses linear programming to estimate beta in the CAPM model.
The LP model minimizes the absolute deviation of the regression errors, instead of the
standard deviation of the errors, thus resulting in a linear programming model. Sharpe
(1971b) presents a portfolio model, equal to the original Markowitz mean variance model,
but he makes an linear approximation of the objective function, giving an linear
programming problem instead of a quadratic one.

Another portfolio optimization model that is formulated by the use of linear programming,
is the mean absolute deviation model. The first version of this model was presented by
Hazzel (1971) in the agricultural economics field. He formulated a portfolio model based
upon the risk measure absolute deviation in decision under uncertainty in farm planning.
Konno and Yamazaki (1991) reinvented this model.

Linear programs for portfolio selection are often characterized by the use of linear or
piece-wice linear risk measures. Stone (l973a), (1973b) was among the first to study this
and in his articles he formulated linear programs that use linear or piece-wice linear risk

measures. Ang (1975) formulated a linear programming problem which was meant to be
an approximation of the traditional MV problem, by using a linear risk measure that
penalizes deviations below the mean. As if we look at this problem today, the Ang
portfolio problem is analogous to the mean absolute deviation model. The linear
programming problems based upon these linear risk measures, whether they are deviations
below the expected return of the portfolio or return below some predefined constant, fall
into the category of risk measures in which financial theory is developed by Bawa et al.
(1975), (1977), (1978) and Harlow and Rao (1989).

1.4. Quadratic programming.

Quadratic optimization is among the most studied nonlinear optimization problems. As its
name suggests, a quadratic optimization problem involves an objective function which is a
quadratic form. A general quadratic optimization problem with linear constraints is
written[4]:

[4a] minimizej(X) = 4XTQX + CX
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1. Introduction.

subjectto:
[4b] AX :<!: B

[4c] X :<!: O

where X is a vector consisting of the nx 1 variables in the problem, Q is a nxn matrix, C is
a vector with n elements and A is an nxm matrix.

The quadratic program above has a continuous homogeneous function of degree 2 as the
objective and a closed set as the feasible region. The Bolzano-Weierstrauss theorem
assures the existence of a global minimum or maximum if the feasible region is bounded
and compact. The Frank-Wolfe theorem gives us a neccesary and sufficient condition ifthe
feasible region is bounded.

The Karush-Kuhn-Tucker conditions give us the optimality conditions for the quadratic
programming problem [4].

If there exists a vector V, such that[S]:

[Sa] C + QX - ATV = O
[Sb] V:<!:O

[Sc] VT(AX - b) = O

then X is a stationary point for the quadratic program [4].

The conditions are neccesary, but not sufficient for a global optimum for the quadratic
programming problem.

There are many classifications of the quadratic problem above. Many of the classifications
deal with the various forms of Q. One classification of the matrix Q is that Q belongs to the
class of positive definite matrices. This means that the quadratic form:

is positive for any selection of the vector X. There are several ways to investigate this
property. One way to do this is to compute the eigenvalues of the matrix Q and investigate
whether all of these eigenvalues are positive. If all these eigenvalues are strictly positive,
the matrix is positive definite. To find the n eigenvalues of the matrix Q we have to
compute the n eigenvalues A, given by the solution to:
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l. Introduction.

[7] det(Q - AI) = O

The conditions in [5] are necessary but not sufficient conditions for a global optimum.
These conditions are only sufficient when the quadratic form is convex. In this case this
means that Q is positive semidefinite and in that case all the eigenvalues of Q, given by
solving [7] are greater than or equal to zero. In quadratic programs in financial
optimization, the matrix Q is often a covariance matrix, or strongly related to a covariance
matrix. Since this matrix is positive definite, conditions for global optimum are satisfied
by the Karush-Kuhn- Tucker conditions.

Quadratic programming is used extensively in financial optimization. One reason for this
is the central role covariance structures play in financial theory. Listing all the applications
of quadratic programming in this dissertation is too ambitious. But we will in this chapter
look at an example where quadratic programming is used to match an index. Following
this example, we will have a look at the mainstream applications of quadratic programming
in the financialliterature.

Indexation or benchmark tracking has in the last two decades become one of the most
popular asset allocation techniques. Indexation is defined as constructing a portfolio that
has the same risk and return characteristics as a predefined benchmark. Thus, indexation
does not imply outperforming any predefined index, but rather matching one. Indexation
means index matching in any asset category, not necessarily stocks.

One popular rating concept is to evaluate fund managers and their managed portfolios on
how they performed relative to a predefined index. Using indexation means to make the
portfolio's return and behavior as equal as possible to this index.

There are several reasons for a fund manager to match an index. One reason is that it gives
the fund manager a possibility to expose himself to nationwide factors without buying the
whole composite index. For instance in the stock market, linking a portfolio to the
Wilshire 5000 index, a broad index for the US equity market, means that one has to buy
5000 different shares. Indexation separates market selection skills from stock selection
skills and it gives the fund manager the possibility to avoid non-market risk when there is a
penalty involved for portfolio returns less than the index return for some predefined period.
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1. Introduction.

The most popular tracking efficiency measure is the standard deviation of the residual
between the benchmark and the indexed portfolio. We denote this tracking error measure

by ad. [8]:

where:

fp = The return of the portfolio.
fl = The return of the index.

The estimator for ad is given by:

[8b] T - 1 , T = Number of observations.

Above, rpt and rlt are portfolio and index returns in period t respectively. To form a
tracking portfolio by the use of a subset of n equities we could solve the following
quadratic programming problem [9]:

[9a]
T... 1" 2mmmuze T - 1-6fYt

subjectto:
n

[9b] ~xiriCrIt=Yt tE 1,2, ... ,T.

[9c]
n

~
X'-l1-
-

[9d] Xi ~ O iE 1,2, ... ,n.

The problem above, where rit and Yt are asset is return and residual return in period t
respectively, minimizes the estimated tracking error given by [8b] for a sample of T
observations.

After the realization of the MV model in the 1950s, empirical tests of the model were not
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1. Introduction.

easy to carry out until the computer software and hardware were developed with the
required speed and size to solve such problems. In the '60s and '70s, the solution of
quadratic programming problems of some size were not trivial, and empirical testing of the
model may have suffered because of this. Due to the revolution in the micro computer
market in the early 80's until now, the possibility of performing a MV analysis is
considerablyenlarged. Today there is readily accessible software for MV analysis.

Empirical testing of the MV model was done by Farrar (1962). In his sample, he used
mutual funds as the assets. Using monthly observations and an arbitrary one-year
investment horizon, he concluded that mutual funds lie close to the efficient frontier on a ex
post basis.

One disadvantage of the mean variance model is the sensitivity of the optimal solution to the
change in the input data in the model. In their article, Grauer and Best (1984) point out this
fact. The optimal solution is especially sensitive to changes in the expected returns of the
assets. With this in mind, practioners often claim that the modellacks investment value,
and consequently reject the approach. Michaud (1989) termed this effect the "Markowitz
OptimizationEnigma". As the optimal solution is affected byerrors in the expected returns
of the assets, researchers have turned their attention to portfolios on the efficient frontier
that are not heavily influenced byerrors in the estimated expected returns. One of these
portfolios is the minimum variance portfolio and Robert Haugen, University of California
(Irvine) in a set of lectures, claims that picking this portfolio, under some set of restrictions
varying from application to application, gives a portfolio that performs better than for
example a capital weightened index. The list of advantages and disadvantages of the MV
model is long and the debate will probably continue further as better estimation technique
develop.

Another use of the MV model is as an ex post evaluation of different portfolios. By
plotting different portfolios into the MV diagram, one could see their position relative to the
efficient frontier ex post. This approach was used by Jennergren and Sørensen (1986) in
their study of Danish mutual funds and in the study of the French stock market by Chatry,
Jennergren and Szala (1990).

Sharpe (1963) presented a quadratic optimization problem for portfolio selection using the
single index model. Technically, the optimization model in Sharpe's article turned out to be
a minimization of diagonal quadratic form, which, in the light of the computational
resources at that time, was very convenient. The model' s strongest assumption was that
of a single factor or index that systematically influenced the returns of the single assets.
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Alternative risk measures, such as the semivariance, also require help from quadratic
programming. Markowitz (1959) suggests this risk criterion, since one could argue that
investors care more about deviations below the expected return than about the dispersion
around the mean. Harlow (1991) also considers this risk measure and performs an
empirical investigation of it using historical data. An optimization algorithm for the
problem is discussed in Markowitz, Todd, Xu and Yamane (1993).

l.s. Models involving discrete variables.

So far, we have concentrated on models in which the variables used are continuous. Such
models are, in the convex case, typically easy to solve and many solution algorithms exist
handling their relatively simple nature. In practice, situations often arise which require the
introduction of discrete decision variables. This means that we must consider a model with
such variables. In this dissertation we will concentrate on the set of discrete variables

allowed to take any value among the nonnegative integer numbers. Thus the variables take
values in the range:

[lO] {0,1,2,3, .... }

There are several situations in which integer variables need to be introduced. If we build a
model that must consider logical constraints of the type "no more than four assets are
allowed to be a member of the optimal portfolio", we could simply solve this by
introducing integer variables.

It is possible to distinguish between linear programming extended with integer variables
and nonlinear problems extended with integer variables. For the former, algorithms are
extensively studied in the literature and are easily available. For the latter, the amount of
research is somewhat more limited and the research also more complex. The papers
presented in this dissertation are based upon mixed integer linear programming.
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1. Introduction.

Consider the extended linear programming problem[ll]:

[1la] minimize CTX

Subjectto:

[11b] AX = B

[lIe] X Cl!: °
[11d] X CS
[lIe] XZCS

[11f] XZC {O,I,2,3, .... }

Above S is a st and X is a vector. The problem above differs from the traditionallinear
programming problem because we have defined a subset, XZ, of the solution vector to be a
member of the class of nonnegative integer numbers. The problem above is a mixed
integer linear programming problem.

As an example of such a model, we could consider the linear model [3] extended with the
following constraints[12]:

fl

[l2a] ~bi:S k

[12b] b· - x Cl!: OI I

[l2c] bi E {O,l}

The extension of the model is done by the introduction of n binary variables, bi' The new
restrictions ensure that the optimal solution contains no more than k assets with a positive
weight.

Integer linear programming was investigated in an article by Gomory (1958), where a
method called cutting planes was investigated. The key idea behind this method is first to
solve the integer programming problem as an ordinary linear programming problem, thus
ignoring the integer constraints imposed on the problem. If one or more of the integer
variables are fractional, we restrict one of these variables to be less than or equal to the
nearest lower integer value. Suppose one of the integer variables in a program turned out
with a value of 16.8. We then add the restriction that the value of the variable should be
less than or equal to 16 and solve the problem again. For each variable this procedure is
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repeated until all the integer constraints are fulfilled. This procedure is often referred to as
Gomory cuts. Even if the method is simple, it is unstructured and may exhibit slow
convergence. Algorithms based upon Gomory cuts that are more structured are discussed
in Gomory (1958), (1963), Young(1965), (1968) and Glover (1965).

The branch and bound algorithm, based upon the work of Land and Doig (1960), Bertier
and Roy (1964) among others, reduces the integer programming problem to a problem
involving binary variables only. These variables are only allowed to take the value O or l.
The conversion of integer variables to binary variables could be done by replacing the

integervariable Xj by:

Pi

[13] Xj = ~21~ (Pj sufficient large and zi binary).

The identity above states that each integer variable could be expressed as a sum of a product
of binary numbers ~ and 21• One example is when Xj is the integer 7. In that case :l_j0= :l_jl

= '1= 1 and all the other binary variables are set to zero. By imposing the binary constraint
on the new variables (~) and adding restrictions of the type [13], we have converted the
mixed linear integer program to a mixed binary linear program.

An obvious, but very time-consuming, way of solving such a problem is to consider all
possible combinations of the binary variables and solve all these problems. After that we
select the solution with the lowest objective function value.

With m integer variables the number of combinations is:
m

'" p.cp = 2ft' J[14]

The number of combinations could be a very large number, and the time used to solve the
problem this way is typically large. It is not surprising that there exist other, more efficient
ways of solving problems with discrete decision variables. In the following, a brief
description of one of these will be provided.

The branch and bound method partions the binary variables in the converted binary linear
program into different levels. Each level fixes one of the binary variables to either one or
zero, and at the bottom level the program is fully partioned with nodes consisting of each
possible combination of the binary variables. The partitioning can be visualized by a tree,
where at the top node no binary variable is fixed, at levelone, one variable is fixed and at
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level p, there are p variables fixed. The deepest level in the tree is level cp, where all the
binary variables are fixed. Fortunately, when we search for an optimal solution to the
problem, we do not have to visit all the nodes in the tree. Suppose that we have a feasible,
but not optimal solution to the problem. The corresponding objective function value of this
non optimal solution could be used as a upper bound to the optimal solution. So, if we fix
the binary variables, by adding equality restrictions to the linear program, such that there
is a correspondence between the values of the binary variables in one particular node, we
know that searching in nodes below this node is not necessary if the optimal solution to the
linear program is greater than the upper bound. If the optimal solution is less than the
upper bound, a further search down the tree is neccecary until a valid and new upper bound
is discovered. The process is stopped until the whole tree is investigated this way. The
procedure increases the speed of solving the mixed integer linear programming
problem.There are several issues addressing the procedure for searching the different
nodes discussed in the literature, and the reader is advised to consult Minoux (1986) for a
description of and references to these procedures.

In the financialliterature models involving discrete decision variables are not discussed as
much as linear and quadratic programming. Nevertheless, a brief list of some of them is
presented below.

A bond portfolio model that incorporates transaction costs by the use of integer
programming is discussed by Nauss in Zenios (1993). This model uses binary variables to
restrict the minimum or maximum amount allowed sold or purchased in a particular
security. A relatively complex integer program utilizing binary variables is a model for
structuring Collateralized Mortage Obligations (CMO) discussed by Dahl, Meeraus and
Zenios in Zenios (1993). In this model, the binary variables are used to control the
amortization of the different tranches.

1.6. Stochastic programming.

Traditional mathematical models assume that the coefficients in the objective function and in
the constraints are known with certainty. These coefficients are often based upon
estimation, and thus exposed to estimation error. So, if we work with a mathematical
model, parameters that are assumed constant may be stochastic. As financial optimization
could use parameters that are asumed to be stochastic we need optimization procedures that
handle stochastic parameters. This leads us to the area of stochastic programming. A
stochastic programming problem has the general form [15]:
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[15a] minimize E{fo(X,s)}

subjectto:

[15b] E{fi(X,s)} :s O i E 1,2, ... ,m.

Where:

s = Random vector with support g E mn and probability distribution function P.
fo = Function in which expected value have to be minimized.
fi = Function in which expected value is restricted.
X = decision vector.
E{•} =Expectation operator.

In principle, the expected value of a function with several stochastic parameters could be
evaluated using multidimensional integration or summation. For typical problems, where
the number of stochastic variables is not too few, this is a difficult task and robust and
time-consuming algorithms are necessary. In order to handle stochastic mathematical
optimization models, one needs knowledge from the theory of expectations functionals and
from convex analysis.

In the literature stochastic models are divided into two categories, anticipative and adaptive
models. The anticipative models do not depend upon the future realization of the stochastic
parameters. The objective function or constraint in such a model can be probabilistic, such

as the type:

[16] P(fi(X,S) :s O)= 0.05

or involving the type:

Examples of such models are asset allocation models with shortfall risk (chance) constraint.

In the other category, adaptive models, the uncertainty in the model is time-dependent,
such that some of the decisions can be made after realization of some or all the stochastic
variables (multi stage problems). Uncertainty is modeled by the use of an information
structure. These models are often of a type where the decision maker makes a decision,
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waits for a realization of some or all the parameters in the model and takes corrective action
on the basis of this new information. An example of an adaptive model from the financial
literature is the class of multiperiodic financial models.

Mathematical models with probabilistic constraints were discussed in the article by Charnes
and Cooper (1959). The stochastic program with recourse was discussed as early as in
Dantzig (1955). The categorization of stochastic programs can be done in the same way as
we characterized the traditional deterministic programs, as linear, quadratic, nonlinear and
integer stochastic programs. Another way of describing the models is by means of
numbers of stages, or number of batches with information realizations in the model.

As an example of a stochastic programming problem, we consider the following
model[18].

s
[18a] maximize E{V'} =~ 3tsVs

subjectto:

n

[18b] ~XiViS = Vs SE 1,2,... ,m.

[18d] P(V' :s Vo) :s 0.05

[18e] Xi Ol!: O iE 1,2,... ,n.

Where:
V' =Value of the portfolio.
Vs = Value of the portfolio in state s.
Vo = Initial value ofportfolio.
vp = Value of asset i at time O.

vis = Value of asset i in state s.
3ts = Probability of state s.
xi = Fraction held of asset i.
S = Number of states.
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The one period model above maximizes the expected value of a portfolio given that the
probability of zero return on the portfolio should be less than or equal to 0.05.

Other stochastic models from the literature include a dynamic bank portfolio management
model by Bradley and Crane (1972) and the portfolio management model by Mulvey and
Vladimirou (1988). Zenios (1991) presented a stochastic model applicable for
mortgage-backed securities financing. There is also a stochastic bond dedication model
which was presented by Hiller and Schaack (1990).

As stochastic programming allows the specification of stochastic parameters, its use in
financial optimization is well founded. Thus it may be expected that such models will be

applied more frequently.

For some of the stochastic programs, such as linear stochastic programs, it is possible to
formulate other and much larger equivalent deterministic problems in which the traditional
solution techniques are applicable. These problems, as in the case with linear stochastic
problems, utilize large scale linear programming techniques such as Benders
decomposition. For further reference to such methods, see Minoux (1986). Wets and
Rockafellar (1991) presented an approach to be used on relatively general types of
stochastic programming problems where the stochastic environment is specified with a
discrete probability function. The method, to be described and utilized later in this
dissertation, is advantageous in that it keeps the problem in its original and simple form
and is easy to implement.

1.7 The data from the Amadeus Database.

The dissertation uses data from the Oslo Stock Market. The dataset is total returns on a
monthly basis from at most 21 stocks which was selected on the basis of liquidity and the
requirement that the stock was listed during the whole period under investigation. The

dataset was provided by the Norwegian School of economics and business administrations
database Amadeus. This database performs the standard corrections to asset returns as
adjustments for dividend payout, splits and emmisions. Under is a description of the use of
the dataset:
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Chapter Period Hobs #Assets Freq. Comments

2 1/ffl-12/92 72 21 M Aritm. mean.

3 1/ffl-12/92 72 21 M Aritm. mean.

3 1/93 - 12/94 24 21 M Backtesting

4 1/88 - 12/89 24 10 M Compo intensive

Table 1.1. The OSE data set.

1.8. Conclusions.

In this introduction we have presented the dissertation and briefly had a look at different
optimization methods, their applications in the literature and some of the solution
algorithms of these problems. We will now tum our attention to the main part of the
dissertation, and present the main body of research done by the author.
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2. Risk Return Models and Sensitivity Analysis.

Abstract: In this chapter we consider a linear risk return model and a quadratic risk return
model. In the first model the investment decision is made by the use of the expected return
and the expected absolute deviation of the portfolio. In the second, traditional model, the
investment decision is based upon the expected return and variance of return for the
portfolio. For the linear model, we present the model formulated by Konno and Yamazaki
(1991) and Hazzels formulation (1972). The quadratic optimization model is the model
formulated by Markowitz (1952). For the linear model, we will first look at traditional

sensitivity analysis. For the quadratic model we will first look at a quadratic parametric
programming approach presented by Grauer and Best (1984) for investigating variation in
the estimated parameters for the MV model. After that, we will investigate how single
perturbations in the expected returns can be handled in this model. For the linear model we
will consider a technique introduced by Wendell (1985) and extended by Wodolowski
(1991). We then perform a sensitivity analysis based upon individual, single perturbations
of the estimated expected returns. Further, we perform simultaneous sensitivity analysis
for the linear model based upon the theory ofWendell and Wodolowski. The analysis is

based upon the use of actual data from the Oslo Stock Exchange. In the appendix we have
a closer look at the risk measure absolute deviation, and some of its properties.

2.1. Introduction.

When we use optimization models, we often use historical data to find estimates of the
different moments for the distribution of the assets return. How good these estimates are
depends upon several factors. If we use a large time interval when we estimate the
expected return, variance and covariance for a particular asset, we may include irrelevant
history, i.e. from a period when the underlying company activitiy was of a different nature
than it is today. The debt structure of the company may also have changed. If we select a
shorter time interval, we may end up with too few observations; hence the estimated value
is not a good estimator due to lack of information. Alternatively, the estimator may be
influenced by some extreme observations or outliers. Errors in the estimated values in the
optimization model may also have been caused by extraordinary events in the sample period
that the decision maker thinks are particular to this period and not relevant to future events
in the economy.

Sensitivity analysis is an optimization technique that allows us to study how an original
optimal solution changes as we change the inputh to the model. The behaviour of the
optimal solution when we change the coefficients in the model is interesting, since we may
not be sure of the correct values of the coefficients in the model. In this chapter we will
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consider different approaches for performing sensitivity analysis.

The chapter is organised as follows. In Section 2.2. we will look at a linear risk return
model that uses the absolute deviation as the measure of risk. In Section 2.3., we williook
at the traditional MV problem. In Section 2.4. we will present the traditional way of

conducting sensitivity analysis in linear programming. Single perturbation analysis for the
quadratic model will be covered in Section 3.5. In Section 3.6. we will compare the two
single perturbation approaches using data from the Oslo Stock Exchange. In Section 2.7.
and 2.8. we will investigate optimality for the linear model further, by using the sensitivity

approach of to Wendell (1984), (1985) and Wodolowski (1991). These two approaches
will be investigated using a data set in Section 2.9. Finally, in section 2.10. we will draw
conclusions.

2.2. A linear risk return model.

In this Section we will describe the mean absolute deviation model. It is assumed that the
investor has preferences for expected return and preferences against absolute deviation of
the return for the portfolio. Although no explicit Von Neuman Morgenstern utility
function, where expected utility is a function of the portfolio's expected return and absolute
deviation, has been presented, the model has been used in portfolio selection. The reason
is that by doing distributional assumptions about the return generating process, i.e. by

assuming a multivariate normal distribution, it can be shown that the portfolios
characteristics are uniquely determined by the parameters expected return and the absolute
deviation of the return of the portfolio.

The general formulation of the problem is [l]:

[la] minimize E{ I rp - !-lp I }

subjectto:

n

[l c] ~Xi = 1

[ld] Xi ~ O iE 1,2, .... ,n.

Here rp is the stochastic return of the portfolio, x, is the fraction invested in security i and
E{·} is the expectation operator. The problem [l] will determine the portfolio with the
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minimum absolute deviation subject to the constraint that the expected return of the
portfolio is greater than or equal to some predefined constant ji. If we let the stochastic
return of asset i be Ti' then the expected return of asset i is:

[2] E{Ti} = !-li

The expected return of the portfolio is then given by:

Model [1] is a general version of the mean absolute deviation problem. When we use the
model we use estimates for the expected return and absolute deviation. The formulation of
the problem below is based upon the estimation of these parameters.

The programming technique used to solve this risk return model is linear programming, for
which efficient algorithms are easily available. The model uses the empirical data directly,
so there is no need for preprocessing the data by, for example, estimating a covariance
matrix or another measure of comovements between asset prices. The effect of
comovements between the assets is handled by the optimization model. The estimated
absolute deviation of a portfolio is given by:

[4] {)~i I rpt - ftp I ~iJ-rtl_
p T-I T-I

t=

[4a] ~t = rpcflp
n

[4b] rpt = ~xirit
1=

n

[4c] A ~ A!-lp= 1= Xi!-li

T

[4d] A ~ rti
!-li = T

t=

Where:
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rit = Return of asset i in period t.
T = Number of observations.
n = Number of assets.
fli = Estimated mean return on asset i.
flp = Estimated mean return on the portfolio.
vp = Estimated absolute deviation of portfolio.

If we assume that the return generating process (ex ante) is multivariate normal, Peters
(1856) showed that:

Thus, Peter's results show that vp is an unbiased estimator for the absolute deviation of the
portfolio ifthe returns of the asset are distributed multivariate normal.

Absolute deviation is an Lt measure of dispersion, devations are not squared as in the case
with variance; instead the length of the deviation from the mean is used as a measure of
risk. Such a measure has nice properties as regards the existence of the risk measure. It
places weaker assumptions on the underlying distribution, since one could present a class
of distribution functions where the risk measure variance does not exist, but where the Lt
measure exists l.

Here we will present an optimization model that finds efficient portfolios under the risk
measure absolute deviation. The formulated problem is a linear programming problem.

When we study this problem we will minimize risk or absolute deviation subject to the
constraint that expected return of the portfolio is greater than or equal to a predefined
constant. Konnos and Yamazaki's (1991) formulation ofthe problem is [6]:

T

[6a] rrumrrnze T ~ 1 ~ Yt

subjectto:

1Such distributions as stable Paretian with characteristic exponent less than two.
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n

[6b] Yt - ~3]tXi C!: O tE 1,2, .... T.

n

[6c] Yt + ~ 3]tXi C!: O tE 1,2, .... T.

fl

[6e] ~Xi = I

Xi C!: O, Yt C!: O iE 1,2, ...n. tE 1,2, ...T.

The problem minimizes the sum of the deviations for each time period. The deviation for
each period is given by one of the equations [6b] or [6c] above, and the objective function
gives us the estimator described above. For each t, one of the constraints [6b] or [6c] is
active. The constraint [6d] gives the lower bound of the expected return of the portfolio,
and constraint [6e] reflects that the fraction invested should total one. However, it can be
shown that the expected absolute deviation is twice the expectation of the deviations below
the mean (up)' The derivation of this relation is given below:

Theorem:

[7]
up = 2wp = 2w; where wp = E( 1Tp- ~p 1-) and w; = E( 1Tp- ~p 1+)·

where 1g 1- = O if g C!: O and -g if g < O, and 1g 1+ = O if g < O and g if g C!: O.
gEm.

Proof:

We define the variables wp and w; as [8]:

[8a] wp = 1Tp- ~p 1-
[8b] w; = 1Tp- ~p 1+

The following equation is satisfied by wp and w;:
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Solving for wp and w; gives [10]:

[lOa] w; = rp + wp - !-lp

[lOb] wp =!-lp - rp + w;

Ifwe take expectations of wp and w; we obtain[11]:

[lIa] E(wp) = E(w;)
[l1b] E(w;) = E(wp)

Using E(wp) + E(w;) = E(up) completes the proof.

D

The distribution of the return rp is not specified to be, for example symmetric. The result
above holds as long the expected value, !-lpis finite. We then have:

This relation also holds for the estimators, so:

[13]

The implication of this is that the expected absolute deviation is twice the expected value of
a portfolio's return, given that it falls below the mean. The equivalence between the risk
measure absolute deviation and the risk measure expected value below the mean, imply
using these two risk measure should give the same optimal portfolios. This means that the
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commonly used assumption, that vp gives portfolios with positively skewed densities, is
wrong and that in fact vp is a symmetric risk measure, giving equal weights to observations
or outcomes above and below the expected return of the portfolio. The result above also
addresses the risk measure absolute deviation as one special case of the lower partial
moment risk measures discussed by Bawa and Lindeberg (1977). The results above also
hold for the traditional estimators.

Using the information outlined above, the Konno and Yamazaki (1991) formulation can be
simplified, and we are left with the formulation presented by Hazzel, a model originally

used in farm planning under uncertainity (1972)[14]:

[l4a]
T

••• c; 1 ~
mnumize up = T _ 1ti Yt

subjectto:

n

[14b] Yt+ ~~tXi~O tE 1,2, .... T.

n

[l4d] ~Xi = 1

[l4e] Xi ~ O, Yt~O, i E 1,2, ... ,n., t E 1,2, .... ,T.

The objective function here is one half of the objective function in the formulation of
Konnoand Yamazaki (1991).
We note that we now have a formulation with n + T variables and T + 2 constraints. Thus,
an optimal solution exists with at most T + 2 positive variables. For each time period, the
value of Yt is zero if the return of the portfolio is above its expected return, and positive if
the return of the portfolio is below its expected return.

There have been several attempts to use the model outlined above with actual data. Konno
and Yamasaki (1991), in their study, used the 225 assets included in the Nikkei index.
They performed a comparison of the mean absolute deviation model against the traditional
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MV model, and one of their conclusions was that the portfolios generated by the two
approaches did not differ much. My own experiences with the model, using data from the
Oslo Stock Exchange, confirm these results.

Below we have calculated the ex post efficient frontier for the mean absolute deviation
model for 21 stocks listed on the Oslo Stock Exchange in the period from 1.jan 1987 to 31.
Des. 1992 (72 observations), using the LINDO optimization software.
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Figure 2.1. Mean Absolute deviation ex post frontier.

We now tum our attention to the quadratic portfolio problem.

2.3. The quadratic portfolio problem.

In this Section we will begin with a brief presentation of the traditional mean variance
model, as formulated by Markowitz (1952), and then investigate a related, perturbed
problem. In section 2.5. we will look at a method which may be used when we investigate
the sensitivity of the optimal solution to changes in the estimated expected returns for the
individual assets in the MV problem.
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The traditional MV model can be formulated as follows[IS]:

[ISa]

subjectto:

n

[ISe] ~Xi = l

[15d] Xi Cl: O
[1Se] iEl ,2,...n.

Here, xi is the weight associated to asset i in the portfolio, ~i is the expected return to asset
i (ex ante), ji is some predetermined level of return and O"ij is the covariance between asset i
and j.

When we solve this problem using actual data, we compute estimators. The estimators
used here2 are, for the elements in the variance covariance matrix, given by:

T

[16] (Jij = T ~ I ~ ~t'1t

Above, ~t is given by rit - fli' T is the number of observations. For ~i we use the

estimator referred to earlier, fli'

We have computed the ex post MV efficient frontier for the data set using the
GAMS-MINOS optimization software. The results are shown in the figure below.

2 The estimator u'sed here is the traditional one. There also exist other estimators for the variance covariance
matrix, such as e.g. Bayes-Stein estimators. See e.g. Efron and Morris (1973).
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Fig. 2.2. Ex post MV frontier.

We now tum to the sensitivity analysis.

2.4. Methodologiesof sensitivity analysis in linear programming.

In this Section, we will present the tools necessary to perform a sensitivity analysis of the
mean absolute deviation model using an approach that perturbes the coefficients in the
model. To do this, we will first formulate the linear programming problem as a parametric
programming problem. We then state the theorem which gives bounds on the individual
variations in the expected return vector, such that the original optimal basis remains
optimal. In Section 2.6., we willlook at the computational results of using the perturbation
techniques outlined in this and the next section.

One common approach to sensitivity analysis is parametric programming. Parametric linear
programming means reformulation of the linear programming problem to a problem where
the parameters under investigation are perturbed.

In the expected return, absolute deviation model this means replacing the expected return
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constraint [I4c] by:

n

[17] ~Xi(!li+diCP) ~ Il

Wt; have here perturbed the expected return vector, by a parameter cp, multiplied by the
vector d. The n components of d are given by dl' d2, ... ,~. This formulation leads us to a
revised linear programming problem. The procedure involving such a program is termed
parametric linear programming.

If we, for convenience-', reformulate problem [14] to a maximization problem, and use the
estimators, we have[I8]:

n

[I8a] maximize ~ xi(fti+diCP)

subjectto:
T

[I8b] T ~ 1 ~ Yt su

n

[I8c] Yt+ ~~tXi~O tE I,2, .... T.

n

[I8d] ~Xi = 1

[I8e] Xi ~ O, Yt~O

Here we have formulated the problem such that the expected return of a portfolio is
maximized subject to the constraint that its estimated absolute deviation should be less than
or equal to some predefined level; given by li, elsewhere the problem is equal to the
original one.

We now have a parametric linear programming problem. We can solve the problem for
different values of cp. An interesting problem is for what values of cp the original solution,
or the solution where cp = O, is still optimal. We will later answer this question, but first

3 It is easier to perform a sensitivity analysis with coefficients in the objective function than the coefficients in
the constraint matrix of a linear programming problem.
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we must define certain sets.

In a mathematical linear program, there are variables that have a positive value in the
optimal solution, and there are variables that are equal to zero. In our linear problem, there

are two kinds of variables. The variables xi i E 1,2, ... .n, are the decision variables and
indicate the optimal fractions to invest. The variables Yt tEl ,2, ... ,T, are intermediate
auxiliary variables in the mathematical program. We will define the index set I; for those
decision variables that have a positive value in the optimal solution when <p = O, and we
will define the index set lx to those decision variables that have the value zero in the optimal
solution for <p = O. In addition we define the index set ly to those intermediate auxiliary
variables (Yt) that have a strictly positive solution, and we define ly as those of these
variables that are zero. We will also define, for further use later, the union of the index sets
I, l, as [19]:

[19a] I = Ix U ly
[19b] l = l x U ly

In general, l will be the set of nonbasic variables, and I will be the set of basic variables in
the optimal solution.

It is clear that if we change the value of the cofficients in which the corresponding
variables are positive for <p=O, the objective function value will change in some direction,
although the basis, in some interval, will remain unchanged. If we perturb the members of
I, enough, the basis may also change. Perturbations on the members of lx do not change
the solution if they do not change the optimal basis of the problem.

In the linear model we are then left with the following classifications of the perturbations:

Elements perturbed Comments

E I, Changes optimal obj. func. value, may change basis.

Elx Has to change optimal basis to change optimal solution

E r, U lx Changes optimal obj. func. val., may change basis.

Table 2.1. Classifications of perturbations.

If we perturb the expected returns on members of Ix without changing the optimal basis,
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the change will occur in the objective function and is given by [18a] minus the original
optimal value. Below we will discuss changes that may affect the optimal basis.
Specifically we will present a qualitative criterion on the scalar, given by the literature, such
that the original basis remains optimal.

To clarify the generality of the results, we will assume for the linear program that the
constraints are written in a general form. By this, we mean that the inequalities are
converted to equalities by introducing slack variables when appropriate. The constraints in
the general problem are written on the form:

[20] Ax = b

This notation is introduced to keep the overall notation simple. For convenience we will
use parameter symbols without subscript as vectors. Thus, fl is a nx 1 vector with the

expected returns of the assets, and flI is a vector with the expected returns corresponding to
the assets that are basic in the optimal solution, ( i E I). This notation will also be used for
d and y.

We will denote the basis matrix of the problem [18] by Band A.j as the j "th column of the
generalized constraint matrix to the linear program. Conversely.A, is the ith row of the
matrix A. Further, we let c be the generalized cost vector, i.e. a vector that also consist of
the zero coefficients of the auxiliary and slack variables.

Using results from linear programming we have the following theorem:

Theorem:

The initial optimal solution, the optimal solution with q> = O,remains optimal as long as q>

E (O,cp] where cp is given by:

[21]

[22]
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Proof [23]:

We investigate the optimal solution for the problem when cp = o. The solution is given by:

* -1[23a] XI = B b

Our perturbed cost vector is given by:

[23b] c + rpd

To obtain the maximum value of cp given by cp in the theorem we investigate the reduced
cost vector of the problem. This vector is given by":

The reduced cost of the perturbed problem is given by:

For a particular perturbation, given by the changes in cp, s+ should stay positive. If it
becomes negative, it violates the optimality conditions. If it turns out in our model that the
vector given by dtB-1AJ - dJ is positive, then cp can have any positive number. Still, the

original basis will be optimal. If one or more elements of this vector are negative, then cp is
restricted inside some interval, with upper bound cp. The parameter Sk is given by:

Ifthe inequlity [23e] holds for all k, then the optimality conditions are satisfied. We must
- -

be sure that picking a number cp ensures that the condition holds. This means that cp is
determined by the lowest value, for all k, such that the condition holds for all k. Using

[23e] and [23c] gives us [21]:

o

We notice that if we want to perform an individual, single asset sensitivity analysis, this
could be done by defining the vector d as the vector with only one element different from

4 How one defines the reduced cost vector is a matter of definition. We have here used S, but we could also have
used-So
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zero. This element corresponds to the particular asset under investigation, and the value of
the element is one. The parametric programming approach discussed above is also
applicable for right-hand side perturbations. As a example of this approach, we tum back
to the mean absolute deviation model and we study perturbations in 13. The effect of
changing this parameter is to move along the efficient frontier. If we establish a range for
variations in this coefficient, we have established the range or interval on the efficient
frontier that has the same basis as the optimal one. To do this, we formulate the problem as
[24]:

n

[24a] maximize ~ jlixi
f:f

subjectto:

[24b]

[24c]

[24d]
n

~Xi = 1
f:f

[24e]

We then have a perturbed problem with one new parameter.

We add a parameter, ~, to the right-hand side of the constraint [24b]. The effect of this
perturbation would illustrate the risk return tradeoff between the mean return and the
absolute deviation of the optimal portfolio. From linear programming theory we know that
the optimal solution, x;, given a basis B, is given by:

Here b is the vector, described in the previous section, consisting of zeros everywhere,
except in two positions, where it has the values v and 1. We now define the vector fl as b,

except that v is replaced by ~ and the number 1 is replaced with o. The vector fl is a
perturbation vector used in sensitivity analysis on 13. In this case, the perturbation vector
only consists of one element different from zero.
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Allowing the perturbation coefficient f3 to have values different from zero, but values such
that the original basis remains optimal gives:

Theorem:

The basis remains optimal as long as:

Proof:

The proof is trivial since the solution to a linear program is given by [26] when f3 is the
optimal basis. If the perturbation above drives either X or Y to zero, new constraints
become effective and a new basis enters the optimal solution.

D

We will now look at sensitivity analysis for the quadratic model.

2.5. Sensitivity analysis in the quadratic model.

In this Section we discuss approaches to use in performing a sensitivity analysis on the
quadratic model. We discuss the study by Grauer and Best (1984), and an approach
where we perturbe the estimated expected return of the assets on a one at a time basis. This
approach utilizes known properties of the efficient frontier to obtain a linear inequality
between the covariance between the optimal portfolio - nonbasic assets and allowable
perturbation upwards in the estimated return of the nonbasic asset. This relationship is
usable when we compare the result for this procedure for the quadratic model to that of
single perturbations in the linear model.

In their article Grauer and Best (1984) investigates the sensitivity of the solutions to
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changes in the (estimated) expected returns in the traditional MV problem. We recall that
the MV problem is a portfolio problem where the variance of the portfolio is minimized,
subject to the condition that the expected return should be over some predefined level. If
one allows the expected return to vary, one will have a tradeoff between expected return
and variance in the expected return variance space. Grauer and Best studied a
parameterized version of the problem, in which they allowed for perturbations in the
expected returns of the assets. If we write the parametric MV problem in compact form,
wehave:

Here A is a parameter reflecting the investor's tradeoff between risk and return. The
parametere is a parameter that is allowed to vary, q is a vector and indicates the direction
of the changes in the expected returns. If e or q is equal to zero, this is the ordinary

parameterized MV problem. Denoting nonzero values to 6 and q gives us a parametric
programming problem where we are able to investigate the effects of changes in the

estimated values of f..li(for instance from f..lito f..li+6qi) on the optimal solution. If we
assume that the problem [27] has been solved for some specific value A,we can investigate
how the optimal solution depends on different values of 6. We observe the similarity
between the perturbed version of the quadratic problem given by [27] and the parametric
version ofthe linear model given by [18].

Let us now assume that we have performed a mean variance optimization with the original
expected return parameters, then assume that we perform a perturbation on the expected
returns as indicated in problem [27].



Chapter 2. Risk Return Models and Sensitivity Analysis.
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Figure 2.3. Perturbed frontier.

Above we have illustrated the effect on the parameterized quadratic programming problem
by drawing the original portfolio frontier and the frontier obtained by a perturbation of the
expected return vector. The figure illustrates that for one arbitrary perturbation, the new
perturbed frontier changes; but since the variance covariance matrix is unchanged, the
variance of the minimum variance portfolio frontier is unchanged. In the figure above the
perturbation is done in a direction that could imply overall higher expected returns. If we
interpret the figure above as a uniform shift of the efficient frontier upwards, the

perturbation could be equal for all the expected returns.

There are several methods for solving the perturbed problem above. One possible
approach is to derive the optimal weights as a function of the perturbation parameters.
Another approach is to solve the problem iteratively, by varying the perturbation parameters
until the requested information is revealed. The sensitivity analysis above can be done for a
single security, by setting all components in q equal to zero except for one, corresponding
to the asset under investigation. Or it can be viewed as a multiple perturbation, in one
direction, by letting two or more of the elements in q be nonzero. For the first part of the
analysis in this chapter, we will look at single perturbations, following a simpler, or a
special case, compared with the approach of Grauer and Best.

We will now consider single perturbations of the non basic assets, and by the use of
efficient frontier mathematics (discussed later), we can state the following theorem:
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Theorem:

Consider an optimal solution with return r; and index set Ix associated with the basic
variables in the problem [15]. The index set I, is no longer optimal if a nonbasic asset's
expected return, with original expected return f..lk'is replaced by f..l; where f..l; satisfies:

[28]

Proof:

Assume an optimal solution, X*, to the problem where k E Ix' In addition, assume that the
optimal weight for this solution is given by, xk = Inf{xk : k E Ix} = O. To clarify this, the
expected return of asset k is set such that it lies on the border between being a member of I;
and Jx' which means that it is a member of the basis and nonbasic assets. This is what we
would call a degenerate optimal solution.

If this is true, the optimality condition associated with this asset is:

fl

[29] ~ xioik - f..lkAE- A} = O

Equation [29] holds for all k E Ix' We recall that the other optimality conditions are not
affected by variations in the nonbasic asset's (indexed by k) expected return. Solving for

f..lkgives us:

fl

~XiOik - A}

AE
[30]

Since k E I, for f..lk~ f..l;, the equation [30] holds with inequality and f..l; is the value for
asset k in which asset k enters the basis.

o

We will now perform an analysis of the characteristics for the line given by [30]. To be
able to do this, we have to work with the assets which are in the basis in the original
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optimal solution. This means that we analyse a subproblem. This subproblem considers
only the assets which are basic in the original optimal solution. To use Markowitz words
we study the criticalline given by the basic assets with index set I. The analysis lies close
to the analysis performed by Merton (1973) and Huang and Linzenberger (1988). The
problem is [31]:

[31] ... 1 T~
a mmmuze 2X ""Ix

subjectto:

[31b]
[31c]
[31d]

T -
X J11 = !J.
xTl = 1

X Em"

Here 1is a vector nx 1 consisting of ones and kl is the covariance matrix corresponding to
the basic assets. The Lagrangian is:

If we differentiate L with respect to the variables x, Al and Ae we get the optimality
conditions[32]:

[32a]

[32b]

[32c]

dL T - O~ = X J11 - !J. =dll.e

It can be shown by the use ofthe conditions stated above that [33]:

[33a]

[33b]

Cii - A
Ae= D

B -Aj!
Al = D
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The parameters A, B, C and D are defined as follows [34]:

[34a] A = lT~IlflI

[34b] B = fll~IlflI
[34c] C = lT~Ill

[34d] D = BC - A2

If we insert the expressions given by [33] and [34] above into [28], we obtain the relation
between the covariance and the cutoff rate. Utilizing some algebra, this excess cutoff rate,

defined as the level of expected return that separate those cases where the asset is a member
of the optimal basis with those cases in which it is not a member of the optimal basis, can

be formulated as:

[35]

The relation given by [35] is useful for several reasons. First, it gives us a nice linear

relationship between the expected return necessary for a particular nonbasic asset, with the
expected return on the other asset held fixed, to be a member of the basic assets. Second, it
gives us a relation such that we can compare the effects of single perturbations in the MV
model with the effects of single perturbations in the mean absolute deviation model. In the
mean absolute deviation model, the analogous relation was obtained by theorem [21]. We
will utilize these two relations in the next section.

2.6. Results for the traditional sensitivity analysis on data from Oslo
Stock Exchange.

In this Section we will present results of using the two parametric programming approaches
outlined in the previous chapters for the linear and quadratic models.

In our study we will use 21 stocks listed on the Oslo Stock Exchange. The data is taken
from the period of 1 Jan. 1987 to 31.Des 1992 (72 monthly observations). We have
selected the stocks on the basis of several criteria. First, we avoid stocks that have low
liquidity, such that stocks traded in fewer than 150 trading days during a year on average

are excluded from the set. Second, the stock has to be a member of the trading list over the
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whole period. If mergers have taken place,
we have adjusted for this by adjusting the new stock with the switch ratio offered to the old
stockholders in the two companies. For sectors with special events like the bank and
insurance sector, we have used the bank and insurance index instead. All return series are
adjusted for splits, emissions and dividends to preserve the true return of each asset. The
data was delivered by the database Amadeus at the Norwegian School of Economics and
Business Administration. This data set will be used for all the tests of the models described
in this chapter.

The analysis is done by the use of the LINDO linear programming optimization software
package. An ASCII file is constructed with the problem in a format readable by LINDO.
The single perturbations sensitivity analysis is a part of the LINDO optimization package.

We will consider three optimal portfolios, which we will denote by the low, medium and
high risk portfolios. Their returns for the period under investigation are 2.50, 3.05 and
3.25 respectively.

As is often the case when using historical data to perform a mean variance analysis, only a
few assets have positive weight in the optimal solution. Among the 21 assets used in the
analysis, only 7, 4 and 2 had positive weights in the three portfolios described above.

We will first look at a table which gives us the results for the sensitivity analysis on the
linear model. Then we combine the results obtained from the linear model with those from
the mean variance model utilizing the relation [28].
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TICKER Iii !-tLow !-ttow !-tMedium !-tMedium !-tHigh !-tfEgh

AKE 0.435 -Inf 3.169 -Inf 3.051 -Inf 3.150

DNL -0.021 -Inf 4.022 -Inf 2.913 -Inf 3.073

DYN 1.580 -Inf 2.308 -Inf 2.838 -Inf 3.099

ELK 0.762 -Inf 8.414 -Inf 3.524 -Inf 3.159

HNA 2.789 2.357 3.080 2.789 2.810 -Inf 3.030

KVE 1.782 -Inf 3.678 -Inf 2.971 -Inf 3.057

NHY 1.781 1.447 2.234 -Inf 2.774 -Inf 3.098

ORK 2.251 -Inf 4.570 -Inf 3.050 -Inf 3.128

SAG 3.311 -Inf 6.326 3.223 3.315 3.040 9.970

SIM 1.798 1.209 2.153 -Inf 2.885 -Inf 3.074

TOM 2.092 1.403 2.490 -Inf 2.804 -Inf 3.086

uro 3.036 2.649 4.115 3.036 3.102 2.808 3.31

BEA 1.980 1.733 2.247 -Inf 2.695 -Inf 3.049

BON 2.387 -Inf 7.774 -Inf 3.128 -Inf 3.131

NAL 2.717 2.450 3.337 2.695 2.724 -Inf 3.058

STO 2.177 -Inf 4.283 -Inf 2.887 -Inf 3.096

VAR 1.104 -Inf 5.06 -Inf 3.246 -Inf 3.141

WWI 2.281 -Inf 6.171 -Inf 3.158 -Inf 3.182

BNK -2.255 -Inf 2.455 -Inf 2.888 -Inf 3.083

FOR -0.192 -Inf 1.606 -Inf 2.967 -Inf 3.096

NSI 1.013 -Inf 1.532 -Inf 2.918 -Inf 3.065

Table 2.2. Results single perturbations in the linear model.

In the table above, we have listed the different assets and their range of allowable
variations. The sensitivity analysis is performed on the estimated expected returns. The
first column is the ticker code for the asset. A table explaining these ticker codes can be
found in the appendices. In column two we have the estimated expected returns for the
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assets, which are simply averages of the returns in the periods under investigation. At a
first glance at these estimates, one could pick several assets that have an estimated expected
return that makes them invalid for implementation of a mean risk model. An example is the
BNK asset, an index representing the returns of the banking industry in Norway in the
period, which has an estimated expected return of - 2.25 %. One could hardly argue that
this estimate is representative for the expected return in the forthcoming periods. This case
also points out the relevance of a sensitivity analysis, to investigate what happens with the
optimal solution if we change this value.

We have in the analysis above evaluated three portfolios. These portfolios are the low risk,
medium risk and high risk portfolios. The six other columns in the table above correspond

to the three portfolios. There are two columns for each portfolio denoted by ~- and u", In
the table above, ~- is the lowest value to which we could change the expected return of the
asset without changing the optimal basis. Conversely, ~+ is the highest value we could
assign to the expected return of the asset without changing the optimal basis of the optimal
portfolio.

Assets which are not in the optimal basis may not be attractive because they have a low
expected return. Changing of this expected return then has no effect, such that ~- for these
assets is -00. For example one particular asset, ELK (Elkem), a typical high risk asset

which is not in the optimal basis in the optimal low risk portfolio, must have a high
estimated expected return to be a member ofthe low risk portfolio (8.414). This is also the
case with two other risky assets, the shipping companies Bonheur (BON) and Wilhemsen
(WWI).

In general, not surprisingly, it seems that risk is a factor that determines the cutoff rate
(u"), The risk measured by the variance of the asset or the absolute deviation of the asset
could only explain a part of the cutoff rate. Covariability with the other assets is also a
central point.

We will now look at the relation between single perturbations for the mean variance and the
mean absolute deviation model. In the mean variance model we use the derived
relationship in [29]. The equation for our portfolios is computed ass:

5 The numbers are computed in a spreadsheet by using the relevant subrnatrices and average returns.
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Portfolio
Aji- B D
Cf.l-A ca- A

Low risk -2.9357 0.05078

Medium risk 2.0939 0.00577

High risk 2.8044 0.00153

Table 2.3. Single perturbations in MV model.

Below we have illustrated the three portfolios by single perturbation of the nonbasic assets.
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Figure 2.4. Cutoff rates MAD versus MV implied cutoff rates.

It seems that the allowable range for variations upwards for the high risk portfolio when
using the MV model and the mean absolute deviation model does not differ much. As the
risk in the portfolio is reduced there seems to be a difference between the two models. This
holds specially for the low risk portfolio. This is reasonable since the difference between
the two models lies in the way they consider the risk of the portfolio. For portfolios with
low risk, typically selected by investors that emphasize the risk element in the portfolio, the
two models differ, reflecting the difference in the risk measure used.
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We will now look closer at multiple perturbations in the linear model.

2.7. Wendell' s tolerance approach.

The analysis described in the previous sections in general, specifies a direction, given by
eitherq or d, and the perturbation is done in the specified direction. One disadvantage of

this approach is that it requires a specification of the vector d or the parameter q. We may
not have any idea of how these parameters should be specified.

In this section we will present the analysis tools necessary to perform individual
perturbations of the expected return vector of the linear model. The technique is based on
the tolerance approach to sensitivity analysis in linear programming, presented by Wendell
(1984), (1985) and extended by Wodolowski (1991) and Wendell (1992).

First we williook at the problem from a general linear programming view, and thereafter
look at the theoretical consequences for our linear model. Consider the general perturbed
linear programming problem[36]:

n

[36a] maximize'" (ci + diYi)xi
f:f

subjectto:

n

[36b] ~ ~jX = bj + {)jf3j j E 1,2, ... ,m.

[36c] Xi ~O iE 1,2, ... .n.

This problem differs from the traditional parametric linear program in the sense that we
allow for independent perturbations on the cost vector and right-hand side variables. As in
the case with parametric programming, we specified a direction, given by the vector d, in
which we forced the coefficients in the objective function by the use of the scalar cp. In the
approach above we liberate these movements by not assigning such a direction. We refer
to these as independent perturbations. In the model above these perturbations are in the
model above also incorporated in the right-hand side of the constraints.
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If we let ci = di and bj = bj for all i and j, we can interpretet 'ts and ~j as percentage
deviations of the parameters ci and bj. If d, and bj are equal to one, the interpretation ofYi
and ~j is additive deviation from the original parameters. If we in a sensitivity analysis
want to incorporate sensitivity analysis to one parameter but not to another, we can do this
by giving the value Oto di if ci is to be held fixed and we give bj the value O if bj is to be

held fixed.

Another application of the sensitivity analysis above, without extending applications of this
approach on the models in this chapter, is to define a region in which the parameters may
vary. If we let A be such a subset, assuming that A is a polotype, i.e. A =
{b} :b} sb2sb} + I}, then we could perform a sensitivity analysis given the polotype A. Of
course, such defi~itions are also allowable for the perturbation parameters (di) in the
objective function.

We will now study in more detail the sensitivity analysis based upon Wendell's approach.
We will only study variations in the objective function coefficients of the linear
programming problem [36]. Variations in the right-hand side coefficients in the general
linear programming problem will not be investigated. For further information see Wendell
(1984), (1985) and (1992).

In the Wendell analysis we are interested in a single tolerance value, denoted by T,*,which
gives a general bound for the allowable variations in the coefficients in the objective
function of the linear programming problem. In the presentation below we give the results
in a general form. We do not yet restrict ourselves if the variations are additive or
percentage deviations. In addition, we will assume that the tolerance value T,* is finite. This
means that we assume that the problem under investigation is not degenerate.

The original, unperturbed solution, remains optimal as long as the perturbation is inside the
following interval:

[37] Ry = [y: (-T,*S YiS T,*)]

The numbetT,* is given by[38]:

Here T,kis a parameter computed for each nonbasic variable. In order to describe this
parameter, we first look at the reduced cost in the problem with multiple perturbations.
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The traditional reduced cost vector is given by:

For one particular nonbasic variable, k, the reduced cost is given by:

When we allow for multiple perturbations, we have to incorporate this into the equation
[40]. The reduced cost, for variable k, with multiple perturbations is given by:

Il B-~
~m m k

:i!!: O VkEJ

The term in the bracket is the reduced cost obtained from the original solution and Ykdkis
the direct increase in the coefficient in the objective function of the perturbed problem.
Above hi is an index set for the basic variables. The last term of the right-hand side in [41]
correspond's to the term ~B-l A.k in the reduced cost of the traditional parametric linear
program. Since we now study multiple perturbations, the scalar cp is replaced with the
vector YB. The right-hand side of equation [41] is the reduced cost in the problem with
individual perturbations. As long as this inequality holds, the original solution remains
optimal.

We recognize that the traditional reduced costis extended in [41] by the incorporation of the
multiple perturbations. The equation [41] defines a halfplane. If the inequality is replaced
with an equality, it defines a hyperplane. It may be shown that the parameter c, is the
optimal solution to the following program'' [42]:

[42a] minimize IIYlloo

subjectto:

[42b] yE Hk(y)

6 Here the norm IIYlloo is the max norm of the vector y, or the maximum value of the absolute values of the
elements in the vector.
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Here Hk'(Y)is the set:

A useful result, to be used below, is given in Wendell (1985). The results give an optimal
solution to problems of the type[44]:

[44a] minimize liz Iloc

subjectto:

[44b] gz = go

Above g is a vector with constants, z is a variable vector and ~ is a constant.

The solution to the problem is given by:

[45] *z =
~sgn(g)
gsgn(g) ,

We notice that [43] is similar to [41], except that we have replaced the inequality with an
equality. In order to obtain an intuitive understanding of the approach, we notice that the
solution to the program [42], given by the vector y*, consists of elements with equal
absolute value. This follows, since if the absolute values were different, one could
decrease the variable in the vector y with the largest absolute value by altering another
variable in y such that [42b] is fullfilled. Since such a modification that gives us a lower
objective function [42a] is possible, y can not be optimal until the absolute values in yare
equal.

Further we recognize that as long as the absolute values of the elements in yare less than or

equal to Ily*Iloc'the reduced cost for variable k given by [41] remains positive. Thus
perturbations of the objective function of the program with any of the Yi in the range
± IIY* Iloc'would not change the the sign of [41]. As long as 7 IiE mn the solution to the
problem [42] could be obtained by the use of [44]. By the use of [45] we obtain:

7 Here Il E mo means that we have not restricted the variations in the objective function to be member of a subset
of mo.
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[46] 1:k= m

Idk I + ~ IdhjB~lA.k I

Once we have computed the different 1:k' the value of 1:*is obtained by selecting the
minimum value of the 1:k'Scomputed. By using 1:*as an upper bound of the allowable
variations in the parameters Yi'we are assured that s~~O V k. This means that the original
basis remains optimal.

We now tum to the linear mean risk model. For the mean absolute deviation we could
incorporate the approach by formulating the linear programming problem with
perturbations in the objective function [47]:

n

[47a] maximize ~ (fli + Yi~)xi

subjectto:

[47b]
T

I "" _T - 1 f::fYt s u

[47c]

[47d]

[47e]

We then have a perturbed problem with 2n new parameters. Note that we do not perturb the

auxiliary variables Yt' which have zero as the coefficient in the objective function in the
original problem.

We will consider additive shifts in the expected returns in the objective functions of the
problem. We could then compute the different 1:kas:
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[48] ""tk =

Here lj is given by:

[49] f
l :j E r,

I· -
J - O: else

The indicator variable, lj' reflects the fact that we do not perturbe the objective function
coefficient, (given by zero), to the variables Yt. The variable 't* is then found, by following
[38a].

The maximum tolerance approach is the infinum of the calculated parameters 'tk' Wendell's
approach, with simultaneous changes of the parameters in the objective function, could be
illustrated, in the two parameter case, as in the figure below:

coefficient 1

Perturbation coefficient 2

Tolerance region, Wendell

Figure 2.S. Wendels single tolerance value with two variables.

Above we have illustrated the concept of the tolerance parameter 't*, by using an example
with two variables with perturbations on their cofficients in the objective function. The
detemination of the parameter r", defines the shaded area in the figure above. As long as
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the perturbation of the two cofficients lies inside the shaded box, the original optimal
solution is still optimal. In our particular problem, the shaded area will tum up as an n

dimensional hypercube.

Wendells method tells us how much each coefficient is allowed to vary, independent of
the others, so that the solution remains optimal. This approach, however, may result in
conservative ranges for the uncertain parameters in question, since the selected tolerance is
the infinum for the coefficients in which variation does not lead to a new optimal basis.
Further, the range is based on the assumption that the direction of change in the coefficient
is the direction in which the optimal basis changes first. With this in mind, Wondolowski
presented an approach in which those objections were considered.

2.8. Expanding the tolerance region.

In this Section we will widen the band given by the tolerance approach proposed by
Wendell. The expansion is based upon the work of Wodol owski (1991)8.

In the tolerance approach above, we determined a parameter 't* that is a value in which the

estimated expected returns could vary without changing the optimal basis. The approach
has been criticised for not providing as wide bands on the variation in the objective function
parameters as it could. Wodlowski claimed that it is possible to expand the tolerance region
by calculating a vector of parameters that gives the allowable variation of the coefficients
upwards and downwards. In our model this means allowable ranges in downwards and
upwards moves for the expected return coefficients.

We will denote those vectors by 'ljJ- and 'ljJ+ respectively, and an interval for objective

function coefficient i, is given by ['ljJj, 'ljJtJ The elements of this vector are, by the use of
the notation for the general linear programming problem, defined by [50]:

- f ci - min {'tk : Bi:A.k > O}[50a] 'ljJi = kEl

- 00 otherwise.

{

ci + min {'tk : Bi:A.k < O}
[50b] 'ljJt = k El

ci + 'ti otherwise

8This approach was also presented by Wendell (1992).
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To clarify this result, we have to consider the modified reduced cost vector. The elements
in this vector are given by [41]. If we notice that the vector d is the unit vector, which
means that we investigate additive perturbations, element k in the modified reduced cost

vector becomes:

B-1 Am~k

~ O VkEJ

We first consider positive perturbations variables given by YB. If:

[52] l 'Bi- A.k ~ OV k E J

then positive perturbations in the cost coefficient in the objective function for the basic
variables would not change the sign of s~.The allowable upward movement for the cost
coeficient i is then given by 'ti. If variable i is nonbasic, this value is given by 'tk' as
computed above. If any of the values given by [52] is negative, it would limit the
allowable variation of the cost coefficient upwards, and we have to select the tolerance
value upwards as the minimum of the computed parameters 'tk' given that the
corresponding value of Bi-lA.k is negative. Conversely, in the case with downside
variations, a situation where:

means that perturbations where YB is negative do not make s~negative. If one or more of
the values given by [53] is positive,this would limit the variation downwards, and we have
to use the minimum value of 'tk' given that the corresponding value of Bi-lA.k positive.

The result above is converted to our portfolio model by letting ci = p,j, such that if the
expected return coefficient changes from !-li to P,i and is inside the interval [..pi, ..pi], the
original solution remains optimal.

The ranges for individual perturbations specified by the interval [..pi, ..pi] are completely
included in the interval obtained by the use of the 't* parameter in Wendell's analysis. The
approach of Wodolowski is then a widening of the bands given by the use of the parameter
*'t . We illustrate the expansion of the bands by using the figure below, where there are
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two variables.

Perturbation coefficient 2

Tolerance region, Wendell

Figure 2.6. Wodolowski's individual tolerance ranges.

We see that Wodolowskis extension of the tolerance approach expands the set in which the
coefficient of the objective function is allowed to vary. The expanded region is illustrated
in the figure above by the dark shaded area.

If we compare the sensitivity analysis obtained by Wodolowski s approach to that of single

perturbations or traditional sensitivity analysis presented earlier in this chapter, the
Wodolovski approach gives us more freedom when we vary the expected returns of the
assets. This is so because we are allowed to vary all the expected returns in this approach,
compared with one variation at a time in traditional sensitivity analysis. As in the case with
parametric linear programming, the sensitivity analysis is performed in one specified
direction.

2.9. Results - individual perturbations in the mean absolute deviation
model.

In this Section we williook at the extensions of the sensitivity analysis presented in the last
two sections applied to our portfolio problem. We will conduct an analysis of the mean
absolute deviation portfolio problem by studying the sensitivity of the solution when we
perform perturbations on the expected returns of the assets and determine which
perturbations the original solution remains optimal for. Individual perturbation will
decrease the allowable varying range in the parameters, and to cope with this we will study
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Wodolowskis (1991) extension of the tolerance approach, to widen the bands, such that
our sensitivity analysis will be more complete. A similar approach in the quadratic case is
not performed since the theory of multiple perturbations in this case is, to our knowledge,
not fully developed.

We use the data from the Oslo Stock Exchange to perform a sensitivity analysis based upon
the approaches of Wendell and Wodolowski. The sensitivity analysis is based upon
additive perturbations.

To be able to do this we use the LINDO linear programming software, which has the ability

to provide us with the optimal simplex tableau. We have constructed an ASCII file with the
problem. This file is read by LINDO and solved for the three portfolios studied. The
optimal simplex tableau is converted into an ASCII file which is read into Microsoft Excel,
where the necessary calculations are done. We start by looking at the single tolerance
approach given by Wendell. The results for the parameter r" are as follows:

Portfolio Low Medium High

* 0.138 0.0039 0.116T,

Table 2.4. Single tolerance values.

The number T,* is the allowable variation in the expected return. If for example the estimated
return is 1.78%, the range of variations given by the low risk portfolio is (1.642,1.918).
As indicated above, the parameter T,* gives very conservative ranges for the allowable

variations in the estimated expected returns. This is especially the case for the medium risk
portfolio. If we look at Table 2.2., we see that the ranges for the basic asset for this
portfolio, compared with the other portfolios, are also conservative. We will try to widen
these bands by using the approach suggested by Wodolowski (1991).

Below we have listed the results for the Wodolowski approach using the same type of table
as in the analysis performed on the data using traditional sensitivity analysis earlier in this
chapter.
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TICKER f.tLow f.ttow f.tMedium f.tMedium f.tHigh +
f.t i f.tHigh

AKE 0.435 -Inf 1.133 -Inf 0.865 -Inf 1.791

DNL -0.021 -Inf 0.345 -Inf 0.301 -Inf 1.527

DYN 1.580 -Inf 1.733 -Inf 2.111 -Inf 2.340

ELK 0.762 -Inf 1.059 -Inf 0.969 -Inf 1.960

HNA 2.789 2.751 2.930 2.789 2.794 -Inf 2.906

KVE 1.783 -Inf 2.046 -Inf 2.213 -Inf 2.418

NHY 1.781 1.640 2.046 -Inf 2.02 -Inf 2.439

ORK 2.251 -Inf 2.527 -Inf 2.424 -Inf 2.689

SAG 3.311 -Inf 3.513 3.306 3.314 3.309 3.426

SIM 1.798 1.660 1.840 -Inf 2.319 -Inf 2.437

TOM 2.093 1.950 2.129 -Inf 2.344 -Inf 2.588

uro 3.035 3.001 3.180 3.036 3.044 2.924 3.0401

BEA 1.980 1.840 2.120 -Inf 2.316 -Inf 2.515

BON 2.387 -Inf 2.656 -Inf 2.585 -Inf 2.7605

NAL 2.717 2.580 2.870 2.716 2.724 -Inf 2.889

STO 2.176 -Inf 2.492 -Inf 2.374 -Inf 2.638

VAR 1.104 -Inf 1.474 -Inf 2.044 -Inf 2.121

WWI 2.281 -inf 2.571 -Inf 2.440 -Inf 2.731

BNK -2.255 -Inf -0.856 -Inf -1.424 -Inf 0,416

FOR -0.192 -Inf 0.153 -Inf 0.308 -Inf 1.453

NSI 1.013 -Inf 1.150 -Inf 1.268 -Inf 2.037

Table 2.5. Individual tolerance ranges.

The table above provides the results for Wodolovskis individual tolerance range

approach, applied for the mean absolute deviation model. If we consider the sensitivity
analysis obtained by the use of the Wodolowski approach to traditional sensitivity analysis
presented earlier, we see that the band is tightened. This is not surprising, since we now
allow for multiple perturbations. Typically, large variation in the bands as allowed by the
traditional sensitivity analysis, e.g. for the ELK security with traditional "",Low =8.414, is
replaced by the more moderate 1.059. This reduction in the band width is also the case for
BON and WWI.
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If we compare the results with the single tolerance approach of Wendell, there is a
considerable widening of the bands for the expected return of the assets, except for the
basic assets in the medium risk portfolio, which is still very tight.

2.10. Conclusions.

In this chapter we have studied two mean risk models: the classical mean variance model
and the mean absolute deviation model. First, we presented the two models and stated a
theorem such that the formulation of the mean absolute deviation model of Konno and

Yamazaki(I991) could be simplified. Then, we presented standard sensitivity analysis for
the linear model. For the MV model we had a cursory look at the sensitivity analysis
presented by Grauer and Best (1984). Thereafter, we discussed single perturbations of the
MV model by working with the critical line of the original optimal basis. Utilizing the
theory presented for the two models for single perturbations in the expected returns of the
assets, we performed an empirical analysis and compared the two models. One of the
results was, not surprisingly, that the allowable range of variations differed for low risk
portfolios, but was almost identical for the high risk portfolio. We then turned towards

multiple perturbations of the linear model and discussed the theory of Wendell's tolerance
approach and Wodolowskis extension. Finally, we performed a multiple perturbation
analysis using the two approaches on actual data from the Oslo Stock Exchange. We
discovered that the single tolerance approach by Wendell resulted in conservative ranges, as
opposed to the individual tolerance ranges obtained using of Wodolowskis procedure.
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Appendix I: Properties of the risk measure absolute deviation.

Abstract: This appendix gives a brief summary of the geometric interpretation of the risk
measure absolute deviation and it's properties when the distribution of the returns on the
assets are multivariate normal.

A.1.1. Absolute deviation - geometric interpretation.

If we let Tpbe a random variable with probability density function j(Tp), using the result
[7], the absolute deviation is given by:

!-lp

[A.l.] 'Vp = E( Irp - !lp I) = 2f(!lp - Tp)j(Tp)dTp= 2F2(!lp)
-00

Here we have defined F and F2 as:

x

[A.2.] F(x) =f j(y)dy
-00

x

[A.3.] F2(x) = fF(y)dY
-00

A geometric interpretation of this result is that 'Vp is twice the area under the cumulative
distribution function in the interval (00, !lp].

A.l.2. Normality - and estimators.

When Tpis normally distributed with parameters (!lp, ~), the mean absolute deviation is
given by:

Thus there is a linear relation between the expected absolute deviation and the standard
deviation of a portfolio.

When we have a return generating process from the multivariate normal distribution, an
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estimator often used for the standard deviation is:

T

~(rpcrp)2

T-1[A.S.] 0=

The variance? of this estimator is given by Fisher (1920):

[A.6.] Var(o) =

Peter (1856) showed that:

T

~ Irpcfp I
E(o)=' (2 =0

V ;t T-1[A.7.]

Thus we have an alternative estimator (o) for the population's standard deviation.

Ifwe take the variance of this estimate, we have, from Helmert (1876):

[A.8.] r Jt . ( 1 ) lif Jt-2 _2 (1 )Var(o)= - +arCSlD - -T+VT(T-2) - =-0-+0 -
2 T-1 T 2T T2

If we compare the variance of the two estimators by dividing one by the other, we have, by
letting Tr+oo:

[A.9.]
Var(o)
Var(o) ....88 %

Thus, the alternative estimator gives us an efficiency loss. In other words, we need
approximately 14% more observations, when T is large, to get as accurate an estimate
using the absolute deviation as that obtained using the traditional one.

9 Here T is the gamma function.
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Appendix II. List of companies used.

Ticker Name

AKE Aker

DNL Det Norske Luftfartsselskap (SAS)

DYN Dyno Industrier

ELK Elkem

HNA Hafslund Nycomed

KVE Kværner Ind.

NHY Norsk Hydro

ORK Orkla

SAG Saga

SIM Simrad

TOM Tomra

UfO Unitor

BEA Bergesen dy.

BON Bonheur (Fred. Olsen & Co.)

NAL Den Norske Amerika Linje

STO Storli

VAR Vard

WWI Wilhelm Wilhemsen Ltd.

BNK Oslo Stock Exchange Bank Index

FOR Oslo Stock Exchange Insurance Index

NSI Norske Skogindustrier
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3. Portfolio Optimization Models and Imposing
Constraints Involving Integer Programming.

Abstract: This chapter investigates the MV problem when, in addition to the linear
constraints imposed on such problems, such as sector constraints and upper and lower
bounds, one imposes constraints that involve the use of discrete variables. The formulated
problem is used to derive the ex post efficient frontier. Often, in practical situations,
situations arise in which one has to consider portfolio models that use discrete decision
variables. This chapter considers several cases where we formulate the portfolio selection
problem as a problem with discrete decision variables. Among the cases studied are
models with transaction costs, basis constraints and intervaling constraints. We formulate a
linear program which is an approximation of the quadratic model. By the inclusion of the
discrete variables, this problem becomes a mixed integer or binary linear programming
problem. We construct two test problems, in which one is a formulation that captures the
current regulation imposed on fund managers in Norway today. By using historical data
we compute the ex post efficient frontier for the period 1987-92 based upon the use of
data from the Oslo Stock Exchange. In addition we evaluate the generated portfolios in the
period 1993-94.

3.1. Introduction.

Traditional portfolio theory, which has its origin in the Markowitz (1952) model, uses
optimization techniques such as quadratic programming to solve the programming problem.
This model has been extensively investigated and capital asset pricing models such as the
Sharpe (1964), Lintner (1965) and Mossin (1965) CAPM are based upon this model.

When an investor designs his portfolio he is more or less restricted by the means in which
he would select a portfolio that accomplishes the goals that he has set for his investments.
Traditionally, these constraints dictate that no asset can be held short during the investment

period. Further, the investor may be faced with sector-wise restrictions such that the
assets invested in one sector, whether this sector is geographical, markets for firms'
outputs or cap-size sectors, should or should not exceed some predefined fraction. This
class of sector-wise constraints is linear, and the inclusion of these restrictions in a well
defined optimization model does not complicate the model.

Another type of restriction, which involves the use of more complicated optimization tools
like integer programming, has not received so much attention in the literature. One example
of a restriction that requires the introduction of discrete decision variables is that the fund
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manager is allowed to invest in a maximum of two assets from one specific sector.
Another example is if one includes transaction cost in the model, where the transaction cost
is fixed up to some level and above this level varies at a linear rate with the amount
invested.

The introduction of integer variables makes an investment problem more complicated in the
sense that one can not rely on the optimization algorithm used for continuous optimization.
The set of allowable decisions is no longer continuous. To comply with this, we have to
use the branch and bound algorithm or other alternative methods for handling discrete
decision variables to sort out the optimal solutions.

Chapter 3 is organized as follows. In Section 3.2., we will reformulate the traditional MV

problem as a problem with a separabable objective function. This is neccesary in order to
perform the approximation outlined in Section 3.3. In Section 3.4., we discuss the use of
discrete decision variables in general. In Section 3.5., we discuss basis constraints and
interval constraints. Transaction cost is covered in Section 3.6. The effect of the
introduction of discrete decision variables on the shape of the tradeoff between risk and
return is discussed in Section 3.7. In Section 3.8., we present two test problems and the
result of an optimization using actual data. Improvement of the solution procedure for one
of these problems is discussed in Section 3.9. Finally, in Section 3.10. we draw some
conclusions.

3.2. Expected return - Variance of return - Direct formulation.

The introduction of integer constraints into a model makes the model, in an operational
research sense, quite different from its non-integer counterpart. When integer variables are
introduced, the solution algorithm necessary to solve the problem has to take into account
that the set of allowable solutions is nonconvex in mm, where m is the number of variables
in the problem. So, although from a user point of view the model is only slightly
modified, the procedure to solve it differs considerably.

We assume that the basic model used by the investor in this chapter is the mean variance
model. The models with discrete variables and solution procedures discussed in the

chapter may also be used on other quadratic models, such as models which consider
semivariance and index matching models. The mean variance model in its simple form,
with short sale restrictions, takes the form[1]:
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[la]
n n

minimize ~~ x.x.o.,LJLJ I J IJ

i=l i=l

subjectto:

[lb]

[le]
nv,..LJ 1-

i=l

[ld]

[le] iE 1,2,.....,n.

The problem above is the traditional portfolio problem ex ante. Above, xi is the fraction
invested in security i and !-liis the expected return of asset i.
The above problem is a quadratic programming problem, and could be solved using a
suitable algorithm, such as Lemke's (1965) algorithm or the reduced gradient method.

In a portfolio model, we often use historical data to estimate the parameters in the model.
In our formulation of the problem, we will formulate the problem in a direct way. In other
words, we mean to formulate the model in such a way that we can use the observed data
directly.

We define 3]t to be rit - fli' where fli is the estimated expectation of the random return
assets for asset i, and rit is the realized return of asset i in period t. As estimates we use the
arithmetic averages of the return series. We know that E(3]t) = O. We also have:

[2]

where cif is the traditional estimator of asset isvariance.

We can now define ~t as:
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n

[3] ~t = ~Xi3jt
i=1

Thus, to obtain the estimated variance for a portfolio we can calculate this as:

Thus we can obtain a portfolio's estimated variance as the sum from t= 1 to T of the square
of the variables in [3] above:

T

[5] T ~ 12~t = ~
t=1

We have above defined the empirical variance of the portfolio by using the observations
directly.

Using the relation [5], we can formulate the MV modelon empirical data as! [6]:

T

[6a] muunuze T ~ 1 2.z;
t=1

subjectto:

n

[6b] 2Xi3jt = zt tE 1,2,......T.
jæ ]

1 The formulation of the mean variance model given here could, with slight modifications, be turned to a model
that uses other risk measures such as absolute deviation, semivariance, partial moments, etc.
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n

[6c] ~Xifti ~ ji
i=l

n
[6d] ~Xi= 1

i=l

[6e] xi ~ O iE I,2, ... ,n.

[6f] ztEm tE I,2, .... ,T.

We see that the square of the deviations for each period t E I,2, ...... T is added and
minimized in the objective function. This means that we minimize the empirical variance of
the portfolio. Although the formulation [6] is quite different from [1] at first glance, and

although they have different numerical properties, they provide us with the same solution.
The objective function in [1] is a quadratic form xT~x, where ~ is the nxn variance
covariance matrix of the assets return. In [6] the objective function is the quadratic form
zTIz, where I is the TxT identity matrix, which is very sparse. The MV problem is now in

a form in which where the variables in the objective function are separable. Note that the
variable zt can take any value in the formulation above. We also note that the above
problem has n+T variables and T +2 restrictions. If we want to restrict our use to
nonnegative variables only2, we could do this by defining:

[7] zt = .z; - zt tE I,2, ,T.
[8] .z;~O,zt-~O tE I,2, ,T.

Here zt takes a positive value if zt is negative and .z; takes a positive value if zt+is positive.
If we use [7] the program will be extended by T variables. Thus, the problem will have
n+2T variables. The relation [7] also has to be substituted into the objective function.

3.3. Approximated version of direct formulation.

In this section we will present the approximated version of the direct formulation of the MV

model. This approximation is done using the same principles as in Chapter 4 of this
dissertation. In order to do this we define a set of meshpoints, denoted by:

[9] sjt j E I,2, ... ,mt• tE I,2, .... ,T.

2Thiscouldbe usefulifwewanttheapproximatedversionoftheproblem(lP) to be a LPwithonlynonnegative
variables.
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The meshpoints sjt take values such that[lO]:

[lOa] smax,t = maxj S"} O!: m.ax{~t} tE I,2, .... T.
J l

[lOb] Smin,t = minjS"] :S ~{~t} tE I,2, .... T.
J l

The other meshpoints, in principle arbitrary choosen, lie in the interval:

The meshpoints will work as approximation points to our original nonlinear function. In
the case using the direct version of the MV problem, this function is:

In the problem we will formulate the objective function given by:

T

[13] 2Z;
t=1

We define a weight associated with each meshpoint sjt. We denote this weight by wjt. In
order to assign two properties to these weights, we have to define the concept of neighbour
as follows. Two weights wjt and wj"t are neighbours if j = I and j* = 2 or, j = fit-I and j*
= fit or j* = j + I or j* = j - 1. The second property is [14]:

lIlt

[l4a] ~ wit = I tE 1,2,...,T.

The two properties we impose on the weights wjt are then:

- The weights assigned to each t must be neighbours.

- The condition [l4a] must hold for each t.

These two conditions are imposed on the vectors w', one for each t, with elements wjt.
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They simply says that in each of these vectors at most two neighbouring elements could be
nonzero. The usefulness of these vectors becomes apparent when we study the linear

programming problem[1S]:

T mt

[ISa] minimize ~~ wi'(Sil)'

subjectto:

mt n

[ISb] ~ wilSi' - ~ ";IX; = O tE 1,2, ... ,T.

m

[ISe] ~ wil = I tE 1,2, ... ,T.

n

[lSd] ~ Xifli O!:ji
i=l

n

[1Se] ~Xi = 1
i=l

[ISf] xi O!:Oi E I,2, ,n.
[1Sg] wjt O!:Oj E 1,2, ,m., tEl ,2, ... ,T.

This problem solves an approximated version of the traditional mean variance problem.
The restriction [ISb] assigns values to the weights wjt. These weights will, according to
[1Sc] for each time period, or observation, add up to one. As a consequence of the
characteristics of the problem studied, at maximum and most probably two wjt for each
time period will be positive. If two of these weights are positive in one particular time
period t, these two weights are neighbours. The reasons for this are that the approximated
function is convex, and that we have a minimization problem. The fulfilment of these
criterias is handled by the form of the objective function. As in the case with non convex
functions, this condition is not neccesarly fullfilled. An example of such a case can be
found in Chapter 4 of this dissertation. Nonconvex problems are more difficult to solve
and we have to apply additionallogical programming by introducing special ordered sets of

type 2.
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The objective function in the above problem will give an approximation to the sum of the
squares in the problem. The goodness of the approximation is determined by the number

of mesh points used.

We will illustrate the approximation for one particulartime period t.

Variance
1.(Sll-)

~

Barycentric approximation

Square of a\?t

sm... t

Figure 3.1. Approximation of the quadratic term - period t.

The above figure shows how the approximation works for one particular observation of the

time series. Along the horizontal axis we have the deviation ~t. In the direct MV
formulation we want to minimize the sum of the squares of ~t. In the approximated
problem, the square of ~t is approximated by the piece-wise linear function in the figure
above. The weights wjt are determined by the distance from ~t to the two nearest
meshpoints. If ~t lies near one mesh point we will have an almost perfect approximation

of ~t. A value of ~t exactly between two mesh points will have a somewhat poorer
approximation of ~t. The approximation is performed by a convex combination of the
mesh points sjt.

The constraints [l5f], [l5e] and [l5d] are from the original mean variance problem.

The degree of approximation is determined by the number of and the selection of
meshpoints sjt. The user of such a model is to a large degree able to tune this
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approximation such that the approximated objective function value and the associated
solution to the linear programming problem [15] are close to the solution obtained if the

original quadratic programming problem is solved.

The approximated linear programming problem above, with the inclusion of the integer
constraints presented later, constitutes the problem we intend to solve to obtain a solution to
the portfolio problem with discrete variables. Such problems are termed mixed binary

linear programming problems.

3.4. General integer programming constraints.

In this section we will discuss, in a general framework, model formulations where we use
integer constraints. Introducing integer constraints into a model clearly expands the set of
possible restrictions in a mathematical model. In contrast to continuous programming,
where the restrictions put into the model typically regulate the amount to invest in assets or
a sector of assets, integer constraints expands the concept further by allowing us to
formulate constraints on a logical form.

Integer constraints involve the use of integer variables which can be classified into several
groups. One group comprises binary variables which are only allowed a value of Oor 1.
Another group consists of positive variables which are allowed to take positive integer

values, such as {O,1,2,3,4, .. }. A third classification is the set of all integer variables such
as {-4,-3,-2,-1,0,1,2,3, .. }. If we denote the variables by bi, we can construct the
following table for a classification of the integer variables:

Variable Set Symbol

b· Oor 1 ~,Il

b· 0,1,2,3,4, ..... z:l

fi. -3,-2,-1,0,1,2,3 Zl

Table 3.1. Different classes of discrete variables.

The models used in this chapter will only use one category of the integer variables

discussed above. This category is ~ 1.
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The discrete decision variables can be used to form different types of conditions, a general
discussion of which follows. The first are logical conditions which are of the type:

[16] if A} then A2 else A3

Here Al' A2 and A3 are events. A typical situation in optimization using such a condition
is the use of models with transaction costs. The fee structure is often of a form such that a
fixed fee is imposed if the transaction is below some fixed amount. If the transaction is
above this level the fee is proportional to the transaction.

The next condition is that of set covering. If we let B be a set and B}, B2, .. ,BL be subsets
of B, we can cover the whole set by the use of B}, B2, .. ,BL' such that the union of the
subsets selected is B. An example of a situation where covering conditions could be
imposed is for investments in some risky assets where the management requires that such
investments should be covered by put options.

Set packing and set partitioning are conditions related to the set covering mentioned above.
But, in addition, we require that the subsets selected, B}, B2, .. ,BL' should be disjoint.
Such a condition could be imposed if we want to guarantee no duplication of coverage in
the option coverage example above.

With these general examples in mind we see that discrete optimization gives the user a new
toolbox of restrictions to use in the asset allocation models. In order to understand the
introduction of the binary variables into our problem, we now give a short introduction to
the graphical representation of binary variables. The presentation of binary variables is
often done by the help of a graph. If we consider a vector Il with the three binary variables
6}, 62 and ~, a possible ordering of these three variables is given in the figure below.
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Root

[0,0,0] [0,0,1] [0,1,0] [0,1,1] [1,0,0] [1,0,1] [,1,0] [1,1,1]

Figure 3.2. Binary search tree for three variables.

The set of possible combinations of the binary variables in the vector Il. is partitioned, and
in the leaves of the tree, or terminal vertices, the partition is complete. The procedure of
moving down into finer and finer partitions is termed branching. By considering one
variable for each level in the three, the different combinations of the vector A are obtained
by following one path.

There are four characteristics of the representation above. First, the graph does not contain
any circuit. Second, there is one and only one vertex, termed root, that is not the terminal
extremity of any arc. All the other vertices are the terminated extremities of a single arc.
From the figure above we also note that the different nodes at each levelonly differ in one
element. The term used in this case is that the Hamming- distance between the two vectors

is one.

The general presentation shown above is fairly general, but we now turn to some specific
cases.

3.S. Basis constraints and intervaling constraints.

In an optimization model we may demand that a finite number of the assets we are able to
select from should have positive weights. If we had an optimization model with 1000

3 The general Hamming distance between two binary vectors Al and A2 is given by h = IAI - A21.
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assets to select from, it would be an enormous task to handle small proportions in all of
these assets, if a run by an ordinary optimization model could select 600-700 assets. Let us
restrict the number of assets to be selected to a fixed number, say k. Then if we extend the
original optimization model by the following equations, we will have a solution that
contains a maximum of k assets[ 17]:

[17a] 0i - Xi O!:: O
n

[17b] 20i:S k
i=l

[17c] e, E z, l

[17d] i E 1,2,3 .. ,n.

The restrictions of [17a] give the variable 0i a value of 1 if asset i has a positive weight.
The control [17b] assures that the number of assets with positive weights is less than or
equal to k. We refer to such constraints as basis constraints. An interesting question is the
effect on the objective function of increasing or decreasing k. One should expect that the
dual price ofthe restriction [17b] should decrease as a function of k. If k, for example, is

held at 3, the effect of increasing this number to 4 should be larger than the effect of
increasing k from 50 to Sl. The number of possible combinations of binary variables with
the restrictions [17] is given by 2n, where n is the number of assets.

By the use of the restrictions shown above, the decision maker controls the number of
assets in the portfolio. Now we assume that the investor for some reason only wants to
invest in amounts or fractions that are between a lower and upper bound. Otherwise he will
not invest at all. Now assume that we put interval restrictions on the fraction to invest. By
this we mean that the assets are restricted to be inside an interval or they have to be set at

zero. We denote the interval for asset i as [~f ' ~i]. If asset i is inside this interval, the
parameter o, should take the value 1. To obtain such a problem we extend the original
optimization model with the following restrictions [18]:

[18a] Xi :s ~iOi i E 1,2, ,n.
[18b] xi O!:: ~fOi i E 1,2, ,n.

n

[1&] 20i :s k
i=l

[18d] 0i E Zo l i E 1,2, .... ,0.
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The restrictions [18a] and [18b] are restrictions that give the parameter OJthe value 1 if the
optimal fraction happens to fall inside the interval. Restriction [18a] gives OJa value of one
if xi is strictly positive. Since 0i is binary this restriction also assures an upper bound, ~i,
of Xi' Since 0i is one for strictly positive values of Xi' the lower bound, ~?,is only
activated when Xi > O. Thus Xi has to be in the interval [~?' ~i.J, or set to zero. The
restriction [18c] is a counter for the number of cases falling inside its interval. We can

then control the number of assets in the interval by using the restriction [18c]. It is
important to note that this formulation is not equal to traditional restrictions imposed on MV
problems such that each asset should be inside some interval given by an upper and a lower
bound on the fractions to invest. In our case the assets are forced to be inside the interval

[~?' ~r.1if this is optimal compared to setting Xito zero.

3.6. Transaction cost and integer programming.

In this section we will study the impact transaction costs have in a model formulation. To
carry out a trade, a broker charges a fee which implicitly affects the return on the portfolio.
There are several ways transaction cost can occur when purchasing assets. We will study
one particular scheme, which is as follows:

Transaction cost

b Fraction to be rebalanced

Figure 3.3. Transaction costs.

Here b is related to the minimum amount purchased of one share before the investor has to
pay a fixed fee to the broker instead of a variable fee". The minimum amount is given by
bMo, where Mo is the value of the portfolio today. We will denote the fraction of security

i, with investment weight Xito be rebalanced with L\xi' If security i has the weight Xiin the

4 Theparameterb isequalforall securitiessuchthattheminimumamountfora variable feechargeis equal forall
assets.
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portfolio now, and optimization shows that the optimal value to be xi' the fraction to be
rebalanced is given by:

[19] Ax· = IX' - x, Il l l

If Ax, :s b the investor has to pay a fixed amount in brokerage fee. If AXi O!: b, the
brokerage fee is a fraction (a) of the value of the shares bought or sold. This particular
transaction reduces the expected return of the optimal portfolio by AXia. Now consider a
quadratic portfolio optimization model with fractions xi to be invested in the securities and
extended with the following restrictions [20]:

[20a] yi + (x, - Xi) O!: O iE 1,2, ... ,n.

[20b] Yi - (x, - Xi) O!: O iE 1,2, ... ,n.

[20e] A - + iE 1,2, ... ,n.x, = y. + y.
l l l

[2Od] Zj- AXi+ b O!: O iE 1,2, ... ,n.
[20e] b· - Ax· O!: O iE 1,2, ... ,n.l l

[20f] - + A O!: O iE 1,2, ... ,n.Yi'Yi' xi'Zj
[20g] bi E Zo l iE 1,2, ... .n,

Here Yiand Yi are variables that will reflect the change in the fraction held of asset i. If we
sell asset i , Yiwill be positive and if we buy asset i, Yi will be positive. The restrictions
[20a] and [20b] also ensure that the product of Yiand Yi is zero. In other words, they are
complementary. The variable AXi is defined by [20e] to be the absolute change in the
fraction held of security i, whether it is a net selling or net buying of the position.
Restriction [2Od] assigns the excess value, if any, of Ax, over the cutoff parameter b to the
variable Zj.Restriction [20e], gives bi the value one if åx, is positive. The total transaction
costs are discounted forward to the end of the period by a predefined discount rate p. The
transaction costs are then incorporated by using the following restriction[21]:

[21a]
n

Te = (1+ p)~(biYJ + Zja)

[21b]
Fixed minimum fee

YJ=

The adjusted expected return of the portfolio is then given by:
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fl

[22] ~ xi~i - TC :?; ji
i=l

We will now discuss convexity and the inclusion of integer variables in portfolio problems.

3.7. Integer constraints and nonconvexity.

The efficient frontier in the MV model is for the standard assumptions imposed upon the
model, such as no shortsale and upper and lower bound of the fraction to invest, smooth
and convex in the expected return variance space.

To see this, we first define the function f*(ji).

Here C is a convex closed set, and we have for simplicity denoted the set of all investments
x. The MV problem is a minimization of a convex function of a convex domain. In

selecting two solutions xa and xb' weighted by ua and (1 - ua), the following condition
must hold. From the convexity of the objective function and the convex restrictions it
follows for a convex combination of two different l,with expected return jia and jib' that:

The condition [24] follows simply from the fact that the restrictions in the problem are
convex and the objective function is convex, and a linear combination of two solutions is
admissable.Thus, l (ji) is convex in ji.

The result can be visualized by looking in a figure. If there is a kink on the efficient
frontier, this kink could be removed by forming a portfolio consisting of two other
portfolios, such that this new portfolio dominates the portfolios, in a mean variance sense,
where the kink occurs.
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Expected return
Kink removed

hP-~,
Kink

Variance of return

Figure 3.4. Kink in frontier.

In the figure above, we have the efficient frontier with a kink. By forming a portfolio of
two other portfolios, i.e. a and b with weights ua and (1 - ua), the risk return relationship
when varying ua would connect these two portfolios by the line indicated above. This line
would be a straight line if the correlation between the two portfolios is one. If the
correlation is less, it would bend upwards. In all instances the possibility of constructing
such a portfolio would remove the kink on the frontier.

Now, let us introduce integer constraints into the problem, and we define f~Oi) as:

[25] f~(ji) = ~{ ~ ~ X;";0ij : ~ xi"i '" ji, x E C, l!.EDl·

We have here defined the set of integer variables as Il., and the set formed by the integer
constraints as D.

Theorem:

The functionf~Oi) is not necessarily convex in jA,.

Proof:

In order to have convexity of the function t;(ji) we must for an arbitrary selection of two
portfolios a and b on the efficient frontier have:
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Since we have integer constraints in the problem, the set formed by the constraint is no

longer convex; thus linear combinations of the two solutions corresponding to jia and jib'
are not neccesary admissable. Then the relation [26] no longer holds.

D

When we introduce integer variables into the model, the formation of the portfolios by
combinations of a and b above may violate some of the integer constraints. An example of
this is the interval constraint described earlier. Let us say that all assets have to be invested
in fractions between 5 and 10 percent or set to zero. We assume that one particular asset in
portfolio b has weight 5 percent and that its weight in portfolio a is zero. All

combinations of a and b, except aa = O or aa = l, would violate the constraints. It is
possible to construct analog examples for the other integer constraints discussed in this
chapter. This does not mean that kinks will occur when we introduce integer constraints
into the problem, but that they may occur.

3.8. Two formulations tested on historical data.

In this section we will present two test problems which we solve using historical data from
the Oslo Stock Exchange. We start with a presentation of the two problems",

Test problem one - basis constraints.

Assume now that the investor is not allowed to invest more than 10% of his total amount

available in one particular asset. In addition, assume that the investor can only have four
assets in his optimal portfolio with a market value between 5% and 10% of the value of his
total portfolio. To put these restrictions into our model, the problem has to be restated with
these new constraints. The constraints for upper bounds on investment in assets of 10% is
easily handled by linear constraints. To incorporate the second constraint, we have to
define a set of n new binary variables, which means variables only allowed to have the
value O or 1.

With these new restrictions in mind, we now add the following restrictions to our

5 Test problem number one is the restrictions imposed on Norwegian fund managers today.
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problem[27]:

[27a] Xi s 0.1 i E 1,2, ..... .n.

[27b] 0.05(bj+1) - Xi O!: O i E 1,2, ..... ,n.

n

[27c] ~bi s 4
i=l

[27d] bi E ~ l i E 1,2, ..... ,n.

Restriction [27a] assures that the maximum proportion allowed in each asset is 10%.
Restriction [27b] lets the fraction invested vary between Oand 10%. In addition, it has the
following properties: if the fraction invested in asset i is less than 5%, bi is allowed a value
of zero, if it lies between 5% and 10%, bi will have a value of 1. The properties mentioned
here are assured by restriction [27d]. Restriction [27b] together with [27d] also ensures
that no asset can have a value above 0.1 or 10%, so these two restrictions together make
restriction [27a] redundant. In our problem we do not allow that more than four securities
can have a value between 5% and 10%. Restriction [27d], which counts the number of
securities with values between 5 and 10%, ensures this by restricting the sum of bi to be
less or equal to 4. The original problem [1], with the new constraints formulated above,
then solves our extended approximated mean variance problem.

Test problem two - Interval constraints.

In this problem we assume that the investor only invests in assets with weights between 5
and 10 percent. If it is not advantageous for the investor to invest in this range, the
invested amount in one particular security is set to zero. In order to formulate such a
problem, we must extend the original approximated problem [15] with the following
restrictions[28]:

[28a] Xi s o.ie, iE 1,2, ... .n.
[28b] Xi O!: 0.05 bi iE 1,2, ... ,n.

[28c] bj E~ l iE 1,2, ... ,n.

As indicated in Section 3.5., these constraints give us the desired result.
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The problems discussed above are mixed integer linear programming problems. When we
now do not have the possibility to rely on quadratic solution procedures alone, we have to
discuss special solution procedures. If the universe consisted of 21 assets, we could
calculate the maximum expected return possible to obtain under the restriction mentioned
above. This is an easy task, since we simply would invest 1()% in the four assets with
highest expected return, and invest 5% in the securities ranking from fifth to 16'th. In test
problem two, we would simply invest 10% in the ten assets with the highest expected
return. Any other asset would have weight zero. The solution we obtain is a starting point
for the efficient frontier generated by the problems we have formulated.

When it comes to the point where we want to minimize the variance of the portfolio subject
to the restrictions above, the problem becomes more complicated. The problem is a mixed
integer programming problem with an linear objective function. This problem is solvable
by, for example, the branch and bound algorithm. ..

In our study we use 21 stocks listed on the Oslo Stock Exchange. The data ranges
from the period of 1 Jan. 1987 to 31 Des. 1992 (72 monthly observations). Selection of
the stocks was based upon several criteria. First, we avoided stocks with low liquidity,
such that stocks traded in fewer than 150 trading days during a year, on average, are
excluded from the set. Second the stock had to be on the trading list over the whole period.
If mergers had taken pl~ce" .we during the period adjusted for this by correcting with the
switch ratio offer~d to the old stockholders in the two companies. For sectors with special
events like the bank and insurance sector, we used the bank and insurance index instead.
All return series were' adjusted for splits, emissions and dividends to preserve the true
return of each asset. The data was provided by the database Amadeus at the Norwegian
School of Economics and Business Administration.

The analysis is performed by constructing an ASCII problem file readable by the mixed
integer linear programming optimizer XPRESS-MP. The problem is run on the micro
machine MOSES at The Norwegian Institute of Technology, Department of Economics.
The operation environment of this machine is UNIX.

The overall problem is solved by iteratively solving the problem for different values of the
expected return.
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Results Ex.Post - Oslo Stock Exchange 1987-1992
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We have plotted the ex post efficient frontier under the set of restrictions given by [27] and
[28]. The basis constrained portfolio seems to be nonconvex for large values in the
estimated expected return. This is confirmed by forming a linear combination of the two
neighbour portfolios, where a combination of these portfolios violates some of the integer
constraints. Such observations are also the case for test problem two. The interval
constrained portfolio is more efficient than the basis constrained portfolio. As compared
with the no short sale allowed frontier, the new constrained frontiers are inside the efficient
frontier corresponding to the traditional MV problem

3.9. Improving the binary search - test model I.

The procedure of finding an optimal solution, a minimum, to the mixed integer linear
programming problems discussed earlier in this chapter relies on procedures such as the
branch and bound algorithm. This procedure will find a solution if it exsists, but the
efficiency of this algorithm depends upon the way the selection of branching variables is
done". Software packages for mixed integer programming are often able able to give some
of the variables in the model preference in the branching process. A question which then
arises is whether it is possible to use some apriori information such that we could give
some variables preference, in order to obtain a optimal solution faster. In test model two

6 For a introduction to the Branch and Bound algorithm. one could consult Minoux (1986).
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this could mean to have apriori information of one or more of the variables 0i' Another
issue is whether it is possible to reformulate the problem, including new variables such
that the search could be done more efficiently. Consider a reformulated version of equation
[17b]:

r .

n

[29] ~Oi +~=k,OiEZo,b ~EZ+,iEl,2, ... ,n.
i=l

Above we have reformulated equation [l7b] by adding a slack variable, ~, which could
take integer values only. If we use restriction [29] instead of [17b], and give the variable ~
preference in the branch process by branching along nodes where ~ is set in the interval:

[30] ~ E [0,1 ,2, .... ,k]

we exclude the nodes where constraint [17b] is not fulfilled. We have illustrated this in the
figure below.

Root

/search
Set, where at most k
binary variables have
value one.

Set, where more than k
binary values have
value one.

Figure 3.6. Partition of binary tree.

By using the reformulation above and by giving preference to the variable ~ in the
branching process, we are likely to reduce the time necessary to solve the problem on a
computer dramatieall y.

To give an illustration of the reduction in the tree by the use of the procedure above, we
could compute the number of end leaves in the part of the tree where at most k binary
variables are nonzero and compare the size with the size of the original binary tree.
Although there is not necessary a direct relation between the time it takes to solve a mixed
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binary programming problem by the use of the branch and bound algorithm and the number
of leaves in the tree, this gives us a indication of the reduced complexity of the search.

The number of possible combinations, or end leaves in a tree of binary variables, is given
by 2n. The number of end leaves in the tree branched using the procedure described above
is given by:

k k

[31] y{n,k) = ~(:) = ~ (n ~~)!i!

In the test case above, there are 21 binary variables and k is equal to 4 such that y is equal
to 7446, which is considerably smaller than 221.

3.10. Results - using data 1993-94.

We computed the means and standard deviation for the optimal portfolios generated earlier
in this chapter using a dataset from the period 1993-94. In addition, we computed the ex
post portfolio frontier using the same dataset. The results are illustrated in the figure
below.
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Fig. 3.7. The portfolios 1993-94.
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The figure above indicates that the use of forced diversification as in basis constrained or
interval constrained portfolio optimization gives us more efficient portfolios than the
traditional model that uses no shortsale constraints only. This result was also pointed out
in the paper of Chatry, Jennergren and Szala (1990) in their study of the French Stock
market. The highly constrained portfolios lie in a cluster near the main index, although the
composition of these portfolios can differ significantly from the composition of the main
index. This indicates that highly diversified portfolios in the Oslo Stock Market tend to
have the same risk as the main index.

3.11. Conclusions.

In this chapter we have discussed how one could incorporate discrete decision variables
into a portfolio model. The incorporation of such variables into a portfolio model enlarges
the set of possible restrictions one could formulate. We have discussed several constraints,
among these, basis constraints, interval constraints and transaction costs. By an

approximation of the quadratic problem we arrived at a mixed binary/integer linear
programming problem. Using data from the Oslo Stock Exchange, we performed an
optimization involving two test problems. One of these test problems was one that
incorporated the regulation imposed on Norwegian fund managers today. The generated

frontier is useful, as mentioned by Jennergren (1992), as a graphical tool for evaluating the
performance of portfolios. We also discussed how we could increase the efficiency of the
solution procedure for one of these test problems. Finally, we performed an ex. post
analysis using data from 1993-94, where we evaluated the portfolios generated from the
models. The analysis indicated that portfolios generated by forced diversification had a
better risk return performance than the portfolios generated by the traditional Markowitz
model.
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4. Three Dimensional Portfolio Analysis.

Abstract: This chapter studies a three dimensional portfolio optimization model where in
addition to the expected return and standard deviation, the investor takes the third central
moment into account. We propose an approximate problem to solve the optimization
problem which arises from such an analysis, and perform an analysis of the model using
historical data from the Oslo Stock Exchange.

4.1. Introduction.

Historically, in classical portfolio theory, the parameters the investor uses for selecting
optimal portfolios are the expected return of the portfolio, and the variance or standard
deviation of the portfolio's return. This model has its orgins in the classical mean variance
model of Markowitz (1952). In the literature there has been some work evaluating the
impact on the portfolio selection problem by taking the third central moment into account.
Arditti (1969) carried out an empirical investigation of asset's return involving the third
central moment. Jean (1971), (1973) investigated the problem further by discussing the
optimal asset mixes in models involving the third central moment. Levy (1969) presented a
cubic utility function, which implies that the investor's preference ordering is completely
determined by the expected return, variance of return and the third moment of return.
Kraus and Linzenberger (1976) derived a capital asset pricing model in the CAPM
framework where the third moment was also considered. Some preliminary work on this
model was also done by Jean (1973). Empirical testing ofthis model was done by Friend
and Westerfield (1980). Konno, Shirakawa and Yamazaki (1993) developed an
optimization model which was based upon a linearization of the risk parameters standard

deviation and skewness.

In Section 4.2. we will define the third central moment and discuss the relevance of
incorporationg the third central moment into the portfolio analysis. In Section 4.3. we will
review some of the theory concerning the third central moment in relation to expected utility
maximization. In Section 4.4. we outline the general description of the model. In Section
4.5. we discuss the general optimization problem and the assumption made on the
preferences. In the literature, a version of the model was presented by Konno and
Yamasaki (1993). Konno's approach is discussed in Section 4.6. Section 4.7. presents
the discrete version of the model, which is modified to give us the empirical version in
Section 4.8. The empirical model is solved by an approximation of the nonlinear objective
function. How this approximation is done is presented in Section 4.9. The approximated
problem is tested ex post in Section 4.10. using historical data from the Oslo Stock
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Exchange. In Section 4.11. we discuss the results obtained from the analysis in section
4.10. in the light of some commonly used utility functions. Finally, a comparison between
the model presented in this chapter and the model presented by Konno (1993) is done in
Section 4.12., and in Section 4.13. we draw some conclusions.

4.2. Definition of the third central moment.

The third central moment is defined by:

It is also possible to standardize the third moment several ways, i.e. by mj or m~ [2]:
1

ml _y3
3 - P[2a]

[2b]

Here !-lp is the expected return of the portfolio and 0p is the standard deviation of the
portfolio.

Another way of expressing the third moment of a portfolio is given by:

Practically, there are several objections to involving the third moment in an analysis. One
important issue is that the estimated third moment is dependent on the length of the interval
between the observations. Hawawini (1980) studied this, and derived the effect of the
time difference between the observations on the estimated third moment. Investigations of
stationarity of the skewness of asset price returns, such as by Singleton and Wingender
(1986), also tend to conclude that the estimated third moment is not stable over time.

Another aspect of portfolio analysis is leverage with limited responsibility for the investor.
The returns of the portfolio may then have a considerable skewness and a third moment
analysis may be adequate. Finally, the introduction of derivative securities as options into a
portfolio may, in undiversified portfolios, give us a portfolio with nonsymmetric returns.
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These advantages and disadvantages are acknowledged in this paper, and imply that asset
allocation with the third moment is not so easy a task. We will not consider capital market
theory or the introduction of a risk free asset into the model. In this chapter we only
consider the optimization procedure related to portfolio problems involving the third central
moment.

Computationally, portfolio optimization involving the third moment may cause a problem
for us since we have an optimization problem with an objective function that is concave in

some sets and concave in anothers. Common techniques used in convex optimization are
no longer directly usable. Jean (1973) pointed out that using the third moment around zero
may make the problem convex, but we regard that as a separate problem. The intention of
this paper is to present a solution technique for financial optimization problems involving
the third central moment. The method uses an linear approximation scheme for the
nonlinear functions. The approximation of the nonconvex function is supported with the
use of special ordered set in accordance with Beale and Thomlins (1969) special ordered
sets II (SOS2) principle.

4.3. Preferences and the third central moment.

As mentioned in the introduction of this dissertation, we can define a utility function U(W)
to represent the preferences of the investor.

If we make a Taylor expansion of the utility function around the expected value of wealth,
and take the expectation, we obtain[4]:

[4a]

00 .

[4b] R = ~ iJ'U~~W») :!E«W - E(W»)i
i=4

We see that the third moment plays a role in the determination of expected utility. Loistl
(1976) argued that the Taylor expansion performed above may lead to errors of
non-negligable size, and that such a series should be handled with care. In our own
experience with the expansion for the power utility function, (see Table 4.1. for a list of the
utility functions), with a considerably negative, the errors could be very large. For
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approximation of the most common utility functions with reasonable parameters, the Taylor
expansion [4a] seems adequate.

The debate on this issue was initiated by the article by Tsiang (1972), who argued that for
practical purposes, moments of higher order than the variance have relatively little impact
on expected utility. Among the opponents to this view were Levy (1974) and Borch
(1974). Kroll, Levy and Markowitz (1984) investigated utility maximization by use of the
mean variance approach. In their analysis the mean variance model seems to be a good
approximation, when they used actual stock returns.

Levy and Hanoch (1970) and Levy (1969) presented a cubic utility function of the form:

[5] U(W) = W + bW2 + cW3

Above b and c are constants. This is a polynomial of the third degree and therefore is not
concave for all values of W. If we put restrictions on the parameters a and b, it can be
shown that the expected utility is a function of expected wealth, variance of wealth and the
third central moment of wealth.

Scott and Horwath (1980) investigated the relation between preferences and the different
moments of the underlying distribution. They presented results concerning the different
directions on expected utility the different moments could have. Among their results was
the following theorem:

Theorem (Scott and Horwath)[6]:

If U1(W) > O 'ri Wand U2(W) < O 'ri Wand the decision maker is strictly consistent in
preference direction, viz:

!UD(W)> O 'ti Wor,

[6a] UD(W) = O 'ti W or,

UD(W)<O'tlW

then the decision maker will have positive preference for positive skewness.

Proof[7]:

We assume the contradictory U3(W) < Oor U\W} = O
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Lagrange's mean value theorem states that for two wealth levels,

WI and W2 3 WE (WI' W2) such that:

[7a]

[7b]

since we have assumed that U3(W) <Oor U3(W) = O, it follows that U2(W.) ~ U2(W).

Then by [7b] itfollows that:

If we evaluate W2 for the values:

[7d]

where C ~ O,we will have, by the use of [7c], that:

This contradicts the assumption UI(W) >Othus U3(W) > O.

o

The derivation of expected utility by the expected moments above indicates that the sign of
U\W) determines the direction of the preferences for the third central moment. If U\W)
is positive, a large third central moment is preferred ceteris paribus. If U\W) is negative,
the decision maker prefers a lower third central moment ceteris paribus. If U3(W) is nil,
the decision maker's expected utility is not affected by the third central moment. The
theorem of Scott and Horwath (1980) means that preference for the third central moment is
a relevant assumptionto impose on models which incorporate this moment.

Below is a table with the most common utility functions, which allows us to investigate the
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effect on expected utility of the third central moment. A, a, b, c are positive constants, and
the constant a E (-00, 1). The constant A > O.

Utility Func. U(W) U3(W) Sign

Neg. Exp. A(l- e-AW) AA3e-AW Pos

Logarithmic ALn(W)
A

Pos.-

W3

Quadratic aW-~W2 O O2

Power lWU (a-2)(a - l)WU-3 Pos.a

Cubic W + bW2+cW3 6c Sgn(c)

Table 4.1. Common utility functions and the third central moment.

The table above indicates that the most commonly used utility functions imply a preference
for the third central moment. In the optimization model developed in the next sections, we
will assume that the investor has preferences for the third central moment.

4.4. The general information structure in the model.

In this section we will describe the general information structure in the model. The general
model assumes that the decision maker makes decisions on the investments to be made.
After this selection of assets is completed, the investor observes a return on his portfolio.

The first interpretation is a model that assigns a discrete probability distribution to a set of
possible states. In general, the model assumes that n assets have T possible outcomes or
events ffit. We have indexed the T outcomes by t. The random variables then follow the
following filtering process[8]:

[Sa] fo = {OJ1'~' .. ,ror}
[8b] f1 = {{OJ1}, {~}, .. ,{ror}}

Each state ffit occurs with probability Pt. We could illustrate the process by the following
figure:
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Period O Period 1

State 1

State 2

State T

Fig. 4.1. General model and states.

The states are connected to period Oby an arch. Each state is assigned a probability. In a
particular state, an outcome of the n random variables is realized consisting of the return or
value of the assets.

The model above is general in the sense that it allows the user of the model to specify the
outcomes in each state and a probability, or more generally, a weight associated with that
state. These parameters could be selected on the basis of purely subjective grounds, or the
user is given them by a "neutral" agent.

We could also use historical data, which leads us to the second interpretation of the model.
If we use historical data, a reasonable value to give to the probabilities or weights for each
state is a probability such that the expected value of the different moments of the random
variables is in harmony with the common estimators of that moment. An example of such
probabilities or weights is Iff and l/(T -1). In such a case, the expected moments of, for
example a portfolio of assets constitute the traditional estimator of the moment for that
portfolio. In the analysis of the model in this chapter, we will use historical data and the
second interpretation of the model.
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4.5. Portfolios and the third moment.

In this section we williist some results concerning calculations of the third moment of a
portfolio. We define the cross third moment between the assets iJ,k as:

We note that if i=j=k, ~ijk is the third central moment of asset i. If we have n assets the
total number of ~ijk is equal to n3. The third central moment of a portfolio is given by:

n n n

[lO] ~ = E«rp - E(rp»)3) = ~~~XiXjXk~ijk
i=l j=l ke l

Ifwe want an estimate of the portfolio's third moment, we have to estimate n3 parameters,
and calculate the value of [10] above. The number of estimated parameters increases
sharplyas a function of n, and if we have lOOOassets for example, we have to estimate I
billion parameters, a number of parameters that, even with today's technology, is difficult
to calculate.

In this chapter we williook at portfolio analysis with three moments, we will assume that
the expected return and the third central moment are characteristics that the investor has
preferences for. We will also assume that the investor dislikes variance of return.

The expected utility to the investor is then assumed to be a function of the expected return,
variance of return and the third central moment of return for the portfolio[II].

[lIa]

[Ub] af af af-a > o, -a- < o, -a > o.
!-lp Gp Yp

The above assumption on the partial derivatives of the utility function with respect to the
different moments is well suited for example when the utility function representing the
preferences to the decision maker is logarithmic or negative exponential. The higher
moments than the moments of the third degree are also persistent in an examination of
expected utility for the two utility functions mentioned earlier, but one could assume that
their influence on the expected utility is neglictable, although the model presented could
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also be modified to take those moments into account.

We will calculate an efficient set of possible investments. In our terminology we will then
refer to a portfolio as efficient if:

i) For any joint level of expected return and variance, it is not possible to obtain a higher
third central moment without increasing the variance of the portfolio or decreasing the
expected return of the portfolio.

With this definition in mind, the set of (~p' ~, yp) combinations defines a set of
investments from which the decision maker is able to select a portfolio.

To obtain the set of efficient portfolios, we could solve an optimization problem given
by[12]:

[12a] maximize

subjectto:

[12b]
n

~p = ~ xi~i C!: ii
1=1

[l2c]
n n

a: = ~~ x.x.o.. sol
p LJLJ 1 J lJ

i=l je l

[12d]

[l2e] Xi C!: O i,j,k E 1,2, ..... n.

Here ii is some predefined level of the expected return, and 02 is a predefined level of the
variance.

If we compare this optimization problem with the traditional MV problem, we see that the
problem has a nonconvex objective function. Thus, this problem is impossible to solve
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with traditional convex optimization techniques. In the literature there have been arguments
about whether the problem above is convex for a proper selection of the centrality of the
moments. Jean (1973) argued that if one analyses the third moment around zero one will
have a problem that is concave and solvable. From a mathematical programming point of
view, the model is clearly nonconvex, even if the nonconvexity is located around zero.
Hence the arguments by Jean (1973) are questionable. Thus we will deal with a
nonconvex optimization problem and global optimization techniques have to be considered.

4.6. Konno's approximation to a linear program.

Konno and Yamazaki (1993) present an optimization model that finds a suitable portfolio in
the mean variance skewness space by formulating a linear programming problem. The
problem approximates the actual moments by use of linear functions. The first moment is
not approximated, so here one uses the mean of the portfolio's return. The dispersion is
represented by using the mean absolute deviation. So the second (dispersion) moment is
given by:

The third moment is approximated by considering the lower semi third moment. The
definition of the lower semi third moment, Yp [14] is:

Further, Konno approximates the lower semi third moment by a piecewise linear function.
The approximation could be explained by the use of the figure below where we have
illustrated the functions in which expectations are used as approximations of the third
central moment in the Konno and Yamazaki (1993) model.
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Different moments

Return - expected return

Lo er semi third moment

Fig. 4.2. Third moment - shape and lower third central moment.

The center in the figure, where the two axes cross, is origo. Along the horizontal axis we
have the return of the portfolio minus the expected return of the portfolio. If we take the
expectation of the cube of this value we will have the third moment of the portfolio. So the

third central moment is the expected value of the function appearing in the first and third
quadrant in the figure above. The part of this curve lying in the southwest quadrant defines
the semi lower partial third moment and the expected value of this function is the lower
partial third moment. The piecewise linear function in the southwest quadrant is the
function which Konno uses as the approximated third moment. This approximation will be
discussed below.

We refer to Chapter 2 or Konno and Yamazaki (1991) for information about the risk
measure absolute deviation. We will look at the formulation that is directly related to the
third moment approximation.

The analytical form of the linearpiecewise approximation is [15]:
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[ISb] lul- =Oifu;:::Oand =u if u-c O.

Below, we have a figure with the G-function used by Konno and Yamazaki (1993).

Ap roximation

Return - expected return

Fig. 4.3. Konno's G - Function.

By inspection we see that the function G gives a piecewise linear function of the type
shown in the figure above. If we move to the left from origo, the function first has a value

Ountil we reach Pl' then the slope of the function will be 1 until we reach P2' where the
slope will be 1 + ex.

The approximation done by Konno, presented above, may seem very rough. First he uses
the absolute deviation of the portfolio as a surrogate for the variance of the portfolio. This
risk measure is an alternative to the variance. As an approximation it is very rough.
Second, he uses the piecewise linear function above as an approximation of the skewness
of the portfolio. In his article he advocates minimizing the G function as not if the same as,
but nearly the same as maximizing the third moment of the portfolio. How good this
approximation is depends upon the selection of ex,and the actual data used in the analysis.
How the measure distinguishes between low variance portfolios and high third central
moment portfolios is unclear. Itmay seem that adding all these approximations together
may invalidate the model. The advantage of the model is that it is a purely linear
programming problem where easily usable algorithms and software packages are available.

The formulation of the Konno mean - risk - skewness model will, with estimated values,
then be [I6]:
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subjectto:

n

[16b] Ut+ ~ ritXi<!!Pl tE 1,2, ... ,T.

n

[16c] vt + ~ ritxi <!!P2 tE 1,2, ... ,T.
=

n

[16d] Yt- ~ 3jtXi<!!O tE 1,2, .... T.
i=l

n

[16e] Yt+ ~3jtXi <!!O tE 1,2, .... T.
i=l

T

[16f] 1 ~ _T _ 1 = Yt:SU

n

[16g] ~ xifli <!!ji
i=l

n

[16h] _2x. -11-

i=l

Xi<!!O. i E 1,2, ... .n,

Yt<!!O,vt <!!O, ilt <!!.O.tE 1,2, .... T.

The objective function minimizes the approximated semi lower third moment. The
restrictions [16f] and [16g] define an upper bound for the absolute deviation for the
portfolio and a lower bound for the expected return of the portfolio. The restrictions [16c]
and [16b] give values to the approximated semi lower third moment in the objective
function. In the next section we will discuss the three moment portfolio model in a discrete
distribution framework. We will not discuss the optimization technique for this case, but
we do that for the empirical version of the model presented in the following section.
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4.7. The model revisited using a discrete distribution.

If we assume a discrete distribution, the different central moments of the return of the
assets and portfolio are known. The moments are given by[17]:

We have above defined ~t as ~t = rit - f.li' conversely ~t = rpt - f.lp' The variable rpt is
portfolio return corresponding to event t.

The formulation of the model [12] in the discrete distribution case will then be[18]:

T

[18a] max ~Pt~t

subjectto:
n

[18b] ~Xi~t = ~t tE 1,2, ... ,T.

T

[18c] ~Pt~t s~
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n

[18e] ~Xi = 1

[18f] Xi ~ O iE 1,2, ... ,n.

The model above does not use estimators; it uses the computable actual central moments,

~ and yp' and the first moment ~p' of the distribution. We will not make any closer
investigation of the model with discrete probabilities here, but we note that the optimization

tools used on the upcoming empirical version can be used on the model above as well.

4.8. The principles of the model using historical data.

In a portfolio model, we often use historical data to estimate the parameters in the model.
We will do the problem formulation in a direct way, which means that we do not have to
preprocess the data by calculating a covariance matrix or cross third central moments. We

define ~t to be rit -fti' where fti is the estimated expectation of the random return for asset
i, and rit is now the realized return of asset i in period t.We also have that:

[19]

where 6f is the traditional estimator of assets i' s variance.

We can now define <;>tas:

n

[20] <;>t= ~ Xi~t
i=l

Thus, to obtain the estimated variance for a portfolio we can calculate this as:

-103-



Chapter 4. Three moment portfolio analysis.

Thus we can obtain a portfolio's estimated variance as the sum from t=l to T of the ~t,

such that:

T

[22] T ~ 1 ~ ~t = ~
t=1

We can continue in the previous fashion with the third central moment[23]:

From the expression above, we see that the second and third moment can be calculated

directly by use of the sums from t= 1 to T of the square of, and the cube of, '1>t. Following
is a formulation of our optimization problem, which be viewed as the starting point of our
portfolio analysis[24]:

T

[24a] .. ".3 1 ~ 3
maxirmze rp = T -1 Li apt

t=1

subjectto:

T
1 ~ 2 -2

[24b] T-1 Li apt S ap
1=1

n

[24c] ~ xiili O!: fl
i=1
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n

[24d] ~Xi = I
i=l

n

[24e] ~~tXi=~t tEI,2, .... T.
i=l

[24f] Xi C!: O iEl ,2, ... n.

We now have an equivalent program to that of [12]. But it differs in some respects. First,
we do not have to calculate the n3 cross third central moments. Or do we have to compute
the estimated covariance matrix. The only estimators that we need to calculate are the n
expected return estimators. In one respect the problem is still equal to [12]. The problem
is still nonconvex.

4.9. Approximation schemes.

In order to overcome the problem of nonconvexity of the optimization problem [24] we
first have to approximate the nonlinear functions involved by using linear functions. There
are two possible approaches to use when we approximate a nonlinear function. Tangential
approximation, as opposed to barycentric approximation in general, replaces the nonlinear
function f(x) in the neighbourhood x = xOwith:

Here, VfT is the gradient of the objective function. Since we will not use tangential
approximation, we are not going to discuss it further here.

We have in our analysis used barycentric approximation, which approximates the nonlinear
function by using linear segments, connected by points lying on the original nonlinear
function. We will now have a short introduction to the general principle of this
approximation. Let the general programming problem be [26]:

[26a] min f(z)

subjectto:

[26b] zEC

Here z is a vector or a single variable and C is the set formed by the constraints to the
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problem. If z is a vector with T elements indexed by t, and if we for simplicity assume that
fez) could be written in a separable form, we have:

T

[27] f(z) = ~ ft(Zt)

The method requires a set of meshpoints, sr, ordered in increasing order for each t, and
associated weights wjt. The points sjt are selected such that all possible values of Zt lie

inside the interval:

This condition is imposed on each t. The number of meshpoints could in general differ for
each t. We denote the number of meshpoints for each t by fit. The selection of the values
sjt depends upon the problem we have under investigation. The approximated problem is
given by [29]:

[29.] minimize ~ {twi'j'(Si')l
subjectto:

lIlt

[29b] ~ wi'gi' = Z,

lIlt

[29c] ~ wi' = I tE 1,2,... ,T.

[29d]
[2ge]

wjt <!: Oj E 1,2, ... ,m.
xEC

tE 1,2, ... ,T.

The key issue in this program is the linear weighting of different values of the objective
function by the use of the points sjt. The constraint [29b] is the link between the values of

Zt and the approximation used in the objective function. The weights Wjt are, for one
particular value of Zt, given values such that the equality [29b] holds. If the nonlinear
objective function in [29] is convex, the weights would satisfy the properties described
below.

In order to assign two properties to these weights wjt, we have to define the concept of
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neighbour as follows. Two weights wjt and wf t are neighbours if j = 1 and j* = 2 or, j =
me 1 and j* = fit or j* = j + 1 or j* = j - 1. The second property is [30]:

ml

[30.) ~ wit = 1 'fit

These two conditions are imposed on the vectors w', one for each t, formed by the
elements wjt. This simply means that in each of these vectors, at most two neighbouring
elements could be nonzero, and for each t, the sum of the weights should be equal to one.

We will now tum back to our optimization problem and illustrate the approximation for our
nonlinear functions. If the problem has a separable objective function, the approximation is
easier to do compared to a model where the objective function is nonseparable. To start

with, we will consider the approximation of ~t, where the sum of these variables over t is
equal to (T-1)~.

This is illustrated for one particular value of ~t in the figure below.

Variance

~,(SI~)2..

Barycentric approximation

Square of aft

Figure 4.4. Approximationof the Variance of the portfolio.

On the horizontal axis we have the value ~t. Along the vertical axis we have the square of
~t. The smooth line represents the quadratic function or ~t approximated. The line
segments show the linear approximation. The approximation is done by selecting mt mesh
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points Slt,s2t, .... ,Smt\ computing the functional value of these points and connecting

these points by linear segments. The functional value that replaces the value of ~t is given
by the piecewise linear function in the figure. In our problem this function is of a type such
that property l is satisfied.

Property l is not automatically satisfied for the next nonlinear function. This function is
~t. To comply with this, we have to put on a restriction on the weight to be a member of
the special ordered sets 2. We will first have a look at the approximation in diagram form.
The special ordered sets 2 principle will be explained later in this section.

Third central moment

Figure 4.5. Approximation of the third central moment of the portfolio.

The approximation for the third central moment is done in a similar fashion, but we now
instead use the cube of the mesh point as the functional value. In contrast to the Konno
model, we approximate the function for all values of the cubed deviations from the mean.

For each time period t we have to perform the approximation above. So in the model we
have T approximations of this type. A critical issue in the problem is, of course, which
and how many meshpoints we use in the analysis. In order to have a good analysis and to
keep the objective function as close as possible to the actual one, one should have many

meshpoints. To keep the problem simple and not too time-consuming to compute, one has
to keep the number of meshpoints small, or iteratively change the approximations of the
functions included in the model.

The approximation outlined above can, as mentioned earlier, be operationalized by
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introducing mt weightstw!'), for each time period t, that sum to one. The value of ~t ' and
the approximated value of ~t and ~t is then given by [31]:

mi

[31a] ~t =2wjtsjt

j=1

lilt

[31b] ~t =2wjt(sjt)2
1=1

mt

[31c] ~t =2wjt(sjt)3

1=1

We then have one problem left. During optimization, it is required that the line connecting
the functional values of two neighbouring meshpoints is the effective one. This means that
a maximum of two adjacent wjt for all t must be nonzero. In the case with a portfolio
model where we want to minimize the approximated variance, this is no problem: the
structure of the optimization problem ensures that this is the case. In the case of the model
we study here, in which the approximated third central moment is to be maximized, this is
no longer guaranteed. To ensure this we have to put a restriction on the wjt variables. We

do this by saying that each set wjt for all t is an SOS set of type II. We will denote this
here by wjt E S2 'ti t. The imposition of this constraint moves the problem from a linear
programming problem to a mixed integer linear programming problem. The complexity of
the problem, and the computer time necessary to solve it, then increase.

It is now possible to formulate the model which we want to study [32]:

subjectto:
n

[32b] ~Xi~t=zt-zt tE 1,2,...T.

lilt

[32c] ~ wjtsjt - z: - z( tE 1.2•...T.
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ml

[32d] ~ wjt(Sjt)2 = St tE 1,2, ...T.

ffit

[32e] ~ wit(git)' = yt - y, tEl ,2,...T.

T

[32f] T ~ 1 ~ St s~

n

[32h] ~Xi = 1

[32i] wjt E S2 tEl ,2, ... ,T.
[32j] xi Ol:O i E 1,2, ...n.

[32k] St, Yt,yt,zt, zt Ol:Ot E 1,2, ... ,T.
[321] Wjt Ol:Oj E 1,2, ...m. , t E 1,2, ...m.

The restrictions [32b] define the deviation of the portfolio. There are T such restrictions,
one for each time period. The variables zt, and zt are defined by [32k] to be positive, so if
the return of the portfolio is above the mean return, zt attains a positive value. The
variables zt and zt are complementary to each othe, which means if one ofthem is positive
the other is zero. If the return is below the mean return of the portfolio, zt takes a positive
value. The right-hand side of the constraint [32b] is the value of ~t. The restriction [32c]
performs the transformation of ~t such that ~t could be expressed by meshpoints
weighted by the weights wjt. For a particular time period t, this restriction finds a proper
vector w' with elements wjt such that the value of ~t is given by:

ffit

[33] ~t = .Lwjtsjt

J = l

The restrictions [32d] and [32e] transform the deviations ~t to the approximated values of

~t and a:t respectively. The approximated value of ~t is for each time period given by St.

We note that the right hand side of restriction [32d] consists of only one variable, since ~t

and the approximated value of ~t for each t, only take positive values. In a similar fashion
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we obtain the approximated value of ~t by the restriction [32e]. We here have to use two
variables for each time period since ~t could take positive and negative values. If ~t is
negative Yl takes a positive value, and if ~t is positive Yt takes a positive value. The
variables Yl and Yt are also complementary. The restriction [32f] is the restriction ensuring
that the estimated approximated variance of the portfolio is under the predefined level
required. Restriction [32g] is the traditional MV restriction imposed on the estimated
means or expected return of the portfolio. The SOS II constraints of the weights wjt are
given by [32i], and the restrictions [32j], [32k] and [321] are ordinary nonnegative
restrictions imposed on the variables in the problem.

The objective function [32a] maximizes the estimated third central moment of the portfolio.

Since Yl takes a positive value when ~t is negative, Yl is subtracted in the objective
function. The estimated third central moment is obtained by adding all the approximated
cubes of the deviations from the mean and dividing by T-1.

The model above has (m + 5)T + n variables and 4T + 3 constraints.

We have now formulated the model, and we will proceed test it by running the modelon
actual data from the Oslo Stock Exchange.

4.10. A test of the modelon actual data.

In this section we will test the model using actual data from the Oslo Stock exchange. The
model is tested by the use of the XPRESS - MP optimization package. This package has
the facility of allowing the user to impose constraints like SOS II on a group of variables.
The problem is modelled in a specific language for the XPRESS - MP modelling module.
After a model is formulated and checked for errors, the module generates a matrix file.

This matrix file is read by MP-OPT, another module in XPRESS - MP. This module
first solves the problem and gives us the continuous solution to the problem. Then the user
is allowed to search for a global optimum by the GLOBAL commands. It is here the
optimizer considers the SOS II constraints. When this search is done, the optimizer
provides us with the optimal solution to the problem. The package is run on the
Norwegian Institiute of Technology, Department of Economic's micro machine MOSES,
which uses the operative system UNIX.

When testing some examples, it appeared that in problems with many observations, i.e.
when T is large, the time to solve the problem on the computer was large. It seems that the
number of observations, rather than the number of assets, had most influence on the time
spent solveing the problem. To give an idea of the time spent on the different problems we
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could look at the table below:

Time periods - T Time to generate one point on the 3O frontier

72 Over3 days

48 Approximately 8 hours

24 Approximately 0.5 Hour

Table 4.2. Computer time and number of observations.

When we first formulated the problem, we used 72 time periods. If we wanted to generate
50 points on the three dimensional frontier, the time to do this would be more than 150

days, or approximately 5 months. It turned out that the time to solve the problem was too
large and the size of the problem was reduced. By testing different time periods it was
decided that the number of periods in the model should be 24, such that the tests of the
model could be done during one week. We will now describe the data used and the
results. In our study we use 10 stocks listed on the Oslo Stock Exchange. The data ranges
from the period of 1 January 1988 to 1 January 1990. The stock had to be listed over the
whole period.Jf mergers had taken place,we allowed for this by adjusting the new stock
with the switch ratio offered to the old stockholders in the two companies. All return
series (arithmetic) are adjusted for splits, emissions and dividends to preserve the true
return of each asset. The data was delivered by the Amadeus database at the Norwegian
School of Economics and Business Administration. We now show a three dimensional
graph of the obtained (~p, ~ , yp) efficient points.
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Fig. 4.6. Ex post 3D frontier.
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If we start in the nearest southwest comer of the diagram and move to the right, the
restricted lower limit of the mean return of the portfolio decreases. If we move into the
diagram, we obtain portfolios with higher variances. The vertical axis denotes the
estimated third central moments of the portfolios. In the front of the diagram there are
portfolios with a low third central moment. These portfolios correspond to the MV

efficient portfolios. The portfolios lying in the east in the diagram with the highest
skewness for each level of variance are obtained by maximizing the third central moment
and constraining the variance of the portfolio at different levels. We see from the diagram
that the maximum third central moment is obtained at a relatively moderate return. To
obtain a higher mean, we have to decrease the third central moment of the portfolio. For
the other portfolios generated, we have to increase the variance or decrease the mean to
obtain a higher third central moment.

To study the (!lp, ~ , yp) plane further, we also provide a graph showing the tradeoff
between variance and the third central moment. In addition, we provide the MV efficient
frontier.
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Fig. 4.7. Tradeoff variance and third central moment.
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4.11. Expected utility considerations.

In section 4.9. we computed different three moment efficient portfolios. The optimizer
provided us with the optimal weights for the different portfolios, and we computed theex
post mean, variance and third central moment for these portfolios. A question often raised
in financial economics by many researchers, among them Tsiang(I972), Kroll, Levy and
Markowitz( 1984) and Grauer (1986) is whether mean variance models provide the decision
maker with enough information, such that information about the third central moment and
higher moments do not change the decisions of the investor. The results we obtained in
Section 4.9. could be used to compute the expected utility of the different generated
portfolios and to see which of the portfolios would be selected by investors with different
utility functions. It is not possible to do this without adding some restrictions. This

restrictions are:

We assume that the 24 observations used in the analysis form the set of possible outcomes
ex ante.

This means that we move from the empirical ex post version of the model to a model with
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24 events, each with the probability of 1/24 of occuring. If we had not made this
assumption, we would have had to assume that the estimated moments were the actual
ones, and thus ignore estimation risk. Formally, here Q is the set of the 24 observations.

Each of the events is denoted by:

[34] (J)t: tE 1,2,...,24.

In using a finite sample space with 24 outcomes, the variance and the third central moment

calculated have to be adjusted. The central moment should be divided by T instead of

T-1. The factor used in the adjustment is then given by F and is:

[35]
T-l

F=--
T

such that the variance and the third central moment in the discrete model are given by the
estimated variance multiplied by F. The means or averages of the observations are now the
correctly expected returns of the assets. The means in the model do not have to be
adjusted. Further we assume that:

The generated approximated points in the model constitute the set of allowable investments.

This means that we only consider the points in the (!lp' ~, Yp) plane generated in the
analysis in Section 4.9. Further, we assume that the investor, before allocating his wealth
to the assets, possesses one unit of wealth. Since the data used is on a percentage basis we
have to convert it to a fractional basis. This means that an investment with an expected

return of 5% would give the investor an expected end of period wealth of 1.05.
Conversely, the variance and the third central moment of wealth could be obtained by
dividing the variances and third central moments after the adjustment in [35] by 10000 and

1000000 respectively.

We have performed the analysis by using the Taylor expansion in [4]. We have especially
looked for cases where the optimal portfolio does not lie on the MV frontier. For the
logarithmic utility function, the negative exponential utility function and the power utility
function with exponent positive and less than or equal to one, the results indicated that all
optimal portfolios, which means portfolios giving the maximum value of approximated
expected utility by the Taylor expansion [4], were MV efficient portfolios. Typically the
portfolios selected were those with high expected returns. To obtain an optimal solution not
on the mean variance efficient frontier, we have to assume that the preferences to the
investor could be represented by a power utility function with exponent considerably
negative. As the Taylor expansion for such a utility function is somewhat poor, we have
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chosen not to focus on that result.

4.12. Konno and Yamazaki model - comparisons.

An interesting question is how the model presented in this chapter performs relative to the
approach suggested by Konno and Yamazaki (1993). In order to answer this, we tested
Konno et. al. modelon the same data set as used above. Since the two models put great
emphasis on the formulation of the third central moment, we used the Konno and
Yamazaki model to find the maximum third central moment portfolio. Unfortunately, this
portfolio gave us a small third central moment compared with the maximum third central

moment computed by the model presented in this chapter. By using a=l, PI = Jlp- 5%
and P2 = Jlp- 15%, we obtained an estimated third central moment of 113,475, which is
small compared with the estimated third central moment of 886,487 obtained by our model.
Typically, we obtained small variance portfolios with moderate third central moment. One
reason for this could be that the G function used in the Konno et. al. model attracts low
variance portfolios more than it attracts high third central moment portfolios, since the
Konno and Yamazaki (1993) G function implies no preference for outcomes in the upper
tail of the distribution.

4.13. Conclusions.

In this chapter we have studied a three moment portfolio model. We have discussed the
theory concerning three dimensional portfolio analysis, and we have performed an
empirical analysis using actual data from the Oslo Stock Exchange. One of the results was
that the model, for small time series, worked well as compared with the Konno and
Yamazaki (1993) approach. However, for large time series the model was, from a
computing perspecti ve, very time consuming.

References:

Arditti, F. D. (1967), "Risk and the Required Return on Equity." Journal of Finance,
Vol. 22., No. 1. pp. 19-36.
Beale, E.M.L., Tomlin, J.A. (1969) Special facilities in a General Mathematical
Programming System for non Convex Problem Using Ordered sets of Variables, in J.

-116-



Chapter 4. Three moment portfolio analysis.

Lawrence (Ed.), Proceedings of the 5th International Conference on Operations Research,

Tavistock, London.
Borch, K.A. (1973) "Uncertainty and Indifference Curves - A Correction." Review of

Economic studies. Vol40 pp141-
Borch, K.A. (1974) ''The Rationale of the Mean Standard Deviation Analysis:

Comment." The American Economic Rewiew Vol64 NO3. pp 428-30.
Friend, I. and Westerfield, R. (1980) "Co-Skewness and Asset Pricing." Journal of

Finance. Vol35 pp 897-913
Jean, W. (1971) "The Extension of Portfolio Analysis to Three or More Parameters."

Journal of Financial and Quantitative Analysis, Vol. 6. No.1. pp. 505-515.
Jean, W. (1973), "More on Multidimensional Portfolio Analysis." Journal of Financial
and Quantitative Analysis, Vol. 8, No.3, pp. 475-490.
Grauer, R.R. (1986), "Normality, Solvency and Portfolio Choice." Journal of Financial
and Quantitative Analysis. Vo121. pp. 265-278
Hawawini, G.A. (1980) "An Analytic Examination of the Intervalling Effect of
Skewness and Other Moments." Journal of Financial and Quantitative Analysis. Vol IS. pp
1121-1127.
Kroll, Y. Levy, H. & Markowitz. H. "MV versus Direct Utility Maximation."

Journal of Finance March 1984 pp 47-61.
Kariya, T. et al. "Distribution of Stock Prices in the Stock Market of Japan." Toyo
Keizai Publishing Co., Tokyo, 1989.

Konno, H., Yamazaki, H. (1991) "Mean Absolute Deviation Portfolio Optimation
Model and its Application to the Tokyo Stock Market." Management Science Vol37 May
pp.519-531.
Konno, H. & Yamazaki,H. (1993) "A MeanAbsolute Deviations Skewness Portfolio
Optimization Model." Annals of Operations Research vol. 45 pp. 205-220.
Kraus, A., Litzenberger, R. (1976) "Skewness Preference and the Valuation of
Risky Assets." Journal of Finance, Vol. 31, No.4. pp. 1085 - 1100.
Levy , H. (1969) " A Utility Function Depending on the Three First Moments." The
Journal of Finance.September 1969.
Levy, H .(1974) ''The Rationale of the Mean Standard Deviation Analysis: Comment."
The American Economic Rewiev. Vol64. No 3. pp 434-441.
Levy, H. & Markowitz, H. (1979) "Approximating Expected Utility by a Function of
Mean and Standard Deviation." The American Economic Review. Vol69 pp. 308-317.
Loistl, O. (1976) ''The Erroneous Approximation of Expected Utility by Means of a
Taylor Series Expansion." Analytic and Computational Results. American Economic
Rewiew.Vol 66. No.5. pp. 904-10.
Markowitz, H.M. (1952) "Portfolio Selection." Journal of Finance. pp 77-91.
Pang, J .S. (1980) "A New Efficient Algorithm for a Class of Portfolio Selection

-117-



Chapter 4. Three moment portfolio analysis.

Problems." Operations Res. 28 pp. 754-767.
Perold, A. (1984)"Large Scale Portfolio Optimizations." Management Science 30 pp.
1143-1160.
Pratt, j.W. (1964) "Risk aversion in the Small and in the Large." Econometrica vol32
No 1-2. pp. 122-136.
Scott, R. C., Horvath, P. A. (1980) "On The Direction of Preference for Moments
of Higher OrderThan The Variance." Journal of Finance Vol35 pp. 915-919.
Singleton, j.C. and Wingender, j. (1986) "Skewness Persistence in Common
Stock Returns." Journal of Financial and Quantitative Analysis. Vol. 21. pp. 335-341
Tsiang, S.C. (1972) ''The Rationale of the Mean Standard Deviation Analysis, Skewness
Preference, and the Demand for Money." The American Economic Rewiev. Vo162. pp.
354-371.
Tsiang, S.C. ''The Rationale of the Mean Standard Deviation Analysis : Reply and
ErrataforOriginaIArticle." The American Economic Rewiew Vol64. No 3. pp 442-451.

-118-



5. A Discrete Multiperiodic Asset Allocation Model With
Periodic Penalty for Nonfullfillment of Certain
Obligations.

Abstract: This paper discusses a multiperiodic model in a discrete time framework. The
uncertain environment is given by an event tree. The investor's aim is to maximize the
expected utility of the terminal value for a portfolio by trading securities in a finite number
of periods. The terminal value of the portfolio is equal to the capital gain accumulated by
the trading of n securities less the accumulated penalties. The penalties involved are
connected to not fullfilling certain capital and return requirements at the end of the given
time periods t E [1 ,2, .. ,T]. The penalties are incorporated by assigning of a penalty fee for
each sub period which has to be paid at time T. The resulting problem is a nonlinear
stochastic program which is solved by separating the different paths in the event tree and

solving these subproblems independently. The nonantipacivity constraints are taken care of
by forming the objective function in the sub problem as an augumented Lagrange function,
a method suggested by Wets and Rockafellar (1987). By iteratively solving these
subproblems and computing a convex combination of the solution, one obtains a solution

that converges to the solution of the original problem. The paper will also show some
computational results. The model is an abstraction of the regulations imposed on
insurance companies in Norway and other countries.

5.1. Introduction.

Models that determine the amount to be invested in different assets are often of the type
where the decision maker determines an optimal asset mix at the beginning of a period, and
after that, the investor observes a stochastic return on his portfolio. No corrective action is
taken, and the model stops there. The first asset allocation models, originated by the work
of Markowitz (1952), were of this type, and there exists a large block of literature and

research on these models.

Multiperiodic models allow for the decision maker to make corrective actions during the
lifetime of the model. We say corrective actions, since, during the lifetime of the model,
information becomes known to the decision maker, and decisions are made as a response to
this new information.

Typically, a multiperiodic model is a model where there are several points in time between
what we would call today and a future terminal date, T, the horizon of the model. We
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denote the sequence of points in time starting at time O as t E (O,I,2, .. ,TJ. From the
notation, it follows that there are T+1such points in time.

According to the Von Neumann Morgenstern expected utility theorem, uncertain
investments are ranked according to the value of the expected utility. In the case of single
period models such as the Markowitz (1952) model mentioned above, an approximation of
expected utility is made by the use of the expected return and variance of return of the

portfolio.

When it comes to multiperiodic models, the decision is not as simple. Information in a
multiperiodic model increases with time and decisions made today have to incorporate the
effect of information realizations through future periods. When we consider a
multiperiodic model, solutions could, under certain circumstances, be the same as those
obtained from a partial, one step analysis. By this we mean that the correct decision could
be taken by just considering the stochastic asset prices one period into the future. Mossin
(1968) studied a multiperiodic model with two assets and presented a class of utility
functions which possess this property. He divided the utility functions into two
categories. The categories were utility functions that imply partial myopic solutions, and
utility functions that imply complete myopic solutions. The former category of utility
functions requires only the knowledge of the future risk free interest rate. In this case, the
investor with preferences represented by a utility function that belongs to this category
could simply allocate the wealth by a one period into the future analysis, as if the entire
resulting wealth would be invested in the risk free asset. As in the case with complete
myopia, the decision could be based upon an expected utility analysis only one period into
the future.

We define U(vT) to be a utility function representing the preferences ofthe decision maker
where vT is wealth. In addition we assume as usual that the utility function is monotonically
increasing and concave. The Mossin analysis is based upon characteristics about the
fractionM:

[1]

dU

dvT
M=---

d2U

dvT
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The results were:

Economy Complete myopia Partial myopia

One riskless asset with zero yield M=a+bvT •

One riskless asset with nonzero yield M=bvT M=a+ bvT

Both asset risky M=bvT •

Table 5.1. Characteristics M and myopic decision rules.

Over, vT is terminal wealth and a and b are constants.

If one considers the Bernoulli, In(vT), utility function, and an investor who maximizes the
expected utility of terminal wealth T periods into the future, one should, in the model
setting according to Mossin with yield distribution identical for all periods, base the
decision on a one-period model. As Samuelson (1969) also points out, the optimal
behaviour of an investor that maximizes the expected value of a Bernoulli utility function
does not change during the lifetime of the model, as long as the distribution of the asset
return is stationary.

As real situations are often complex, and distributions may not be stationary over time, the
introduction of a multiperiodic analysis is relevant. The purpose of this chapter is to study
a model where we implement actual regulations appearing in the economy and allow for the

possibility of nonstationary distribution of the asset prices. The chapter is organised as
follows.

In Section 5.2., we outline the price system for the securities. In Section 5.3. we describe
the decision variables. Probabilities and stochastics in the model are discussed in Section
5.4.. The model is presented in Section 5.5. and some general considerations concerning
solution procedures are covered in section 5.6. The progressive hedging algorithm is
discussed in Section 5.7. In connection with the progressive hedging algorithm, one has to
select start values and step size for Lagrange multipliers and penalty parameters. How this
is done is covered in Section 5.8. Section 5.9. covers the single period formulation of the
model and the corresponding deterministic equivalent program. In Section 5.10. we
illustrate the model by a numerical example. Finally, in Section 5.11, we draw some

conclusions.
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5.2. Price system.

The model presented will consist of a selection of n assets. The model runs through T time
periods that end for tE [1 ,2,..~T], and has a finite sample space with K elements:

The probability of a sample event occurring is positive. In this chapter, we will use the
terms scenario and path in the same meaning as event. We use the indexj for the K events
in the model, thus:

[3] j E {I ,2, ... ,K}

The process starts with no information at time O, and ends up with full information at time
T. Formally, we state this by letting ft represent the information structure at time t, hence:

The information structure (ft) , for any t E [O,T] is finer than that of the preceding period
(ft-I). In other words, every set in ft is a subset of a set inft_I. Formally, this is:

Thus the process is measurable, and the sequence of random variables is adapted to the
information structure ft. An event is a path of relieved asset prices and dividends through
time. An event can be viewed as a scenario. At one particular period in time, we denote
the prices of the assets by a vector if t:

At each point in time there are dividends. We denote the dividends at time t as:

The assets are claims to take part in a dividend process.

With these definitions in mind, we have that the total return from asset i in period t is given
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by:

[8] v~- v~-l+ 6~.

This definition implies that the owner of the asset receives an appreciation or depreciation
of the asset plus a nonnegative dividend. We will assume that the dividends are not paid
directly to the investor, but assume that the dividends are kept inside the firm which is the
issuer of the asset. This means that gains from dividends are represented by movements in
the asset prices v t •

To make the concept of an information structure more tangible, we illustrate the information
structure in the following figure.

t=O t=1 t=2 t=3

Fig.S.I. An information structure.

Above we have illustrated the concept of an information structure by using an event tree.
The event tree is a pair, consisting of a set of vertices denoted by E, and a set of edges,
given by A, connecting the different vertices. The vertices represent a particular time and
state in the event tree. At a particular node or vertex, the future state or the next node is
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uncertain. We denote the current node at time t by 1;t. For any s » t, 1;s is stochastic. An
event or scenario in the model is then a sequence of nodes given by {1;, ,1;2'··· ,1;T} ES
such that a walk through an edge between two subsequent nodes is given by (1;t. 1;t+') E
A.

We have now described the stochastic environment of the asset prices and in the next
section we will consider the decision variables.

5.3. The decision variables.

A trade strategy x, is a sequence of investments in assets. We denote the number held of

assets i at the beginning of time period t as x~.The set x is then defined as follows:

[9] x = [x~ I iE 1,2,....n.; t E O,I,2, ... ,T-1.]

The process x is an adapted process in mu. In other words the sequence, xl, xr, ... ,xT.
'TI i, is a random variable with respect to (Q,ft). This means that the adjustments in the
portfolio made as time passes depend upon the evolution of the asset prices.

We will define the trades or holdings at a particular point in time with xt•

[10] xt = [x~ I iE 1,2,...,n.]

In section 5.2. we defined a a price system, and in this section we define variables x~which
denote holdings of the different assets at points in time. We now move a step further and
look at a property that is reasonable to impose on the asset price and dividend system
described above. The common assumption imposed on economic models is that the
decision maker and actors in the market prefer more for less. A necessary condition to put
on the system above is then that it should not be possible to create something out of
nothing. We refer to this condition by stating that no arbitrage opportunity should exist in
the model. To study this property, we introduce certain definitions:

A consumption plan is an adapted process in m given by c = [et I t El,2, ... ,T]. The
consumption plan satisfies the following equation':

1The letter T outside the brackets is the transpose operator here.
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The equation [11] simply states that et is the difference between the value of a portfolio
before and after adjustments for the portfolio holdings in one particular time period. We

then could state the no arbitrage criterion.

Definition of no arbitrage opportunity:

We say that there is an arbitrage opportunity if there exists a trading strategy x where c is
nonnegative and there exists at least one t where et is positive for all (l) E Q. In addition

werequire:

Here xO are the trades done at t = O. By assumption 6° = O.

An arbitrage trading strategy is then a strategy that is always nonnegative, and strictly
positive for at least one event, acquired at a nonpositive cost. We will assume that such
arbitrage opportunities does not exist.

5.4. Probabilities and stochasties in the model.

If we consider an arbitrary realization of the stochastic process given byevent three (E,A),
and consider the process at time period t, the current vertex is given by ~t. We denote the

corresponding sub-tree with root ~t to the pair (E(~t), ~). At this node there are ffit(~t)
edges connected to, at the moment unknown, ~t+l. We denote such an edge by ~(~t).
The edges are indexed by q. The probability of a walk through edge ~(~t) is given by
P(~(~t». These probabilities are nonnegative and satisfy:

These probabilities could have been formed by the use of a priori information, given by a
neutral agent or based upon subjective judgments.
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s.s, The model.

Due to the central role they play in economies, financial institutions are often subject to
more regulation than non financial firms. Due to this central role, credit authorities
continuously monitor specific capital requirements and investigate whether these are
satisfied by the institution. The reason for this is that the solvency of those institutions is
important not only for the monetary part of the economy, but also the economy as a whole.

These regulations are often implemented such that the financial institution is required to
have specific funds available at fixed dates. These requirements are often complicated, but
could, for example be linked to the total amount outstanding for the institution. In the case
of banks, the Bank of International Settlements (BIS) defines these rules.

The model we will now present is multiperiodic, and the main purpose of the decision
maker is to maximize the expected utility of terminal wealth. Since the decision maker is
restricted by a set of capital requirements, he also has to take into consideration the effect
these requirements have on the return on the portfolio or the value of the portfolio at a
fixed date. How this effect is incorporated will be shown below.

We will now list the assumptions used in the model.

l. The decision maker maximizes the expected utility of terminal wealth.

This assumption implies that the investor ranks investments according to the expected value
of a utility index. This is in accordance with the expected utility theorem of John Von
Neuman and Oscar Morgenstern (1952). We will use U(·) to represent the utility index. In
addition, we assume that if vT is a positive variable[ 14]:

[l4a]

[l4b]

These assumptions imply that the decision maker has a preference for wealth [l4a] and is
risk averse [l4b]. We do not consider a multiperiodic additive utility function to keep the
model simple, but we recognize that the model presented could, with slight modifications,
be reformulated in order to capture such a utility function.
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2. All returns on the assets from one period to another are reinvested.

We then do not allow for consumption until period T. All flow of wealth is then reinvested
into the assets in the model.

3. Assets are infinitely divisible.

This assumption enables us to buy any fraction or any number of shares in the asset, not
integer values, as common for practical purposes. If the value of the portfolio is large, this
assumption makes no significant difference for practical purposes.

4. There is a penalty for not fulfilling certain obligations.

As the return of the portfolio is realized from one period to another, there is a possibility
that this return could be below some required level, if it is so the institution has to cover the
return shortfall by the use of funds. If there have been several periods with an unfavorable
return, these funds may vanish. In the model we will have two types of fund that it is
possible to use for cover in the case of unfavorable returns. We will denote these funds

Bl and B2. We will model these funds such that if it is necessary to cover unfavorable
returns, one covers first using fund 1 until it is empty, and then one continues covering
from fund 2. We will penalize withdrawals from fund 2 harder than withdrawals from
fund 1.

There is a critical point given by k, which is the critical return from time t to t+ 1 in which
returns below k imply withdrawals from funds. If the return from one period to another is
larger than k, the funds are increased. The filling up of these funds is done on a LIFO
basis (Last In First Out). If fund 2 is not at its maximum level, indicated by k2, it is
increased until it reaches k2. If there are still excess returns available, fund 1 is increased.

We will illustrate the flow into funds by the following figure:
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Funds are increasedWithdrawal offunds

Return
k

Figure S.2. Funds and the shortfaU constant k.

The figure illustrates that there are withdrawals from the funds if the return is below the
predefined return k. The dynamics of fund 1 and fund 2 can be illustrated in the following

figure:

Funds available

Bothfunds
at required level

Fund 1 empty
fund 2 at required level

Both funds empty

Fig. S.l. The funds in the model.

Above we have illustrated the dynamics of the two funds in the model. Keeping fund 1
intact has lower priority, and low returns are first covered by the use of funds from fund
1. If fund 1 is empty one covers unfavorable returns from fund 2.

In the model, it is also possible to have excellent returns. If this is the case, and both fund
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1 and fund 2 are at the required level, the excess funds are just added to a fund 3, which is
a buffer for the use of funds from fund 1 and 2 in the next period. If it turns out that there
are funds available in the excess fund 3, and withdrawals from funds are necessary, no
penalty is performed on such covers. Only withdrawals from fund 1 and fund 2 are

penalized.

The penalization takes the form a fee, charged in each time period, proportional to the
amount of missing funds in fund 1 and fund 2. This fee is not paid directly, but is a debt to
the legal authority. This debt, with accrued interest, is paid in period T. The interest
charged on this debt is fixed for all periods. We will represent the charging fee's fraction
of missing funds in fund 1 and fund 2 with ~ and a respectively. A practical interpretation
of the above penalization is seen in capital regulations imposed on life insurance
companies.

We will also impose a fee to be paid if the actual return from period t to t+ 1 is below the
predefined level k. This fee is not connected to the level of the funds but is contingent on
the return of the portfolio in a single period. The penalty connected to the return of the
portfolio is activated independent of the funds available. The penalty for shortfall return is
given by y. A practical interpretation ofthis penalty is the return requirement guaranteed by
life insurance companies. We will now formulate the problem.

The problem is[lS]:

subjectto:

tE 1,2, .. ,T

n

[lSc] v~ = '\" xlv} tE O,I,2, .. ,T-1.
f:t

[lSd] AFt - v~-I(I+k) + v~ ~ O tE 1,2, .. ,T.

[l Se] F, = Ft_1 - AFt + AFt tE 1,2, .. ,T

[lSf] v~+ AFt - AFt - v~-I(I+k) = O tE 1,2, .. ,T
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[l Sg] yt + F, - kl ~ O tE 1,2, .. ,T

[ISh] zt + F, - k2 ~ O tE 1,2, .. ,T
[lSi] ut - AFt ~ O tE 1,2, .. ,T

[ISk] Apt, Aft, Ft, Yt, Zt, Ut, Pt tE 1,2, .. ,T.

where:

v~= value of portfolio at time t
AFt = withdrawals from funds at time t
AF: = increase in funds at time t
Ft = funds at time t
Yt= amount below requirement in fund 1

Zt = amount below requirement in fund 2
Ut =difference between actual and required return - absolute basis
kl = level at which we make withdrawals from fund 1
k2 = level at which we make withdrawals from fund 2
k = required return level
d, = discount factorfor penalties at time t
Fo = initial level of total funds available
a = penalization of withdrawals from fund 2
~ = penalization of withdrawals from fund 1
y = penalization of shortfall return

The number of variables in the model is for each time period, in addition to the stochastic

asset prices, given by n+7. In total there are (n+7)T variables. There are 9T restrictions in
themodel.

The objective function [ISa] maximizes the expected utility of terminal value of the
portfolio, less compounded penalty. The compounding is done by the predefined constants
dt• The constraint [ISb] controls the value of the portfolio. The funds available at time t
are Ft, and the increase and decrease in Ft are given by AF: and Apt respectively. The
restriction [ISc] assures that all investments done in period t are equal to the funds available

at time t. The flows from the funds are controlled by the restriction [I5d], which holds
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because we penalize withdrawals from the funds. The equality [15f] defines the inflow of
wealth to the funds as a function of portfolio value and outflow of funds. The restrictions
[15g], [I5h], [l5i], and [I5j] are related to the penalization of withdrawal of funds such
that yt takes a positive value if the fund is below the critical value kl. The value of yt is
then the difference kl - Ft. Conversely, i takes a positive value if the fund is below the
critical value kj. Analogous to yt above, zt would take the value k2 - Ft. Finally, ut takes
a positive value if the return in period t is below the predefined level. This is because Apt
in that case has a positive value.

The problem [15] is a stochastic programming problem with a concave objective function
and linear constraints. Any deterministic version of the problem is easily solved by
nonlinear programming. The introduction of stochastics into the model complicates it and a
relevant algorithm has to be found to solve this problem.

5.6. Solution techniques - General considerations.

The stochastic program [15] maximizes the expected value of a concave function. The
expected value of the objective function is given by:

The expected value of the objective function is a linear combination of concave functions,
weighted with the probability for each event. This function is also concave, since linear
combinations of concave functions are also concave. In principle, we could solve
programs with an objective function of the form [16] by nonlinear optimization techniques.

In addition, we have to modify the restrictions in the problem and add the nonantipacivity
constraints that occur in stochastic programs. If the number of states or scenarios is large,
the nonlinear programming problem becomes considerably large, and a more specially
designed optimization algorithm is preferable.

In the stochastic programming literature, there are several algorithms available for use. We
will use an approach suggested by Wets and Rockafellar(I987). This approach, the
progressive hedging algorithm or scenario aggregation algorithm, has the advantage that it
keeps the problem in its original form, and that it is applicable to, in principle, all stochastic
problems which have a solvable deterministic counterpart. The algorithm, to be described
below, requires only the presence of a nonlinear optimization package with the ability to
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handle quadratic penalization.

5.7. The progressive hedging algorithm and the multiperiodic model.

To simplify the notation we will write the problem in a more compact form. We will define
lp to be the set of all variables in the model. This set of variables consists of the nxT
decision variables x, and the other 7xT variables in the model. Further we define lpt to be
the set of these variables corresponding to time period t. Since the variables in the model
depend upon the development in the asset prices, we will denote the conditional values of
the variables given the event O)J. as lpw. and xw.• The set defined by the restrictions in the

J J

model is given by C. Since the restrictions in the model are stochastic, we define Coo.to be
J

the restrictions if event O)j occurs.

When the random asset prices evolve through time, there may be several paths that are
equal up to some point t. A necessary assumption is that the trading strategy up to that

point must agree. If we let <J1: be the coarsest partition of Q in sets at time t, and ~ be a
collection of events, which is a member of such a set, and in addition have two states 0)1

and 0)2 such that:

Then this condition can be stated as:

The latter conditions follow from the former since the auxiliary variables in the model are
indirectly defined by the decision variables. Condition [17] guarantees that the solution
provided by the model does not depend upon information not yet available.

The set of implementable policies defines a subspace N or function from Q to mT(n+7) that
satisfies the condition [17]. Formally this is:

This criterion simply states that all decisions formed by the trading strategy x must agree in
time for paths that have similar evolutions. This condition could be imposed by modeling
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it as an explicit constraint. Such a formulation makes the problem nonseparable in the
events. Another approach is the one suggested by Wets and Rockafellar, where we model
these constraints by using an augumented Lagrange function as the objective function for
the different subproblems corresponding to the different events wi. This makes it possible
to separate the optimization for the different scenarios.

A policy or trading strategy is admissible if:

[19]

This means that a policy is admissible if it satisfies the explicit constraints in the model.

If a policy is both implementable and admissible, we say that it is feasible.

With these definitions in mind, and an optimization where these constraints are imposed,we
obtain a problem with the necessary conditions. Formally this is an optimization where we
impose:

[20] 'P E N U C

The difference between this constraint set and the originalone is the imposition of the
nonanticipativity constraints.

The criterion stating that a policy or trading strategy should be implementable is
inescapeable in the optimization procedure. These constraints ensure that the solution we
end up with through running the optimization procedure is independent of the different
events in the model. This is reasonable since, at time O,we have no information, except in
a probabilistic sense, about the future development of the asset prices.

Using this compact notation the problem is[21]:

[21a] Max E(U(x»

subjectto:

[21b] 'P E CnN
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We will define the solution x *(Wj)as the optimal solution to the following problem:

Here V* (x) is a modified objective function that penalizes violation of the nonantipacivity
constraints. How this penalization is done is described in the algorithm under. To further
exploit the details we assign xt *(Wj)to the decision variables corresponding to time t in the
solution of [22].

Ifno penalization is done V*(x) is equal to Vex). Over, xt*(Wj) is the optimal, ex post
value of the variables, associated with time t, if the scenario or path followed by the asset
turned out to be Wj' We can interpret x*(Wj) , to be a choice or policy, through the selection
of an optimal trade strategy, given the event Wj' We note that the choice of a trade strategy
in one particular scenario determines lpw.' since the selection of investment proportions, x,

J
determines, under one particular state, the other variables in the model. We will now
define:

Here xt p can be interpreted as the expected value of xt given that the process leads us to
~. In other words, xt p is the conditional expectation of the ex post optimal trade strategy
given ~. The probability of reaching ~ is given by:

[24] P(~) = .L pew)
wjE~

Vsing this, xt p is given by:

[25]

An implementable policy is therefore reached by requiring:

The condition [26] is the nonantipacivity constraint for the model.
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We recognize that [26] defines a linear transformation of the variables xt to xt p. It is
termed the aggregation operator relative to the given information structure ft.

We have now defined a number of variables and explained certain concepts. We will
subsequently turn our attention to the algorithm. In order to utilize the algorithm we need
to define a sequence of the Lagrange vector AI, which is the penalty we give to the

nonfulfillment of the nonantipacivity constraints. Here, I is the iteration number in the
algorithm. In addition we introduce a perturbation term, denoted by w!(Wj)' The
algorithm works as follows:

Step O:

Initialization is done here. We set w?(Wj) 'fl t, equal to zero, in addition we select a value
for AO. After the initialization is done we start with the main block of the algorithm by

setting 1=I.The variable I is then a counter for the iterations in the algorithm.

Step 1:

For each WjE Q we solve the following subproblem:

Here 11.11 is the Euclidian or ~ norm, and x t P ,(I -1 ) is the conditional expectation obtained
from the individual event solutions in the previous iteration, obtained by the use of [25]. In
the first iteration we compute xtp,o by solving a problem for each event without any

penalization and by using [25]. The parameter cl is a penalty corresponding to the
quadratic penalty term in iteration 1.

We also compute new values for xtp,l.

Step 2:

Here we update the perturbations in the problem. The updating is given by:

[28] w!(Wj) = w!-l(Wj) + A1(xt* ,1(Wj) - xtp,l)
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Above Xl *, I is the optimal solution obtained in the current iteration (1).

Return to step 1.

o

The algorithm presented above is utilized by using the step procedure iteratively. This
raises the question of a stop criterion for the algorithm. One suggestion of a distance
measure between each iteration is:

[29] Kl = IIxlp,1 - xlp,l-l Il

This measure takes the Lz norm of the difference of the variables xt p in the last two
iterations. A possible stop criterion is then:

[30] Stop if Kt S K.

Here K is a predefined constant. The selection of K is a matter of convenience.

The above is a discussion of the general setting of the optimization procedure. The key
issue in the procedure is first the condition that restricts the decision variables to be
indistinguishable for different events with similar movements up to period t. Second, a
probability weighted average, when this condition is fulfilled, is equal to the true optimal
solution of the original stochastic programming problem. A solution of the original
problem could be obtained by the help of a macro program, where the objective function is
a probability weighted utility function and constraint imposed such that the solution is
admissible for all the different events. However, such a problem which, in addition,
requires the imposition of the nonantipacivity constraints by e.g. using ordinary
constraints, could be very large. A decomposition of this problem by solving individual
augumented subproblems for each scenario in an iterative manner and combining these by
the use of probability weights is easier.

The algorithm above has some interesting features. A common way of handeling
complicated constraints in nonlinear programming is to put them into the objective function
and penalize them, which is done in the above algorithm. As the iterations start it can be
viewed as a battle between the independent scenario solutions and the average solutions.
Average here means probability weighted solutions. As we start, the scenario solutions
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dominate. By the updating of the penalty parameter ~(Wj)' the scenario solutions,
obtained from [27], converge to a compromise between the scenario solutions and the
average solution, a solution where the nonantipacivity constraints are fulfilled.

5.8. Lagrange multiplier generation.

A problem in the procedure above is to find a proper value of the Lagrangian penalty
parameter AI. The Wets and Rockafellar algorithm incorporates the nonantipacivity

constraints by forming a modified objective function for the different scenarios. In this
objective function we have two custom set parameters: the initial Lagrange vector ADand
the inital parameter co. In order to do this, we have to study the theory of augumented
Lagrange functions.

The initialization of ADand the scalar CO is somewhat arbitrary, but one has to consider
several issues. First, if ADis set too far away from its true optimal value, one may have to
perform many iterations before converging to the optimal solution, such that a selection of
ADclose to its optimal solution is preferred. When it comes to the selection of the scalar
co, this scalar should not be too large such that ill-conditioning, or no interior solution at
the first iteration becomes apparent. Or should the sequence cl be chosen too small such
that the algorithm converges slowly. When the algorithm is initiated we select a sequence
Al and cl. The sequence cl should not increase too rapidly such that ill conditioning could
be apparent at any iteration. This is also the case for AI. Thus we see that the choice of AD
and the scalar cOis a an issue in its own, and careful consideration should be taken in

selecting these parameters. For an in depth discussion of Lagrange multiplier generation,
see Bertsekas (1976).

5.9. Single period formulation.

The model discussed in this paper is multiperiodic. As opposed to a one-period model, it
considers the effect of stochastic asset prices over several periods. One may ask whether
these extensions add any value to the analysis. Is it so that if we only consider the first
time period and construct a model corresponding to the first period of the information
structure mentioned earlier, would we obtain a solution such that we end up close to the
solution for the multiperiodic case? In order to answer this question, we must formulate
the model as a one period model. In this case, there will be distinctly fewer scenarios or
paths for the asset prices. If the investor only looks ahead one period into the future, the
stochastic process is somewhat simpler. The information structure is given by:

[31] fo = {{Wl'~' ...• ~}} ,fT = {{w.},{~}, .... ,{~}}, T = 1.
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Using the same notation as before, the problem becomes[32]:

[32a] max E(U(vl - pd)

subjectto:

[32b]

[32c]
[32d]
[32e]
[32f]

[32g]
[32h]
[32i]

L\F1- v~(1+k) + v~ C!: O
Fl = FO- L\F1 + L\Fi
v~ + L\F1- L\Fi - v~{l+k) = O

yl +FI -kl C!: O
zl + Fl - k2 C!: O

Pl = yl~ + zla + utY
Ul + L\F1 C!: O

The problem above is still stochastic, so we could solve it by use of the Wets and
Rockafellar algorithm. The problem above could also be reformulated to give us the
deterministic equivalent program. We have done this below, and the variables in the model
will be functions of the different events. This is handled in the notation below by letting
the different variables be functions of the different events using parantheses.The program is
given by[33]:

K

[33a] max "'P(OOj)U(v~(OOj)- p(OOj»
f:f

subjectto:

n

[33b] v~(OOj)= '" x?vl(ooj) j E 1,2, ... ,K.
f.t

[33c] L\F1(ooj)- v~(1+k) + v~(OOj)C!: O j E 1,2, ... ,K.

[33d] v~ (OOj)+ L\F1(ooj)- L\Fi(OOj)- v~(1+k) = O j E 1,2, ... ,K.
[33e] FI(ooj) = Fo + AFi(ooj) - L\Fi(ooj) j E 1,2, ... ,K.
[33f] yl(OOj)+ FI(ooj) - kl C!: O j E 1,2, ,K.
[33g] zl(OOj)+ FI(ooj) - k2 C!: O j E 1,2, ,K.
[33h] ul(OOj)+ L\F1(ooj)C!: O j E 1,2, ... ,K.
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The number of variables has increased, since we have to assign one variable to each event.
Since the problem is now deterministic, we can solve it by the use of a nonlinear
optimization algorithm. The deterministic equivalent problem above consists of 7xK

constraints, and may be solved by using a nonlinear optimization package.

10. A numerical example.

In order to illustrate the model presented in this chapter, we williook at an example. We
will look at a three-asset problem, and we will first set T equal to three. We will also
consider a one-period version of the problem using the formulation [33]. The event three
will split into three nodes at times 1,2, and 3 such that the total number of events or end
nodes in the model is 27. We consider three utility functions. These utility functions are
the logarithmic, negative exponential and quadratic utility functions. The three assets in the
model are a low risk, medium risk and high risk asset. Below are listed the movements in

the asset prices for one period.

Up Medium Down

VI 1.06 1.07 1.07

v2 1.1 1.15 1.00

v3 1.35 1.10 0.85

Table 5.2. Asset price returns - single period.

The most risky asset is asset number three, the asset with lowest risk is asset number one.
Asset number two has medium risk. The numbers in the table above are on a return basis,
such that if we have an up market in the forthcoming period, asset number three gives us a
return of 35 %. In a rising market, the asset with lowest risk gives us a return of 7% etc.
The table above gives the return from one period to another such that if the outcomes after
two periods are two down movements, the value of asset one is 1.072. The expected
return of each of the asset depends upon the probability of an up, medium or down
movement in the asset prices. These probabilities can change from one period to another.
In the example we have used, these probabilities are nonstationary, such that the probability
of an up movement in period two depends upon the returns in the previous periods. The
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probabilities assigned to the different events are selected such that the expected return from
one period to another reflects the risk associated with the asset, which means that asset
three always has the highest expected return and asset one always has the lowest return.
The paths or events used are assigned the following probabilities:

Event probability Event Probability Event Probability

uuu 0.05333 uum 0.05333 uud 0,05333

umu 0.048 umm 0.036 umd 0.036

udu 0.06 udm 0.03 udd 0.03

muu 0.05 mum 0.05 mud 0.05

mmu 0.0375 mmm 0.01875 mmd 0.01875

mdu 0.0375 mdm 0.01875 mdd 0.01875

duu 0.06 dum 0.045 dud 0.045

dmu 0.0375 dmm 0.01875 dmd 0.01875

ddu 0.045 ddm 0.015 ddd 0.015

Table 5.3. Probability and events in the example.

The table gives the different probabilities in the model. The probability of an up movement
three times is 0.05333 and the probability of an up, down and up movement is 0.06. Since
the probabilities for an up, medium or down movement depend upon the order of the
movements, the process is nonstationary. The parameters used in the model are given the
following values:
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Parameter Value

k 4%

kl 0.035

k2 0.025

a 0.2

~ 0.2

Y 0.2

Fo 0.04

d, 1.07t

vo 1p

Table 5.4. Parameters in the model.

Above, the initial value of the portfolio is given by unity; consequently the interpretation of
the invested amount in the first period is the fraction invested in the securities. The
required return for each period is set at 4%. This is in harmony with the regulation of life
insurance companies in Norway today. The penalty for shortfall of funds is set to 0.2,
which is discounted to the horizon at a rate of7% each year.

We will study three different utility functions. These utility functions are given by:

Ul Ln(vT)

U2 -Exp(-vT)

1
U3 vT __ (vT)2

4

Table 5.5. The utility functions considered.

The utility functions listed above are the logarithmic, negative exponential and quadratic
utility functions. The event three studied in the example is trinomial, which means that
each node, except for the terminal nodes, splits into three new nodes in the next time
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period. Using the notation from [13]:

[34] q E {up, medium, down} = {l;l, l;2' l;3}

The stochasties in the event three represented by the probabilities are then:

Case P(l;l) P(l;2) P(l;3)

1 1/3 1/3 1/3

2 0.4 0.3 0.3

3 0.5 0.25 0.25

4 0.6 0.2 0.2

Table S.6. The stochasties for the single periods used in the example.

For example, the root node in the event tree connects the nodes at time 1 using the
probabilities in case 2 in Table 5.6. If the process evolved with two up movements, the
probabilities are given by case 1 above.

If we consider the one-period version of the model, the optimal solutions, xo, are given
by the vector[x?, x~, x~] in the following table:

Case Ul U2 U3

1 [0,1,0] [0,1,0] [0,1,0]

2 [0.210,0.691,0.098] [0.218,0.680,0.101] [0.225,0.669,0.105]

3 [0.682,0,0.318] [0.682,0,0.318] [0,682,0,0.318]

4 [0.682,0,0.318] [0.682,0,0.318] [0.682,0,0.318]

Table S.7. Single period version - optimal solutions.

We see that the optimal solution for the one period formulation is sensitive to changes in the
probabilities. However, it seems that the selection of the utility function does not affect the
optimal solution that much. For all the portfolios inTable 5.7., the worst case return is nil.
The probability of obtaining zero return ranges from 0.33 to 0.2, so the bankrupcy risk is
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accepted to be quite high.

To test the model, we need a nonlinear optimization package able to handle nonlinear
optimization. A package with this ability, when the number of variables in the model is not
too large, is the Microsoft Excel Solver optimization package. The Solver, with the
inclusion of the Microsoft Excel macro language, gives us the ability to implement the

progressive hedging algorithm. After preliminary experiments with the one-period version
of the model, we decided to set Al constant and equal to the unit vector. Since the squared
term of [29] rapidly converges to zero as the nonanticipativity constraints tum active, we
decided to increase the sequence cl rapidly. In the algorithm we let cl = 0.5x2t• Solving
one problem, required approxemately 15iterations.

In the three-period example, the first stage, or time zero, optimal solutions are given in the
table below-:

U Optimal first stage solution

Ul [0.7538,0.211875,0.0343]

U2 [1,0,0]

U3 [1,0,0]

Table S.8. First stage optimal solutions - Example.

The results in the table above differ significantly from the solution obtained by solving the
one-period version of the model. In the case with the utility functions U2 and U3, the
optimal solution is to invest everything in the asset with least risk. For the logarithmic
utility function, the results point in the same direction since approximately 75% should be
invested in the least risky asset. The results in Table 5.8. show that a multiperiodic
consideration of the investment process generates portfolios with much lower risk than in
the single period case. The portfolio generated will give a worst case return, for all the
utility functions under consideration, above the requirement of 4%.

An obvious question now is how to explain the difference between the solution obtained in
the one-period version of the model, and that obtained from the three-period version of the
model. One possible explanation is that unfavourable returns in the first period affect

2 Here, K is set to 0.0005.
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penalties in the forthcoming periods. In order to avoid a withdrawal from the funds in an
early period that is likely to be penalized in the next periods, it is optimal to purchase a low
risk portfolio at time zero.

The results from the numerical example above indicate that complex models that run over
many periods and nonstationary distributions for the asset prices should not be based upon
a myopic decision rule.

5.11. Conclusions.

In this chapter, we have studied a discrete multiperiodic asset allocation model. The key
issue in the model is the penalty imposed if the specified capital requirements are not
fullfilled at certain points in time. We have presented a multiperiodic version and a one
period version of the model. By considering an example, we computed the optimal
solution to the problem and we discovered that the optimal solution, even for the Mossin
(1968) myopic decision rule optimal utility function, could differ considerably between the

one period formulation and the three-period formulation. Topics for future research are
formulations of the model above in an infinite horizon setting and of models where the
stochastics are given by a Markow transition probability matrix.
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6. Efficient Generation of Mean-Gini Efficient Sets
throughAggregation.

Abstract: This paper presents an efficient way to generate the mean-Gini efficient set.
The Mean-Gini approach to analyzing risky prospects and to constructing optimum
portfolios was introduced by Yitzhaki (1982) as an alternative to the traditional Markowitz
(1952) approach. The Mean-Gini analysis provides necessary conditions for second
degree stochastic dominance. Hence, by using the mean Gini approach we are prevented
from choosing portfolios considered to be inferior by all risk averse investors. The
generation of the mean-Gini efficient set requires the solution of a number of large scale
linear programming problems. In this paper we present a way to solve these large scale
linear programs efficiently by the use of an iterative aggregation method. The method is
tested on reallife data from the CRSP (University of Chicago Center for Research on
Security Prices) data base.

6.1. Introduction.

The mean-Gini approach to analyzing risky prospects and to constructing optimal portfolios
was introduced by Yitzaki (1982) as an alternative to the traditional Markowitz Mean-
Variance analysis. The advantage of the mean-Gini approach is that it has the simplicity of
the mean variance model, as it is an alternative two-parameter model. Furthermore, the
mean-Gini approach also has the main features of stochastic dominance efficiency. Hence,
the mean Gini difference can be shown to be more adequate than the mean variance for
evaluating the variability of a prospect. The reason for this is that the mean-Gini approach
to analyzing risky investments and generating efficient portfolios circumvents the problems
inherent in the mean variance approach that are specific to the choice of probability
distributions. Yitzhaki (1982) showed that the use of the mean and mean-Gini difference
as summary statistics for a risky investment yields the derivation of necessary conditions
for stochastic dominance. Hence the use of the mean-Gini difference as opposed to the
variance enables an investor to discard from the efficient set portfolios which are
considered inferior by all risk averse investors. Okunev (1988) and Shalit and Yitzhaki
(1989) have done comparative studies between mean-Gini and mean-variance efficient
portfolios. Both studies conclude that mean-Gini and mean-variance analyses provide
analogous portfolios for the data set used in the series. This leads Okunev to suggest the
use of the mean variance model as an approximation of the mean-Gini model. The reason
for this suggestion is that the mean-Gini model requires a substantial amount of extra
computation as compared with the computational requirements for the traditional mean-
variance model. However, as stated by Yitzhaki and by Shalit and Yitzhaki, the advantages
of the mean-Gini over the variance as a measure of risk and dispersion are substantial. The
reason for this is that the mean-Gini method allows for the construction of efficient
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portfolios that are in the set of stochastic dominant portfolios regardless of the probability
distribution of the returns. Also, as pointed out by Shalit and Yitzhaki, since the Gini
index is the expected absolute difference between two realizations of the value of a
portfolio, it is a an intuitive measure of investment risk. This means that the mean-Gini
approach would be preferable given that the efficient set of portfolios could be calculated in
an efficient way. In this chapter we will make use of the theory of aggregation in linear
programming to generate an efficient algorithm for the calculation of efficient mean-Gini
portfolios. The paper is arranged as follows. In Section 6.2. we present the linear
programming formulation for the generation of efficient mean-Gini portfolios and the
corresponding dual program. Section 6.3. describes the basics in linear programming
aggregation theory with special emphasis on an iterative reclustering method which has
been shown to provide an efficient way of solving large scale linear programs as a
sequence of small linear programs. In Section 6.4 we adapt this aggregation method to the
mean-Gini portfolio problem and present an application of the method on a problem with
ten stocks and thirty time period observations. We also present results for a real data set
extracted from the CRSP (University of Chicago Center for Research in Security Prices)
data base. Finally, in Section 6.5. we give our conclusions and suggestions for future
research.

2. The linear programming formulation of the Mean-Gini Portfolio
Problem.

In this paper we will concentrate our attention on the model where we use the estimated
mean-Gini coefficient using time series where the returns for an asset are given on a daily,
weekly, monthly or annual basis. For discrete observations the Gini mean difference is:

Above T is the total number of time periods in the sample. The estimator above represents
the average of the absolute differences between all the possible pairs ofrandom variables.

In order to construct the mean-Gini efficient frontier, without short sales, we need to solve
the following programming problem [2] parametrically in the return.

subjectto:
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fl

[2b] Yt= ~ ritxi tE 1,2, ... ,T.

fl

[2d] ~Xi = 1

Xi' Yt C!: O iE 1,2,...,n. t E 1,2,... ,T.

Here xi are the nonnegative weights for the alternative assets. The return of a portfolio
with weights xi of the asset in period t is given by the equation [2b], where rit is the return
on asset i in period t. Hence the objective function in the mathematical programming

problem is the discrete version of the mean-Gini difference given above. The average or

mean return for the prospect i is given by Pi and is calculated from the observed values rit.

It is easy to observe that this mathematical programming problem can be reformulated as a

linear programming problem by introducing auxiliary variables, Zj+kand Zjk, by
representing:

Hence the reformulated mathematical programming problem is[4]:

T T
[4a] min ~ 2~(Zj~ + Zjq)

T t=lq>t

subjectto:

n

[4b] 2xi(rit - riq) - Zj~+ Zjq= O tE 1,2,... ,T and q> t.
l = l

fl

[4d] ~Xi = 1

-147-



6. Efficient Generation of Mean-Gini ...

The linear programming problem above has T(T-l) + n variables and T(T-l)/2 +2
constraints. Thus for a problem in which the number of observations T is large this is a
very large scale linear program. For instance, for the German DAX index including 30
stocks the problem to be solved parametrically would consist of size 2682 variables and
1328 constraints given weekly observations for one year. However, if we use a longer
time horizon and a finer observation interval, for instance an observation series of ten years
on a daily basis, we will get a linear program with 6247530 variables and 3123752
constraints. Here we have used the assumption that a year has 250 stock exchange days.
Thus the problem size grows incredibly fast with the number of observations. Also, we
know that the number of observations used in the analysis should be substantially larger
than the number of stocks under consideration in order to get a fair representation of the
efficient set independent of whether the mean-Gini or the mean-variance approach is used.

Before we proceed, we state the dual to the reformulated linear programming model of the
mean-Gini portfolio problem. The dual program is[5]:

[Sa] max f.lV+W

subjectto:

T T
[5b] ~~(rit - riq)Vjq+ f.ljV+ W sO i E 1,2, ... ,n.

[Se]
[Sd]
[Se]

-1 sy. s 1jq

Vil!: O

Wfree.

j = 1,2, ... ,n. q>j

The problem above consists of n constraints and T(T-l) constraints of upper and lower
bound type. The number of variables is T(T -l)/2 + 2. However, we could convert this
problem into a problem with only upper bounded variables. This reformulated dual can be
stated as[6]:

[6a] max ji(V+ - V-) + (w+ - W)

subjectto:

T T
'\" ~ (rit - riq)Stq+ Jli(v+ - V-) + (w+ - W-) S
t1q>t

[6b]
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[6c] Os Stq s 2 tE 1,2,...,T and q > t.

[6d] Stq tE 1,2,...,T. and q> t.
[6e] V+, V-, W+, W-;?! O

Above we defined V as v: - V- and W as w+ - W-. The problem has n constraints and
T(T -1 )/2 constraints of upper and lower bound type. The number of variables is T(T -1 )/2
+ 2. The portfolio weights will in this formulation be the dual prices of [6b]. The
reformulated dual also has a perfect structure for the iterative reclustering and aggregation
method to be presented in the next section. Hence this is the problem formulation of the

mean-Gini portfolio problem that we will use in the remaining part of this chapter.

6.3. Aggregation in Linear Programming with Iterative Reelustering.

The concept of aggregation and disaggregation has been used in many scientific disciplines.
An excellent survey by Rogers et. al (1991) on the use of aggregation techniques and
methods in optimization has recently been published. One of the most predominant reasons
for using aggregation/disaggregation techniques in optimization is the computational aspect.
Even though the fast development of computers has enabled increasingly larger models to
be solved, size limitations still exist and it might be more practical to solve optimization

problems by using aggregation techniques. This is especially true for the computation of
the mean-Gini efficient frontier where the number of variables can be very large. We will
summarize the relevant elements of aggregation theory as applied to large, and possibly
intractable original problems. We consider the standard linear program [7].:

[7a] max ex

subjectto:

[7b] ax s b
[7c] X;?! O

Above e and x are n-vectors and an is a mxn matrix. Here x are the primal decision
variables and u is the vector of dual variables. We use lower case letters for original or

disagreggated parameters and variables, whereas upper case letters are used for aggregated
parameters and variables.

Rogers et. al. (1991) emphasize that little research has been conducted on how to apply

cluster analysis to linear programs. One of the exceptions is the work by Taylor (1983)
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and Shetty and Taylor (1987) who examine several aspects of clustering. In a resent paper
Aboudi, Jørnsten and Leisten (1996) present a method where the level of aggregation
expressed by the number of clusters is constant throughout. The main feature of their
method is that the clusters of variables or constraints change during the iterative procedure.
This procedure will be summarized after the general notation for aggregation for general
linear programming.

The main steps in most iterative schemes for clusteringldisclustering variables in linear
programming focus on the iterative change of aggregation weights within given clusters of

aggregation. The methods are mainly based on the fact that there exist a set of optimal
variable weights g~ for every cluster k with the property that the aggregate problem
generated with these weights will yield the optimal solution to the original problem when
disagregated. The main problem is that in order to generate g~ for all clusters k, we need to
know the optimal solution (x*,u*) of the original problem. This solution is, ofcourse, not
known in advance. The cluster notation is similar to that of Rogers et. al. (1991)[8]:

[8a] Sk = The set of the indices of variables in cluster k, k=I,2, ... ,K.
K

[8b] s, n Sk' = ø for k;ll!k", USk = N: = { 1,2, .... ,n}
k=l

[8c] nk = ISk I,where nk is the number of variables in cluster k.

[Sd] gk = [gj l, non negative nk - vector whose elements sum up to unity, indicating the

variable weights gj of the (disaggregated) variables in cluster k.

[8e] g = [gk l=l gj l, non negative n-vector, indicating the weights of all variables ck =

[8g] ek= ~gk, the aggregate objective function coefficient of the variables in cluster k.

[8h] e = [ek l, the vector of coefficients of the aggregate objective function.

[8i] a:; = [a;_j]j El,2.",n., the jth column of the disaggregated matrix a.

[8j] ak = [ a:; l,j E Sk' the disaggregate columns belonging to cluster k.

[8k] Ak = akgk, the aggregate column belonging to cluster k.
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[81] A = [Ak] the aggregate coefficient matrix.

[8m] xk=[Xj], j E Sk' the disaggregate variables belonging to cluster k.

[8n] Xk = the decision variable for cluster k.

We have used a makron for sets, variables and weights to indicate if a reclustering is done

such that Sk I and Sk I denote sets before and after reclustering respectively.

The column aggregated problem is[9]:

[9a] Max ex

subjectto:

[9b] AX s b
[9c] X ;æ: O

Once the aggregated linear program is solved, the solution to the original problem can be
obtained either by fixed weight disaggregation where Xj= gjX; where x; is the solution to
the aggregate problem. In the case when only columns have been aggregated this yields a
feasible solution. Hence a lower bound on the optimal objective function value is obtained.

On the other hand, in order to derive a better lower bound, optimal disagregation is used.
See Zipkin (1977) and Liesegang (1980).

Here it is necessary to solve K smaller linear programs, one for each cluster of
variables[ 10]:

subject to:

[lOb] akxk sAkX;

[lOe] xk ;æ: O

Note that Zipkin (1980), Mendelsohn (1980) and Taylor (1987) provide upper bounds, a
posterori error bounds, for the column aggregated linear programs. Aboudi, Jørnsten and
Leisten (1993) have introduced an iterative reclustering algorithm for large linear programs
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where all the variables have upper bounds. This general method can be applied very
successfully to the problem of computing the mean-Gini optimal portfolio as every variable
in the formulation has an upper bound. The motivation for this method arises from the
theory of linear programming. Consider the problem[ 11]:

[lIa] max ex

subjectto:

[lIb] ax:s; b
[lIe] O:s;x:s;w

Above e, b and a are defined as usual, w is an n-vector of upper bounds, x is the vector of
primal variables and u is the vector of dual variables. From linear programming theory, we
know that there exists an optimal solution x* where at most m variables are not at the lower
or upper bounds. Hence, if we aggregate the large scale linear programming problem into

m+2 clusters in which m clusters consist of a single variable, the m+ 1"st cluster contains
the variable with value O in the optimal solution and the m+2nd cluster contains all variables
that are at their upper bound. In addition, we know that at the optimal solution the
variables in clusters 1,2, .... ,m. have reduced costs zero, whereas the reduced costs of the
lower bound variables are nonpositive and the reduced costs of the upper bounds are
nonnegative. We assume that the variables are renumbered so that the basic variables in the
optimal solution are the first m variables so Sk= {kl k=I,2, ... ,m. We assume that m+ l
and m+2 contain the zero variables and upper and lower bound variables respectively. It is
easy to derive weights for each of the variables so that the aggregate and the original
problem have the same optimal solution.

Since typically the optimal solution is not known in advance, the procedure that was
investigated improves the quantity of the aggregated solution iteratively by changing the
assignment of variables to different clusters. The summary of the procedure follows as by
Aboudi, Jørnsten and Leisten (1996). Further details, examples and computational reports
are given in Aboudi, Jørnsten and Leisten (1996).

l. Initialization:
Set iteration counter I to zero. Generate m+2 approximately equal-sized clusters by
assigning every variable to one cluster, e.g. by using their index or their objective function
coefficient. Weight every variable within its cluster, e.g. by equal weights gJl+1) = 11nk or
by their relative upper bound variable:
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2. Construction and solution of the aggregate problem:

Suppose that we are in iteration l. Aggregate the problems (the variables) as described
above and solve this problem. The primal and dual solution is (X*(I),U*(I».

3. Disaggregation.

Disaggregate the aggregate solution in each cluster k. The primal and dual solution of
subproblem k is named ( xf(l), u~(I»

Here we can choose between fixed weight or optimal disaggregation. If some stopping
criterion is fulfilled stop. Otherwise go to 4.

4. Reclustering.
Either omit reclustering, i.e. use a fixed cluster assignment of variables (then go to 5.) or

recluster the variables according to the disaggregate primal and dual variable values Xj and

Cj - U*~, as follows:

4. l. Choose those variables for the "upper bound cluster" whose reduced cost indicates
an increase (i.e. they are> O) and whose primal values are only a certain percentage given
by fl away from their upper bound.

4.2. Do the same for the "lower Bound Cluster" with variables with negative reduced

costs and with primal values only a maximum percentage fl away from the lower bound.

4.3. If fewer than m are unassigned yet, withdraw those with the largest distance from the
relevant bound from the extreme clusters to get (at least) m nonassigned variables.

4.4. Cluster all remaining variables into m equal-sized clusters relative to their reduced
cost values. (The clusters should be chosen in a way that in no cluster should variables
with positive and negative reduced cost appear. So the remaining variables should be
separated into those with negative and those with positive reduced cost.)

4.5. Weight transformation:
We now have to assign weights to the variables within their clusters in the next

iteration.We williook at a transformation that only considers reclustering of one variable
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between two clusters. The procedure can be used iteratively to recluster more than one
variable. If we require that a disaggregation using the new weights will give us the same
objective function value (althoug not optimal), and the same disaggregated variable
solutions as using the old weights, we are assured that the new optimal solution obtained
by solving the new aggregated problem has a nondecreasing objective function value from
iteration to iteration.

We consider only reclustering between two sets given by Ski and Sk2. The other sets
remain unchanged. As defined above, the disaggregated solution within set k is obtained
by setting Xj= gjXk• We have to find a new weighting g such that the solution found by
fixed disaggregation using these new weights is the same as using the old disaggregation
weights. For the clusters this condition can be stated as:

For the clusters Sk 1 and Sb the conditions are:

In using a transformation which satisfies [I2],[13] and [I4] the problem is still feasible and
the objective function value is unchanged but not neccesarily optimal. We now describe the
conditions for the one variable reclustering procedure in more detail. For the two clusters

Sk 1 and Sk 2 the following constraints have to be fulfilled:

For cluster Sk 1 [IS]:

[ISa]
[ISh]

[ISc]

For cluster Sk2 [I6]:
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The system given by [15] and [16] is nonlinear and consists of nk 1+ nk2 + 2 variables and
nk 1+ nk 2 + 2 constraints. A solution to this system of equations is provided in Aboudi

Jørnsten and Leisten (1993).

s. Weight updating:
Omit additional weight updating or use one weight-updating scheme. One could for
example update the weights by using the relative value of the disaggregated variables after a

possible reclustering. Hence the weights are[ 17]:

[17a]
x~
J for j E sit}

~ x~
flrt+1 J

[17b] if ~ xJ=Ojtst+1

6.4. Application of the Aggregation Procedure to the Mean-Gini Portfolio
Problem.

As can be seen from the reformulated dual in Section 6.2., the mean-Gini problem fits
perfectly into the iterative reclustering and aggregation framework. The problem is a large
scale linear programming problem with most of the variables having upper and lower
bounds. Also the number of variables is significantly greater than the number of
constraints.

We will first apply the aggregation procedure to a small sample with ten assets and thirty
time periods with financial observations. The sample contains the following observations:
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Security MeanRetum Gini"s mean difference

Sl 7.62% 3.385

S2 7.88% ~.531

S3 8.68% 3.630

S4 9.15% 3.803

S5 10.11% 4.406

S6 10.73% 4.596

S7 11.60% 5.002

S8 12.06% 5.546

S9 12.45% 5.926

SlO 12.80% 7.204

Table 6.1. Observations in sample.

It should be observed that given the unbounded variables V and W are placed in separate
clusters in the aggregation procedure, the optimal dual to the aggregated linear
programming problem yields a feasible solution to the original primal problem: hence a
feasible portfolio solution and a corresponding upper bound.

When we start the procedure we perform an initial clustering of the variables through
creating five equally-sized clusters according to the lexicographic order of the variables.
Also in the subsequent iterations we perform reclustering as described in Section 6.3. with
the exception that we always restrict the number of clusters to five: one cluster for the
variables at their upper bound and increasing, one for the variables at their lower bound and
decreasing, one cluster for the basic variables, two clusters for increasing variables at their
upper bound, and finallyone cluster for the decreasing variables not at their lower bound.
The variables V and W do not take part in the aggregation procedure, but are left as they are
in the original problem. We also use fixed weight disaggregation and we calculate bounds
in every iteration. The results are very promising, since by solving a number of problems
with seven variables and ten constraints we were able to obtain a very good approximation

of the Mean-Gini efficient set by solving very few small linear programs. The table and
figures below give the results in compact form:
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It. Error Bound (Real) Error
Av. Max. Mean Av. Max. Mean

Quadr. Quadr.
Dev. Dev.

2 11.60 % 28.85 % 58.97 2.09 % 6.16 % 2.98
5 2.10 % 6.69 % 4.15 0.51 % 2.51 % 0.52

10 0.70 % 3.28 % 0.78 0.14 % 1.02 % 0.04
15 0.44 % 2.70 % 0.46 0.09 % 1.02 % 0.04
20 0.31 % 2.07 % 0.29 0.07 % 1.02 % 0.04

Table 6.2. Iterations and Error Bound.

Above is a table describing some of the numerical results from using the iterative
reclustering aggregation algorithm on the 10 asset problem. A sufficient low error bound is

obtained after 20 iterations.

Gini's
Mean

Difference
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6.5
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5.5
5

4.5
4
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Fig. 6.1. Generated ex post efficient frontier.
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Fig. 6.2. Error bounds.

Above we have plotted the efficient frontier in the ten asset example. We have also plotted
the error bounds for the frontier after some of the iterations.

We have also conducted experiments with an extracted financial data set taken from the
CRSP data base. This set has 300 stocks and 300 periods of observations. Below we
have plotted the stocks used in the analysis in the mean - mean-Gini difference diagram .
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O
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Fig. 6.3. Plot of the individual assets.
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This leads to a reformulated Mean-Gini dual problem with 44852 variables and 300
constraints. The constraint matrix is very dense with almost 13.5 million nonzero matrix
elements, thus representing a problem that is very difficult to tackle with standard linear
programming procedures. We considered ten different equidistant expected daily return
values ranging from the minimum value -0.00353 to the maximum value 0.015221 of the
data and performed 20 iterations of the iterative aggregation procedure. The aggregation
procedure was adapted as follows. For all ten test problems we start with a clustering of

the variables according to their initialordering and cluster into 46 equally sized clusters.
The V and W variables are kept out of the aggregation. During the first three iterations we
consider all 300 stocks, i.e. we solve Linear Programs of size 300*48. Reclustering is
done as described in Section 6.3. From iteration four on, we consider only the stocks that
have appeared in an optimal solution in at least one of iterations two and three. Clustering
is now done into almost 500 clusters. This is done in order to obtain an LP problem with
at most 15000 nonzero elements. Since this means that we have relaxed the original LP
problem from iteration four on, we need to check for feasibility. Ifwe detect infeasibility
for the original problem in two consecutive iterations, we solve the problem with all 300
stocks in the next iteration. The results are presented in the figure and tables below .
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Fig. 6.4. Ex post emcient frontier.
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Fig. 6.5. Error bounds.

The optimal portfolios were generated using 30 iterations as seen by the efficient frontier
and from the figure showing the error bounds for each iteration, the algorithm assures the
convergence to the optimal solution.

6.5. Conclusions.

In this chapter we have studied a variant of the portfolio selection problem where the risk
measure used is the Gini difference. As the formulation of the portfolio problem using this
risk measure results in a large scale linear programming problem, we present an iterative
aggregation and clustering algorithm to solve the problem. By first using a small sample
and then using a lager sample of historical observations from the US stock market, we have
illustrated the algorithm. The procedure seems to work well, as the optimal solution is
typically obtained after 20-30 iterations. Possible areas of future research include empirical
efficiency of the mean-Gini difference as compared to traditional measures of risk as
standard deviation.
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7. A Comparison Between Mean Variance, Mean Gini and
Mean Absolute Deviation Portfolios.

Abstract: This paper investigates the relationships between mean variance, mean-Gini and
mean absolute deviation portfolios. We present the three models and discuss their
relations. We also point out the differences in the models with respect to their use on

empirical data. Furthermore, we give a short summary of the history of the different
models. Finally, we illustrate the differences in the ex post efficient portfolio frontiers for
the three model concepts. The data used in the examples are from the Oslo Stock
Exchange.

7.1. Introduction.

One of the most well known models in finance is the Markowitz portfolio optimization
model, Markowitz (1952). This model is included in almost every textbook in finance,
and is also a natural part of elementary courses in finance. However, it is often pointed out
that the Markowitz model, in spite of its major influence on the development in the field,
has not been used extensively in practice. One of the reasons for this is the large
computitional burden involved with large quadratic programs. With the evolution of the
modem computers, the computitional difficulties are at present not a severe problem for
moderate size portfolio optimation models. It should be mentioned, as pointed out by
Konno(I991), that for very large scale portfolio optimation model with more than 1000
assets, the computational requirement for the traditional Markowitz approach is still high.
The reason for this computational difficulty is the density of the variance covariance matrix,
which is the main component in the quadratic program.

The revival of the classical Markowitz model was parti y a result of a paper by Markowitz
and Perold (1981). In this paper the authors demonstrated that a large scale mean variance
model can be solved by using a multifactor model, which has a spare matrix
representation. Hence the parametric optimation model that must be solved in order to
generate the efficient frontier can be efficiently handled by the use of sparse matrix
techniques.

Due to the computational problems with the mean variance model in the 1960s and '70s, a

number of attempts were made to approximate the quadratic function in the classical
Markowitz model using linearisation techniques. Over the years, several linearisation
techniques have been suggested. Most linearisation attempts have been constructed for
computational reasons. Linearisation models based on separable programming techniques,
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grid teqniques, succesive linearisation and matrix diagonalisation have been suggested.
Among the more important suggestions are the linearisation approximations suggested by
Sharpe(I967) and the linear programming model formulated by Stone (1973).

In parallel to the approximate models presented in the finance literature, are the suggestions
made by researchers in agricultural economics. The most popular model within risk

modelling in farm planning seems to be the MOTAD model, based on the alternative risk
measure absolute devation. This model was originally developed by Hazzel (1971) as an
approximation to the Markowitz mean variance model. In the literature on agricultural
economics, the MOTAD and Target MOTAD models have been extensively used, see for
instance Hazzel, Norton (1986). Also Thompson and Hazzel (1972) have made an
extensive comparison of the differences between the MOTAD and mean variance model
solutions. Furthermore there have been a number of articles in the agricultural economics
literature that have focused on whether or not quadratic programming models, arising from
risk models, should be approximated. The articles by McCarl and Tice (1982) and the
article by Mc Carl and Onal (1989) give a good overview of this subject. It is interesting to
observe that the suggestion made by McCarl and Tice (1982), that problems with more than
100 variables should be approximated, is loosened in the 1989 article by McCarl and Onal.
However, when analysing their results, McCarl and Onal agree with Konno that very large
scale quadratic programming problems are still computational difficult if they are dense.

In the finance literature, the mean absolute deviation aproach has not received the same
attention as in the agricultural economics literature. The exception is the paper by
Ang(197S). However, recently the topic has been the subject of a renewed interest, and it
seems that it has been rediscovered. The set article by Konno (1991) uses a mean absolute
devation model. It should also be noted that the focus in this article is completely different
from the focus in the MOTAD literature. Konno et. al. suggest that the mean absolute
deviation should be used as an alternative measure of risk, and hence the model developed
i" "'At tA ho " "" ., "nn ..Avi ......,t'A ... Af" tl. .. t .....ditional Markowitz mean variance model.au ....._ .......__ '-' ..,__ _u -t"'.t".I._,Æ~,&,&"''''''''''''''''''''' _ ......... _ ...a_ •

Te mention one of the features of the mean absolute deviation risk measure, we note that
the model is not based upon any probability distribution about the return. Furthermore,
the mean absolute deviation model uses the historical time series data "as it"; hence the
estimation procedure is obsolete. As pointed out by Hazzel and Thompson (1986), ''The
measure of income variance needed in quadratic programming is only a statistical estimate
of the true variance". As such, there is no reason why alternative estimates of variance
should not be used, particulary those that can be calculated from linear estimators. It is
also observed that the portfolio generated by using the mean absolute deviation model is
similar to the portfolios generated by using the traditional Markowitz model. Also, it has
been observed that the number of stocks in an efficient portfolio is smaller in the mean

-163-



7. A Comparison Between ....

absolute deviation approach than the number of stocks in an efficient portfolio generated by
the mean variance approach. This is of practical interest since its more difficult to manage a
portfolio consisting of several hundred assets, some of which should be held in very small
amounts. Also, the existence of transaction costs motivates an investor to hold few stocks
in a portfolio and in relatively large amounts.

The Mean-Gini approach to analyzing risky prospects and to constructing optimal
portfolios was introduced by Yitzaki (1982) as an alternative to the traditional Markowitz
mean variance analysis. The advantage of the mean-Gini approach is that it has the
simplicity of the mean variance model as it is an alternative two parameter model.
Furthermore, the mean-Gini approach also has the main features of stochastic dominance
efficiency. Hence the mean Gini difference can be shown to be more adequate than the

mean variance for evaluationg the variability of a prospect. The reason for this is that the
mean-Gini approach to analyzing risky investments and generating efficient portfolios
circumvents the problems inherent in the mean variance approach that are specific to the
choice of probability distributions. Yitzhaki (1982) showed that the use of mean and mean
Gini difference as summary statistics for a risky investement yields the derivation of
necessary conditions for stochastic dominance. Hence the use of the mean-Gini difference
as opposed to the variance enables an investor to discard from the efficient set portfolios of
projects which are considered inferior by all risk averse investors. Okunev (1988) and

Shalit and Yitzhaki (1989) have done comparative studies of mean-Gini and mean- variance
efficient portfolios. Both studies conclude that mean-Gini and mean-variance analyses
provides analogous portfolios for the data set used in the series. This leads Okunev to
suggest the use of the mean-variance model as an approximation of the mean-Gini model.
The reason for this suggestion is that the mean-Gini model requires a substantial amount of
extra computation as compared with the computational requirements for the traditional
mean-variance model. However, as stated by Yitzhaki and by Shalit and Yitzhaki, the
advantage of the mean-Gini over the variance as a measure of risk and dispersion are
substantional. The reason for this is that the mean-Gini method allows for the construction
of efficient portfolios that are in the set of stochastic dominant portfolios regardless of the
probability distribution of the returns. Also, as pointed out by Shalit and Yitzhaki, since
the Gini index is the expected absolute difference between two realizations of the prospects
outcomes it is an intuitive measure of investement risk. This means that the mean-Gini
approach would be preferable given that the efficient set of portfolios could be calculated in
an efficient way. In this chapter we point out the relations and differences in the various
models and present some experimental results. In Section 7.2. we give the mathematical

formulation of the three models. Section 7.3. contains the result of using the models on
data from the Oslo stock exchange.
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7.2. Mathematical formulation of the models.

In this section we present the mathematical formulation of the classical Markowitz model,
the mean absolute deviation model and the mean-Gini model.We start with the MV model.
Let there be N securities indexed by i, j = 1,2 ....N. Let ri be a random variable
representing the rate of return on security Sj. The variables Xj is the fraction of the total
amount of money invested in security i. Here the total amount invested is normalized to
one. The expected return for the investment made in a portfolio of the available assets is:

where E(e) is the expectation operator of a random variable. We denote the expected return

on asset i by !li. In the classical Markowitz approach the model is based on the following
assumptions.

i) The investor has a desire for high expected returns.
ii) The investor considers variability of returns to be undesirable, so the investor prefers
less variability to more. Variability is associated with risk and is measured by the variance
of the portfolio.
iii) The investor bases his portfolio decision on the principle of utility maximation.
iv) The investors follow the rules of rational behaviour.
v) All assets have strictly positive variance.

vi) Investors make decisions about investments in the assets at the begining of the period.
vii) The fraction invested in the assets can be any {x E Dl I xE[O, In.
viii) At least two assets have unequal expected return.
ix) The assets have finite expectation and variance.

The variance of return for the portfolio is:

Furthermore, let us denote the variance covariance matrix by V = I(Jij I.
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The classical Markowitz model without short sales can now be formulated as[3]:

[3a]
n n

min ~~x.o. .x,I IJ J
J= 1=

subjectto:

n

[3b] ~f.tiXj O?::f.t
J

n

[3c] ~Xj= 1
J

[3d] x·O?::OJ

This model has been much studied in the past and its mathematical properties have been
thoroughly investigated. See Huang and Litzenberger (1988) and the book by Markowitz
(1987) for details.

In order to be able to use the model we must have input data. As these parameters are
unknown, it is neccesary to obtain estimates for them. In practice these estimates are
obtained using time series or cross-sectional data of observed returns. If needed, these
estimated values can be adjusted based on other available subjective information. It should
also be observed that in order to be able to use the model, we must compute n(n+2)/2
constants 0ij. ij =1,2 ...n, from the historical or projected data. Since this matrix is dense,
it means consist of nonzeros almost everywhere, and the computational burden of solving
this large scale quadratic programs is substantial even when the fast development of
computer hard and software is taken into account.

As an alternative to the mean variance model the use of another measure of uncertainty has
been suggested, i.e. the mean absolute deviation. In the literature in agricultural economics
this was suggested by Hazzel (1971). Hazzels MOTAD model became very popular in
agricultural economics as an approximation to expected value - variance analysis. The main
reason for the popularity of the MOTAD model is that it leads to a linear program. Even
large size models could be solved with the mean absolute value as a risk measure in
portfolio models as early as twenty years ago. Also LP-codes were very easily available
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for standard use. Recently, the mean absolute deviation model has undergone a revival in
finance through the studies by Konno. Konno's motivation for using the mean-absolute
deviation as the measure of uncertainity is also based on the fact that it leads to a linear
program instead of a quadratic program (Konno 1991). This also means, as pointed out by
Konno, that integer constraints associated with real transaction costs can easily be
incorporated in the model without making the model unsolvable. The MOT AD
formulation presented by Hazzel is as follows[4]:

T

[4a] min ~ z: + zt

subject to:

[4b]
n

~(rit - fj)Xj - z: + zt = O

[4c]

[4d]

[4e]

Alsosince:

T T

[5] ~z:= ~zt

we have the alternative formulation[6]:
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T

[6a] min ~ zt

subjectto:

n

[6b] ~ (rit - fti)Xj + zt C!::O

[6e] xiC!::O i = 1,2,....n. zt C!::O t = 1,2,....T.

Konno uses a third formulation of the mean absolute deviation model which is[7]:

T

[7a] min ~Yt

subjectto:
n

[7b] Yt- ~Xi(ricri)C!::O tE 1,2, T.

n

[7c] Yt + ~ xi(riCfti) C!::O tEl ,2, T.

n

[7e] ~Xi = 1
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In the two first models it is easily seen that if a feasible solution exists, there is an optimal
solution with at most T+2 of the variables with positive values. We also notice that if we
square the variables zt in the objective function of [6] and allow zt to take negative
values, [6] is converted to the sample mean variance model. In this model, one obtains the
sample variance by dividing the optimal objective function value by T - 1. Also by looking
carefully at the sample mean variance model and the mean absolute devation model it
becomes clear that the model structure is the same, and it is thus not remarkable that the
solution is of the same structure. Konno (1991) performed a comparative study of the
mean variance and the mean-absolute devation model using data from the Tokyo Stock
Exchange. One of the results was that the mean absolute deviation model and the mean
variance model generated similar portfolios.

We now tum our attention to the Mean-Gini model. In this model we assume that the risk
measure representing the preferences to the investor is the Mean-Gini difference. For
discrete observations the Gini mean difference is:

Above, T is the total number of time periods in the sample. The estimator above represents
the average of the absolute differences between all the possible pairs of random variables.

In order to construct the Mean-Gini efficient frontier, without short sales, we need to solve
the following programming problem [9] parametrically in the return.

subjectto:
n

[9b] Yt = ~ritXi tE 1,2, ... ,T.

n

[9d] ~Xi = 1
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Xi, Yt~ O i E I,2, ... ,n. tE I,2, ... ,T.

Here xi are the nonnegative weights for the alternative prospects. The return of a portfolio
with weights x, of the asset in period t is given by the equation [9b], where rit is the return
on asset i in period t. Hence the objective function in the mathematical programming
problem is the discrete version of the mean-Gini difference given above. The average or

mean return for the prospect i is given by fli and is calculated from the observed values rit.

It is easy to observe that this mathematical programming problem can be reformulated as a
linear programming problem by introducing auxiliary variables, ?_j+k and zjk' by
representing:

Hence the reformulated mathematical programming problem is[lI]:

T T
[Ila] min ~ '\" ~(zjq + zjq)

T &fq>t

subjectto:

n

[Ilb] ~Xi(rit - riq) - zjq+ zjq = O tE I,2, ... ,T and q> t.
l = l

n

[lIe] ~XiP,i ~ il

n

[lId] ~Xi= 1
-

[lIe] xi' ~, ztq ~ O

The linear programming problem above has T(T-I) + n variables and T(T-1)/2 +2
constraints. Thus for a problem in which the number of observations T is large this is a

very large scale linear program. For instance, for the German DAX index including 30
stocks the problem to be solved parametrically would contain 2682 variables and 1328
constraints, given weekly observations for one year. However, if we use a longer time
horizon and a finer observation interval, for instance an observation series of ten years on a
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daily basis, we will get a linear program with 6247530 variables and 3123752 constraints.
Here we have used the assumption that a year has 250 stock exchange days. Thus the
problem size grows incredibly fast with the number of observations. Also, we know that
the number of observations used in the analysis should be substantially larger than the
number of stocks under consideration to get a fair representation of the efficient set,
independent of whether the mean-Gini or the mean variance approach is used.

Before we proceed, we state the dual to the reformulated linear programming model of the
mean-Gini portfolio problem. The dual program is[l2]:

[I2a] max f,lV+W

subjectto:

T T
[12b) ~~ (rit - riq)Vjq+ I'iV +W" O iE 1.2 •...•0.

[I2c]
[I2d]
[I2e]

-I ~ V ~ 1Jq

V~O
Wfree.

j = 1,2, ... ,n. q>j

The problem above consists of n constraints and T(T-I) constraints of upper and lower

bound type. The number of variables is T(T-I)/2 + 2. However, we could convert this
problem into a problem with only upper bounded variables. This reformulated dual can be
stated as[l3]:

subjectto:

[I3b]
T T
'\" ~ (rit - riq)l;tq+ fli(v+ - V-) + (W -W-) ~
6!q>t

1,2 .. ,n.

[13c] O~ l;tq ~ 2 tE 1,2,... ,T and q> t.

[l3d] l;tq tE 1,2, ... ,T. and q > t.
[13e] V+, V-,W, W- ~ O

Above we defined Vas v: - V- and W as W -W-. The problem has n constraints and
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T(T -1)/2 constraints of upper and lower bound type. The number of variables is T(T -1)/2
+ 2. The portfolio weights will, in this formulation, be the dual prices of [l3b]. The
reformulated dual also has a perfect structure for the iterative reclustering and aggregation
method. For this problem a column generation strategy can be successful. For a
description of this procedure, we refer to Aboudi, Jørnsten and Leisten (1996). The
reformulated dual also has a perfect structure for the iterative reclustering and aggregation
method described earlier in this dissertation. Hence this is the problem formulation of the
Mean-Gini portfolio problem that we will use in the remaining part of this chapter.

7.3. Some empirical results from the three alternative models.

In our study we use 21 stocks listed on the Oslo Stoek Exchange. The data ranges
from the period of 1 Jan. 1987 to 31 Des. 1992, the same dataset described earlier in the
thesis. Selection of the stocks was based upon several criteria. First, we avoided stocks
with low liquidity, such that stocks traded infewerthan 150 trading days during a year on
average were excluded from the set. Second, the stock had to be a member of the trading
list over the whole period. Ifmergers had taken place, we allowed for this by adjusting the
new stock with the switch ratio offered to the old stockholders in the two companies. For
sectors with special events like the bank and insurance sector, we have the bank and
insurance index instead. All return series were adjusted for splits, emissions and dividends
to preserve the true return of each asset The data was taken from the database Amadeus at
the Norwegian School of Economics and Business Administration.

-- Mean AbL »ev.
-MV
-)(- Mean Gini

(; 7 8 9

Studarddev.

10 11 Il

Fig. 7.1. Ex post portfolio frontiers.

Above, we have a graph with the results from the three models. We have computed the
standard deviation for all portfolios, and plotted the generated portfolios into the mean
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standard deviation diagram. As shown by the graph, it seems that the difference between
the different models is most apparent between the mean absolute deviation model and the
mean variance model. The mean Gini model and the mean variance model seem to generate
similar portfolios as measured by the risk measure standard deviation. We will now look at
the quality differences between the models.

As a measure of quality differences between two portfolios, PI and P2' we use the measure:

[14]

where:

xf l = Weight of asset i in portfolio Pl.
Xf2=Weight of asset i in portfolio P2.

Below is a graph showing the qualitative differences between the portfolios.

The Modell - Qualitative Difremaces
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Fig. 7.2. Quality differences.

It seems that the quality difference between the models decreases as a function of the risk
level, although in the case with the mean absolute deviation model versus the mean variance
model, the quality difference is for many values of the expected return above 20%. The
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difference between mean-Gini and mean-variance is smaller, whereas the difference
between the mean absolute deviation and the mean Gini is typically in the range from 10-20
%. The fact that mean-Gini and mean-variance portfolios are similar seems to be in line
with the observations of Okunev (1988) and Shalit and Yitzhaki (1989).

7.4. Conclusions.

In this paper we have given an overview of the history of mean absolute deviation
optimation model and discussed similarities and differences between this model and the
traditional model. Furthermore, we have had a look at the direct MV model and discussed
the relations between this model and the traditional MV model. We have also presented the
Mean Gini model. Further, we have discussed advantages and disadvantages of the
models under different assumptions about the underlying distribution, and finally we have
presented some empirical results of the models using data from the Oslo Stock Exchange.
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8. A Least Element Interpretation of a Forward Backward
Recursive Finite Difference Based Algorithm for the

Pricing of American Derivatives.

Abstract: This chapter studies numerical solution techniques that are used in the pricing
of American derivatives. The pricing problem for certain American options could, by finite
difference discretization, be shown to result in, for each time step, a linear complimentary
problem. By using results provided by Mangasarian (1978), this problem could be
converted to a ordinary linear program. For one particular case, when the explicit finite
differences are used, we give a simple evaluation formula for the solution to the problem.
In cases where the approximation method is the Crank-Nicholson, implicit finite
differences, or more generally the a-method, we present the simple Forward Backward
Recursive algorithm (FBR) for the problem. Similar algorithms have been presented for
the traditional American put option problem by Brennan and Schwartz (1977). One of the
advantages of this algorithm is that it provides a relatively fast means of solving free
boundary problems, even in the case one have involving the implicit finite difference
approximation. Finally, we discuss the efficiency of the algorithm as compared to the
PSOR (Projective Succesive Over Relaxation) and linear programming algorithms.

8.1. Introduction.

This paper concerns solution procedures to discrete versions of the free boundary problem.
In finance, one particular application of the problem is in the pricing of American
derivatives. It can be shown that by applying a set of transformations, the pricing of
American derivatives could be reduced to a problem to be discussed below.

Ifwe let u(x;t') and gfx.t) be two functions of the variables x and "t, and ifwe let ufx.t) be
twice differentiable, the problem under investigation is to find a function u(x,"t) that
satisfies the following equations[l]:

[la]

[lb] u(x,"t) - g(x,"t) C!:: O

[l c] (
dU d2u)d"t - dx2 (utx.r) - g(x,"t) = O
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We term the problem above the continious complimentarity problem (CCP). This problem
is typically extended by a set of boundary conditions which could, as in the case with an
American put option, have the form:

I I
-(Cl + l)x -(Cl - l)x

[ld] u(x,O) = max(e2 - e2 , O)

[le] lim u(x,"t) = O
x .....oo

In [ld] cl is a constant. Other American options that could be reduced to the form above
include lookback options (continious sampling), barrier options (where boundary
conditions are handled by the method of images), cash or nothing options and calls with
dividends. For further details, see Wilmott, Dewynne and Howison (1993).

Finite difference methods are well known as a solution technique to the partial differential
equation that arises in derivative pricing. The explicit finite difference method is easily
implemented. The implicit finite difference method, on the other hand, is somewhat
trickier, but in the literature the method is implemented on American options using an
iterative algorithm such as the PSOR or by "equationfeasibilitytesting", as in the case of
Brennan and Schwartz (1977). For further details see Wilmott, Dewynne and Howison
(1993). One advantage of the implicit difference method as compared to the explicit finite
difference method is that the explicit finite difference method has limitations, since the
number of mesh points allowed along the x dimension is limited as related to the number of
mesh points along the "t-axis. Thus, the need for algorithms applicable on implicit
formulations of the problem above is present.

In som recent papers, Dempster and Hutton (1995a, 1995b) present a linear programming-
based algorithm for the pricing of American derivatives. The key idea in their articles is to
convert an abstract ordered complementarity problem to an abstract linear program. This
conversion is based upon the work of Cryer and Dempster (1980). Furthermore, the
abstract linear program is discretisized, and they use linear programming techniques to
solve it. Our approach is somewhat different, but the answer is the same: we end up
solving a sequence of linear programs. These linear programs have a simpler structure than
those of Dempster and Hutton.and the reason for this difference is that the partial
differential equation used in Hutton and Dempster is not completely transformed to the heat

equation.

In this paper will we first discretisize problem [1], and by using the results of Mangasarian
(1978), we will show how the discretisized version of the complimentarity problem could
be solved by means of a sequence of linear programs. This derivation is based upon least
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elements theory. Further, we present a Forward, Backward Recursive algorithm (FBR)
which is applicable to the problem. The algorithm uses only one forward and one
backward iteration for each time step. In the case of explicit finite differences, the method
uses only one iteration. This is not surpricing since the explicit finite difference method is
easily implemented. See eg Hull (1993).

Another alternative approach to the valuation of American derivatives involves Lattice
methods, including bionominal methods. The implementation in this case is done by
formulating the problem as a dynamic programming problem and solving it using recursive
techniques. The bionominal method can also handle exotic options by introducing one or
more state variables. How this is done in particular varies between the different
derivatives. In a comparison of tree approaches versus finite difference methods, Geske
and Shastri (1985) conclude: "researchers computing a smaller number of option values
may prefer bionominal approximation, while practioners in the business of computing a
larger number of option values will generally find that finite difference methods are more
efficient". It is not our purpose to discuss the appropriateness of using finite difference
methods, but we recognize that finite difference approaches give option values versus
spotprices as output, which is not a facility directly inherit in the bionominal approach.
Further, if implicit finite differences or a related approximation is used, the user has the
freedom to select the number of meshpoints along the 't dimension independent of the
number of mesh points along the x dimension.

In Section 8.2 we discretisize the problem by using finite difference methods. The
discretization is general and includes both explicit, implicit, Crank-Nicolson and more
generally, the e finite difference method. In Section 8.3, we study linear complimentarity
problems and least elements, which in Section 8.4 are shown to be applicable to the
problem under investigation. In Section 8.5 we show the solution procedure for one
particular simple case (explicit finite differences) and in Section 8.6 we present a forward
backward recursive algorithm for the general case. In Section 8.7 we discuss the
efficiency of the algorithm, and in Section 8.8 we draw some conclusions and discuss
topics for future research. In this paper we use bold symbols for vectors. For matrices we
use uppercase letters, and the optimal solution to for example a linear program, is denoted
by an asterix. All other notation is explained as it occurs.
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8.2. Discretization of the problem.

In this section we present a discretized version of the complimentary problem above in the
(x.r) plane. The approximation technique is similar to that of Wilmott, Dewynne and
Howison (1993). We divide the horizontal axis into m mesh points with step size b-rand
we divide the vertical axis into ii+2 mesh points with step size bx. The upper and lower
bounds of x and L are set by defining the least value of x in which the function U(X,L) is
approximated as -kl bx and the largest value of x in which U(X,L) is approximated as k2bx.
A similar procedure is also done along the horizontal axis. The least value of L is o.
Further, the largest value of L is equal to mb-r. This means that we consider functional

values of U(X,L) for x E [-kl bx' k2bx] and LE [b-rm, O]. In total, there will be m x (ii+2)
mesh points and by definiton we have kl + k2 = ii+2. The mesh point (x,1:) is given by
(fibx,fub-r) for an appropriate selection of fi and m. The directional derivative of the first
term is approximated using:

[2] au u(fibx,(m+l)b-r) - u(fibx,mb-r)
-""OL bt

The second term is approximated using:

[3]

The selection of the parameter e is a matter of convenience, but values of e at O, 0.5 and 1
imply explicit finite differences, Crank-Nicolson finite differences and implicit finite
differences respectively.

The function g(x ,L) is approximated using:

We now define the variable v:f, as the approximated value of the function U(X,L) when
x=fibx and L = mb-r. Since fi could attain negative values, it could, for notational
convenience when discussing linear programs later on, be convenient to rescale the

A (E 1 2 - ) h th m+l m+l m+l m+l d F· allparametern to n, n " ... .n. sue at vI = vk2-I' v2 = vk2-2 an so on. III y,
vm+I = v~+I. Recall that vm+I and vm+I are given by the boundary conditions as is vD.-k 1+ Ink 2 -k 1 ' n
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The parameter fu could only attain positive values, but for notational equivalence we replace
fu by m. Using the expressions [2] and [3], the approximated version of the inequality [la]
multiplied by the positive parameter 6'(, gives us the inequality [5]:

[Sa] ~+I Cl: b~ nE 1,2, .... .ii., m E 1,2, ... .m.

where:

[Sb] ~ID+I= VID+I_ ae(vID+I _ 2vID+I+ VID+I)
11 n n+l n n-I nE 1,2, .... ,1i-1., m E 1,2, ... ,m.

[Sc] nE 1,2, .... ,1i-1., m E 1,2, ... ,m.

[Sd]

When we use the finite difference approach, the stability of the approximation is affected by
the choice of a. In the case where e < 0.5, a is restricted to lie in the interval:

[6] I
O< a:s 2(1 _2e)'

For a Cl: 0.5, there are no such restrictions. Note that at the boundaries, the approximated
value of u(x;t) is fixed, such that for any m> O,we have iiinequalities of the type [Sa]. At
m=() the value of u(x;t) is given by the boundary condition.

The complimentarity constraint [Ic] is approximated using:

[7] (a:+1 - b~)(v~+1 - g~+ I) = OnE 1,2, .... ,1i-1., m E 1,2, ... .m,

The boundary conditions require special attention but before we discuss that, it could be an
advantage to formulate the discretisized problem on a compact form. In order to do this
we have to define a set of vectors and matrices. At time step m, we define the iix 1vector
vm as:

[8] ~ =
v~
n

The vector [8] contains the approximated values of u(x;t) at 't=IIl6'(. Further, we define the
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fix l vector gm as the approximated values of g(x;t) at 1:=mb., thus:

[9] gm =

g~

g~

Finally, we define bm as the nx l vector:

b~
[lO] bm =

b~n

The elements of bm are defined as in [5c], except for ~ and b~, which have to be
adjusted to cope with any predefined boundary conditions in the problem. This means that

we have to insert the functional values of g(x,1:)at the boundaries and rearrange [5a] so that
b~ and b~ contain all determined values at the current step in the procedure. Such a
procedure results in[ll]:

[l Ia] ~ = v~ + a(l-e)(g~+l - 2v~ + v~_l) + aeg~::
[llb] b~ = v~ + a(l-e)(gW - 2v~ + v~) + aegW+l

Note that this modification removes the terms vgt+l and v~:: from the equations for ~+l

and a~::. We can now formulate the approximated version as a complimentarity problem
as follows[l2]:

[l2a] (CVU+1 - bm) &!: O
[l2b] (VU+1 _ gm+l) &!: O

[l2c] (CVU+1 _ bm)(VU+1 _~+1) = O.

In [l2], C is the tridiagonal matrix:

1+2ae -ae O O
-ae 1+2ae -ae

[l3] C= O -ae O
l+2ae -ae

O O -ae 1+2ae
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We note that C is an iixii matrix and bm, gm+1and VU+1are vectors of dimension iix 1.

The problem is solved recursively starting at 't=()-r' moving backwards to 't = m()-r'in order
to obtain a solution to [1].

We have now arrived at the discrete linear complimentarity formulation of the free
boundary problem. Since the problem above is a linear complimentarity problem, we will
have a closer look at such problems and least elements.

8.3. Linear complementarity problems and least elements.

In this section we discuss problems of the type shown in[14]:

[14a] Mz + q C!:O

[14b] zT(Mz + q) = O
[14c] zC!:O

Above, M is an iixii matrix, z is the iix 1 solution vector and q is an iixl vector of
constants. To keep the notation the same throughout the paper, we use n as the index for
the variables in the problem above. We assume that the solution to the problem in [14] is
unique.

We now tum our attention to possible solution procedures for the system in [14]. In order
to do so, we have to understand some concepts related to least element theory. We will
first define the term meet semi sublattice,

Definition 1:For a given set sEmil, we define the vectors x, yES with elements xn
and Yo and d = min(x,y) with elements dj. If'rl x,y E S - dES then S is a meet semi
sublattice.

Definition 2: A symetric matrix M is said to belong to the class Z if all off diagonal
elements ofM are nonpositive. (There are no restrictions on the diagonal elements.)
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With these two definitions in mind we have the following proposition:

Proposition 1:

If S = {z :Mz + q C!!:O, z C!!:O} and M E Z, then S is a meet semi sublattice.

Proof:

Letx,y ES, where S is the set defined in the theorem above. Since x C!!:Oand y C!!:O, d =
min(x,y)C!!:O. Let hn be the n "th element of the vector Md + q. We can then, without loss
of generality, set xn = dn for an arbitrary n. Then:

[15] hn = mnnxn + ~mnjdj C!!:(q +MX)n C!!:O
l"J

This inequality holds since all offdiagonal elements of M are nonpositive. Conversely, if

we let Yn= dn for an arbitrary n, then:

[16] hi = ffionYn+ ~ffiojdj C!!:(q +MY)n C!!:O
l"J

This means for any x,y ES - d =min(x,y) ES. This completes the proof.
D

We can now define the concept of a least element.

Definition 3: If S is a meet semi sublattice and there exists a vector u E S such that for
any vector xES x C!!:o, then o is termed the least element of S.

The relation x C!!:u here means that each element of the vector x is greater than or equal to
the corresponding element in u.

We are now able to state the following theorem provided by Mangasarian (1978):

Theorem 1:

If S = {z : Mz + q C!!:O, z C!!:O} and M E Z, then the solution to problem [14] could be
found by solving the linear programming problem [17]:
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subjectto:

[17b] Mæ s- q æ O
[17c] z ~ O

Where p is any vector satisfying p > O.

Proof:

We note that the solution to [17] is the least element of S given by u, since any other
feasible solution, such as x ~ u implies pTx ~ pTu.The vector u is feasible since Mx + q

is a meet semi sublattice. If (Mu + q)n > O, and n is arbitrary, un has to be O. If not, we
could decrease Un(and improve the objective function value) until (Mu + q)n = O or un =
O. This operation would not affect the feasibility of the other variables. The latter follows
since M is a Z-matrix. Since the solution of [17] clearly satisfies restriction [l4a] and

since (Mu + q)nUn = O, u must satisfy [14].
O

The implication of'Mangasarians theorem, is that certain linear complimentarity problems
could be solved by means of linear programming. We utilize this approach in what
follows.

8.4. The linear complimentary formulation of the free boundary problem
and linear programming.

In Section 8.3. we performed a discretization of the free boundary problem and arrived at a
linear complimentarity formulation. The linear complimentary formulation was, as shown
in [18]:

[l8a] (CVO+1 - bm) ~ O

[18b] (VO+1 _gm+l) ~ O
[l8c] (CVO+1 _ bm)(VO+1 - gm+l) = O.

We are now able to state the following theorem:
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Theorem 2:

The linear complimentary problem [18] may be solved by the linear programming problem
in [19]:

subjectto:

[l9b] cm+1 - qn+l :il:O

[l9c] m+1 i?! O

where:

P:il:O

[l9d] m+1 = yn+l _ gm+l

[lge] qn+l = bm_Cgm+1 •

Proof:

Problem [18] could, by using [I9d] and [1ge], be converted to the linear complimentarity
problem below [20]:

[20a] Dm+1 - qn+l :il: O

[20b] (Dm+1 - qn+l)m+1 i?! O
[2Oc] m+1:il: O

Since D E Z, it follows from Mangasarian ' s theorem, shown in Section 8.4 that [20] is
solvable by linear programming. After we have solved [20] by linear programming, the
solution to system [18] could be obtained by the relations in [20]. The interpretation of the
optimal solution m+1* is that the elements of m+1* are equal to zero if early excersise is

optimal.

o
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8.5. Solution procedure for O = O.

It is now necessary to discuss whether the reformulations of the problem outlined in the
previous sections could be solved by any effective custom made algorithm, or whether they
must be solved by traditional algorithms.

Utilizing relations [19d] and [1ge], the linearprogramming problem in [19] could be
reformulated as [21]:

[21a] min pTyn+l

subjectto:

[21b] Cyn+l C!!: bm
[21c] yn+l C!!: gm+l

Let us now evaluate this program for 0=0. As this means that the method used is the
explicit finite difference, it is no surprise that the solution has a simple structure. When O =
0, we have the following theorem:

Theorem 3:

If 0= 0, the solution to the linear program in [21] is given by:

where Ois a vector consisting of zeros everywhere.

Proof:

If we set O= 0, then problem [21] becomes[23]:

[23a] min pTyn+l

subjectto:
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[23b] yn+l <1! bm

[23c] yn+l <1! gm+l

[23d] yn +1<1! O

This problem has the trivial solution given by [22].

D

Typically, in many applications gm+l <1! O. If this is so, then restriction [23d] is

redundant. In the case where 6 ;lO! O, the solution to the problem may not be obtained so
easily; thus we have to study the problem in [19] in more detail.

8.6. Solution procedures 6 ;lO! O.

In this section, will discuss solution procedures for the problem when 0< 6 s 1. We recall

that when 6 = 0.5 and 6 = 1, the approximations done are the Crank-Nicholson and the
implicit finite differences, respectively. For an arbitrary selection of 6 in the range 0<6 <
1, the approximation method is generally termed the 6 method. For convenience, we list
the problem under investigation where we have put qn+l on the right-hand side of the
constraint equations in problem[24]:

subjectto:

[24b] crn+1 <1! qn+l

[24c] rn+ 1 <1! O

As mentioned earlier, yn+l could be obtained by the relation in [19d]. The vector qn+l

is given by [1ge]. The elements of the vector qn +1are denoted by:

[25] ~+l nE 1,2, ... ,ii.

In order to obtain a usable algorithm which may be applied to the problem, we have to have
a closer look at some results. In the following we will denote the optimal solution of

* •
problem [24], for any particular value of m, by rn+1 • This vector has elements z:+l .
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Proposition 2[26]:

Proof[27]:

Since constraint j is given by :

[27a] -aSZ:~1 + (1 + 2aS)~+1 - aS~:l :ii!:: q~+1 , q~+1 >0 and m+1* :ii!:: O,

the solution zj+l " has to be positive for the to be feasible. By inspection we can also see

this if n= 1 or ii.

o

Proposition 3[28]:

If:

[28a]
• •...m+1>O and qm+l >_...m+l aSLn n+l Ln ,

then the solution:

[28b] ~:l·= O

is infeasible. This also holds if:

Proof:

If:

[28d] ~:l = O

then constraint j+ 1 becomes:
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Thus, constraintj+ 1 is violated. By inspection, we also see that if:

[28f] ...m+I* >Oand qm+I> _...m+la8Ln n-I Ln '

then constraint j-l is violated.

o

Theorem 4 [29]:

*If there exists any feasible solution with ~+ l = O then ~+ l = O.

Proof:

Suppose ~+I =Ois a feasible solution to the problem. Let ~+I > Oand let Pn be the n "th
element of p. In addition, let the other elements of p be 1. By Mangasarian ' s result, the

optimal solution for the problem should not change for any value of Pn E (0,00). If we set

Pn at a sufficiently large number, we could improve the solution by letting z: = O.

o
*In the light ofthe theorem above we must try for a solution with ~+I = O, as long as this

does not mean that the solution is infeasible. Thus, if we could construct an efficient

procedure that simultaneously checks for feasibility and solves the equations in the basis of
the optimal solution, we would end up with the optimal solution.

An efficient way of doing this is by using a modified Upper-Lower decomposition
algorithm for the linear system. The procedure should simultaneously be able to detect
which of the variables that in the optimal basis. In what follows we present a modified
algorithm based upon LU tridiagonal decomposition.

Before presenting the algorithm, it would be helpful to have a brief introduction to the LU
method of solving matrix equations. Assume for simplicity that we know the optimal basis
for the problem. We let the index set I denote the optimal basis. From standar linear
programming theory, we know that the optimal solution is the solution to the linear system:

If we let Cl = LU, where L is a lower tridiagonal matrix and U is an upper tridiagonal
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matrix, with L and V of the same dimension as Cl' we could make the substitution:

[31] Ly = 'b:
[32] Y =VzI

The matrices L and V are given by:

1 O O O

Al 1 O

[33] L= O 1..2 O

1 O
O O A * 1o

!-lI WI O O

O !-l2 w2

[34] V= O O O

!-lo*-1 W *o

O O O !-lo·

The variables wo' !-lo and 1..0 ( nEI ,2, ...n*) are intermediate variables in the algorithm.
The constant n* is the maximal value of n, given that z:+ 1 is a member of the optimal basis.
The interpretation of n* is described in more detail in the description of the algorithm
below.

Thus, we can solve system [31] by forward substitution and system [32] by backward
substitution. The solution of the linear equations is done in a simple and efficient manner.

The key idea of the algorithm is to solve [31] forward by selection, using as the initial basis
all equations where q~+ 1> o. As we know from the proposition earlier in this section q~+ 1

> O - z:+l * > O. We can further check for feasibility on the equations where q~+l < o.
This feasibility check requires knowledge of z:-ll * given that all remainding variables (n
and above) are nonbasic in the optimal solution. Conveniently, the LV algorithm gives this
value immediately.

The equations in the LP [24] are satisfied with equality for n = 1,2, ... ,n*. In economic
terms this simply means that the option has a positive value when there is positive time left
to expiry, even if the payoff from the derivative, if exercised immediately, is zero.
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The algorithm works on problems where we know the structure of the optimal solution in
advance. The solution should have the following property[3S]:

For n E 1,2, .... ii, exist an n* in which:

[3Sa]
[3Sb]

~+I>O

~+I =0

*nE 1,2, ...n -1.
* * -n En, n + 1,... ,no

If the problem has the following structure:

[3Sc]
[3Sd]

*nE 1,2, ...n -1.
* * -nE n , n + 1,... ,n.

the problem could easily be converted to a problem with the solution structure given by
[3Sa] and [3Sb] by renumeration of the variables as ii = 1, n-1=2, ..,1=n.

For the derivatives discussed earlier one should construct the problem such that vT+I is
such that gT+I = o. Thus, by increasing n one moves towards the region in which early
exercise is optimal.

Solution structures of the type above are common in financial applications. For example,
when applied to American put option pricing, z:tI' + g ~+I is the (approximated and
transformed) value of the option price at which exercize is optimal for values including and
below, and not optimal for values above.

The procedure to be outlined in detail below, will only use one iteration and one backward
substitution, which, compared with the projective succesive overrelaxation algorithm
(PSOR), for example, is a improvement in efficiency. The algorithm below assumes that
qT+I is positive. The procedure can be modified to capture more complex structures for
qm+l.

The procedure for each time step is as follows[36]:

Step 1.

Initialisation.

[36a] ~I = 1+2a8
[36b] Pl = qI
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[36c] n= 1.

The parameter Pn ' (n E 1,2, ... ,n*) is an intermediate computing variable in the algorithm.

Step 2.1

Increase n by 1:

If g~+ l < 0, goto 2.2.

[36d] If -as Pn-I S> qn' go to tep 3.
!-ln-I

Check forfeasibility:

Note that:

[36e]
Pn-I

!-ln-I

is the optimal value of z:.~l,given that z:.~l is the last variable that enters the basis. Thus,
test [36d] checks whether :z:+l could be set at zero. If so, it should be set at zero, and the
search stops.

Step 2.2

Compute:

[36f]
(aS)2

!-ln = 1+2aS - --
!-ln-I

[36g]
as

Pn = qn + ~Pn-I
r-n-I

Repeat step 2.
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Step 3

[36h] *n =n

Solution given by:

[36i] m+l * *zn = OnE n ,.... , n.

~tl' _ Pn-l
"'Il l -- ~n-I

[36j]

[36k]
*I* (Pn + a6Zn+l)

z:+ = n E n*-2, .... ,1. (Backward substitution.)
~n

o

The algorithm needs to be explained in more detail. In Step 1, we initialize the parameters
~l and Pl. In Step 2, which is the main part of the algorithm, we check whether z:+1
should be in the basis. This is done by criterion [36d]. As long as the criterion is not

fullfilled, we are not allowed to set z::l at zero. We then have to do the feasibility check
once more on variable z::i and so on. Recall that this check is not neccesary for values of
x in which the approximated value of g(x,"t) = O. When [36d] is fullfilled, we know that

Z::l could be set to zero, which is optimal according to the theorem above, and the
algorithm goes to Step 3. In Step 3 we just assign the optimal values to -en + l by backward
substitution for the basic variables and set the nonbasic variables to zero. Finally, we
compute the values ofytI+l = m+I + s'"" and start again on the next time step. Note also

that we can reformulate the procedure starting by the variables ~, which apriori will be
equal to zero. In that case we start with the equation:

insert the value ~+ I = O, and move backwards until the corresponding equation is not
fullfilled, and assigne n+ 1= n*. The remaining equations are solved by the LValgorithm.
This approach utilizes Theorem 4 and is similar to the method of Brennan and Schwartz
(1977) in the American put option problem case.
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8.7.Discussion of algorithmic efficiency.

We have now presented the algorithm and it is necessary to discuss what kind of efficiency
improvement one should expect when using the algorithm. T discussion implies an
evaluation of the algorithm's performance as compared to its alternatives. How such a
comparison in practice should be done is an open question. Implementation of algorithms
typically means making a computer program of two different algorithms and comparing the
time used to solve the problem under investigation by each. However, this assumes that
both algorithms are programmed in an efficient manner, which may not always be the case.
Another measure is the number of iterations used before the optimal solution is reached. In
the case with the FBR algorithm, this is known in advance and is one forward and one
backward iteration for each time step, independent of the type of derivative, time step, and
parameters of the derivative and underlying asset. Hutton and Dempster (1995) perform
comparative studies of the PSOR and the LP formulations of the problem for two types of
American derivatives; namely, the ordinary American Put and an American lookback put.
They used the Crank-Nicholson aproximation method. For the American put, the reported
number of iterations was in the range from 13-17 for a sparse grid (ii = 75) and from 554-
831 iterations for a very fine grid (ri = 9600). However, when using the PSOR algorithm,
the user must specify a relaxation parameter in the range of (1,2) and the selection of the
value for this parameter is also a subject on it's own. For the LP variant, which was
implemented using "hot-starts" from the previous iterations, the number of iterations
reported was smaller and ranged from 0-3 iterations for the sparce grid and from 36-468
iterations for the fine grid. In their study, Dempster and Hutton (1995) used 1000 time
steps, which means that the computed value of x at the free boundary could be very close to
the boundary computed for the previous time step. In that case, the number of iterations in
a "hot-started" simplex procedure would be very low, especially if the number of mesh
points along the state variable is small. In the case of the American lookback put option
they did not report the number of iterations, but the computer time used. The time used
was higher than for the ordinary put options, such that, preassumably, the number of
iterations was higher. The algorithm presented in this paper also allows for incorporation
of subjective information which may be used in "hot-start" variants. Suppose that we have
apriori information about the free boundary, i.e. that the free boundary is a decreasing
function of "t. The algorithm can utilize this by excluding the feasibility test for values
known to be far from the boundary.

The algorithm presented in this paper gives accurate answers to the complimentarity
problem that arises in the pricing of American options when utilizing explicit or implicit (or
any combination) finite difference methods. The accuracy of the discretization itself is a
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separate subject, but since the algorithm presented is relatively efficient, the accuracy of the
finite difference approximation can be adjusted by simply selecting enough mesh points in
the grid. The "amount of work", as measured by number of iterations, is linear in the
number of time steps and constant (2) along the state variable dimension.

8.8. Conclusions.

In this paper, we have studied a solution procedure that is applicable to the pricing of
American options. We started by discretiing a complimentarity problem which was shown
to have some crucialleast element properties. Next, we showed how the problem could be
solved by means of a sequence of linear programs. We then presented the trivial solution
for the explicit finite difference case, and further we presented a forward Backward
recursive algorithm which may be used in approximations such as the implicit finite
differences, Chrank-Nicholson and, in more general, the 8 method. Finally, we discussed
the advantage of the method as compared to the LP formulation and the PSOR algorithm.
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Data 1987-92
AKE DNL DYN EIJ( lINA KVI NHY ORK SAG SMD TOM uro BEA BON NAL STO VAR WWI BANK FORSIK NS[

870130 -4.27 0.71 7.21 5.07 9.86 7.08 -2.21 0.76 -0.92 0.02 -2.17 5.10 -H9 [H4 26.83 13.06 0.26 -0.82 1.02 3.46 6.57

870227 -0.89 [1.94 17.54 -2.14 8.91 -0.83 10.36 5.47 2.80 2.63 -9.71 -7.27 1.92 5.21 -7.69 3.41 4.30 -5.00 -1.38 0.32 -1.09

870331 3.60 2.70 5.22 4.92 9.35 2.78 10.36 10.51 1.82 -[.28 8.60 9.80 5.66 -0.90 -2.08 10.38 3.37 -3.95 -3.79 5.54 3.85

870430 10.43 ll.70 0.71 5.73 7.18 7.03 10.14 4.47 41.96 16.13 22.77 0.00 5.36 21.82 2.13 7.25 -3.99 27.40 5.93 6.38 11.11

870529 3.73 -9.69 8.92 4.43 5.49 6.89 9.81 -2.35 15.09 6.82 9.68 -8.93 22.71 -2.61 -4.17 3.61 1.85 ll.83 -4.23 0.28 9.38

870630 0.72 7.25 7.48 -3.77 6.27 5.06 4.96 2.99 12.02 9.87 -n.rs -3.92 3.j9 23.54 26.09 -3.SS 25.23 24.04 -3.87 -0.70 0.00

870731 5.71 3.24 13.92 22.06 27.18 3.90 13.95 ll.87 22.93 4.90 12.50 8.16 10.67 0.63 48.28 4.03 12.43 8.53 10.29 3.99 -3.57

870831 8.78 39.79 8.33 12.45 24.19 13.02 6.02 19.64 -0.40 30.84 5.19 13.21 -H2 2.48 -5.81 -0.78 -1.05 -10.00 7.23 10.83 6.48

870930 14.29 1.12 13.85 6.43 -1.79 16.99 -1.37 6.60 10.36 1.43 35.21 31.67 8.92 5.15 13.58 31.25 27.66 14.29 '9.90 6.37 28.70

871030 -29.89 -28.70 -22.52 -44.63 -35.54 -22.37 -27.58 -29.20 -13.36 -36.62 -1.04 -21.52 -21.64 -16.43 ".70 -26.79 -46.25 -32.64 -20.49 -18.85 -29.32

871130 -17.83 -17.92 -13.95 -39.39 -6.41 -13.55 -25.75 -12.50 -35.83 -13.33 -26.32 -22.58 -2.99 -17.24 -22.62 -18.70 -27.91 -25.77 -19.37 ·11.66 ·9.18

871231 -9.43 -17.30 -3.16 8.64 17.76 -0.58 4:18 -5.06 0.43 -3.42 ·1.91 0.00 4.09 -17.78 3.58 8.32 -4.30 ·1297 -7.55 -7.43 18.24

SS0129 4.17 -10.08 ".60 39.91 7.02 5.09 10.51 -6.70 18.97 zs.n 26.71 18.75 19.72 31.76 -13.85 20.01 34.27 21.29 -10.57 -12.92 -24.33

880229 5.00 12.77 -2.29 13.82 5.22 5.71 12.18 8.06 -2.72 13.68 -6.90 22.81 6.79 15.38 -6.90 -1.92 ll.30 7.89 4.ll 10.46 5.SS

SS0331 -0.24 -13.31 13.09 34.54 7.59 10.07 10.93 22.53 6.28 1.85 0.46 4.29 ro.u -1.84 -1.39 12.73 ·18.42 -4.57 0.49 13.89 11.11

880429 -4.53 -6.42 2.25 -5.05 6.58 -4.85 8.67 1.59 3.55 -2.73 10.60 6.85 4.99 ".32 8.92 11.32 3.23 4.79 -3.15 -7.48 -9.00

SS0531 -9.62 3.26 -2.35 6.33 14.08 -2.76 -4.SS -4.82 ".12 -7.08 -5.56 -2.56 14.34 -6.75 3.45 7.68 -12.50 -2.44 -7.37 -18.62 -us

880630 0.00 16.10 9.42 12.34 5.71 3.59 1H1 16.00 -u.se 0.00 9.41 17.ll 4.95 7.20 3.33 5.96 2.04 25.00 1.00 -4.01 5.50

880729 -2.33 1.21 9.93 13.64 -3.42 6.06 2.55 3.45 7.50 4.08 16.13 10.ll 9.09 0.75 17.74 3.31 16.50 14.00 -1.26 -0.23 2.17

880831 -9.52 4.00 -9.64 -6.10 ".77 -11.02 -7.22 -13.33 -19.77 -7.84 -6.02 12.24 -8.49 -19.26 10.96 -3.85 18.03 -9.65 -7.75 -12.40 -4.26

880930 -6.58 2.31 -3.33 0.73 6.75 ll.24 3.65 9.34 6.52 -12.77 -2.46 6.36 7.93 13.76 2.47 2.00 7.64 -0.97 -3.60 -2.51 -4.44

SS1031 15.49 -5.26 3.45 20.00 22.32 3.09 -4.69 -0.75 0.68 4.SS 9.09 2.56 10.94 25.81 10.84 22.55 5.07 44.12 -6.35 -7.72 10.47

881130 15.85 3.17 8.00 -1.82 6.77 -4.00 4.43 11.39 25.00 0.00 -1.85 18.33 13.80 7.69 7.61 9.87 13.83 2.04 -3.52 1.68 0.00

SS1230 10.53 19.23 ll.ll 4.32 12.68 4.37 10.38 19.32 8.ll 9.30 -1.89 9.86 3.96 26.19 6.06 18.93 5.08 8.67 25.53 29.76 26.32

890131 -0.95 32.26 16.67 15.09 7.81 20.56 22.22 21.14 21.50 38.30 8.65 16.67 1.67 34.91 16.19 18.98 19.62 23.93 24.68 16.71 37.50

890228 23.08 6.34 -3.33 4.ll -n.es 0.66 4.20 -0.31 -2.06 12.31 -5.75 1.10 3.51 1.40 -8.20 8.06 2.70 5.94 6.86 0.42 21.21

890331 14.06 12.39 10.34 30.37 8.55 6.58 12.75 6.15 41.60 9.59 2.82 13.59 -2.04 8.28 1.79 6.67 13.79 14.49 14.04 10.89 -27.50

890428 10.96 -2.04 1.82 42.05 -0.80 8.64 5.51 6.98 -5.64 3.75 4.57 29.60 14.92 1.91 -2.63 0.71 6.54 -10.20 ll.32 17.07 12.41

890531 3.70 18.33 -6.82 -4.29 -13.50 1.91 -6.63 0.87 -12.82 3.52 4.80 -2.24 25.25 25.00 27.93 17.44 10.95 16.36 3.63 2.SS 4.80

890630 0.60 -3.65 -6.34 -14.20 1.77 1.02 3.70 -7.56 0.00 -4.93 1Q.42 6.87 2.26 0.50 -8.45 -0.91 6.25 -1.12 -8.91 -5.62 -13.69

890731 11.83 1H3 1.56 1.32 9.76 13.42 -10.71 10.61 17.65 6.67 4.91 17.14 4.10 16.92 3.85 13.15 -0.74 6.22 2.92 8.44 10.34

890831 19.05 10.06 0.51 -5.SS -1.90 -6.51 5.00 12.33 18.75 16.67 5.04 2.13 0.00 -7.23 -0.74 11.08 22.22 37.24 -3.58 12.96 11.SS

890929 11.56 -14.95 -2.04 -7.29 -6.80 3.48 -5.71 2.44 28.42 1.19 ll.30 9.25 -0.91 1S.6O 20.15 13.38 -11.52 -6.10 10.75 1.75 7.26

891031 -23.51 -19.80 -u.es -34.08 -3.82 -15.60 -5.39 -9.52 -15.57 -n.rs -13.85 -8.20 -0.61 -9.72 -13.66 -13.63 -26.03 -7.79 -22.89 -17.72 0.00

891130 -3.12 -2.13 4.71 5.68 -1.08 19.57 8.54 10.53 -0.97 6.67 12.86 11.31 8.00 18.68 2.16 -5.59 27.78 5.99 0.62 9.46 -5.18

891229 18.28 18.48 25.84 1.61 -1.46 12.12 9.51 12.14 26.47 3.75 -0.32 8.56 9.69 18.52 4.93 2.63 -8.70 6.31 5.54 8.48 6.75

900131 3.64 -5.32 19.64 13.76 22.22 20.54 6.29 7.43 18.60 2.41 8.57 7.39 0.00 3.12 5.37 -2.56 6.35 6.25 3.85 2.46 4.22

900228 3.95 -3.SS -6.72 6.05 -1.21 18.83 10.70 1.78 3.27 21.18 22.81 14.91 7.01 30.15 35.67 -7.89 22.76 8.82 7.73 15.65 ".09

900330 -3.80 2.82 -4.00 8.55 0.00 7.55 2.29 8.52 -0.63 0.00 -5.95 -2.59 6.19 9.66 9.39 14.29 -8.81 -1.35 -1.35 -7.21 -1.89

900430 -11.40 -9.41 1.21 -3.84 -1.84 -5.26 -3.71 -16.34 -7.64 -2.91 -6.33 14.60 -0.44 -6.58 -6.44 -14.78 -n.ss -5.21 -5.62 -0.83 -4.49

900531 13.25 3.90 27.59 20.51 8.01 15.04 8.18 19.29 n.rz 6.71 2.70 12.60 4.1S 8.55 4.54 4.12 2.63 5.20 1.31 14.69 8.78

900629 -iz.n -4.17 6.08 0.91 -0.29 -7.42 -5.85 -4.00 -4.40 4.25 2.63 -5.59 -11.50 -11.95 -4.93 -7.91 4.03 -14.54 1.17 -0.97 -2.52

900731 9.18 -5.22 7.64 13.69 0.00 HO 10.SS 8.33 23.03 11.31 2.56 -0.74 10.50 10.71 7.55 18.10 0.70 7.10 0.33 -2.78 13.55

900831 -12.62 -27.06 -9.17 -20.13 -4.09 -13.72 5.37 -u.sa 13.90 -4.07 -5.00 -24.63 -27.1S -29.03 -10.09 -22.08 -19.58 -23.80 -14.17 -u.u -17.61

900928 -19.79 -24.53 -14.01 -16.67 -14.63 -19.54 -0.22 -16.09 -2.35 -13.56 -6.37 -23.76 -13.04 -7.27 -20.98 -25.00 -18.26 -12.25 -18.11 -10.54 -10.34

901031 0.00 .n.ø -17.42 -29.52 1.07 -6.67 -9.78 1.04 -14.42 -1.96 -1.63 ll.O4 -12.14 -17.65 14.81 11.11 0.00 -s.u 1.52 8.35 -3.85

9Oll30 10.00 -14.15 -0.92 -8.78 0.71 12.76 -3.69 5.13 -9.55 -4.00 2.86 -3.51 2.44 -13.69 -3.23 12.00 -24.47 -21.57 -0.82 5.00 1.60

901231 -6.26 -9.34 4.63 -17.36 4.33 -7.22 -8.02 1.64 -8.49 5.87 9.01 1.61 -9.67 -s.n -u.ss -18.02 -16.44 -5.84 -17.93 -8.97 -1.05

910131 -0.43 -11.52 1.77 -4.09 -0.45 2.41 -9.91 -16.01 -17.19 -11.45 9.57 1.40 7.62 8.71 3.58 4.55 -9.82 1.56 -17.49 -10.82 0.27

910228 18.18 50.68 6.96 40.19 13.51 -5.11 12.65 5.71 22.13 22.22 13.95 9.41 11.02 21.62 S.SS 13.33 57.01 35.29 6.03 10.99 14.68

910329 -1.38 -6.40 0.00 10.00 5.06 -3.79 4.38 7.29 7.38 0.00 ll.22 7.52 0.55 3.89 0.00 22.06 0.59 14.49 5.62 1.90 3.ll



910410 -1.9S 11.70 -1.71 1.82 1.12 -10.76 -l.S4 2.S2 1.7S -4.SS 0.92 -1.00 -2.08 -8.SS 1.4S -2.41 -16.S7 -11.19 -1l.72 -6.20 12.7S

910S31 1.62 -S.70 9.40 -1.19 11.44 2!.S9 12.9S 1l.81 lo.sl 10.17 10.91 11.11 18.80 12.89 -8.89 2.47 -l.SS 1S.91 -IS.SS 0.10 -S.39

910628 -18.60 10.48 -4.69 -2.41 -3.48 S.17 -8.S4 -14.47 O.SS 6.96 0.00 1.18 -0.61 -S.71 S.42 0.90 7.1S -9.09 -H2 -S.82 -8.6S

910731 1.41 7.76 1.64 -aS8 9.28 8.67 -1.07 1.S4 8.74 -l.V -1.64 -10.S7 8.28 7.71 9.6S -2.09 2.74 10.4S -0.27 0.16 S.26

910810 2.82 8.00 -1.61 -6.41 8.02 0.41 S.19 -O.SI 0.00 S.88 -1.67 4.41 2.6S 9.49 2.07 ·S.49 16.67 1.6S -10.28 -0.47 -10.00

910910 -12.11 -S.89 1.28 -19.8S -2.84 -4.S1 -Hl -11.17 -1!.S6 -4.76 6.78 -1.71 -2.29 -9.60 -0.96 -12.90 -4.00 -1l.16 -V.74 ·HS -10.00

911011 -12.S0 -20.11 -1.97 -34.29 6.S2 0.22 -10.S7 -7.41 7.19 -4.17 -6.1S -H9 -1.17 -1.04 0.00 1.70 1.S7 -1.74 -17.19 -IS.18 -16.0S

911129 -16.96 -18.17 -23.SS -42.01 -S.49 -18.19 -21.21 -IHl -20.11 -17.19 -11.86 -18.1l -16.91 -IS.18 -11.29 -17.86 -27.01 -22.82 -10.99 -27.12 -23.S1

911231 22.94 S.41 21.44 Ull S.80 19.0S S.89 23.60 1.99 11.49 0.64 8.86 -10.97 6.28 S.OS -2.12 -17.89 -2.7S -10.48 20.12 23.91

920111 1.21 27.48 2.17 19.07 1l.08 0.62 6.42 0.40 1.V 8.S8 S.10 6.98 S.90 -4.16 S.OO 22.8S 34.V 4.77 lMl S.V 8.61

920228 -11.02 -7.91 -12.17 -4.72 -6.S1 -7.80 -6.48 -11.76 -10.69 -2.17 0.00 -8.1S -IH1 -IS.IS -S.49 -12.12 2.86 -1l.S8 -14.74 -S.61 -IS.24

920131 3.81 29.80 11.88 1HO -1.40 6.47 Il.S0 16.67 2.11 2.22 14.SS 12.41 -4.S0 -20.00 -1.16 -17.16 9.72 -17.14 S.73 7.0S 1S.71

920430 0.92 ·1.72 8.70 SO.OO ·202 -6.07 13.31 5.14 7.59 ..Q.S' -2.22 -10.53 Il-li 268 4.12 7.00 13.92 1207 S.ll 0.14 13.S9

920S29 7.S0 1l.60 1.7S -7.62 7.S6 4.47 2.32 1.80 2.27 -7.11 -1.S7 -!.S8 -7.20 -11.12 -1.9S 7.48 -4.44 9.23 7.42 4.66 -1.S4

920610 -11.S0 -11.18 -2.16 ·S.67 -10.10 -14.24 -12.18 -1.59 -12.74 -4.76 -1.70 -8.34 -16.44 -19.90 -7.06 -IUO -8.14 -21.11 -7.74 -20.32 -4.1S

920711 6.00 -9.76 -1.08 -IS.8S 4.19 -9.71 -S.16 -10.87 -6.S7 2.00 -30.77 -11.49 -s.æ -4.1S S.06 -2.94 -34.18 S.16 -0.14 -16.60 -16.16

920831 -26.42 -41.24 -1l.64 -47.40 -10.68 -18.3S -8.16 -28.92 -14.84 -16.67 -S.ll -16.01 -23.86 -19.48 -12.6S -27.27 -4S.19 -28.81 -21.94 -31.87 -10.41

920910 -lS.90 -9.S2 -1l.68 -12.1S -4.71 4.6S 3.70 10.29 4.S9 -11.76 -IS.IS -9.09 12.69 4.84 1.4S U9 17.S4 1.98 1.47 8.60 -17.19

921010 34.00 12.28 -2.44 -SS.63 S.12 7.41 -S.71 28.89 7.02 -IBl 10.71 14.00 17.22 11.8S 1Ul 6.8S 1.49 39.S1 2.11 12.82 7.SS

921110 20.90 4.69 0.00 0.32 1.08 -17.91 11.16 U8 11.48 1.08 -9.68 -7.89 S.08 -2.30 -2.1S S.1l -23.51 1Bl -8.62 1.87 7.89

921231 -S.79 -17.66 6.67 41.4S -1.41 26.12 1.17 12.91 -0.01 O.SO 1.18 1l.64 -1.44 -9.81 1.60 0.18 28.01 9.31 4.19 2.S2 1S.16

A_ 0.41S -0.021 I.S80 0.762 2.788 1.783 1.781 2.251 Ull 1.798 2.091 1.01S 1.980 2.187 2.717 2.177 1.104 2.281 -2.2SS -0.192 LOll
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