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Abstract

Financial diagnosis is when a subject makes a judgement of the financial situation of the firm
based upon information from the financial statement. This task is performed in several con-

texts, such as bankruptcy prediction, going concern judgement and loan decision contexts.

Three approaches to financial diagnosis are found in the literature; a judgement modelling, a

cognitive, and a predictive approach. A review of these approaches constitutes a task analysis
of financial diagnosis. A somewhat surprising finding in the review is that even though sev-

eral of the approaches apply a classification conception of the financial diagnosis task, cogni-
tive classification theory has not been used to any extent to explain subjects' diagnostic be-
haviour while performing financial diagnosis. This is very different from other diagnostic
tasks, which have been extensively studied from a cognitive classification perspective. From
this finding, we conclude that cognitive classification theory can be used to increase our un-
derstanding of the financial diagnosis task in general and of the role of less investigated con-

cepts in cognitive accounting, such as pattern recognition, pattern matching and prototypes.

To provide the basis for applying a cognitive classification perspective on the financial diag-

nosis task, a presentation of definitional, prototype and exemplar theory of classification is
given. Both prototype and exemplar theories have recently been implemented in connectionist

models, and these models are considered among "the leading candidates" in contemporary
classification theory. Based upon the task analysis of the financial diagnosis task, a connec-
tionist classification model is selected and applied to the task. The backprop~gation model of
Rumelhart, Hinton and Williams (1986) is considered to have the ability to develop internal

representations functional in performing complex classification tasks, such as financial diag-
nosis. From the model, three propositions are made. The first proposition, Pl, states that con-
nectionist models of financial diagnosis should show better fit than benchmarks of linear
models. The second proposition, P2, states that the improved fit could primarily be explained
by the ability of the connectionist models to build internal representations, and the third
proposition, P3, states that these internal representations should have cognitive relevance.

To evaluate these propositions, a financial diagnosis experiment is reported. 108 subjects par-
ticipated in the diagnosis of 75 randomly selected small and medium sized firms. Full finan-
cial statements and selected ratios of two consecutive years were used as stimulus material,

and several measures of diagnostic response were collected. The treatment plan resulted in
324 diagnoses of the 75 firms, averaging 4.32 diagnoses per firm. To create the stimulus-re-

sponse pairs representing learning and test samples of the connectionist model, bothsimple
and composite judge measures of the subjects' diagnoses are designed.



xv

A simulation design is developed that accommodates resampling methods and cross validated
measures to evaluate the performance of the connectionist model. Furthermore, several

benchmarks are developed using traditional methods of the judgement modelling approach to
financial diagnosis.

The propositions are evaluated using three simulations with varying stimulus and response
representations. The first simulation uses a stimulus representation consisting of 17 selected
financial ratios. Diagnostic response is measured by a bankruptcy classification variable. The
second simulation uses the same stimulus representation as the first, but diagnostic responses

are measured by composite judge assessments of level and trend diagnoses of the financial
situation. In the third simulation, the diagnostic response representations of the second simu-

lation are used, but sensitivity based measures are used to constrain the stimuli to six financial
ratios. Generally, model fit is improved from simulation one through simulation three.

Strong support is found for proposition Pl. The connectionist models show significantly bet-
ter fit than traditional benchmarks when evaluated by cross validated average squared error.
In particular, the model with constrained stimulus representations and composite judge diag-
noses shows favourable performance. For the connectionist models showing significantly
better fit than the benchmarks, tests are made to evaluate proposition P2. In these tests, signif-

icantly better fit is found for the connectionist models with hidden units than for the models
without hidden units. Because all simulation parameters are similar in the two model types, it

can be concluded that the difference in performance is explained by the internal representa-

tions of the hidden units. This finding support proposition P2. Evaluation of proposition P3 is
done by representational analysis. The representations builtby the hidden units of the con-

nectionist models were expected to consist of derived stimulus dimensions reflecting different
diagnostic areas, such as "profitability", "financing" or "liquidity". However, completely dif-
ferent and much more complex representations are built by the hidden units. A direct interpre-
tation of these units as representing concepts, variables or prototypes is difficult. However,

interpretation of the molar behaviour of the connectionist models is possible using both rule-

based and prototype-based terms. A rule-plus-exception interpretation is given of some of the
models, while other models are best described as computing similarity to prototypical firms,
such as the "bad, but promising" or the "good, but with alarming trend" firms.

Two implications from these results are particularly interesting. First, connectionism offers a
way to develop cognitive models of financial diagnosis that show good fit to behavioural
data. Second, connectionist models offer a way to unify judgement modelling and cognitive

approaches to financial diagnosis because cognitive models are developed with methods simi-
lar to those traditionally applied in judgement modelling studies.
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Chapter 1. Introduction

Understanding how analysts characterise and classify firms based upon information from the
financial statement is relevant in several task contexts, and is the main subject of this thesis.
Financial analysts may characterise a firm as a risky investment. Loan officers may decide to
reject a loan. An auditor may be reluctant to characterise the firm as a going concern, and a

rating agency may change the rating of the firm, all based upon the same information.

The term "financial diagnosis" was first introduced by Methlie (1987), as a general term to

describe these characterisations across task contexts. The term "diagnosis" gives strong

connotations to a medical diagnosis, and refers to the financial diagnosis as something more
than an ad hoc characterisation of the financial situation of the firm. These connotations can
lead to the assumption that firms may have "diseases" threatening their existence, and that the

identification of such potential "diseases" is possible by investigating the "manifestations" or

"symptoms" identifiable in the financial statement.

The outcome of a financial diagnosis has economic consequences for both the firm and the
analyst. A specific characterisation may lead to changes in financial costs, stock prices or
even future contracts for the firm, and may result in changes in income, costs and the
reputation of the analyst. Consequently, understanding the financial diagnosis task and the

"'"ay this is performed is of great relevance to management, accounting and finance.

1.J Perspective

There are several ways in which a task can be conceived (e.g. Mintzberg, Raisinghani &

Theoret, 1976; Simon, 1979). In addition to response time, the dimensionality and properties
nuli and responses are used to identify different types of tasks (Rouse, Hammer &

Lewis, 1989). Different aspects are focused depending on how the task is conceived. In a
recent introduction to cognitive science (Osherson & Smith, 1990), a taxonomy of thought

processes of progressively more complex forms is presented, with problem solving as the
most complex form. This taxonomy can be used to illustrate how different aspects of the
financial diagnosis task are focused with different task conceptions.

Considered as a problem solving task, the time duration from stimulus presentation to final
response is considerable, and it is assumed that several subtasks are performed by subgoaling
and intermediate solutions. Consequently, identification of the subgoals may be focused.
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A particular form of problem solving task conception is that the financial diagnosis takes the

form of a hypothesis testing process, in which the diagnostician formulates a hypothesis early
in the process and gathers information to test this hypothesis. With this task conception,
identification of the hypothesis and the efficiency of the hypothesis testing strategy may be
focused.

A task conception assuming a somewhat less complex form of thought is that the financial
diagnosis takes the form of a choice. In a choice task, the final decision depends upon a
preference function relating the decision to the perceived utility of the consequences of
different choice alternatives. With this task conception, estimation of preferences and ordering
of choices may be focused.

Considered as a prediction task, the diagnosis centres around the trends of financial items, and

the possible consequences a prolonged trend of the same form may have in the future.
Deviations of human diagnoses from forecasts of formal models may be focused with this

task conception.

Considered as a classification task, we may conceive financial diagnosis as mapping the N-

dimensional space of financial items onto meaningful classes of firms. The classes are clusters
of firms which have a diagnosis in common. This conception is closely related to a

categorisation of the presented stimulus. With this conception, the relevant classes and the
representations necessary to structure the classification may be focused.

Considered as a pattern recognition task, the stimulus is perceived as apattern similar to a
previously perceived pattern with an identified diagnosis. The present stimulus is given the
same diagnosis. With this approach, time duration from stimulus to response is short, and
focus may be on visual features relevant to recognition. Consequently, very little of the task is
open to cognitive investigation, and the task is treated as a perceptual task more than a

cognitive task.

From a cognitive perspective, financial diagnosis has often been treated as a problem solving
task. Medical diagnosis has been extensively investigated as a problem solving task (see
Elstein, Shulman & Sprafka, 1990), but approaches treating diagnosis as classification are
also found (Brooks, Norman & Allen, 1991). As an example of this conception, consider the

following definition by Kirkebøen (1993) :
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"He (the diagnostician) compares the patient's pattern of the symptoms with the
patterns usually associated with a given disease. For any disease there is a class of
patterns of symptoms. These classes are characterised as diagnoses. The
determination of a diagnosis for a particular patient is the fit of the observed pattern
of symptoms with the general pattern of symptoms for the disease. This way diagnosis
is equivalent to performing a classification What the clinician does when he gives
the patient a diagnosis, is to place the patient within a category of diseases"
(Kirkebøen, 1993, p. 167, translatedfrom Norwegian)

A similar view can be found in Chandrasekaran and Goel (1988):

"Medical problem solving thus may be organized first as classifying patients' symptoms
onto disease categories, i.e., diagnosis as classification, and then indexing the
therapeutic actions by the disease categories." (Chandrasekaran & Gael, 1988, p. 417)

This definition gave rise to the term "classificatory diagnosis" (Chandrasekaran and Goel,

1988) as a conception of diagnosis as classification. A similar conception of financial
diagnosis has been put forward by Methlie (1994):

Financial analysis is a form of diagnostic problem solving. To diagnose is the act or
process leading to detection of a fault or defect of the studied object (in medical
terminology: a disease) on the basis of observed symptoms. This process is clinical in
nature, which means that each case must be treated as unique. Diagnostic knowledge is
organised around classes of phenomena. When we have decided what class the
phenomena belongs to, we can treat the problems by using knowledge of the class'
attributes. The way class membership is found, is central to diagnostic problem solving.
(Methlie 1994, p. 336 (translatedfrom Norwegian))

The conception of diagnosis as classification does not necessarily imply that classification
takes the form of a simple mapping of stimulus to response. When the classification is
complex or when the number of categories is large, it must be assumed that the classification
is performed using intermediate information processing steps and intermediate abstractions,

possibly by subclassifications between stimulus presentation and response (Chandrasekaran
& Goel, 1988). In addition, detecting relevant parts of the stimulus may be part of the
classification task, possibly performed by specialised feature detectors. We assume that
identification of relevant features in the stimulus and the use of intermediate abstractions are
important parts of the diagnostician's knowledge of financial diagnosis.
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Identification of the intermediate information processing steps and intermediate abstractions
in diagnosis receive different attention depending upon how the diagnosis task is conceived.
From a traditional information processing perspective, the task is conceived as a problem
solving task, and the intermediate information processing steps are often focused.
Consequently, what is done by the diagnostician is revealed with this perspective. From a
classification perspective, the intermediate abstractions necessary to perform the classification
will be focused. Consequently, the knowledge required of the diagnostician is focused in this
perspective.

1.2 Problem

Traditional studies of financial diagnosis take one of three approaches; a cognitive, a
judgement modelling, or a predictive approach. The cognitive approach traditionally focuses

on the information processing behaviour of the analyst. Based on the information processing
theory of cognition, interviews or protocols are recorded and analysed to model the cognitive

behaviour of the analyst. Studies with a descriptive cognitive orientation ( e.g. Anderson,
1988; Biggs, 1984; Bouwman, 1983; Bouwman, Frishkoff & Frishkoff, 1987) use the full

apparatus of models and methodology of traditional information processing theory (Newell &

Simon, 1972). Studies with an experimental cognitive orientation (e.g. Libby & Frederick,
1990; Trotman & Sng, 1989) use the information processing theory to formulate hypotheses
on, for example, information search, knowledge representation or experience effects, and use
an experimental design to test these hypotheses.

A judgement modelling I (Ashton, 1981; Libby, 1975) approach focuses on the stimulus-

response pairs of the analyst, and uses traditional linear models- to model the relationship
between quantitative accounting information and the classification response of the analyst.
This last approach is not necessarily intended to explain the "real" mode of information
processing used to form judgements (Ashton, 1981, p. 13), but a model of the stimulus to
response mapping is developed. The cognitive and the judgement modelling approaches are
in many ways extensions of the cognitive versus stimulus-response debate in psychology (see
Dennett, 1978).

In addition to these two behavioural traditions, financial diagnosis is studied as part of several
task contexts in accounting and finance, focusing on developing a model with a purely
predictive purpose (see Altman, Avery, Eisenbeis & Sinkey, 1981).

I Also referred to as the behavioural approach (e.g. Bedard, 1989)
2 Traditionally, linear discriminant analysis or linear regression analysis,
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When both an economic criterion variable and a human judgement of the variable exist, the

judgement modelling approach above and thepredictive approach can be combined in the
lens model of Brunswik (1952).

Even though the judgement modelling approach has several methodological advantages, the
underlying cognitive theory of analysts' information processing is underspecified. In most"
studies, weights of a linear model are the only "internal representation" required to explain
cognitive behaviour. The dominating theory for explaining such cognitive behaviour has for a
long time been the information processing theory of Newell and Simon (1972) and its more
knowledge intensive successors (e.g. Newell, 1990). However, the separation of cognition

from verbalisation (Ericsson & Simon, 1984; Nisbett & Wilson, 1978; Nisbett & Ross, 1980),

is one among several methodological problems in this theory. In addition to the
methodological criticisms, this theory has been met with general arguments raised by
researchers in philosophy (e.g. Dreyfus, 1972) and linguistics (e.g. Lakoff, 1987). In
cognitive science, what has been termed as an "anti rule movement" has proposed alternative

explanations for cognitive processing previously assumed only to be explainable by
information processing theory (see Smith, Langston & Nisbett, 1992).

In the applied field of cognitive and behavioural accounting there has been a growing need

for theories paying more attention to pattern recognition and pattern matching (e.g. Bedard &
Biggs, 1991; Bouwman et al., 1987), schematic organisation of memory (e.g. Choo &

Trotman, 1991), and analogical reasoning (e.g. Biggs, Messier & Hansen, 1987). Cognitive
theories focusing on these phenomena, such as classification theory, have received little
attention in cognitive and behavioural accounting. Even though the judgement modelling and
predictive approaches have treated the financial diagnosis task as a categorisation or
classification task, cognitive studies have been preoccupied with using the hypothesis testing

and problem solving approach offered by information processing theory. This may have been

due to the assumption that classification theories in cognitive psychology provide little room
for the use of intermediate representations and abstracted features in cognitive processing.

This may well have been right, but recent progress in the area has opened newavenues of
research.

Recently, a new collection of cognitive theories under the term "connectionism" ( see

Rumelhart & McClelland, 1986; Smolensky, 1988) has been explored in several areas. It
offers an orientation where the stimulus-response pairs of the subjects are in focus, but where
a cognitive model of the representations and processing necessary to map stimulus to
response is developed with connectionist methodology. In financial diagnosis, this mapping
takes the form of a classification. To simplify, connectionism uses methodological
instruments and principles similar to the judgement modelling approach to model cognitive
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representations and processes of the individual performing the task (Seidenberg, 1993). With

a possibility to develop cognitive models with methods free from many of the limitations of
information processing methodology, connectionism offers a way to unify theoretical
approaches in cognitive and behavioural accounting.

Several authors (e.g. Bedard & Biggs, 1991) have suggested that initial financial diagnosis
may be seen as a pattern recognition problem, in which the analyst forms an opinion based on
the recognition of patterns of cues in the financial statement. At the heart of pattern

recognition lies the idea of an organisation of memory that facilitates recognition by matching
represented to observed patterns (Rumelhart, Smolensky, McClelland & Hinton, 1986). In
exemplar theories, classification consists of a measurement of the similarity of new and
known preclassified patterns, and a classification based upon this similarity measure (Estes,
1994). Information processing theory has been criticised for its inability to explain similarity
based pattern recognition (Dreyfus & Dreyfus, 1987; Winograd & Flores, 1986) and
classification (Estes, 1994), and connectionist theory has been suggested as an alternative
(Smolensky, 1988).

In this study, we investigate the properties of connectionist classification models of financial
diagnosis. In particular, three questions are raised. First, what properties do connectionist
classification models have as models of financial diagnosis? Second, how do connectionist
models fit financial diagnostic behaviour when compared to traditional models, and third,
how does the capacity of some connectionist models to develop internal representations apply
to the financial diagnosis task?

1.3 Purpose

In this dissertation, two aims are of primary relevance. The first is to investigate how these
new theoretical perspectives in cognitive science can be applied to financial diagnosis to
increase our understanding of the task. The second aim is to investigate empirically how the
perspectives can be used and evaluated as models of financial diagnostic behaviour. The two

purposes need further elaboration.

Since classification theory has proven relevant in explaining human behaviour in other

diagnostic tasks, this study aims at investigating the relevance of a classification conception
of financial diagnosis. In particular, we are interested in investigating how the most recent
classification theory, connectionist theory, can contribute to behavioural and cognitive

explanation. Since connectionist models can develop cognitive models using judgement
modelling methodology, they may be suited to unify different approaches in cognitive
accounting applied to the financial diagnosis task. To provide a basis for the application of
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connectionist classification theory, the most important properties of the theory must be
explained and clarified.

Even though many of the theoretical conclusions in this study may be relevant to other
cognitive accounting tasks, our focus is on financial diagnosis. The financial diagnosis task
was chosen as a representative cognitive accounting task for four reasons. First, input to the

task is quantitative financial information, characteristic of many cognitive accounting tasks.

Second, the task is much investigated both from a behavioural and' a predictive perspective.

Third, financial diagnosis is a task of economic significance to firms and analysts. Fourth, the
task has been investigated in a previous research project at the Norwegian School of
Economics and Business Administration (Methlie, 1993, 1994), and our project is based upon

the knowledge generated in that project, and hopefully, adds further knowledge to it.

As our second aim, we wish to investigate empirically how connectionist classification
theory can be used to model financial diagnostic behaviour. Since connectionist modelling

still is in its youth, new methodological principles must be developed and adapted to fit this
application task. We intend to develop and adapt methodological principles that make
connectionist modelling practically applicable to cognitive accounting tasks. As a cognitive
accounting task investigated to a considerable extent, financial diagnosis research provides

benchmark models making comparisons of connectionist models with traditional models
possible. By using such benchmarks, we suggest that despite the exploratory nature of
connectionist modelling, formulation of models and evaluation of derived propositions are
possible'.

In addition to evaluating connectionist models' fit to financial diagnostic behaviour, we wish
to investigate if connectionist models' internal representations offer an additional source of
information for model evaluation. Analysis of connectionist models' representations may

offer a new way to link empirical models and theoretical principles not possible within
previous approaches to financial diagnosis.

1.4 Organisation of the dissertation

The remaining parts of this dissertation is organised as follows. Part II consists of three
chapters. In chapter 2, a task analysis of the financial diagnosis task is performed by
reviewing relevant research within each of the judgement modelling, the cognitive and the

predictive approaches to financial diagnosis. Within each approach, research on different task

!These are methodological principles traditionally applied to research in the "context of justification".
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contexts of financial diagnosis is reviewed. Based upon this task analysis, a classification

conception of the financial diagnosis task is chosen.

In chapter 3, relevant cognitive theory is introduced. To provide the necessary theoretical
basis for applying a classification conception of the financial diagnosis task, the definitional,
prototype and exemplar theories of cognitive classification are introduced in section 3.1. In
addition, some examples of cognitive classification models are given. Among the most recent
cognitive classification models are the connectionist models of classification. These models
have several desirable properties as models of financial diagnosis, such as the ability to

develop internal representations. However, connectionist models are relatively new, and

consequently, an in-depth presentation of their theoretical basis is considered necessary. This
presentation is given in section 3.2. Section 3.2 ends with a review of the most well-known

connectionist models of classification and a discussion of their relevance as models of

financial diagnosis.

In chapter 4, the task analysis of chapter 2 and the theoretical basis given in chapter 3 is used
to propose a connectionist model offinancial diagnosis. Furthermore, three propositions that

can be evaluated empirically are made.

In part III, the method used to evaluate the propositions of chapter 4 is presented in two
chapters. An empirical evaluation of our connectionist model requires two operations. First, a
set of valid stimulus-response pairs must be provided. Second, a set of simulations must be
designed where the connectionist model "learns" to map the stimulus to response. In chapter

5, the experimental research design used to provide the stimulus-response pairs of financial
diagnoses is presented. In chapter 6, the methodological aspects of the simulation design
used in this study are reported.

Different operationalisations of the stimulus-response pairs representing valid financial
diagnosis are applied. In part IV, the results of three simulations using our connectionist

model of financial diagnosis and three different stimulus-response operationalisations are

reported.

In chapter 7, an operationalisation corresponding to a bankruptcy classification context of the

financial diagnosis task is used. In chapter 8 and 9, composite judge operationalisations of
financial diagnoses are simulated using two different stimulus operationalisations. For each of
the three simulations, the three propositions of chapter 4 are evaluated in reports of model
performance and by representational analyses. At the end of each chapter, main conclusions

. resulting from the model simulations are summarised.



11

In part V, the main conclusions of this study are discussed. Factors limiting the validity of our

conclusions are discussed, and improvements are suggested. Many of these improvements
gives suggestions for further research on the application of connectionist theory and models
to financial diagnosis.
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PART II· THEORY
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Chapter 2. Financial diagnosis theory

As referred to in chapter l, part I of this dissertation introduces and reviews two areas of

research. Relevant theory and empirical research on the financial diagnosis task are reviewed
in this chapter. To understand financial diagnosis as a classification task, cognitive

classification theory is introduced. Alternative theories of classification are introduced in
chapter 3, and both general connectionist and connectionist classification theories are

presented. Due to the novelty of our connectionist classification perspective on the financial

diagnosis, these theories are given an in-depth presentation. In chapter 4, selected research of
the two areas are merged into a connectionist model of financial diagnosis.

This chapter reviews selected studies of relevance to financial diagnosis, and shows how
financial diagnosis can be defined as a task that is largely similar across task contexts. We
summarise the main findings on the task as viewed from three perspectives; ajudgmental, a
cognitive, and a predictive perspective. This chapter does not intend to summarise or review

the vast literature of experimental and descriptive cognitive accounting research. This has

previously been done with focus on comprehensive review (Ashton, 1982; Libby, 1981), on

special research questions or disciplines (Bedard & Chi, 1993; Bonner & Pennington, 1991;
Ho & Rodgers, 1993), on particular research methodology (Klersey & Mock, 1989; Rodgers,
1991b), on unifying perspectives (Peters, 1993) or with intentions to suggest fruitful research

directions for the future (Gibbins & Jamal, 1993; Libby & Luft, 1993).

Individual's
judgement

Cue utilization
coefficients
(rsi)

Cues (Xi)

Figure 2.1 Lens model of Brunswik (1952)(From Ashton, 198~).

The lens model (Brunswik, 1952; see Ashton, 1982) can be used to illustrate different
theoretical approaches to the study of financial diagnosisl , Figure 2.1 shows the two parts of

l And similar financial judgement and accounting judgement situations
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the lens model. The cues, termed XI,X2, ... .X« , are used to predict either an individual
judgement, termed Y" or a criterion variable, termed Ye. Different types of cues can be used,
but traditionally, the cues are collected from the financial statement of a firm. An example of
a judgement variable may be subjects' individual judgements of a firm being bankrupt. An

example of a criterion variable may be a variable representing whether the firm is bankrupt or
not. The lens model illustrates the two models that can be developed using the same cues.If

the model is used to predict judgements, in principle, a cognitive model is developed. If the
model is used to predict the criterion variable, in principle, an economic model is developed.
In the original lens model, the criterion variable is used to evaluate the accuracy of
individuals' judgements and the predictive accuracy of both models. The original lens model

uses the same kind of model to predict both judgements and criterion variables. The standard
model is a linear weighting model equivalent to what is found in traditional regression or
discriminant models. Weights in the model of the criterion variable are termed cue validity
coefficients ( re;), and weights in the model of the judgement variable are termed cue
utilisation coefficients (rs;).

The lens model can be used as a framework for introducing the three approaches to financial
diagnosis found in the literature. A judgement modelling approach traditionally uses all

aspects of the lens model in its development of both a model of the individuals' judgement
and a model of the criterion variable. Next, evaluations of both models' and subjects' accuracy

are performed.

Cognitive approaches focus on the right hand side of the lens model. In an experimental
cognitive approach, the researcher formulates hypotheses on variables of relevance to the
judgmental process, and tests these. In a descriptive cognitive approach, the researcher uses

information processing theory and methodology to describe the information processing
necessary to perform the judgement of the right hand side of the lens model. Traditionally, no

evaluations of the predictive accuracy of judgements and models are performed.

In a predictive approach, the researcher concentrates on modelling the left hand side of the
lens model without reference to cognitive theory, but purely based upon an economic theory
of the process leading to the event measured by the criterion variable.

To illustrate the three perspectives, the prediction of bankruptcy is representative. An analyst

may evaluate whether a company is likely to go bankrupt or not, and this judgement can be
modelled at the right hand side of the lens model. However, it is easy to confirm whether the
company actually went bankrupt, and this event may be predicted using the same indicators

as in the model of the judgement. The first of these models is a model of the judgement
process, and the second is a model of the economic pro~ess leading to bankruptcy. However,
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the explicitness in the literature regarding whether the first model is a model of the judgement

process or not varies:

"These, like all models, are abstractions and do not purport to represent "real"
mental processes" (Libby, 1981, p. 22).

In principle, an economic theory should underlie the economic modelon the left hand side of
the lens model, and a cognitive theory should underlie the cognitive model of the right hand
side. Whether a cognitive theory underlies the model of the individual judgement, varies with

tradition, discipline and task context. To conclude, the right hand side of the lens model has
been modelled with cognitive theory, with economic theory, or with a combination of both as

basis. The left hand side is always modelled with an economic theory as basis.

A second aspect illustrated by the lens model is the view that a financial diagnosis task is a

mapping of cues to judgmental variables. Traditionally the task is performed by mapping the
high dimensional stimulus space to the lower dimensional response space.

With these aspects of the financial diagnosis task introduced, we can define the financial
diagnosis task in the following way:

A situation where the subject makes a judgement of the financial situation of the

firm based upon information from the financial statement.

When used as a reference for selecting relevant empirical research, the definition provides
four criteria for a study of financial diagnosis to be of relevance. First, a human decision

maker must express an opinion on the financial situation of the firm. Next, financial statement
cues or information must be provided. Third, financial analysis or diagnosis must at least be
part of the task studied. Fourth, there must be a focus on judgmental or behavioural aspects of
the task. Several studies of relevance do not satisfy the fourth criteria, but incorporate an

economic theory of how the opinion should be formed. These studies use a dependent
variable that is expressed by a human decision maker, but formulate their theory on how the
opinion is formed on an economic theory rather than on a cognitive theory. In the context of
the lens model, these studies operate purelyon the left hand side of the model, but their
economic theory is relevant to the knowledge assumed represented in a cognitive model of
the right hand side.

The traditional view is that the context and purpose of the financial diagnosis is a functional
way to classify how it is performed. This view is found in some traditional textbooks. Foster
(1986) treats financial analysis within the context of asset pricing, capital market and equity
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applications, corporate restructuring, debt rating, distress analysis, and loan decisions.

However, main elements of the task, such as for example the importance of financial
statement cues, are similar across contexts. A perspective, treating financial diagnosis as

similar across task contexts, is found in other textbooks on financial statement analysis (e.g.
Hawkins, 1986), and research has been performed supporting this as a useful perspective (e.g.
Barnes & Huan, 1993).

Different task contexts of the financial diagnosis task are found within auditing, accounting
and finance. In table 2.1 some of the relevant task contexts are presented l.

Task context Judgement Cognitive Predictive
Analytical review (ratio analysis) Nelson, 1993 Bedard & Biggs,

1991
Bankruptcy prediction Simnett & Chewning & Ohlson, 1980

Trotman, 1989 Harrell, 1990
Bond rating Danos, Holt & Kaplan &

Imhoff, 1984 Urwitz, 1979
Earnings forecasting Houghton & Biggs, 1984

Woodliff, 1987
Going concern judgement Hopwood, Mc- Biggs, Selfridge Koh & Killough,

Keown & &Krupka, 1993 1990
Mutchler, 1994

Investment screening Bouwman, et al.
1987

Loan decision Rodgers, 1991 Danos, Holt & Doukas, 1986
Imhoff, 1989

Risk assessment Mear & Firth, Holt & Morrow,
1988 1992

Table 2.1 Task context and perspective combinations of financial diagnosis .

Not all approaches to each of the task contexts of table 2.1 are equally relevant. Thus, some of

the approaches are without example studies. Some combinations of contexts and approaches
may never be found. One example is studies in bond rating, where it is unlikely that process
tracing methods will ever be allowed in studying bond raters' diagnostic behaviour.

An important similarity across task contexts is that despite differences in original disciplines
and research traditions, the financial statement contains the most relevant cues in performing
the task. In auditing, parts of the analytical review and going concern judgements are task
contexts in which financial diagnosis is performed. Of particular relevance to this study is
research on the task context classified as "preliminary going concern evaluation" in Bonner
and Pennington's (1991) classification of audit tasks. In accounting, the bankruptcy prediction
task is closely related to the going concern judgements of auditors, but the cues, context and

l Relatively recent studies are given as example studies to show that research within all three approaches still is
relevant.
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purpose of the classifications may differ. In banking, the loan decision shares many of the

characteristics of the bankruptcy prediction task when there is doubt about granting a loan. In

finance, closely related but "reversed" task contexts are the investment screening and risk

assessment tasks, both relying heavily on information from the financial statement. Parts of
all these tasks meet the criteria in our definition of a financial diagnosis task given above. Our

proposal is that the financial diagnosis part of the tasks listed in table 2.1 may have more
similarities across disciplines than other tasks have within one specific discipline. Similar

propositions have been made by Bonner and Pennington (1991) for auditing tasks, and by
Gibbins and Jamal (1993) for several accounting tasks.

Methodologically, there are also three approaches to the study of financial diagnosis. Early

studies adopted the lens model orientation illustrated in figure 2.1 (e.g. Libby, 1975). Studies
formulating a cognitive model of the stimulus-response mapping can take one of two
methodological orientations. With an experimental orientation, hypotheses about the
cognitive representations and processes intermediating stimulus and response are formulated,
and attempts are made to set up an experimental design to test these hypotheses. A process

orientation has a more descriptive purpose, and uses protocol analysis or other process tracing
methods to investigate the cognitive processes of the subjects during performance of the task.

Table 2.2 illustrates the differences in research focus between the judgmental modelling, the

cognitive, and the predictive approaches to financial diagnosis by listing some of the most

relevant research questions pursued within each of the approaches.

Judgement modelling Cognitive Cognitive descriptive Predictive
experimental

Analyst and model Experience effects Description of Cue predictability
accuracy problem solving

behaviour
Cue usage, utilisation Information load Cue usage, utilisation Properties of cues
and selection effects and selection (e.g. probability

distributions)
Agreement Information format Description of Test or development
(consensus) effects representational of conceptual model

forms
Stability and Effects of Description of
consistency representation and reasoning and search

organisation of strategies
knowledge

Environmental Effects of reasoning Goal organisation
I predictability and search strategies and subgoaling
Analysts self-insight Effects of process

verbalisation
Table 2.2 Research questIons m different approaches to the study of financial diagnosis
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In addition to studies of direct relevance to the financial diagnosis task, several contributions
are found within the cognitive accounting literature studying related tasks that may be of
relevance to our study. One example is studies of auditing tasks relying explicitly on
information processing theory that formulate and test hypotheses on subjects organisation of
knowledge (Biggs & Wild, 1985). Selected findings from such studies are reviewed in section

2.4

A special area of research difficult to place within our framework is the research utilising
machine learning algorithms for rule induction (e.g. Frydman, Altman and Kao, 1985;

Hansen, Koehler, Messier and Mutchler, 1993). Studies in this area that apply rule induction
to the right hand side of the lens model, will be treated as part of the judgement modelling
approach. Studies using rule induction methodology primarily as a predictive method, are
treated as studies with a predictive approach. This separation of contributions is similar to

how we treat studies applying the same statistical method with a judgement modelling or a
predictive purpose.

In section 2.1, selected studies within the judgement modelling approach are reviewed,

followed by a review of selected contributions in the cognitive approach in section 2.2.
Selected predictive studies relevant to the financial diagnosis task are reviewed in section 2.3.
In section 2.5, a summary of supported standard assumptions on the financial diagnosis task

is presented along with a summary of some of the most relevant areas for further research of

relevance to this study.

The review of each approach is organised as a simplified problem solving process, reviewing

findings related to the task first, information search and usage second, reasoning processes

third, representation and knowledge organisation fourth, and outcome of the diagnosis task

last.

2.1 The judgement modelling approach

Studies within the judgement modelling approach to financial diagnosis vary in their
application of the complete lens model of Brunswik (1952) shown in figure 2.1. Early studies
are easily classified as lens model studies, but later studies have concentrated more on the

right hand side of the lens model (e.g. Holt & Carrol 1980), departed from the use of
quantitative cues only (e.g. Schepanski, 1983), and presumed a conceptual model underlying
the right hand side of the model (e.g. Rodgers, 1991a). Thus, a judgement modelling study is

no longer equivalent to a standard lens model application. An overview of judgement
. modelling studies relevant to financial diagnosis is shown in table 2.3, with the studies
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organised in chronological order within each task context. In addition, the focus of each study
is indicated.

Reference Task context Focus
Libby, 1975 Bankruptcy prediction Accuracy of subjects

and linear model
Abdel-khalik & EI-Sheshai, Bankruptcy prediction Effect of using self-
1980 selected cues
Casey, 1980a Bankruptcy prediction Replication of

Libby (1975)
Zimmer, 1980 Bankruptcy prediction Replication of

Libb_y(1975)
Houghton, 1984 Bankruptcy prediction Variations in age of data
Houghton & Sengupta, 1984 Bankruptcy prediction Variations in prior

probabilities
Chalos, 1985 Bankruptcy prediction Comparison with

committee assessments
Messier & Hansen, 1988 Bankruptcy prediction Recursive partitionin_g
Selling & Shank, 1989 Bankruptcy prediction Comparison with

process tracin_g_
Simnett & Trotman, 1989 Bankruptcy prediction Optimal cue

selection
Houghton & Woodliff, 1987 Earnings forecasting Model differences for

success and failure
prediction

Kida, 1980 Going -concern Standard lens model
jud_g_ement ~lication

Hansen et al., 1993 Going-concern Recursive partitioning
jud_g_ement com_j)_arison

Hopwood et al., 1994 Going -concern Realistic prior
juc!g_ement _probabilities

Holt & Carroll, 1980 Loan decision Standard lens model
~ication

Dietrich & Kaplan, 1982 Loan decision Limited lens model
~ication

Schepanski, 1983 Loan decision Critique of linear
models

Chalos & Pickard, 1985 Loan decision Comparison with
committee assessments

Rodgers & Housel, 1987 Loan decision Conceptual model
LISREL

Rodgers & Johnson, 1988 Loan decision Conceptual model
LISREL

Rodgers, 1991a Loan decision Conceptual model
LISREL

Mear & Firth, 1988 Risk assessment Right hand side
predictability

Mear & Firth, 1987a Risk assessment Cue usage and self-
insight

Mear & Firth, 1987b Risk assessment Different accuracy
measures

Wright, 1977 Stock recommendations Lens model right hand
side application

Table 2.3 Selected Judgement modelling studies of financial diagnosis
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There are mainly four task contexts found among the judgement modelling studies shown in

table 2.3. Research within the bankruptcy prediction task context has shown an additive
knowledge accumulation with replications, refinements and alternative use of methods,
making findings easily comparable. Within the other three tasks contexts, the findings are

much more difficult to unify.

Within the bankruptcy prediction task context, the cues presented to the subjects are few, and
correspond to cues found useful in predictive studies. Traditionally all cues are ratio cues
relating two or more traditional items of the financial statement to each other. However, some
of the studies provide the subjects with financial statements excluding calculated ratios,
whereas other studies include them. Obviously, task content changes when computations are
required by the subjects. In Chalos' (1985) study of both individual and group judgements,

full financial statements were provided. In the studies of students' and loan officers' loan
decisions by Rodgers (Rodgers, 1991a; Rodgers & Housel, 1987, Rodgers & Johnson, 1988),

both financial statement information and financial ratios were provided.

Some of the studies use statistical techniques to select relevant cues to be presented. One

example is the early study of Libby (1975), in which factor analysis was used to select
presented ratios. The selected ratios were assumed to represent "profitability", "activity",
"liquidity", "asset balance" and "cash position:". Similar to studies within the predictive

approach, a conceptual model or theory is rarely used to justify the presented ratios. In the

study of Kida (1980), the presented ratios were based upon significance of th~ ratios in a
linear model. This selection procedure will favour the use of a linear model even by the cues
presented-, Traditionally, the cues presented represent financial cues of more than one period.

An alternative way of presenting cues to the subjects is by letting the subjects select the cues
from a menu. This approach was used by Abdel-khalik and EI-Sheshai (1980), allowing the
subjects to purchase the cues. Also in Selling and Schanks' study (1989), the cues were

selected by the subjects, but the cues had no price, and a maximum of seven cues could be
selected. A similar approach to cue selection was followed by Chalos and Pickard (1985) in a
loan decision task. The effects of variations in presented cues have received little attention
within judgement modelling research.

I In general, theoretical concepts. terms used for internal representations, and latent variables are placed in
double quotation marks.
2 In principle, the same bias is introduced when linear methods are used to select cues in a predictive model.
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The cases l used in the judgement modelling studies are often selected from corresponding
studies with a predictive approach (Libby, 1975; Hansen et al., 1993). The traditional sample
is composed of cases belonging to one of two classes with equal prior probabilities of

occurrence. The bankruptcy prediction studies are representative. The subjects are presented
distressed and non-distressed cases with equal probabilities of occurrence. Some studies have

applied more realistic probabilities of occurrence (Houghton & Sengupta, 1984), or adjusted
results for equal and unrealistic probabilities (Hopwood et al., 1994). Some studies have also

examined the effects of providing the subjects with information of the prior probabilities (e.g.
Abdel-khalik & El-Sheshai, 1980, Houghton, 1984). Similar case selection strategies are
found among studies of other relevant task contexts.

Cue usage is measured in some of the studies by analysis of standardised betas in linear
models of the subjects' judgement, but mainly it is assumed that cues presented are the cues

used. Libby (1975) used the following five ratios-: Net income/total assets, current
assets/sales, current assets/current liabilities, current assets/total assets and cash/total assets.
These ratios were also used by Casey (1980a). Inaddition to the net income/total assets ratio
used by Libby (1975), Zimmer (1980) used dividend/earnings, debt/cash flow, long-term

debt/equity and a quick assets ratio. These ratios were assumed to represent the theoretical
concepts of "profitability", "dividend policy", "debt coverage", "long term solvency" and

ferm solvency", respectively. The cues selected by Zimmer (J980) have also been used
in more recent studies (Houghton, 1984; Houghto & Sengupta, 1984; Houghton & Woodliff,

1987) even though other concepts were assumed ro be measured by the same cues>.

Kida (1980) studied the financial diagnosis task within a going concern 'context, but used

ratios verv similar to Libby's (1975). He used net income/total assets, net worth/total debt,
qc.. .ets/current liabilities, sales/total assets and cash/total assets, measuring the
theoretical concepts of "profitability", "leverage", "liquidity", "capital intensiveness" and
"cash position", respectively. In other task contexts, specialjinancial ratios ofparticular
relevance to the task context were used. One example is the use of market related financial
statement information in the risk assessment studies of Mear and Firth (1987 a, 1987b, 1988).
Holt and Carroll (1980), stressed the importance of trend indicators. They used both earnings
and sales trend ratios calculated over three years. Chalos and Pickard (1985) provided their
subjects with trends of traditional ratios such as net income/total assets, total debt/net worth,
working capital/sales and the acid ratio. Trend ratios have also been used in studies of the
bankruptcy prediction, risk assessment, and stock prediction tasks (e.g. Abdel-khalik & EI-

l The firms from which the financial statement information is collected.
2 Throughout this chapter, ratios are presented with terms used by the original authors.
3 Houghton and Woodliff (1987) assume their cues measure "income", "liquidity", "dividend policy", "cash
flow" and "leverage".



24

Sheshai, 1980, Mear & Firth, 1987, Wright, 1977). Recent studies comparing linear and

nonlinear methods have also incorporated trend ratios (e.g. Hansen et al., 1993).

Judgement modelling studies vary in the extent to which they use cues outside the traditional
financial statement. Early judgement modelling studies primarily used financial statement
cues only. Examples of cues from sources other than the financial statement that have been
provided and tested for cue usage, are market related cues, such as the ratios market

equity/liabilities or book equity/market equity (Simnett & Trotman, 1989). Other market
related information typically used in risk assessment tasks, are cues measuring systematic
risk, such as beta (Mear & Firth, 1988; Wright, 1977). In addition, customer history

information has been used in the loan decision task. Customer history is often represented by
past loan history and overdues (Holt & Carroll, 1980). Industry related cues have been used
both in the loan decision task and in risk assessment tasks. Two examples are the industry

stability and trend ratios used by Holt and Carroll (1980), and the expected industry results
index used by Mear and Firth (1988).

Some studies have transformed the quantitative financial statement cues into qualitative
information. The transformation has been founded on results in the cognitive approach to
financial diagnosis, indicating that the subjects transform cues to qualitative information
before thejudgement is performed (e.g. Bouwman et al., 1987). Schepanski (1983) followed
this approach in a study comparing linear models to alternative nonlinear models. In these
cases, only a few qualitative categories are used for each cue, such as "high" and "low" for
levels or "up" and "down" for trends.

The accuracy of outcomes is of relevance to both individual judgements and models of
individual judgements. Judgement and model accuracy measures vary with the task studied. If
the dependent variable is nominal or ordinal, classification errors are reported. If the variable
is interval, some distance or correlational measure can be used. Classification accuracy is less
sensitive to variations in a distance measure when there are few categories. This makes
comparisons of accuracy across task contexts difficult. A classification accuracy measure is
also less sensitive to variation in the performance of alternative models. Consequently, care
should be taken in interpreting classification error differences as strong support for model
differences. In a judgement modelling approach, the effect of using various performance
measures was investigated by Mear and Firth (1987). They found that, although their results
were consistent with prior research when measured by correlational performance measures,
the use of other error measures produced conflicting indications of analyst performance.
Since the reported error measures vary with judgement variable, and thus, task context, results
on accuracy and predictability in judgement modelling studies will be reviewed separately for
each task context.
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The accuracy of a model of the criterion variable is termed environmental predictability. In

the bankruptcy prediction studies reported in table 2.3, environmental predictability is high.

Both in lens model studies, and in predictive studies, classification errors less than 10 % are
common (Altman et al., 1981; Ashton, 1982). The accuracy of judgements are generally
found to be lower than the environmental predictability (Ashton, 1982). Recently, the
relationship between environmental predictability and accuracy was investigated by
Hopwood et al. (1994). They showed that environmental predictability was lower and
accuracy was higher than previously assumed when accounting for prior probabilities,

misclassification cost and separation of stressed and non-stressed companies.

The standard propositions basically confirmed by judgement modelling studies in bankruptcy
prediction, are that the predictability of the task is high. Individual judgements are better than

random assignment, but individuals are significantly outperformed by the model of the
criterion variable, and by the composite judge). Further, they are slightly outperformed by a

linear model of their judgements. These results are assumedly explained by individuals'

inferior selection of cues, not by inferior cue weighting. Judgements are thought to be

consistent, and small differences among individuals are found. Students work well as

surrogates for more experienced or professional subjects.

The standard propositions are the result of a number of judgement modelling studies. Libby
(1975) found an environmental predictability of 88 %. The decision rule applied by
individuals was highly linear and had an accuracy of 74 %. The composite judge
outperformed the individuals with an accuracy of 82 %. Stability, consistency and consensus
were high. These results summarise most of the hypotheses later tested in the judgement

modelling approach. In a replication of Libby's study, Casey (1980) found considerably lower
accuracy of both individuals and composite judges. Furthermore, the composite judges did
not significantly outperform the individuals. Casey (1980) suggested the difference in
findings may be explained by non-disclosure of prior probabilities. Zimmer (1980) also

replicated Libby's study, finding results very consistent with the results of Libby (1975), and
supporting the effect of disclosing priors. Abdel-khalik and EI-Sheshai (1980) investigated
how self-selection of cues and disclosure of priors affected the judgements. They found that
very few cues were selected, and that earnings trend, current ratio and cash flow/total debt
were most frequently used. Predictability was found to be high. and the disclosure of priors
did not improve accuracy. Both model and human selection of cues were compared, leading
Abdel-khalik and EI-Sheshai (1980) to conclude that the inferiority of subjects could be
explained by wrong selection of cues, and not by cue weighting. Houghton (1984) also tested

) Composite judge diagnoses are computed as the average response 'of a committee of judges.
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the effect of disclosing priors, and found accuracy to improve when subjects were given
information of the prior probability of failure. In addition, he tested how the age of data
affected the subjects' accuracy, finding that accuracy decreased with the age of data.
Houghton (1984) suggested that the effect of priors may not only be affected by disclosure of
prior information. In Houghton and Sengupta (1984), the effect of more realistic probabilities

of failure was tested. Itwas found that accuracy improved when probability of failure was
half the probability of non-failure. However, the interpretation of this finding should be done

with care, since all studies show that the most frequent error is the false classification of
failed cases as non-failed.

The hypothesis stating that the performance of interacting and composite judges is better than
that of individuals was tested by Chalos (1985). He found the following ranking of accuracy:
Interacting committee>composite judgec-model of the criterion variablec-model of individual
judgemenc-individuall. However, the difference in performance between the interacting

committee and the composite judge was not statistically significant. The hypothesis that

individuals' inferiority is caused by inoptimal cue selection proposed by Abdel-khalik and EI-
Sheshai (1980), was tested by Simnett and Trotman (1989). They found sub-optimal selection

of cues, and failure to improve accuracy when subject-selected cues and model weights were
used. Both findings support the hypothesis of Abdel-khalik and El-Sheshai (1980). When
provided with the model-selected cues, however, the subjects' performance deteriorated.

Simnett and Trotman (1989) suggested that information processing was not a limiting factor
when subjects selected their own cues, but became a limiting factor when subjects were
provided with model selected cues. Consequently, most of the standard propositions referred
above regarding the bankruptcy prediction task still stand, even though their support is less
conclusive than often cited.

The capacity of a linear model to capture the judgements of human subjects has been
questioned within the bankruptcy prediction task context. Selling and Schank (1989) set up an
interesting experiment registering the subjects' cue usage during the task. Next, they modelled
the subjects' judgements both in a linear model and in a decision tree. Both the linear and the
decision tree models were able to approximate the subjects' judgement with high accuracy,

but the cue importance measures of the two models showed very little convergence. A major
weakness of this study was that the cues were disguised. The development of a decision tree

in the Selling and Schank (1989) study, is closely related to the general application of
recursive partitioning models within the judgement modelling approach. While the

development of the decision tree of Selling and Schank (1989) was driven by the subjects cue
selection sequence, recursive partitioning uses mathematical algorithms to produce the

I The symbol ">" represents "better than",
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decision tree. Messier and Hansen (1988) developed a decision tree using a rule induction
method attributable to Quinlan (1986), and compared their model with the results of Abdel-
Khalik and El-Sheshai (1980), and Libby, Trotman and Zimmer (1987). The rules induced by
their system were few and simple. Their model had a significantly better accuracy on a
holdout sample, suggesting that the model outperformed the previous models, individuals and
composite judge committees. However, no discussion was found in the study on the realism
of the resulting production system as a model of the subjects' represented knowledge.

The judgement modelling literature on earnings forecasting is closely related to the time-

series approach to the same task context found within the predictive orientation'. An

exception is the study of Houghton and Woodliff (1987) in which the earnings forecast output
was transformed to a failure and success prediction output. When viewed as a failure
prediction task, the results of this study were very similar to the bankruptcy prediction task
results reviewed above. When viewed as a success prediction task, however, the task seemed

much more difficult for the subjects to perform. This study also confirmed that students were
adequate surrogates for more experienced subjects in the earnings forecasting task context.

Many similarities are found between the bankruptcy prediction task and the going concern
judgements of auditors. One of the earliest studies investigating this judgement, was the study

of Kida (1980). His findings were very similar to the findings on the bankruptcy prediction
task context reviewed above, but when the subjects should decide whether to qualify for

going concern problems or not, the difference between the two tasks contexts became
obvious. Subjects decided not to qualify for 24.6 % of the cases predicted as distressed firms.
This result indicated that several other considerations were made by the subjects when

deciding to qualify or not. The same result has been confirmed in cognitive experimental
studies (e.g. Barnes and Huan, 1993), and also explains the finding of Altman and McGough

(1974), that even though a model predicted going concern problems for 82 % of the cases,

auditors only qualified in 44 %. In a recent study, Hopwood et al. (1994) questioned both the
standard assumptions of the bankruptcy predictio.. task context, and their relevance to the
going concern context. They showed that when misclassification costs were considered, and
obviously non-stressed firms were eliminated from the analysis, both models and auditors
were quite poor predictors of failure. However, no traditional accuracy measures were
provided in this study.

A considerable overlap exists between the bankruptcy prediction task context and the loan
default or loan classification tasks. In some cases, it is not clear how these contexts should be

separated (see e.g. Chalos, 1985), since the relationship between loan default and bankruptcy

, The approach typically focuses predictions made by models using time series of one or very few financial
statement items, and thus, is of less relevance to this study given our definition of the financial diagnosis task.
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is so close. In a loan officer classification study, Holt and Carroll (1980) used a standard five
valued ordinal classification variable, intended to measure loan risk. Classification results of
this study were not comparable to failure prediction results because of differences in the scale
of the dependent variables. However, a simple linear model predicted 77 % of the evaluations
of the loan officers correctly when the output was transformed to a dichotomous scale. This
model contained two financial statement cues and four exogenous variables. One of these was
a variable measuring the classification derived from last years' review. The two most
significant financial variables were an interest coverage ratio and a·debt/equity trend ratio.
Holt and Carroll (1980) used artificial cases built by combining information from real cases to
cover more variations in the combination of cue values. One important comment from the

debriefing interview was that this procedure was discovered by the loan officers, indicating
that their ability to detect unrealistic cases is high. Dietrich and Kaplan (1982) used real cases

and a similar classification variable to Holt and Carroll's (1980). In their analysis, the original
classification variable was transformed to a four valued ordinal scale dependent variable and

to a dichotomous dependent variable. The purpose of the transformations was to allow
comparisons with predictive studies of failure detection. Dietrich and Kaplan (1982) found

that probit analysis accuracy was somewhat better than regression analysis in models of the
loan classifications. The models used three financial statement cues: Debt/equity, funds-

flow/fixed-commitments, and a sales trend indicator. The models were compared to the
predictive models of Altman (1968) and Wilcox (1973), and were found to perform better

than these models in predicting high risk loans. The study by Dietrich and Kaplan (1982)
used empirical classifications from actualloan reports as a dependent variable, while model
accuracy was compared to previous studies with a predictive approach. The judgmental
character of the dependent variable used by Dietrich and Kaplan (1982) positions the study in
a judgement modelling tradition, and comparisons with actualloan defaults could have been
valuable. Chalos and Pickard (1985) used a more traditionallens model approach in a loan

decision context, and some of the results of the study have been reviewed above and in
Chalos (1985). However, the dependent variable used by Chalos and Pickard (1985) was very

similar to a bankruptcy prediction variable, but was applied in a loan default context. This

makes their findings more relevant to the bankruptcy prediction task context than to the loan
decision.

Schepanski (1983) used the loan decision task context in a study comparing linear and
nonlinear models. The traditional additive linear model was compared to four nonlinear
models suggested in other information processing studies in psychology'. Qualitative cues
were used, and a factorial design was set up. Schepanski (1983) found that the linear and
nonlinear models were comparable on accuracy, but several of the nonlinear models better

1 The alternative models of Schepanski (1983) were a multiplicative model, a constant-weight averaging model,
a geometric averaging model and a range model (see Schepanski, 1983, pp. 584-585).
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explained the effects of using constrained cue sets found in subdesigns of the full factorial

design. Cue usage in the nonlinear models was quite different from that assumed in the linear
models, confirming the findings within the bankruptcy prediction task context referred to

above, that cue usage is sensitive to model. One finding in Schepanski's (1983) study was that
a main assumption of a linear model was incorrect; namely that the additive effect of a cue is

independent of the presence of other cues. The effect of a cue varied with the value of other
cues in its context. One example was that greatereffect was placed on a cue when the

information set was small than when it was large. Schepanski (1983) hypothesised that
paying attention to the size of the information set was a reasonable strategy if cues were
correlated, something that is often eliminated in traditional judgement modelling studies.
Thus, Schepanski's study indicated that evaluating predictive accuracy of a model must be
combined with a qualitative investigation of model behaviour under varying conditions. The
interaction effects found in Schepanski's (1983) study have been searched without success in
later studies. As an example, Brown and Solomon (1991) suggested that the lack of similar

findings may be partly due to how interaction terms are implemented in linear models, and

partly due to the task formulations used.

In the judgement modelling studies referred to so far, the conceptual models of the right hand

side of the lens model have been very simple". In the cognitive approach to financial

diagnosis, information processing theory is applied as a theory of the cognitive processes
underlying the right hand side of the lens model, and this theory is used to formulate
hypotheses of such a conceptual model. Rodgers and Housel (1987) were among the first to

apply similar principles within a judgement modelling approach. Using a study of the loan
decisions of students and loan officers, their results were reported in several articles (Rodgers
& Housel, 1987, Rodgers & Johnson, 1988, Rodgers, 1991a). The conceptual model used in
these studies was developed from findings in several studies of the cognitive descriptive
approach. One of the most evident assumptions was that the financial diagnosis task could be
divided into a perceptual and a judgmental phase (Bouwman, 19822). Based upon this
assumption, Rodgers and Housel (1987) compared the performance of experienced and less
experienced subjects. They found that their conceptual model, implemented in LISREL

(Jøreskog & Sørbom, 1988), fitted the cue usage and decision outcome data well. In Rodgers
and Housel (1987), the conceptual model was not explicitly investigated. Instead, a more

traditional comparison of the differences between experienced and less experienced subjects
was performed. The authors also tested the differences between data driven and conceptually

driven subjects' performance. Generally, performance results were comparable to research
reviewed above, and no obvious difference was found between experienced and less

I Assuming an additive linear model. transforming the linear additive model by a sigmoid function. or applying
the simple nonlinear models in Schepanski (1983).
2 Bouwman (1982) applies the concepts familiarisation and analysis to these phases.
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experienced subjects' performance. In Rodgers (1991a), only data from the experienced group
was used to test the differences in behaviour and conceptual model between data driven and
conceptually driven subjects. Differences were found both in behaviour and conceptual
models, but two limitations should be noticed. In the student group used in Rodgers and
Housel (1987), the difference in behaviour between the two groups was opposite from what
had previously been found in the experienced group, making the total effect of different
search strategies on behaviour insignificant. Next, the differences in conceptual models were
tested by comparing the number of significant regression weights in the conceptual model of

each group. However, this is not equal to testing the significance of the differences in

regression weights of the two models. Consequently, a significant difference in the two
conceptual models can not be inferred from Rodgers' (1991 a) tests. Despite these weaknesses,
the studies represent an important contribution to the formulation of a conceptual model of
the loan decision process. An important finding of these studies was the support for a
separation of the financial diagnosis task into a perceptual and a judgmental phase.

In a series of articles, the results of a study performed by Mear and Firth (1987 a, 1987b,
1988), on the risk assessments of an equity security performed by 38 security analysts, were
reported. The dependent variables of this study were an estimate of the expected risk and the
expected 12-month return on the security. The scale of the dependent variables allowed the
use of regression analysis to model the judgements, and a wide variety of error measures

could be applied. In Mear and First (1987a), the cue usage and self-insight of subjects were
reported. Subjects reported using indicators measuring systematic risk, proprietorship,
profitability and liquidity in their risk judgements. The first three of these indicators were also
the most significant in the linear model of the subjects' performance. Further tests of self-
insight were performed, leading Mear and Firth (1987a) to conclude that the subjects had only
moderate self-insight. Used in a linear model, the subjective weights performed worse than

the model weights. However, when introducing unit weights, the model performed
significantly worse than with the subjects' weights. In Mear and Firth (1987b), the use of

alternative error measures in the study was reported. Using a traditional correlational error
measure, results consistent with other studies of the relative performance of analysts and
linear models were found. However, conflicting results were found when using other error
measures. Of special interest were the differences between the relative performance of
subjects and the linear model of the subjects. Mear and Firth's (1987b), study indicated that

this difference may previously have been overstated. In Mear and Firth (1988), the hypothesis
of Farelly, Ferris and Reichenstein (1985) that accounting variables of the financial statement
contained information sufficient to predict perceived risk, was tested. The results were found
to be consistent with this hypothesis. Only one market related independent variable was

included in this study, making the risk judged by the subjects highly dependent upon financial
statement information.
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There are very few bond rating judgement modelling studies. Some exceptions are found in
the municipal bond rating literature. Raman (1981), and Lewis, Patton and Green (1988), both
applied the lens model approach to the study of analysts' rating of cities. However, the cues
provided in these studies were so different from cues of traditional corporate financial
diagnosis that the studies had only limited relevance to our task contexts.

Many of the principles of the judgement modelling approach have been used within more

cognitively oriented studies. One example is cognitive studies using the cue importance

measures of the lens model as a measure of the cognitive relevance of a cue (Chewning &
Harrell, 1990). In the Chewning and Harrell (1990) study, the inconsistency of such an

application was particularly obvious, since an inverted U-shape effect of information load'
was assumed, while simultaneously, a linear model estimates additive effects of information

cues. Another example of how judgement modelling studies have influenced other approaches
to financial diagnosis, is found in the experimental setup of cognitive studies examining the
effect of variables outside the traditionallens model. These experiments are traditionally set

up by using two or more parallel judgement modelling experiments. By comparing the results
of these, a conclusion is drawn on the effect of the experimental variable (Iselin, 1993). Such
experiments depend entirely on the applicability of a linear model. These examples were
provided to illustrate the significance of judgement modelling studies to the way cognitive
research is performed within behavioural and cognitive accounting.

2.2 The cognitive approach

In the late 1970's interest in a cognitive approach to information processing behaviour in

accounting and finance started to grow. With the classical study of Libby (1975), an interest

lr differences in cognitive behaviour between subjects with, for example, different

exper.euce or information load was started. This development led to an experimental
orientation in the cognitive approach, in which the researcher used information processing

based theory (see e.g. Hogarth, 1987) to formulate hypotheses of differences in information
processing behaviour explained by variables outside the traditional lens model. Moriarty's
(1979) study on the effect of alternative presentation forms was among the first to apply this
approach. Simultaneously, research building on the traditional verbal protocol research in
cognitive science using the full scale information processing theory and methodology, also
appeared in cognitive accounting. Among the first of these studies was Bouwman's (1982)
study of information processing behaviour during financial analysis. Since then, research with
both orientations has continued within behavioural and cognitive accounting. Some
differences between relevant research questions in the experimental and the descriptive

orientations are illustrated in table 2.2.
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First, we attend to relevant research within the experimental cognitive approach to financial
diagnosis. Next, we review selected research within the descriptive cognitive approach.
Selected contributions to financial diagnosis within the experimental cognitive approach are
listed in chronological order within each task context in table 2.4. Since the studies are
experimental, two columns indicating the main independent and dependent variables in each
study are shown in table 2.41•

Reference Task context Independent var. Dependent var.
Moriarty, 1979 Bankruptcy Presentation Accuracy

prediction mode
Casey, 1980b Bankruptcy Information load Accuracy and time

prediction
Trotman & Sng, 1989 Bankruptcy Hypotheses Information

prediction framing and choice
prior expectation

Chewning & Harrell, 1990 Bankruptcy Information load Cue utilisation and
prediction decision quality

Iselin, 1991 Bankruptcy Interacting vs. Performance
prediction composite group

Iselin, 1993 Bankruptcy Information load Decision quality
prediction

Danos et al., 1984 Bond rating Experience Adjustment of
initial hypothesis

Kida, 1984 Going-concern Confirmatory Search and use of
judgement strategy information

Choo & Trotman, 1991 Going-concern Knowledge Recall
judgement differences

Ricchiute, 1992 Going-concern Working Performance and
judgement paper order confidence

Barnes & Huan, 1993 Going concern Mitigating Performance
judgement information adjustment

McGee et al., 1978 Investment Personality Performance,
screening confidence and

information use
Danos, Holt & Imhoff, 1989 Loan decision Subsequent Decision and con-

information fidence adjustment
Rodgers, 1992 Loan decision Perceptual Performance

strategy
Anderson, 1985 Offer price Verbalisation Accuracy and time

prediction
Libby & Frederick, 1990 Ratio analysis Experience Explanations
Nelson, 1993 Ratio analysis Knowledge Performance and

and learned error frequency
frequency knowled_g_e

Enis, 1988 Return Current-valued Accuracy and
prediction data consensus

Holt & Morrow, 1992 Risk assess- Type of Conformance to
ment ex_perience Bayes theorem
..Table 2.4 Selected experimental cogrutive studies of financial diagnosis

I The author's terms are used of the dependent and independent variables.
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One of the first studies applying a cognitive experimental approach to the study of financial
diagnosis, was the study of McGee, Shields and Birnberg (1978). They tested the effects of
personality differences on cue usage and decision outcome. Generally, it was found that

personality variables did not appear to be useful in describing, understanding or predicting

human information processing behaviour. Even though McGee et al.'s personality variables
had some weaknesses, their experimental design was typical for this approach. Soon after,

Moriarty (1979) studied the effect of different information forms. He found that subjects
receiving cues represented by Chernoff faces outperformed subjects receiving quantitative

information. The independent variables of these two first studies have later received little

attention in financial diagnosis research.

An independent variable receiving considerable interest, has been information load. It has
been investigated by several authors, and also closely relates to the amount of information
used. First, Casey (1980b) found increasing accuracy with an increase in information load up
to a certain level. With a greater information load, accuracy did not improve. The subjects
with the greatest information load showed no superior accuracy, but used significantly more

time to perform the task. In this study, information load was manipulated by introducing

notes to the financial statement information. Generally, an inverted U-shape accuracy effect
of information load was hypothesised. However, the information overload necessary to create

reduced accuracy may not have been obtained in Casey's (1980b) study. Information overload
was found by Chewning and Harrell (1990) in a similar task to have a negative effect on

outcome consistency, agreement and consensus. The level at which information overload
occurred was measured by finding the information load giving fewer significant coefficients
in a linear model of the subjects' judgements. This measure of information load is not without

difficulties, and the study represents one of the later examples of how cue usage measures of
the lens model are still used in cognitive research in accounting).

Iselin (1993) refined the information overload concept by separating the concepts

"information load" and "data load". His findings supported the hypothesis that accuracy was
reduced at a high level of data load, often characterised as information overload. The data
load supposed to induce information overload was very different in the studies referred to
above. In the Chewning and Harrell (1990) study, eight cues were assumed to induce

information overload, while 57 cues were assumed to be necessary in the Iselin (1993) study,
and 15 ratios plus full income and balance statements were assumed necessary in the Casey

(1980b) study.

) Recall how linear models assume additive effects of the cues, while the study actually search for nonlinear
effects of cues or cue values.
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Few have studied effects of different information contents. One exception is the study of Enis
(1988), testing the effect of using current valued cues. He found that only sophisticated
investors, utilising a small amount of current valued information, improved their accuracy and
consensus. The overall effects of the current valued data were negative. The effects were very
similar for accuracy and consensus, supporting the hypothesis that consensus measures can
substitute measures of accuracy. Enis (1988) also used cue usage measures from the
judgement modelling literature to control for the effect of information load.

Differences between data driven and conceptually driven subjects in a loan decision task were
investigated by Rodgers (1992). The data driven subjects outperformed the conceptually
driven, but the difference in accuracy was not considerable).

Different search strategies may alter the way sequentially ordered information affects
diagnosis. Ricchiute (1992) tested the effect of presentation order, and found that information
presented in a causalorder of relevance to the going concern task led to better decisions. First,
this result did not suggest that better diagnosticians reorganised the information in causal
order, but simply indicated that the casual order provided a better diagnosis. Second, it raised
the question if presentation order interacted with representations so that, for example, subjects
with a "schematic organisation" of memory would benefit from the causalorder. This
question could not be answered in Ricchiute's (1992) study, because only subjects
hypothesised to have a schematic organisation of memory participated-. The effect of
introducing subsequent information is closely related to information order. Danos, Holt and
Imhoff (1989) found that loan officers reached a high level of confidence early in the loan

decision task, but despite the early confidence, they adjusted it in the correct direction when

subsequent information was presented. A similar result was found by Barnes and Huan
(1993), in a going concern judgement task. The subjects agreed on cue usage and

classification of going concern status, and adjusted their decisions with mitigation
information. However, in both studies, the subjects adjusted their decision more in the
direction of the low classification error cost alternative-i. The findings on agreement and
confidence in the initial part of the task in these studies, suggest that this part of the task is
cognitively separable, and that high accuracy and consensus on this task is achievable.

The effect of introducing subsequent information is also closely related to the reasoning
strategy followed by the subjects. Following a confirmatory strategy could lead to less
attention to subsequent disconfirming information. A search for the use of confirmatory

) See also the discussion of other aspects of Rodgers' (1992) study in section 2.1.
2 The subjects were 100 partners.
3 Lowest classification error cost is supposed for not granting a loan and for not qualifying in the going concern
judgement. .
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strategies was done by Kida (1984), in a study of going concern judgements. He found only

weak support for the hypothesis that a confirmatory strategy was followed in this task, and
even less support for the hypothesis that this would lead to confirmatory bias. Kida (1984)
suggested that this may be explained by the non-sequential character of the task. Trotman and
Sng (1989) replicated and extended the experiment by Kida (1984) in a failure prediction
context, and found further support for Kida's conclusion. A confirmatory bias in the direction
of failure in general was found, but this bias could not be manipulated by different framing of
the initial hypotheses, and was characterised as a general "failure bias". Information on cue

diagnosticity was found to reduce this general bias. The bias could be explained by subjects'
consideration of misclassification cost and failure to conform to Bayes theorem. The last

proposition was tested by Holt and Morrow (1992) in a risk assessment task context. They
compared the ability of lenders and auditors to conform to Bayes theorem, but found no
difference between the two groups. However, auditors learned to conform to the theorem with

experience, but lenders did not. This finding was used to support the hypothesis that "there

are more incentives for avoiding risk in the bank lending environment than in the auditing
environment" (Holt & Morrow, 1992, p. 549). The finding could alternatively be explained by

subjects' consideration of misclassification cost as causing the "failure bias" in these
environments.

In other cognitive accounting tasks, representation, memory organisation, and knowledge
differences have recently received considerable attention (e.g. Bonner, 1990; Brown &

Solomon, 1991; Frederick, 1991). In the financial diagnosis task contexts, a similar attention

has, unfortunately, not been found. Choo and Trotman (1991) investigated the knowledge
representations of experienced and inexperienced subjects in a going concern judgement and
recall experiment. Based upon schema theory, they hypothesised that experienced subjects

should recall more atypical than typical cues, because the atypical cues were in conflict with

the proposed schematic memory. They also hypothesised that this would affectjudgements,
leading to better judgements for the subjects with the proposed schematic organisation of

memory. Both these hypotheses were supported. The relationship between a schematic
organisation of memory and the recall of atypical items was hypothesised) in this study, and

was based on a "schema-plus-tag" relationship (Graesser, 1981), with validity only to
immediate tests of memory (Ellis & Hunt, 1993, p. 248).

Several studies of knowledge representation with an experimental cognitive approach have

used experience as an independent variable. Experience has been considered an
operationalisation of several concepts, such as, knowledge differences, level of expertise and
professionality, and, as seen above, the presence of a schematic organisation of memory.

l A schematic organisation of the memory of the experienced subjects was also hypothesised, not tested.
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Experience effects have been summarised across cognitive accounting tasks in several
reviews (e.g. Bedard, 1989; Bedard & Chi, 1993; Bonner & Pennington, 1991; Choo, 1989).

Following the findings of Bonner (1990), that experience effects are highly task dependent,
we concentrate on studies focusing on the financial diagnosis task.

The hypothesis that experienced subjects have a schematic organisation of memory was
investigated by Choo and Trotman (1991). Their study is representative of the research
strategy applied to the test of experience effects and knowledge differences within the

experimental cognitive approach. These studies use information processing theory to
postulate that the experienced have some knowledge or knowledge organisation, not shared
by the inexperienced. If this is the case, they further hypothesise the effect of that particular
knowledge organisation on behaviour. Next, the behaviour is observed, and effects are

explained. However, there are two links in this research strategy. The first is the link between
experience and knowledge or knowledge organisation. The second link is between knowledge
or knowledge organisation and behaviour. Because knowledge organisation is not directly
observable, the first link must be firmly established in theory or in other empirical research.

Unfortunately, the first link is not obvious (see e.g. Ellis and Hunt, 1993, pp. 246-247), and
also suffers from the use of experience as operationalisation of a wide variety of theoretical

constructs in information processing theory. Another example of the same strategy is found in
the study of bond raters by Danos et al. (1984). They proposed that the "bond raters' training

and review process, coupled with their repeated exposure to forecasts, foster the development
of sharply defined schemata" (Danos et al., 1984, p. 549). Next, they proposed that these
schemata "can facilitate the recognition and use of disconfirming evidence. Therefore, we
posited that bond raters would overcome the common response bias of ignoring
disconfirming evidence" (Danos et al., 1984, p. 550). The last of these hypotheses was tested
and confirmed without the presumption of a schematic organisation of memory as intervening
variable! (Barnes & Huan, 1993). Not surprisingly, the same hypothesis was confirmed by
Danos et al. (1984).

Consistent with general findings in cognitive psychology literature on expert behaviour (see
e.g. Ellis & Hunt, 1993, p. 283), Libby and Frederick (1990) found that the experienced
subjects generated more accurate explanatory hypotheses, had more accurate knowledge of

error occurrence rates, selected more commonly occurring explanations, and categorised their
knowledge differently than the inexperienced subjects. However, they are careful in their use
of intervening variables as explanations of these findings. Experienced subjects' knowledge of
frequencies and the effects of change in this knowledge was investigated by Nelson (1993), in
a simplified analytical review task. He found that by introducing a distracting task related to

I The authors have later replicated their study without use of the intervening variable, suggesting they agree with
our proposition (Danos, Holt & Imhoff, 1989).
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error frequencies, subjects learned these error frequencies. As expected, this learning affected
the error frequencies of novice subjects in the analytical review task, but the experienced

subjects did not alter their knowledge of error frequencies as a consequence of the distracting

task.

Several reviews of the differences between expertise behaviour in the judgement modelling
and cognitive experimentalliterature are found (e.g. Bedard, 1989; Cho, 1989). Bonner and

Pennington (1991) suggested that the "mixed findings" of the two approaches could be task
related. In their review of accounting tasks and expertise performance, they characterised the
findings regarding expertise performance as "mixed" in all financial diagnosis task contexts,

while many of the findings in other tasks, such as for example, internal control evaluation,

were much more consistent and indicated superior expertise performance. These findings
suggest that the financial diagnosis task may be a task where experience effects are not very
evident.

Accuracy and consensus are the two aspects of judgement performance most often studied.
In cognitive experimental studies, these aspects are studied as dependent variables 1. Other
aspects of the outcome have also been investigated. The subjects' confidence in their own

decisions have been used (Danos et al., 1984, Danos et al., 1989). Cue utilisation has also

been used in some studies (e.g. Chewning & Harrell, 1990), relying on lens model measures
of cue usage. Investigation of the properties of these dependent variables is mainly

performed in judgement modelling research, and in studies within the descriptive cognitive

approach.

The descriptive cognitive approach began with studies applying protocol analysis
methodology (Ericsson & Simon, 1984) to financial diagnosis tasks. Examples of essential

research questions within the approach are illustrated in table 2.2. Some of the most relevant
studies within this approach to financial diagnosis are listed in chronological order in table
2.5. In addition to an indication of the task context used in these studies, a column indicating
the main focus of the descriptive studies is provided.

In descriptive cognitive studies, the task context is traditionally more realistic than in both
judgement modelling and experimental cognitive studies. This realism is evident in the
stimuli presented, the context of the tasks, and the responses expected from subjects

performing the task. However, the number of subjects and cases are often limited, and
internal validity is often focused at the expense of external validity. Despite these limitations,

1 See the column indicating the dependent variables of table 2.4.
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the descriptive orientation contains some of the most important studies of information

processing behaviour in the financial diagnosis task.

All tasks studied in this approach require task specific knowledge for their solution. Newell
and Simon (1972) assume that the greatest variation in problem solving behaviour is
explained by the task structure. Their suggestion is that the less structured a task is, the larger
differences in individual information processing behaviour can be observed.

Reference Task context Descriptive focus
Bouwman, 1982 Evaluate position of firm Expert/novice differences
Bouwman, 1983 Evaluate position of firm Comprehensive

descriptive model
Biggs, 1984 Earnings forecasting Information search and

usage
Campbell, 1984 Loan decision The use of four financial

statement items
Biggs et aL, 1985 Loan decision Effects of task size and

similarity of alternatives
Methlie 1993, 1994 Loan decision Knowledge representation

and computational model
Bouwman et al., 1987 Investment Comprehensive

screening descriptive model
Anderson, 1988 Prospectus Expert/novice differences

evaluation
Blocher & Cooper, 1988 Analytical review Individual problem

task) solving behaviour
differences

Bedard & Biggs, 1991 Analytical review Search for pattern recog-
task- nition and hypothesis

formation behaviour
Biggs et aL, 1993 Going-concern Knowledge representation

judgement and computational model..Table 2.5 Selected descriptive cogrntrve studies of financial diagnosis

The effects of task size and similarity within the same task context was investigated by Biggs,
Bedard, Gaber and Linsmeier (1985). In accordance with an information economics approach,

loan officers used non-compensatory decision strategies when the size-' of the task was large,
and when similarity+ was high. In this study only pre-evaluated qualitative information was
used, and thus, generalisation was somewhat limited.

) The inventory account evaluation task studied by Blocher and Cooper (1988) is included in this review
because they used a comprehensive stimulus material including large amounts of financial statement cues
relevant to financial diagnosis in general.
2 The inventory account evaluation task studied by Bedard and Biggs (1991) is included in this review because
they used quantitative financial statement cues relevant to financial diagnosis as stimulus material.
3 Task size was operationalised as the number of cues presented to subjects.
4 Task similarity was operationalised as similarity in the cue value of two stimulus patterns.
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A descriptive model of the financial analysis task was developed by Bouwman (1982, 1983).

His sequential model divided the problem solving process into phases of problem detection,

integration of findings, knowledge updating and final diagnosis. This model was refined in
Bouwman et al. (1987), and the problem solving process was now divided into two main

phases of familiarisation and analysis. In the familiarisation phase an information search was

performed, and the search strategy of the analyst guided this search. Of the search strategies
available, sequential search was most typical (Bouwman, 1983), but when explanation and
analysis of findings were needed, the experts relied on a directed search (Bouwman, 1983).
The sequential search was then used as a "safeguard" (Bouwman et al., 1987). These findings
were confirmed by Anderson (1988). Another guiding instrument of the information search,
especially among the experts, were "checklists" (Bouwman et al., 1987). These "checklists"
were knowledge guiding both search and reasoning, and was used during the familiarising

sequential search to detect interesting findings.

Biggs (1984) concentrated on the type ofinformation used by experienced financial analysts

in an earnings power assessment task. The report most widely searched was the income
statement, with a relative percentage of 67.3 %. This was also confirmed in Anderson's
(1988) stud). Another finding reported by Biggs (1984), was the similarity of search

behaviour among the analysts. He found that operating performance indicators and trend

ratios were most often calculated. Blocher and Cooper (1988) also reported a wide range of

ratio and trend information cues searched and used by auditors, but the most surprising
observation was that the subjects did not use the most predictive ratios in this particular task.
Bouwman et al. (1987) reported that 5 to 10 items in their comprehensive stimulus material
represented 25 % of total cue usage. During familiarisation, the income statement was the
most widely used report, and a ratio report not included in the earlier studies by Bouwman,
was the second most used. However, during reasoning and analysis, non-financial items were
most widely used.

Anderson (1988) expected professionals to search for smaller amounts of information, but
could not confirm this hypothesis. However, the professionals used a smaller amount of
information. Anderson (1988) also investigated the manipulation and weighting behaviour of
the subjects, and found the subjects weighting negative cues more heavily than positive. This
finding was contradictory to the finding reported in judgement modelling studies, that
subjects overweight positive information (Slovic, Fischhoff & Lichtenstein, 1977).

In the Govindarajan (1980) content analysis, the use of earnings versus cash flow information
was compared. The study concluded that earnings information was considered more
. important than cash flow information. Campbell (1984) tested loan officers' usefulness of four
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cues of "Big GAAp!" financial statements; earnings per share, deferred taxes, leases and

inflation adjusted information. She found that loan officers did not utilise this information
when making a loan decision.

Reasoning processes are seldom reported explicitly in financial diagnosis studies. Bouwman
(1983) documented the subjects' use of qualitative reasoning. Quantitative information was

transformed to a qualitative form to characterise both the level and trend of financial cues.
This finding was common to all of Bouwman's (1982,1983) subjects. The qualitative

characterisation of financial information was the result of the familiarisation or examination
phase. Only qualitative information that deviated considerably from what was expected, was
remembered and used in the analysis phase.

The formulation of hypotheses to guide the reasoning, was typically found among
experienced subjects both in financial analysis (Bouwman, 1982) and in auditing (Blocher &

Cooper, 1988). This was not found among the inexperienced subjects, where a sequential
attention to observations dominated the reasoning process (Bouwman, 1982). The reasoning

process of these subjects was characterised as data driven and forward chained. Not
formulating the relevant hypothesis was found by Bedard and Biggs (1991) to be the main

reason of subjects' error in an analytical review task.

Most studies suggest some kind of schematic representational form of knowledge. In the
early study of Bouwman (1982), the schematic structure was termed a "checklist", and this

representational form was considered unique to the experts in the study. An example of such a
"checklist" could be a list of common problems which transforms diagnostic reasoning into

diagnostic recognition (Bouwman, 1984, p. 327). In Danos et al. (1984), differences between
experts and non-experts were hypothesised to be explained by "common and sharply defined
knowledge structures or schemata" (Danos et al., 1984 , p. 563). Later, Biggs and Wild (1985)
suggested a representational form that could guide the recognition of known patterns in a time
series. In Meservy et al. (1986), "frames of reference" was suggested as an alternative to
production rules. In Biggs et al. (1987) "ad hoc schemata" were suggested as the

representational form. These suggestions were supported by the finding of Bouwman et al.
(1987), that "financial templates" was the most important representational form. These
"financial templates were proposed to be "complex structures that contain a variety of

knowledge: industry-specific standards of what is acceptable, "pictures" of typical company
behaviour, typical problems for that kind of company, or industry, and "ready-made"
evaluations of the attractiveness as an investment" (Bouwman et al., 1987, p. 26). The
"financial templates" were activated early in the problem solving process, and guided

! Generally Accepted Accounting Principles.
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reasoning. The "templates" also functioned as "recognition devices" during the familiarisation

phase of the problem solving task, and reduced the analysis phase to one of synthesising
recognised patterns. Bouwman et al. (1987) states:

It replaces a reasoning process by a recognition process, which is much faster
and requires less effort. (Bouwman et al., 1987, p. 22)'

Pattern recognition was specifically searched by Bedard and Biggs (1991) in an analytical

review task including only quantitative financial statement cues. They reported that the best

performing subjects showed "pattern recognition abilities". Bad performance results were
explained by three errors; acquisition error, pattern recognition error and hypothesis
generation error. Thus, the Bedard and Biggs' (1991) model assumed that subjects first
identified relevant discrepancies. These were recognised as a pattern, and the pattern was
linked to a formulated hypothesis of the pattern being the cause of the error. Bedard and
Biggs showed that 14 of the 21 subjects recognised the pattern, but did not formulate the
hypothesis to link it to. They used this finding to suggest that many of the subjects had pattern
recognition abilities, but could not connect the recognised pattern to the correct hypothesis.
However, Bedard and Biggs did not investigate the representational form necessary for the

pattern recognition to take place.

The importance of pattern recognition during the familiarisation phase of financial diagnosis

was also stressed by Biggs et al. (19931), in their attempt to build a computational model of

the going concern decision of auditors. They proposed two initial phases ve~ similar to the

familiarisation and analysis phases referred to above. The primary purpose of.the first phase
was problem recognition. Several categories of knowledge were assumed to be necessary to

perform problem recognition. Procedural knowledge guided the reasoning process. Financial
knowledge was both specific and general, and was used to recognise patterns in the financial
information indicating going concern problems. Event knowledge was case specific, and was
used to link detected problems to causes. A prepositional network representation was
proposed for most of the financial and event knowledge. However, the problem recognition
itself was implemented by applying standard rule-based tests of the financial cues against
level standards, or by comparing cues over a sequence of consecutive years.

One of the few descriptive cognitive studiesformalising the financial knowledge presumed
used by financial diagnosticians, and suggesting a method that could be used to turn verbal
protocol data into representations of such knowledge, was a study by Methlie (1993, 1994).
The main contribution in this study was the development of a method termed conceptual

l See also Selfridge, Biggs & Krupka, 1992.
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analysis, that was used to identify and structure the concepts and attributes of concepts used
by financial diagnosticians in a hierarchical conceptual structure. When conceptual analysis

was applied to verbal protocols of an expert performing credit evaluation, two important
findings were made. First, attributes of a concept were of two types. Evaluative attributes
were evaluated against an internal standard, while comparative attributes were evaluated by
comparisons of two or more attributes. An example of an evaluative attribute is the level of a
financial ratio, while an example of a comparative attribute is the trend in two or more values
of a financial ratio. This finding emphasises the importance of the two concepts "level" and

"trend", both presumed functional in the evaluation of the same type of financial statement
information. The second important contribution of Methlie's (1993, 1994) study was the
structure of the conceptual hierarchy of the financial diagnosis expert. The hierarchy
consisted of four major diagnostic concepts or areas representing "profitability", "financial

structure", "financialleverage" and "liquidity". The expert's opinion on these diagnostic areas
was formed by evaluative and comparative investigation of a selected set of financial ratios,
and the diagnostic area opinions were merged in a main financial diagnosis. As expected, the
diagnostic areas found by Methlie (1993, 1994) corresponded well to theoretical concepts

identified in predictive studies, and were believed to be diagnostic of a firm's financial
situation.

Tests of response accuracy are limited to situations where comparisons with actual results
are possible, and consequently, not often focused in descriptive studies. One exception was a
study by Anderson (1988), who tested the accuracy of professionals and non-professionals.
He found greater accuracy among professionals in a security pricing task than among non-
professional subjects. Surprisingly low accuracy was found by Blocher and Cooper (1988), in
an analytical review task. Low accuracy was also found by Bedard and Biggs (1991), in their
fairly similar analytical review task.

2.3 The predictive approach

The predictive approach to financial diagnosis consists of hundreds of published studies of
the task contexts listed in table 2.1. Foster's (1986) empirically oriented textbook refers to
five areas of research were financial diagnosis is involved; in the evaluation of securities, in
corporate restructuring, in debt rating, in distress prediction, and in the loan decision.
Analysts performing the security evaluation task use capital market information and other
information collected from sources other than the financial statement. The corporate
restructuring task context is not unambiguously related to financial diagnosis, and an
acquisition can be motivated both in financially relevant and financially less relevant factors.
Consequently, we focus on some of the most well known contributions primarily on the three
task contexts; bankruptcy or distress prediction, bond or debt rating, and loan decisions. More
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comprehensive reviews of the predictive approach are found for bankruptcy prediction studies

in Jones (1987) or Altman (1983), for bond rating studies in Belkaoui (1983), and for loan

decision studies in Rosenberg and Gleit (1994). A c' .. orehensive review of the contributions
in all task contexts up to 1980 is found in Altman et ...,. (I 981).

Providing a comprehensive review of this research is far beyond the scope of this section.

However, referring to the lens model of figure 2.1, the predictive approach is of relevance for
two reasons. First, the relevant cues of a financial diagnosis should correspond to relevant
cues of financial prediction in the task contexts referred to above). Next, an economic theory
of financial diagnosis should underlie the left hand side of the model, and may be
implemented as part of the knowledge represented in a cognitive model of financial diagnosis.
Consequently, these two aspects of predictive studies are of particular relevance. After a brief
review of some of the more relevant contributions within the predictive approach, we
concentrate on the treatment of these two aspects.

A selection of some of the more important studies with a predictive approach is shown in

table 2.6. The studies are grouped, and ordered chronologically within each task context. In

addition, two columns indicating the methods applied in the predictive models and the main
focus of each study, are provided.

From the selection in table 2.6, we see that the contributions to the three task contexts have

had a very similar development. Originally, simple models were applied to the task, later
followed by more sophisticated models. For example, discriminant analysis applications were
typically followed by quadratic discriminant analysis, logit and probit analysis, and last,
nonparametric techniques, such as recursive partitioning, have been applied.

Methodologically, these studies have an orientation quite different from traditional theory
driven research. Most of the studies are data and method driven, starting with a potential set

of predictive cues. Next, the most predictive cues are selected based upon prediction or

classification accuracy in a sample. Validation of the model is traditionally performed on a
holdout sample, or with forms of cross validation (Lachenbruch & Mickey, 1968; Stone,
1974).

) At least for skilled financial diagnosticians.



44

Reference Task context Method Focus
Beaver, 1966 Bankruptcy Univariate Distributions of

prediction analysis failed and other
Altman, 1968 Bankruptcy Discriminant Development of

prediction analysis Z-model
Wilcox, 1976 Bankruptcy Conceptual Theoretical

prediction model model
Altman, Haldeman & Bankruptcy Discriminant Improvement of
Narayana, 1977 prediction analysis Z-model
Ohlson, 1980 Bankruptcy Logistic More realistic

prediction regression assumptions
Mensah, 1983 Bankruptcy Discriminant Price level

prediction analysis adjustment
Frydman et al., 1985 Bankruptcy Recursive Nonparametric

prediction partitioning model
Gentry, Newbold & Bankruptcy Logit analysis Cash flow
Whitford, 1985 prediction data
Zavgren, 1985 Bankruptcy Logistic Economic inter-

prediction regression pretation
Karels & Prakash, 1987 Bankruptcy Discriminant Test for normal-

prediction analysis ity assumptions
Zavgren & Friedman, 1988 Bankruptcy Logistic Underlying

prediction regression derived factors
Gilbert, Menon & Schwartz, Bankruptcy Logistic Only stressed
1990 prediction regression cases
Laitinen, 1991 Bankruptcy Discriminant Conceptual

prediction analysis model
Falbo, 1991 Bankruptcy Discriminant Level, trend and

prediction analysis stability
Molinero & Ezzamel, 1991 Bankruptcy Multidimensiona Nonparametric

prediction Iscaling groupings
Horrigan, 1966 Bond rating Regression One function for

analysis each class
Pinches & Mingo, 1973 Bond rating Discriminant Classification

analysis with 5 classes
Kaplan & Urwitz, 1979 Bond rating Probit Relating linear

analysis score to rating
Bhandari, Soldofsky & Bond rating Discriminant Rating changes
Boe, 1979 analysis
Reiter & Emery, 1991 Bond rating Conjoint Methodological

analysis aspects
Ziebart & Reiter, 1992 Bond rating Conceptual Theoretical

model model test
Buta, 1994 Bond rating Recursive Rules induced

partitioning
Mutchler, 1985 Going-concern Discriminant Introducing

judgement analysis mitigation
factors

Koh & Killough. 1990 Going-concern Discriminant Client focus
judgement analysis

Hansen et al., 1993 Going-concern Recursive Comparison with
judgement partitioning traditional

models
cont..
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...
Reference Task context Method Focus
Orgler, 1970 Loan decision Regression Dummy

analysis variables
Edmister, 1971 Loan decision Discriminant Dummy

analysis variables
Chesser, 1974 Loan decision Logistic Non-compliance

regression
Doukas, 1986 Loan decision Discriminant Comparison with

analysis behaviour
Srinvasan & Kim, 1987 Loan decision Recursive Behavioural

partitioning dependent
variable

Shaw & Gentry, 1990 Loan decision Recursive Rules induced
partitioning

cont

Table 2.6 Selected predictive studies of financial diagnosis

In bankruptcy prediction, Beaver (1966) constrained the set of potentially relevant cues by an

investigation of the univariate predictive accuracy of 30 cues covering the concepts of "cash-
flow", "profitability't.i''leverage'', "liquidity!" and "turnover". He found that the ratio cash

flow/total debt classified 87 % of the holdout cases correctly, one year prior to failure.
Altman (1968) used discriminant analysis to develop his first Z-score model using five ratios:
Working capital/total assets, retained earnings/total assets, earnings before interest and
taxes/total assets, market value of equity/book value of debts, and sales/total assets. The
model predicted 83.5 % of the holdout cases correctly.

Later Altman et al. (1977) improved the original Z-score model by including other variables,
now intending to represent "profitability", "earnings stability", "interest coverage",

"cumulative profitability", "liquidity", "capitalisation", and "size". In addition, this model

incorporated considerations of prior probabilities, unequal covariance matrices, and costs of
misclassification. New developments in classification methods have continuously been
adopted by bankruptcy prediction researchers, and implemented in their models. Ohlson

(1980) used logistic regression to overcome some of the methodological critiques of
discriminant analysis. Nonparametric methods, such as recursive partitioning (Frydman et al.,
1985) and multidimensional scaling (Molinero & Ezzamel, 1991) have been applied with
some success.

New variables have been included in bankruptcy prediction models both with and without a
firm theoretical foundation. Mensah (1983) found that price level adjusted ratios could
improve a logit model when misclassification costs were considered. Gentry et al. (1985)

found that the use of cash flow based variables had only limited success in improving current
prediction models. Karels and Prakash (1987) suggested tests of multinormality should guide

l Both liquidity related to total assets and to current debt.
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the selection of independent variables. The studies referred to above were all representative

examples of the different ways to improve the initial prediction models by Beaver (1966) and
Altman (1968)1. Recently, several authors have questioned the ability of bankruptcy models

to separate failure from non-failure in a set of stressed firms. Both Gilbert et al. (1990) and
Hopwood et al. (1994) found rather unimpressive results when this alteration of the task was
performed.

Karels and Prakash (1987) were among the first to compare the different cues suggested in
the bankruptcy prediction literature. In their summary (Karels & Prakash, 1987, p. 578), the
six ratios found significant in more than one bankruptcy prediction study were; cash
flow/total debt, quick assets/total assets, current assets/total assets, net income/total assets,

operating income/total assets and total debt/total assets. Two of the ratios represent
"profitability", two represent "liquidity", one represents "leverage" and one represents "debt

coverage". Aspects other than the level of a ratio have also been considered. Stability of the
ratios was introduced as an important independent variable in the Z-model of Altman et al.

(1977). Explicit consideration of the trend of the ratios is less evident, but exceptions have
been found (Falbo, 1991).

Studies founding their selection of independent variables and model implementations on a

conceptual basis, have followed two approaches. The model can be based upon the "principle
independent factors of the financial statement" (e.g. Zavgren & Friedman, 1988 p. 35), or
upon some theory of the process of bankruptcy (e.g. Wilcox, 1973). The first of these
approaches is based upon empirical research on the pattern of financial statement data (e.g.
Gombola & Ketz, 1983; Pinches, Mingo & Caruthers, 1973). Zavgren and Friedman (1988)
applied the sevenfactors of Pinches et al. (1973): "Inventory turnover", "receivables
turnover", "cash position", "short-term liquidity", "return on investment", "financialleverage"

and "capital turnover" to select relevant cues. However, the way these factors were related to
bankruptcy remained largely unexplained. A similar approach was also applied in the
judgement modelling approach, where e.g. Libby (1975) used factor analysis to guide the

selection of cues from Deakin's (1972) 14-variables set. Even if the approach is built on
patterns of variation, it is not obvious that these patterns of variation are of relevance to
financial diagnosis. This general problem of factor analysis was stressed by Jones and Sibson
(1987):

1 8 strategies for improvement are listed in Laitinen, 1991.
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It (principal components analysis) relies for its success on the tendency for large

variation also to be the interestingly structured variation, a connexion which is
not logically necessary, and oftenfails to hold in practice, .... (Jones and Sibson,
1987,p. 2)

Studies applying a theory -based conceptual model in their selection of cues and model
implementation are few. Wilcox (1976) used a gambler's ruin approach to develop a
theoretical basis for the indication of financial risk, and found performance results of his

model comparable to statistically derived models. A different conceptual basis for the

prediction of failure was given by Argenti (1976), suggesting different failure processes. He
suggested three failure processes were relevant: Some firms never rose above poor
performance. Other firms experienced growth and rapid decline. The third category consisted
of firms experiencing good and stable performance, with a sudden partial collapse. The partial

collapse further initiated rapid decline. Laitinen (1991) combined the two approaches referred
to above to build a conceptual model of the failure process. He discussed the relevance of

traditional factors found in financial statement cues, and added a growth factor. Next, he used
factor analysis to detect patterns of variation over time infailedfirms. The results showed

three failure processes represented by "the chronic failure firm", "the revenue financing firm"
and "the acute failure firm". Unfortunately, his model was not validated on a holdout sample.
Despite these efforts, the status of theoretical models in bankruptcy prediction can still be
characterised by Jones' (1987) description l: "Theory has played a limited role in guiding

empirical research projects" (Jones, 1987, p. 136)2.

The going-concern judgement task context is very similar to the bankruptcy prediction
context, but has not received similar interest in the predictive literature. One reason may be
that the auditors' decision to qualify for a going concern problem includes an evaluation of
contrary and mitigating information, after problem identification has been done. Mutchler
(1985) studied whether auditors decision to qualify for going-concern problems could be
predicted with publicly available information. She interviewed auditors to guide the selection

of relevant financial statement cues, and ended up using the following ratios: Cash flow/total

liabilities, current assets/current liabilities, net worth/total liabilities, long-term liabilities/total
assets, totalliabilities/total assets and net income before tax/net sales. In addition, she tested

the effect of news, positive trends, and prior qualification on the linear model's ability to

predict qualification from cases already identified as having going-concern problems. The
best model included prior qualification, and predicted 90 % of the cases correctly. Using a

l See also Foster (1986) p. 559-560.
2 An example of how behavioural theory can be used in selection of diagnostic cues in financial diagnosis tasks
is by reviewing analyst reports to find signals and fundamentals reported relevant by these analysts. This
approach has recently been used by Lev and Thiagarajan (1993), but their model was used to predict excess
return.
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subset of the Mutchler-data, Hansen et al. (1993) compared the predictive abilities of logistic
regression to recursive partitioning on the same task. The prior qualification variable was left
out, giving predictive accuracy of 82 % for the best model. Recursive partitioning did not
perform better on this sample.

In the bond rating context, the dependent variable has a different scale than in the previous
task contextsl. Horrigan (1966) developed a bond rating model using regression analysis,

assuming that the dependent variable was interval scaled. Horrigan (1966) used primarily

financial statement cues in the model, and was criticised by West (1970), who used cues
applied from Fisher's (1959) model of market risk premiums. The methodological
development of bond rating studies is very similar to how bankruptcy prediction models have

developed. Pinches and Mingo (1973) applied factor analysis to select cues representing
interesting dimensions, and used these cues in a 5-group linear discriminant model. Altman
and Katz (1976) used quadratic discriminant analysis with 14 cues. The most significant
where: Interest coverage, variability of interest coverage, variability of operating income,

return on assets, total assets, market value of equitylbook value of equity, and retained
earnings/total assets. Kaplan and Urwitz (1979) used probit analysis including seven cues in
their best model. The following cues proved most significant: Subordination, total assets, net
income/total assets, and long term debt/net worth. Variability measures and beta did not

improve predictions significantly. Neither did the probit analysis model, when compared to
traditional linear regression. A table of the predictive accuracy of these models can be found
in Altman et al., (1981), showing that classification accuracy varied from 56 to 77 % . These
results should be interpreted with caution, since the number of classes of the dependent

variable varied across studies. Nonparametric methods have also been applied to the bond
rating task context. Reiter and Emery (1991) compared traditional OLS regression, probit
analysis, and conjoint analysis. They did not find statistical support for preferring one model

to another. One explanation may be that to apply conjoint analysis, the independent variables
must be binary encoded, and a loss of information will occur-, Reiter and Emery (1991) also
tested the effect of including several non-financial cues in the model, and found that some of
these significantly improved accuracy. However, some of these variables (e.g. trouble with
nuclear plant), seemed somewhat speculative, and were not selected on the basis of a
theoretically derived hypothesis. Recursive partitioning has also been applied to bond rating
(e.g. Buta, 1994).

Consequently, results from the bond rating studies generally show somewhat lower
classification accuracy than bankruptcy prediction studies. However, it is difficult to establish
if this difference is due to the differences in classification categories, or to a difference in the

l Variables measuring the rating of bonds are ordinal scaled.
2 Binary transformations suggested by Edmister (1971) were used.
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predictability of the tasks. Cues used to predict bonds have many similarities to successful
cues used in bankruptcy prediction, but variability and coverage measures! are more

frequently applied in bond rating studies.

The status of theory in bond rating models is very similar to its status in bankruptcy
prediction. Emery and Reiter (1991) state that:

For the most part, the models used in past studies have been chosen on the basis
of statements by the rating agencies about factors considered in rating a bond or
other empirical techniques, such as factor analysis and stepwise regression.
(Emery & Reiter, 1991, p. 149)

The factors used by rating agencies are generally not official information. However, some

agencies release information on distribution differences in particular cues for the different

rating classes. Foster (1986) listed provisions on indenture agreements, protection afforded by
existing assets and quality of management as factors, other than those traditionally measured
by financial statement cues, of relevance to rating agencies

The nature of the bond rating task context makes theoretical development of a model less
likely to occur. One exception is found in the study of Ziebart and Reiter (1992), relating
financial variables to both bond rating and bond yields. They applied a causal modelling
approach, and found that financial statement cues affected both bond ratings and bond yield
directly. In addition, financial information indirectly affected bond yield through bond

ratings. However, no specific conceptual model was developed for the direct effect of
financial statement cues on bond ratings. The financial information used in this study was
beta, total assets, interest coverage, net income/total assets and long term debt/market value of

equity. In a stock return prediction task, Ziebart (1987) used four latent variables measured by
13 ratios. The latent variables were assumed to represent "liquidity", "leverage",

"profitability" and "activity". No theoretical basis for the selection of latent variables was
provided, and the "activity" concept was measured by turnover ratios.

In addition to bond rating, bond rating changes have been studied in predictive models. An
early example was when Bhandari et al. (1979) attempted to predict rating changes of
industrial bonds with a linear discriminant model.

Predictive studies of the loan decision have focused either on the credit granting decision or
on the loan review process (Rosenberg & Gleit, 1994). Both task contexts involve financial

l Particularly, interest coverage measures.
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diagnosis, but decision outcome depends more on financial diagnosis in the first. One reason
is that loan history may be more relevant in loan review than in credit granting. Among the
first developments was the loan review model of Orgler (1970), used to classify good and bad

loans. This form of categorising the dependent variable is common within the loan decision
context, and makes the results of these models comparable to bankruptcy prediction models.
In fact, the failure concept is operationalised both as bankruptcy and as loan default I.
Edmister (1971) developed a model to predict loan default in small businesses by using
binary transformations of the variables equity/sales, net working capital/sales, current
liabilities/equity, funds flow/current liabilities, inventory /sales trend, and quick ratio in
addition to an industry related quick ratio trend. Doukas (1986) compared loan classifications
with predictions from simple bankruptcy prediction models. Not surprisingly, it was found
that the Altman (1968) model was a poor predictor of loan classifications as performed by

Canadian bankers.

The methodological development of the loan decision studies follows a pattern similar to the

bankruptcy prediction studies. Simple regression and discriminant analysis approaches have
been replaced by methods with more realistic assumptions of the independent and dependent
variables. Srinvasan and Kim (1987) were the first to compare parametric and nonparametric
methods to the credit granting decision. They used customer files to classify customers into
high risk and low risk categories. Current ratio, quick ratio, net worth/total debt, logarithm of

total assets, net income/sales and net income/total assets were used to classify the customer
into one of these two categories. Their models showed very high classification accuracy, with
recursive partitioning performing best, classifying 92.5 % of the customers correctly in a
cross validation procedure. These results were quite comparable to the best accuracy results
reported in the bankruptcy prediction literature. A more traditional recursive partitioning
application to the loan decision task was found in Shaw and Gentry (1990).

The position of theoretical models of the loan decision is very similar to the position of theory

in the other task contexts reviewed above. A theoretical model of the process leading to loan
default should prove very similar to bankruptcy process models, but few propositions have

been made on such a theory. Some predictive studies of the loan review or credit granting

process of loan officers are closely related to studies in the judgement modelling approach.
Srinvasan and Kim (1987) used a behavioural model in their study, separating the assessment
of default risk from other factors of relevance.

I For an overview of different operationalisations of "failure", see Karels and Prakash 1987, p. 576.
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2.4 Other contributions of relevance to financial diagnosis

Most of the research questions listed in table 2.2, and reviewed within each approach to
financial diagnosis have also been investigated in other disciplines. The literature on human
information processing in accounting covers tasks such as internal control evaluations
(Frederick, 1991), materiality judgements (Waller & Felix, 1989), analysis of performance

reports (Shields, 1984), or intuitive forecasting (Danos & Imhoff, 1983), just to mention a

few. Our review has been selective in only investigating studies which are of direct relevance

to financial diagnosis as defined above. In this way, we have tried to avoid one of the main

pitfalls pointed out by Gibbins and Jamal (1993) in generalisingfindingsfrom this literature
across tasks. However, in some of the studies of tasks not covered by our definition of
financial diagnosis, particularly relevant research questions have been investigated.

In an auditing task, Biggs and Mock (1983) found two different overall problem solving
approaches. For subjects following a systemic strategy, the data guided the problem solving

behaviour in a sequential matter. In a directed strategy a subtask was defined to guide the

search. Information necessary to perform the subtask was searched, and the subtask was
completed before the next subtask was identified. Biggs and Mock (1983) found the amount

of information attended to correlated with problem solving strategy. As expected, a systemic
strategy resulted in subjects attending to more of the available information than with a
directed strategy.

As opposed to studies of financial diagnosis task contexts, auditing studies w,ith focus on

reasoning strategies are more common. Two examples are Biggs et al. (1987) and Biggs and
Mock (1983). In the Biggs et. al (1987) study, experienced auditors used two reasoning
strategies in parallel. Reasoning by assumption meant that the auditor stated an assumption
and let this assumption be an anchoring point for the reasoning to follow. Reasoning by
analogy meant that the knowledge of previous and comparable situations guided the
reasoning. Both these reasoning processes were heuristic. Reasoning by assumption may be
considered a variation of the general anchoring strategy (Tversky & Kahneman, 1974), also

found in Biggs and Mock (1983). Reasoning by analogy is closely related to pattern

recognition.

In Biggs et al. (1987), the authors explicitly searched for evidence of probabilistic reasoning
by the subjects. The lack of such findings were considered to support the hypothesis that
some form of non-probabilistic reasoning about uncertainty, took place among the subjects.

Some of the studies outside the financial diagnosis task have focused on representation of
knowledge of novice and expert subjects. The same representational forms as those assumed
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to guide judgement in financial diagnosis, have also been used within these studies. An
example of a linear additive model of "knowledge representation" can be found in Peters
(1990):

The model's knowledge base contains a series of cue weights, assigned by the
author. The model selects relevant cues and combines their weights and assessed
values using a linear combination rule (Peters, 1990, p. 89-90)

The representation of knowledge in production rules is more common, and was found in

several studies (e.g. Biggs et al., 1987; Meservy, Bailey and Johnson, 1986). The
representation form of production rules was explicitly searched by Meservy et al. (1986), in
an attempt to model the internal control evaluations of CPAs l. However, such rules were not

explicitly mentioned by the CPAs, and had to be induced by task analysis. The same

problems with identifying production rules were experienced in Biggs et al. (1987). The use
of a schematic representational form was hypothesised by Meservy et al. (1986), but
schematic representational forms were not used to represent knowledge in the model of the
auditors.

Recently, several studies within the auditing discipline have focused on differences in
representational forms among subjects. Frederick (1991) tested the assumption that

experienced subjects had a more schematic organisation of memory, and found that auditors
recalled more internal controls when these controls were organised by transaction flow. The
student subjects showed no such difference. This finding was interpreted as support of
Frederick's (1991) hypothesis of a schematic organisation of memory in experienced subjects.

Another approach to investigate the schematic organisation of memory, is to search for
configural information processingl . The lack of significant interaction effects found in

judgement modelling and cognitive experimental studies of financial diagnosis have been
used to suggest that configural information processing is not evident in financial diagnosis.

Brown and Solomon (1991) studied whether configural information processing was used in
tasks obviously requiring such information processing. They found support for subjects using
configural information processing in situations where domain-specific knowledge implied
that it was appropriate. The lack of similar findings in financial diagnosis may suggest that
the financial diagnosis task does not require this kind of information processing. Another
explanation may be that the configural information processing necessary in this task is not
easily implemented in simple interaction terms of linear models.

l Certified Public Accountant
2 Configural information processing is when the relevance of a cue is dependent on the context of other cues,
and is often modelled by interaction terms in a linear model.
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Sarah Bonner has studied the interaction between experience and attributes of the task,

suggesting that experience differences will only be evident in tasks requiring task specific and
not generic knowledge (Bonner, 1990, 1991). Using lens model measures of cue selection and
cue usage, she found experience effects in an analytical risk assessment task both for cue
selection and cue weighting. This line of research is reviewed in Bonner and Pennington
(1991), summarising their conclusion in the following way:

In summary, there is a strong relation between the quality of performance in
auditing tasks and the type of cognitive processes used in those tasks. Expert
auditors perform better, on average, in tasks that require construction processes
(information search, comprehension, hypothesis generation, and design) rather
that reduction processes (hypothesis evaluation, estimation, choice). Performance
level is also related to the presence of theory-based versus statistical reasoning
and the quality of the knowledge available for processing. (Bonner & Pennington,
1991, p. 25-27)

Relating these conclusions to financial diagnosis, the mixed results of experience effects may
seem reasonable.

A final question related to financial diagnosis, but studied outside this task domain, is
whether financial ratios traditionally used as cues in diagnosis are able to capture variations of
significance in the underlying financial statement information. This question was investigated
by Kinney (1987), in a study where he induced material accounting errors of different types in

the underlying financial statement material. He studied whether these errors could be detected

in financial ratios using simple detection rules. Two conclusions were made: First, even large

material errors did not lead to change in ratios, when measured relative to their monthly
natural variation. Second, by comparing the pattern of observed change in several ratios

simultaneously, the particular type of error could very often be identified. These findings

indicated that configural information processing may be relevant and necessary if financial
ratios are to be used in financial diagnosis. However, the configural pattern was often found
to be complex, leading Kinney (1987) to suggest that pattern search techniques could be
useful.

2.5 Summary of findings on the financial diagnosis task

It is possible to unify some of the findings from the different approaches to the study of
financial diagnosis reviewed above. However, conflicting results have also been identified in
the studies referred to above. This section summarises some of the main findings that are
supported by several approaches, and suggests that new ,explanations are necessary of some of
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the conflicting results found in the literature. The presentation is divided into five subsections.

First, findings on the task itself are briefly summarised, followed by a summary of findings
relating to search, reasoning and representation. Last, main findings on the response or
outcome of the task are summarised.

Task
Research in the judgement modelling and predictive approaches are closely related. Both
approaches assume simple models can be used to map financial statement information to
judgements and economic events. The cognitive approach has provided us with a descriptive
model of information processing in the financial diagnosis task. The processing is performed
in two phases corresponding to perception and judgement, in which the first is dominated by
information search, and the second is dominated by information integration and
interpretation. This view is also supported by recent judgement modelling studies (Rodgers,
1991).

The findings referred to above make it reasonable to assume that the financial diagnosis task
is largely similar across task contexts. This view is generally supported by other research in

cognitive accounting (Bonner & Pennington, 1991, Gibbins & Jamal, 1993).

Methodologically, three findings relate to the task itself. First, experiments in financial

diagnosis must be set up using realistic cue information, setting and response options (Holt &
Carroll, 1980). Second, the applicability of traditional information processing theory and
methodology have been questioned. One example is the question if verbal protocols
accurately correspond to cognitive information processing (Anderson, 1985). A second
example is the problems with identifying production rules (Biggs et al., 1987). A third

example is the problems with the two-stage operationalisation often used to test propositions
based on information processing theory (Choo & Trotman, 1991; Danos et al., 1984). Third,
the use of judgement modelling based measures of cue usage has also made the results found
in the experimental cognitive approach on factors affecting cue usage doubtful (e.g.
Chewning & Harrell, 1990)

Search
We have seen that a strong theoretical basis for the selection of relevant cues does not exist.
However, empirical investigation of variations in financial statement information has been
used to guide cue selection (e.g. Gombola & Ketz, 1983). The number of different cues used
in financial diagnosis studies is large, but to summarise the relevant cues, we have searched

for the theoretical concepts assumed operationalised by the cues in a selection of studies. We
have mainly concentrated on studies where the theoretical concepts are explicitly mentioned.
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Table 2.7 summarises the use of cues to operationalise the 9 most widely mentioned

theoretical concepts presumed relevant to financial diagnosis.

"Lever "Profit- "Liqui "Debt "Asset "Cash "Size" "Inter- "Capit- Task
Concepts -age" ability" -dity" cover- balance" posit- est cov- al turn- con-
Studies age" ion" erage" over" text!
Libby, 1975 X X X X BP
......asey, 1980 X X X X X BP
Abdel-khalik & X X BP
EI-Sheshai, 1980rzi ,1980 X X X X BPImme," "
Chalos, 1985 X X X X X BP
Simnett & X X X X X X BP
[Irotman, 1989
[Kida, 1980 X X X X X G
Hopwood, et al. X X X X X X G
1994
Rodgers, 1991 X X X L
lBeaver, 1966 X X X X BP
~ltmal1, 1968 X X X X BP
Ohlson, 1980 X X X X X X BP
Frydman et. al, X X X X X BP
1985
Zavgren & X X X X X BP
Friedman, 1988
pilbert et al. 1990 X X X BP
Laitinen, 1990 X X X X BP
Mutchler, 1985 X X X X G
Edmister, 1971 X X X L
Srinvasan & Kim, X X X X L
1987
[Kaplan & Urwitz, X X X X X B
1979
rziebart & Reiter, X X X X B
1992
Table 2.7 Concepts operationalised by independent variables m selected studies of financial
diagnosis.

As can be seen in table 2.7, most of the cues are used as operationalisations of theoretical
concepts that have previously been identified in factor analysis studies of financial statement
information (Gombola & Ketz, 1983; Pinches et al., 1973). This conclusion is obvious from
the strong position of the "profitability", "leverage" and "liquidity" indicators. Somewhat

surprising is the position of the "debt coverage" concept, a position attributable to Beaver's
(1966) early findings. An opposite finding is the weak position of the "turnover" indicators.
Inventory "turnover" was a significant factor in both the factor analysis studies referred to

above. Only capital "turnover" indicators are among the most widely used indicators in

l BP = Bankruptcy prediction, B = Bond rating, G = Going concern judgement and L= Loan decision.
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financial diagnosis). Even though economic theory has been shown to be of little importance
in the selection of cues, the position of cognitive theory is even weaker. No studies have

suggested specific cues based on cognitive theory, such as cues that are particularly useful in
economising on a limited information processing capacity. However, one of the main reasons
for the popularity of financial ratios may be their ability to economise on information
processing capacity. The ratios relate two or more financial statement items to provide new

information, and they simplify comparisons with industry standards and evaluations of trends.

Cues measuring "trend" and "stability" or "variability" are not traditionally used, but in some
studies including these, increased performance results have been found (e.g. Falbo, 1990).

Cognitive descriptive research suggests that "trend" is an important concept, either on its own
basis, or to define a standard for the ratios investigated.

Only small systematic differences can be found in the use of financial statement information

between task contexts. Also, no large differences can be found in the assumptions of what is
relevant financial information between judgement modelling and predictive studies. The use
of external non-financial information in addition to the financial information is somewhat
more common in the loan decision and bond rating task contexts.

Most judgement modelling studies of financial diagnosis, assume cues presented are cues
used. However, several cognitive studies have indicated selective search, and use, of both
income statement information and ratio information from more than one year. The number of

cues used are assumed to be small, and ratios are the classical financial cue. Cue usage must
be measured with reference to a model of the cognitive process, but is typically defined by

standardised weights in a linear model in judgement modelling studies, or by the cue's
presence in a rule in cognitive descriptive studies. This unfortunate connection between cue

usage and the model of the judgement process is particularly obvious in studies comparing
cue usage in different linear and nonlinear models. These studies have shown large
differences in cue usage depending on what model is used, even though the models show
quite comparable performance results (e.g. Schepanski, 1983; Selling & Schank, 1989).

The problem of simultaneous testing of cue usage and model has led to an assumption that
subjects are outperformed by linear models because of inferior cue selection, not because of
cue weighting. Another explanation of this findings may be that nonlinearity in the subject
models are present. However, the inferior cue selection has also been found in cognitive
descriptive studies of the task. This finding may also be reversed to guide model

I Capital "turnover" indicators are also used as operationalisation of "activity".
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development. Thus, a property of the cognitive model should be that inferior selection of cues

leads to good fit to the judgement variable, but worse fit to the predicted outcome.

Information overload has been investigated within several of the approaches to financial
diagnosis, but no clear indication of an inverted U-shape performance with information load
is found. However, performance is found to increase with increased data load up to a point of
optimal data load. Agreement on what optimal data load is, has not been found, varying from
8 items in one study to more than 57 items in another.

A main, and widely supported assumption, is that subjects' information search is sequential
(Bouwman, 198; Bouwman et al., 1987), but the search is guided by what is characterised by

Bouwman (1983), as "checklists". The checklists are guiding structures used to detect
interesting and relevant features in the data material, but they do not force a structure on the
search. These "checklists" are assumed to be closely related to an organisation of knowledge

flexible enough to allow a sequential search through the financial statement, and still can be
used to detect relevant features and stimulus dimensions! during diagnosis-.

Reasoning
Reasoning has mainly been investigated within the cognitive approaches to financial
diagnosis, and the studies focusing this subject are few. In other approaches, integration of
cues used is not investigated as a specific research problem, but assumed to be performed in a

simple judgement model.

One assumption on reasoning in financial diagnosis is that it is qualitative (Bouwman, 1983).

It has been questioned whether or not this assumption is an artifact of the use of verbal

protocol methodology (Meservy et al., 1986), and judgement modelling studies using
transformed quantitative information have not shown better modelling results (Schepanski,
1983). No signs of probabilistic reasoning have been found, but non-probabilistic forms of
reasoning with uncertainty have been suggested.

Research shows that subjects reach high confidence in their preliminary decision early in the
reasoning process, but that they still adjust their preliminary decision to confirming or
disconfirming evidence. However, a bias has been found in the direction of the low

misclassification cost decision. The early confidence may support the assumptions of
hypothesis formation, but explicit formulations are mainly found among experienced

l The terms "features" and "stimulus dimensions" are introduced here to signal that both single cues and patterns
of cues may relevant to the financial diagnosis. A common term used of these, is "features" if they are discrete

. and "stimulus dimensions" if they are continuous.
2 This search strategy may be favourable if diagnostic features are spread out in the information material, and
varies by firm.
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subjects. Studies closely related to the financial diagnosis task have found reasoning by
assumption to be frequently used, but the assumption was often not very clearly stated (Biggs
et al., 1987).

Another reasoning strategy found in studies related to financial diagnosis, is reasoning by
analogy (Biggs et al., 1987). Reasoning by analogy is a special form of reasoning with
reference to a recognised or experienced pattern of financial information. Some authors have

suggested reasoning to be replaced by pattern recognition in financial diagnosis (e.g.
Bouwman et al., 1987, p. 22). However, the recognition suggested in these studies does not
take the form of traditional pattern recognition, where the recognition of the pattern as a
whole is related to conceptualisation (Dretske, 1981). Rather, it takes the form of recognising
a pattern in already conceptualised cues of the financial information. Traditional theory of
pattern recognition I does not assume such a conceptualisation to take place before the pattern
is recognised. Thus, the "pattern recognition" suggested by, for example, Bouwman et al.

(1987) is closer to what is usually termed pattern classification in cognitive science.

The form of pattern classification described above, and assumed in financial diagnosis, is
related to configural information processing, in which patterns of cues of non-additive or

nonlinear form is necessary for characterising or classifying the financial situation of the firm.

Traditional tests have not found conclusive evidence that configural information processing is
necessary and frequently used by financial diagnosticians, but studies in auditing (e.g. Brown
& Solomon, 1991) have suggested that the lack of such findings may be explained by the
robustness of linear models and the formulation of the financial diagnosis tasks.

The importance of pattern recognition is stressed by several authors (e.g. Bedard & Biggs,
1991; Biggs et al., 1993; Selfridge Biggs & Krupka, 1992). Bedard and Biggs (1991) found
two important errors in the subjects' reasoning. One related to the recognition of relevant
patterns and the other to the relation between the recognised patterns and a relevant
hypothesis. However, this study is among the few explicitly investigating pattern recognition
abilities of subjects. Biggs et. al (1993) characterise the situation in the following way:

....pattern recognition infinancial analysis is largely untouched by audit
judgement research. (Biggs et al., 1993. p. 97).

Biggs et al. (1993) formulate two important research questions based upon this fact; "How do

auditors recognise various trends in financial data ?", and "How do auditors link into patterns
various measures of financial performance to identify problems ?" (Biggs et al., 1993, p. 97).

I Generally applied to visual pattern recognition (See Ashby, 1992).
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In addition, research on patterns of financial data has shown that ratios have to be related in

patterns if important aspects, such as materiality errors in the underlying accounts, are to be
detected (Kinney, 1987). All these findings suggest that pattern recognition is of no less

relevance to financial diagnosis than to auditing. However, the form of pattern recognition
suggested in these studies should probably be termed pattern classification. The patterns of

financial data suggested "recognised", are conceptualised in intermediate abstractions used to
form a diagnosis.

Representation
Reasoning is performed over represented knowledge, pattern recognition is performed by the
activation of stored patterns of knowledge, and pattern classification is performed using
intermediate abstractions, all stressing the importance of representations.

The representational content in models of financial diagnosticians has only a limited
theoretical foundation, and is derived by quantitative methods used in judgement modelling
studies! and by protocol analysis in descriptive cognitive studies. A simple model has been
assumed in some bankruptcy prediction studies with, for example, three processes leading to

bankruptcy (Argenti, 1976, Laitinen, 1990). Domain knowledge is only seldom explicitly
presumed in financial diagnosis tasks-.

The knowledge represented in a judgement model of financial diagnosis consists of the

weights in a linear weighting model. It further assumes that cue values are represented by

some "unit" allowing weighting of the value and summation to take place. Other models of

the same familyassume non-additive or non-compensatory weighting of cues. Even though
the integration is nonlinear in some models, the represented knowledge still lies in the

weights. Such models does not rely on intermediate abstractions or internal representations in
the traditional sense of the terms". Further, the robustness of the models relative to response
prediction has made it difficult to reject linear models and accept alternative nonlinear
versions.

Knowledge in a cognitive descriptive orientation is traditionally represented in rules.
Concepts representing the qualitative transformation of cue values initiate the reasoning over
rules. Realisations of rule-based representations are traditionally done in production systems,
and intermediate abstractions are also represented by concepts.

! Such as regression analysis, discriminant analysis or rule induction methods.
2 One exception is in the descriptive study of Biggs et al. (1993), but their domain knowledge is very firm
specific.
3 Basically, in information processing theory sense of the terms.
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Research shows only moderate self-insight in subjects own weighting processes (Mear &

Firth, 1987a), and only moderate signs of the use ofrules (Meservy, 1986). These findings
have led to an assumption that the representational form is schematic. Concepts such as
checklists, financial templates, schemata and frames of reference are used to describe the
suggested schematic organisation of knowledge. Schematic representation of financial
diagnostic knowledge has been suggested because this representational form has the
flexibility necessary to explain some of the important behavioural findings on the task. One of

these is the finding that search is performed sequentially even when stimulus material order is
altered. The representational form required to explain this finding must be flexible. Another
finding is that reasoning can be replaced by recognition during the integration phase of the

task. Schemata have been proposed as a representational system suitable for this:

Schemata are recognition devices whose processing is aimed at the evaluation oj
their goodness-oj-fit to the data being processed. (Rumelhart, Smolensky, et al.,
1986, p. 36)

Mixed results have been found on performance differences between experienced and
inexperienced subjects in financial diagnosis (see Bonner & Pennington, 1991). Instead,
knowledge organisation and cue utilisation differences have been suggested. One, generally

accepted, hypothesis is that a schematic organisation of memory is more common among
experienced subjects. Research has been interpreted as supportive to this view (Choo and
Trotman, 1991), but tests of alternative organisations of memory are encumbered with large

methodological problems. Typically, cognitive accounting studies on the organisation of

memory rely on simultaneous tests of two hypotheses. The first relates to differences in
knowledge organisation, and the second to measurable consequences of different
organisations of knowledge to a specific task.

From the short summary of research on reasoning and representation related to the financial
diagnosis task, it is difficult not to support the view of Biggs et al. (1993), referred to above,
that a broad understanding of the relevance of these concepts to financial diagnosis does not

exist.

Outcome
The standard assumptions on financial diagnosis performance results are still generally valid.
These assume that environmental predictability by linear models is high, and new methods
have shown even better performance. Subject accuracy is also generally high, but lower than
the accuracy of models of the criterion variable. Individual subjects are outperformed by
composite judges, but not significantly outperformed by their own models. Consistency and

consensus are generally high, but self-insight is only moderate. Further, mixed results have
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been found regarding differences in experienced and less experienced subjects' performance,

suggesting obvious performance differences do not exist. These findings justify the use of
graduate business students as surrogates for the relevant subjects performing financial

diagnosis in the industry.

Some research results have been found to weaken the position of the standard assumptions.
The scale properties of dependent variables in different task contexts have made comparisons
of environmental predictability across task contexts difficult. Some authors have even
suggested that the scale of the dependent variables and the error measures used, may explain
some of the standard assumptions (Mear & Firth, 1987b). Other authors have suggested that
the standard assumptions are only valid for the initial parts of the task studied (Barnes &

Huan, 1993). Among the strongest critiques of the standard assumptions, is the study of
Hopwood et al. (1994), showing that predictability, subject accuracy and model accuracy

were low when cost of misclassification, obviously non-stressed cases, and prior probabilities
were considered. The mixed results on differences between experienced and less experienced

subjects in financial diagnosis have been questioned by several authors, generally finding

differences between the two categories of subjects to be related to other aspects of the
information processing behaviour than task outcome. The relationship between task attributes

and experience differences has been summarised by Bonner and Pennington (1991), leading

us to conclude that the financial diagnosis task is not a task where large experience
differences relating to outcome will be found.

Despite these and other critiques, the standard assumptions on financial diagnosis outcome
still have a strong position due to the large amount of research supporting them in various
tasks contexts.
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Chapter 3. Cognitive theory

This chapter first argues that the financial diagnosis may be treated as a classification task.
Being a new cognitive perspective on the financial diagnosis task, thorough introductions to
classification theory in general, and to the most recent contributions to classification theory

are warranted. Classification theory is introduced in section 3.1. Since connectionist theory of
classification represents the most recent development, connectionist theory and connectionist

models of classification are introduced and discussed in section 3.2. The principles laid out in
this section, are later used to develop the connectionist model of financial diagnosis suggested

in chapter 4.

Two approaches may be taken in the selection of cognitive theory relevant to financial
diagnosis. In a theoretical approach, an investigation of theoretical paradigms of cognitive

theory is performed. The purpose of such an investigation is primarily to identify the
underlying assumptions of the theoretical perspectives. In revealing these assumptions, the

choice of a suitable paradigm or theory can, in principle, be made. In a task driven approach,
an investigation of the task, problems and the research contributions are performed. The
purpose of the latter approach is primarily to describe the accumulated research on the
problem and task, and to use this as a starting point in identifying lacking knowledge, and

approaches to supply this knowledge. In this dissertation, the latter approach is taken. Chapter
2 contains the analysis of relevant research on the task under investigation.

The theoretical approach was followed in Pedersen (1988), in which we investigated the

underlying assumptions of two paradigms in cognitive science. In principle, this knowledge

could be used to select the theoretical perspective of greatest relevance to the financial
diagnosis task. However, this choice is relative to the task, and therefore, se.cction of a

relevant theoretical perspective depends on what aspects of the task the theory is best suited
to explain. For a thorough investigation of the theoretical perspectives in cognitive science of
relevance to financial diagnosis, we refer to Pedersen (1988). However, a short presentation

some findings from the analysis is given here.

In cognitive psychology, a division between non-analytic and analytic theories has been
assumed to be perfectly correlated with a division of lower and higher order cognitive
functions (e.g. Brooks, 1978; Estes, 1994, p. 5). The division has been put forward as the
lower limit of cognitive theories (e.g. Dretske, 1981; Pylyshyn, 1984). What Pylyshyn defines

as "cognitively penetrable" functions, have been proposed as this lower limit. Traditionally,
the analytic tradition has been associated with a computational theory of cognition (e.g.
Cummins, 1989, p. 108-113; Fodor, 1980; Haugeland, 1985; Pylyshyn, 1984).
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In the computational theory of cognition, all cognitive systems are symbol systems (Newell,

1980). Cognition is the manipulation of these symbols. The cognitive system is best described
by its representations and processes. All representation is performed using symbols. Symbols

represent through designation. The manipulation of symbols is assumed to be performed
without reference to semantics, but strictly according to syntax. However, the syntax is
meaning preserving, making the system process information according to syntactic rules to
reach a state of new meaningful information. In this way, the symbols are manipulated in
meaningful ways relatively to the represented world.

In this thesis, we will generally define information processing theory as a cognitive theory
based on this computational theory of cognition. The assumptions of the cognitive system as a

symbol system underlie all cognitive theories applied to financial diagnosis within the
cognitive approach reviewed in chapter 2.

Above, we have identified the two most important underlying assumptions of this theory, its
representational and processing assumptions. The representational assumption of
information processing theory states that all representation is symbolic. This means that there

is a representational system containing symbols that designate. This designation is to objects
in the represented world I.Thus, each meaningful object in the represented world is

represented by one symbol in the representational system. This assumption is often referred to
as the representational hypothesis of information processing theory (see Fodor, 1980).

Processing is the manipulation of the representations and thus, takes the form of symbol
manipulation. The most important assumption is that this manipulation is independent of
semantics, and as such, can be defined purely syntactic. However, the rules of symbol
manipulation are defined so that syntactic manipulation of symbols is meaning preserving.
Thus, results of syntactic manipulations of symbols is meaningful. This assumption is often

referred to as the computational hypothesis of information processing theory (see Fodor,
1980)

These assumptions have been met with severe criticism. The general criticism has come

from research in philosophy (e.g. Cummins, 1989; Dreyfus, 1972; Clark, 1989, 1993),
linguistics (e.g. Lakoff, 1987; Searle, 1980), cognitive psychology (e.g. Brooks, 1978; Estes,
1994), general cognitive science (e.g. Smolensky, 1988), and in different areas of social
science research (e.g. Nisbett & Ross, 1980; Nisbett & Wilson, 1977).

I Information processing theory is not restricted to a representational world outside the cognitive system
(external world).
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Recently, the information processing theory in cognitive psychology, and in particular, the
rule-based versions of it, has been met with what has been described as an "anti-rule

movement" (see Smith et al., 1992). The objections raised by the "anti-rule movement" stems

from at least four research traditions. Instance memory research and instance based
approaches to cognition are fundamental in classification and categorisation research (e.g.
Medin & Schaffer, 1978; Nosofsky, 1984, 1986), but have gained increased attention in other

areas of cognitive processing as well (e.g. Kvadsheim, 1992). This approach states that
cognition is not the application of a set of abstract rules, but rather results from comparisons
of stored and presented exemplars. A second line of research supporting the "anti-rule
movement" comes from connectionist research, in which theories and models have been
developed on cognitive phenomena previously assumed only to be explainable by rule-based

accounts (see e.g. Rumelhart, Smolensky, et al., 1986; Seidenberg and McClelland, 1989;
Sejnowski and Rosenberg, 1986). A third line of research arguing against the universal

application of information processing theory to explanation of all cognitive functions, stems

from evolutionary approaches to psychology (see e.g. Smith et al., 1992). Evolutionary

approaches argue that "much of cognition may be attributable to specific mechanisms rather
than to general purpose ones like applying abstract inferential rules" (Smith et al., 1992, p. 2).

Thus, the principles of modularity (e.g. Fodor, 1983) argues against the universal application
of information processing theory, and not necessarily in favour of it, as maintained by Fodor

(1983). The fourth line of research supporting the "anti-rule movement" stems from what
Smith et al. (1992) term the heuristic approach to cognition. Examples of this approach are
the numerous studies by Kahneman and Tversky (Kahneman, Slovic & Tversky, 1982;

Tversky & Kahneman, 1974), suggesting that "people often substitute judgements about
similarity for normatively required rule-basedreasoning" (Smith et al., 1992, p. 2). Even
though the findings within the heuristic approach are interpretable from an information
processing theory perspective", simpler and more obvious explanations can be given without

its assumptions.

In addition to the general theoretical arguments and the empirical findings in different areas

of cognitive psychology, methodological arguments have been raised against information

processing theory. Several methodological principles follow from information processing

theory. Two of these are the principles of operationalisation by model and the use of verbal
protocol methodology. Operationalisation by model is not unique to information processing
theory, but the representational and processing assumptions made by the theory necessitates
explicit modelling ofrepresentations in symbolic form. However, these representations are
based upon the truth of the representational hypothesis, but this hypothesis should be
evaluated separately. The use of verbal protocol methodology has been criticised for being

! For example, based upon the principles of bounded rationality and limited information processing capacity
(e.g. Simon, 1955).
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"theory laden" 1 in a similar way, and the relationship between representational units and their
manipulation, and verbal utterances is much debated (e.g. Ericsson & Simon, 1984; Nisbett &
Ross, 1980; Nisbett & Wilson, 1977).

All this criticism strongly argues against the universal application of information processing

theory to cognitive phenomena-, but in our view, they are not sufficient to justify a position
against information processing theory, per se. Surely, some cognitive functions may be best
explained by information processing theory (see van Gelder, 1993). For applied science, such

as cognitive accounting, a more fruitful position may be to investigate the results of research
pursued with different orientations. Consequently, our position here is more pragmatic. It is
based upon the achievements made in general cognitive science with recent approaches other
than information processing theory, and an interest in investigating the potential of these
approaches to financial diagnosis, more than a position against the assumptions in
information processing theory, per se. Thus, the definition of financial diagnosis as a task
only to be investigated in information processing theory terms is a position we argue against.

The second approach to the selection of relevant cognitive theory starts with an analysis of
the task, problem or cognitive phenomena under investigation. Often this is referred to as a

task analysis (Newell & Simon, 1972). From the task analysis of chapter 2, we can conclude
that the judgement modelling and the predictive approaches to financial diagnosis treated

financial diagnosis as a classification task. However, few of the contributions referred to
classification theory in cognitive science. Instead, the cognitive approaches to financial
diagnosis primarily applied theories from cognitive science developed for the explanation of
choice, judgement and problem solving. Several important findings on how the financial

diagnosis task is performed resulted from these applications. Still, there are several ways in
which the financial diagnosis task differs from the typical choice, judgement and problem
solving tasks.

Choice tasks have some basic characteristics. One is the importance of alternative actions
and subjective preferences, and how these relate (e.g. March, 1978; Slovic, 1990). For
financial diagnosis to be treated as a choice task, these characteristics should be of similar
relevance. The financial diagnosis task may be considered as a choice between alternative
conceptions of the financial health of the firm. However, explicit preference structures, and

clear relationships between preferences and the chosen alternatives may be less obvious.
Often, the diagnostic task ends with the chosen conception of the financial health of the firm,
and the chosen alternative is not considered to have any further consequences to the

. l See the review by Crutcher (1994).
2 Universal application of information processing theory is suggested by several authors, and can be illustrated
by the title of Newell's book: "Unified theories of cognition" (Newell, 1990).
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diagnostician. Nor can the diagnostician be assumec to have a special preference for one
conception before another.

A characteristic detail of judgmental tasks is the presence of uncertainty (Osherson, 1990).

This uncertainty is often expressed by probabilities in tasks explained by a cognitive theory of
judgement (e.g. Tversky & Kahneman, 1974). Furthermore, these probabilities describe the
uncertainty of one, or a small number of dimensions or attributes of the stimulus. In the
<"inancialdiagnosis task, probabilities related to stimulus dimensions are not readily
available", and the number of relevant dimensions is large.

Two characteristics of problem solving tasks are the importance of goals and the role of
subgoaling (see Holyoak, 1990). To give an example, the cryptarithmetic problems used in

some studies of problem solving, have a goal situation in which a solution to the problem is
found, but unlike the choice task, the solution is not found among predefined solutions. Thus,

a design c.ement is present in this task. In financial diagnosis, alternative responses are found
among predefined classes or categories, and the design element is less important.
Furthermore, evaluation of goal attainment is difficult because the "solution" can not easily be
evaluated against a goal. Rather, the "solutions" are overlapping and not disjunctive. Another

aspect of goals in problem solving, is that subgoaling occurs because the task is large or
"lp"",,,,,, J design is involved. Typically, the solution is built by sequential goal attainment,

.tle evidence pointing to the financial diagnosis task as involving such elements
except for the familiarisation/analysis split. However, lack of subgoaling does not mean

intermediate abstractions are irrelevant during financial diagnosis. If the development of a
financial strategy to bring the firm from one diagnostic characterisation to another is

considered, we have a task with important design elements, but this is an example of a
financial task that goes beyond the purely diagnostic.

Despite the amount of knowledge generated from research applying the conceptions of the

financial diagnosis task referred to above, knowledge of several aspects of the task was
reponed lacking in chapter 2. Examples of such knowledge were the role of template
matching (e.g. Bouwman et al., 1987), pattern recognition and pattern classification (e.g.
Bedard & Biggs, 1991), schematic organisation of memory (e.g. Choo & Trotman, 1991), and
analogical reasoning (e.g. Biggs et al., 1987), just to mention a few. These concepts have
received only limited attention within traditional information processing theory. However,
they are important parts of research on cognitive categorisation and classification (e.g. Smith
& Medin, 1981), and on induction (e.g. Holland, Holyoak, Nisbett & Thagard, 1986). Thus

closer investigation of financial diagnosis as a classification task seems warranted. In section

l As explained in chapter 2, the most relevant stimulus dimensions in financial diagnosis consist of financial cue
values or patterns of financial cue values.
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1.1, we introduced this approach to financial diagnosis, and showed that other diagnostic
tasks have been investigated as classification tasks.

Simulated medical diagnoses have a long tradition in classification research. This task
context has been used extensively in studies of correlated stimulus dimensions (e.g. Medin,
Altom, Edelson & Frecko, 1982; Shanks, 1991) and base rate effects (e.g. Estes, Campbell,
Hatsopoulos & Hurwitz, 1989; Gluck & Bower, 1988a, 1988b; Shanks, 1992). Applications
of categorisation and classification theory to more realistic, practical diagnosis tasks now
begin to appear in medical diagnosis (e.g. Brooks et al., 1991). To illustrate the position taken
by these applications, consider the opening statement of Brooks et al. (1991):

Medical diagnosis is primarily a categorization task. (Brooks et al., 1991, p.278)

A similar position is taken in other diagnostic areas, such as in psychiatry:

Clinical diagnosis is a classification task which uses features or dimensions of
relevance across individuals (e.g. the patients mood) to categorize aspects of the
patient's functioning into one or more of a finite set of diagnostic disorders, such as
those in DSM-III-R.! (Mumma, 1993, p. 283)

When comparing these definitions of diagnosis to the description of financial diagnosis given
by Methlie (1994, see section 1.1), several similarities can be recognised. Stimuli consist of

relevant information, typically derived from the financial statement and represented by
financial cues. The response takes the form of a characterisation, often by selecting a
predefined class. The financial diagnosis task is the mapping of these stimuli to the
predefined classes. This definition of financial diagnosis was introduced in chapter 2, and

variations in the response were shown to be dependent upon the task context of the diagnosis.

Several aspects of financial diagnosis are different from medical diagnosis. Since not all firms

suffer from relevant "diseases", the task of the diagnostician is more like the general medical

practitioner when asked for a medical certificate. This situation requires a more general
approach to the task, and makes initial formulations of hypotheses less relevant. Next, the
producers of the financial statement showing the "symptoms" have the best knowledge of the
firm's "diseases", and often do their best to hide relevant "symptoms" in their report.
Furthermore, the analyst performing the diagnosis is rarely interested in how identified
"diseases" should be "cured". However, these differences do not make the application of
classification research less relevant to financial diagnosis than to medical diagnosis.

l Diagnostic and Statistical Manual of Mental Disorders (our note).
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3.1 Classification theory

A classification task can be described by assuming a vector of stimulus dimension values.
This vector may consist of continuos or binary values, traditionally termed features (Garner,

1978). In the case of financial diagnosis, the stimulus dimension vector consists of the
relevant real valued financial statement cues Ip; in which i indicates the relevant stimulus

dimension where i=1,2, ...,n, and p indicates the pattern presented, where p= 1,2, ...,N. The
classification is the assignment of the stimulus to one of M prespecified classes C, where
j=1,2, ...,M (Lippmann, 1993).

Categorisation is distinguished from classification by Estes (1994), in classification being the
pure assignment of the stimulus to one of M prespecified classes, whereas categorisation
"carries the further implication that knowledge of the category to which an object belongs

tells us something about its properties" (Estes, 1994, p. 4). The further implications carried by
knowledge of category membership are particularly useful in diagnosis. Categorisation

implies missing information of properties can be inferred (Smith & Medin, 1981, p.1), and

that similarity evaluations of stimulus and previous experiences can be performed. In this

thesis, our term classification is used synonymously to the categorisation term of Estes
( 1994), because the assignment of an object to a class in itself is of less interest unless

inferences can be drawn from the classification. This interchangeable use of the terms
classification and categorisation is common within cognitive psychology (see Nosofsky,
1984; Smith & Medin, 1981)

Three main theories of classification are frequently mentioned in standard textbooks on

cognitive psychology (e.g. Ellis & Hunt, 1993). All theories assume that a stimulus is
represented by an array of feature-, or stimulus dimension values (Estes, 1994). Attribute
theory or definitional theory assumes that specific features are necessary, and collectively

sufficient, to define a stimulus as member of a class. Class membership is evaluated by
identifying presence or absence of these features. Consequently, a class is defined by a list of

necessary and collectively sufficient features. Models implementing definitional theory
includes traditional symbolic systems, typically relying on production system representations.
The definitional theory has been heavily criticised since the 1970's, leading to alternative
theories of classification.

Prototype theory (Rosch, 1978; Rosch & Mervis, 1975) assumes that the representation of a
category or class is done by averaging the feature values of cases within a class, and by
representing the average feature values as the representation of a prototypical or best member
of a class or category. The evaluation of class membership is performed by evaluating
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similarity in feature values of the presented stimulus to the prototype(s) in each class.
Implementations of prototype theory have been done in, for example, feature frequency
models (see e.g. Hurwitz, 1994) and in connectionist models (e.g. Gluck &Bower, 1988a,
1988b).

Exemplar theory (Estes, 1986; Medin & Schaffer, 1978; Nosofsky, 1984, 1986) does not

assume that averaging of feature values occurs across members of a class. Instead, exemplar

theory assumes that each exemplar is represented in memory. This is done by a memory trace
representing the relevant feature values of each exemplar. Representations of exemplars are
activations in psychological space. Evaluation of class membership is a consequence of the

similarity evaluations performed when new stimuli are presented. Implementations of
exemplar theory have been done in the formulations of general context theory (Nosofsky ,
1984), and in more recent connectionist models (Estes, 1993, 1994; Kruschke, 1992).

As shown by Smith and Medin (1981), both the prototype and exemplar theories can solve
the problems raised by the critics of definitional theory, but depending on their
operationalisation, new problems arise.

These classification theories have recently been implemented in connectionist models (e.g.
Estes, 1994; Hurwitz, 1990; Kruschke, 1992), whereas other classification models built
independently from a connectionist approach to cognition, now also have appeared in
classification research. Three examples of the latter models are the simple adaptive network

model of Gluck and Bower (1988a, 1988b), the configural adaptive network model by Gluck
(1991), and the attentional connectionist model of Schanks (1992). These connectionist
models all have implicit prototype representations, and have been classified as prototype
models (McClelland & Rumelhart, 1986, p. 173; Robins, 1992 p. 46; Shanks, 1991 p.433).
Thus, connectionist models of classification have been developed both within, and
independently of, classification research. This is a situation very different from other areas in
cognitive science, were the positions taken by researchers in the information processing and
connectionist paradigms seem rather irreconcilable (e.g. Fodor & Pylyshyn, 1988;

Smolensky, 1988).

In this section, we introduce the traditional classification theories and their relationship to
traditional information processing theory. We use these theories to show that many of the

weaknesses of information processing theory have led to the development of alternative
theories of classification. Next, we introduce some recent connectionist theories of
classification and some recent connectionist implementations of traditional classification
theories.
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3.1.1 Definitional theory

Definitional theory is a theory of categorisation and classification that assumes class
membership is determined by a set of defining features or stimulus dimension values. Other
terms frequently used are attribute theory (Ellis & Hunt, 1993), classical theory (Ashby,
1992; Lakoff, 1987; Smith & Medin, 1981) and set theory (Lakoff, 1987; Rumelhart &
Norman, 1985).

Definitional theory makes three assumptions (Smith & Medin, 1981, p. 23-24). The

representation of a class is a summary representation of the entire class. Consequently, the
representation is the result of an abstraction process. The abstracted representation consists of

a list of defining features. By defining features, we mean features necessary and collectively
sufficient for classification. Last, classes are represented in a hierarchy, in which defining
features of a superset are nested in subsets. By nested features, we mean that defining
features of a superset are found in the subset. However, the subset also contains some features

not shared by the superset.

The assumption of abstraction is shared among all theories of classification, including
exemplar theory. The assumption of defining features states that every exemplar of a class

must ~ave the features, and if they are found, the exemplar is a member of that class. This
assumption excludes disjunctions of features as defining (Smith & Medin, 1981, p. 24). In
definitional theory, the assumption of nesting gives categorisation its inferential power. By
nesting of features, the classification of an object makes it possible to infer how features of

supersets are true of the subsets. For example, if high profitability is a defining feature of a
success firm, and a growth firm is a subset of a success firm, it can be inferred that the growth
firm has high profitability.

Definitional theory is a representational theory. The simplest processing model based upon
the representational assumptions in definitional theory, is a model equating problem solving
as hypothesis testing and classification (e.g. Bruner, Goodnow & Austin, 1956). The model

simply states that one can start with the hypothesis of the stimulus as member of a class, and
check whether the defining features are present. If not, proceed to the next hypothesised class.
Estes (1994) refers to the differences between analytic and non-analytic approaches to
cognition, and views "categorisation-as-hypothesis-testing" as the analytic theory of
classification:
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In the hypothesis-testing approach, concept formation is treated, in effect, as a form of
problem solving. (Estes, 1994, p.6)

The problem of the learner in such studies is viewed as one of formulating hypotheses
about the critical features and testing the hypothesis against observations of a sequence
of category exemplars until an adequate hypothesis is discovered (Estes, 1993, p. 16)

There is a close connection between the conception of classification as hypothesis testing and
definitional theory (Estes, 1993). If classification is based upon definitional theory, rules of
logic can be used to deductively reason from features to class in classification (Lakoff, 1987,
p. 7). Thus, definitional theory and rule-based approaches to classification go hand in hand
with the hypothesis-testing view of classification. This is a relationship not only found in
classification research. In the words of Estes (1994), the relationship can be described in the

following way:

... there has traditionally been a sharp opposition between approaches to categorization
and induction centred on the discovery and use of rules and approaches based on
processes of learning and memory. Over several decades since the early work on
concept formation, these approaches have diverged, as witness the debates between
proponents of connectionist and rule-based treatments of language acquisition and
processing and reasoning, and the efforts to choose between interpretations of concept
formation and categorization based on instance memory and those based on rules and
hypothesis testing. (Estes, 1994, p. 244 (original citations left out)).

We can illustrate this relationship by showing how definitional theory can be related to rules.
The theory assumes a two-stage decision process when classification is performed. Since
definitional theory assumes that features of the stimulus can be detected from relevant
stimulus dimensions, this detection is the first stage of the classification. This implies a

characterisation of relevant stimulus dimension values as binary features, and is an example
of the transformation from analog to digital form proposed by Dretske (1981). This stage is

traditionally performed by implementing a decision bound on the stimulus dimension, and
can be implemented in a simple production rule (e.g. Newell, 1990; Newell & Simon, 1972).
Consequently, the decision bounds are always orthogonal to the stimulus dimensions (Ashby,

1992). The next stage is to assign objects to a category based upon the combination of
identified features. This assignment is also done by the application of rules. If the rule
contains several conjunctions, a system of limited cognitive capacity (Simon, 1955) might
introduce intermediate abstractions to represent the temporary conclusion on an evaluation of
a stimulus dimension. In this way the classification can be hierarchical, in which the
intermediate abstraction plays an important role (Chand~asekaran & Goel, 1988).
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When applied to financial diagnosis, the use of rules and the formation of decision rules based
upon definitional theory can be illustrated as in figure 3.1.

In figure 3.1, the class B of highly profitable firms
- success firms, can be identified with the
application of the rule; if Il > Il * and Li > Li *,
then the object is in class B. To use the rule, we
must first convert the values of the stimulus

dimensions into digital form (Dretske, 1981). This
is similar to what Methlie (1993, p.147) has termed
"qualification". Next, the rule can be applied.

Similarly, in hypothesis-testing terms; if the initial
hypothesis is to test if the object is in category B,

the features that must be identified are the definitional features of the rules listed above.

Return
on A Bsales
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..FIgure 3.1 Decision bounds of
definitional theory

The representational assumptions of definitional theory have been criticised on both general
and empirical grounds. Smith and Medin (1981, p. 32) list four general criticisms; the

exclusion of functional features I, the existence of disjunctive concepts, the existence of

unclear cases, and the failure to specify defining features. Only the last three criticisms are

considered relevant, since definitional theory does not exclude functional features per se, even

though the use of functional features has not been common in experimental studies using
definitional theory (Smith & Medin, 1981, p. 27). In addition to these general criticisms,

empirical criticisms have been raised against the ability of definitional theory to explain
typicality findings (Rosch, 1978), the use of non-necessary features in classification (Smith &

Medin, 1981, p. 43-45), and empirical findings related to the nesting of concepts (Smith &
Medin, 1981, p. 47-49). In the following, we summarise some ofthese criticisms.

With the assumption of defining features of a class, definitional theory rejects disjunctive
classes or categories (Smith & Medin, 1981, p. 28). Smith and Medin (1981, p. 29) question
the prevalence of disjunctive concepts, but to illustrate the necessity of disjunctions in
classification, consider the financial diagnosis situation of figure 3.1. If we want to assign

objects in decision regions B and C to the same class, disjunctions of and-productions must
be formed. The introduction of disjunctions makes it possible to use rule-based classification
even if the requirements in definitional theory of necessary and collectively sufficient features
are not satisfied.

I The term functional features are used by Smith and Medin (1981) of abstracted features functional to the
classification task. '
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The nesting of features assumed in definitional theory does not allow judgements of a class as
a subset of another to be unclear, or the membership of a class to be graded (Zadeh, 1965).
However, unclear subset classification is found in human classification studies (Smith and
Medin, 1981, p. 29), and graded membership is typical of many classes (Lakoff, 1987). As a
general argument against definitional theory, this argument is weak, but if empirical findings
of unclear classification exist, the argument is relevant.

The last general criticism of definitional theory stems from the well known argument of
Wittgenstein (1953) that some categories lack defining features. However, Smith and Medin

(1981) suggest that this argument is weak as a general argument, because it may be that we
have not searched for the right kind of defining features. Consequently, the general arguments
against definitional theory do not make it clear that definitional theory should be rejected, but
by adding the empirical criticism raised against definitional theory, Smith and Medin (1981)
find the arguments against definitional theory to be strong.

The first of these arguments comes from a series of studies on typicality effects in
classification (e.g. Rips, Shoben & Smith, 1973; Rosch, 1978; Rosch & Mervis, 1975).
Subjects are able to judge how typical an exemplar is of a class, and these judgements are
highly reliable across raters. The interesting findings are that typicality is negatively

correlated with response time and positively correlated with accuracy in classification tasks.

Furthermore, typical members are the first learned by children, and they are the most likely to
be mentioned by subjects when asked for an example of a class. Since definitional theory
assumes defining features are sufficient to classification, all exemplars should be equal

members of a class. To explain these findings, rather speculative processing assumptions
must be introduced for the representations of definitional theory to be sustained (Smith &

Medin, 1981, p. 36-37).

The next empirical argument against definitional theory comes from findings that subjects
often use non-necessary features in classification tasks (Rips et al., 1973). The use of non-
necessary features is closely related to a probabilistic view of classification. Non-necessary,
but easily identifiable features may be reliable indicators of class membership in most cases,
even though there may be exceptions. Not to take advantage of such easily identifiable
features would be disadvantageous, and a theory of classification should incorporate their
usage.

If subclasses are nested by defining features of a superclass, definitional theory predicts that a
subclass "should always be judged more similar to an immediate superordinate than to a

distant one" (Smith & Medin, 1981, p. 47). This is often the case in experimental studies, but
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exceptions have been found indicating further weaknesses in definitional theory (Smith &

Medin, 1981, p. 48).

A processing assumption often criticised in implementations of definitional theory is the
assumption of independent decisions (Ashby, 1992). This assumption states that the decision
bounds of one dimension is independent of the value of another stimulus dimension. This
assumption greatly simplifies classification because stimulus dimension evaluations can be
performed individually. However, this assumption can be overcome in rule-based
representations by assuming that Il * is different for different values of 12. This means the
rules are sensitive to the context of the other stimulus dimensions, and this is often illustrated
in a decision tree. In the predictive literature, several rule induction algorithms with the

property of inducing such context sensitive rules have been developed (e.g. Quinlan, 1986).
This assumption is closely related to the use of disjunctions in rules. A class may have no

defining features, so the exemplars must be classified using a set of disjunctions. Then,

stimulus dimensions can not be evaluated independently. Consider firms with four features;
good situation (GS), bad situation (BS), good trend (GT) and bad trend (BT). The disjunction
used for classification of a success firm may be: (GS and BT) or (GS and GT) or (BS and
GT). The only conjunction left is defining of a distressed firm: (BS and BT), but neither of
the features were defining for success firms, and the BT and BS features were only defining
~·(lrdistressed firms in the context of each other. Consequently, independent evaluation of
features and stimulus dimensions is closely related to disjunctive categories, and to retain

independent evaluations, the theory must reject disjunctions.

Rule-based accounts of classification are closely related to definitional theory, and if
definitional theory is correct, rule-based accounts of the simplest kind can perf: ...'; the

necessary classification. In this section we have shown how certain criticisms of the
definitional theory could be overcome while still using a rule-based account of classification.

Most empirical criticism stemming from the findings of unclear cases have been incorporated
in rule-based accounts), but when probabilistic classification is to be accounted for, prototype

theory is more common.

3.1.2 Prototype theory

Prototype theory has partly been developed to account for the general and empirical findings
used as arguments against definitional theory. Major researchers on prototypes have stressed
that the prototype concept should be used to illustrate certain typicality effects in
classification, and not as a proposal for a genera i theory of classification (Rosch, 1978).

) Using, for example, the principles of Zadeh (1965).
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Several definitions of the prototype concept have been given, but they all refer to some

abstract representation of commonalties among stimuli. Different formulations of a theory of
classification based upon the idea of a prototype are found (Smith & Medin, 1981).

Prototype theory states that when subjects "is presented a set of stimuli for purposes of
learning, they abstract the commonalties among the stimulus set and the abstracted
representation is stored in memory" (Ellis & Hunt, 1993, p. 217). Ellis and Hunt (1993),
further equate prototype and schema representations to illustrate the abstract character of the
prototype.

The first ideas of a prototype are often attributed to Wittgenstein's (1953) criticism of

definitional theory. He questioned the assumptions of clear boundaries and common
properties of categories, and used the category of games as an example (Lakoff, 1987).
According to Wittgenstein, the category "game" included plays that had no necessary and
collectively sufficient common properties that characterised them as a "game". More formal
tests of the assumptions of definitional theory were performed by Rosch (e.g. Rosch &

Mervis, 1975) in a series of experiments investigating the proposition of definitional theory

that no exemplars should be considered more typical than another.

The theoretical status of prototype theory is somewhat unclear. Lakoff (1987 p. 44) cites
Rosch in stating that prototypes, in her opinion, did not constitute any particular model of
processes, but should rather be used as a convenient grammatical fiction. Consequently, in
Rosch's view (Rosch, 1978), prototypes do not constitute any particular theory of
classification and categorisation. Lakoff (1987) characterises prototype theory as a
proposition of Rosch to be a misunderstanding of her intentions. Thus, the term prototype is
used as aframework for models including the idea of an abstract representation of
commonalties, or as stated by Estes (1994):

Formal theory in.the categorization area has a curious aspect in that prototype theory
is by far the most visible variety in the literature ...... although it can be credited with
none of the close quantitative accounts of categorization data that have appeared
during the last decade, the majority ofwhich have been achieved by exemplar-similarity
models ....... The popularity of prototype theory appears to be attributable to a
combination of factors, among them its intuitive appeal, its long history, and some
results of experiments employing categories of objects produced by means of variations
in experimenter-defined prototypes. (Estes, 1994, p. 51-52 (references in the text
excluded))
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Despite the vague notion of the prototype concept, operationalisations of prototypes and

developments of classification theories inspired by the idea of a prototype can been found.

Common to these operationalisations is the assumption that the representation of a category is

a summary description of the entire class. In contrast with definitional theory, the
representation of the class does not contain a set of definitional features, but rather a central

tendency (Smith & Medin, 1981, p. 611 ). Three different formulations of prototype theory
were mentioned by Smith and Medin (1981).

A featural approach presumes feature representation of the stimulus. The features are salient
and have a "substantial probability of occurring in instances" (Smith & Medin, 1981, p. 62) of

the class. However, the features may not be defining. The representation of a class consists of

a feature list and associated weights of each feature. These feature weights can represent both
salience and conditional probabilities (Smith & Medin, 1981, p. 62). In some models (see
Hurwitz, 1994), feature frequency is assumed represented in the weights. In other models, the
weights have a more complex interpretation (Gluck & Bower, 1988a, 1988b). Classification
is traditionally performed in the simplest featural approach by adding weights on features
present until a threshold for the class in question is reached. Other versions of the featural

approach assume more complex featural evidence accumulation. Two examples are the

feature comparison model of Smith, Shoben and Rips (1974), and the well known contrast

model of Tversky (19772). Another formulation following the principles of a featural

approach, is the spreading activation model of Collins and Lofthus (1975).

Featural formulations of prototype theory have recently been implemented in connectionist
models. Connectionist models of classification have been developed from advances in
connectionist research in other areas of cognitive science (e.g. Rumelhart & McClelland,
1986). These operationalisations have partly been developed independently from traditional
classification research, but follow the assumption of an abstract representation of the

prototype. In these connectionist models of classification, a prototype is represented
"implicitly" in the model by weight patterns. The simplest connectionist model of
classification is the model now often characterised as the "standard connectionist model>"
(Estes et al., 1989; Gluck & Bower, 1988a, 1988b). This model is illustrated in figure 3.2.

1 Smith and Medin (1981) use the terms "probabilistic view" of classification theories based upon the idea of a
prototype.
2 See Smith, 1990.
3 We williater use the term "adaptive network model" of this model, but to illustrate that this model is basic to
connectionist models of classification, we use the term "standard connectionist model" of Shanks (1991) here.



A set of features are represented by input units,
whereas class or category membership is represented
by output units. The connections between input and
output units each have an associated weight, indicating
the salience and probability of the feature, given the
category. The outputs of the class or category
membership units are the weighted sum of the
activation of the input units. By transforming the

weighted sum in a sigmoid function or a choice rule
(e.g. Luce, 1963), class membership probabilities can
be modelled. This simple model has been extended and
refined by several researchers (e.g. Gluck, 1991). A

more thorough understanding of these models requires general knowledge of the
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Figure 3.2. Standard connectionist
model (From Shanks, 1991)
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connectionist paradigm and connectionist theory. A broader introduction to connectionist
theory is given in section 3.2. After central terms in connectionist theory have been explained
in section 3.2, we will return to these models, and to their relevance and application to the

financial diagnosis task.

The second formulation of prototype theory does not assume a featural representation of
stimuli, but uses a stimulus dimension representation. In this approach, a stimulus is
represented by the real values of each stimulus dimension (Smith and Medin, 1981). By using
stimulus dimension values, the interpretation of prototypes and exemplars as represented by

points in multidimensional psychological space comes natural. Thus, this ope~ationalisation
assumes that stimulus dimensions are salient, and that a classes are represented by either an

average stimulus dimension value) (Reed, 1972; Smith & Medin, 1981, p. 102), Or by some
other "ideal point" in psychological space. Usually, this ideal point is represented by some
"focal member" of the class (Estes, 1994, p. 54).

With the interpretation of prototype representations as points in psychological space,
similarity between an object and a prototype can be interpreted as a function of distance in
psychological space. Similarity is inversely related to distance in psychological space, and
can be used to perform a classification. Shepard (1958, 1987) assumed that similarity of two
items in psychological space is defined by:

s(p,a) = e-cdplI , (3.1)

) Or some other measure of central tendency.
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where sep, a) is the similarity of item p to a, c is a constant and dpa is the distance between

item p and a. When applied to prototype theory, a indicates the prototype of a class j.
However, other similarity measures are often used in prototype theory. A simple distance

model (Smith & Medin, 1981, p. 107) assumes that a stimulus object is classified as
belonging to a class if the distance between the object and a prototype of the class is below
some threshold. The comparative distance model (Smith & Medin, 1981, p. 110; Reed, 1972)
assumes that the object is assigned to the class with the closest prototype, measured by some
comparative distance measure. However, models incorporating similarity measures of the
kind proposed in equation (3.1) have been developed using both the central tendency (Ashby,
1992, p. 474-475) and the "ideal point" (Massaro & Friedman, 19901) representations of the

prototype.

When applied to financial diagnosis, the use of prototypes and similarity measures in
psychological space can be illustrated as in figure 3.3.

When referring to figure 3.3, a firm can be

classified by measuring the comparative distance
of the object to the two prototypes B and C, and

classifying the firm in the class with the shortest

distance to the prototype. In figure 3.3, the axis
corresponds to the perceived dimensions "return on

L..- .. Asset sales" and "asset turnover". 1fthese perceptual

dimensions correspond to measured dimensions,
classification with prototype theory equals the use

of a linear classifier (Ashby, 1992), such as linear
discriminant analysis.

Return
on
sales

turnover

Figure 3.3. Decision bounds of
prototype theory

The third operationalisation of prototype theory also mentioned by Smith and Medin (1981),

assumes that the prototype is represented by a template. Several operationalisations of the
template concept exist, but their common assumptions are that the template is "isomorphic to'
the object it represents, unanalysable, and inherently relational" (Smith & Medin, 1981, p.
131). The assumption of isomorphism implies that abstraction in a template model is different
from our previous prototype models. The template is considered to be more perceptually
similar to the objects and to be more holistic. Thus, parts of the template can not be analysed

separately.

1 See Nosofsky, 1992, p. 35-36.
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Studies using the template operationalisation of prototypes often study objects with

perceptual features. The traditional application presumes heavy pre-processing of perceptual
objects to the comparable size and orientation. Next, a grid-like template is matched to the
perceived and pre-processed representation (Smith & Medin, 1981, p. 132-134). The
approach holds a strong position in machine perception and pattern recognition, but as a
psychological model, the formulation has received less attention.

Both the featural and the stimulus dimensional prototype theories can explain the empirical
findings incompatible with definitional theory (Smith & Medin, 1981, p. 163). Here, we focus
on the explanations given by the featural approach. The featural approach allows disjunctive
categories. The critical weighted sum needed to place an object in a class can be achieved by
various combinations of features (Smith and Medin, 1981, p. 65). Furthermore, unclear cases
are allowed when an object has features shared by many classes, and the weighted sum of the

features is below a critical value for all classes. The featural approach emphasises features
with high probability of occurrence within a class, but does not require these features to be

defining. The same assumption also explains subjects' use of non-necessary features. If we
assume that typicality is related to the weighted sum of shared features, typicality effects can

easily be explained. For example, short classification time for typical objects can be explained

because the sufficient weighted sum is achieved more quickly when these objects are
evaluated. The finding that some objects were rated more similar to their distant
superordinates than to their nearest superordinates was incompatible with the assumption of

nested features in definitional theory. In the featural approach, weighted sums for an object
may be higher for a distant superordinate than for an immediate one, even though this will be
the exception rather than the rule (Smith & Medin, 1981, p. 71).

Even though prototype theory is able to explain the findings used as arguments against
definitional theory, prototype theory has generated some new problems. Some of these
problems are related to the particular prototype theory operationalisation, while other are

more general. Here, we focus on the general problems. Definitional theory was found to be

too constrained in its definition of categories or classes. The opposite may be a problem for
prototype theory. One example of lack of constraints, is the ease with which disjunctive
classes are accepted in prototype theory. Even though most categories are not disjunctive,

there is nothing in prototype theory that "favourslow degrees of disjunctiveness over high
ones" (Smith & Medin, 1981, p. 88). Another example may be that relationships between
classes may be a part of their representation, indicating that a more complex prototypical
representation than found in most prototype theory operationalisations, is necessary I .

I Such as a frame (Minsky, 1975).
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Another problem following from the simplicity with which a class is represented, is the
difficulty of prototype theory in dealing with correlated features. Studies have shown that
subjects are sensitive to correlated features (Ashby, 1992, p. 451). Introduction of conjunctive
features has been suggested as a way to represent correlated features in prototype theory, but

this will result in an explosion in the number of features in the prototype representation l. A
similar problem is the treatment of context effects in prototype models. Context effects are
relevant when features are correlated, and must be treated similarly.

A problematic finding for prototype theory to explain, is the finding that other individual
members of a class than the prototype, may have an effect on classification performance
(Brooks, 1978; Medin & Schaffer, 1978). This has led researchers to formulate theories in

which several exemplars of a class are given significance in the class representation.

3.1.3 Exemplar theory

Another line of criticism of the definitional theory and the rule-based accounts of

classification has come from researchers stressing the importance of instances or exemplars in
cognitive processing (e.g. Estes, 1986; Medin & Schaffer, 1978; Nosofsky, 1984). Their work

in classification research is paralleled by similar instance approaches to other cognitive
phenomena, such as memory (Brooks, 1978), perception (Whittlesea & Brooks, 1988),

judgement (Tversky & Kahneman, 1974), reasoning (see Smith et al., 1992) and choice

(Kvadsheim, 1992).

Exemplar theory has been developed as an alternative to the assumption in prototype theory,

that the only class "exemplar" relevant to classification is the prototype, and it has been
shown that category exemplars, other than the prototype, can have "pronounced effects on
categorization performance" (Ashby, 1992, p. 451).

In its extreme form, such as in the proximity model of Reed (1972)2, exemplar theory states
that each class is represented by all the instances the subject has encountered of that class.
Thus, no abstraction occurs, but this seems an implausible model. At the other extreme,
consider a model where each class is represented by its best exemplar or a "focal exemplar"

(Rosch & Mervis, 1975). However, this model falls into the category of prototype theory.
Consequently, most exemplar theory models state that classification is performed by

comparing the stimulus presented to a set of exemplars in each class. The responded class is
the class with the highest evaluated similarity to the presented stimulus.

l The same idea has been implemented in the standard connectionist model to overcome the same problems (e.g.
Gluck,1991).
2 See Smith and Medin, 1981, p. 146.
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Several formulations of exemplar theory exist. Among the most widely known are context
theory (Medin & Schaffer, 1978), later generalised to general context theory by Nosofsky
(1984, 1986). Other models developed from exemplar theory are the MINER VA model of
Hintzman (1986) and the array model of Estes (1986). Here, we focus on the widely known
context theory and its generalisation to continuous stimulus dimensions in general context
theory (Nosofsky, 1984, 1986).

In context theory, it is suggested that subjects learn to attend selectively to stimulus
dimensions. Consequently, exemplars are only represented to the extent that they differ on

stimulus dimensions, and abstraction in the form of selective attention takes place (Medin &

Florian, 1992). A consequence of selective attention is that the subjects can attend to
properties that occur frequently, and thus develop a "detailed representation of typical

exemplars but only an incomplete or collapsed representation of atypical exemplars" (Smith
& Medin, 1981, p. 153).

The core of context theory lies in its similarity processing assumptions. With a featural
representation of the exemplars, classification is performed by assigning the object to the
class with the highest conditional probability computed as:

Ls(p,a)
P(Clp) = aeCj ,

Ls(p,a) + Ls(p,a)
aeCj aeCj

(3.2)

where P(Cilp) is the probability of stimulus p being classified in category j, s(p,a) is the
similarity of stimulus p to a stored exemplar representation a. In context theory, s(p,a) is

computed by a multiplicative similarity rule (Estes, 1994; Medin & Florian, 1992):

n

s(p,a) = TI Si,
i=1

(3.3)

where Si is the similarity between p and a on feature i. For a match between two features,
si=1, and for a mismatch o:::; Si:::;!. The use of a multiplicative similarity rule implies similarity
is measured sensitively to both correlated features and feature frequency (Medin & Florian,
1992). The diagnosticity of a feature is relative to the context of other features, thus the term
context theory is applied. Context and feature frequency insensitivity were important
limitations of the prototype theory formulations presented in section 3.1.2 above.
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While the context theory presumes a featural stimulus representation, generalised context
theory (Nosofsky , 1994, 1986) generalises the theory to continuous stimulus dimensions.

When continuous stimulus dimensions are introduced, the interpretation of representations of
exemplars as points in multidimensional psychological space is useful. Nosofsky (1984) has

shown that the similarity measure in equation (3.3) is equivalent to the similarity measure
proposed by Shepard (1958, 1987), and referred in equation (3.1) when:

n

dpa = Llpi - ail.
i=1

(3.4)

Thus, similarity between a presented object and a represented exemplar is an exponential

decay function of psychological distance when psychological distance is computed using a

city-block metric. The city block metric is computed as the summed absolute valued distance
summed over all stimulus dimensions.

Fu; ,.,,~rmore, Nosofsky (1984) has shown the close relationship between equation (3.2) of

context theory and the Luce (1963) choice rule for stimulus identification, so that. the
similarity measure of equation (3.1) can be used with the classification model in equation

(3.2) even when the stimulus dimensions are continuous.

Since general context theory operates in a psychological space, its stimulus dimensions can
be determined using multidimensional scaling (Shepard, 1962). A multidimensional scaling
solution (MDS) is obtained, and exemplars are shown as points in n -dimensional space,
where n is the number of stimulus dimensions in psychological space. Solutions in this space
should be in accordance with equation (3.1). Classification of new exemplars is done by
computing the similarity of the new exemplar to all represented exemplars of each category.

The probability of being classified in a particular category is the summed similarity of the

new exemplar to all exemplars in the category divided by the summed similarity of the new

exemplar to all exemplars as shown in equation (3.2). Similarities used for summation must
be in accordance with equation (3.1).

When applied to financial diagnosis, the use of general context theory can be illustrated as in
figure 3.4.



84

In figure 3.4, the stimulus dimension values of six
firms are shown as points in multidimensional
psychological space. The dimensions shown are
perceived "return on sales" and "asset turnover".
Similarity in the psychological space is computed
using equations (3.1) and (3.4)1. Three exemplars
of each class are shown.' The decision bound in

psychological space is the contour for which the
probability of being classified in class C and B are
equal. In this simple case, this bound is linear, but

as the distributions of exemplars in each class change, the decision bound will be defined by

Retum
on
sales

A change in exemplars of a class is illustrated in figure 3.5. The exemplars g, h, i ,j, k, Iand
m are new exemplars placed on the

category decision bound. When
exemplars in class B are changed, the
decision bound becomes nonlinear. This
illustrates the sensitivity of the theory to

differences in exemplar distributions of
classes. Consequently, several
conditions may change the

classification of a firm to the "success

L....- ...... Asset

turnove

Figure 3.4. Decision bounds of
exemplar theory

nonlinear contours.
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Figure 3.5. The effects on decision bound of .
changing exemplar distribution in a category.

firm" class. One example is the
selective attention to dimensions, which

changes the metric properties of the multidimensional space shown. Another example is a
change in the distribution of represented exemplars within a class.

General context theory has been implemented in a connectionist model by Kruschke
(Kruschke, 1992, 1993a; Nosofsky & Kruschke, 1992). The implementation, ALCOVE2 , is

illustrated in figure 3.6. The illustration shows the simple case of two stimulus dimensions
derived from MDS as dimensions in psychological space. Values on these stimulus
dimensions are represented by the two input units in the bottom part of figure 3.6.

1 Remember that the illustrated space is Euclidean, so that direct interpretation of distances and similarities is
difficult.
2 Attention learning covering map.



The parameter a allows selective attention to the
psychological dimensions. The middle layer of units in
ALCOVE consists of exemplar nodes positioned at the stimulus
dimension values of each exemplar in psychological space.
Their values are computed as an exponential decay function of

the sum of the city block distance between their position and the
"position" of the stimulus object in psychological space summed

over all stimulus dimensions. Consequently, the units in the

middle layer have a value corresponding to the similarity of the
stimulus object to each represented exemplar. The output units

of ALCOVE represent category or class "activations". These
"activations" are used in a traditional choice model (e.g. Luce,

1963), just as class probabilities were computed in the
generalised context model. Class nodes and exemplar nodes are
connected by associative weights that indicate the association

between an exemplar and the different classes. The main difference between general context

Figure 3.6 The
ALCOVE model (From
Kruschke, 1992)
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theory and the ALCOVE implementation is that the attentional parameters and associative
weights are estimated byerror driven learning. However, a more thorough understanding of
the model requires general knowledge of the connectionist paradigm and connectionist

theory. A broader introduction of connectionist theory is given in section 3.2. After central
terms in connectionist theory have been explained, we will return to these models, and to their
relevance and application to the financial diagnosis task.

The empirical findings raised as arguments against definitional theory can be explained by
exemplar theory (Smith & Medin, 1981, p. 150-151). Assuming a featural approach, such as

in the context theory, disjunctive classes are an implicit part of an exemplar representation.
Unclear cases are explained by, for example, failure to retrieve a sufficient number of

exemplars from the relevant category. Features may not necessarily be shared by all
exemplars in a category, thus features are not definitional. However, some features may be
present in most exemplars and thus, they explain the importance of non-necessary features.
Typicality effects are explained in exemplar theory by the presumption that some exemplars
share more of their features with other exemplars in a category. These exemplars are judged
more typical, and stimuli with features similar to these exemplars should retrieve a sufficient
number of exemplars in that class more quickly (Smith & Medin, 1981, p. 150). Because of
abstraction, not all exemplars of a superclass are represented as members of all their

subclasses. Thus, a less typical member of a class may be represented as an exemplar of a
superset, but not explicitly as a member of its subset. This can explain the finding that some
exemplars are judged more similar to their distant superset than to their immediate subset,
used to argue against the assumption of nested categories in definitional theory.
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Some of the problems caused by the lack of constraints on prototype theory are equally

relevant to exemplar theory. However, we have shown above how some formulations of
exemplar theory show sensitivity to both correlated stimulus dimensions and to the
distribution of exemplars within a class. Thus, exemplar theory is often considered to be even
less constrained than prototype theory. Some of the more specific criticism of exemplar
theory comes from empirical research on base rate effects in human classification l (e.g. Estes
et al., Gluck & Bower, 1988a, 1988b; 1989; Medin & Edelson, 1988; Shanks, 1992). Most of

these effects have been modelled by connectionist models of classification, leading some
researchers to suggest that error driven learning should be a necessary property of a

classification theory (Kruschke, 1993a; Medin & Florian, 1992, p. 230).

We now tum to the explanations of the general principles of connectionism in order to

provide the necessary and sufficient terms and concepts to apply these models to a
classification task like financial diagnosis.

3.2 Connectionist theory

Even though connectionism only recently has gained massive attention in cognitive science,
many of the main ideas were formulated some years ago. Several versions of the history of
connectionism exist; some entertaining (e.g. Papert, 1988), some popularised (The economist,
1987) and some more formal (e.g. Cowan & Sharp, 1988). By using the term "new
connectionism" (Quinlan, 1991), some researchers pay attention to the history ofthis

theoretical perspective. Examples of early connectionist research are parts of the work by
Hebb (Hebb, 1949) on learning, but the main supplier of early connectionist ideas was Frank

Rosenblatt (Rosenblatt, 1958, 1962). His influential work on pattern recognition and

perception was unfortunately almost forgotten after Minskyand Papert showed some main

limitations of Rosenblatt's simple perceptron models (Minsky & Papert, 1969). Funding of
connectionist research in the years that followed was scarce, but a few research communities
continued their work on connectionist models. Two examples are the research performed by
James A. Anderson (e.g. Anderson, 1977), and Stephen Grossberg (e.g. Grossberg, 1982).
Even though some research was done on artificial neural networks, the renewed interest in
connectionist models did not burst until the release of the two-volume documentation from
the "PDp2" research project at the University of California, San Diego (McClelland &

Rumelhart, 1986, Rumelhart & McClelland, 1986).

lather effects causing problems for exemplar theory are mentioned by Estes (1994, p. 252), and Estes et al.
(1989, p. 557), and most ofthem are summarised in Medin and Florian (1992, p. 214-229).
2 Parallel distributed processing
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With the PDP research project, the first applications of connectionist models in cognitive

science became widely known. Examples of cognitive phenomena covered by this research
project were aspects of language (McClelland & Elman, 1986, McClelland & Kawamoto,

1986), distributed memory (Rumelhart, Hinton & Williams, 1986) and schema

representations (Rumelhart, Smolensky, et al., 1986), just to mention a few. However, several

connectionist models had been developed on memory and other cognitive functions prior to
this project (see Hinton & Anderson, 1981)

In both cognitive science and cognitive psychology, the application of connectionist theory is

now widespread, and includes research on perception (e.g. McClelland & Elman, 1986),
recognition (e.g. Zipser, 1990), classification and categorisation (e.g. Gluck & Bower, 1988a,
1988b; Kruschke, 1992), judgement (e.g. Grossberg & Gutowski, 1987), choice and decision
making (e.g. Usher & Zakay, 1993), reasoning (see Levine & Aparicio, 1994), problem

solving (e.g. Hampson, 1990) and several aspects of language (e.g. Sejnowski & Rosenberg,

1986). As opposed to other theoretical approaches to many of these phenomena, parameter
estimation in a majority of the models is done by learning. Thus, learning and knowledge

acquisition are integral parts of the theory.

At least three terms are used l in the literature introducing connectionist theory. In cognitive

science and cognitive psychology introductory literature on the subject (e.g. Clark, 1989;
Quinlan, 1991), the term connectionism is used to present the "paradigm" under which

connectionist theory is used. In parts of this area, specific processing and representational
assumptions of connectionist models are made, and the term "parallel distributed processing"
(e.g. Rumelhart & McClelland, 1986; McClelland & Rumelhart, 1986) is often used of these

models. However, the most frequently used term in the area is "neural networks" or "artificial
neural networks" (e.g. Fausett, 1994; Gallant, 1993; Hertz, Krogh & Palmer, 1991;
Wasserman, 1989, 1993).

In this thesis, we limit the use of the term connectionist theory to models of cognition, based
upon a set of connectionist principles to be introduced below. This view is consistent with
traditional use in cognitive science, cognitive psychology and philosophy (Bechtel, 1993;
Estes, 1994; Rumelhart & Todd, 1993). The term "parallel distributed processing" is used
primarily by connectionist researchers advocating the importance of distributed
representations in connectionist models, among who the most radical position has been taken
by Smolensky (1988) (see e.g. Touretzky & Pomerlau, 1994).

1 Sometimes interchangeably.
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We will use the term "connectionism" to cover a set of models and theoretical contributions
with the following characteristics in common:

- A useful source of knowledge to understanding cognition is knowledge of how the brain
works.
- Itwill be possible to define an aggregate level of description for cognition, but an

understanding of this level of description will be constrained by an understanding of the

underlying subcognitive processes.
- Cognition is not the manipulation of passive symbols, but the result of large collectives of

active processing units connected together.
- A cognitive system is made up of large collectives of units computing simple operations in

parallel.
- Representation is not restricted to symbolic entities, but may be implicitly defined in the
connections of the units of a system.
- The state of the cognitive system is a result of a process internal to the system. This process

is the result of the output adapting to the external stimuli.
- The connections of the system are modified during the system's interaction with its

operating world. This is how the system learns.

Connectionism as a concept covers more than a single theory. The term should be used
similarly to the term "information processing theory" of a perspective or paradigm
(Smolensky, 1988; Shanon, 1992).

Models using the principles stated below on functional components and operating principles
in connectionist models without reference to models of cognition, we will term "neural

networks" or "artificial neural networks". Consequently, these terms are applied to a wider
and larger area of research spanning neural network research within, for example, statistics
(e.g. Ripley, 1993; Cheng & Titterington, 1994), engineering (e.g. Dagli, Burke & Shin,
1992), medicine (e.g. Bassøe, 1995), finance (see Refenes, 1995), or economics (e.g. White,
1992), just to mention a few active applied areas.

In this chapter we give a brief description of connectionist theory, its functional components
and its operating principles. We show some of the most widely known models in
connectionism, and discuss connectionist models' relationship to artificial neural networks.
We further discuss some of the most important aspects of cognitive modelling with

connectionist theory, and present important connectionist models of classification.
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3.2.1 General connectionist theory

Following the principles of Newell and Simon (1972) in their introduction of information
processing theory, we present connectionist theory by first stating the functional components
of a connectionist system. Next, we explain its operating principles. The presentation of
functional components roughly follows.Rumelhart and McClelland (1986). Other ways of

characterising the models have been proposed, such as by the adaptive filter formalism
(Carpenter, 1989), by learning principle (Hinton, 1989), by complexity (Zeidenberg, 1990) or

by history (Cowan & Sharp, 1988). In addition to presenting the functional components and
operating principles of connectionist models, we summarise these properties for some of the

most widely used connectionist models.

A connectionist model is defined by combining specific functional components and operating
principles in a particular proposed model. The scientific study of a system with a specific

combination of these properties often constitutes a research project in connectionism.

The application of a connectionist model to a cognitive phenomena requires special attention
to the environmental constraints provided by prior knowledge of the cognitive phenomena
under investigation. When consideration for these constraints is implemented in the
connectionist model, a connectionist theory of the cognitive phenomena is provided.

Responses made by this model can be evaluated against established theory on the cognitive
phenomena to provide a sufficiency test of the model.

3.2.1.1 Functional components

A connectionist system has the following eight functional components (Rumelhart &

McClelland, 1986, p. 46):

* A set of active processing units.
* A state of activation.
* An output function for every unit.
* A pattern of connectivity defining the topology of the system.
* A propagating principle/rule for combining signals in the
network that determine input to units.

* An activation principle/rule to produce the current state of activation.

* A learning principle/rule that changes the system's response based on experience.
* An operating environment that supplies the system with input, and provides a
world for the system's response to take place.
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The processing units or processing elements 1 of a connectionist system only loosely
resemble properties of real neurons (Hebb, 1949). In a way they can be considered abstract
neurons (Feldman & Ballard, 1982, p. 211; Tank & Hopfield, 1987, p. 62). The level of

abstraction of these artificial neurons goes as far as to the functionallevel. This implies that
units in a connectionist system remain units at a psychologicallevel of explanation without
necessarily being implemented in neural structure in a corresponding way (Smolensky, 1988,
p. 9). The units are active because they can perform simple operations, and because they are
not operated upon by some mechanism external to the unit.

In a connectionist system, units can be classified as input units, hidden units or output units.

Input units receive signals from the system's environment and output units give the system's
response. The organisation of input, hidden and output units defines the system's topology as

explained below.

Each unit has a state of activation, and the overall state of activation for all units defines the
system's state of activation. This is indicated by the activation vector. A unit's state of

activation is normally computed as a function of its input. The legal states of activation of a
unit define the type of unit as either discrete or continuous. The simplest discrete activation
vector is a binary vector.

The output function determines the output of the unit for a given state of activation. The
simplest output function is the direct function, in which output equates the state of activation.
This output function limits the operations of the system, and more complex output functions
are normally used. Threshold functions may be defined in various ways. The binary threshold
function used in the original "perceptron" (Rosenblatt, 1962), gives zero as output for
activation states below the threshold, and one otherwise. The bipolar threshold function of
the "adaline" (Widrow & Hoff, 1960) gives minus one for activations below the threshold,
and plus one otherwise. Other nonlinear output functions such as the sigmoid function of the

traditional "backpropagation network" (Rumelhart, Hinton & Williams, 1986), are also used.
In, for example, the "Boltzman machine", a stochastic output function is used (Hinton &

Sejnowski, 1986).

The topology of the connectionist system is determined by the connections between units.
One way of organising these connections is byarranging units in layers, and by having rules
that determine how layers can be connected. The simplest systems- have only two layers; an
input layer and an output layer. Systems of this kind are severely limited in the number of

1 Also referred to as neurons, nodes, or processing elements. In the following we will generally use the term
units.
2 In terms of topology.
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functions they can implement (see Minsky & Papert, 1969). Between the input and output

layers, a number of hidden layers may be implemented. The hidden units of these layers can

take care of interaction effects in inputs, and form intermediate abstractions representing such
effects. In simplefeedforward networks (e.g. Rosenblatt, 1962), the connections are allowed

to pass signals from a layer below to the layer in question. In recurrent networks (e.g. Elman,
1990), the output of a unit is folded back to units in layers below the layer in question.
Competitive networks typically allow connections between units in the same layer (e.g.
Rumelhart & Zibser, 1986). Combinations of different connection types allow complex

topologies to be modelled.

The connections can be either inhibitory by having a negative weight, or excitatory by
having a positive weight. Thus, competition between units in a layer can be introduced with
inhibitory connections (e.g. Rumelhart & Zipser, 1986). The connection weights are used for
representation in the connectionist system. The set of weights are often shown in matrix form
and the il! matrix then defines the representational properties of the network l.

Output of units is propagated through the network as input to other units. The propagation
rule is generally very simple, such as when the net input to a unit is the weighted sum of the

outputs of units connected to the unit in question. However, more complex rules in which net

input is a product function of outputs and weights (Peng & Reggia, 1989), or rules where
excitatory and inhibitory weights are treated differently, also exist.

The activation rule controls the computation of the current activation state of a unit. In some
models, activation is just a function of the net input coming in to the unit at time t. In other

models, the activation of a unit at time t is a function both of the net input at time t and the
activation of the unit at time t -1.

The learning rule of a connectionist network determines the way topology and connection
weights change as a function of the system's oper. on in its environment. Topological change

can be done by changing a weight value to zero; otten termed "pruning", or from zero to a
particular value. Thus, topological change is a special case of general learning. Supervised
learning is when the system has an explicit "teacher" to tell if the output of the system is

correct. The generalised delta rule or backpropagauon rule (Rumelhart, Hinton & Williams,
1986) is a learning rule for supervised learning. If there is no "teacher", the system can still
learn how to structure its representation to structure in its environment. Such learning is called
unsupervised. The learning principle of the ART theory of Carpenter and Grossberg (1987,
1990) is an example of unsupervised learning.

l Even though these representations may not be fully interpretable without reference to processing.
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The connectionist system interacts with its environment by receiving signals at its input units,

and by giving response at its output units. Signals from the system's environment are received
by letting the input units have their state of activation "clamped" by the environment. In this
way the environment is represented by patterns of signals with presumed stable probability
distributions, at least during the period of information processing. Similarly, activation of

output units is interpreted as system response. However, the environment constrains the
connectionist models by more than input and output. The environmental constraints are given
by the task environment and application area of the system, and theoretical and empirical

knowledge of the cognitive phenomena under investigation must be incorporated into the

model. This important aspect of the environment is more thoroughly treated in section 3.2.3.

3.2.1.2 Operating principles

The dynamics of a connectionist system defines its operation principles. These principles are
the second part of a functional description of a connectionist system. The principles are

explained in two phases, the recall phase and the learning phase. We first explain the

dynamics of the recall phase, then turn to the learning phase.

Depending on the relationship between input and output, a connectionist system can be either
heteroassociative or autoassociative l.A heteroassociative system traditionally has the
simplest operating principles. In such a system the typical input is not a part of the system's
output, but differs from it. This means the system is instantiating a "cognitive function"
(Cummins, 1989) in which the typical stimulus-response schema can be applied. Such
instantiations take the form of a mapping function. In an autoassociative system, input and

output traditionally are of the same pattern. Such a system may be used for several purposes
even though the stimulus-response schema can not be applied. Some examples are the
completion of a pattern, or the creation of a compressed representation of the stimulus
(Chalmers, 1990).

A heteroassociative system is normally implemented in afeedforward network. In this
network, a stimulus is presented at the input units by clamping the activation vector at the
input layer. Clamping can be performed with continuous or discrete activation values. This

leads to an output at each input unit defined by the output function of each unit. Output now

l The terms used here are traditionally used for different connectionist memory types. An autoassociative
memory recalls by folding the input back upon itself. This is traditionally done by allowing feedback in the
system until the system stabilises. In a heteroassociative memory what is recalled is different from the input and
traditionally called a response or inference. This is possible without letting the network feed signals backwards
through the recall phase. As a consequence of these differences of operation principles the terms are now also
being used to classify the networks themselves (Zeidenberg, 1990).
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propagates through the connections of the system, normally from the input layer to

succeeding layers. In a simple system, this means direct propagation to the output layer, and
in more complex systems this means propagating outputs to the (or the first of several) hidden
layer(s). The topology of the system, determined by the weights with a value different from
zero, gates the propagated output. At the receiving units, the propagation rule calculates the
net input at each unit, and the activation rule determines what state of activation this net input
gives the units of the layer in question. At this layer, the corresponding output function is
initiated and outputs are propagated further until the output layer is reached.

In an autoassociative system, the recall phase is traditionally more complex. This complexity

is partly caused by the fact that input and output no longer are separated in a clear cut way.
Input may be part of the output, or input may be folded back onto itself. In most cases, the
response of an autoassociative network is a completed pattern. However, pattern completion

may also be achieved by a feed forward network where input and output patterns are
equivalent. What further traditionally distinguishes an autoassociator from a heteroassociative
system, is that the system often incorporates a feedback mechanism for the propagated
signals, a property typical for the recurrent networks traditionally used to implement

autoassociation. This means the signals are propagated in both directions through layers, but it
also means propagation between units within the same layer is allowed. Since such
propagation is allowed, the time dimension is particularly relevant in these networks. The
number of times propagation between layers and between units in the same layer is allowed,

must be controlled during recall and learning. Traditionally this control is performed by some

constraint satisfaction principle, stopping recurrent propagation when a criterion is satisfied.
Such systems also often have a complex propagation rule, even though the principle itself is
quite simple. During recall, the system searches through its representational space to find a
state that satisfies some specified criterion. The traditional criterion is some measure of the

match or mismatch between the current representational state and the state imposed upon the
system by its clamped input units. This measure is often termed the system's energy (Hinton

& Sejnowski, 1986; Tank & Hopfield, 1987) or with a sign reversal, its harmony (Smolensky,
1986). Thus, recall in recurrent networks is often interpreted as constraint satisfaction. An
interesting property of some connectionist systems is that the search for a global optimal
match can be performed by letting the units' states of activation be determined completely
locally.

Of the two learning principles, supervised learning gives the simplest dynamics of the system
during the learning phase. In supervised learning, the system will have its connections
changed as some function of the difference between the response of the system and the correct
response. Several learning rules can be applied to decide how this change should be done.

Easy learning is when the system has no hidden units. Many simple learning rules can be
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applied to such learning, but when the system has one or more layers of hidden units, the
learning becomes hard. The reason for using the term "hard" is the so called "credit
assignment" problem. The problem is how to find out which connections to change as a
function of the system error. One way of solving this problem in supervised learning is by
propagating the error backwards through the system and make "stepwise" corrections of the
connections between each layer. This is what is done in the backpropagation algorithm
(Rumelhart, Hinton & Williams, 1986). A specialcase of supervised learning is when the
teacher has a repertoire limited to a nominal value, the simplest being the binary "right" or
"wrong" values. The limited "teaching" input in such reinforcement learning makes
correlational approaches to the "credit assignment" problem possible when there are few
connections, but as the number of connections increases, the efficiency of the algorithm
decreases dramatically (Hinton, 1989).

In unsupervised learning there is no teaching signal. This means that the learning principle

must develop some organisation based upon its inputs only. The traditional Hebbian learning

rule (Hebb, 1949) used without a teacher, is often applied to such situations. In principle, it
states that the weights of the connections should be changed as a function of the connecting

unit's pre- and postsynaptic activities. Simply stated, this means that a connection should be

strengthened if both its presynaptic and postsynaptic units are strongly active. Variations of
the Hebbian learning rule are among the most widely studied unsupervised learning rules (see
Hertz et al., 1991, p. 197-215).

3.2.1.3 General connectionist and backpropagation models

The combination of different functional components and operation principles presented
above, can give a very large number of specific connectionist models, but only a few of these
models have been widely studied. An important criterion for the combination of functional
components is that it must give the model some easily analysable properties. As an example,
one wants the output function to be differentiable if the learning function is supposed to
minimise some error in the system's response. Threshold functions must be excluded as output

functions when this criterion is used.

As an example of how functional components and operating principles are combined in
connectionist models, the properties of some early connectionist models are summarised in
table 3.1.
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Principle Perceptron Adaline Madaline Linear associator
(BSB)

Reference Rosenblatt, 1962 Widrow & Hoff, 1960 Widrow, Winter & Anderson, 1977
Baxter, 1987

Units Several input and Several input and one Several input and Several input and
output units in one output unit in one layer output units in one output units in one
layer layer layer

Activation Binary Linear Linear Linear
Output function Linear threshold Bipolar threshold Bipolar threshold Limited continuos
Topology Fully/randomly Fully connected Fully connected Fully/random

connected hierarchically hierarchically bidirectional inhibition
hierarchically

Propagation Weighted sum Weighted sum Weighted sum Weighted sum
Activation rule Direct input dependent Direct input dependent Direct input dependent Cycle dependent
Learning rule Perceptron Widrow-Hoff rule Widrow-Hoff rule Hebbian learning or

convergence rule Widrow-Hoff rule
Recall operation Feedforward Feedforward Feedforward Feedback

heteroassociati ve heteroassociative heteroassociative autoassociati ve
Learninz operation Supervised Supervised Supervised Supervised

Principle Selforganizing map Hopfield network Boltzman machine Harmo'!Y_theory
Reference Kohonen, 1977 Hopfield, 1982 Ackley, Hinton & Smolensky, 1986

Sejnowski, 1985
Units Several input and Several input and Visual and hidden units Visual and hidden in

output" units in one output units in one in two or severallayers one layer
layer layer

Activation Linear Linear Linear Linear
Output function Competitive Binary threshold Bipolar and binary Bipolar and binary

normalised stochastic stochastic
Topology Fully with lateral Fully bidirectional Fully bidirectional Fully bidirectional

connections symmetric
Propagation Normalised weighted Weighted sum Weighted sum Weighted sum

sum
Activation rule Cycle dependent Cycle dependent Direct input dependent Direct input dependent
Learning rule Kohonen rule Hopfield rule Two phase Boltzman Trace learning
Recall operation Feedback Feedback Feedback Feedback

autoassociati ve autoassociative autoassociati ve autoassociative
Learning operation Supervised Supervised Supervised S~rvised

Principle Backpropagation Radial basis function Competitive learning Adaptive resonance
network network theory

Reference Rumelhart, Hinton & Moody & Darken, 1989 Rumelhart & Zipser, Carpenter & Grossberg,
Williams, 1986 1986 1987

Units Input, hidden and Input, hidden and Input units in one Complex two system
output in two or several output units in three or layer, and one hidden organisation
layers severallayers layers of units

Activation Linear Distance and linear Linear Linear
Output function Continuos sigmoid Gaussian and sigmoid Binary threshold with Binary threshold and

competition linear layer dependent
Topolog: Fully hierarchical Fully hierarchical Fully connected with Fully connected with

inhibiting clusters special gain control and
vigilance units

Propagation Weighted sum Distance and weighted Weighted sum Weighted sum
sum

Activation rule Direct input dependent Direct input dependent Direct input dependent Cycle dependent
Learning rule Backpropagation Combined rules Competitive learning ART learning rule
Recall operation Feedforward Feedforward Feedforward Feedback

heteroassociati ve heteroassociative heteroassociative autoassociati ve
Learning operation Supervised Un- and supervised Unsupervised Uns'!£.ervised

Table 3.1. Selected early connectionist models

The selection of models is restricted to the few models most widely studied. Among other
models of considerable interest, but which are specifically connected to a particular researcher
or research group are, for example, the counter propagation network (Hecht-Nielsen, 1987),

the bi-directional associative memory (Kosko, 1987), the cognitron and the neocognitron
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(Fukushima, 1975), and the ART2 and ART3 models (Carpenter & Grossberg, 1987, 1990),

just to mention a few. The reinforcement learning based networks (Barto & Anandan, 1985)
are worth mentioning as well as models which have been developed in areas peripheral to the
traditional connectionist field, such as the Darwin models of Reeke and Edelman (1988), and
work on genetic algorithms (Goldberg, 1989).

Some of the models, such as the counterpropagation network and the radial basis function
networks, are hybrid models which combine different functional components and operating

principle for different parts of the system. In, for example, radial basis function networks, the
first hidden layer traditionally learns with unsupervised learning, while the rest of the hidden
layers and the output layer learn by supervised learning. Several such hybrid models have
been developed, and new suggestions are introduced in artificial neural network and

connectionist research in every new issue of the research journals in the fields.

A connectionist model is traditionally illustrated in a simplified network structure. The most
widely applied connectionist model, the multilayer perceptron often termed the
"backpropagation network" is illustrated in figure 3.7.

The functional components and operating principles are
indicated in table 3.1. Input is presented at the input layer and
is propagated to the hidden layer), where it is summed and

transformed by the output function. The outputs of the
hidden units are propagated further to the output layer at
which a similar summation and transformation is performed

to produce the output of the system. An error is computed by
comparing the system output to a target. This error is used by
the backpropagation learning rule to change the weights of
the connections so that error is minimised during further
processing.

••••• hidden

••••• input

Figure 3.7 Backpropagation
network with one hidden
layer

Since the backpropagation network is fundamental to our models of classification, the formal
properties of its functional components and operating principles need further elaboration.
A backpropagation model is a feedforward network which applies the backpropagation
learning rule (Le Cun, 1985; Parker, 1985; Rumelhart, Hinton & Williams, 1986; Werbos,

1974). For simplicity purposes this network is termed a backpropagation model. The network
and algorithms are well presented in several textbooks (e.g. Gallant, 1993; Rumelhart &

McClelland, 1986; Wasserman, 1989). In the following, we primarily use symbols from

) Several hidden layers may be used.
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Rumelhart, Hinton and Williams (1986). The signal coming into a unitj of a

backpropagation model when pattern p is presented is computed as:

netpj =LOpiWji.
Vi

(3.5)

Here, p indicates the pattern presented and i indicates units in a layer passing outputs to units

indicated by j. The term Wji indicates weights of connections between units j and i, and Opi

the output of unit i when pattern p is presented. For the first hidden layer, Opi is the input Ipi

of unit i when pattern p is presented. A bias) is introduced by setting 01'0 to 1.

The signal is transformed in an output function. Backpropagation requires that this function is
continuously differentiable, and the function is asymmetric if input is scaled to [0,1] or
symmetric if input is scaled to [-1,1]. The most widely used output function is the standard

asymmetric sigmoid function on the form:

1
Opi = •. l+ e-netPj

(3.6)

The feedforward pass follows the principles given above. For a model with one hidden layer,
the transformed output of the hidden units is weighted, summed and transformed again to

form the output of the network. From the output of the network, the error, E, is computed as:

(3.7)

where tpj is the target value of unit j when pattern p is presented. For all patterns presented,
the total error can be computed as:

(3.8)

Learning is done in the network by adjusting the weights according to the backpropagation
learning algorithm. This algorithm performs gradient decent on the error surface. To perform
this gradient decent, we must compute the partial derivative of the error with respect to the
weights. This is found using the chain rule. In general we have:

JEp JEp JOpj Jnetpj
-- = --------
awji JOpj Jnetpj awji

(3.9)

) Also termed "threshold".
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The first term in equation (3.9) is different for output and hidden units. For output units the

first term is:

dEl'-;-- = -( Opj- tpj),
aOpj

(3.10)

and the second term is

dOpj-:)-- = Opj(l- Opj).
anet-.

(3.11)

The product ofthe two terms of equations (3.10) and (3.11) is often termed D, thus:

St'j = DEI' = Opj(1 - Opj)( tpj - Opj).
Dnetji

(3.12)

The third term of equation (3.9) is:

dnetpj
awji = Opi. (3.13)

The change in the weights ~Wji is generally:

~Wji = 1]DpjOpi. (3.14)

Here, 1] is termed the learning coefficient or learning rate. The new weights are now

computed as:

Wji(t + 1) = wji(f) + ~wji(t + 1). (3.15)

To smooth the weight changes, the previous weight change can be included in the calculation
of the new weights:

~Wji(t + 1) = 1]DpjOpi+ a~Wji(t), (3.16)

where a is a smoothing parameter called the momentum term.

All equations above, except (3.10) and (3.12), also apply to weights of a hidden layer.
However, units in a hidden layer do not have a traditional target. The terms in the chain rule
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for determining the partial derivative of the error with respect to the weights given in equation

(3.9) are the same, but the formula for D of a hidden layer is different. It can be shown
(Rumelhart, Hinton & Williams, 1986; Smith, 1993) that:

(3.17)

In equation (3.17), the subscript k indicates that Dpk is a parameter of unit Uk where Uk is a
unit in a layer above the layer of unit ut. In this way, the term D can be thought of as being

propagated back from units in a layer above the layer in question. For a network with one
hidden layer, the Dpj calculated in the output layer using equation (3.12) is propagated as Dpk

in equation (3.17). Consequently, Dpj of a hidden layer is calculated as:

Dpj = Opj(1- Opj)LDpkWkj.
'<Ik

(3.18)

Weight change in the hidden layer is performed using equations (3.14) to (3.16) above. For
networks with more than one hidden layer, the pnnciples of equation (3.18) is followed

correspondingl y.

Since backpropagation should perform gradient decent in E and:

(3.19)

we should not adjust the weights on each iteration. However, it can be shown that small 1]

gives only a small departure from true gradient decent in E when example based learning is
used! (Rumelhart, Hinton & Williams, 1986). Weight adjustment after all patterns have been

presented, is termed epoch learning.

Several modifications have been suggested of the functional components and operating
principles of the backpropagation model described in this section, such as modifications of
the learning rule by using second order methods (e.g. Johansson, Dowla & Goodman, 1992),
or the introduction ofpruning during learning (e.g. Weigend, Rumelhart & Huberman, 1991),

just to mention a few.

! Example based learning means weight adjustments are ncnormed after each example has been presented to the
model.



100

3.2.2 Connectionism and artificial neural networks

In the introduction to this section, we reserved the terms "neural networks" or "artificial
neural networks" to research based upon the functional components and operational principles
of connectionism without reference to cognitive models. There are mainly four reasons for
this interest in non-cognitive neural networks.

First, much research on neural networks is related to the simulation of biological neural

networks (see e.g. Gluck & Rumelhart, 1990). Many functions performed by biological

neural networks are surely not cognitive functions, but may, nonetheless, be of significance to
the understanding of human and animal behaviour. In this case, the models are not
psychological, but models at the implementationallevel. Much original research within the

neural network field results from this perspective. Our formulation of connectionism relates
to models at the molar level. Thus, we make no claim of the biological relevance of our
models. However, we clearly make claims that our models are cognitive models. We will not
pursue, or refer to, the research on biological neural networks other than when findings are
easily transferable to the molar level.

The other three reasons why large amounts of research on neural networks, without reference
to cognitive models, are found, lies in the mathematical and statistical properties of artificial
neural networks as modelling frameworks. First, artificial neural networks provide a general
framework for describing and representing statistical and mathematical models (see Cheng &

Titterington, 1994). Second, neural networks provide a rich set of functional forms, and third,
neural networks provide a similarly rich set of estimation methods for parameters of these

functions. We will elaborate somewhat on these three elements of artificial neural networks.

To illustrate how neural networks can provide a general framework for describing
mathematical and, in particular, statistical models, consider a simple single layered l

perceptron with several input units and one output unit. This
model is illustrated in figure 3.8._____I1h~:input

Figure 3.8. Single layered
perceptron

If the single layered perceptron has continuous inputs, a
direct output function at the input and output layers, and the

activation at the output layer is computed using equation
(3.5), then the model has a very familiar structure. The
model then performs a functional mapping similar to the

simple linear regression model. Traditionally, the parameters of this model are estimated by

l Here, the single layer refers to the single layer of connections.
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analytic least squares minimisation (OLS), but the parameters could also be estimated by

gradient descent. The general framework of neural networks can also be used to illustrate and
formalise several other statistical models (see Cheng & Titterington, 1994; Kuan & White,
1994; Ripley, 1993; White, 1989). Some examples are neural network implementations of
linear and quadratic discriminant analysis, logistic regression, and principal components
analysis (Cheng & Titterington, 1994, p. 5).

The simple linear regression function implemented in the network of figure 3.8 may also
indicate that neural networks incorporating hidden layers, modularity, recurrency and so on,

can provide a whole new set of "statistical" models. Only some of the standard neural

network configurations have been investigated as mathematical or statistical models, but the
backpropagation model, some self-organising networks ( Kohonen, 1977, see Oja, 1989), and

some radial basis function networks (Moody & Darken, 1989; Poggio & Girosi, 1990) have
received considerable attention among statisticians. It has been shown that some of these
networks are neural network implementations of known statistical models, while others

provide new and unexplored statistical models.

It has also been shown that some multilayer perceptrons, such as the backpropagation model
and some radial basis function neural networks under certain, not very restrictive
assumptions, belong to a larger family of universal approximators! (Cybenko, 1989; Hornik,
Stinchcombe & White, 1989; Park & Sandberg, 1991; Poggio & Girosi, 1990). Belonging to
the same familyare several other mathematical and statistical models, such as projection
pursuit (Friedman & Stutze, 1981) and multivariate adaptive regression splines (MARS)

(Friedman, 1991)2. To illustrate, the output of unit k in a backpropagation model with one

layer of hidden units is:

Ok= FUI}i, W) = !(Lg(L/I}iWji)Wkj),
'Vj 'Vi

(3.20)

where, F illustrates that output is a function of input and weights of the network only, and!
and g are some, traditionally similar, nonlinear functions, such as the sigmoid function. The
main differences between, for example, the family of functions in projection pursuit and F of
equation (3.20), are that in projection pursuit, ! is linear and g is unknown. Situations in
which! is a linear function have been thoroughly investigated by White (see Kuan & White,

l Backpropagation networks with one hidden layer can approximate any continuous function, while
backpropagation networks with two hidden layers have been show to be generally universal. An open question
in artificial neural network research is, however, the degree of approximation for the different models. One
question of particular interest is if there are situations in which a network with more than one hidden layer has
equally good approximation properties with fewer parameters (weights) as a network with only one hidden layer
(see Kuan & White, 1994, p. 10-11)
2 See Ripley (1993), p. 107-108, or Geman et al. (1992), p. 6, for other examples of universal approximators.
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1994), demonstrating the similarities between the two families of approximators.

Consequently, artificial neural networks provide new functional forms, and some of these
functions have the capacity of universal approximation.

The impressive approximation abilities of certain neural networks are, however, of limited
value if a method to estimate the parameters can not be found. Traditional analyticalleast
squares minimisation and log likelihood maximisation methods are insufficient in these
models (Kuan & White, 1994). Fortunately, for some neural networks, methods for
estimating the unknown parameters of models with universal approximation properties have

been developed. For certain feed forward neural networks with one layer of hidden units, a set
also containing the backpropagation network, White (1990) has shown how gradient descent
on mean squared error can be used to estimate the unknown parameters. Several methods of
gradient descent on mean squared error exist. The traditional formulation of Rumelhart,
Hinton and Williams (1986) is in principle sufficient l, but several new methods and

modifications have been suggested (Fahlman, 1989; Jacobs, 1988; Johansson et aL, 1992).
However, these methods share the principles of error minimisation by gradient descent,
suggesting that the third reason for the interest in artificial neural network research lies in its

methods for parameter estimation in complex nonlinear models.

Kuan and White (1994) summarise the last two reasons for the growing interest in artificial
neural network research in the following way:

Thus, in addition to introducing us to an interesting new class of flexible function forms,
the artificial neural networkfield has drawn our attention to a remarkably simple
estimation procedure for complex models, of interest in its own rights. (Kuan & White,
1994, p. 19)

In addition to the property as an illustration and formalisation framework, the properties of

artificial neural networks referred to above have led to a considerable number of applications,
as well as a growing interest for artificial neural networks in the mathematics and statistics
communities.

The favourable properties of neural networks as modelling frameworks do, however, not
come without a cost. Of these costs we will briefly mention two problems of significance to
connectionist modelling, but which have been paid little interest in cognitive science
applications of the models. The first of these problems is how to determine the generalisation
properties of the model. The second is closely related to generalisation, and results from the

l By letting the learning parameter decrease over learning time. See Kuan and White (1994, p. 18-19).
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fact that we, so far, only have considered networks of a fixed complexity. This problem is the
determination of the complexity of the mapping function provided by the model.

All models, but in particular flexible functional forms, are in danger of overfitting the sample

data. Thus, the estimates of prediction or classification error based upon the sample is under-
estimated (Cheng & Titterington, 1994, p. 20; MacKay, 1992, p. 451). Most often, we assume

that the size and distribution properties of the sample prevent this problem from occurring.
The property of universal approximation is an asymptotic property, based on sufficiently

large samples. How large a sufficiently large sample is, however, is highly context dependent

(White, 1989, p. 110). Some suggestions say the number of weights times 100 is sufficient
(White, 1989), while others argue that the number of weights times lOis enough (Baum &
Haussler, 1989). In contrast to these rather large sample size requirements stand several
practical applications showing surprisingly good generalisation properties with smaller
samples (see Wasserman, 1993, p. 229)

The second, and closely related problem, is that what constitutes a sufficiently large sample
. ::~snot only depend on the nature of the sample and the number of inputs, but also on the

complexity of the artificial neural network. For a multilayer perceptron, the traditional way of

regulating complexity is by adjusting the number of hidden units and hidden layers. We
concentrate here on the number of hidden units. It is obvious that the dimensionality of W in

equation (3.20) and thus, the number of free parameters, is partly determined by the number
of hidden units. By increasing the number of hidden units, the flexibility of the function

increases and the danger of overfitting increases (Cheng & Titterington, 1994, p. 20; Geman,
Bienenstock & Doursat, 1992; Ripley, 1993; Smith, 1993). Furthermore, the need for large

samples is greater the more hidden units the network contains, if one is to get "good"
•

approximation and prevent overfitting.

To find the optimal complexity of the model, two principal solutions can be used. One is to

start with less complexity and increase it, while the other solution starts with high complexity
and reduces it. The first solution is used in constructive methods (e.g. Fahlman & Lebiere,
1990). In these methods, one typically starts with a small number of hidden units, and
introduces new units when necessary. The second solution refers to reduction in both hidden
units and in individual weights, and is the use of pruning methods (e.g. Kamin, 1990;

Weigend et al., 1991). These methods traditionally introduce a complexity penalty on the
error measure, and the gradient descent method performs error minimisation on the combined
error measure. Since both solutions traditionally rely on sample data in their determination of
optimal complexity, they neglect the interaction between the sample size and complexity
determination problems mentioned above.
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Fortunately, resampling methods derived from modern nonparametric statistics (e.g. Efron &

Tibshirani, 1993), can be used to overcome the two problems simultaneously. Of particular
interest are methods that separate estimation sample! and test sample. Simple "intuitive"
methods (White, 1990), do this separation once, but N-fold cross validation can provide better
estimates of prediction and classification error (Efron & Gong, 1983, p. 37; Efron &

Tibshirani, 1993, p. 237-255; Stone, 1974). The idea is that parameter estimation is based
upon the N "leave-one-out" samples, and tests of generalisation properties (generalised

prediction or classification errors) are based upon the N "left-out" observations. The measure

of generalisation error in this procedure is traditionally termed "cross validation error".

Several authors recommend this measure for assessing the generalisation abilities of artificial
neural networks (Cheng & Titterington, 1994, p. 20; Moody, 1993; White, 1990, p. 539). The

measure has been refined and several versions of the cross validation principle exist (see
Moody, 1993; Moody & Utans, 1995). These procedures are computation intensive, and if
combined with constructive or pruning methods, the demands on computational power

increase even more. A method based upon complexity determination in the learning sample
with constructive methods, and assessment of generalisation ability with cross validation, has
been developed by Moody (Moody & Utans, 1995). In this thesis we independently develop a
method in which both complexity and measures of generalisation properties are determined
with the use of cross validation. This is done by finding the connectionist model with the best
generalisation properties while the models "grow" in complexity.

To summarise, artificial neural network research has much to offer cognitive science research
using connectionist models. The comparisons of neural network models with more traditional

statistical methods have greatly increased the understanding of properties of artificial neural
networks, and their advantages and limitations. Some of these limitations are of particular
significance to connectionist modelling, such as the problems of sample size and complexity
determination. The methods traditionally used to overcome these problems have largely been
unattended in connectionist modelling; a rather unfortunate situation-,

Still, it is important to bear in mind that research in artificial neural networks is not
constrained by biological or cognitive plausibility, and the uncritical application of models
and methods from the artificial neural network community to cognitive modelling is not
recommended. This point has also been expressed by artificial neural network researchers,
such as White (1989):

l In artificial neural network and connectionist terminology this sample is termed "training sample" or "learning
sample".
2 One example is the problem of overfit treated above. In Estes et al. (1989) the authors state: "The exemplar
model does better. but its account of the test data does not come close to the accuracy with which either model
can account for learning data" (p. 569). This may well be due to overfit, a problem not considered by the
authors.



105

To the extent that biologicalor cognitive processes or constraints suggest useful
approaches to learning, we arefree to adopt them. To the extent thatsuch processes or
constraints get in the way of using an artificial network to encode empirical knowledge,
we are free to dispense with them. (White, 1989, p. 91)

When this principle is followed by artificial neural network researchers, cognitive scientists
are recommended to carefully evaluate the vast amount of models and algorithms provided
within the field. Successful adoptions and refinements of models developed within the neural
network community have also been done by cognitive scientists (e.g. Kruschke, 1992). Even

though the impression may have been created here, that new models mainly are developed

within the artificial neural network community only, many of the main developments within
the field have come from cognitive scientists.

3.2.3 Connectionist modelling and environmental constraints

In section 3.2.1, we laid out the eight functional components of a connectionist system. Seven
of these are components of the particular connectionist model chosen, while the

environmental component is determined by the task environment and application area of the

model. The environmental component provides the constraints on the formulations of the
connectionist model, and the basis for testing its validity. Theory and empirical research
results on the particular cognitive phenomena under investigation represent constraints on the

connectionist model. Above, we saw how neural network research was not constrained by
these environmental constraints, but connectionist modelling definitely is.

The constraints are highly relevant when cognitive functions are modelled. Operationalisation

is not done directly from theory to empirical measures, but by models when connectionist

theories are tested. Thus, environmental constraints should be built into the modelling
simulations. In addition, the empirical findings and the established theory of the investigated

cognitive phenomena can provide a basis for additional evaluation of model adequacy. The
environmental constraints are traditionally related to stimulus and input representation, to
response and output representation, to internal representational constraints, and to constraints
on the overall processing behaviour of the model. We will briefly explain the relevance of
these constraints.

Two major constraints on the modelling of cognitive phenomena are the selection of relevant
features or stimulus dimensions, and the selection of a proper representational form for these
dimensions; In principle, the relevant stimulus dimensions are hopefully identified by task
analysis, analysis of previous research and the established practices of the research tradition.
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In, for example, financial diagnosis, the relevant stimulus dimensions are cues of the financial
statement. However, task analysis may reveal other relevant stimulus dimensions previously

believed to be irrelevant, such as when new aspects of the task context are taken into

consideration. Thus, the principles of stimulus dimension selection are no different from
traditional independent variable selection in other domains.

However, connectionist models typically differ from these domains in their requirement that a
relevant representation of stimulus dimensions must be selected. Traditionally, two opposing
representational designs are found. The situation is illustrated in figure 3.9.

When representations are local, there is a one to one correspondence between the number of
stimulus dimensions and the number of units used to represent them (Hanson & Burr, 1990;

Hinton, 1989; Sharkey, 1991). When distributed
representations are used, the stimulus dimensions are

distributed over a (traditionally larger) set of units.

For input representations this is often termed place
coding (see Kruschke, 1993b, p. 28), or coarse

coding (see Hinton, McClelland & Rumelhart, 1986,
p. 92)1. A local representation of the two stimulus

dimensions in figure 3.9 consists of two units

representing the value of each of the stimulus
dimensions one and two, respectively. A distributed
representation is illustrated with the "receptive

fields" of four units. These units have an activation
illustrated by the "isoactivation contours". Activation
along the contours depends on the combined value of

the two stimulus dimensions of the object represented. Distributed representations are thus
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Figure 3.9 A distributed (coarse
coded) representation of two
stimulus dimensions.

less sensitive to distortion in the stimulus, and are often assumed to have implicit
generalisation properties (Clark, 1989, 1993; Hinton et al., 1986).

For output representations there are similar task and theory constraints as for the input

representation, but the question if distributed representations should be used is not of similar
relevances. One obvious constraint is that the response should be made by a cognitive system,
such as a human being. In addition, the response should be given in forms interpretable as
relevant response to the task. This presumption limits the relevance of artificial response

10ther terms, such as "superpositional storage" have also been used on memory systems using distributed
representations (see Clark, 1993).
2 Distributed output representations may be used, but these must always be translated to local responses. This
translation may well be performed by an additional output layer above the distributed representation.
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forms not ordinarily used within the task context. In classification tasks, output representation

can be interpreted as a class choice, or as class posterior probability. With the last
interpretation, the model approximates a posterior probability classifier (see Lippmann,

1993). When classification is measured by a continuous response value, output representation
can be interpreted as expected continuous response given the stimulus presentation, and the
model approximates an expected value as, for example, a regression model does (Cheng &

Titterington, 1994; Smith, 1993).

An interpretation of model response must be made with reference to relevant responses
identified by task analysis, and then, the traditional elements of validity, reliability and
measurement error applies to these responses as for any other dependent variable.

A major difference between connectionist models and linear, or other models within a
stimulus-response paradigm, is the development of an internal representation in connectionist
models". As shown in equation (3.20), the internal representation consists of a weight matrix.
However, these weights are interpretable only with reference to unit activation and outputs

because representational units in connectionist models are not necessarily conceptual-.
Traditionally, they are interpretable as subconceptual units (Rumelhart & McClelland, 1986;

Smolensky, 1988), and such interpretation must take place during processing. In principle,
internal representations may be conceptual, and correspond to local representations as

explained above. However, distributed internal representations are more typically developed

in connectionist models because of their representational capacity and implicit generalisation

properties (see Sharkey, 1991). Connectionist models are indirectly interpretable in
conceptual terms by analysis of weights and unit outputs during processing. ·Several

traditional methods are applicable to this interpretation, such as principle components

analysis and cluster analysis. In addition, a whole set of illustration principles, such as Hinton
diagrams (Hinton, 1989)3, and analysis methods have been developed to facilitate
transformation of connectionist representations to allow conceptual interpretation (Clark,
1993, p. 41-67; Hanson & Burr, 1990; Gorman & Sejnowski, 1988; Sanger, 1989; Sejnowski
& Rosenberg, 1986). Special attention has been paid to the interpretation of internal
representations in connectionist models as rules of traditional information processing models
(see Gallant, 1993, p. 315-328; Towell & Shavlik; 1993). As is evident, connectionist models

can show rule-following behaviour, but the interrretation of single units and weights as
representing these rules may be impossible (Smoiensky, 1988).

I Kohonen (1995) has even proposed this as an exclusive property of connectionist models: "Only neural
networks are able to create new information processing functions, such as specific feature detectors and ordered
internal representations for structured signals, in response to frequently occurring signal patterns. Also, only
neural networks can create higher abstractions (symbolisms) from raw data completely automatically"
(Kohonen, 1995, p. 57).
2 See the distributed input representation shown in figure 3.9.
3 For an application, see Bremner, Gotts and Denham (1994).
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Connectionist models' internal representations are often uninterpretable without reference to

processing. This illustrates the important relationship between processing and representation
in such models. A similar relationship between representation and processing is not unknown
in previous cognitive theories (e.g. Kosslyn, 1980), but is at odds with traditional assumptions
of information processing theory (Newell, 1990; Pylyshyn, 1984). To say that processing and

representation are integral parts of connectionist model behaviour, is not equivalent to saying
that general processing assumptions independent of representation does not exist. The
difference between information processing theory and connectionist theory is that the
processing in information processing models is independent of the conceptual interpretation

of internal representationsl. In connectionist models it is assumed that processing is
independent of the subconceptual representations (Pedersen, 1988; Smolensky, 1988)2. Thus,
connectionist models give predictions that only allow simultaneous evaluation of processing
and representational assumptions, but constraints on these assumptions help us evaluate their

realism. These representational assumptions can be tested by applying analysis methods of
connectionist models' representations (Hanson & Burr, 1990; Sanger, 1989; Sharkey, 1991),
and by comparing the developed representations to competence theory or other established
knowledge in the task domain.

Processing assumptions must be made, but can be evaluated by comparing the model's
generalisation ability and its error production to other models and findings in the task domain.
An example of how environmental constraints can be used to evaluate these aspects, is by
comparing model predictions after changes in stimuli have been made to actual responses
under similar conditions. In, for example, classification tasks, biases and errors found from
observation of behaviour (e.g. Tversky & Kahneman, 1974) can be used to evaluate if similar
errors and biases are produced by the model under similar environmental conditions. This

strategy has been extensively used in categorisation and classification research by
connectionist modellers (see e.g. Gluck & Bower, 1988; Shanks, 1991, 1992). These
evaluations are performed within the framework of operationalisation by model. The
framework helps us to show several important aspects of theory testing in connectionist
research, and is illustrated in figure 3.10

] They are syntactic.
2 A similar view on recent research on cognitive phenomena in general has been presented by Estes (1993).



The model in figure 3.10 has three levels, the conceptual or
theory level (T), the model level (M) and the observational
level (O). As illustrated, stimulus (S) and responses (R) are

operationalised at the observational and at the model level,
but representation and processing (RP) are only
theoretically assumed and operationalised at the model .
level. Predictions can be made at all three levels.
Responses are evaluated by comparing model predictions
to observed behaviour. Representation and processing
assumptions are evaluated by extracting representation and

processing principles from the model during processing,
and then by comparing these to theory on the task not explicitly assumed in our original
operationalisations l. In addition, the model can be evaluated against observed behaviour with
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. . . . .. Predictions
- Operationalisations
---+ Comparisons
Figure 3.10
Operationalisation by model
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variations in stimulus conditions when theory predicts a specific behaviour. If the model
generalises under such conditions, the model is strongly supported.

Two other aspects of connectionist models are often used to evaluate their validity.

Connectionist researchers often assume that the parameter estimation procedure used, also
models the learning aspects of the task (Kruschke, 1992, 1993a, 1993b). Thus, if learning data
are collected, they can be compared to model predictions during learning to evaluate the

model's course of learning. If a proposition is only made of the estimated model's behaviour

at the molar level, the course of learning is irrelevant as a test of the generalisation abilities of
the model. The second aspect used to evaluate connectionist models- is how it scales to larger
and more realistic size (Clark, 1989). Some models make assumptions that do not scale well.
One example is the configural cue model of Gluck (1991), which assumes that a
representational unit exists for any conjunction of cues. For multidimensional stimuli, this
assumption does not scale well.

These important principles of connectionist modelling of cognitive functions have been
summarised by Seidenberg (1993):

Rather, one starts with a set of principles concerning learning and the representation of
knowledge. If the principles are identified correctly, modelling should merely involve
incorporating domain-specific variables such as different types of stimulus inputs,
motoric responses, and learning experiences. The relevant generalizations about the

l Notice how this evaluation is made impossible in information processing theory operationalisation by model,
because representations must be explicitly formulated in the model. Thus, connectionist models provide a two
way validation not possible in information processing models.
2 Typically against information processing models.
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domain in question should then fall out of the model. That is, it will develop the correct
sorts of representations, obviating the need to build them in by hand. (Seidenberg,
1993, p. 231)

The principles laid out by Seidenberg (1993), and referred to above, stress the importance of
environmental, and thus, domain specific constraints on connectionist modelling. The
suggestion is that "explanatory theories can be derived from general connectionist principles
in conjunction with domain-specific boundary conditions" (Seidenberg, 1993, p. 231).

The environmental constraints on connectionist modelling of cognitive phenomena apply

correspondingly to models of financial diagnosis. Constraints on input representations are
given by available and diagnostic cues of the financial statement. As shown in chapter 2,
some agreement exists on such cues. These cues are most conveniently represented locally,
but distributed representations may be relevant. Output is constrained by the task contexts of

financial diagnosis, but can also be represented by continuous responses or linguistic terms.

Within the context of classification, distinct classes must be identifiable in the response
material. Internal representation and processing assumptions are determined by the applied

connectionist model. Model applicability is evaluated by testing the generalisation properties

of the model to unseen cases. Other aspects of the model can be evaluated against general
findings on behaviour in the financial diagnosis task. Internal representations and processing
principles can be evaluated by comparing the representations developed in the model to
established findings on knowledge presumed relevant to the financial diagnosis task. The

representations are not readily available in conceptual terms, but must be interpreted using
analysis methods developed for connectionist models (e.g. Hanson & Burr, 1990; Sanger,
1989). Competence theory derived from predictive studies and knowledge derived from
cognitive processing studies of financial diagnosis may be a valuable reference point for such
evaluations.

With this understanding of connectionist principles, functional components, models, their
relationship to artificial neural networks and their role in modelling cognitive phenomena, we

turn to connectionist models of categorisation and classification, and finally to their

application to financial diagnosis.

3.2.4 Connectionist models of categorisation and classification

In section 3.1, we presented the three traditional theoretical approaches to categorisation and
classification in cognitive psychology. Connectionist models have been developed of both
prototype- and exemplar theory. In addition, connectionist models have been developed by



111

transfer of models from other areas of connectionist and neural network research. In this
section we review and discuss some of these contributions.

One of the first, and definitely one of the most influential, connectionist models of
classification was the simple adaptive network modell of Gluck and Bower (e.g. Gluck &

Bower, 1988a, 1988b). In a series of experiments, they tested the predictions of this single

layered perceptron model of classification on a simulated medical diagnosis task. The basic
architecture of this model is shown in figure 3.2. However, the model of Gluck and Bower

has four input units and one or two output units varying across simulations. The modellearns
using the delta rule of Widrow and Hoff (1960), shown by Gluck and Bower to be equivalent
to the Rescorla-Wagner learning rule for associative learning (Rescorla & Wagner, 1972).

The output is converted to probabilities by using a sigmoid output function at the output units
when learning is finished. In the experimental setup, subjects learned probabilistic
classification of a rare and a common diagnosis. The succeeding simulations showed the
capacity of the simple adaptive network to model two interesting findings in subjects'
classifications, not easily explained by other models ofclassification. First, subjects showed
base rate neglect when presented with an ambiguous symptom. Second, subjects judged the

diagnosticity of a cue relative to other cues present in a situation. From these results, the
mr " ..'f base rate neglect has received considerable attention (Myers, Lohmeier & Well,

:' 14; Schanks, 1990). Replications and extensions of the Gluck and Bower (1988a, 1988b)

study have been performed, showing superiority of the model to exemplar models (e.g. Estes
et. al,. 1989), but also several of its weaknesses, as well as limitations in the conclusions
drawn by Gluck and Bower (Estes et al., 1989; Myers et al., 1994; Shanks, 1990).

The simple adaptive network model of Gluck and Bower (1988a) has severallimitations. Two
of these also reported by Gluck and Bower (I988b, p. 180), are the adaptive network's

inability to model subjects' sensitivity to correlated cues in classification, and classification
based on nonlinear combination of cues. A third weakness is the sensitivity of the model to
"noise" in the data (Gluck, 1992), which makes the model predictions generalise poorly. Even
though the simple adaptive network model was able to account for "base rate neglect", its
inability to reproduce the "inverse base rate" effect- found by Medin and Edelson (1988) has
been one of its major empirical weaknesses (see Shanks, 1992, p. 10)3.

I Also termed the "component cue model" (Gluck 1991), and the "standard connectionist model" (Shanks,
1992).
2 The effect occurs when subjects are presented with a novel feature combination and the features have
previously been seen in the context of another feature in which the original features had high diagnosticity.
When presented in the novel combination, one may assume that the most common class is selected. but it was
shown by Medin and Edelson (1988) that subjects select the rare category.
3 It shares this weakness with even the most sophisticated exemplar theory models.
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A minor modification of the adaptive network model was suggested by Shanks (1992) to

make it account for inverse base rate effects. He suggested that the extent to which a stimulus
is unexpected, may have special relevance both during learning and in the processing of a
cue l.By using a modification of the delta rule (Widrow & Hoff, 1960) suggested by Wagner
(1978), Shanks formulated his attentional connectionist model. In this model, learning is
modulated by the "unexpectedness" of a stimulus (Shanks, 1992, p. 12). By incorporating this
modification, the asymptotic weights of the model show selective attention to cues. Except for
the modification of the learning rule, the model is similar to the adaptive network model.
Shanks (1992) shows how the model consistently predicts the inverse base rate effect of a

magnitude similar to the one found in his experimental data.

To overcome the other weaknesses of the simple adaptive network model, Gluck and Bower

(1988b) suggested two refinements; the introduction of hidden layers in their model, and the

configural cue model.

The configural cue model introduced in Gluck and Bower (1988b) was similar to the simple

adaptive network model except that the input representation consisted of elementary features
and all conjunctions of elementary features. The implausibility of this input representation led
Gluck to formulate the configural network model (Gluck, 1991) in which only elementary
features and pairwise conjunctions of features are represented at the input layer. Except from

the input representation and the use of two output units, the configural network model is
similar to the simple adaptive network model. Gluck (1991) tested the abilities of this model
to replicate the findings of Medin and Schwanenflugel (1981) that subjects found a particular
nonlinearly separable categorisation task easier to learn than a highly similar linearly
separable categorisation task. As proposed, the configural cue model replicated the findings of
Medin and Schwanenflugel (1981) rather well. Besides this finding, the configural network
model has received little attention. The main reason is probably due to the representation of
conjunctions, which, even though only pairwise conjunctions are considered, is a somewhat
unrealistic assumption for the representation of complex objects (see Estes, 1994, p.75).

Another solution to overcome the originallimitations of the adaptive network model was
suggested by Gluck (1992), in a model replacing the original elementary feature
representation with a distributed input representation. Except from this change in input
representation, the distributed stimulus sampling model is similar to the adaptive network
model (Gluck & Bower, 1988a). The distributed network model uses a representation of
inputs derived from stimulus sampling theory of Estes (1950). Itwas shown to reproduce the
"inverse base rate effect'< found by Medin and Edelson (1988) in addition to being far more

l This proposition is consistent with information theory assumptions (see Shanon, 1992).
2 Gluck (1992) uses the term "relative novelty effect".
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robust to "noise". Thus, it shows better generalisation properties than the original adaptive
network model. A major problem, however, is how to select the distributed representation.
Using stimulus sampling theory is just one of a large number of ways to convert the local

representation into a distributed one. As shown in section 3.2.3, it is of great importance that
the particular distributed representation is selected so that important relational properties of

the stimulus are preserved I.

It seemed that a distributed representation of inputs could overcome many weaknesses of the
adaptive network model of Gluck and Bower (1988a). A major question, however, was how
this distribution should be created. The largest degree of distribution of relevance for N
different stimulus patterns with n stimulus dimensions would be to transform the n-
dimensionallocal input vector into a N-dimensional distributed input vector of binary values.

This transformation is finite for feature dimensions, but more problematic for stimulus

dimensions. Having this problem in mind, Estes (1993,1994) developed a similarity network
model which introduces a layer of pattern units between the input and output layer. The

number of pattern units equals the number of different patterns (N), and their activation is

computed using similarity measures from exemplar theory. The activations of the pattern
units are somewhat similar to the activations of the distributed units shown in figure 3.92.
New pattern units are introduced as long as new exemplars are presented at the input layer.
Known patterns are used to modify pattern-to-output connections by error based learning,

using a variant of the well known delta rule (Widrow & Hoff, 1960). Compared to previous
exemplar models of Estes (1994), this model uses abstracted exemplar representations, since
only one unit is found for each different stimulus pattern. As usual, the output units
correspond to classes, and their activation is a weighted sum of the pattern unit activations.
Output is produced using the traditional sigmoid output function, but learning is based on the
pre-transformed activation values (Estes, 1994). The model has been tested on a variety of
experimental data, and has generally showed good fit, and the capacity to overcome the

weaknesses of the adaptive network model of Gluck and Bower (1988a).

However, two weaknesses of the similarity network model of Estes (1994) are serious. First,
the estimation of the similarity parameters in the model is done separately, and is not subject
to estimation during learning. This means selective attention is not driven by learning in the
model. Second, the similarity network model is only formulated for feature dimensions,
making transfer to continuous stimulus dimensions difficult in its present formulation.

lOne example of such sensitivity is that the "receptive fields" of the distributed representations are placed in
areas of the psychological space where stimulus objects are found. For example. radial basis function networks
(Moody & Darken. 1989) use cluster analysis techniques to find these places.
2 Even though the "isoactivation" contours vary with the similarity measure applied.
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Theproblems with selective attention and continuous stimulus dimensions have been treated
in further developments of the similarity network model. Both Hurwitz (1990) and Kruschke
(1992) have suggested models that reduce its limitations. Because far more research results
have been published on the model formulated by Kruschke (1992), and Kruschke
acknowledges that similar developments have been made by Hurwitz (1990), we have chosen

to present the ALCOVE model of Kruschke (1992) here.

Kruschke (1993) refers two lines of research as influential in his developments. From the
neural network community, the research on radial basis functions (Moody & Darken, 1989;

Poggio & Girosi, 1990) has suggested models with Gaussian hidden unit output functions
placed at points in multidimensional input space. These suggestions are closely related to
similarity functions placed at points in multidimensional space as suggested in some exemplar
theory models. From the research on general context theory (Nosofsky, 1984, 1986), the idea

of similarity as an exponential function of city-block distances is very similar to the ideas of
radial basis functions researchers. However, radial basis function models traditionally use

unsupervised learning to set the parameters of the hidden layer, and general context theory
traditionally uses log likelihood estimation procedures. The idea of Kruschke was to

implement general context theory in a radial basis function like model, and to use supervised
learning for parameter estimation (Kruschke, 1993).

The result of this research, the ALCOVE model (Kruschke, 1992), is illustrated in figure 3.6.

As briefly explained in section 3.1, the feed forward computations in ALCOVE are an
implementation of general context theory. The inputs to ALCOVE are stimulus dimension
values derived from multidimensional scaling. Thus, stimulus dimension values are values in
a psychological space. The selective attention given to each of these dimensions is adjusted
with a parameter not traditionally included in general context theory, the parameter a. This
selective attention parameter is used to "stretch" and "shrink" the dimensions in psychological
space to better discriminate exemplars in different classes, and to concentrate exemplars in the
same class. The centre of the hidden units is placed at the stimulus dimension values of the
exemplars). The activation of the hidden units are given by:

-c I.mlhji-Ipil

OIJj= e '!li (3.21 )

Here, Op] is the activation of hidden unitj when pattern p is presented, c is a parameter
determining the width of the receptive fields, hji is the centre of the receptive field of hidden

) In Nosofsky and Kruschke (1992), the formulation with hidden units placed at the exemplar positions is
termed ALEX, and it is referred to the original formulation of ALCOVE as having its hidden units scattered
randomly out in psychological space. However, as far as we can see, the formulation of ALCOVE given in .
Kruschke (1992), places its hidden units at the exemplars in multidimensional psychological input space.
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unit j, and Ipi is the input on stimulus dimension i of pattern p. To illustrate how the receptive

field is formed in ALCOVE, the isoactivation contours of four hidden units in two-
dimensional psychological space are shown in figure 3.111.
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Figure 3.11 The isoactivation
contours of ALCOVE

Since the city block distance metric is used, the
receptive fields get diamond shaped isoactivation
contours. In traditional radial basis function
networks, the hidden units are Gaussian. Thus, the

receptive fields of radial basis function networks are

similar to those shown in figure 3.92. The

consequence of the diamond shaped receptive fields

is that the hidden units of ALCOVE are most
sensitive to changes in stimulus dimension values
along the diagonal of the receptive fields.

Classification is performed by the associative
weights connecting hidden units and output units

corresponding to categories or classes. The activation of the hidden units is computed as the

weighted sum of associative weights and hidden unit activation values. The traditional choice
rule of Luce (1963) is used for classification, and is applied to the activation of the output

units. This choice rule has previously been shown to be equivalent to the use of a sigmoid
output function at the output units (Nosofsky , 1992).

Parameter estimation in ALCOVE is done by supervised, error based, learning. The principles

of the backpropagation learning rule are applied (Rumelhart, Hinton &Williams, 1986). For

the output layer this is done by applying the delta rule (Widrow & Hoff, 1960) in the same
manner as in equation (3.14). However, in ALCOVE, as in most other connectionist

classification models, the error is computed before the output is transformed in the Luce
(1963) choice rule.

Supervised learning in the hidden layer is more difficult to implement in ALCOVE.
Traditional radial basis function networks (Moody & Darken, 1989; Poggio & Girosi, 1990)
have two unknown parameters in their hidden layer. The position of the receptive fields hji is

traditionally determined using some kind of unsupervised learning procedure, such as
Kohonen learning (Kohonen, 1977), which actually performs k-means clustering- and places

1 Actually, the stimulus dimensions shown here are post attenuated stimulus dimensions adjusted for the a
parameter.
2 The choice of city block and exponential similarity gradients in ALCOVE is founded in research by Shepard
(1987), and makes the receptive fields of ALCOVE different. See e.g. Kruschke (1992, p. 23).
3 See Hertz, et al., 1991.
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one hidden unit in the centre of each cluster'. The other free parameter of the radial basis
function networks is the width of the receptive fields. This parameter is traditionally
determined using some k-nearest neighbour heuristic (Wasserman, 1993, p. 154). In
ALCOVE, the width of the receptive field is constant across hidden units and is determined
by the parameter c. From the published material on ALCOVE (Kruschke, 1992, 1993a,
1993b; Nosofsky and Kruschke, 1992), it is not clear to us how c is determined. The

receptive fields are placed at the exemplar positions in psychological input space. These

parameters are not subject to learning, but are fixed in ALCOVE. Instead of letting these
parameters be learned, ALCOVE introduces supervised learning of the selective attention

parameter. The learning of this parameter is performed using backpropagation of error

derivatives, similar to Rumelhart, Hinton and Williams' (1986) formulation.

ALCOVE has been shown to be able to model several aspects of human classification.
Kruschke (1992) showed how the model could learn to attend to relevant dimensions, learn to

attend to correlated dimensions, reproduce the base rate neglect of the models by Gluck and
Bower (1988a), and learn nonlinearly separable Classification tasks. As such, it represents a
major improvement on the simpler connectionist models reported above. The inverse base
rate effect of Medin and Edelson (1988) can not be modelled by ALCOVE in its present

form, but Nosofsky and Kruschke (1992) have shown that incorporating exemplar specific
selective attention, the model will replicate this effect also. ALCOVE must be considered one
of the most impressive connectionist models of classification and categorisation presently
available (Estes, 1994; Robins, 1992). However, some limitations have been found, and as

will be shown, some of these are of particular importance to the modelling of.financial
diagnosis.

One limitation of ALCOVE mentioned by Nosofsky and Kruschke (1992), is that using

gradient descent learning, it will be unable to reproduce the abrupt shifts in attention found by

human subjects in some tasks (Nosofsky & Kruschke, 1992, p. 244). This type of limitation
is, in our opinion, of less relevance to a model of classification at the molar level, even
though it certainly is of relevance to a model of classification learning. Of much greater

relevance to classification tasks depending upon abstract stimulus dimensions or change in
stimulus dimensions during learning, are the limitations discussed in Kruschke (1992, pp. 40-
41). These limitations are simultaneously responsible for many of the favourable properties of
ALCOVE, and are stated by Kruschke (1992) as:

l Notice that this implies that the number of hidden units is smaller than the number of exemplars. Thus.
abstraction in the form of location of units at prototype centres takes place. actually implementing a multiple
prototypes theory.
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A third property of learning in ALCOVE is that attention learning can only adjust to the
relative importance of the dimensions as given. ALCOVE cannot construct new
dimensions to attend to. (Kruschke, 1992, p. 25)

Since the stimulus dimensions in ALCOVE are derived by multidimensional scaling, their

psychological relevance seems well founded. However, several tasks require the combination
of stimulus dimensions into abstracted stimulus dimensions for classification to be effective.
As an example, classification based upon financial data may require the use of abstracted
stimulus dimensions, such as "trend" or "stability" (Falbo, 1991). Such stimulus dimensions

may be learned during classification, but can not be formed by ALCOVE. A methodological

limitation of ALCOVE is that it requires both similarity judgements and classification data as
input to the model, making the data collection more comprehensive.

A model formulated particularly to build abstracted stimulus dimensions during learning is

the multilayer perceptron model of Rumelhart, Hinton and Williams (1986), termed the
backpropagation network. This model was criticised by Kruschke (1993b) for not being able

to reproduce subjects' behaviour on a filtration task (see Kruschke, 1993b), to suffer from
catastrophic forgetting (McCloskey & Cohen, 1989) and for learning nonlinearly separable

categories too slowly. Taraban and Palacios (1993) have shown that the criticisms of
Kruschke (1993b) against backpropagation networks were wrong on the first and third
argument. Progress has also been made on preventing catastrophic forgetting (see Clark,
1993, p. 145-147) in such models.

The backpropagation model is illustrated in figure 3.7, and the equations controlling response

production and learning in the model are given in
equations (3.5) to (3.19).

Traditionally, outputs of hidden units are sigmoid
functions of the weighted sum of inputs, but other
output functions can also be used. In figure 3.12,

sigmoid output functions are assumed, and activation and output are equated. As is illustrated,
the direction of the receptive fields is arbitrary and is determined during learning. Model

------ --------- ------------- --------- ------------- --------- ------------- ---------._------
l 2 Dimension

no. l
Figure 3.12 Isoactivation contours
of backpropagation

The backpropagation model can use distributed or

local input representations, and is not restricted to

distributed encoding. Hidden units can be introduced
in one or several hidden layers. The "receptive
fields" of the hidden units in backpropagation
models are illustrated in figure 3.12.
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output is similarly a sigmoid function of the weighted sum of hidden unit activations, and
consequently, afunction of the "receptive fields" shown in figure 3.12. Thus, the functional

form of the model is as given in equation (3.20), proven to have universal approximation

properties (Hornik et al., 1989).

Learning is performed by gradient descent on error as shown in equations (3.7) to (3.19), and
consists of weight adjustments determined by the backward propagated output error

derivatives. The model has been applied to model several cognitive phenomena with
considerable success (e.g. Rumelhart & McClelland, 1986; Seidenberg & McClelland, 1989;
Sejnowski & Rosenberg, 1986; Taraban, McDonald & MacWhinney, 1989). Recently,
Taraban and Palacios (1993) successfully applied the model to several classification
phenomena, and showed how the model could produce many of the empirical findings on
human classification. They also showed how the model could be modified to overcome
previous criticism (Kruschke, 1992, 1993a, 1993b). Taraban and Palacios (1993), stressed the

importance of feature abstraction in the backpropagation model as a property not shared by
ALCOVE, and this ability is of great significance to many classification tasks of higher
complexity (Chandrasekaran & Goel, 1988). Since the ability to build internal representations

and to form abstracted stimulus dimensions of relevance to classification is necessary to a
classification model of financial diagnosis, and this capacity currently is restricted to the
backpropagation model, we concentrate on this model in chapter 4.
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Chapter 4. Connectionist models of financial diagnosis

We concluded from chapter 2 that both the judgement modelling and the predictive

approaches had treated financial diagnosis as a classification task, and that the cognitive
approach basically had overlooked classification theory as a relevant cognitive theory of

financial diagnosis. In chapter 3, we introduced cognitive classification theory, and showed

how recent approaches shared an interest in apply.: ..onnectionist ideas of cognition to

classification problems. We ended chapter 3 with the suggestion that certain connectionist
models of classification could provide the means to successfully model complex classification

tasks like financial diagnosis.

As shown in chapter 3, a close relationship exists between connectionist theories of cognitive
classification and artificial neural network models developed for classification from a
predictive perspective. We showed how some artificial neural networks had universal
approximation properties, and thus, that they could approximate a posteriori classifiers. This
was suggested as one of the reasons for the success of artificial neural networks as
classification and prediction devices. This success has not gone unattended in the community

interested in financial diagnosis from a predictive perspective. Several applications of

artificial neural network models to financial diagnosis are found. Whether any of these
models have cognitive relevance, is, however, an open question.

Before introducing our model of financial diagnosis built by applying a connectionist model

of cognitive classification, we review some of the artificial neural network applications to the
financial diagnosis task. We wish to establish if any of these applications have cognitive

relevance, and if so, build this relevance into our own model.

The review of artificial neural network applications in financial diagnosis is found in section
4.1. In section 4.2, an attempt is made to unify the theoretical perspectives and empirical
':;ndings referred to in chapters 2 and 3, into a connectionist classification model of financial
diagnosis. Furthermore, some propositions that can be derived from the model are presented

and elaborated.

4.1 Neural networks in financial diagnosis

A survey of connectionist and artificial neural network applications to business administration
tasks was performed. Leading connectionist, artificial neural network and cognitive
accounting journals and conference proceedings were searched. This resulted in a relatively
large number of studies, illustrated by the summary provided in appendix A. The studies
cover applications to problems in economics and finance, such as currency exchange rate
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prediction (e.g. Mehta, 1995; Refenes, 1993), stock price prediction (e.g. Schoneburg, 1990;
White, 1988), futures price prediction (e.g. Grudnitski & Osburn, 1993), derivative securities
prediction (e.g. Hutchinson, Lo & Poggio, 1994) and pricing of material goods (e.g.
Chakaborty, Mehrotra, Mohan & Ranka, 1992) l. In addition, applications in management
(e.g. Jung & Burns, 1993) and in marketing (e.g. Brown, 1992; Wray, Palmer & Bejou, 1994)

are found. In accounting, several of the studies are applications of relevance to financial
diagnosis, such as e.g. bankruptcy prediction and loan evaluation studies. A summary of

selected applications is shown in table 4.1.

Reference Task2 Model Benchmark RA3 COg4
Altman, Marco & Varetto, 1994 Bankruptcy prediction- Backpropagation Discriminant N N

analysis
Erxleben, Baetge, Feidicker, Bankruptcy prediction Backpropagation Discriminant N N
Koch, Krause & Mertens, 1992 analysis
Martin-del-Brio & Serrano- Bankruptcy prediction'' Selforganizing map None Y N
Cinca,1993
Odom & Sharda, 1990 Bankruptcy prediction Backpropagation Discriminant N N

analysis
Poddig, 1995 Bankruptcy prediction Backpropagation and Discriminant N N

LVQ analysis
Raghupathi, Schkade & Raju, Bankruptcy prediction Backpropagation N n7
1991
Rahimian, Singh, Thammachote Bankruptcy prediction Backpropagation, None N N
& Virmani, 1993 Athena and simple

perceptron
Salchenberger, Cinar & Lash, Bankruptcy predictionv Backpropagation Logit model N N
1992
Tam & Kiang, 1992 Bankruptcy predictionf Backpropagation Discriminant N N

analysis, logistic
regression, KNN and
ID3

Tam,199l Bankruptcy prediction Backpropagation See Tam and Kiang, N N
1992

Udo,1993 Bankruptcy prediction Backpropagation Regression analysis N N
Wilson & Sharda 1994 Bankruptcy prediction Backpropagation Discriminant N N

analysis
Dutta & Shekhar, 1988 Bond rating Backoropagation Regression analysis N N

cont.,

l Two collections of applications have also recently been edited by Trippi and Turban (1993) and Refenes
(1995).
2 The task context terms of section 2.1 is used. The term "stock prediction" is used for tasks including stock
price or return predictions, and stock classifications.
3 Representational analysis (RA) is marked Y if the study contains an analysis of how the representations of the
neural network performs the vector mappings, and N elsewhere. Lowercase letters are used to indicate doubt
about the classification.
4 Cognitive (Cog) is marked Y if the study refers to the neural network as a cognitive model or compares it to a
cognitive model of the task performance, and N elsewhere. Lowercase letters are used to indicate doubt about
the classification.
5 The authors use the term "corporate distress diagnosis".
6 Martin-del-Brio and Serrano-Cinca (1993) study bank classification and bankruptcy prediction.
7 However, Raghupati et al. (1991) state: "Various financial ratios may be giving some intermediate features
such as immediate financial health of the company, long-term financial health, recent revenue generating trends,
and others. Based on these higher-level features, the network may be arriving at a categorizing decision".
8 Salchenberger et al. (1992) study failure of thrift institutions.
9 Tam (1991), and Tam and Kiang (1992) study bank bankruptcy prediction.
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cont.,
Kim, Weistroffer & Redmond, Bond rating Backpropagation Discriminant, N N
1993 regression and

logistic analysis, ID3
Moody & Utans, 1995 Bond rating Backpropagation Regression analysis ni N
Singleton & Surkan, 1995 Bond rating Backpropagation Discriminant N y2

analysis
Surkan & Ying, 1991 Bond rating Backpropagation None _y_3 N
Surkan & Singleton, 1990 Bond rating Backpropagation Discriminant N y4

analysis
Utans & Moody, 1991 Bond rating Backpropagation Regression analysis N N
Coats & Fant, 1993 Going-concern Cascade correlation D.iscriminant N N

judgement anal_ysis
Barker, 1990 Loan decision N/A None N N
Deng,1993 Loan decision Baclglr~tion None N N
Nottola, Condamin & Nairn, Loan decision Backpropagation ID3 y5 N
1992
Piramuthu, Shaw & Gentry, Loan decision Backpropagation and Probit analysis and N N
1994 2. order modification ID3
Romaniuk & Hall, 1992 Loan decision Feed forward network None n6 N

with cell recruitment
learning

Srivastava, 1992 Loan decision Backpropagation None N n7

Kryzanowski, Galler & Wright, Stock prediction Boltzmann Machine None N N
1993
Refenes, Zapranis & Francis, Stock prediction Backpropagation with Regression analysis y8 N
1995 variations
Wong, Wang, Goh & Quek, Stock prediction Backpropagation None9 N N
1992
Yoon, Swales & Margavio, 1993 Stock prediction Backpropagation Discriminant yIO N

analysis
Yoon, Guimaraes & Swales, Stock prediction Backpropagation Discriminant N N
1994 analysisll
Berry & Trigueiros, 1993 Ratio analysisl2 Backpropagation Discriminant Y n13

analYsis..Table 4.1 Applications of connecnomst and artificial neural network models to financial
diagnosis.

l Moody and Utans (1995) use sensitivity analysis to determine the importance of input units, and thus, study
the input-output mappings of corresponding variables.
2 Singleton and Surkan (1995) state that "Neural network success suggests that neural networks may have
captured some of the judgement exercised by these analysts".
3 Surkan and Ying (1991) test the sensitivity of the network to exclusion of inputs. This is used to simplify the
model so that it is represented in only one sigmoid function.
4 Surkan and Singleton (1990) state: "There is a hope that some of the intermediate representations may be
identified with concepts used by humans to analyze this bond classification problem".
5 Nottola et. al (1992) use ID3 to extract rules from the input to hidden unit output mapping.
6 Romaniuk and Hall (1992) give examples of rules extracted from the neural network by "traversing" the
network. The exact method of this "traversing" is not explained.
7 However, Srivastava (1993) states about the model: "It simulates human judgement and integrates it with
mathematical analytical tools".
8 Refenes et al. (1995) perform sensitivity analysis to investigate the input-output mappings.
9 Wong et al. (1992) focus on integrating the artificial neural network with an expert system.
10 Yoon et al. (1993) investigate the effect of the different inputs on the classification, not the representation as
such.
Il Focus is on integrating the artificial neural network with a rule-based expert system.
12 Berry and Trigueiros (1993) use ratio analysis to predict industry classifications.
13 In their original paper presented at INNe, 1990, they state: "The emerging organization reproduces the way
an expert in ratio analysis chooses variables ...Experts put together several points of view around a few
significant variables. And extended ratios seem to be trying the same sort ofprocedure" (Trigueiros & Berry,
1990, p. 12).
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In table 4.1, the studies are ordered by task context as in the review tables of chapter 2.
Furthermore, the applied connectionist or artificial neural network model is indicated. Most
studies compare the connectionist or artificial neural network model with more traditional
models. These models are termed "benchmarks", and are shown for each study. The last two
columns of table 4.1 indicate if the study reports an analysis of the representations developed

by the model after learning, and if the author claims that the model has cognitive relevance'.
Our review of these studies is organised by task context, starting with the applications to the

bankruptcy prediction context.

One of the first applications of artificial neural networks to bankruptcy prediction was Odor,n
and Sharda's (1990) study, comparing a backpropagation model and discriminant analysis on
a sample of 129 firms. They used the cues of Altman (1968), and found that the artificial
neural network outperformed discriminant analysis on training and test samples. However, no

test of significance or cross validation results were reported. In a further analysis of the
results, Wilson and Sharda (1994) reported significantly better performance for the

backpropagation models. A similar study, using the same cues and data, was reported by

Rahimian et al. (1993), and showed results very similar to Odom and Sharda's (1990) study.

Another small sample study-, concentrating on cue selection and network sizing was reported

by Poddig (1995). His performance results were comparable to Odom and Sharda's (1990),
showing superior performance for the artificial neural network. In the study by Udo (1993), a
linear regression model was used as benchmark, making comparisons with previous studies
difficult.

Two large sample studies- have been performed on the bankruptcy prediction task. Altman et
al. (1994) tested several artificial neural network models for bankruptcy prediction against a
two-stage discriminant analysis based system developed for Italian business conditions. A
simple backpropagation model, a model with time-series organisation of inputs, and a model
with conceptual organisation+ were developed. In general, the network performance on

different test samples was comparable to the results obtained with discriminant analysis, but
no systematic cross validation results were reported. Only limited analysis of network
representations was performed, and no claims of cognitive relevance were made, even though

the authors compared model behaviour under special conditions to the judgements made by

l In our terms; if the model is connectionist.
2 The total sample consisted of ISO firms.
3 The Altman et al. (1994) study used a sample size of 1108 firms, while the Erxleben et al. (1992) study used
3539 data sets on average covering 3 years of cues, so that the sample size is approximately 1180 firms.
4 The model was set up to perform sub classifications of the firms in eight conceptual areas, and to combine
these sub classifications in a final diagnosis.
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analysts under similar conditions. The "illogical types of behavior" (Altman et al., 1994, p.

526) of the artificial neural network under these conditions were considered unacceptable I.

Variables used as inputs were not reported. A similar large sample study performed under

German business conditions, was performed by Erxleben et al. (1992) showing very similar
results when the model was compared to discriminant analysis.

The studies reported so far on the bankruptcy prediction task used traditional manufacturing
and retailing firms as classification objects. Three .dies concentrating on bankfailure
predictions were the studies of Tam (1991), Tam and Kiang (1992)2 and Martin-del-Brio and
Serrano-Cinca (1993). Tam (1991) used 19 cues collected from two consecutive years of 118

banks in a comparison of single and multilayer p. .ptrons to linear discriminant analysis,
logistic regression analysis, nearest neighbour algorithms, and a recursive partitioning
algorithm (ID3). The study used cross validation results, adjusted for misclassification costs
and base rates, and concluded that the backpropagation model outperformed the other models,
but significance was not reported. Similar institutions were studied by Salchenberger et al.
(1993). They used backpropagation models to predict the failure of savings and loan
institutions. When compared to logistic regression, the artificial neural networks predicted

significantly better. Initial experiments were used to select cues representing the theoretical
concepts "capital", "assets", "management", "earnings" and "liquidity".

Common to all these bankruptcy prediction studies are that they do not contain
representational analysis, and for obvious reasons, no cognitive claims are made-. A study

concentrating on representational analysis was performed by Martin-del-Brio and Serrano-
Cinca (1993), but the artificial neural network used was a Selforganizing map (see Kohonen,

1995). This network was used to cluster 66 Spanish banks based upon 9 well known financial
ratios. An advantage of these networks is their illustrative power, but no traditional tests of
performance was reported". Representational analysis was performed with weight maps> to
illustrate how regions of solvent and insolvent bant 're formed by unsupervised learning.
The analysis further revealed that solvent bank-: . ,.~placed in different regions depending
on their value on operationalised theoretical concepts such as "profitability" and "liquidity".
However, no cognitive claims were made for the models, or for the cognitive relevance of
theoretical concepts presumed operationalised in these models.

I With reference to the lens model of Brunswik (1952) shown in section 2.1, this conclusion is made of a model
of the left hand side of the lens model by comparing it to an "intuitive" understanding of the rights hand side,
and is thus, unwarranted.
2 The Tam (1991) and Tam and Kiang (1992) articles report the same study.
3 These models are purelyon the left hand side of the lens model (see section 2.1) .

. 4 The network is autoassociative.
5 Weight maps are similar to Hinton diagrams when the units are fully interconnected and not organised in
layers.
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Raghupathi et al. (1991) used a backpropagation model in a context very similar to Odom and
Sharda's (1990), but concentrated more on the course of learning. A suggestion that the
artificial neural network model was able to "extract higher-level features" (Raghupathi et al.,
1991, p. 156) of relevance to the classification, is interesting. Even though the authors
suggested these higher level features were complex, no direct claims of their cognitive
relevance were made.

A closely related study of auditors going concern judgements, is the cascade correlation
application of Coats and Fant (1993). The cascade correlation algorithm (Fahlman & Lebiere,
1990) is a constructive algorithm building multilayer perceptrons by sequentially adding

hidden units to increase performance. With the going concern judgement of auditors, a
behavioural response variable was used, but in the Coats and Fant (1993) study, this variable
was suggested as an indicator of bankruptcy. Cues of the Altman (1968) model were used as

inputs to predict the going concern judgement of 282 firms. The resulting network performed

significantly better than discriminant analysis in predicting qualifications for going concern
problems, but was outperformed by the discriminant analysis on the "healthy" firms.
Unfortunately, no analysis of representations was performed, but such analysis may have had
cognitive relevance due to the behavioural response variable used.

One of the first applications of artificial neural networks in accounting and finance was the
bond rating study of Dutta and Shekar (1988). They tested the ability of several
backpropagation models to predict the bond ratings of 47 companies, using 6 or 10 cues of
the financial statement and other sources. In their first report (Dutta & Shekar, 1988) they
compared a backpropagation model with linear regression models, and used a transformed
response variable consisting of two classes. In this case, the backpropagation model
outperformed the regression model, but only simple validation was performed, and no
significance tests were reported. In an extension reported in Dutta, Shekar and Wong (1994),
different benchmarks) were used, and different transformations of the rating variable were
reported. The same relationship was found between the artificial neural networks' and the

benchmarks' performance as in the original report. In addition, Dutta et al. (1994) reported the
prediction errors of the artificial neural networks to be within a single rating class distance,
while the benchmarks often missed by more than one class.

Very similar, small sample applications, have been reported in a series of studies by

Singleton, Surkan and Ying (e.g. Singleton & Surkan, 1995; Surkan & Singleton, 1990;
Surkan & Ying, 1991). In Surkan and Singleton (1990), they tested backpropagation models
against discriminant analysis in a two valued transformation of bond ratings of a collection of

) Variations of logistic regression and logit analysis models were used.
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18 firms]. As above, the backpropagation models outperformed the discriminant analyses. In

Singleton and Surkan (1995), a similar result was obtained for prediction of bond rating
changes of the same firms. In Surkan and Ying (1991), the backpropagation model was
analysed further, and attempts were made to simplify the mapping performed by the network
in order to implement it in one simple sigmoid function. To arrive at this form, some analysis
of network representations was performed. However, more interesting were the propositions
made in Surkan and Singleton (1990), that the intermediate representations created in the
backpropagation models may "be identified with concepts used by humans to analyse this
bond classification problem" (Surkan & Singleton, 1990, p. 286). However, no further

attempt to pursue this claim was made.

An application more closely resembling traditional research on bond ratings is the application
of Kim et al. (1993), using a backpropagation model and input variables derived from

Belkaoui (1980) to predict the six class debt ratings of 168 firms. Benchmarks in the study
were linear regression, discriminant analysis, logistic regression and a recursive partitioning

algorithm (ID3). Unfortunately, no cross validation was performed, but results indicated

significantly better performance of the backpropagation model than of any other benchmark,

except logistic regression. Even though not all performance differences were significant, the
differences were always in favour of the artificial neural network.

Of considerably higher quality than the studies reviewed so far, are the studies by Moody and
Utans (Moody & Utans, 1995; Utans & Moody, 1991), applying backpropagation models to
predict the bond ratings of 196 industrial firms. They started with 10 cues of the financial
statement assumed to represent the theoretical concepts "leverage", "coverage',' and

"profitability". The number of input variables and the size of the network were determined by

constructive algorithms and posterior pruning. The reported results were cross validated, and
showed significantly better performance of the artificial neural network than of the
regression model benchmark, even when the response variable remained scaled to 16 classes.

This work concentrated on constructive and pruning algorithms, and on the use of cross
validation. Consequently, it contributed mainly to the artificial neural network community

(see Moody, 1993), but the application to bond rating showed that the use of constructive
algorithms and cross validation was practically applicable-. Parts of the sensitivity analysis

used for network pruning involved analysis of representations, but interpretation of the
representations was not considered in these studies. Furthermore, no cognitive claims were

made.

l Data were collected for 7 years, resulted in 126 "patterns".
2 Despite their computational requirements.
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One of the first applications of artificial neural networks to the loan decision was a study by
Barker (1990), applying a backpropagation model as part of an expert system. However,
training cases, network structure, and performance results were not reported. A similar study
applying artificial neural networks to refine the induced rules of the knowledge base in a
credit granting system, was performed by Deng (1993). Even though the author stressed the
artificial neural network's ability to extract knowledge from past granting decisions, the
material used for learning was severely limited I, no performance results and no benchmark
comparisons were reported. Srivastava (1992) reported using the data of Abdel-Khalik and
EI-Sheshai (1980), but on closer inspection it seems that they used the recursive partitioning
model of Messier and Hansen (1988) developed from the Abdel-Khalik and EI-Sheshai

(1980) data, to construct a "health" index as part of a model predicting loan denial. No
traditional report was made of network topology and performance results, and input data

collected from other sources than the financial statement were used in the final model.
Piramuthu et al. (1994) also reported a test using the Abdel- Khalik and EI-Sheshai (1980)

data, but of more interest was a loan evaluation study reported in the same paper. In this
study, the authors tested the ability of a backpropagation model to predict the loan
classification of 100 firms using financial statement cues and loan information as input

variables. A comparison was made with probit analysis and a recursive partitioning algorithm
(ID3), showing superior performance of the backpropagation model used. Modifications in
the original backpropagation learning rule (Rumelhart, Hinton & Williams, 1986) were

suggested to improve learning speed-, but the performance results remained the same.
Furthermore, no reports of significance and cross validation results were made. A multilayer
perceptron with a "cell recruitment" constructive algorithm was used by Romaniuk and Hall
(1992) in a study of the creditworthiness decisions on 50 firms. However, the model was not
validated, and the study concentrated on how rules could be generated from the model to
make the model "explain itself" (Romaniuk & Hall, 1992, p. 20).

In a study by Nottola et al. (1991), a larger training set of 600 company evaluations of

"practical experts" (Nottola et al., 1991, p. 510) was used to develop a backpropagation

model. However, no traditional report was given on performance. Instead, Nottola et al.
(1991) focused on how recursive partitioning (ID3) could be used to induce a set of rules
explaining the behaviour of each hidden unit. This suggestion is new and interesting, but as
shown in chapter 3, representations of hidden units in a backpropagation model are typically
distributed, and separate analysis of the behaviour of each hidden unit may be of little value.

Common to all of the applications to the loan decision context was a focus on the models as
loan evaluation and granting systems. Comprehensive evaluation of the systems against

I Deng (1993) used a sample size of 14.
2 Piramuthu et al. (1994) applied second order methods to improve learning speed.
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traditional benchmarks was not performed. Despite this systems orientation, surprisingly little

analysis of knowledge representation was done, and no claims of cognitive relevance were

made.

Stock prediction studies are treated as a class containing several contributions which have

some relevance to financial diagnosis. They apply a fundamental analysis perspective on the
pricing of stocks, and try to model the relationship between fundamentals and prices by using
artificial neural networks. However, the fundamentals used, and the measure of stock price,
stock evaluation or stock returns used as dependent variables, differ considerably across the

studies. Kryzanowski et al. (1993) used a Boltzmann machine (Ackley et al., 1985) to classify

stocks into three classes expected to show increased, decreased or stable stock returns. Inputs

were binary trends of 14 financial ratios representing the theoretical concepts "profitability",
"debt" and "liquidity and activity". In addition, seven similarly coded macroeconomic
variables were used as inputs. Performance was not tested against traditional benchmarks, but
was shown to be better than chance. In the study of Yoon et al. (1993), backpropagation
models were used to classify stocks into two classes of "good" and "bad" stocks, as evaluated
by official sources. Inputs were four financial cuesl, and the model was used to classify the

stocks of 151 firms. The model was compared to discriminant analysis, and showed superior

performance even though significance was not reported. In a later report, Yoon et al. (1994)
reported integrating the model with a rule-based system, but the "integration" consisted of

supplying the artificial neural network with a rule-based explanation facility. A similar
"integration" was reported by Wang et al. (1992), but in this study, the inputs to the artificial

neural network were linguistic values derived from a rule-based fuzzy information processor.
It was also shown how this information processor could be implemented in an artificial neural
network. Again, no traditional evaluation of prediction results was performed.

In a more formal study, Refenes et al. (1995) started with the principles of arbitrage pricing
theory (Ross, 1976), and investigated the relationship between three assumed factors and
excess return of 143 stocks. Despite the high quality of the study, the derivation of the three
factors was not explained, and thus, the relevance of these factors to financial diagnosis is
unclear. The arbitrage pricing model traditionally assumes all factors are determined by
external sources. Other studies applying artificial neural networks to aspects of stock
valuation and pricing by using macroeconomic and time series data, have been performed
with varying success (e.g. Schoneburg, 1990; White, 1988). Continued research is pursued

from this perspective, but its relevance to financial diagnosis is limited. I

l The cues were current ratio, return on equity, price/earnings ratio and price/sales ratio.
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A final study, reported by Trigueiros and Berry (1990, Berry & Trigueiros, 1993), applied
backpropagation models to classification of firms into classes assumed to be equally affected
by environmental factors. This dependent variable was not a financial diagnosis variable, but
the study is of some interest because of its representational analysis and cognitive claims. The

authors discussed many of the limitations with traditional methods in prediction and
classification due to the distribution properties of financial cues'. The backpropagation

models were tested against discriminant analysis, and were found to perform significantly
better. Trigueiros and Berry (1990) compared the behaviour of the backpropagation models to

the presumed behaviour of experts when input data were varied, and reported several
similarities. Even though the cognitive relevance of these comparisons is limited, the authors

point in a direction of research of considerable interest.

Several of the other studies shown in appendix A are related to financial diagnosis, but are
applications to tasks not covered by our definition of financial diagnosis. Two examples of
artificial neural network applications using financial statement data for analysis purposes are
the studies by Liang, Chandler, Han and Roan (1992), predicting LIFOIFIFO inventory
evaluation, and by Sen, Oliver and Sen (1995), predicting corporate mergers-, These studies
were excluded from this review because the classification studied was not unambiguously
related to financial health. Some studies were excluded despite their use of response variables
corresponding to aspects of financial health, because they primarily used input variables

external to the financial statement (e.g. Yoon & Swales, 1991). Finally, some studies were of
financial diagnosis tasks, but investigated other classification objects than firms, such as
individualloan applicants (Jensen, 1992) or individual homeowners (Collins, Gosh &

Scofield, 1988; Yamamoto & Zenios, 1993).

From this review of connectionist and artificial neural network applications to financial
diagnosis, we must conclude that no connectionist applications are found. All the studies

used neural network principles from a predictive perspective, and without explicit reference

to a cognitive model of the task. In some tasks contexts, such as bankruptcy prediction this is
unproblematic because the dependent variable used, is not behavioural. In other task contexts,
such as bond rating, in principle, a behavioural dependent variable is used, and cognitive
relevance is of importance. Furthermore, few of the studies performed extensive analysis of
network representations in order to present and understand why the artificial neural networks'
performance was superior. As an example, no search for the "higher level features" proposed
by Raghupathi et al. (1991), or "concepts used by humans" proposed by Surkan and Singleton

I Examples are the multivariate normality assumptions of discriminant analysis and the assumption of
uncorrelated independent variables in regression analysis.
2 These studies have dependent variables of similar interest as the variable in the Trigueiros and Berry (1990)
study, but because of their purely predictive perspective, the studies are not reviewed.
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(1990), was performed. However, the propositions of these intermediate abstractions are
interesting and deserve further investigation.

4.2 A connectionist model of financial diagnosis

By using the findings reported on the financial diagnosis task, the theory proposed on
cognitive classification, and the models provided by connectionist theory, we can formulate a
connectionist model of financial diagnosis. The introduction of the model is divided into three

parts. In the presumptions part, the presumptions and premises of a connectionist model of

financial diagnosis are summarised using relevant research findings reviewed in chapters 2
and 3. In the presentation part, the model is introduced and illustrated graphically. In the
propositions part, we elaborate on some propositions presumably supported by an empirical

investigation and simulation of the model.

The presumptions of the connectionist model of financial diagnosis can be organised in three

groups. The first group of premises is based upon the assumption that financial diagnosis is a
classification task. This assumption does not seem unwarranted when considering the studies

reviewed in chapter 2. From a cognitive point of view, however, it means treating the task at a
"lower level" of cognition (see Osherson & Smith, 1990; van Gelder, 1993) than is traditional

in cognitive processing studies of financial diagnosis. However, diagnostic tasks in other
areas! are studied from this perspective (Brooks et al., 1991; Mumma, 1993). The term

classificatory diagnosis (Chandrasekaran & Goel, 1988) has been used of complex
classification tasks in which classification is presumed to depend upon a classification

hierarchy and the use of intermediate abstractions by the cognitive system. Thus, a model of
financial diagnosis as classificatory diagnosis should be able to implement classification

hierarchies and form intermediate abstractions.

The second group of premises stems from the application of relevant theory of cognitive
classification. First, the model of financial diagnosis should be based upon established theory

of cognitive classification. Second, models derived from the theory must have been shown to
explain most of the empirical findings on human classification, such as base rate effects
(Medin and Edelson, 1988) and classification learning effects (e.g. Shepard, Hovland &

Jenkins, 1961). Third, model operationalisations of the theory should have well known formal

properties-,

I Such as medical and psychiatric diagnoses.
2 Such as a well understood mapping function, formal properties as a posterior classifier, or known limitations
with relevance to cognitive classification.
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The third group of premises stems from the constraints that the task put on the model. These

constraints are provided by research on financial diagnosis and relate to stimulus dimensions,
relevant responses, and the processing and representational assumptions of the model. In
financial diagnosis, stimulus dimensions are real valued, correlated and sometimes configural.

Thus, the model must show sensitivity to these properties of stimuli. Furthermore, selection
of relevant stimuli must have a basis in theory of financial diagnosis and empirical findings
on cue usage. Relevant responses of financial diagnosis are clinical narratives or linguistic
terms transformed to express class memberships, or direct assessments of class memberships.
If financial diagnosis is similar across task contexts, these linguistic terms or membership
assessments should be derived in a generic diagnosis situation. The processing and
representation principles of the model must incorporate explanations of cognitive phenomena
previously unexplained in information processing terms. Important aspects of processing are
the role of pattern recognition, prototype similarity and analogical reasoning. Important
aspects of representation are the role of search-independent representations, schema
representations, prototype representations and template matching.

From a set of basic principles of processing and representation, a model must be developed
that is interpretable in cognitive terms. Whether the developed representations reflect
competence theory of financial diagnosis is an empirical question to be investigated, but such

investigation must be possible. Furthermore, a methodology must he used that does not
assume direct correspondence between measured units and units of the representational
system. This should prevent the developed representations from being constrained by
methodology so that only certain types of representations can be formed. Thus, the model
must be able to develop, for example, symbolic representations and perform "qualification" 1 ,

but the model must not be constrained in a way that only allows such representations to
develop. Furthermore, the model should allow processing behaviour describable in rule-based
terms to develop, but not in a way that makes similarity based processing impossible.

With these presumptions introduced, the selection of a connectionist mode of classification
should "come natural". These models are considered "among the leading candidates"
(Nosofsky, Gluck, Palmieri, McKinley & Glauthier, 1994, p. 366), in cognitive classification
models today. The backpropagation model was specially formulated to develop internal

representations, a property of a model presumed necessary in the discussion above. If
implemented in a backpropagation model-, the connectionist model may be illustrated as in

figure 4.1.

1 That is, transformation from analog to digital form of stimulus dimensions.
2 An introduction to the structure and algorithms of this model is given in section 3.2.
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In figure 4.1, the relevant stimuli are found among the financial statement information on the

left of the figure. The actual stimulus dimensions or features used by the model are not

determined. However, the summary in chapter 2 indicated the theoretical concepts
traditionally assumed operationalised in financial diagnosis. Among these, cues covering the
theoretical concepts "leverage", "profitability", "liquidity" and "financing"! were considered
the lour most important.

On the right side, some classes of the classificatory diagnosis are shown. In figure 4.1, these
are shown as units indicating linguistic terms presumed to be relevant in financial diagnosis.
The actuallinguistic terms used, must be determined empirically. However, the different task

contexts of financial diagnosis shown in chapter 2, suggest a space of relevant responses-.

If the financial diagnosis is a complex task, intermediate abstractions are presumed functional
to the cognitive classification. In figure 4.1, the intermediate abstractions are shown as

"feature detectors". Other possibilities of intermediate abstractions exist, such as intermediate

l See the summary table 2.7 of concepts assumed operationalised by financial cues in studies of financial
diagnosis.
2 Linguistic terms expressing for example a bankruptcy or going concern classification, or ordinal scales as in
bond rating contexts are examples of relevant responses.
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abstractions working as variables, or as exemplar detectors identifying similar exemplars
belonging to the same subclass. Some examples of different types of intermediate abstractions
are shown in figure 4.2. The intermediate abstractions actually developed by the model must
be determined empirically, but in chapter 2, most of the higher level concepts presumed
relevant as intermediate abstractions were introduced. The intermediate abstractions

developed by the connectionist model can be analysed and evaluated against these concepts to

assess the cognitive relevance of the model.

In figure 4.1, it is assumed that connections illustrated by arrows, constitute the links between

stimulus dimensions and intermediate abstractions, and between intermediate abstractions and

the classificatory diagnosis. When implemented in a backpropagation network, these
connections have weights indicating the diagnosticity of stimulus dimensions and of
intermediate abstractions. Activation of units representing intermediate abstraction and
responses are presumed to be a function of the weighted sum of diagnosticity of units in a
layer below. By implementing the model with local input units, the model may develop local
internal abstractions corresponding directly to concepts of relevance to financial diagnosis.

The use of sigmoid output functions of intermediate and output units allow such a
development I, but does not enforce it. To be interpreted as classificatory response, local
representation of responses must be used. Parameter estimation is done by using the
traditional backpropagation learning rule explained in chapter 3.

From the presumptions above and the backpropagation implementation of our connectionist
model of financial diagnosis, some interesting propositions can be made.

A first proposition of a new model, is traditionally made of its capacityto model the
investigated phenomena. Since financial diagnosis tasks have been modelled with three
different approaches, several different models have been developed that could provide a
benchmark for the evaluation of our new model. However, studies with a cognitive approach

was shown in chapter ~ primarily to have modelled information processing behaviour, and no
general model of financial classificatory diagnoses could easily be found suitable as a
benchmark. Predictive studies have focused on modelling financial diagnostic criterion
variables, and benchmark models from this approach are not suitable as models of judgmental
variables, such as financial classificatory diagnoses. However, it was shown in chapter 2 as
part of the standard assumptions of the judgement modelling approach, that linear models
showed good fit to actual financial diagnostic classifications. Thus, linear models of the
judgement modelling approach could be used as benchmarks for a strong test of connectionist
model fit. Consequently, we can formulate the following proposition:

I See the presentation of the "receptive fields" of such units in a backpropagation network, shown in figure 3.12.
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PI: The connectionist model will show better fit to financial diagnostic classifications than

linear benchmark models.

This proposition implies a far stronger test of the developed model than a proposition that the
model fit should be better than chance, often used in similar tests (e.g. Kryzanowski et al.,
1993). The linear benchmark models should be developed following the traditional principles

of the financial diagnosis literature reviewed in chapter 2.

If the linear models are outperformed by the connectionist model of financial diagnosis,
several reasons can be proposed. First, the functional form of the mapping in the

connectionist model is nonlinear, and this nonlinearity may in itself be important. Second, the
method of parameter estimation used in our model is the backpropagation learning algorithm,

and this estimation method differs from the method traditionally applied to linear models.
Third, the intermediate abstractions developed in our connectionist model are considered
important to the model's behaviour. Of these three reasons, the intermediate abstractions are

what is presumed to give the model its cognitive relevance. Thus, a test of the effect of the
network's intermediate abstractions is necessary, and can be formulated in the following

proposition:

P2: The connectionist model with intermediate abstractions will show better fit than similar

models without intermediate abstractions.

The linear models are estimated with traditional methods I. If the connectionist models

without intermediate abstractions are estimated using the backpropagation learning algorithm,
the difference in model fit between the connectionist models without intermediate

abstractions and the models with such representations can be used to test proposition P2. In a

backpropagation model, the intermediate abstractions are implemented in hidden units, and
consequently, a test of the differences in performance between models with and without
hidden units can be used.

The intermediate abstractions of our model can take many forms. Common to all forms is that
they can be analysed with connectionist analysis methods (e.g. Hanson & Burr, 1990; Hinton,

1989; Sanger, 1989; Shakey, 1991). Such analysis should reveal the internal representations
and their role in processing. For the model to have cognitive relevance, the intermediate
abstractions should be interpretable in terms and concepts identified as relevant to the
financial diagnosis task. Even if representations of these concepts are distributed, behaviour

I For example, ordinary least squares estimation methods.
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of the system should be interpretable in such terms. Thus, the following proposition can be
made:

P3: Intermediate abstractions in a connectionist model of financial diagnosis have cognitive
relevance.

Several intermediate abstractions can be found, and the functional abstractions must be
determined empirically. However, based on previous applications of connectionist models,

some suggestions can be made. In figure 4.2, examples of intermediate abstractions working
as "feature detectors", as variables, and as "subclass identifiers" are shown.

The intermediate abstractions shown in figure 4.1 are "feature detectors" that work as local
representations of specific or configural features in the stimulus material. Representations
operating as "feature detectors" bear close similarities to rule-based representations, because

outputs of such units will typically
show bimodal distributions. Another

representation is variables, which is
also a local representation, but the

outputs of units representing such
intermediate abstractions are

continuous and show unimodal
distributions. In the "subclass

detectors" shown on th~ right of figure
4.2, values of particular.features or

variables are distributed among the
units, and a place encoding more
similar to what is found in exemplar
based models (Kruschke, 1992) is

developed. Independent of the actual
form or type of intermediate
abstractions developed, their cognitive
relevance can be determined by

evaluating their role in the processing against concepts and terms found to have cognitive

FEA TURE DETECfORS VARIABLES SUBCLASS DETECfORS

Figure 4.2. Examples of alternative intermediate
abstractions with varying degree of locality

relevance in studies of financial diagnosis reviewed in chapter 2.

With local representations of stimulus and response, the backpropagation model is, in
principle, free to develop any representational form of intermediate abstractions. However,
previous research (Hanson & Burr, 1990) suggests that internal representations are sensitive
to representations of stimulus and responses. In the financial diagnosis task, stimulus
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representation is constrained by the variables form of the financial cues. However, different

response representations can be tested. The form of the response representation is likely to
affect the intermediate abstractions in the connectionist model of financial diagnosis.

The way the representation of responses will affect internal representations is also an
empirical question. However, we suggest that the variables form of response representation
will make similar internal representational forms evolve. Furthermore, class representations
of responses, such as linguistic terms, will make a variables form of the internal
representations less likely.

Before proceeding to the empirical investigation of our propositions, it should be stressed that
the propositions do not have a traditional hypothesis form. A main reason is the problems

associated with tests of cognitive models that we addressed in chapter 3. Of particular
relevance are the problems with a formal test of proposition P3. The formulation of this

research question as a proposition illustrates that we accept that the best we can do is to make
P3 probable, more than formally test it.
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PART III - METHOD
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Chapter 5. Research design

To investigate the propositions set out in chapter 4, a data set of financial diagnoses must be
provided. As in any other empirical study, the quality of the data set depends on how threats
to validity are treated (Cook & Campbell, 1979; Pedersen, 1989). Consequently, the standards
followed in traditional experimental settings should be applied independent of the model
finally used to simulate the mapping of stimulus to response. Recently, several studies in
experimental cognitive psychology have explicitly reported experimental procedures when
connectionist simulations are applied (e.g. Estes et al., 1989; Gluck & Bower, 1988a, 1988b;

Nosofsky et al., 1994; Taraban & Palacios, 1993). Similar principles are followed in this

study.

In addition to the methodological aspects of the experimental study, the simulation
methodology used in connectionist modelling requires further elaboration of the simulation

environment, parameter settings and validation principles applied. Here, the methodology of
the empirical study and the simulations are presented in chapters 5 and 6, respectively.

In classical experimental designs, validity of the experimental data is obtained by
manipulation, control and randomisation. In a financial diagnosis experiment, manipulation
is the controlled changes in financial cue patterns presented to the diagnostician. By control
we mean control of the experimental conditions in which the diagnosis takes place.

Randomisation can be used to enable comparisons across manipulated levels of an
independent variable. Here, it is used to randomise subjects to separate groups given different
manipulations. Following these principles, the "ideal" experimental conditions of a financial
diagnosis experiment are manipulation of a single, or small number of financial cues of
diagnostic importance in an artificially controlled setting with subjects randomised to groups
given different values of the manipulated experimental variable. However, such a design has

several general problems and practicallimitations. To take an example, the manipulated

variables in financial diagnosis most likely consist of financial statement cues that covary in a

limited number of patterns, so that individual cues can not be manipulated freely.
Consequently, some form of quasi experimental design must be used.

At the other extreme of the range of possible research designs is the use of a secondary data
set. When providing secondary data sets of financ ',., diagnoses, such as official bond ratings
or going concern evaluations, at least two main problems are present. First, in Norway,
availability of official information on, for example, bond ratings or similar evaluations, is
very limited. At the time of this study, no official sources of such information existed. At the
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present time, some sources are available", but their quality is not easily determined. Even if
official data were available, their quality as experimental data would be outside the control of
the experimenter. Thus, experimental data on financial diagnosis classifications by qualified
subjects had to be collected under controlled conditions. An experimental design based upon

the general principles of manipulation, control and randomisation, and applied to the financial
diagnosis task, was set up.

As explained, the best way to provide controlled conditions is to create an artificial situation

attaining free manipulation, full control and randomisation. In financial diagnosis, however,

these conditions sensitise other threats to validity. For example, artificial manipulation of
financial statement data was applied in previous research (Holt & Carroll, 1980; Lyngstad,
1987; Methlie, 1993), and was easily recognised by the diagnosticians as unrealistic or

impossible statements. Thus, cue patterns should be provided from real financial statements
even though this could prevent sufficient variation in the manipulated variable.

"Natural" manipulation is provided with selection of stimuli from the real world. Even though

not all financial cues are normally distributed, a bell shaped distribution is likely. If selection
of financial statements are made at random, many levels of the manipulated variables will be
produced. Consequently, a considerable number of diagnosticians is necessary to validate the
diagnoses at alllevels of the manipulated variables. To illustrate the situation, consider the

following two examples: In expert systems development, one traditionally uses one or a few
experts' diagnoses of several cases to provide sufficient variation in the financial statement
cue pattern for induction to take place. Then, there are many levels of the manipulated
variable, but only few subjects to validate the diagnoses. In classical experiments, one

traditionally uses two levels of manipulation and several subjects in order to test the effect of
the manipulation while controlling for individual variation. In this study, we suggest a design
that compromise between these two extremes, so that data, relatively free from between-
subject variation, can be provided on a sufficient number of diagnostic cases.

5.1 The stimulus material

The stimulus material in financial diagnosis primarily consists of financial statement cue

patterns. Official financial statement content and presentation structure are regulated by the
"Accounting Act"2 and other laws depending on the ownership structure and size of the firm>.

! The present sources are the Central Bureau of Statistics, Dun & Bradstreet Soliditet, the Register of Company
Accounts at Brønnøysund and some industry related registers. However, the access to, the prices, the contents
and the completeness of these registers vary considerably. The contents and availability of financial statement
information in these registers are discussed in section 5.1.
2 In Norwegian; "Regnskapsloven".
3 Such as in the Norwegian "Companies Act" (Aksjeloven).
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However, previous research on financial diagnosis of Norwegian firms (Lyngstad, 1987;
Methlie, 1993), and the research reviewed in chapter 2 (e.g. Bouwman, 1983; Bouwman et
al., 1987), suggest that official financial statements need careful preparation and
reorganisation for financial diagnosis to take place. Studies reviewed in chapter 2, particularly
stressed the importance of financial ratios in financial diagnosis. Ratios covering the most
widely applied theoretical concepts in financial diagnosis; "profitability", "leverage",
"liquidity" and "financing" must be provided in the stimulus material, or they will be

calculated by the diagnostician. In addition to the traditional financial statement and the

financial ratios, funds flow statements have been suggested important to financial diagnosis

(Gentry et al., 1985). In order to secure that most of the material required by the financial
diagnosticians was provided, we chose to incorporate income statements, balance sheets and

19 financial ratios of two consecutive years, and a funds flow statement of the most recent
year in the stimulus material.

The income statement was organised according to the "Accounting Act" with some alterations

recommended in previous research (Lyngstad, 1987; Methlie, 1993, 1994). The alterations
were that contribution margin was calculated, and that the year end adjustments were
organised for analysis purposes following the regulations given in Norwegian tax laws of the
most recent year of the financial statement included. Financial and extraordinary items were

presented by sums, thus the income statement cues were rather coarse.

Similar recommendations were followed for the organisation of the balance statement. A few
more summarising items and a somewhat more detailed specification of tax related reserves

than recommended in the "Accounting Act" were used.

The income statement, the balance statement and the financial ratios were placed in separate
sections of the stimulus material. The ratios were selected among the most frequently used

financial ratios of chapter 2, and were used by Norwegian financial diagnosticians (see e.g.
Lyngstad, 1987; Methlie, 1993 p. 152-153). The selected ratios were presumed to indicate
aspects of the theoretical concepts "operations", "productivity", "profitability", "financing",
inventory, collection and payable "turnovers", "liquidity", and "leverage" of each firm. The
ratios were grouped in blocks in the stimulus material corresponding to these theoretical
concepts. The ratio section of the stimulus material included all ratios recommended by two
widely applied Norwegian standard textbooks (Eklund and Knutsen, 1994; Kinserdal, 1992)
on traditional financial statement analysis of Norwegian companies.

The funds flow statement was organised according to the recommendations of a presumed
. expert on financial diagnosis (see Lyngstad, 1987). The subjects participating in this study
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had 'previously been given an introduction to this particular way of organising the funds flow
statement.

Additional information on the number of employees, firm industry and location of the firm

had been indicated as useful in previous studies (Lyngstad, 1987; Methlie, 1993, 1994), and

was included in the stimulus material. Industry was indicated using industry terms following
the industry classification of the Norwegian Central Bureau of Statistics I, and location was
indicated by the home region- of the company.

Much of the information provided in the stimulus material is available in official financial

statements. However, additional information had to be collected regarding firm industry, and
all cues of the ratio section and funds flow statement had to be calculated from the official
information.

An example of the introductory text, the stimulus material, and the response form used in this

study is presented in appendix B. Formulas used to calculate the cues of the ratio section are
shown in appendix D. Even though the subjects were only expected to use parts of this
material, selection of the relevant parts was left to the subjects. Selection of the relevant parts
of the stimulus material is treated as part of measurement development and is presented in
section 5.4.

When the format and content of the stimulus material were decided, the firms representing the
stimulus manipulation had to be selected. This selection is a part of measurement

development because it represents operationalisation of the levels of the manipulated
variables. However, since the selection is closely related to the content and format of the

stimulus material, it is treated in this section. The sample of firms selected to represent the
stimulus manipulation is termed the stimulus sample.

In Norway, no computerised and official sources of financial statement information similar to,

for example, COMPUSTAT are available>. Norway is a small economy, and selecting
statements from listed companies could result in the diagnosticians identifying the companies.
Smaller companies are not generally listed, and are consequently not so easily recognised.

I The industry group level descriptions of the Norwegian "Standard for næringsgruppering" was used. These
descriptions are the Norwegian version of the International Standard Industrial Classification of all Economic
Activities (ISIC).
2 The "regions" used were the Norwegian "fylke".
3 In Norway, official financial statements are registered at the Register of Company Accounts at Brønnøysund.
However, this register is only in paper format and is expensive in use. Later, Dun & Bradstreet-Soliditet have
created a register of financial statement information (Dun & Bradstreet-Soliditet, 1995), but this is expensive
and so far only delivers information with limited content and in paper format. At the time of data collection.this
source was not available. Other sources only contain partial financial statements.
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Furthermore, official market evaluations of the value of smaller firms do not exist, and thus,

diagnoses of such firms depend more upon financial statement information, making financial
diagnosis even more relevant to these firms. The selection of small firms was thus considered

to further enhance realism of the stimulus situation. A register of small company financial
statements had been collected for other analysis purposes (Boye & Kinserdal, 1992) at the

Norwegian School of Economics and Business Administration l. This register was used as a
sampling frame for the stimulus sample in this study. The number of financial statements
required was calculated-. to 75 The data collection was performed in two stages. At the first

stage, financial statements were selected at random from the sampling frame, and checked for

reporting and calculation errors". At the second stage, otherwise correct financial statements
were excluded because of extreme values or particular incidents in their recent history. When
the data collection was finished, 120 statements had reached the first stage, and 85 statements
had reached the second stage. A list showing the identity of the 85 firms reaching stage two is
supplied in appendix C. Of the 85 statements, three were excluded due to issuance of new
shares (AH, AV, AY), four due to extreme values on financial ratios (BO, G, X, Z), one due
to an extremely negative situation (AM), one due to extreme growth (CB), and one due to

extreme fluctuations (E) in recent history. The final 75 financial statements represented the

stimulus sample frame from which the presented stimuli of each subject was selected.

Summary statistics of selected items from the financial statements are shown in table 5.1.

ltem4 Mean St. dev. Minimum Maximum
Sales 9835213 4917314 2368396 24818 146
Operating profits 314324 356050 -295098 l 946510
Total assets 4200354 2071 344 788514 8711 186
Equity 434558 385374 -312571 l 557897
Employees 16.9 11.2 2 54..Table 5.1 Summary stanstics of firms 10 the stimulus sample

.'il oe inferred from table 5.1, the values of the financial cues of these financial statements
varied considerably, and was expected to show sufficient variation in financial cue values to
represent true stimulus variation. A stimulus situation was created from these data by

randomly selecting a financial statement, and asking for diagnosticians evaluation of the
financial situation of the firm represented by this information.

l At the time of the collection, the Register of Small Firms at the Norwegian School of Economics and Business
Administration contained 155 randomly selected copies of financial statements of manufacturing and retailing
companies with sales less than NOK 25 mill. from selecte .rstries in the Register of Company Accounts. The
register was later revised, and the revised version was usee :....iye and Kinserdal (1992).
2 The procedure for calculating the stimulus sample size is explained in section 3.1.3, and depends upon the
number of diagnosticians available, the time to perform the diagnosis, the number of diagnoses performed with
sufficient concentration on limited time by the diagnosticians, and the size of the composite judge committee
considered sufficient.
3 Reporting errors were evaluated against the report formats specified by the Norwegian Accounting Act, and
calculation errors were tested using a database developed for stimulus material production.
4 All financial items are in NOK.
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To measure the dependent variables related to diagnosis and control variables, response forms
were added to the stimulus material. The response form is shown in appendix B. In addition,
the stimulus material contained an introduction also read aloud by the experimenter, and
measures of selected education and experience variables. This material is also shown in
appendix B. Finally, a list similar to the one provided in appendix Dl, with the formulas used
for calculating ratios, was supplied.

A sample of the stimulus material was used in a pretest with seven PhD students in

accounting and finance as subjects. The time used to complete one diagnosis was recorded,

and general comments on the stimulus material were given in a debriefing interview with the
subjects. The average completion time was 15 minutes, and several suggestions regarding
changes in the introductory text were given. Suggested changes were done in the introductory
text, but no changes were made to other parts of the stimulus material-.

5.2 Subjects

In this study there are two samples. The sample of stimuli was introduced in section 5.1. The

sample of subjects exposed to the stimuli is introduced in this section. A primary requirement
of subjects performing financial diagnosis is sufficient knowledge of the task. Beyond this
requirement, research reviewed in chapter 2 (e.g. Bonner & Pennington, 1991), indicated

small differences between subjects with different experience of the financial diagnosis task.

This suggests post graduate students in accounting or auditing may be used a.ssurrogate
financial diagnosticians in general.

A full class of post graduate students in auditing- was given to be at our disposal for one hour
in their final semester. The maximum number of students regularly following lectures was
estimated at approximately 150. As will be thoroughly explained in section 5.3, this figure
limited the maximum number of diagnoses obtainable. A total of 108 students responded to
the stimuli set up in the experimental situation.

The students varied with respect to graduate education, experience and latest professional
position. Summary statistics of the subject sample are shown in table 5.2.

l The list of the stimulus material used Norwegian terms.
2 The introductory text shown in appendix B is the final text used after changes had been made.
3 Students at the "Høyere revisorstudium" (HRS), a study qualifying for state-authorisation of auditors in
Norway.



Variable Statistics
Post graduate Experienced: 96
experience (numbers) Inexperienced: 12
Total post graduate Mean: 3.10
experience (years) St.dev. 2.99

Minimum: O
Maximum: 20

Post graduate Mean: 3.46
experience excluding St.dev.: 2.96
inexperienced (years) Minimum: 0.5

Maximum: 20
Education (numbers) Business graduate: 27

Auditing graduate: 72
Law school: 8
Econ. graduate: 1

Latest position Assistant auditor: 8
(numbers) Junior auditor: 53

Senior auditor: 21
Supervising auditor: 2
Accountant: 5
Other: 7
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From table 5.2, it can be concluded

that the majority of the subjects had
prior experience relevant to the
financial diagnosis task. Furthermore,
subjects without such work experience

had relevant graduate education, and
had gained experience of financial
diagnosis tasks through their
education. Consequently, the

knowledge criterion of subjects in
financial diagnosis was presumed

satisfied, even though no subjects
necessarily were experts on the task.

Controlling for other demographic
variables in the sample was considered

less relevant because the recruitment
to the educational program made subjects rather homogeneous. A homogeneous sample was

Table 5.2 Summary statistics of sample subjects

fortunate to us because we were primarily concerned with the effects of stimulus variation,
and not with variation in problem solving strategies or task performance across subjects.

Despite the homogeneity of the sample, subjects were expected to show some individual task

variations. Previous research reviewed in chapter 2 (e.g. Chalos, 1985; Iselin, 1991; Libby &

Blashfield, 1978), indicates that reduction of individual task variations and better

performance I can be achieved simultaneously by using composite judge diagnoses.

5.3 Treatments and procedures

A primary purpose of this experiment was to provide a sufficient number of financial
diagnoses, while simultaneously controlling for individual variation and other relevant threats

to validity. Forming composite judge committees was considered necessary to perform this
control, even though it would reduce the total number of diagnoses available. To determine
how many diagnoses could be obtained, we started with the constraining conditions given to
us. Pretests had indicated that proper financial diagnosis required minimum 15 minutes when
full stimulus material was provided. It was further assumed that subjects' attention beyond 45
minutes of intense concentration, was difficult to obtain. Consequently, a maximum of three
financial diagnoses and measures of the control variables could be obtained from the subjects
for the duration time of the experiment of one hour.

I In terms of prediction errors.
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If the stimulus sets had been utilised to maximise the number of diagnoses, 324 firms! could

have been evaluated. However, this would imply no control of individual variation in
diagnostic behaviour. Instead, we followed the recommendations of the judgement modelling
approach, that a composite judge committee of minimum three subjects is sufficient to control
for individual variation in financial diagnosis tasks-, A further advantage of using composite
judge committees was that manipulation check could be performed.

A main problem with using composite judges in this study was that since participation in the
experiment was voluntary, the number of participating subjects could not be determined
exactly in advance. However, the maximum number of subjects participating was estimated-
at 150, and the professor in charge of the class estimated the minimum number of subjects
participating at 75. Consequently, we required a treatment plan that gave a minimum
composite judge committee of three diagnosticians for each firm if the minimum number of

subjects participated. Since each subject could maximally perform three diagnoses, the total
number of firms that could be evaluated was 75. This figure was estimated early in the

semester, and prior to the stimulus sample data collection described in section 5.1.

Furthermore, we wanted our treatment plan to be insensitive to more than 75 subjects
participating, and to control for order effects, level effects+, industry group effects, mortality
and communication among subjects. To perform this control, we decided to use
randomisation. A booklet of three financial statements was made by drawing, without
replacement, from the sample of stimuli. Since this sample consisted of 75 financial
statements, 25 booklets could be made from the stimulus sample. Since the maximum number
of subjects that could participate was 150, we had to design 150 such booklets. The stimulus
sample was used as a sampling frame for the design of the booklets six times. As a
consequence of this randomisation procedure, all financial statements were placed in different
contexts, the probability that subjects sitting close to each other would be given the same
financial statement was low, and mortality effects were expected to be random.

The experiment was performed in an ordinary large classroom. The booklets were distributed
from the back of the classroom from two sides of the classroom simultaneously. Each of the
two distributors had 75 booklets placed in the order they had been designed. This distribution

l 108 subjects performing three diagnoses of different firms gives a total of 324 diagnoses of different firms.
2 Libby (1981) suggested non-interacting composite judge committees could be used to control individual task
behaviour variation and simultaneously increase predictive performance when individual performance error was
random. Some experiments on the size of the composite judge committee have been performed (e.g. Libby &
Blashfield, 1978, see Libby, 1981, p. 113) suggesting a minimum size of three judges.
3 The full class consisted of 150 registered full time students.
4 Level effects can occur when a subject is only presented stimuli likely to give similar responses, for example,
when only success firms are presented. '
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method should provide as many diagnoses as possible of each financial statement, while

simultaneously reducing the unfortunate effects if many subjects sitting close to each other

decided not to participate in the experiment after the stimulus material had been distributed.

The experiment gave 324 diagnoses of the 75 financial statements, with an average composite
judge size of 4.32. Fortunately, only one of the composite judge committees contained less'

than three subjects. Even though this was below the recommendation of three judges per
diagnosis, we decided to incorporate all 75 firms in the resulting analysis.

5.4 Measurement and properties of measures.

Treatments represent different stimuli presumed to give different diagnoses as responses. The
selected cues of the financial statement are operationalisations of stimuli and are treated as
independent variables. Responses collected by measurement instruments of the response
forms are operationalisations of diagnostic responses and are treated as dependent variables.
In this section, we first describe the operationalisations of the relevant stimuli - the

independent variables. Next, we treat the operationalisations of responses - the dependent
variables.

Our definition in chapter 2 presumed that selected financial statement cue patterns were the

relevant stimuli of the financial diagnosis task. We provided our stimulus material with most

of the cues that could be parts of such relevant cue patterns. Some of the studies reviewed in
chapter 2 assumed that the complete financial statement cue pattern was the best
operation, .tion of relevant stimuli (Bouwman, 1983; Chalos, 1985; Rodgers & Housel,

1987. '•..rs & Johnson, 1988), while other used selected parts of the financial statement as
relevant stimuli l (Casey, 1980a; Libby, 1975). Several methods have been used for the

selection of relevant stimuli. In judgement modelling research, two methods have been used.
Either, the subjects indicate which parts of the stimulus material are relevant (e.g. Abdel-
Khalik & El-Sheshai, 1980; Selling & Schanks, 1989), or statistical analysis is used to select

relevant parts of the stimulus material (Kida, 1980; Libby, 1975). In experimental cognitive
studies, the experimental designs restric the stimulus manipulations to a small number, so
that relevant parts of the stimulus material are preselected using previous research (see Enis,
1988). In descriptive cognitive studies, subjects are not explicitly asked to indicate relevant
parts of the stimulus, but verbal protocol methodology makes posterior selection of the

relevant parts possible. Thus, subjects indicate relevant parts of the stimulus indirectly.

l Even qualitative descriptions of smaU parts of the information in the financial statements have been assumed
as the relevant parts of the stimulus (Schepanski, 1983). .
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As explained in section 5.1, previous research and pretests were used as a basis for the
selection of the content of the stimulus material exposed to the subjects. Following the
principles used in many judgement modelling and cognitive processing studies, subjects'
indication of cue usage guided the selection of relevant cues in the stimulus material to be

used as the final set of independent variables. The reasons for this two-stage procedure were
to provide the sufficient amount of relevant information in the stimulus material, and to

secure realism in the manipulations. Using subjects' indications of cue usage to select the final
set of independent variables is well established in, for example, previous judgement

modelling studies (Abdel-Khalik & El-Sheshai, 1980; Selling & Schanks, 1989). In this

study, subjects indicated a maximum of four ~ues when performing diagnosis in each of five
diagnostic areas I.

Of the 108 subjects, 97.2 % indicated the use of one or more cues in any diagnostic area. Of
these, 83.8 % indicated that cue values of two consecutive years, or the relationship between
them, were used. Since the cue values of two consecutive years were highly correlated, the

majority of the subjects indicated sensitivity to correlated stimulus dimensions. In our
analysis, we comply with this strong evidence by using both values of a cue when it is used in

a model, even though this implies the use of highly correlated independent variables.

An illustration of the ten most frequently indicated cues within each of the five diagnostic
areas is provided in table 5.3.

The cues indicated as the ten most important in table 5.3 represented 70.8 % of all indicated
cues. Thus, the majority of cues used were found among these ten. Several cues were used in

more than one diagnostic area. In table 5.3, ratio cues are shaded. These cues were presented

as an integrated part of the stimulus material, and were, as expected, the most frequently used
cues. The shaded ratio cues represented 78.3 % of the frequencies of cues in table 5.3, and
55.4 % of the frequencies of all cues indicated. Thus, the single most important section of the

stimulus material was the ratio report section. Previous researchers have made similar
findings (e.g. Biggs, 1984; Blocher & Cooper, 1988; Bouwman et al., 1987), but our subjects

relied even more on the ratio section of the stimulus.

I The diagnostic areas are "profitability", "financing", "liquidity", "leverage" and "general situation" diagnosis.
These areas are further explained below.
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Further selection of relevant financial statement cues are often made model dependent. If, for
example, regression analysis is used, multicolinearity or normality assumptions are important.
When we develop the benchmarks for performance comparisons of our models, we take these
assumptions into consideration. However, if subjects show sensitivity to, for example,
correlated independent variables, this sensitivity should be part of a cognitive model

(Kruschke, 1993a). Consequently, we used all the resulting ratio cues as independent
variables in our connectionist models). With this selection, a majority of the cues indicated

used by the subjects were used in the models. In addition, the ratio cues are often presumed to
be size independent indicators (White, Sondhi & Fried, 1994, pp. 198-199). For ratio cues
with two values, one for each of the two consecutive years of the financial statements, both

cue values were applied as independent variables.

Descriptive statistics and correlation matrices illustrating the distributions of, and correlations
between, the independent variables are supplied in appendix E and F. From these appendices,
it is obvious that several problems when using the 32 variables as independent variables in

traditional models were present. First, 20 of the 32 ratios had distributions that differed
significantly from the normal distribution, causing problems with models presuming
normality or multinormality, such as discriminant analysis. Second, 37.5 % of the 496

) The ratio cues "sales per employee" and "contribution margin per employee" were not indicated used by any
subjects, and were excluded from further analysis.
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relevant correlation coefficients computed between the independent variables were
significantly different from zero (a=0.05). This indicated problems with using the

independent variables in models presuming no multicolinearity, such as traditionallinear
regression.

As stated in chapter 2 and 4, traditionallinear models, such as discriminant and regression
analysis, have shown good fit to financial diagnostic data in judgement modelling studies.
Consequently, such models were suggested as good benchmarks for evaluating the

connectionist models' performance. However, these models must be developed taking care of
their normality and multicolinearity presumptions. The recommended procedure in judgement
modelling studies, and in predictive studies, is to use factor analysis to select independent
variables with as few of these problems as possible (see Libby, 1975, p. 153), or to carefully

analyse the original independent variables for normality and mulicolinearity problems (Karels
& Prakash, 1987). The first of these procedures was used here. Two benchmarks were
developed, and their performance results are reported in section 6.3. However, the factor

analysis performed when developing these benchmarks provided interesting information on
the structure of the independent variables, and is reported here.

The factors of the first benchmark, termed A, were extracted using principal components

analysis with varimax rotation on all the 32 independent variables. The analysis revealed nine

factors with eigenvalue greater than 1.00, explaining 83.3 % of the variance in the original
variables. The rotated factor matrix is shown in appendix G. Interpretation of the factor

loadings showed that the nine factors represented "liquidity", "year one profitability", "year
two profitability", "assets turnover", "collection and payable turnovers", "leverage",
"operations", "interest coverage", and "growth", respectively. The factors roughly
corresponded to theoretical concepts found in previous studies of financial statement cue
patterns (Gombola & Ketz, 1983; Pinches et al., 1973), and illustrated in table 2.7. Somewhat
different from these was the "growth" factor with high factor loadings on the ratios computed
as changes in sales and costs over the two consecutive years. Only the "liquidity", the
"interest coverage" and the "growth" factors showed distributions slightly different from the
normal distribution.

The factors of the second benchmark, termed B, were extracted using a similar principal
components analysis with varimax rotation on the averages of the two values of each
selected cue. Average values are often recommended for financial analysis (Kinserdal, 1992),
but information on change is lost. The analysis revealed five factors with eigenvalue greater
than 1.00, explaining 76.6 % of the variance in the original data. The rotated factor matrix is

. shown in appendix H. Analysis of the factor loadings showed that the five factors represented
"profitability", "liquidity", "inventory vs. assets turnover", "collection and payable turnovers",
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and "leverage/coverage", respectively. Again, most of the factors corresponded rather well to
. .

theoretical concepts discussed in chapter 2. Only the "profitability" and the
"leverage/coverage" factors showed distributions slightly different from the normal
distribution l.

Whether the independent variables developed in the factor analysis were diagnostic, was an

open question which partly had to be revealed by evaluating their relevance in linear

benchmark models, by evaluating their theoretical relevance, and by comparing them with

intermediate abstractions developed in other models, such as connectionist models. However,
the factor analysis revealed a structure of the independent variable very similar to what had

been found in the predictive literature of chapter 2 and in research on financial statement cue
patterns (Gombola & Ketz, 1983; Pinches et al., 1973). Thus, it seemed reasonable to assume

that our stimuli represented realistic manipulations of the financial situations of firms, and
that the variations in financial statement cue patterns were representative of variations found
when exposed to financial statements in daily diagnostic work.

In our definition of financial diagnosis in chapter 2, we presumed a judgement of the financial
situation of the firm was the theoretical concept that was operationalised by the response

variable in the financial diagnosis task. We assumed in chapter 3 that this response took the
form of a classification, leading us to argue that the financial diagnosis task was a

classification task. Several operationalisations of this theoretical concept were found. In

chapter 2, we showed how different task contexts demanded different response

operationalisations. Within the task context of bankruptcy prediction, the classification of a
firm as bankrupt or not was the most frequently used operationalisation (Libby, 1975).

Judgements of the probability of bankruptcy have also been used within this context (Simnett

& Trotman, 1989). A similar operationalisation was used both in the going-concern context of
financial diagnosis (Kida, 1980) and in the loan decision context (Chalos & Pickard, 1985). In
bond rating tasks, the classification of the financial situation of the firm took place on an

ordinal scale (Lewis et al., 1988). All operationalisations of response if: these studies were
done with simple measurements using one ore a few indicators. At the other extreme, we
found operationalisations of the judgement of the financial situation performed with complete
verbal reports or in linguistic terms. These operationalisations were traditionally used in
descriptive cognitive studies of financial diagnosis (Bouwman et al., 1987). We argued in
chapter 3, that judgements of the financial situation could be expressed in the form of a

classification.

l Similar analysis have been performed on year two data showing almost identical results.
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In this study, we used several operationalisations of the-judgements of a financial situation,
. .

with both ordinal classifications and subjects' own linguistic terms as basis. The subjects

performed judgements of the level and trend of four diagnostic areas and a general situation
diagnosis on a five point ordinal scale. In addition, the subjects were asked to describe the
financial situation of the firm in their own linguistic termsl. From these indicators, three
separate measures of the "judgement of the financial situation of the firm" were developed.
The measurements used in the ordinal classification-operationalisation of the financial
situation concept are explained first. Next, the measurements developed from the linguistic

terms used in subjects' own classifications are described.

Following the recommendations of Libby- (1981), random diagnosis error can be reduced by

calculating composite judgements. These judgements were calculated as the average
diagnosis of the members of the composite judge committees. The average number of such
committee members was 4.32, and for Our five point measures, the traditional arithmetic

mean was used. A composite judge diagnosis was computed for all 75 firms on the level and
trend of profitability, financing, liquidity, leverage, and the general financial situation

indicator. Summary statistics of the indicators are supplied in appendix I.The composite
judgement transformations give the indicators favourable measurement properties,

transforming them from ordinal classifications to almost interval scale measures. The
distribution properties of the indicators also improve from the averaging performed in
composite judgements.

Supported by the findings referred to in chapter 2, diagnosis of level and trend were treated
separately, giving two sets of approximately interval scaled measures of subjects' diagnoses
of the financial situations. Following traditional recommendations for measurement
development (e.g. Nunnally, 1978), Cronbach's a (Cronbach, 1951) and item to total

correlations were calculated for these measures. Furthermore, factor analyses- of the

measures were performed. The results of these computations are shown in tables 5.4 and 5.5
for the level and trend measures, respectively.

l The response form is shown in appendix B.
2 See also Ashton (1982), p. 42-43.
3 Traditional principal components analysis was used.



As shown in table 504, the a was high,

and the factor analysis extracted one
factor with eigenvalue greater than 1.00.
By inspection of the factor loadings and
item to total correlations, it was obvious

that the general level measure of the
financial situation was so highly
correlated with the total summed score!
that it represented a single and simple
measure of the concept presumed
operationalised. Since the distribution
properties of this simple level measure

of the financial situation diagnosis were acceptable, we used this level measure as the first

As can be seen in table 5.5, very similar

results were found for the trend measure

of the financial situation. The a was

even higher, and the factor analysis
extracted one factor with eigenvalue

greater than 1.00. By inspection of the
factor loadings and item to total

correlations, similar conclusions as for
the level measure could be drawn. A
somewhat higher value of the
Kolmogorov-Smimov statistic

illustrated that the distribution of this
variable deviated somewhat from the normal distribution-. However, the advantages ofusing

Factor" analysis: Chronbach's
a

0.91No. of factors:
Variance
explained:

1
73.8 %

Factor Item to total
loadings: correlations

Profitability 0.7473 0.7630
Financing 0.9056 0.9031
Liquidity 0.8171 0.8079
Leverage 0.8487 0.8470
Generalievel 0.9605 0.9585
Table 5.4 Measurement statistics of the level
measure of the financial situation

dependent variable of our simulations.

Factor analysis: Chronbach's
a

0.93No. of factors:
Variance
explained:

l
73.8 %

Factor Item to total
loadings: correlations

Profitability 0.7880 0.8090
Financing 0.9181 0.9090
Liquidity 0.8451 0.8342
Leverage 0.9134 0.9085
General 0.9493 0.9524
Table 5.5 Measurement statistics of the trend
measure of the financial situation
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a simple single measure with good measurement properties lead us to conclude that the

simple general trend measure of financial situation was sufficient'. Thus, this simple trend

measure of the financial situation diagnosis was used as our second dependent variable.

A third operationalisation of the financial situation concept was designed by asking the

subjects to indicate a noun that in their opinion best described the firms' financial situation. A
list of example nouns was supplied in the introductory text, but the subjects were

l And the common factor of the factor analysis.
2 See appendix I.
3 An interesting property of measures developed by using summed scales or scales derived from factor analysis
is that they inherit linear properties by their construction. Since both linear and nonlinear methods were to be
used in this study, we preferred to use simple and unweighted measures.
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recommended to use their own terms. The linguistic terms were analysed by the author, and a
classification system of nine focal linguistic terms was used. These terms, and the number of

diagnoses classified using each term are listed in table 5.6.

In table 5.6, the nine most frequently applied linguistic terms are ordered by the average value
of the level measure of the financial situation presented above. This value was calculated as

the average level value for the
diagnoses where each focal linguistic
term was used, irrespective of which
firm was diagnosed. The table

illustrates how linguistic terms were
ordered. In addition, the level value of
each linguistic term had a considerable
standard deviation illustrating the

"fuzziness" of the terms.
As can be seen in table 5.6, the
linguistic term "bankruptcy" is

somewhat special, with an extremely

low average level value. Thus, the

Linguistic term Number Average
level value

Success 8 4.25·
SolidI 6 3.83
Growth- 53 3.62
Normal 7 3.14
Risk3 5 3.004
Stagnation> 6 2.83
Problem 10 2)0
Crisis 38 1.97
Bankruptcy 21 1.33
Other terms 99
No characteristic 71
given
Table 5.6 Most frequently used ImgUIStICterms
ordered by average level value

"bankruptcy" term seemed well suited

to identify a firm that was presumed to be in a particularly unfortunate financial situation.
Furthermore, a focus on bankruptcy classification could make comparisons with studies in the

bankruptcy classification task context of chapter 2 possible. Consequently, we chose to use a
bankruptcy classification measure as our third dependent variable.

To classify firms as bankrupt firms based upon the linguistic terms used by the members of a
composite judge committee, a rule had to be set up. We chose to classify the firm as
"bankrupt" when the majority of the members of the composite judge committee had used
the linguistic term "bankruptcyv"!n any form in their description of the financial situation of
the firm. The application of this rule resulted in the classification of 12 of the firms as

"bankrupt". A test of the validity of this rule was performed by presenting four individual
coders with the linguistic descriptions of all members of the composite judge committee for
each firm. The coders where asked to select from the linguistic terms "bankrupt", "problem",

"normal" and "success", the term they found best unifying the different descriptions given by

l The Norwegian term "solid" was used by the subjects.
2 The Norwegian term "vekst" was used by the subjects.
3 The Norwegian term "risiko" was used by the subjects.
4 The term "risk" has the highest standard deviation.
5 The Norwegian term "stagnasjon" was used by the subjects.
6 The Norwegian term "konkurs" was used.
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the composite judge committee members. The coders agreed l on 13 of the firms classified as

"bankrupt". Among these were all the 12 firms covered by the original.rule-. This result
supported the applicability of the simple majority vote rule of the composite judgement
classification of "bankrupt" firms used as our third dependent variable.

To summarise, we developed three dependent variables, measuring different aspects of the
subjects' judgement of the financial situation of the firms. Two variables were approximately

interval scaled, and were derived from composite judgements of ordinallevel and trend

measures of the financial situation. The last variable was a dichotomous variable indicating

the classification of a firm as "bankrupt" by a majority of the members of a composite judge
committee.

Since the composite judge committees were rather small and the number of firms was rather
large, a fairly strong manipulation check could be performed by testing if all mean diagnoses

were equal irrespective of stimulus. Simple one-way analysis of variance was performed, and
the results are shown in appendix J. Both the level and trend variables showed significant

differences in diagnosis value explained by stimulus, supporting our suggestion made above
that the stimulus material had a significant manipulation effect.

l All coders selected the "bankrupt" term.
2 On the thirteenth firm, discrepancy was found between the linguistic terms used by the subjects and the
average level and trend values indicated. Consequently, we chose not to include this firm in the class of
"bankrupt" firms.
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Chapter 6. Simulation design

In modelling cognitive phenomena, operationalisation by model is traditionally applied. The

principles of operationalisation by model are different for operationalisations of information
processing and connectionist models. As shown in figure 3.10, connectionist model
operationalisations are done by selecting a connectionist model, designing a simulation
environment, and applying the model in the environment on collected stimulus-response data.

The model is evaluated by analysing its generalisation performance and its representations. In

this section, the simulation environment set up to develop the backpropagation model of
section 4.2 on the data presented in chapter 5 is introduced.

6.1 Methodology of connectionist simulations

In principle, decisions on. the simulation environment must be made regarding all the first

seven functional components of a connectionist modell (Rumelhart & McClelland, 1986).

The operating environment of the model is sufficiently constrained by the research design set

up to provide the stimulus-response data.

Our selection of a particular connectionist model was primarily theory-driven, and was
explained in part II of this thesis. However, different parameter settings of particular

connectionist models can give varying performance results and final representations. As
opposed to, for example, linear models, most connectionist models contain random elements

requiring repeated simulations to determine their validity. As an example, a backpropagation

model is sensitive to initial weights, and this sensitivity must be controlled to evaluate the
performance of the model. The setting of simulation parameters is the first group of
methodological decisions that must be made in connectionist simulations.

Of the seven relevant functional components of a connectionist model-, parameters settings

must be determined for the representational transformations of inputs and outputs>, network
topology, output and activation principles, and learning principles. To give some examples,

representational transformations must usually be performed to fit the output functions of the
selected connectionist model. Network topology decisions are relevant if, for example,
network topology changes during the course of learning. Output and activation function forms

are traditionally determined with the selection of a particular connectionist mode, but, for
example, choice of maximum and minimum values, or the use of symmetric or asymmetric

functions are methodological decisions. Similarly, the main principles of the learning rule are

I The functional components of a connectionist model are presented in section 3.2.1.1.
2 See section 3.2.1.1.
3 Indirectly determining the number and type of processing units. .



158

determined by choice of model, but decisions on, for example, epoch or example based
learning must be considered methodological.

The second group of methodological decisions that must be made is regarding the
programming environment or design tools to be used in the model implementation. Most
connectionist learning rules are computationally demanding. To optimise learning speed,
specially written algorithms are often used and implemented in traditional programming
languages. However, the experimenter's opportunity to interact with and alter such models, is

limited. Several design tools for connectionist models have been developed to allow easy

interaction with the models", and these are frequently used by connectionist modellers.

The third group of methodological decisions that must be made is related to how the model
fit, or performance, of a connectionist model is to be evaluated. As explained in section 3.2.2,

the approximation potential of some connectionist models (Hornik et al., 1989), require that
proper evaluation of model fit must be performed by testing the generalisation properties of
the model. However, generalisation can be evaluated by different measures and with
different test sample designs. The selection of relevant generalisation measures and the

organisation of learning and test samples for generalisation evaluations are methodological
decisions. These decisions do not affect the principles of the selected connectionist modeJ2,

but they affect the way performance is evaluated. To give some examples, generalisation
measures are often not explicitly given (Gluck & Bower, 1988a, 1988b), or very simple test
sample designs are set up to measure generalisation-' (Schanks, 1992). However, modern

statistical resampling techniques (Efron & Tibshirani, 1993) provide test sample designs for
proper evaluation of generalisation in models with strong approximation potential.

The first and second group of methodological decisions are closely related, and in the
following they are treated simultaneously in section 6.2. The choice of principles for
evaluating model performance is treated in section 6.3 and 6.4.

6.2 Simulation environment parameters and design tools

When we chose to apply the backpropagation model as a model of financial diagnosis, most
of the eight functional components of a connectionist model (Rumelhart & McClelland, 1986)

were indirectly determined. However, simulation environment parameters, modelling tools

I For a review of some of these tools see James (1994).
2 Different learning and test sample organisations also affect the representations of the estimated model.
3 In experimental psychology, the term "transfer" is traditionally used about generalisation of a model to new
stimulus-response patterns.
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and performance measurement principles must be determined. The most important issues to
be settled are (Gallant, 1993):

Representational issues:
-- Input representation
-- Output representation

Configural issues:
-- Choice of output function
-- Selection of network topology
-- Initialisation of weights

Learning rule issues:
-- Learning rate settings
-- Momentum term settings
-- Use of epoch or example based learning

Modelling tool issues

In the following, our decisions regarding each of these issues are explained and discussed. For
many of the simulation parameters of connectionist models in general, and for

backpropagation models in particular, no consistent formal basis for value selection has yet
been found) (McKay, 1992, p. 450; Ripley, 1993; Smith, 1993). Many of the parameters

values used in this study were selected after a series of initial experiments not reported here.

The representation of financial cues as input patterns and financial diagnostic classifications
as output variables must be adjusted to fit the output functions of a backpropagation
network-. The design of the input patterns and the alternative output variable

operationalisations are explained in chapter 5, and will not be treated in greater detail here.
The financial cue patterns consisted of 32 input variables in the range [-8.02,474.96]. The
bankruptcy classification operationalisation of the response variable was a dichotomous

variable in the {O, I} range, and the level and trend response variables were in the range

[1.25,4.33] and [1.00,4.33], respectively. The distribution properties of these variables are
reported in chapter 5, and illustrated in appendices E and I. To fit the output functions of the

backpropagation model, the variables were scaled. A [0,1] scale is traditionally used for

asymmetric output functions and a [-1,1] scale is used for symmetric output functions. We
chose to use the standard logistic output function as reported in equation (3.6). Consequently,
our input and output variables were scaled linearly- to the [0,1] scale. Except from the scaling

) Analytical derivation of optimal simulation parameter values is currently investigated in the artificial neural
network community (MacKay, 1992).
2 In connectionist modelling, the terms "input pattern" or "input variables" are often used of the set of
independent variables, and the term "output variables" is often used of the dependent variables. Consequently,
these terms are also applied here.
3 Linear scaling is performed by subtracting the minimum value of a variable from each value, and dividing the
result by the range of the variable.
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of input and output variables, no other changes in their representational form were made.
Thus, all input and output representations were local variables representations.

With the choice of a local variables representation of the input and output variables, the

number of input and output units was determined. The resulting topology decisions were
selection of the number of hidden units and the connectivity pattern of the network. In our
simulations, determination of the number of hidden units was part of the simulation setup. A
constructive procedure was developed, where the number of hidden units was gradually

increased while performance was measured. The procedure is explained in greater detail in
section 6.3. Traditionally, a backpropagation model is set up with full connectivity between
layers. However, several ways of constraining network topology have been shown to improve
generalisation properties of the network (Le Cun, 1989). Initially, all our networks were set

up with full connectivity between layers, but experiments with constrained connectivity were
performed, and these are reported explicitly in part IV.

When a backpropagation model is set up, the initial value of the weights must be determined.

If all weights are initialised to zero, the learning rule of backpropagation will develop hidden
units with equivalent weight patterns I (Smith, 1993, p. 96). Thus, weights are often initialised
at small random values to enable the hidden units to develop different internal
representations. Final representations are somewhat sensitive to initial weights, and learning

speed is even more sensitive to initial weights. In addition, the optimal initialisation range
will depend upon the size of the network and the chosen output function. However, we
wanted an initialisation range that could be kept constant with variations in network topology.
To find this range, a series of initial simulations was set up while monitoring learning speed.
On an average, the best and least sensitive learning performance was found for initial weights
randomly selected from a uniform distribution in the range [-0.2,0.2] for the hidden layer and
in the range [-0.7,0.7] for the output layer. These ranges were used in all simulations.

As reported in section 3.2.1.3, the learning rate, TI, is an important parameter in a

backpropagation model. Itmust be set to provide fast learning, but to avoid oscillation- and

saturation". Modifications in standard backpropagation have been suggested to obtain fast
learning and avoid the problems above (Fahlman, 1989; Jacobs, 1988), but after initial

learning experiments, oscillation and saturation problems did not seem particularly relevant in
our simulations. Thus, the standard backpropagation algorithm was used. More stable
learning was obtained by setting Tlh somewhat larger than TI". Thus, TI" was set to 0.5 and TI"

I And consequently, with equivalent representations.
2 As an example, oscillation will occur if the learning rate is too large in an error landscape with steep valleys.
3 As an example, saturation will occur if the learning rate is too large in an error landscape with a very flat error
surface.
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to 004 in all simulations reported. Initial experiments were also performed with gradually
decreasing. 1J with the number of learning iterations, but no increase in performance was

found, further supporting the assumption that saturation in local minima was not a major

problem in our simulations.

As shown in equation (3.16), the original backpropagation learning rule can be modified by
using a momentum term, a, to smooth weight changes. The term is used to prevent too large

changes in weights from one learning iteration to the next. Initial experiments suggested a
momentum term could be used to increase learning speed and prevent initial oscillation of the

model. Consequently, a momentum term a of 0.093 was used in all simulations l.

The original formulation of backpropagation referred to in section 3.2.3.1 (Rumelhart, Hinton
& Williams, 1986), presumed epoch learning, but also showed that exemplar based learning
approximated gradient decent in total output error if the learning rate was kept small. Initial
learning experiments showed that learning was only marginally faster with example based
learning. Thus, to stay as close to the original formulation as possible, epoch learning was

used in all simulations.

Lacking a formal basis for the selection of several simulation parameters, most practical

applications of connectionist models start with a series of initiallearning and testing
experiments in order to find proper configurations and simulation parameters. In this phase,
flexibility in the programming environment to allow changes is important. When proper
configurations have been found, the experimenter is often more than willing to trade

flexibility for learning speed. Rapid configural changes can often best be obtained in

connectionist model design tools, but at the expense of computational power and learning
speed. However, several fast programming environments for connectionist models now exist.
Surveys of the different programming environments for implementing neural networks and

connectionist models have been reported by several authors (Eberhart and Dobbins, 1990;
James, 1994 ; Nesvik, 1993), and these will not be reviewed or compared here. However,
some of these systems were tested, and at the time of our choice (1990), only few of them
satisfied our needs. Initially, we wanted the programming environment to cover the whole
range of design tools from standard development tools to implementation tools with sufficient
efficiency. The interface should be user friendly and the system should be able to run on a
variety of platforms. We choose Neural Works Professional II as our programming

environment. It provided a set of predefined connectionist models in addition to design tools

l Actually, this is a normalised momentum term found by dividing a momentum term found useful in example
based learning by the square root of the epoch size. An initial momentum of 0.8 was found useful in simulations
of exemplar based learning. Since epoch size was 74 in our simulations, the normalised momentum term in

epoch based learning was set to 0.8/ .fi4 = 0.093.
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that could be used to modify the standard models. In addition, the systemhad several options
for controlling and measuring performance during processing. The standard system and its
additional components are well documented in Neural Ware (1993a, 1993b, 1993c).

6.3 Generalisation measures

The criterion for evaluating the performance of a connectionist model is its ability to
generalise to new and unseen stimulus-response patterns. With parametric methods, one can

make inferences about this property while using all empirical stimulus-response patterns for

the estimation of the model. In connectionist terminology, this means that all stimulus-

response patterns are used in the learning phase of the model development. When measuring
performance using the error on the learning sample, a resubstitution error rate is calculated
(Ripley, 1993). Generally, but especially when the training sample is small, it is likely that

this error rate is biased downward (White, 1990, p. 539).

With universal approximators, this problem is even more evident. The problem is thoroughly
treated in section 3.2.2, and will only be briefly mentioned here. There is likely to be a trade-
off between accuracy in the learning sample and generalisation (Ripley, 1993, p. 70). Geman
et al. (1992) have named this trade-off the bias/variance dilemma. The point they make is that
for a universal approximator, the estimator is likely to be unbiased when the learning sample
is sufficiently large. When the training sample is smaller, overfit is likely to occur and the
unbiased model is likely to have high variance. As explained in section 3.2.2, the

bias/variance dilemma is attempted controlled by some way of "smoothing" the complexity of
the mapping performed by the model. The complexity of the mapping should be increased

with larger training samples, but not so fast that overfit may occur. Another suggestion is that
learning should be stopped before overfit occurs", thus controlling complexity growth (Smith,

1993). To summarise, in a backpropagation model, the network training can be stopped well
before convergence is reached, or the number of parameters in the network can be controlled
during learning (Geman et al., 1992, p. 32).

There are two ways of controlling the number of parameters. One is by controlling the
number of hidden units-. Another method is to introduce some way of penalising the
complexity of the network as it learns>. Pruning+ is the most widely used method for
penalising complexity (Kamin, 1990; Weigend et al., 1991). However, even if all these
methods were applied, no assurance could be given that resubstitution error equates true

l We will name this method the optimal stopping rule.
2 We will name this method the optimal hidden unit rule.
3 We will name this method the complexity penalty rule.
4See sections 3.2.1 and 3.2.2.
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model prediction or classification error. Furthermore, no formal principles exist on how the
different rules should be applied (Ripley, 1993; Smith, 1993).

As an alternative to the resubstitution error rate, different variations on holdout procedures
can be used. As explained in section 3.2.2, several combinations of training and test samples
can be used; a method often named cross validation (Stone, 1974). True cross validation is
based on a "leave-one-out" assessment of generalisation error (Geman et al., 1992, p. 34).

This procedure is extremely computationally demanding, but gives an error rate estimate with
small bias (Ripley, 1993, p. 71). Consequently, an almost unbiased estimator of prediction or

classification error exists (Cheng & Titterington, 1994, p.20; Efron & Gong, 1983, p.37;

Moody, 1993; White, 1990, p. 539), and this estimator can be used to determine optimal
complexity of the connectionist model (Geman et al., 1992, p. 33-34). By using the estimator
while increasing or decreasing complexity, overfit can be avoided, and the model with
optimal! complexity can, in principle, be determined.

Initial learning and test sample splits showed that it was possible to obtain very low average

squared errors (MSE) on the test sample even when learning and test samples were selected at
random-. In some of these test samples, the estimate of MSE is likely to be biased downward.

In other splits of learning and test samples, the validated MSE was not better than chance,
indicating severe overfit by the model. Consequently, resampling techniques had to be used to
control the complexity of the mapping function if generalisation ability was to be properly
estimated. In this study, prediction error was measured by using a true cross validated average

squared error measure. Complexity was controlled by a gradual increase in model complexity.

Cross validation was used to control both complexity parameters of the mapping; the stopping
point and the number of hidden units. The cross validated average squared error applied in

this study can be explained by using the error measure of the backpropagation model. As
shown in section 3.2.1.3, a backpropagation model minimises:

. .

E = ~LL(tpj _Opj)2.
VI' vi

(6.1)

However, this sum will depend upon the number of training cases. The most widely used
measure of error is MSE. In this study, MSE is defined as:

(6.2)

l Random elements of the models will prevent the optimal model to be found. but close approximations are
likely.
2 This observation illustrates the high variance of the estimator.
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Variations of this measure have been developed for different purposes (see Moody, 1993), but
since this measure is close to the actual error minimised by the backpropagation algorithm, it
was used here with the only modification that the error was averaged over the test cases in an
N -fold cross validation procedure. This error has been termed cross validated average or

mean squared error. The procedure of cross validation and the selected measure given above
have been 'recommended by leading authors in the neural network literature:

The data-driven methods are based on cross-validation measure a/network
performance, cross-validated average squared error, that we advocate/or
general use in evaluating network performance. This is not the only appropriate
or useful measure, but it offers considerable improvement over naive methods.
(White, 1990, p. 544)

Leading authors have also suggested that cross validated average squared error should be
used in constructive or pruning algorithms (see Moody, 1993). However, the computational
requirements of such procedures have led to the development of simplified, approximated

methods (Moody and Utans, 1995). Despite the computational demands put on the procedure,

we chose to use the cross validated average squared error measure in a constructive
algorithm. Our procedure was very similar to the procedure developed by Moody' (1993),

but we started with a set of input and output units derived from the methods applied in

traditional measurement development.

Complexity was controlled by the number of hidden units and the stopping point of the
backpropagation learning algorithm. The number of hidden units was controlled by starting
with a model without hidden units. Next, hidden units were added until no obvious
improvement in cross validated average squared error was obtained-. During learning, we
measured the cross validated error, so that the optimal stopping point could be found a
posteriori. Using this method, the optimal complexity of a model with a given input

configuration was found. However, smaller cross validated average squared errors may be
obtained by altering the input configuration. As in Moody's (1993) study, effects of changing
input configurations were only evaluated for the set of models previously found optimal. A
sensitivity analysis was used to estimate the effects of changing input configurations. Input

units representing cues of small sensitivities were eliminated, and a new series of cross
validated average squared errors was computed while network complexity was growing.

l The procedure developed by Moody (1993) is a pruning based algorithm, while we use a constructive
algorithm. The Moody (1993) procedure was not known to us until the Moody and Utans (1995) paper was
published.
2 In our simulations, hidden units were added until the model contained 14 hidden units. At this point it was
obvious that no improvement in cross validated average squared error could be obtained with more hidden units.
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For the simulations set up with the bankruptcy classification response variable, only the
constructive algorithm was used. For the simul o; set up with the Ievel and trend variables,

both the constructive algorithm and the sensitiv.'. .malysis were used to determine the

optimal model. The results of using these procedures are reported in chapters 7, 8 and 9.

For classificatory response variables, such as our bankruptcy classification variable, cross
validated average squared error is not the only measure of error. A similar procedure can be

used to estimate the cross validated classification error. This measure was used in addition to
evaluate the model using the bankruptcy classification response vari. ·e.

6.4 Benchmarks

As explained above, evaluation of the models was done with a cross validated average
squared error measure or a cross validated classification error. However, there are several
ways to use this measure. A simple method is to evaluate whether the cross validated average
squared errors or the cross validated classification errors are better than chance. A similar

principle is often used in traditional significance tests of, for example, causal models (e.g.
Rodgers & Housel, 1987), and it has also been applied to neural network models (e.g.

Kryzanowski et al., 1993). In chapter 2, we showed how linear models have been used to

model financial diagnosis with high outcome accuracy in judgement modelling studies. Thus,

a stronger test of the connectionist models seemed necessary, since linear models have

already shown to be significantly better than chance in modelling financial diagnosis. Based
on the proposition PI set out in chapter 4, strong support for the connectionist models could

be provided if they could fit financial diagnosis behaviour significantly better than the models
previously applied in judgement modelling studies.

Research on financial diagnosis from a predictive perspective has stressed the limitations of

linear models when applied to financial data. In particular, the multinormality presumptions
of discriminant analysis (Altman et al., 1981) and the normality and rriulticolinearity

presumptions of regression analysis (Karels & Prakash, 1987), have been stressed. Traditional
models should be used and designed with careful consideration of these problems and
presumptions (see Libby, 1975, p. 153). We chose to design benchmark models of the same
kind as in judgement modelling studies, but with consideration for the problems with
applying these models to financial data. As a benchmark model for the bankruptcy
classification variable, we chose to use logistic regression instead of the traditional linear

discriminant analysis applied in many judgement modelling studies I.A main reason for this
choice was that the financial cues showed distributions deviating from the normal

I This is a choice also made by other authors (e.g. Hopwood et al., 1994). However, classification results for the
cross validated discriminant analysis models are shown in footnotes.
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distribution, making multinormality presumptions even more speculative. As a benchmark for
the level and trend variables, we chose to use traditional regression analysis. However,
because of multicolinearity presumptions, all benchmark models were developed following
the recommendations of both judgement modelling and predictive studies of financial
diagnosis.

A two stage procedure recommended by several authors (e.g. Libby, 1975, p. 153; Zavgren &
Friedman, 1988) was followed. First, factor analysis was used to obtain independent variables
with acceptable probability distributions and low multicolinearity. Traditional principal

components analysis was used, and the factors with an eigenvalue larger than 1.00 were
rotated by the varimax method, and used in the further analysis. Two sets of variables were
used in the factor analyses. One analysis used all 32 input variables also used in the
connectionist models, and gave 9 factors. The other analysis was based upon averaged values

of the 32 input variables over the two consecutive years, and gave 5 factors. Interpretations of
these factors comparing our independent variable measures to previous analyses of financial
cue patterns (e.g. Pinches et al., 1973), are reported in chapter 5.

Next, the factor scores obtained for each financial statement were used in benchmark models;
regression analysis for the level and trend response variables, and logistic regression analysis
for the bankruptcy classification variable. The analysis reported in section 5.4 suggested that
the independent variables of these benchmarks had probability distributions and correlation
matrices that made them suitable in regression and logistic regression analysis. However,

since these models were used as benchmarks for the connectionist models, the same measures
of performance were used. Thus, all measures of classification error or average squared errors

were cross validated in an N-

fold cross validation procedure
similar to the one used for the
connectionist models. The
perfomiance results of the
benchmark models are shown
in tables 6.1 and 6.2 for the 9-
factor (A) and 5-factor (B)

Dep.var. Bankruptcy Level Trend
Measure. classification
Correct 88.00 %2
classifications l

MSE3 0.12Q4 0.232 0.354
Corr. target 0.059 0.083
Corr. distance 0.252* 0.221
from target
Table 6.1 Performance results of the first (9-factor)
benchmark (A) (* indicates significant at a = 0.05)

benchmark models
respectively.

l The percentage of correct classifications was calculated for all firms collectively, and results are shown for
optimal cut-off values without consideration of misclassification costs.
2 The percentage correct classifications for the corresponding discriminant analysis was 89.33 %.
3 Cross validated average squared error.
4 The mean squared error for the corresponding discriminant analysis was 0.072.
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In table 6.1, several measures of benchmark performance are reported. A column of relevant

measures is shown for each dependent variable measuring the subjects.judgements of the
financial situation. For the bankruptcy classification variable, only cross validated

classification error and average squared errors are shown. For the variables level and trend,
cross validated average squared errors and correlation measures illustrating the distribution of

the error terms are shown. These measures showed that error was somewhat correlated with
distance from target; suggesting that the models made the larger errors on the more extreme

diagnoses. This was not surprising, since it indicated that the models were somewhat
"regressive".

Similar results were found for the 5-factor benchmark B shown in table 6.2. Performance
results were somewhat better for the bankruptcy classification measure, but the results on the

other variables were

considerably worse for this
benchmark. In particular, the

results for the trend variable
were considerably worse for

benchmark B. This was not

surprising, since the averaging
of the independent variables

made the modellose all

Dep. var. Bankruptcy Level Trend
Measure. classification
Correct 89.33%1
classifications
MSE 0.1032 0.357 0.759
Corr. target 0.110 0.215
Corr. distance 0.382** 0.777**
from target
Table 6.2 Performance results for second (5-factor)
benchmark (B) (** indicates significant at a = 0.01).

information of the change in
the independent variables. In

fact, the performance on the trend variable was worse than what could be obtained by

guessing the average trend value on each diagnosis. Consequently, it seemed as if different

information was used for different judgements of the financial situation, but this suggestion
was very preliminary.

Despite some weaknesses of these benchmarks models, the best performance results from

each model should provide a strong test of the connectionist models. If the connectionist
models significantly outperform the best benchmarks, strong evidence would be provided in
support of the connectionist models.

To provide further benchmarks for the connectionist model, regression analysis and logistic
regression analysis were used as benchmarks of each connectionist model with the full set of
independent variables used in the connectionist models. In addition, traditional models with

1 The percentage correct classifications for the corresponding discriminant analysis was 88.00 %.
2 The mean squared error for the corresponding discriminant analysis was 0.073.
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stepwise procedures applied to select the best independent variables were also used as
benchmarks in each connectionist model simulation of part IVl.

l We use these benchmarks to provide as many of the traditional benchmarks of the judgement modelling
approach as possible. The cross validation procedure applied in this study makes conclusions on the
performance of these benchmarks legitimate, despite the normality and multicolinearity problems reported
above.
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PART IV - SIMULATIONS AND RESULTS
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Chapter 7. A connectionist model of classificatory response

In this part, a series of simulation experiments are reported that were set up to model the
stimulus-response data reported in chapter 5. This part consists of three chapters. Chapter 7

reports simulations of a connectionist model using the bankruptcy classification variable of
chapter 5. Chapter 8 reports simulations of a connectionist model using the level and trend

variables. In both these chapters, the full set of independent variables collected from the ratio
section of the stimulus material, and reported in chapter 5, was used. In chapter 9, the
principles explained in chapter 6 were used to reduce model complexity, and the results of
these constrained models are reported using the level and trend variables. Each chapter is

divided into three main sections. The first section of each chapter reports model performance
results and comparisons with benchmarks. This section explores and tests the propositions PI

and P2 made in chapter 4, for each of the proposed models. The second section of each
chapter reports analyses of the connectionist models' representations using the principles of

Hinton (1989), Hanson and Burr (1990) and Sharkey (1991). The purpose of this section is to

explore and evaluate the proposition P3, made in chapter 4. The last section in each chapter

summarises the main findings of each simulation.

To understand the models and the parameter settings of the simulations, the main principles

of the backpropagation model are explained in chapter 3. The measures of the stimulus and

response variables are explained in chapter 5, whereas the setting of simulation parameters
and the choice of performance measures are explained in chapter 6. A short summary of the
conclusions that could be drawn from these simulations is found in section 10.1.

The number of stimulus-response pairs was small compared to the number of input variables
when all 32 input variables were used. This suggested that most stimulus-response pairs

should be used for learning. By using cross validation (see chapter 6, and Efron & Tibshirani,
1993), now suggested by several authors (Moody, 1993; Ripley, 1993;'White, 1989), but

originally suggested by Lachenbruch (1967) for linear discriminant analysis l, and by Stone
(1974) for regression and analysis of variance, a low biased estimate of generalisation error

could be found (Ripley, 1993, p. 71). A favourable side effect of the cross validation
procedure was that the effects of different initial weight values were randomised over all the

75 simulations.

l The method proposed by Lachenbruch (1967) is often characterised as a "jack-knife" procedure (e.g. Altman et
al., 1981, p. 154), but it.is actually a cross validation procedure since the error estimate is based on the "left" out
observation.
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To allow comparisons with previous judgement modelling and predictive approaches to

financial diagnosis, a series of simulations was set up using the bankruptcy classification
response variable in chapter 5. As a consequence of the cross validation procedure, a total
number of 600 backpropagation models was simulated using 32 input units to represent

financial cues and one output unit to represent the bankruptcy classification variable. The

bankruptcy classification task context is the most widely used context in the judgement
modelling and predictive studies reported in chapter 2, and the bankruptcy classification

variable applied here was similar to the variables applied in these studies.

In all simulations, the relevant measures explained in chapter 5 and the relevant simulation
environment settings explained in chapter 6, are used. This chapter reports the performance
results of the connectionist model simulations in section 7.1 and the analysis of the
connectionist model representations in section 7.2. Some of the main conclusions of the

simulations are summarised in section 7.3

7.1 Performance results

Using both the cross validated average squared error and the cross validated classification
error measures of model fit, the results of the connectionist models of bankruptcy

classification are shown in tables 7.1 and 7.2. The tables also show the corresponding
performance results of simple benchmark models, using logistic regression and stepwise
logistic regression I on the original financial cue variables. As can be seen, the results of these

simple benchmark models were comparable to the benchmarks developed in chapter 6.

Iterations: 5000 10000 15000 20000 25000 30000 Regr.I
Model:
Log. regr. (all) 0.147
Log. regr. (stepw.) 0.099
HIDO 0.091 0.096 0.100 0.104 0.104 0.106
HID2 0.101 0.063 0.061 0.061 0.062 0,065 I
HID4 0.096 0.063 0.061 0.063 0.063 0.062
HID6 0.078 0.066 0.066 0.064 0.063 0.063
HID8 0.080 0.069 0.067 0.067 0.067 0.065
HID10 0.081 0.066 0.065 0.064 0.065 0.064
HID12 0.075 0.070 0.068 0.068 0.067 0.066
HID14 0.077 0.070 0.069 0.072 0.066 0.065..Table 7.1. Mean squared error (MSE) for diagnosis ofbankruptcy (N=75)

I Stepwise logistic regression was used as an additional benchmark despite the fact that these models used a
constrained set of independent variables. It can be argued that these models should be compared to the
constrained models of chapter 9 only, but since cross validated performance of these models were favourable,
their results are consistently reported throughout the dissertation.
2 Performance results of the logistic regression models are placed in a separate column. These models were
estimated using traditional maximum log likelihood methods.
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The results of the connectionist models are shown for different stopping points in the learning

process. Initial experiments indicated that 30000 iterations were above, the optimal stopping
point, and learning was terminated at this point. Furthermore, the tables show the
performance for increasing numbers of hidden units. The connectionist models are termed
"HID", followed by the number of hidden units. At 14 hidden units, complexity was regarded
so high that adding hidden units above this number would only degenerate the generalisation
due to a considerable overfit. Additional experiments had been run with 20 and 30 hidden

units confirming this assumption, but the results are not reported here.

The cross validated average squared error showed an expected pattern. It was lower for

models with hidden units than for benchmarks and models without hidden units. Furthermore,

all models with hidden units showed very similar MSEs. A small increase in MSE was found
for an increasing number of hidden units, indicating overfit with increased complexity. The

MSE decreased with an increase in the number of learning iterations for all models up to a
minimum. Learning beyond this point increased the MSE, again indicating overfit.

The cross validated classification error is a much coarser measure of model fit. In addition, it
depends on the setting of a cut-off value, and must combine two types of error, the error of
wrongly indicating "bankruptcy", and similarly indicating "non-bankruptcy".

Iterations: 5000 10000 15000 20000 25000 30000 Regr.
Model:
Log. regr. (all) 85.33
Log. regr. (stepw.) 89.33
HIDO 89.33 90.67 88.00 86.67 86.67 88.00
HID2 85.33 92.00 92.00 94.67 94.67 94.67·
HID4 88.00 93.33 93.33 93.33 93.33 94.67
HID6 89.33 92.00 93.33 93.33 94.67 94.67
HID8 90.67 93.33 93.33 94.67 94.67 94.67
HIDIO 90.67 93.33 93.33 94.67 94.67 96.00
HIDI2 92.00 92.00 92.00 93.33 94.67 94.67
HID14 90.67 92.00 93.33 93.33 94.67 96.00..Table 7.2. Correct classifications of bankruptcy and non-bankruptcy (N=75)

The cross validated classification errors shown in table 7.2, are reported for optimal cut-off
values found by iteration. Misclassification costs were not taken into consideration, so the

results are comparable to the results of the benchmarks in chapter 6.

As indicated in tables 7.1 and 7.2, performance was better for the best connectionist models
than for any benchmark model. The best connectionist model evaluated by cross validated

squared error was the model with two hidden units. The cross validated average squared error
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was 0.061 compared to the 0.099 of the best benchmark I.Even though the difference was
. .

considerable and in the proposed direction, it was, however, not significant at a=O.OS
(t=1.33, d.f.=74)2 .

A closer look at the performance measures showed that the results of the best benchmark
model and the connectionist model without hidden units were very similar. Thus, increased
performance was not caused by the functional form of the simple connectionist model or the
estimation method (learning algorithm). Nor was it caused by the careful control of overfit in
our procedure. Even though not significant, the increase in model fit obtained in the models

with hidden layers, was caused by the internal representations built by the hidden units.

The best connectionist model evaluated by cross validated classification error, was either the

model with 10 or with 14 hidden units. There was not a unique correspondence between
minimisation of average squared error and classification error. However, all connectionist

models showed better performance than the best benchmark, but a McNemar test of the

difference in classification probabilities showed that the difference in favour of the
connectionist models was not significant- at a=O.OS.

Consequently, both measures of performance showed somewhat better performance for the
connectionist models, but the differences were not significant. The lack of significant findings

can be explained in several ways, and will be further discussed in section 7.3. However, the
results were in the right direction, and must be considered promising. To improve the results,
and to understand the mapping performed by the connectionist models, an analysis of the
connectionist model representations was performed.

7.2 Analysis of model representations

To study the representations of the model and the tasks performed by the hidden units, a

number of methods can be applied (see chapter 3). Here, sensitivity analysis and analysis of
Hinton diagrams (Hinton, 1989) were applied.

I Notice that this performance is obtained with the standard stepwise procedure implemented in SPSS (SPSS
Inc., 1990) applied to the original 32 independent variables of the connectionist model, and not with the
benchmarks of chapter 6.
2 Unless otherwise explicitly indicated in the text, the levels of significance are indicated using two-sided tests.
Since the propositions PI and P2 are formulated in favour of the connectionist models, one-sided tests could
have been used. However, one-sided tests are only discussed when there are discrepancies between the
conclusions that could be drawn from one-sided and two-sided tests.
3 The binomial formula gives a probability that the two probabilities are similar of 0.125, thus the hypothesis
must be rejected at a=o.os.
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When judged by cross validated average squared error, the simplest connectionist models
with a hidden layer showed the best results. The advantage of simplicity is important if
connectionist representations are to be analysed. Because the final representations of the
models are sensitive to initial weights, a series of 10 models was developed with different

initial weights. To study the representations of the models, we want to utilise all stimulus-
response patterns in the learning sample. However, this could easily cause overfit if the
optimal stopping point found in section 7.1 was used. A stopping point, assumed to give

approximately similar performance results when all stimulus-response patterns were included
in the learning sample, was suggested for half the optimal stopping point of the cross
validation procedure", Thus, 10versions of the model with two hidden units were developed,
and learning was stopped at 7500 learning iterations-,

The 10 models, termed A, B, C, D, E, F, G, H, I and J, showed an average squared error of

0.037 and a standard deviation of the MSEs of only 0.003. This indicated that the

performance of the models was better than the cross validated models. However, the

increased performance was largely due to overfit, even though learning had been stopped very

early. The small standard deviation of the MSEs indicated that the performance was very

similar in models developed with different initial weights.

The simplest analysis of the mapping performed by a connectionist model is done using
some form ofsensitivity analysis (Moody, 1993). Traditionally, this analysis is done by

performing a fixed percentage variation in the inputs to the model and observing the effects
on model response. This analysis is limited to the complete mapping of the model, and does

not reveal the internal structure and processing of the model. Still, sensitivity analysis can be
used to detect important input units.

A sensitivity analysis was performed by varying the input unit values by 5 % and observing
the effect on the response variable. The fixed percentage variation in a value of an input unit

is often termed "jogging" the unit. The "jogging" was performed by adding 5 % to the value
of each input variables for each of the stimulus-response patterns, in each of the 10 models '.

Thus, 750 observations of the effect of variable changes were recorded for each financial cue
used as input to the model. A summary table of these effects is shown in table 7.3.

l Based upon initial, small scaled experiments.
2 Optimal stopping point in section 7.1 was between 15000 and 20000.
3 Initial experiments had shown small differences in the result with different small percentage variations in the
input variables. Consequently, a 5 % positive change in the input variables was used.



Input unit Mean Standard Rank order
effect deviation

SGROWTH -9.14 5.33 10
CGROWTH -1.54 1.27 10
CONTPR1 0.94 1.27 15
CONTPR2 -4.46 2.85 15
PROMARG1 2.48 2.00 5
PROMARG2 -21.03 12.48 5
OPMARG1 7.58 4.96 3
OPMARG2 -24.32 14.41 3
ASSTURN1 -3.44 2.54 16
ASSTURN2 1.16 1.19 16
ROll 3.83 2.28 2
ROI2 -26.15 15.38 2
ROE1 -2.30 1.62 13
ROE2 -6.69 3.97 13
AIR l 1.96 1.99 6
AIR2 20.05 11.96 6
ICOV1 5.08 3.46' 14
ICOV2 -1.54 1.92 14
LTINV1 -12.16 7.34 9
LTINV2 -13.25 7.82 9
ITURN1 -7.28 4.50 12
ITURN2 1.94 2.03 12
ART l 0.69 1.58 7
ART2 -19.58 11.45 7
APT l 3.83 2.73 1
APT2 30.92 18.11 1
CURR1 3.44 2.62 11
CURR2 -7.97 5.14 11
ACID1 5.44 3.65 4
ACID2 -22.48 13.16 4
BER1 -0.16 1.15 8
BER2 -15.61 9.30 8
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In table 7.3, the different financial
cues used as input variables are
indicated. Explanations of the different
cue abbreviations are found in the
nomenclature. The year of the
financial statement from which each
financial cue is collected, is indicated

by either" 1" or "2" for each cue. The
rank order column indicates which

financial cue had the largest effect on
the bankruptcy classification response

variable when both values of each cue
were joined together. The mean effects

of a cue should be interpreted as the
mean effect of increasing the value of

the input unit on the bankruptcy
classification response unit. Thus,
increasing the ROI2 by 5 % decreased

the value of the bankruptcy
classification response unit by 26.15

%. The three most important input
units were units representing accounts
payable period, return on total assets,

and operating margin. This was not
surprising, and corresponded well to
what could be expected. Furthermore,

the most important units represented
financial cue values from the most

recent year's financial statement. However, the analysis was limited. First, standard deviations

were large. Second, the analysis revealed nothing of the internal representations of the model.

Table 7.3. The effects of jogging mput values 5 %
in the bankruptcy classification model (N=750)

A closer look at the representations of the models can be done by investigating the
connection weights (Hanson and Burr, 1990). A simple Hinton diagram (Hinton, 1989) can

be used to illustrate the weights of the model. The weights from the hidden units to the output

unit are shown in figure 7.1.
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In the Hinton diagram-of figure 7.1, the size
of the squares illustrates the absolute value of
the weights, and the colour illustrates their
sign. The connections go from hidden units
number one or two, to the output units of the
models A to J. The dark squares represent
connections that excite the bankruptcy

classification output unit, and the light
squares represent connections that inhibit the unit. As indicated, the models varied

D.DDDoD.·. H2.DDo.O.ODD H1

A B C O E F G H I J
FIgure 7.1 Hmton diagram of connections
between the hidden and output layer of 10
bankruptcy classification models with 2
hidden units

considerably with respect to how the internal representations in the hidden units were used to

form the bankruptcy classification. One reason for these differences in connection weights

was the bias of the output units l, and another reason was that equal representations could be
obtained by reversing the sign of the corresponding connections, such as in models A and B.
However, these reasons could not explain all the differences observed in figure 7.1.

To further illustrate the representations formed by the hidden units, a Hinton diagram of the
connections between the input layer and hidden layer was investigated. The connections of all
the 10 models, with two hidden units each, are shown in figure 7.2.

In figure 7.2, the connections are shown vertically for each model. Each of the input units are

shown by their corresponding financial cue in the left column. The weights from the bias
units are also shown. In the top row, model indicators are shown, and in the bottom row, the

number of the corresponding hidden units are indicated. By visual inspection, we found that

each model had at least one hidden unit with a set of large-valued weights. Furthermore, these
hidden units seemed to be present in each model, and their weight patterns were very similar.

The most frequently occurring unit of this type had a negative bias, but exceptions were

found in the models E, G, and H. Model C seemed to have two very similar large-valued

hidden units. Since these hidden units were shared by all connectionist models, we can term
them "shared" hidden units. We do not, however, know whether such units are shared by all
our connectionist models of financial diagnosis.

l Also termed the "threshold". See section 3.2.1.3.
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A B C D E F G H I J

BIAS ·0 O· DD dd .0' DD .0 D.D· O'
SGROWTH O • •• •• •• O• •• O• .0 • · . a
CGROWTH • • · • • • • a· • • · · • • a • · • ·
CONTPRl · O O · a O · O • O O a · O O • O · O ·
CONTPR2 O O • a a a O • a O a · a O · O a O ·
PROMARGl · · · · · · · · · · · · · · · · · · ·
PROMARG2 •• •• •• •• O. •• O • .0 • ·

• aOPMARGI · · · · · · · · · · · · · · · · · ·
OPMARG2 a. • · •• •• o. •• O • .• 0 •• .0
ASSTURNI · O O · a O O O • O O · · O O · O · O ·
ASSTURN2 · · · · · a · · a a · · · · a · a ·
ROll · · · · · · · · · · · · · · · · · ·
R0I2 O. • · •• •• o. •• O• .0.' .a
ROEl • O O · a O · O • O O · • O

O • O · O ·
ROE2 a • • · • • · • O • • • O • • a • · • ·
AIRI · O O · a O O O · O O a · O O · O · O ·
AIR2 O O · O O 0'0 • O O · • O O • O · O ·
ICOVI · · · · · · · · · · · · · · · · · · ·
ICOV2 · · · · · · • · · · · · · · · · · ·
LTINVI · • • · • • • • · • • · · • • · • · • ·
LTINV2 · • • · • • • !" O • • • a • • a • · • ·
ITURNI · • • a • • · • O • • · a • • a • · • ·
ITURN2 · · · · · · · · · · · · a · · · a ·
ARTI · · · · · · · · · · · · · · · · · · ·
ART2 · · · · · · · a · · · · Q · · · · ·
APTI · · · · · · · · · · · · · · · · · · · ·
APT2 ·0 O · 00 00 ·0 DO ·0 o· O· O·
CURRI •• • · • • • • O • • · · • • a • · • ·
CURR2 a • • · • • · • a • •• · • • a • · ••
ACIDl • · • · • a • • · · • • · • · • ·•
ACID2 O. •• •• •• o• •• O. .0 .. .0
BERI · • • · · • · • · • • • · • • · • · • ·
BER2 O. • · •• •• O. •• O. .0. · .0

1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2
FIgure 7.2. Hmton diagram of the connections between the mput layer and hidden layer of 10
bankruptcy classification models with 2 hidden units .

The size of a weight in a Hinton diagram can be interpreted as the importance of a unit in
exciting or inhibiting another unit. In figure 7.2, the weights of the hidden units indicated the
importance of a financial cue in exciting a hidden unit. Consequently, the "shared" hidden
units seemed the most important in performing the bankruptcy classification. Some
interesting observations could be made from a visual inspection of the Hinton diagram shown
in figure 7.2. First, the "shared" hidden units had large input weights from a series of input
units. Thus, the unit did not specialise on any traditional theoretical concept used in financial
diagnosis, such as "profitability" or "liquidity". The units seemed to represent a variable
indicating a very general "condition" concept, representing several diagnostic concepts
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simultaneously. Second, the signs of the weights were generally in the expected direction.
Third, the largest weights were weights from the units representing cues of the most recent

financial statements, corresponding well to the findings of the sensitivity analysis. Thus, the
"shared" hidden unit focused on the "current general situation". Fourth, two exceptions were
found. The sales growth unit had a very large weight to the "shared" hidden units, and the

return on equity units had a plus/minus pattern of weights for the two consecutive years, both
findings indicating that aspects of change in the value of cues from two consecutive years

were relevant. Consequently, the representations formed by the "shared" hidden unit were
rather complex.

From visual inspection it was not easy to detect common aspects of the task performed by the
other hidden units in the models. Further analysis of the connectionist model representations
were left tomodels with significantly better performance results than their corresponding
benchmarks.

7.3. Conclusions

The connectionist model simulations of the bankruptcy classifications showed results close to
what could be expected. The traditional forms of the learning and cross validated error curves
were replicated 1. Similarly, the expected dilemma of sufficient complexity and overfit were
illustrated both by the learning overfit and the hidden unit overfit findings.

The recommended measure of model fit; cross validated average squared error, showed lower

values for the connectionist models with hidden units than for similar models without hidden
units and for all benchmarks, even though the difference was not significant. Lack of
significance could be explained in several ways. First, the distribution of the errors of the

stepwise logistic regression model- was very different from the errors of the connectionist
model. This was caused by a set of relatively few large error values, giving a very large
standard deviation for the benchmark model, and consequently, a very large standard error of

the t-test. The distribution of errors of the connectionist model was very different, and showed
response values around the cut-off value for all cases with large errors. This difference must

be considered an advantage of the connectionist models, even though it weakens the
significance of tests of differences-'. Second, there was a mismatch between the values of the
response variable, the error measure used in both our tests, and the error measure used by

1 Learning error is the error of the model during learning. Generally this error decreased as an inverse
exponential function of learning time, but since generalisation is focused in this dissertation, no separate reports
were made of learning error. However, an example of the typical relationship between learning and cross
validated error is shown in appendix K.
2 The best benchmark.
3 Due to a large pooled standard deviation in tests of the differences.
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backpropagation, However, this difference will be present in all posterior probability
estimator based connectionist models 1.A suggestion is that better correspondence between
the response variable measure and the error measure of the models should be created. Third,
the bankruptcy classification operationalisation used in this simulation was derived from a
measure containing more information on the subjects' judgement of the financial situation

than a simple classification could reveal. A suggestion is that the connectionist models would

benefit from taking this information into consideration. These suggestions are further
explored in chapters 8 and 9. To summarise the performance results, no significant support
for the propositions PI and P2 was found.

The analysis of the connectionist models performed in this chapter was very limited. We only
introduced some of the most widely applied methods for analysing connectionist model
representations, and left the deeper analysis to connectionist models proving significantly
better performance than their benchmarks. Despite the limitations, sensitivity analysis and
visual inspection of the Hinton diagrams indicated that the hidden units of the connectionist
models developed complex variable representations-. These representations proved useful in

diagnostic performance, but evaluation of their cognitive relevance seemed difficult. Thus, no
support for proposition P3 made in chapter 4 was found.

However, the results of the bankruptcy classification simulations were promising, and

modifications of the inputs, topologies and outputs to better control complexity and overfit
were encouraged. In particular, modifications better utilising the error correction algorithm of
backpropagation and the available measures of diagnostic response should be made. The set-
up and results of simulations taking these modifications into consideration are reported in
chapters 8 and 9.

1 As long as the connectionist models minimise squared errors.
2 For an explanation of different representational types, see sections 3.2.3 and 4.2.
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Chapter 8. A connectionist model of continuous response

The first and simplest modification made to improve the results of chapter 7, was using a
measure of the judgement of the financial situation of the firm that contained more
information than the simple bankruptcy classification measure. The measures of level and

trend developed in chapter 5 were presumed to satisfy this demand.

To estimate the generalisation properties of a connectionist model with continuous response,
a series of simulations was set up. A model with continuous response deviates from Wt'

bankruptcy classification model of chapter 7. While the bankruptcy classification model could

be interpreted as a posterior probability estimator, the continuous response models of this

section have more in common with expectancy estimators and prediction models. However,

this change in family resemblance is a result of the transformation of a classificatory variable
by composite judge averaging, and not the result of a change in cognitive task. Thus, the

models must still be interpreted as cognitive classification models.

This chapter reports the performance results of the continuous response connectionist model
in section 8.1. An analysis of the model representations is reported in section 8.2, and the
main conclusions of the simulations are summarised in section 8.3.

8.1 Performance results

As mentioned in chapters 3 and 6, a number of parameters influence the learning and

generalisation properties of a connectionist model. Hanson and Burr (1990) suggested that

unit complexity (output function), architecture (hidden units) and learning rule affect the
representation. Traditionally, weight initialisation, number of hidden units, learning cycles,

and learning parameters are investigated for their effect on learning and generalisation (e.g.

Nesvik, 1993). In most studies, the effect on learning error is in focus. Here, we focus mainly

on the generalisation ability of the connectionist models. Thus, cross validation simulations
were set up following the principles explained in chapter 6. The learning rates, momentum
terms and intervals of initialised weights were set as described in chapter 6. As in chapter 7,
the maximum number of learning iterations was set to 30000. Initial tests indicated that 30000
was a number of iterations somewhat larger than the point of optimal fit.

By monitoring the generalisation error for an increasing number of learning iterations and
hidden units, we had the opportunity to use both the optimal hidden unit rule (Le Cun, 1990)
and the optimal stopping rule (Smith, 1993) to find the best model. As a consequence of the

cross validation procedure, a total number of 1800 backpropagation models were simulated in
this chapter. In all simulations, the full set of 32 input variables were used. Three
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configurations of the output units were used. The first configuration used one unit
representing the level variable. The second configuration used one unit representing the trend
variable, and the third configuration used two output units representing the level and trend
variables.

The results of the level diagnosis models are shown in table 8.1.

Iterations: 5000 10000 15000 20000 25000 30000 Regr.!
Model:
Regr. (all) 0.435
Regr. (stepw.) 0.275
HIDO 0.224 0.242 0.255 0.266 0.273 0.281
HID2 0.206 0.175 0.185 0.195 0.201 0.208 I
HID4 0.194 0.183 0.191 0.199 0.210 0.214
HID6 0.181 0.179 0.189 0.201 0.210 0.222
HID8 0.183 0.184 0.197 0.205 0.214 0.224
HIDI0 0.183 0.188 0.197 0.211 0.221 0.220
HID12 0.185 0.193 0.200 0.210 0.219 0.225
HID14 0.186 0.194 0.205 0.215 0.228 0.235
Table 8.1. Mean squared error (MSE) of the level diagnosis (N=75)

Table 8.1 shows how the number of hidden units affected the generalisation properties of the
models. For the maximum number of epochs, we found the best generalisation measure in the
connectionist models with two hidden units. This model also had the lowest MSE of all
models. This suggested that two hidden units should be used in the model. In addition, the
generalisation errors seriously increased when the hidden layer was removed, making the
performance of the connectionist model close to the best regression model.

In addition to the two benchmark models of chapter 6, we estimated two comparable
regression models. First, a complete regression model with the same number of independent
variables as the connectionist models was tested. Next, a model developed by stepwise
regression, using the standard stepwise procedure of SPSS (SPSS Inc., 1990), was used. The

cross validation procedure was followed for the regression models in the same way as for the
connectionist models. The stepwise procedure model performed significantly better than the

full model. Furthermore, the best connectionist model significantly outperformed the multiple
regression analysis. This is illustrated in table 8.2, showing the t-values of pairwise

comparisons of the best regression model and the best connectionist model.

1 Performance results of the regression models are placed in a separate column. These models were estimated
using traditional OLS methods.
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Iterations: 5000 10000 15000 20000 ·25000 30000
HID2 1.53 2.57* 2.45* 2.11 * 1.91 1.60_
Table 8.2. T-tests of best connectionist model vs. best stepwise regression
model for the level diagnosis at increasing number of iterations (* indicates
significant at a=0.05, dJ.=74)

A similar test of the difference in performance between the best connectionist model and the

best benchmark of chapter 6, also showed a significant difference in favour of the

connectionist models. This is illustrated in table 8.3, showing a t-test of the difference in MSE

between the best benchmark (A) of chapter 6 and the connectionist model of the level

diagnosis.

Iterations: 5000 10000 15000 20000 25000 30000
HID2 0.93 2.43* 2.03* 1.40 1.09 0.80
Table 8.3. T-tests of best connectionist model vs. best benchmark model
(A) of chapter 6 for the level diagnosis at increasing number of iterations (*
indicates significant at a=0.05, d.f.=74)

In addition to performing worse than the connectionist model, the standard deviation and the

MSE of the regression models were correlated. This indicated that the variance of the model

errors increased with increasing mean error. The same tendency was found in the maximum

error of the models, which was larger for the regression analysis and for the connectionist
models without hidden units than for the connectionist models with hidden units.

Consequently, strong support was found for proposition PI of chapter 4 for the level

diagnosis.

To investigate proposition P2, the difference between the performance of the connectionist
models with and without hidden units was compared. Table 8.4. illustrates this in a t-test of

the differences between means.

Iterations: 5000 10000 15000 20000 25000 30000
HID2 0.73 2.86** 2.80** 2.60* 2.49* 2.55*
Table 8.4. T-tests of connectionist model with 2 hidden units vs.
connectionist model without hidden units for the level diagnosis at a
comparable number of iterations (* and ** indicates significant at a=0.05
and 0.01 respectively, d.f.=74)

A test of the difference in performance between the two best connectionist models with and

without hidden units showed that the connectionist model with two hidden units significantly
outperformed the model without hidden units at a=O.Ol (t=2.69, d.f.=74). This finding

strongly supported proposition P2 for the level diagnosis.
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To further investigate the distribution of the errors for the different models, correlations
. .

between error terms and targets were computed. The correlations of the cross validated
squared errors (SE) with the target value of the composite judge level diagnoses are shown in
table 8.5.

Iterations: 5000 10000 15000 20000 25000 30000 Regr.
Model:
Regr. (all) 0.179
Regr. (stepw.) 0.147
HIDO 0.085 0.141 0.162 0.173 0.183 0.181
HID2 -0.107 -0.166 -0.120 0.003 0.012 0.041
HID4 0.037 0.005 0.028 0.040 0.052 0.040
HID6 0.028 0.012 0.017 0.025 0.021 0.040
HID8 0.003 0.009 0.028 0.033 0.046 0.068
HID10 0.035 0.026 0.046 0.061 0.071 0.072
HID12 0.058 0.035 0.046 0.063 0.079 0.064
HID14 0.042 0.043 0.063 0.065 0.070 0.069
Table 8.5. Correlations of SE and target for the level diagnosis (N=75)

None of the correlation coefficients in table 8.5 are significantly different from O (a=0.05),
but typically they are larger for the regression and connectionist model without hidden units
than for the other models. The high correlation of MSE and target suggested errors were

larger for larger targets. The connectionist models did not seem to make this type of error.
This can be explained by an equal distribution of the errors along the target value, or by a

distribution with larger errors for targets distant from the mean target. To test the last
suggestion, correlations of the cross validated squared errors with the differences from target

means were calculated. The results are shown in table 8.6.

Iterations: 5000 10000 15000 20000 25000 30000 Regr.
Model:
Regr. (all) 0.010
Regr. (stepw.) 0.095
HIDO 0.199 0.132 0.087 0.065 0.041 0.031
HID2 0.253* 0.082 -0.002 -0.044 -0.099 -0.100
HID4 0.225 0.098 0.033 -0.005 -0.034 -0:078
HID6 0.214 0.107 0.059 0.022 -0.001 -0.030
HID8 0.198 0.084 0.049 0.020 -0.022 -0.027
HID10 0.199 0.117 0.057 0.007 -0.016 0.001
HID12 0.195 0.133 0.097 0.057 0.017 -0.032
HID14 0.175 0.132 0.111 0.048 0.033 -0.013
Table 8.6. Correlations of SE and distance from mean target for the level diagnosis
(N=75)(* indicates significant at a=0.05)

Table 8.6 shows very small and insignificant correlations for the "saturated" models. This

suggests the errors were somewhat correlated with the target value for the simple models, but
not for the connectionist models with hidden units. However, early in the learning process,

the correlations with the distance from targets were high. This can primarily be explained by
the probability density function of the targets. With the majority of targets close to the mean,
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these diagnoses will be learned first, and the model will specialise on .learning the distant
targets later.

To further investigate the errors of the connectionist model, we computed the correlations of
the standard deviation of the composite judge diagnosis, indicating inter-judgmental
disagreement on the diagnosis, with the squared errors of the models. If there was

disagreement among the diagnosticians on a stimulus, one might assume the errors of the
models should also be large on these stimulus-response pairs. This was not the case. All
correlations were low and not significantly different from O ( a=0.05).

One might further ask if the different models faile on the same stimulus-response pairs. The
correlations of the SEs could be used to answer this question. The correlation matrix of all

model errors was calculated. They indicated that all correlations were significantly different
from O(a=O.OI) and about 0.9 in magnitude. A small difference was detected between the

connectionist models, with the lowest mean error correlation being 0.89, and the regression
analysis, with the lowest correlation being 0.76. This meant that the connectionist models all

failed on the same stimulus-response pairs in similar patterns. The regression models also

failed on the same pairs, but the structure of the error was somewhat, but not significantly,

different.

The procedures and analyses of the level diagnosis described above were also set up for the

trend diagnosis. At least from a cognitive perspective, some trend information can be

produced simply by comparing two or more figures without reference to an internalised
standard. Thus, one may assume that the diagnosis of trend is simpler than the diagnosis of

level. However, this may not be the case for models that are given situational cues as inputs.
These models have to develop some notion of a "trend" concept as resulting from a difference

in two or more input cues. To further complicate the concept, the trend and level diagnoses

are correlated. There is a higher probability of being in a positive trend in a good situation
than in a bad one. These aspects imply that the "trend" concept might be more complex than
first assumed, and that an intermediate abstraction of parts of the concept may be helpful in

diagnosis.

The cross validation procedure was set up in the same way and with the same parameters as
in the level diagnosis simulations. The cross validated results for the model of the trend
diagnosis are shown in table 8.7.
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Iterations: 5000 10000 15000 20000 25000 30000 Regr.
Model:
Regr. (all) 0.503
Regr. (stepw.) 0.431
HIDO 0.344 0.352 0.357 0.363 0.366 0.370
HID2 0.479 0.347 0.356 0.358 0.358 0.374
HID4 0.442 0.351 0.357 0.356 0.362 0.351
HID6 0.390 0.347 0.351 0.344 0.348 0.347 I
HID8 0.366 0.355 0.352 0.362 0.362 0.362
HIDIO 0.358 0.349 0.353 0.360 0.357 0.350
HID12 0.361 0.359 0.349 0.355 0.360 0.355
HID14 0.350 0.354 0.359 0.359 0.359 0.361
Table 8.7. Mean squared error (MSE) of the trend diagnosis (N=75)

Table 8.7 shows almost the same pattern as for the level diagnosis models. The connectionist
models significantly outperform the regression analysis in cross validated squared error.
Pairwise t-tests of the performance differences between the best connectionist model and the
regression model are shown in table 8.8.

Iterations: 5000 10000 15000 20000 25000 30000
HID6 0.92 2.54* 2.26* 2.25* 2.04* 1.94
Table 8.8. T-tests of best connectiorust model vs. stepwise regression for trend
diagnosis at increasing number of iterations (* indicates significant at a=0.05,
dJ.=74)

The results in table 8.8 show that the connectionist model was significantly better than the
best regression model, with the most significant difference in means for 10000 iterations. The
same pattern was found in maximum error differences of the connectionist and the regression
models.

T-tests of the difference in performance between the best benchmark model (A) of chapter 6

and the best connectionist model showed a small difference in the same direction as found in
table 8.8, but the difference was not significant at a=0.05 (t=0.26 , d.f.=74). Consequently,
the connectionist models did not significantly outperform the best linear benchmark model
(A) on the trend diagnosis.

The larger number of hidden units in the optimal connectionist model of the trend diagnosis
than the model of the level diagnosis, could indicate that the trend concept was more complex
than the level concept. However, four things are worth mentioning. First, the error surface

was very flat and almost independent of the complexity of the model used. Second, the major
improvement in model performance occurred when shifting from regression model to
connectionist model without hidden units. For a given number of iterations, the connectionist
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model with 6 hidden units was better than the model without hidden units, but the difference
was not significant. The corresponding differences were significant for the level diagnosis

models above. Third, the model without hidden units had a low MSE even for a small number
of iterations. This suggested that simpler models could be used if no other weaknesses) were

discovered. Fourth, all MSEs were larger for the trend diagnosis models than for the level

diagnosis models. The last finding suggested that "trend" was a more complex- concept to

model, but the other findings suggested this interpretation should be made with caution.

Correlations with the trend target were computed to study the distribution of the errors over

the different stimulus-response pairs. The results are shown in table 8.9.

Iterations: 5000 10000 15000 20000 25000 30000 Regr.
Model:
Regr. (all) 0.166
Regr. (stepw.) 0.072
HIDO 0.107 0.091 0.082 0.071 0.067 0.045
HID2 0.097 0.079 0.086 0.086 0.075 0.043
HID4 0.156 0.102 0.073 0.078 0.071 0.043
HID6 0.156 0.090 0.062 0.060 0.032 0.019
HID8 0.146 0.092 0.077 0.054 0.036 0.039
HIDI0 0.121 0.076 0.056 0.044 0.028 0.033
HID12 0.132 0.082 0.067 0.039 0.028 0.038
HID14 0.099 0.069 0.068 0.058 0.021 0.018
Table 8.9. Correlations of SE and target for the trend diagnosis (N=75)

The correlations showed approximately the same pattern as for the level diagnosis models. As

opposed to the level diagnosis models above, the connectionist models without hidden units
now showed a correlation comparable to the other connectionist models. Models with small
MSEs had small correlations with target. Again, this can be explained by an even distribution

of the errors, or byerrors correlating with distance from target means. By correlating the SEs
with distance from the mean trend targets, we got the results shown in table 8.10.

The results shown in table 8.10 were very different from the level model results illustrated in

table 8.6. There were significant correlations of SEs with distance from mean targets for the
stepwise regression and for the connectionist models after few learning iterations. This
implied that the models missed most on the patterns classified as "good" or "bad". This was
somewhat disturbing, since we particularly wanted the model to fit these cases correctly.

) Such as unfavourable correlations of error with targets or distance from targets
2 Or noisy.
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Iterations: 5000 10000 15000 20000· 25000 30000 Regr.
Model:
Regr. (all) 0.114
Regr. (stepw.) 0.264*
HIDO 0.264* 0.208 0.194 0.185 0.172 0.170
HID2 0.720** ·0.240* 0.197 0.185 0.172 0.155
HID4 0.587** 0.231* 0.197 0.167 0.172 0.143
HID6 0.467** 0.228* 0.194 0.182 0.172 0.143
HID8 0.460** 0.205 0.185 0.188 0.162 0.142
HIDI0 0.369** 0.227* 0.208 0.191 0.182 0.167
HID12 0.357** 0.241 0.188 0.183 0.180 0.151
HID14 0.298** 0.206 0.186 0.167 0.145 0.135
Table 8.10. Correlations of SE and distance from mean target for the trend diagnosis
(N=75) (** and * indicates significant at a=O.OI and 0.05 respectively)

For the level models, a similar effect was eliminated by learning. For the trend diagnosis

models, it was not. For the level diagnosis models, one was led to assume that the optimal

learning point and the even distribution of errors were found simultaneously by the learning
rule. However, the results of the trend diagnosis indicated that the optimallearning point and
favourable distribution of errors were not found simultaneously by the learning rule. The
lowest correlation was found for the full regression model.

One reason why the model did not eliminate the errors by learning, could possibly be found in

the distribution of the trend variable. The standard deviation of the trend variable was not
larger than the level variable, but the Kolmogorov-Smirnov test indicated a small deviance

from the normal distribution. If this explanation was correct, a lacking robustness of
connectionist models previously unattended (Cheng and Titterington, 1994; Ripley, 1993),

could have been detected. Another possible explanation was that the models' complexity was
insufficient to capture all the properties of the "trend" concept. The third possible explanation
was that the models were too complex, and thus, always overfit. This suggested that the
number of free parameters in the model was too large to be set by the relatively small samples
of 74 patterns each. However, the stepwise regression procedure resulted in a model with
considerably less free parameters, but with similar error distribution problems. Thus, a
sensitivity of the connectionist models to the distribution of the response variable seemed to
be the most reasonable explanation.

One conclusion that could be drawn from these results is that only investigating MSE when
evaluating a model's performance may be too limited. The results suggested an evaluation of
the generalisation ability of a connectionist model should consider both MSEs and measures

of the distribution of errors. The suggestion that models with less free parameters could be
used to avoid some of the error distribution problems detected here, is explored in chapter 9.
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To further investigate the errors of the connectionist model, we correlated the squared errors
. .

with the standard deviation of the trend diagnosis of the composite judge groups. The analysis

showed no significant correlations. As for the level diagnosis, this indicated that the model
errors were not correlated with disagreement in the composite judge groups. Finally, we
calculated the correlation coefficients of all the errors, and all correlations were significantly
different from O (a=O.Ol), and about 0.9 in magnitude. A small difference was detected
between the connectionist models, with the lowest mean error correlation being 0.96, and the
mean error correlation of the regression models, with the lowest correlation being 0.78. This
implied that the connectionist models failed in similar patterns. The structure of the errors

was somewhat different for regression analysis, but the difference in the model error

correlations was not significant.

Other studies (e.g. Bounds, Lloyd and Mathew, 1990; Chakaborty et al., 1992), have

documented improved test results by modelling more than one output variable

simultaneously, when the output variables are correlated. To test the performance of such a
combined model, a cross validation procedure similar to the previous simulations was set up.

The simulations were run with the same parameter values. The only change in models was the

introduction of an additional output unit. The performance results for the two diagnostic

variables are shown in tables 8.11 and 8.12.

Iterations: 5000 10000 15000 20000 25000 30000
Model:
HIDO 0.239 0.249 0.264 0.273 0.278 0.283
HID2 0.194 0.180 0.179 0.181 0.189 0.194
HID4 0.197 0.178 0.181 0.188 0.195 0.205
HID6 0.189 0.187 0.201 0.210 0.209 0.218
HID8 0.197 0.188 0.193 0.198 0.208 0.212
HID10 0.187 0.187 0.193 0.197 0.201 0.205
HID12 0.191 0.193 0.199 0.199 0.211 0.218
HID14 0.192 0.197 0.200 0.205 0.213 0.215
Table 8.11. Mean squared error (MSE) of level diagnosis In a combined model
(N=75)

Iterations: 5000 10000 15000 20000 25000 30000
Model:
HIDO 0.350 0.358 0.363 0.368 0.368 0.365
HID2 0.428 0.347 0.349 0.350 0.357 0.365
HID4 0.399 0.336 0.347 0.353 0.360 0.367
HID6 0.396 0.339 0.352 0.360 0.369 0.379
HID8 0.361 0.342 0.344 0.352 0.352 0.360
HID10 0.359 0.328 0.339 0.348 0.354 0.358
HID12 0.341 0.337 0.347 0.355 0.367 0.377
HID14 0.350 0.344 0.353 0.351 0.379 0.373

. Table 8.12. Mean squared error (MSE) of trend diagnosis In a combined model
(N=75)
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The results of the combined model were very similar to the results of the separate models. A. .

small improvement could be noted for the combined models, particularly for small numbers
of hidden units. Compared to the separate models, a combined model with two hidden units

stopped at 15000-20000 iterations performed very well. However, no significant improvement
in model fit was found using a combined modell. However, for analysis purposes, the
advantages of a simple, combined model should not be underestimated.

To test if a combined model had the same error distribution problems as the separate models,
similar correlations as reported above were computed for the combined models. The same
pattern as for the separate models was found for all correlations. However, the correlations of
the SEs with differences from mean targets were somewhat smaller for the trend diagnosis

variable in the combined model. This is illustrated in table 8.13.

Iterations: 5000 10000 15000 20000 25000 30000
Model:
HIDO 0.274* 0.227* 0.213 0.192 0.182 0.171
HID2 0.468** 0.227 0.169 0.149 0.142 0.140
HID4 0.386** 0.229* 0.185 0.155 0.120 0.105
HID6 0.415** 0.237* 0.210 0.186 0.165 0.167
HID8 0.349** 0.225 0.212 0.177 0.178 0.163
HIDI0 0.361 ** 0.234* 0.214 0.174 0.168 0.163
HID12 0.334** 0.239* 0.213 0.177 0.178 0.156
HID14 0.290* 0.221 0.194 0.187 0.166 0.142
Table 8.13. Correlations of SE and distance from mean target for the trend
diagnosis in a combined model (N=75) (** and * indicates significant at
a=O.OI and 0.05 respectively)

The correlations of the trend diagnosis errors with distance from mean target of the simple
connectionist model with two hidden units was comparable to the best separate trend model
with six hidden units. Consequently, there seemed to be no advantages in modelling level and

trend diagnoses separately. Three important lessons Were learned from these simulations.

First, significantly better model fit was found for the level diagnoses with connectionist
models. Second, the improved fit of the connectionist models was restricted to models with
hidden units. Third, the connectionist models' fit should be evaluated by investigating more

than a simple measures of cross validated squared error.

The promising results for the connectionist models with hidden units made analysis of the
internal representations of these models particularly relevant.

l The t-value of a test of difference in cross validated average squared error of the trend diagnosis between the
best combined connectionist model and the best benchmark (A) of chapter 6 is somewhat higher than for the
separate model. However, it is still not significant at a=O.05 (t=O.84, d.f.=74).
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8.2 Analysis of model representations

When studying the representations of the connectionist models, we wanted to utilise the full
learning sample. A combined connectionist model with 32 input units and two output units

was trained with the full learning sample. To get a picture of the variations in the

representation, the number of hidden units was varied from two to four units. Overfit was
controlled by stopping learning at a point lower than the optimal fit point found and reported
in section 8.1. This procedure was used to control early overfit resulting from including all
stimulus-response pairs in the learning sample. Even though the stopping point was as lowas

10000 iterations, the mean squared errors of these models were lower than the cross validated
average squared error reported above. The effect of different initial weights was controlled by

developing 10 different models for each number of hidden units. Each model was developed

with different randomised initial starting weights. The performance results of these models

are shown in table 8.14.

Model Average Stdev.of Average . St. dev. of Correlation Correlation Runs with
level MSE level MSE trend trend of level with of trend common

MSE MSE diff. from with diff. hidden unit
target from target

HID2 0.110 0.012 0.203 0.021 0.028 0.183 10
HID3 0.101 0.003 0.187 0.005 0.026 0.164 10
HID4 0.101 0.004 0.183 0.004 0.023 0.153 10 ..Table 8.14. Results of 10 combmed models with full learmng sample and randomised initial
weights (figures are averages of the 10 runs)

From table 8.14, we see that the MSE was generally lower than in the cross validation
simulations. This was expected since all cases were included in the learning·sample. The low

standard deviation of the 10 simulations with different initial weights indicated that the

performance of the models were relatively independent of the initial weights. The
performance results of the connectionist models with two hidden units were somewhat
disturbed by an MSE of 0.137 and 0.253 for the first simulation (version A2) on the level and
trend diagnoses respectively. The previously found pattern of small correlations with

difference from the target for the level diagnosis and large correlations for the trend
diagnosis, was also found here. Consequently, the properties of the errors in these models
were similar to the cross validated errors analysed in section 8.1.

Even though performance results were very similar in the models in table 8.14, the final
weights were very different. Summary statistics illustrating the weight distributions of each
model are shown in table 8.15. The reasons for the differences in final weights could be many

local optima, or a flat error surface around the optimal solution. Since error continued to

decrease as learning continued, the first explanation was excluded. It was more likely that the
model error surfaces with respect to the weights were very flat around the saturation area.
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Theoretically, the error should approach zero along one, or a few, of the weight axes if the
process had not been terminated. Therefore, depending on the initial weights, each
representation studied was one among several different representations with similar
performance results. For each model, their current representation was one of many
performing the same mapping, but each of the representations was different when it came to
how the mapping was performed.

For a combined connectionist model, we were interested in whether or not the hidden units
specialised on the level and trend diagnoses. All models with two, three and four hidden units

had hidden units with large similar connections to both output units. Consequently, one of

the hidden units was used to represent common aspects of the two diagnoses. What tasks

were performed by the rest of the hidden units was, however, a somewhat more difficult
question to answer and this will be treated in section 8.2.2

To study the representations of a connectionist model and the tasks performed by the hidden

units, a number of methods can be applied (see chapter 3). Here, analysis of the weight
distributions and outputs of the hidden units, Hinton diagrams (Hinton, 1989), and cluster
analysis (Gorman & Sejnowski, 1989; Hanson & Burr, 1990) were applied. These methods

are well known, but applying them to our models' demanded careful modification and
adjustment.

To illustrate the hidden unit weights of the models, a Hinton diagram of the 30 connectionist
models with two, three or four hidden units is shown in figure 8.1. Only the weights between

hidden units and output units are shown. As in figure 7.1 and 7.2, the size of the squares
represents the absolute value of the weight. Dark and light squares represent positive and
negative values of the weights.

Figure 8.1 illustrates the differences between the connectionist model weights resulting from

randomisation of initial weights. The Hinton diagram indicated presence of a common hidden
unit in all the models. Most models had one positive common hidden unit, but models with

one negative and more than one common hidden units were also found.

, To study the cognitive relevance of our model representations.
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Comparing the different versions of each model, no recurring weight pattern was found. Of

the models with two hidden units, versions Hand J were somewhat similar, and of the models
with four hidden units, versions A and C were somewhat similar. Except for these examples,

the representations did not seem to have a small number of local solutions (attractors).

To further investigate the differences in representations of the models, summary statistics on
the distributions of the connection weights were calculated. Some statistics illustrating these
distributions are shown in table 8.15.
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Iterations: HID2 (N=72) HID3 (N=107) HID4 (N=142)
Version:":
A Mean:-O.17 Stdev:O.72 Mean:-O.13 Stdev:O.68 Mean:O.03 Stdev:O.56

Skew:-1.22 Kurt:3.61 Skew:-O.54 KurtO.86 Skew:O.88 Kurt:4.01
B Mean:O.lO Stdev:O.80 Mean:O.08 Stdev:O.71 Mean:-O.Ol Stdev:O.57

Skew:O.84 Kurt2.38 Skew:OAl Kurtl.95 Skew:-OA9 Kurt:2.92
C Mean:O.Ol Stdev:O.79 Mean:-O.03 Stdev:O.65 Mean:-O.Ol Stdev:O.56

Skew:l.lO Kurt:2.37 Skew:-O.80 Kurt2.22 Skew:-O.62 Kurt:2.24
D Mean:-O.l2 Stdev:O.81 Mean:O.03 Stdev:O.70 Mean:O.Ol Stdev:O.56

Skew:-O.83 Kurt:l.29 Skew:1.l9 Kurt:4.28 Skew:-O.84 Kurt:3.07
E Mean:-O.02 Stdev:O.75 Mean:-O.12 Stdev:O.67 Mean:-O.12 Stdev:O.56

Skew:-l.36 Kurt:3.17 Skew:-O.98 Kurt2.84 Skew:-O.63 Kurt:3.70
F Mean:O.lO Stdev:O.81 Mean:O.07 Stdev:O.68 Mean:O.Ol Stdev:O.57

Skew:-O.84 Kurt:2A8 Skew:O.58 Kurt:2.35 Skew:-l.04 Kurt:3.36
G Mean:-O.14 Stdev:O.82 Mean:O.Ol Stdev:O.63 Mean:-O.12 Stdev:O.56

Skew:-O.58 Kurt:O.64 Skew:-O.69 Kurt:2.74 Skew:O.89 Kurt:4.23
H Mean:O.07 Stdev:O.76 Mean:O.Ol Stdev:O.66 Mean:-O.ll Stdev:O.58

Skew:OA3 Kurtl.78 Skew:l.03 Kurt:3.61 Skew:-O.63 Kurtl.62
I Mean:-O.16 Stdev:O.75 Mean:-O.08 Stdev:O.65 Mean:-O.12 Stdev:O.56

Skew:-O.99 Kurt2.00 Skew:-O.05 Kurt3.95 Skew:-l.09 Kurt4.07
J Mean:-O.Q9 Stdev:O.78 Mean:O.06 Stdev:O.70 Mean:-O.05 Stdev:O.56

Skew:-O.03 Kurt:l.66 Skew:OA8 Kurtl.73 Skew:-O.94 Kurt:4.14
Table 8.15. Statistics illustrating the differences m representations between the 10 versions of
each combined modell

In table 8.15, the mean, standard deviation, skewness and kurtosis of the weights of each

model are shown. All model connections including bias weights were included in these
statistics. Due to the larger number of weights, the standard deviation of the weights was
reduced using more hidden units in the model. For the model with two hidden units, the
standard deviation ranged from 0.72 to 0.82, the skewness from -1.36 to 1.10, and the

kurtosis from 0.64 to 3.61. The small variance of the standard deviation indicated that even
though the weight pattern was different from model to model, the variance of the weights was
about the same. Models with negative mean weight values were left skewed, and models with
positive mean weight values were right skewed. Somewhat surprising was the variance in the
kurtosis. All models had a somewhat more peaked distribution of weights than the normal
distribution with a similar mean and standard deviation. The models with more hidden units
showed a smaller standard deviation, a smaller range of the skewness (-0.69 to 1.19 and -1.04
to 0.89) and generally, a larger kurtosis (0.86 to 4.28 and 1.62 to 4.23). This implied that the

distributions were gradually more peaked as the number of weights increased. For the small
connectionist models, the necessary large weights caused only a small deviance from the
normal distribution. As the models "grew" larger, these weights were not eliminated, but their

significance in "normalising" the distribution of the weights was reduced. A preliminary
conclusion was that the representations was generally distributed, but that some weights had a
highly local representation-.

I Mean, standard deviation, skewness and kurtosis. Skewness and kurtosis are standardised.
2 The differences between local and distributed representations are 'explained in section 3.2.3.
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Cluster- analysis can be used to study how distributed a representation is (Hanson & Burr,

1990). Cluster analysis of the connections between the input and hidden units are usually
performed to detect local units when the number of hidden units is large. By applying the

same procedure to all hidden units in the lOversions of the models with two, three and four
hidden units, we could detect units with similar weights. Absolute values of the model

weights were used in the analysis. A dendrogram illustrating the clusters is shown in figure

8.21.

In the dendrogram of figure 8.2, the hidden units are identified with a label consisting of the

model version (A-l), a figure indicating the number of the hidden unit (1-4), and a figure
indicating the total number of hidden units in the model (2-4). Three observations were made

from the dendrogram. First, the dendrogram separated the weights in two large clusters with

weights very different from each other. Second, the hidden units located in the top cluster of
the dendrogram were the hidden units termed "common" in the analysis of figure 8.1. Third,
these units were located at the top of the dendrogram because they had weight patterns with
large variances. The hidden units in this cluster were the units with the largest absolute weight
values and consequently, they could be characterised as forming a local representation. The
same pattern was found in separate cluster analyses of the lOversions with two, three and

four hidden units, respectively. Of the 34 hidden units in the upper cluster, 30 units were

hidden units previously classified as representing common aspects of the level and trend
diagnoses. The last four also represented common aspects, but these units were all the second

common hidden unit in models containing more than one such unit.

Two important findings had been made. First, all connectionist models developed a common
hidden unit with a local representation detecting the common parts of the correlated

diagnostic variables level and trend. In most models, this task was performed by one hidden
unit. Depending on the bias weights and the weights between the hidden and output layer, the

input weights to these hidden units had one of two different patterns-. Second, the rest of the
hidden units had a much more distributed representation, and in most of the cases, these units
specialised on other specific features in the input material. As a consequence, two analyses
were necessary. The common hidden units were analysed first, and the results are reported in
section 8.2.1. Next, the separate hidden units were analysed. This analysis is reported in
section 8.2.2.

1 All cluster analyses in this study were performed with the default settings of the "CLUSTER" procedure of
SPSS using squared Euclidian distances and average linkages.
2 The weights were different for the hidden units with two large negative weights and two large positive
weights, but they had almost similar absolute values.
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Figure 8.2. Cluster analysis dendrogram of input to hidden weights in all the 30 versions of
the combined connectionist model with 2, 3 and 4 hidden units
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8.2.1 Common hidden unit analysis

The feature detecting properties] of the common hidden units can be analysed by looking at

their weight pattern. The weight patterns of three common hidden units can be studied in

figure 8.5.Notice the sign differences in the connectionist models with two and three hidden

units, from that of four hidden units. To generalise this analysis principle, all the common

hidden units in the 30 models were investigated.

In our models, we found both excitatory and inhibitory common hidden units. An inhibitory
common hidden unit is activated by turning the hidden unit on, and letting this unit inhibit the
output units already turned on by a positive bias weight. Thus, the sign of the weights coming
into an inhibitory common hidden unit can be turned to make it an excitatory common hidden

unit. In our analysis, inhibitory common hidden unit signs were turned and the weights were

averaged over the 30 models. The excitatory common hidden units were: B22, B23, C22,
C24, D33, E14, F12, F33, G34, H12, H23, 133, 112, and 113. The inhibitory units were: A13,
A22, A44, B34, C13, D22, D44, E22, E33, F34, G12, G23, H44, 122, 144 and 114. Some

statistics on how these units were connected to the input units are shown in table 8.16.

The small standard deviations in table 8.16 illustrate the similarity of the weight pattern of the

common hidden units. Variation in the weights among the 30 hidden units was not large

enough to prevent the t-values of table 8.16 from being very high. Of most interest were the
weights where maximum and minimum values were on the same side of the origo. This was

the case for units representing SGROWTH, CGROWTH, CONTPR I, PROMARG 1 and 2,
OPMARGI and 2, ROI2, ROE1, AIR2, ICOV1, LTINV2, ARTI, APTI and 2, CURR2,
ACID2 and BER2. The value of the weight was an indication of the importance- of an input
unit in turning the common hidden unit on. The input units represented indicators of
"profitability", "financing", "liquidity" and "leverage". The sign of the weight values

indicated positive or negative influence on the common hidden unit. The values of the

weights were comparable across indicators because the input values had been transformed
linearly to the [0,1] scale. However, different bias weights to the hidden units prevented a
direct interpretation of the values as measures of importance. It is also important to remember

that the basic nonlinear relationship between input value and hidden unit output in
connectionist models, prevents simple importance interpretations of the values of weights.
Despite these limitations, a first interpretation of the common hidden units was that they

] For an explanation of the term "feature" we refer to chapter 3. The term "feature" is traditionally used of
discrete aspects of the stimulus, while the term "stimulus dimension" is used of continuous aspects of the
stimulus. Until it has been determined what aspect of the stimulus the hidden units use, we apply the term
"feature".
2 See chapter 7.
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detected aspects relevant to all four financial diagnostic areas l with a selected, but broad set

of indicators.

Input unit Mean weight St. dev. of d.f. t-value
weight

SGROWTH 0.453 0.098 29 25.42**
CGROWTH -0.358 0.087 29 -22.69**
CONTPRI -0.332 0.120 29 -15.12**
CONTPR2 -0.005 0.091 29 -0.32
PROMARGI -0.629 0.205 29 -16.84**
PROMARG2 1.022 0.177 29 31.67**
OPMARGI -0.937 0.237 29 -21.67**
OPMARG2 1.581 0.225 29 38.57**
ASSTURNI -0.046 0.114 29 -2.22*
ASSTURN2 0.175 0.324 29 2.96**
ROll -0.448 0.268 29 -9.16**
ROl2 2.034 0.317 29 35.10**
ROE I -0.893 0.104 29 -47.01 **
ROE2 0.137 0.124 29 6.03**
AIR I 0.032 0.267 29 0.65
AIR2 -0.960 0.167 29 -31.50**
ICOVI -0.435 0.189 29 -12.58**
ICOV2 0.124 0.170 29 4.00**
LTINVI 0.158 0.169 29 5.13**
LTINV2 0.413 0.118 29 19.15**
ITURNI -0.059 0.116 29 -2.79**
ITURN2 0.138 0.079 29 9.61 **
ART I 0.613 0.148 29 22.67**
ART2 -0.027 0.137 29 -1.08
APTI 0.299 0.078 29 20.93**
APT2 -0.379 0.089 29 -23.27**
CURRI -0.261 0.175 29 -8.16**
CURR2 0.626 0.141 29 24.36** .
ACIDI -0.393 0.222 29 -9.70**
ACID2 0.566 0.200 29 15.48**
BERI -0.238 0.232 29 -5.62**
BER2 1.385 0.301 29 25.20**
Table 8.16. Mean weight values, standard deviation and t-value of test of
Il =0 for the weights between input units and the common hidden units (**
and * indicates significant at a=O.01 and 0.05 respectively)

The next thing to remark about the weight pattern of the common hidden units, was the signs
of the weights. We found a pattern of one positive and one negative mean weight for the units

representing each consecutive year of the following cues: PROMARG, OPMARG,
ASSTURN, RaI, ROE, AIR, ICOV, ITURN, ART, APT, CURR, ACID and BER. All these
patterns except the pattern of ART were easily interpretable. First, the negative and positive
values were as expected. Favourable indicators had a different weight pattern from

l "Profitability", "financing", "liquidity" and "leverage".
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unfavoorabl~ indicators l. Second, the pattern indicated that the common hidden units were
. .

turned on by one of the units representing each financial cue value and-off by the other. Since
these units represented cue values from different years of the financial statement, the resulting
effect was that the hidden unit was more excited by a large change in the value of a financial
cue from one year to the next than a small change. The difference in weight values indicated

the effect of the change, and the absolute value of the weight indicated the importance of the
level of the financial cue. Third, the typical pattern was that the mean value of the weight

from the most recent value of the financial cue was the largest, and thus, contributed most to

the activation of the hidden unit.

In conclusion, we found that the common hidden unit was a complex "feature detector".

However, the "feature" detected was not discrete. Rather, the units seemed to give a response
varying continuously with the value of the detected stimulus dimension. Thus, the common

hidden units detected a new stimulus dimension in the stimulus material by a complex

transformation of the original stimulus dimension values. The weight pattern of the common
hidden units suggested that the new stimulus dimension represented a rather complex and
merged concept. Complex, because it was formed by using indicators of many financial

diagnostic areas, and merged, because it involved an evaluation of both level and change
aspects of the financial cues. The complexity of this concept made configural processing-

necessary. This was not unexpected, since the diagnostic variables the connectionist models
were set up to fit, were highly correlated '. It seemed that the common hidden units formed a

representation of a "general condition variable".

8.2.2 Analysis of non-common hidden units

A problem existed in analysing the representation of the connectionist models further,

because the representations formed by the resulting hidden units seemed relative to the whole
connectionist model's weights. One consequence was that further analysis had to be

performed on a selected model or a group of selected models. We had groups of connectionist

models with two, three and four hidden units. The first step in the analysis was to investigate

the three groups to see if the models within each group could be further divided into
functionally different groups. A cluster analysis of the unsealed output of the connectionist
models with two hidden units was performed. The results are shown in figure 8.3.

l Compare, for example, BER to AIR.
2 See section 2A.
3 Similar findings had been done by Chakaborty et al. (1992).
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Figure 8.3. Cluster analysis dendrogram of unsealed response of the output units in all
combined models with two hidden units 1,

The dendrogram shows the response of the 20 output units in the 10 connectionist models

with two hidden units. We found a split in two main clusters. As expected, the main clusters
consisted of the level diagnosis output units in the upper cluster, and the trend diagnosis units
in the bottom cluster. Model A distorted the picture somewhat, but this was the model with
high MSE referred to in section 8.2 as creating the large standard deviation of the MSEs
among the models with two hidden units. We chose to ignore this model. Within the main
clusters, the other response units were organised in two sub-clusters; similar for both level
and trend diagnoses. We interpreted this result as an indication that the connectionist models
were organised in two functionally different ways. The models E, I, B, F and C performed the

tasks in a way functionally different from the models D, G, Hand J. Table 8.17. shows the
correlations of the hidden unit outputs with the targets in these models.

I The labels indicate O for output, a character showing which network the unit belongs to and a number showing
the output unit number (l - level, 2- trend).
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Table 8.17 shows the common hidden units (marked C) and the output pattern of the other
. .

hidden units. The common hidden units of the models in the first cluster (DGHl) were not as

jointly correlated with both level and trend as the common hidden units in the models of the
second cluster (EIBFC). In addition, we found high correlations of the separate hidden units

in all the models in the EIBFC cluster with the difference between the level and trend

diagnosis values. A study of the outputs of the models in this sub-cluster indicated that the
common hidden unit detected the common aspects of level and trend, and that the separate

hidden unit responded to the "difference" between the two diagnoses. These models seemed
to implement a heuristic with a common hidden unit assuming level and trend were almost
perfectly correlated, and a hidden unit specialising on detecting the stimulus patterns that
were exceptions to this rule. Model F was most representative of implementing this heuristic.

Unit Level Trend Difference

Dl .-0.3016** -0.6700** 0.5917**
D2 -0.9091 ** -0.6806** -0.2353* C
Gl -0.5421 ** -0.8001** 0.4541 **
G2 -0.8782** -0.5691 ** -0.3605** C
Hl 0.9050** 0.6662** 0.2513* C
H2 -0.3253** -0.6768** 0.5691 **
11 0.5424** 0.7993** -0.4525**
12 -0.8866** -0.6034** -0.3205** C
El 0.7387** 0.3273** 0.5317**
E2 -0.8222** -0.8444** 0.1322 C
Il -0.8045** -0.4400** -0.4529**
12 -0.8413** -0.8325** 0.0879 C
Bl 0.6888** 0.2555* 0.5705**
B2 0.8687** 0.8154** -0.0241 C
Fl 0.9034** 0.7652** 0.0998 C
F2 0.3627** -0.1356 0.7079**
Cl -0.5104** -0.0233 -0.6731 **
C2 0.8501 ** 0.8262** -0.0660 C
Table 8.17. Correlations of the hidden umt outputs with targets and
difference between targets (** and * indicates significance at
a=O.Ol and 0.05 respectively)

In the first cluster (DGHl), the "common" hidden units showed more focus on the level
diagnosis than on trend, while the second hidden unit focused more on trend diagnosis. In
these models, the hidden units were more specialised with regard to our target concepts.

Model G was most representative of implementing this functionality. The differences in

representations between the models of the two sub-clusters can be exemplified by looking at
how the two hidden units in each model responded to variation in level and trend diagnosis.
This can be illustrated by a simplified output function in each of the hidden units. The two

most representative models of each sub-cluster were selected and are shown in figure 8.4. In
the F model shown in the upper half of figure 8.4, hidden unit Fl implemented the common
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factor, .and hidden unit F2 detected the exceptions to the rule that level and trend were
correlated. In the G model, the hidden unit G I detected the common aspects and trend,
whereas hidden unit G2 detected the common aspects and level. Both the hidden units of the

G model were inhibitory and thus, low level and trend gave high hidden unit response. In
figure 8.4, predicted outputs were used. If using real outputs, noise made the output
distributed around the "planes" drawn in figure 8.4.

Unit Fl

Fl

Unit Gl

.'

Network F

Network G

Unit F2

Unit G2

LEVEL

Figure 8.4. Hidden unit outputs of four hidden units as a function of level
and trend. The response functions are simplified and illustrated as a
"plane" in three dimensional space.

The outputs of the hidden units separated the cases in categories by constructing regions, but

by using graded decision bounds. For illustration purposes, we restricted this analysis to the
models with two hidden units. For the models with three and four hidden units, the cluster

analysis split the diagnosis of level and trend in two main clusters, but functional groups of
the same kind as found in figure 8.3 could not be detected. One reason may be that the larger



203

models organised their response in the same functional way, or that they used almost as many

functional organisations as there were models.

To proceed with the analysis of the representations any further, we assumed that a single
model had to be selected. To investigate the representational differences between the smaller
and largermodels, we started by selecting the three models termed B2, B3 and B4 . These
models seemed "representative" of their group. Another reason for selecting the B models,

was that they seemed to have a representative common, and interesting separate hidden units.

A Hinton diagram of all the weights in the three models is shown in figure 8.5.

We started the analysis by investigating the Hinton diagram of the connections between

hidden and output units. Model B2 implemented the "difference" heuristic previously
explained. This could be inferred from the pattern of hidden unit 2, forming a common

hidden unit, and from the pattern of hidden unit 1, detecting the exceptions to the rule that

level and trend were correlated. A study of the Hinton diagram of model B3 revealed a

different organisation. In addition to the common hidden unit 2, this model had developed
two specialised hidden units. Hidden unit 1 specialised on trend diagnosis, while hidden unit

3 specialised on level diagnosis. In model B4, we noticed that the common hidden unit was
inhibitory, but it had the same structure as the other common hidden units. In addition, we

noticed that the organisations of both model B2 and B3 were implemented. Hidden units 2
and 4 implemented the trend and level diagnosis detectors found in model B3, while hidden

unit 1 implemented the difference heuristic from model B2, but with reversed signs.

When looking at the connections from the input units to the hidden units, the picture was
more complex. The pattern of connections had previously been compared in the cluster

analysis dendrogram shown in figure 8.2. The trend-oriented hidden units, B 13 and B24,

were grouped together in the bottom of the dendrogram of figure 8.2. These units had a
weight pattern similar to each other, and were previously classified as units specialising on
the trend diagnosis. Next, B44 and B33 were grouped together in the lower middle of the

dendrogram. These units were classified as units specialising on level diagnosis. Finally, B 14
and B 12 were grouped in the middle of the dendrogram. Both these units implemented the
"difference" heuristic, but with reversed signs.



204

HTD2 HID3 HTD4
BIAS 0000 oDDDD · 0.0 O .
SGROWTH • · • · · · O ·
CGROWTH · D O · · · · • ·
CONTPR! · D · D · · D ·
CONTPR2 · · · · · · · · ·
~PROMARG! O O O · · O • ·
PROMARG2 •• ••• · ·0·
OPMARG! · D DD · · O. ·
OPMARG2 •• ••• · ·0•
ASSTURNI D · · · D · · · ·
ASSTURN2 O · • · O · • · O
ROI! • O O D • O D • ·
R0I2 ·• ••• • .0•
ROE! ·0 DD · · O. ·
ROE2 · · · · · · ·
AIR! D · · O · • · O

AIR2 OD ODD O • O

ICOV! · D O D • D D · •
ICOV2 • · O · • D · · •
LTINV! · • D • • D · · •

· • • · · · O •LTINV2
ITURN! · · · · · · · · ·
ITURN2 · · · · · ·
ART! • • · · • O •
ART2 D · D • · · ·
APT! · • • · · O ·
APT2 · Cl D · · · · ·
CURR! • D · • · D · •
CURR2 · • • • • · • O •
ACID! • D D D • D D • •
ACID2 • • · • • · • O •
BER! • · · · • D O · •
BER2 •• • •• · .0.
HIDDEN! •0 •• o.
HIDDEN2 •• •• ••
HIDDEN3 • .

DD

HIDDEN4 ••
:I: :I: r -l :I: :I: 2: r -l :I: :I::I: :I: r -l

ti ti m ::o ti ti m ::o ti - - ti m ::o
< m o < m 00 < mo o m Z o o o m z o o o o m z

m m r o m m m r o m mm m r oz z z z z z zz z- IV IV W IV W ~

FIgure 8.5. Hmton diagram of all weights m the three analysed
combined models

Consequently, the cluster analysis of figure 8.2, proved useful for analysis of both common
and separate hidden units. Analysis of how a task was performed could be studied by
averaging the weight pattern of the hidden units belonging to the same cluster in a way
similar to what was applied to the analysis of the common hidden units. We had identified
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clusters of units specialising on trend, level and "difference" detection. By studying the
. .

average weight pattern of the units in these clusters, we could explain how the units

specialising on trend, level and "difference" detection performed their tasks.

The average weight pattern of the trend-oriented hidden units is shown in table 8.18.

Input unit Mean weight St. dev of d.f, t-value
weight

SGROWTH 0.244 0.077 9 10.00**
CGROWTH -0.269 0.116 9 -7.32**
CONTPR1 -0.232 0.122 9 -5.97**
CONTPR2 -0.027 0.093 9 -0.93
PROMARG1 -0.582 0.128 9 -14.30**
PROMARG2 0.428 0.153 9 8.86**
OPMARG1 -0.840 0.160 9 -16.52**
OPMARG2 0.883 0.208 9 13.41**
ASSTURNI 0.116 0.123 9 2.98*
ASSTURN2 0.470 0.251 9 5.91 **
ROll 1-0.541 1

0
.
221 9 -7.74**

ROI2 9 12.29**1.039 0.267
ROE l -0.663 0.117 9 -17.91**
ROE2 0.071 0.120 9 1.87
AIR1 10.233 10.167 9 4.41 **
AIR2 9 -14.52**-0.496 0.108
ICOV1 -0.489 0.184 9 -8.40**
ICOV2 -0.142 0.163 9 -2.75*
LTINV1 -0.072 0.148 9 -1.54
LTINV2 0.159 0.137 9 3.65**
ITURN1 0.067 0.133 9 1.59
ITURN2 0.063 0.061 9 3.30**
ART l 0.281 0.097 9 9.14**
ART2 0.045 0.125 9 1.15
APT l 0.179 0.079 9 7.15**
APT2 -0.207 0.077 9 -8.46**
CURR1 -0.294 0.146 9 -6.36**
CURR2 0.374 0.111 9 10.65**
ACID1 -0.401 0.173 9 -7.32**
ACID2 0.232 0.101 9 7.27**
BER1 -0.299 0.162 9 -5.82**
BER2 0.641 0.141 9 14.30**
Table 8.18. Mean weight values, standard deviation and t-value of test of
J1 =0 for the weights between input units and 10 trend-oriented hidden units
(** and * indicates significant at a=O.Ol and 0.05 respectively)

In table 8.18, the sets of input units representing financial cues from two consecutive years
with mean weights significantly different from zero (a=O.Ol), are markedl, The absolute
values of the mean weights indicated the importance of the respective input units. The values

I SGROWTH and CGROWTH are treated similarly to the financial cues of two consecutive years.
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were comparable because of standardisation of input values. Cues presumed to represent
"profitability" information had the highest absolute values, while the cues presumed to
represent "financial structure" information had insignificant values. When comparing the
pattern of weight values to the common hidden units' weight pattern, they showed a
remarkable similarity. However, the pattern of the trend-oriented hidden units had smaller

absolute weight values. This suggested that these units were a corrective to the common
hidden units.

Input unit Mean weight St. dev of d.f. t-value
weight

SGROWTH 0.170 0.064 12 9.56**
CGROWTH -0.003 0.090 12 -0.13
CONTPRI -0.068 0.132 12 1.86
CONTPR2 0.058 0.074 12 2.81*
PROMARGI

1
0
.
108

1
0
.
081 12 4.80**

PROMARG2 12 11.72**0.421 0.129
OPMARGI -0.021 0.132 12 0.58
OPMARG2 0.651 0.160 12 14.67**
ASSTURNI -0.217 0.170 12 -4.62**
ASSTURN2 -0.441 0.272 12 -5.83**
ROll 0.294 0.094 12 11.30**
ROI2 0.758 0.127 12 21.45**
ROEI -0.207 0.091 12 -8.18**
ROE2 -0.088 0.110 12 -2.92*
AIR l -0.315 0.210 12 -5.39**
AIR2 -0.469 0.208 12 -8.13**
ICOVI 0.315 0.146 12 7.75**
ICOV2 0.501 0.154 12 11.72**
LTINVI 0.428 0.134 12 11.50**
LTINV2 0.250 0.084 12 10.72**
ITURNI -0.076 0.102 12 -2.68*
ITURN2 0.108 0.103 12 3.78**
ART l

1
0
.
233 10.112 12 7.45**

ART2 12 -7.65**-0.250 0.118
APT l 0.078 0.094 12 3.02*
APT2 -0.069 0.081 12 -3.06**
CURRI 0.458 0.180 12 9.16**
CURR2 0.497 0.103 12 17.36**
ACIDI 0.331 0.139 12 8.55**
ACID2 0.493 0.156 12 11.36**
BERI 0.545 0.172 12 11.43**
BER2 1.030 0.195 12 18.99**
Table 8.19. Mean weight values, standard deviation and t-value of test of
f.1 =0 for the weights between input units and 13 level-oriented hidden units
(** and * indicates significant at a=O.OI and 0.05 respectively)

Another difference was that the trend-oriented hidden units had more similar values for the
weights from units representing each of the two consecutive years' cue values. This meant
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that.trend detection was performed by subtracting the values from the. two consecutive years
with almost equal weighting. Thus, the trend detector focused exclusively on change in the

values of the financial cues from one year to the next. With the signs organised to indicate
positive influence on the trend diagnosis for positive weight values, we found the sign

patterns consistent with our expectations of how a "positive trend" detector should work. For
example, we found that an increase in AIR worked in the opposite direction of an increase in

ROL

The next cluster of units was interpreted as representing the level-oriented hidden units. The

average weight pattern of these units is shown in table 8.19.

Following the marking rule of the trend-oriented hidden units, we were left with the marked
average weights in table 8.19. These weight values were very different from the weight

values of the trend-oriented hidden units. First, the stimulus dimension "change" was not

formed by these units. Second, cues presumed to represent information on "financing" were
significant. The signs were the same for weights from units representing financial cue values
of both of the consecutive years. Not surprising, this suggested it was the magnitude of these
values that was important in correcting the output of the common hidden units to obtain a
valid level diagnosis. Furthermore, the sign patterns were as expected. For example, high
ROI consistently indicated a better level diagnosis while high AIR consistently indicated the
opposite.

The third cluster of separate hidden units was presumed to indicate exceptions to the rule that
level and trend diagnoses were strongly correlated. The average weight pattern of these
"difference" units is shown in table 8.20. There were two types of exceptions to the rule that

level and trend diagnoses were linearly correlated. One exception was when the level

diagnosis was much higher than what could be expected from the trend diagnosis. The
opposite was when the trend diagnosis was much higher than what could be expected from

the level diagnosis I.<?nan average, the subjects' level diagnosis value was 0.15 higher than
the trend diagnosis value. In table 8.20, weights of hidden units representing both these

exceptions are shown. Some of the hidden units implemented the first exception, for example
unit B 12, and some implemented the second exception, for example unit C 12. It was
somewhat surprising that these exceptions were implemented by units belonging to the same
cluster in the dendrogram, and thus, had a similar weight pattern. Upon further inspection, it
was clear that the weight pattern of the two types was similar in weight values, but had
opposite sign patterns-. In table 8.20, the signs have been turned so that the pattern illustrated
by mean weights, is the pattern of a "difference" unit responding to the second exception.

I Or stated differently, when level diagnosis was lower than what could be expected from the trend diagnosis.
2 Since the cluster analysis was performed on absolute weight values, the units were placed in the same cluster.



208

Since the typical pattern was level diagnosis being. somewhat higher than trend, this was an
interesting exception. These units usually responded highly to stimulus patterns where the
level diagnosis was not good, but where there was a positive trend. We termed this exception
the "high trend" exception.

Input unit. Mean weight St. dev of d.f. t-value
weight

SGROWTH 0.074 0.176 23 2.06*
CGROWTH -0.141 0.098 23 -7.01 **
CONTPRI -0.171 0.131 23 -6.34**
CONTPR2 -0.103 0.137 23 -3.70**
PROMARGI -0.261 0.198 23 -6.44**
PROMARG2 0.027 0.207 23 0.65
OPMARGI -0.308 0.261 23 -5.79**
OPMARG2 0.061 0.270 23 1.12
ASSTURNI 0.206 0.222 23 4.55**
ASSTURN2 0.447 0.306 23 7.14**
ROll -0.415 0.186 23 -10.90**
ROI2 0.114 0.409 23 1.38
ROE l -0.141 0.202 23 -3.43**
ROE2 0.165 0.149 23 5.41 **
AIR l 0.273 0.271 23 4.93**
AIR2 0.024 0.213 23 0.56
ICOVI -0.390 0.231 23 -8.29**
ICOV2 -0.284 0.193 23 -7.20**
LTINVI -0.224 0.157 23 -6.97**
LTINV2 -0.106 0.151 23 -3.44**
ITURNI 0.051 0.153 23 1.66
ITURN2 -0.045 0.108 23 -2.05
ART l 0.030 0.185 23 0.81
ART2 0.214 0.188 23 5.58**
APT l -0.005 0.142 23 -0.20
APT2 -0.125 0.104 23 -5.87**
CURRI -0.300 0.203 23 -7.25**
CURR2 -0.096 0.223 23 -2.11 *
ACIDI -0.352 0.193 23 -8.95**
ACID2 -0.130 0.169 23 -3.77**
BERI -0.379 0.202 23 -9.17**
BER2 -0.223 0.334 23 -3.28**
Table 8.20. Mean weight values, standard deviation and t-value of test of
J1 =0 for the weights between input units and 24 "difference" units (** and *
indicates significant at a=O.OI and 0.05 respectively)

From table 8.20, we first found that a unit responding to the "high trend" exception had
positive weights to the ASSTURN units. This was not the case for any of the other units
investigated so far. We could interpret this as an indication that high sales to assets was part
of a positive trend, possibly creating expectations of an improved future level diagnosis.
Second, we found that many of the weights were negative, and almost all weights to input
units representing financial cues of the first year were negative. Not surprisingly, this
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indicated that it was difficult to be in an exceptionally positive trend when cues of the first
year had high values.

Nine hidden units in the middle cluster of the dendrogram had, so far, not been classified. The
pattern of incoming weights to the units showed close resemblance to the level-oriented

hidden units, but investigation of the weight patterns between hidden units and output units
by looking at the Hinton diagram of figure 8.1, showed that these, .nits also strongly excited

the trend diagnosis units. However, the weights to the level diagnosis units were the largest.
The average weight pattern of these units is shown in table 8.21, with the signs of the weights

of the inhibitory units turned.

Input unit Mean weight St. devof d.f. t-value
weight

SGROWTH 0.301 0.114 8 7.91 **
CGROWTH -0.065 0.071 8 -2.74*
CONTPRI -0.051 0.093 8 -1.65
CONTPR2 0.061 0.107 8 1.72
PROMARGI -0.124 0.150 8 -2.48*
PROMARG2 0.617 0.159 8 11.62**
OPMARGI -0.223 0.107 8 -6.23**
OPMARG2 0.888 0.156 8 16.98**
ASSTURNI -0.163 0.105 8 -4.66**
ASSTURN2 -0.134 0.225 8 -1.79
ROll 0.001 0.088 8 0.05
ROI2 1.120 0.116 8 28.84**
ROEI -0.387 0.095 8 -12.13**
ROE2 0.021 0.113 8 0.57
AIRI -0.170 0.191 8 -2.66*
AIR2 -0.613 0.094 8 -19.38**
ICOVI 0.043 0.188 8 0.69
ICOV2 0.303 0.125 8 7.22**
LTINVI 0.349 0.119 8 8.74**
LTINV2 0.381 0.084 8 13.63**
ITURNI -0.111 0.094 8 -3.55**
ITURN2 0.025 0.111 8 0.67
ART l 0.324 0.085 8 11.45**
ART2 -0.133 0.120 8 -3.33**
APT l 0.073 0.070 8 3.15*
APT2 -0.093 0.090 8 -3.12*
CURRI 0.159 0.156 8 3.05*
CURR2 0.479 0.094 8 15.30**
ACIDI 0.136 0.161 8 2.53*
ACID2 0.563 0.111 8 15.17**
BERI 0.274 0.198 8 4.16**
BER2 1.116 0.137 8 24.28**
Table 8.21. Mean weight values, standard deviation and t-value of test of
J1 =0 for the weights between input units and 9 units inthe last cluster (**
and * indicates significant at a=O.OI and 0.05 respectively)
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Inspection of the weight pattern in table 8.21, revealed that the units had a weight pattern
close to the weight pattern of the level hidden units. In fact, the sign pattern of the two types
of units was the same except for weights from the unit representing PROMARG 1. In absolute
values, the pattern was somewhat different. A larger difference between the values of the

second and the first year cues was typical for these units. This meant the units also detected

the difference between the financial cue values of the two consecutive years, and propagated
this difference further. This may explain the positive connection these units had to the trend
diagnosis unit. Except from the interpretation as a correction to the diagnoses, the

representations formed by these units were difficult to interpret. Another suggestion may be

that these units actually were redundant. Six of the nine hidden units were from the largest
connectionist models, and the rest were from the models with three hidden units. These
models did not have a significantly better fit than the smaller models, supporting the

redundancy suggestion.

8.3 Conclusions

In this section, the main conclusions of the simulations are summarised with reference to the
propositions made in chapter 4. First, main conclusions relating to the performance of the
connectionist models are presented. Next, the main conclusions from the analysis of the
connectionist model representations are summarised.

Compared to the simulation results of the bankruptcy classification measure of the financial

diagnosis reported in chapter 7, the results for the level and trend diagnosis variables were
much more promising. For the level diagnosis variable, performance results significantly
better than the benchmark models' results were found. Both evaluated by cross validated

average squared errors and by distribution properties of the error terms, the connectionist
models outperformed the benchmarks for the level diagnosis. For the trend diagnosis variable,
the results of the connectionist models were better than the benchmarks' results, but the

difference in performance did not prove significant. These findings support proposition PI of

chapter 4.

For the connectionist models showing significantly better performance results than the
benchmarks, a significant difference was also found between connectionist models with and
without hidden units. This finding supported the proposition P2 of chapter 4 that the internal
representations built by the multilayered connectionist models are the main reason for their
better performance results.

The improved performance for combined models of correlated response variables
hypothesised by several authors (e.g. Chakaborty et al., 1992) was not found significant in
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this study. A small improvement in performance was found for these models, but it was not
. .

significant. The simplicity of the combined models was, however, regarded to be a
"significant" advantage when representational analysis was performed.

Except for these findings directly related to the propositions of chapter 4, a set of findings of
"internal" relevance to connectionist modelling research was also done. All connectionist

models showed an expected relationship between learning error", cross validated error,
learning time and complexity. Learning error continuously decreased with learning time,

while cross validated error was a Ll-shaped function of learning time-. Similarly, learning

error decreased continuously with increased complexity of the models, while cross validated

error was a V-shaped function of complexity>, Both these findings were explained by model
overfit. Furthermore, models with a larger number of hidden units overfitted earlier during

learning, and never reached the low minimum error of the simpler models. This indicated that

using the optimal stopping point rule as' an alternative to the more intricate optimal hidden
units rule, as suggested by several authors (e.g. Smith, 1993), was not satisfactory.
Connectionist and artificial neural network simulations traditionally report squared errors in
some form as performance measure. However, our findings showed that additional analysis of

the distribution of error terms was equally important if a satisfactory evaluation of
performance was to be made. A further finding was that this evaluation was particularly
relevant for response variables that had distributions deviating from the normal distribution.

Due to the small number of cases, the cross validation procedure was not used for generating
the connectionist models that were used for representational analysis. A combined model

showed no loss in performance and was selected for further analysis. The representations of
the models were sensitive to initial weights, and to control for this instability, functional

properties shared by many versions of a connectionist model were studied. All connectionist

models used a common hidden unit to represent common aspects of the level and trend
diagnosis. The common hidden units worked as "general condition detectors" and used cues

presumed to represent all diagnostic concepts; "profitability", "financing", "liquidity" and
"leverage", to form its internal representations.

Even though the common hidden units were interpreted as forming local representations+,
they did not specialise on one specific diagnostic concept. Consequently, diagnostic concepts,
such as "profitability" and "financing", were distributed in the representation of the common

l See section 7.3.
2 Because focus in this dissertation is on the generalisation properties of connectionist models, extensive
reporting of learning error results was not made. However, an example of the typical relationships between
learning and cross validated errors is shown in appendix K.
3 See previous footnote.
4 Due to their large variance in weights.
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hidden ·unit. None of the separate hidden units were found to specialise on diagnostic areas.
. .

Instead, the units implemented heuristics that detected exceptions to the rule that level and

trend diagnoses were positively correlated, with level diagnosis somewhat larger than trend
diagnosis in value. Three groups of interpretable separate hidden units were found. The
"difference" detectors had large output values in cases with positive trend in an unfavourable
situation and low output values in cases with negative trend in favourable situations. Thus;

the heuristic implemented by these units was rather complex. In most models with more than
two hidden units, specialised "trend" and "level" detectors were found. These units worked as
detectors of a particularly favourable or unfavourable trend or level diagnosis in cases where
the common hidden unit "predicted" otherwise. Consequently, these units also worked as

exception detectors. Like the common hidden units, the specialised units did not focus on
specific diagnostic areas. Rather, the representation consisted of a more distributed! weight
pattern with high valued weights to input units presumed to represent several diagnostic

concepts. The concepts represented by these units were clearly definable by analysis of

representations and responses of the model, but traditional diagnostic concepts were
distributed over these complex representational units.

Tests were run on models restricting the network by allowing connections only in patterns

that corresponded to the expected specialisation of hidden units on particular diagnostic
concepts. Such restricted- models have fewer free parameters and should implement a

representation with hidden units detecting properties of the four diagnostic concepts;
"profitability", "financing", "liquidity" and "leverage". The performance results of a restricted

model with four hidden units- are shown in table 8.22.

Iterations: 5000 10000 15000 20000 25000 30000
Model:
Restricted level 0.182 0.204 0.211 0.232 0.238 0.246
Restricted trend 0.401 0.358 0.373 0.387 0.404 0.418
Table 8.22. Mean squared error (MSE) of the level and trend diagnoses m a
restricted model (N=75)

The results of the restricted model were somewhat worse than the combined model of section
8.1, but they were still surprisingly similar. A Hinton diagram of the restricted model is
shown in figure 8.6.

l Distributed with respect to the diagnostic concepts "profitability", "financing", "liquidity" and "leverage".
2 The term "restricted" has been used by several authors (e.g. Haykin, 1994, p. 25) of a network where prior
knowledge of the task or problem is used to reduce the number of free parameters (weights and biases).
3 Corresponding to the four diagnostic concepts; "profitability", "financing", "liquidity", and "leverage".
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FIgure 8.6. Hinton diagram of weights m a restricted connectiorust model

Figure 8.6 shows a weight pattern somewhat different from what was expected. Hidden units
I, 2, 3 and 4 were manually connected to units assumed to represent particularly relevant cues
to the diagnosis of "profitability", "financing", "liquidity" and "leverage" respectively. From

figure 8.6, we found that hidden unit 2 worked as a level-oriented hidden unit described
above. One reason for drawing this conclusion was that it was not very likely that financing
was only relevant to level diagnosis. A positive-negative weight pattern of the input to hidden
unit connections were found for hidden units I and 3 , suggesting that these units worked

more as common hidden units than as units focusing specially on "profitability" and
"liquidity" respectively.

To test the hypothesis that the restricted model did not partition its representation by

diagnostic concepts, we computed the correlations between hidden unit outputs and

composite judge diagnoses of the respective diagnostic areas I.These correlations are shown

in table 8.23.

Diagnostic area HIDDENI HIDDEN2 HIDDEN3 HIDDEN4

PROFLEVEL 0.644** 0.328** -0.288* 0.355**
PROFTREND 0.871 ** -0.026 -0.199 0.111
FINLEVEL 0.350** 0.453** -0.454** 0.562**
FINTREND 0.607** 0.132 -0.426** 0.353**
LIQLEVEL 0.193 0.342** -0.516** 0.565**
LIQTREND 0.395** 0.085 -0.543** 0.387**
LEVLEVEL 0.374** 0.602** -0.235* 0.832**
LEVTREND 0.659** 0.239* -0.383** 0.461 **,Table 8.23. The restricted model s correlations of hidden urut outputs WIth
composite judge diagnoses of the four diagnostic areas "profitability",
"financing", "liquidity" and "leverage" for level and trend respectively (** and
* indicates significantly different from Oat a=O.OI and 0.05 respectively)
(N=75)

I Separate measures of subjects' evaluation of these diagnostic areas had been collected. See chapter 5 for an
introduction to the measures applied.
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Hidden unit 1 had its highest correlations with the diagnostic variables of "profitability". As
suspected, hidden unit 2 worked as a level-oriented hidden unit, having high correlations with
the level variables in all diagnostic areas. Correlations with the expected variables of
"financing" were not higher than correlations with other level diagnosis variables. Hidden
units 3 and 4 had their highest correlations with the "liquidity" and "leverage" diagnosis
variables, respectively. Consequently, the restricted model partitioned its task to a certain

extent by diagnostic area, but "financing", as a diagnostic variable, was treated by hidden
units 1, 3 and 4 in common. This organisation left hidden unit 2 to implement a level-oriented
hidden unit similar to the one found in section 8.2.2. For the connectionist model, this way of

partitioning the financial diagnosis task between the hidden units was more effective than the

partitioning suggested by theory. Despite the imposed restrictions, the connectionist model
had so many degrees of freedom that it was possible to perform the task differently from what

was proposed by theory.

Except for the conclusions on the representations of the connectionist models directly related
to proposition P3 of chapter 4, some findings of "internal" relevance to connectionist
modelling research was also done. The weight pattern of a model varied considerably at the
end of the learning phase, even though the performance of the different versions was

comparable. The main reason was that different initial weight values gave different
representations at the end of the learning phase. Consequently, to understand the
representations of a connectionist model, several versions of a model should be studied. One
way to analyse the common aspects of different versions of a model was to use cluster
analysis of the weights of several versions of a model simultaneously. With this method,

hidden units with similar representations in several versions of a model were detected. From

this analysis, the average weight values of hidden units implementing the same functional
organisation could be computed and analysed further.

To summarise the findings on the connectionist model representations, we showed that the

original stimulus dimensions of the financial cues were not used directly by the connectionist
models to form the level and trend diagnoses. Instead, abstracted and transformed stimulus

dimensions were "detected" by the hidden units. These intermediate abstractions should be
termed stimulus dimensions because the hidden units showed continuous outputs. With a
continuous output, the variables form seemed best suited to describe the representational form
of the hidden units. Furthermore, the stimulus dimensions abstracted by the hidden units were
configural. They were composed by transforming whole patterns of cues representing
different diagnostic concepts in the stimulus material. An interpretations of the molar
functional organisation of the financial diagnosis task performed by the connectionist models,
could best be explained by applying a rule-plus-exception heuristic.
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It is not possible to test the cognitive relevance of these representations. However, the
. .

connectionist models seemed to implement a rule and exception principle of organising their

internal representations. Similar principles have been proposed by several authors in

classification research (e.g. Nosofsky, Palmieri &McKinley, 1994) as cognitively relevant.
Even though the representations developed by the connectionist models were not as expected,
the claim that they were cognitively relevant may still seem justifiable.

Despite the interesting conclusions drawn from the simulations of the level and trend
diagnosis models above, several problems still existed. The number of cases was too small to
effectively constrain the large number of free parameters in the models. This was particularly

evident for trend diagnosis. Limiting the number of hidden units in the models was not

enough to reduce the number of free parameters. Another way to limit the number of free
parameters is by selecting a smaller set of diagnostic cues from the stimulus material.

Theoretically, such models should have' improved generalisation properties, since they will

make overfit less likely. Empirically, such constrained models have shown considerable
success in some application areas (e.g. Le Cun, 1990). We now turn to the development of
such models.
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Chapter 9. A constrained connectionist model of continuous response

In chapter 8, we found that the connectionist models had too many free parameters even with
few hidden units. One way of reducing the number of free parameters is by decreasing the

number of input units. At least two principles can be used in deciding which input units to
exclude. By relying on the information given by the subjects regarding the importance of a

cue for a particular diagnosis, unimportant cues can be excluded. Results of models using this

method of cue selection and parameter reduction are reported in section 9.3.

A second method is to use some quantitative measure of the importance of a cue in

producing the specific output. The last method is used by traditional linear methods, such as
stepwise regression. For neural networks, the relationship between input and output is
complex and nonlinear. No obvious l measure of the importance of a cue exists (Garson,
1991), but some form of sensitivity analysis can be used (Moody, 1993; Refenes et al., 1995).

By altering the input values for each variable on each case, the sensitivity of the output values

to changes in input values can be estimated. A 5 % change in the input values was performed
following the principles used and explained in chapter 7. The percentage change in output

values caused by these changes is shown in table 9.12.

In table 9.1, the effects of changing the input values are shown for both the level and trend

diagnoses. In the table, the highest effect on either level or trend diagnosis is ranked for each

set of input units grouping the financial cue values of two consecutive years together.
SGROWTH and CGROWTH were treated similarly. Setting the threshold of implementing a

cue in the model at 10 % effect on any of the two diagnosis variables, leaves us with six cues
of the two consecutive years. However, this rule excluded any traditional "liquidity"

indicator. Consequently, we included the highest scoring "liquidity" indicator and dropped the
lowest scoring indicator of the highly correlated cues; PROMARG and OPMARG. The
resulting cues of a constrained model were consequently; OPMARG, ROI, ROE, AIR, CURR
and BER.

I We showed in chapter 7 and 8 how both sensitivity analysis and analysis of average weight values could be
used to evaluate the importance of an input unit.
2 Because minimum cross validated average squared error was found very similar for models with 2 and 4
hidden units, 10 versions of models with 2, 3 and 4 hidden units are used in the sensitivity analysis. Thus, the
number of observations is 3*10*75=2250.



218

Jogged-unit Mean effect on Mean effect on Highest mean Rank order of
level dia nosis trend dia nosis effect hi hest effect

SGROWTH
CGROWTH
CONTPRI
CONTPR2
PROMARGI
PROMARG2
OPMARGI
OPMARG2
ASSTURNI
ASSTURN2
ROll
ROI2
ROE1
ROE2
AIRI
AIR2
ICOVI
ICOV2
LTINV1
LTINV2
ITURNI
ITURN2
ART l
ART2
APT l
APT2
CURRI
CURR2
ACIDI
ACID2
BERI
BER2

5.37 6.71 . 6.71 11
-3.22 -5041 -5041 11
-2.97 -5.2i -5.21 15
0.68 -0.21 0.68 15
-5.24 -10.1 -10.1
13.00 14.03 14.03
-8.92 -14.98 -14.98
19.78 22.3 22.3
-2041 DA -2041 13
-1.79 5.3 5.3 13
-1.89 -8.2 -8.2 1
24.95 28.63 28.63 1
-10.13 -13. -BA 5

0.08 2048 2048 5
-2.32 2.3 2.3

-12.80 -13.23 -13.23
-1.85 -7.8 -7.8 1
. 4.57 0048 4.5 1
4.78 1.5 4.78 1
6.26 5.6 6.2 1
-1045 -DAl -1045 1
1.87 1.7 1.87 1
7.55 804 804
-2048 0.38 -2048
3.29 4.3 4.3 1
-3.80 -5.27 -5.27 1
0048 -4.6 -4.6 7
9048 8.8 9048 7
-1.27 -6.88 -6.88 8
9.23 7.67 9.23 8
1.61 -4.53 -4.53 3

20.78 19.0 20.78 3
Table 9.1. The effects of jogging input values 5 % in the combined model
(N=2250)

The number of free parameters in a connectionist model with one hidden layer is partly
determined by the number of weights. The number of weights can be calculated as:

w=h(i+o+I)+o, (9.1)

where w is the number of weights, h is the number of hidden units, o is the number of

output units and i is the number of input units. The relevant values of ware shown in table
9.2 for combined models with two output units.

Input units\Hidden units O 2 4 6 8 10 12 14
32 33 72 142 212 282 352 422 492
12 13 32 62 92 122 152 182 212
Table 9.2. Number of weights m the different combined models
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From table9.2, we see that reducing the number ofinput units to 12, gives a notable decrease
in the number of free parameters. In both connectionist and traditional models, this is

assumed to improve the generalisation ability of the model (Ripley, 1993). Other authors (e.g.
Smith, 1993) have argued that stopping the training at the overfit point should give the same

result as reducing the number of free parameters. However, we showed in chapter 8 that the
two principles were not equivalent. The reduction of free parameters by individual weight
elimination have been suggested by several authors (Karnin, 1990; Weigend et al., 1991), and
the sensitivity analysis based "pruning" performed in this study, has been shown to produce

similar results (Moody, 1993; Moody & Utans, 1995). Pruning can be performed both during
and after learning. Some other pruning techniques were briefly introduced in chapter 3.

The results for the models derived with sensitivity based reduction of parameters are reported

in section 9.1. An analysis of the representations of these constrained models is reported in

section 9.2. A test of similar models constrained by using subjects' evaluations of cue

importance is reported in section 9.3. The main conclusions drawn from the simulations of all
the constrained models are summarised in section 9.4.

9.1 Performance results

The constrained model was tested using procedures and parameter values similar to what was

used in chapter 7 and 8, and reported in chapter 6. The results of the cross validation
procedure for the level diagnosis are shown in table 9.3.

Iterations: 5000 10000 15000 20000 25000 30000 Regr.!
Model:
Regr. (all) 0.221
Regr. (stepw.) 0.212
HIDO 0.185 0.184 0.187 0.187 0.188 0.189
HID2 0.251 0.162 0.160 0.160 0.161 0.160 I
HID4 0.198 0.166 0.164 0.164 0.165 0.166
HID6 0.191 0.164 0.162 0.163 0.161 0.164
HID8 0.192 0.171 0.169 0.166 0.169 0.168
HIDI0 0.183 0.174 0.168 0.170 0.170 0.169
HID12 0.178 0.168 0.166 0.167 0.170 0.166
HID14 0.174 0.167 0.169 0.163 0.168 0.169..Table 9.3. Mean squared error (MSE) of the level diagnosis m a constramed model
(N=75)

I Performance results of the regression models are placed in a separate column. These models were estimated
using traditional OLS methods.
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In table 9.3, cross validated average squared errors are generally lower than in chapter 8. For
models having their minimum at 30000 iterations, tests were run to see if MSE continued to
decrease after 30000 iterations. However, no model had minimum values for learning time

beyond 30000 iterations". The best performance was found for the connectionist model with
two hidden units. As in chapter 8, the connectionist model with hidden units showed better fit
than both the model without hidden units and the benchmarks. A t-test of the difference in
cross validated average squared error between the best connectionist model and the best

benchmark- was significant, and in favour of the connectionist model at a=O.01 (t=2.73,
d.f.=74). Furthermore, the model without hidden units now also showed somewhat better

results than the benchmarks.

The stepwise regression model had a lower MSE than the best regression model of chapter 8.
Because of multicolinearity, the stepwise procedure used by SPSS in building the 75
regression models of chapter 8 did not give the best possible models. Much of this
multicolinearity was reduced by constraining the number of inputs, and performance results

of the regression models also improved. However, the improvement in the connectionist

models was much greater than the improvement in the benchmark models.

To test the improved results, t-tests of the differences between the MSE values of the models

in chapter 8 and the constrained models were performed. The results are shown in table 9.4.

5000 10000 15000 20000 25000 30000Iterations:
HID2 -1.77 0.87 1.37 1.99* 2.07* 2.31 *
Table 9.4. T-tests of the best level model of chapter 8 (HID2) vs. best
constrained connectionist model (J.l"IJ - J.lnew) at increasing number of
iterations (* indicates significant at a=0.05, d.f.=74)

For a comparable number of iterations, the constrained model performed significantly better.
However, the best model of chapter 8 had its minimum MSE at 10000 iterations ', and the
difference in MSE between the two best models was not significant at a=0.05. Still the MSE

was generally lower for the constrained models. The minimum was also generally found for
a larger number of iterations than in chapter 8. This implied overfit did not occur so early

during learning in the constrained models. This observation further supported our conclusion
from the simulations of chapter 8, that stopping learning in an "oversized" model early did not

give the same performance as a smaller connectionist model stopped at the minimum MSE
point. Stopping the learning and reducing complexity of the models may be equivalent when

I

! This conclusion was valid for the separate level and trend models. and for the combined models.
2 The stepwise regression model.
3 Model with 2 hidden units after 10000 iterations
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it comes to controlling the mapping on learning samples, but this rule did not seem valid for

generalisation errors.

To test if the distribution of the errors was similar to the models of chapter 8, correlations of
error with level target value and distance from target value were computed. The results are

shown in tables 9.5 and 9.6.

Iterations: 5000 10000 15000 20000 25000 30000 Regr.
Model:
Regr. (all) 0.169
Regr. (stepw.) 0.177
HIDO 0.075 0.090 0.108 0.118 0.124 0.127
HID2 -0.138 0.001 0.008 0.011 0.017 0.022
HID4 -0.058 0.042 0.034 0.042 0.046 0.048
HID6 0.005 0.020 0.036 0.040 0.051 0.047
HID8 -0.043 0.025 0.047 0.052 0.057 0.064
HIDIO 0.048 ·0.050 0.049 0.061 0.059 0.070
HID12 0.003 0.031 0.054 0.057 0.068 0.070
HID14 0.033 0.046 0.068 0.058 0.060 0.056..Table 9.5. Correlations of SE and target for the level diagnosis m a con stram ed model
(N=75)

Iterations: 5000 10000 15000 20000 25000 30000 Regr.
Model:
Regr. (all) 0.149
Regr. (stepw.) 0.128
HIDO 0.168 0.147 0.126 0.119 0.109 0.104
HID2 0.634** -0.017 -0.056 -0.083 -0.097 -0.104
HID4 0.304** -0.007 -0.030 -0.050 -0.067 -0.090
HID6 0.196 0.038 0.006 -0.004 -0.019 -0.055
HID8 0.173 0.038 0.009 -0.023 -0.045 -0.075
HID10 0.147 0.051 0.030 0.012 -0.023 0.052
HID12 0.178 0.056 0.042 0.019 -0.010 -0.038
HID14 0.156 0.086 0.054 0.013 0.001 -0.037
Table 9.6. Correlations of SE and distance from mean target for the level diagnosis In a
constrained model (N=75)(* indicates significant at a=0.05)

The pattern of correlations in table 9.5 and 9.6, showed roughly the same pattern as the
similar measures in chapter 8. The distribution of the connectionist model errors was
favourable, with errors distributed uniformly over the range of the target value.

Separate simulations of trend diagnosis were run following the same procedures as reported
above. The cross validated average squared errors of these models are shown in table 9.7.
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Iterations: 5000 10000 15000 20000 25000 30000 Regr.
Model:
Regr. (all) 0.321
Regr. (stepw.) 0.356
HIDO 0.305 0.300 0.302 0.301 0.301 0.303
HID2 0.563 0.308 0.306 0.289 0.285 0.279
HID4 0.456 0.307 0.296 0.288 0.280 0.279 I
HID6 0.414 0.302 0.302 0.298 0.299 0.300
HID8 0.414 0.310 0.306 0.300 0.298 0.297
HID10 0.380 0.307 0.301 0.300 0.288 0.289
HID12 0.376 0.312 0.304 0.300 0.298 0.290
HID14 0.342 0.302 0.308 0.296 0.291 0.294..Table 9.7. Mean squared error (MSE) of the trend diagnosis m a constrained model
(N=75)

Again, the simulations showed reduced MSEs when compared to the corresponding results of

chapter 8. Rather surprising were the poor results of the stepwise procedure of SPSS, but this
suggested multicolinearity still caused problems of variable selection for the stepwise
procedure. However, the results for the full regression model were better than for the

benchmarks of chapter 6. Consequently, the best traditional benchmark for evaluating the
trend diagnosis of the connectionist models was the full regression model with the
constrained set of variables.

A Hest of the difference in cross validated average squared error between the best
connectionist model and the best benchmark now showed a significant difference in favour of
the connectionist model at a=0.05, (t=2.24, d.f.=74). Thus, even stronger support of
proposition PI of chapter 4 was provided.

Strong support of proposition P2 had previously been found for the level diagnosis. Now, the
difference between the best connectionist model without hidden units! and the best model
with hidden units- was observable for trend diagnosis also. However, a test of the difference

did not prove significant at a= 0.05 (t=1.68, d.f.=74) when a two sided test was used, but
since proposition P2 was formulated in favour of the connectionist model only, significance

at a= 0.05 was found when a one-sided test was used. Thus, some support for proposition P2
was provided for trend diagnosis also.

To test the improved results of the constrained connectionist models, t-tests of the difference
between the MSE values of the models in chapter 8 and the constrained models were
performed. The results are shown in table 9.8.

! At 10000 learning iterations.
2 Model with 4 hidden units at 30000 iterations.
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Iterations: 5000 10000 15000 20000 25000
HID4 -1.56 1.25 1.76 1.74 2.00* 2. 5*
Table 9.8. T-tests of the best trend model of chapter 8 (HID6) vs. best
constrained connectionist model (f.1"ld - f.1new) at increasing number of
iterations (* indicates significant at a=0.05, d.f.=74)

The differences tested in table 9.8 were significant for 25000 and 30000 iterations.
Furthermore, the difference in MSE between the best trend diagnosis model of chapter 81

and the best constrained model was also significant at a= 0.05 (t=2.03, d.f.=74).

The trend diagnosis models of chapter 8 had biased distributions of errors over the range of

target values. To test the distribution of errors for the constrained model, correlations with

trend target and distance from mean trend target were calculated. The correlations are shown

in tables 9.9 and 9.10.

Iterations: 5000 10000 15000 20000 25000 30000 Regr.
Model:
Regr. (all) -0.024
Regr. (stepw.) 0.146
HIDO -0.030 -0.058 -0.049 -0.044 -0.045 -0.048
HID2 0.114 -0.011 -0.087 -0.066 -0.040 -0.039
HID4 0.110 -0.072 -0.075 -0.075 -0.063 -0.073
HID6 0.092 -0.080 -0.072 -0.059 -0.054 -0.061
HID8 0.124 -0.082 -0.078 -0.064 -0.054 -0.072
HIDI0 0.084 -0.079 -0.047 -0.062 -0.062 -0.076
HID12 0.132 -0.082 -0.067 -0.039 -0.028 -0.038
HIDI4 0.053 -0.072 -0.074 -0.071 -0.064 -0.060
Table 9.9. Correlations of SE and target for the trend diagnosis In a constrained model
(N=75)

Iterations: 5000 10000 15000 20000 25000 30000 Regr.
Model:
Regr. (all) 0.264*
Regr. (stepw.) 0.256*
HIDO 0.362** 0.325** 0.315** 0.304** 0.298** 0.284**
HID2 0.896** 0.338** 0.269* 0.262* 0.275* 0.253*
HID4 0.705** 0.309** 0.307** 0.285* 0.275* 0.251 *
HID6 0.581 ** 0.311** 0.293* 0.282* 0.275* 0.253*
HID8 0.583** 0.313** 0.298** 0.276* 0.269* 0.246*
HIDI0 0.506** 0.329** 0.295* 0.295* 0.284* 0.268*
HID12 0.521 ** 0.310** 0.286* 0.287* 0.246* 0.248*
HIDI4 0.455** 0.324** 0.306** 0.297** 0.263* 0.258*
Table 9.10. Correlations of SE and distance from mean target for the trend diagnosis In a
constrained model (N=75) (** and * indicates significant at a=O.OI and 0.05
respectively)

I Model with 6 hidden units after 20000 iterations.
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Corresponding closely to the correlation pattern of the trend diagnosis models of chapter 8,
the constrained model had low correlations with targets, but high positive correlations with

distance from mean targets. In table 9.10, we found that all correlations were significantly
different from O( a=0.05). This result was somewhat worse than the results in chapter 8 and
further supported our conclusion that evaluating connectionist models by cross validated
average squared errors only, was insufficient. Errors were largest for cases with extreme

positive and negative values. If the constrained model was more regressive than the model of

chapter 8, this result should not be surprising. One could assume that the reduction in the
number of input units would make the model more regressive. Hypothetically, this should
reduce errors on targets close to the mean target, but increase errors on the extreme targets. In

summation, the effect on MSE was positive, but the effect on the distribution of errors was
negative.

To test the proposition made by severalauthors (e.g. Bounds et al., 1990; Chakaborty et al.,

1992), that a combined model with severaloutput units performed better than separate models
when these variables were correlated, a combined model.simulation was run. The results for
the level diagnosis of these constrained and combined models are shown in table 9.11.

Iterations: 5000 10000 15000 20000 25000 30000
Model:
HIDO 0.182 0.182 0.185 0.186 0.186 0.187
HID2 0.232 0.185 0.171 0.159 0.158 0.156
HID4 0.175 0.160 0.151 0.147 0.147 0.145
HID6 0.180 0.174 0.163 0.157 0.156 0.159
HID8 0.168 0.173 0.161 0.161 0.161 0.162
HIDI0 0.172 0.162 0.157 0.155 0.156 0.161
HID12 0.178 0.166 0.157 0.160 0.160 0.160
HID14 0.175 0.169 0.165 0.163 0.159 0.162..Table 9.11. Mean squared error (MSE) of the level diagnosis m a constramed
and combined model (N=75)

From table 9.11, we found that the combined model performed better than the separate level
diagnosis model. This was rather surprising compared to the results of chapter 8, but

corresponded well to the hypothesis of Chakaborty et al. (1992), referred to above. A t-test of
the difference in MSE between the best separate and combined level diagnosis models,
showed that the combined model performed significantly better at a=0.05 (t=2.3l, d.f.=74).

For the models of chapter 8, such a difference was not found. Consequently, with fewer input

units, the performance improved considerably in a combined model. One is led to suggest that
the model could use its improved representations of trend-relevant stimulus dimensions to
improve its level diagnosis and vice versa.
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A t-test of the difference in MSE between the best constrained and combined level diagnosis
model and the corresponding combined model of-chapter 81 is shown in table 9.12.

5000 10000 15000 20000 25000 30000
0.91 1.11 1.79 2.25* 2.48* 2.97**

Table 9.12. T-tests of the best combined model of chapter 8 (HID2) vs. the
best constrained and combined connectionist model (level
diagnosisjtjz,« - Llnew) at increasing number of iterations (* and ** indicates
significant at a::·O.05 and 0.01 respectively, dJ.=74)

The tests of table 9.12 also showed that the combined model with fewer input units

significantly outperformed the corresponding models of chapter 8.

The results of the constrained and combined model for trend diagnosis are shown in table

9.13.

Iterations: 5000 10000 15000 20000 25000 30000
Model:
HIDO 0.307 0.303 0.301 0.301 0.302 0.299
HID2 0.473 0.328 0.290 0.277 0.269 0.267
HID4 0.389 0.302 0.287 0.281 0.280 0.282
HID6 0.394 0.303 0.285 0.280 0.278 0.276
HID8 0.369 0.298 0.287 0.287 0.281 0.285
HIDI0 0.365 0.308 0.292 0.289 0.285 0.291
HID12 0.352 0.289 0.280 0.284 0.275 0.282
HID14 0.342 0.292 0.290 0.289 0.283 0.287..Table 9.13. Mean squared error (MSE) of the trend diagnosis 10 a
constrained and combined model (N=75)

From table 9.13. we found that the performance of the constrained and combined models was

somewhat better than that of the corresponding separate models. However, the difference
between the two best models was not significant at a=0.05 (t=0.83, d.f.=74), even though the
difference was in favour of the combined model.

However, the results of table 9.13 showed that the constrained and combined models
performed better than the combined model of chapter 8. This finding was similar to the
finding for the level diagnosis. Pairwise t-tests of the differences in cross validated average
squared errors are shown in table 9.14.

l Model with 2 hidden units at 15000 iterations.



226

Iterations: 5000 10000 15000 20000 . 25000 30000
HID2 . -2.28* -0.01 1.33 2.12* 2.39* 2.51*
Table 9.14. T-tests of the best combined model of chapter 8 (HIDI0) vs. the
best constrained and combined connectionist model (trend diagnosis)
(Jlo/d ..:.Jlnew) at increasing number of iterations (* indicates significant at
a=0.05, d.f.=74)

The tests showed that the constrained combined model significantly outperformed the
combined model of chapter 8 for trend diagnosis also. The performance of the best
constrained and combined model was significantly better than the best combined model of

chapter 81 at a=0.05 (t=2.10, dJ.=74). This corresponded to similar findings for the
constrained and combined connectionist models of the level diagnosis.

Even though we had previously established that the connectionist models with hidden units

significantly outperformed the models without hidden units, and consequently found support
for the proposition P2 of chapter 4, the strongest test would be a comparison of the two

constrained and combined models developed here. For the level diagnosis, the difference in
MSE between the best constrained and combined connectionist model without hidden units-

and the best model with hidden units- was significant at a=0.05 (t=2.27, d.f.=74). For the
trend diagnosis, the difference in MSE between the best constrained and combined
connectionist model without hidden units+ and the best model with hidden units> was not
significant at a=0.05 (t=1.82, d.f.=74). However, the last conclusion was open for
judgement. Since the proposition P2 was formulated in the favour of the connectionist models
with hidden units only, a one-sided test may be applied. In this case, the t-test observator

value 1.82 was significant at p=0.036. Since strong support had previously been found of
proposition P2 for the level diagnosis, we concluded that proposition P2 was generally
supported.

A problem with the models of chapter 8 and the separate trend diagnosis model of this
section, was the unfavourable distribution of errors over the range of target values. The errors
were correlated with distance from mean targets, indicating that the models' performance was
poorer for the extreme targets. The same measures for the constrained and combined models
are shown in table 9.15.

l Model with 10 hidden units at 10000 iterations.
2 At 10000 learning iterations .

. 3 The model with 4 hidden units at 30000 iterations.
4 At 30000 learning iterations.
5 The model with 2 hidden units at 30000 iterations.
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Iterations: 5000 10000 15000 20000 . 25000 30000
Model:'
HIDO 0.360** 0.325** 0.313** 0.307** 0.295* 0.292*
HID2 0.599** 0.259* 0.259* 0.251* 0.218 0.209
HID4 0.403** 0.263* 0.236* 0.217 0.204 0.197
HID6 0.422** .0.329** 0.288* 0.250* 0.224 0.199
HID8 0.421 ** 0.316** 0.283* 0.238* 0.240 0.219
HIDI0 0.371 ** 0.301 ** 0.274* 0.250* 0.230* 0.211
HID12 0.339** 0.334** 0.271* 0.239* 0.238* 0.214
HID14 0.382** 0.321 ** 0.268* 0.247* 0.232* 0.208
Table 9.15. Correlations of SE and distance from mean target for the trend
diagnosis in a constrained and combined model (N=75) (** and * indicates
significant at a=O.01 and 0.05 respectively)

The results in table 9.15 showed that the combined model had a somewhat better distribution
of errors than the corresponding separate model, but the distribution was more unfavourable

than in the combined model of chapter 8. It was difficult to get an impression of how

important the bias of this distribution was. Regressing the SE on distances from mean targets

gave an R2 of 0.04. Thus, distance from mean targets explained 4 % of the variance in SE.
Furthermore, the regression coefficient was not significantly different from Oat a=0.05

(t=1.83, dJ.=73). Consequently, the bias of the errors was considered undesirable but
acceptable. Unlike the trend diagnosis models of chapter 8, bias was unambiguously reduced

by learning in the constrained and combined models. Despite this, the bias was still
undesirable and the constrained models seemed more regressive than the model of chapter 8.

We can conclude that reduction of the number of free parameters did not improve the
undesirable distribution of errors. Despite the similarities in the probability distributions of
the level and trend diagnosis variables, learning did not eliminate the unfavourable

distribution of errors for the trend diagnosis in the same way as it did for the level diagnosis.
However, White (1989) has pointed out in general that a biased error distribution is

explainable. When extreme values of the input cues are likely to give extreme diagnoses and
the extreme values are less likely to occur than the moderate values, the errors should be

largest for the less likely diagnostic values:

These weights give small errors (on average)for values of X that are
very likely to occur at the cost of larger errors (on average) for values
of X that are unlikely to occur. (White, 1989, p. 98)

Thus, the more surprising result of our simulations was that the level diagnosis models did
not have the same biased distribution of errors as the trend diagnosis models had.
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In regression analysis, a study of the residuals is often used to further evaluate
model fit. Analysis of the SEs is somewhat similar to analysis of the residuals
in regression analysis, and an overview of the outliers! is shown in table 9.16.

Model/diagnosis Outliers Number
32 inputs/level AB CA D M R 5
32 inputs/trend AB AU D 3
12 inputsIlevel AB CA D AP R 5
12 inputs/trend AB AU D R 4..Table 9.16 Cases classified as outliers m models WIth 32 and 12 mputs

When studying table 9.16, we found that many of the outliers were common to the

constrained models and to the models of chapter 8. The outliers AB and D were common to
all models and diagnoses. Both these firms were judged more favourably by the subjects than
by the models. The first hypothesis was, that these firms had only been diagnosed by subjects
with extreme response styles. A response style indicator had previously been computed-, and

was compared among the subjects in each composite judge committee. We found no
composite judge committees where all subjects had extreme response styles. Thus, the
response style explanation of the outliers 'could be excluded.

Correlations of the models' SEs with all financial cues of each firm showed that most of the

model outliers were also outliers in the distribution of a handful of financial cues. The cues in
question were: OSTREC, OOPREV, CHOSTREC, ACCPAY and APT. This finding led us to
formulate a second hypothesis explaining the model outliers. It was suggested that the

subjects had found something in the financial cues not "discovered" by the model that could
justify their diagnoses, and explain the model outliers. The findings relevantto this
hypothesis are summarised in table 9.17.

! A squared error is defined as outlier when SE >MSE + 2 C1.IE

2 The response style indicator was made by computing the average positive or negative difference on all
variables and firms a subject had diagnosed. The differences were computed as distance from the average
response in the composite judge committees. Positive and negative differences indicated positive and negative
response styles respectively.
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Outlier- Diagnosis Judgement Special conditions Im_£}ication
AB Level Extreme- Other operating revenues are high. Opposite

Trend positive Accounts payable period large due direction.
to large accounts payable relative to
inventory .:

AP Level Extreme- Accounts payable period in year 1 Opposite
Trend positive large due to large accounts payable direction

relative to inventory.
Other short term receivables large in Same
year 1. direction

AU Trend Extreme- Other operating revenues are high Same
negative and increasing in year 2. direction

Positive change in other short term Opposite
receivables. direction
Large increase in accounts payable Same
period. direction

CA Level Extreme- None. None
positive

D Level Extreme- Other operating revenues are high Opposite
Trend positive and increasing inyear 2. direction

M Level Extreme- Accounts payable period large due Same
negative to large accounts payable relative to direction

inventory.
R Level Regress- Large other short term receivables. Same dir.

Trend positive Decrease in other short term Opposite
receivables in year 2. direction

Table 9.17 Analysis of model outliers and financial cues of special relevance to the
errors.

Table 9.17 shows the seven outliers of the models, the diagnosis it was the outlier for, how

the subjects judged the firm relative to the model, the special conditions of the relevant

financial cues, and implications these financial cues should have if the special conditions
were taken into consideration by the subjects. If the subjects correctly had taken the special

conditions into consideration, this was marked in the "implications" column by the term
"sarn direction".lfnot, the term "opposite direction" was used.lfthe hypothesis of

"proficient" subjects was correct, most outliers in table 9.17 should have been marked "same
direction". However, the two markings were equally frequent. Thus, the hypothesis of
"proficient" subjects was also excluded.

To judge how important the outlier errors were, they where excluded in the computation of
the performance results of the best connectionist model. When eliminated, correlation of the
MSE with distance from target dropped from 0.197 to 0.140. MSE dropped from 0.267 to
0.200. Thus, only a small improvement in the error distribution measure was obtained,
whereas the cross validated average squared error was notably reduced. Despite the
improvements gained in model performance from excluding the outliers, it was not clear if
the outliers indicated subject or model "proficiency" in financial diagnosis.
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9.2 Analysis of model representations

The constrained model minimised error under more constraints than the models of chapter 8.

Theoretically, fewer free parameters should reduce the number of possible local minima.
Consequently, the functional organisation should be more similar across connectionist
models.

To study the representations, a set of comparable models was developed using the same
principles as in chapter 8. Weights were initialised by a random number generator using the

ranges described in chapter 6. In the constrained models, optimal performances were found

for 30000 iterations. This was higher than the corresponding optimal iterations in chapter 8.
When generating the models for representational analysis, we followed the same procedure as
in chapter 8. Since all stimulus-response pairs were in the learning sample, convergence was
likely to be found somewhat earlier than 30000 iterations. Since minimal MSE was found

after a number of iterations roughly twice the number of chapter 8, learning was stopped after
twice the number of iterations l, and weights were saved. This procedure was repeated for 10
versions of the connectionist models with two, three and four hidden units, respectively.

The performance results of these models are shown in table 9.18.

Model Average Stdev.of Average St. dev. of Correlation Correlation Runs with
level MSE level MSE trend trend of level of trend common

MSE MSE with diff. with diff. hidden unit
from target from target

HID2 0.111 0.004 0.207 0.007 -0.053 0.233 1
HID3 0.112 0.003 0.203 0.008 -0.051 0223 4
HID4 0.112 0.002 0.200 0.004 -0.053 0.233 6
Table 9.18. Results of 10 constramed and combmed models with fulliearnmg sample and
randomised initial weights (figures are averages of the 10 runs)

The performance results were very similar to the results of chapter 8, but the number of

common hidden units was reduced. This can be confirmed by visual inspection of the Hinton
diagram in figure 9.2. The additional hidden units in the larger models did not improve

performance significantly, but the standard deviation of the errors dropped with more hidden
units.

To study the distribution of the weights, summary statistics of the weights of each

connectionist model were calculated. The statistics are shown in table 9.l9.

l In chapter 8, learning was stopped after 10000 iterations when the fulliearning sample was used. In this
section it was stopped after 20000 iterations.
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HID2 (N=32) HID3 (N=47) HID4 (N=62)
Version:':
A Mean:-O.35 Stdev: 1.38 Mean:-O.12 Stdev:I.IO Mean:-O.04 Stdev:O.99

Skew:-O.14 Kurt:-1.24 Skew:-O.12 Kurt:-O.38 Skew:-O.13 Kurt:O.37
B Mean:O.18 Stdev: 1.46 Mean:-O.OI Stdev:1.10 Mean:-O.04 Stdev:O.99

Skew:O.37 Kurt:-O.93 Skew:-O.87 KurtO.42 Skew:-O.52 Kurt:O.09
C Mean:O.25 Stdev:I.37 Mean:-O.02 Stdev: 1.16 Mean:O.09 Stdev:l.OI

Skew:-O.75 Kurt:-O.75 Skew:-O.20 Kurt:-O.51 Skew:-O.14 Kurt:-O.74
D Mean:-O.16 Stdev:I.35 Mean:O.06 Stdev:I.14 Mean:O.09 Stdev:I.02

Skew:-O.61 Kurt:-O.S4 Skew:O.37 Kurt-O.31 Skew:O.33 Kurt:-O.08
E Mean:-O.OI Stdev:I.35 Mean:-O.lO Stdev:1.l3 Mean:-O.05 Stdev:I.06

Skew:-O.89 Kurt:-O.24 Skew:-O.34 Kurt:-O.51 Skew:-O.36 Kurt:-O.83
F Mean:O.18 Stdev:I.37 Mean:-O.26 Stdev:I.21 Mean:-O.l2 Stdev:1.00

Skew:-O.45 Kurt:-O.66 Skew:-O.20 Kurt-O.76 Skew:-O.62 Kurt:O.67
G Mean:-O.33 Stdev:I.42 Mean:O.22 Stdev:1.23 Mean:-O.25 Stdev:I.02

Skew:-O.05 Kurt-l.3O Skew:O.11 Kurt:-O.73 Skew:-O.ll Kurt:-O.69
H Mean:-O.19 Stdev:I.36 Mean:O.31 Stdev:I.09 Mean:-O.OI Stdev:I.OO

Skew:O.58 Kurt:-O.32 Skew:-O.58 KurtO.18 Skew:-O.34 Kurt:-O.49
I Mean:-O.24 Stdev:I.42 Mean:-O.05 Stdev: 1.11 Mean:-O.ll Stdev:I.02

Skew:-O.40 Kurt-O.90 Skew:-O.63 Kurt-O.29 Skew:-O.29 Kurt:-O.44
J Mean:-O.34 Stdev:I.43 Mean:-O.23 Stdev:1.l5 Mean:O.14 Stdev:I.OO

Skew:-O.07 Kurt:-1.27 Skew:O.04 Kurt-O.51 Skew:O.31 KurtO.49
Table 9.19. Statistics illustrating the differences m representations between the 10 versions of
each constrained and combined modell

From table 9.19, the similarities of the different versions of the models could be studied.
There were some variations in skewness and kurtosis, and in the versions with two hidden

units, all models had a less peaked weight distribution than the normal distribution. The

versions with three and four hidden units had weight distributions close to the normal

distribution. We recall that the weight distributions of the models in chapter 8 were generally
more peaked than the normal distribution. The difference between the two sets of weight
distributions was a consequence of the reduction in the number of input units. The large
amount of weights around zero was now eliminated, resulting in a larger proportion of the
weights being "active" in the diagnosis. A preliminary conclusion was that the representations
generally were more local than in chapter 8.

As in chapter 8, a cluster analysis of absolute values of the network weights coming into the
hidden layer was used to detect local units and to investigate the clusters of functionally
equivalent hidden units. A dendrogram from the cluster analysis of the weights is shown in
figure 9.1.

l Skewness and kurtosis are standardised.
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Figure 9.1. Cluster analysis dendrogram of input to hidden weights in all the 30 versions
of the constrained and combined connectionist model with 2, 3 and 4 hidden units



233

. .
In the models of chapter 8, we found that the local units were common hidden units. The
first split of the dendrogram in figure 8.2 of chapter 8 was between these local common

hidden units and the rest of the units. A similar split between local and distributed hidden

units was found in figure 9.1. Here, the largest cluster consisted of the local hidden units.

Even though all common hidden units were found in the local cluster, they were placed in two
different subclusters. This indicated that the common hidden units had a different
organisation than in the models of chapter 8. They were either trend- or level-oriented.

Consequently, the typical pattern of strong common hidden units in all models found in

chapter 8 was broken for the constrained models. In all the constrained models, the functional

organisation of the task was done in a more traditional manner. The hidden units seemed to
create a task partitioning among themselves that was more output-directed or output-oriented

than in chapter 8. The representation ofa model with only two hidden units could be

interpreted as if the hidden units had a functional organisation in which each of the units

specialised on each of the output responses. Furthermore, the hidden units seemed to combine
the inputs in a way that made their outputs more orthogonal to each other than the models of

chapter 8. Testing this hypothesis on the small connectionist models, the average correlation

between the output of the two hidden units was calculated. For the connectionist models in
chapter 8, this correlation was 0.411, and in the constrained models, it was 0.312.
Consequently, the two hidden units worked somewhat more independently. In addition,

models with few weights now organised their representation to reach local solutions close to
each other. An example of this can be found in figure 9.1, where a group of functionally

equivalent models is shown.

However, these suggestions were only preliminary, and the procedure of analysis developed
in chapter 8 was applied. In figure 9.2, a Hinton diagram of the weights between hidden units

and output units is shown.

From the Hinton diagrams in figure 9.2, we see how the hidden units of models A2, D2, F2,
G2, H2 and 12, specialised on each of the two responses and split the diagnostic task among
the two hidden units. We also noticed the relatively small amount of units similar to the
common hidden units of chapter 8. Such common hidden units were primarily found in the

larger models with three and four hidden units.
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VerSIOn HID2 HID3 HID4

A Trend ·0 DD. ·O·_•
Level DD D·. cDc.
Trend •• ·0• ..00

B
Level •• .0· ·•O c

C Trend .0 D.D .O.c
Level .c c.O .0 • •

D Trend O· .Oc D.·.
Level O. .'0 D.· .
Trend cD D.D ••• c

E .0 ··0 c•• OLevel

Trend ·0 DD· " •O.
F Level •0 O cO .O .•
G Trend cD c •• ODD·

Level DD ••• ·000
H Trend c. .0· .0·0

Level O. '.O O ·D.D
I

Trend DD ·•O DD.·
Level O' D.D Dc ••

I Trend cD ••0 D·.·
Level DD • cO O •••

HIH2 Hl H2 H3 HIH2H3H4
Figure 9.2 Hmton diagram of the weights between hidden and output umts for
the IOversions of the constrained and combined models with 2, 3 and 4
hidden units respectively

In chapter 8, we showed how similarities in the weight patterns of the connections between

the hidden and output units were reflected in similarities in the connections between hidden
units and input units. The cluster analysis dendrogram in chapter 8 was also used to detect
groups of functionally equivalent hidden units. In the cluster analysis dendrogram of figure
9.1 it was easy to recognise different clusters of functionally similar hidden units.

When compared to the Hinton diagram of figure 9.2, it was obvious that the first split of the
local hidden units cluster in figure 9.1 was between units focusing on trend and units focusing

on level diagnosis. Infigure 9.1, all hidden units were analysed simultaneously. To clarify the
analysis, each set of models could be analysed separately. The separate analysis also made it
possible to combine dendrograms and Hinton diagrams for illustration. Thus, the 10versions
of the models with two, three and four hidden units were cluster analysed separately. A
cluster analysis dendrogram of the input weights to the 20 hidden units in the 10 models with
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two hidden units is shown in figure 9.3. To further improve the analysis, we did not use

absolute values, but developed a method that controlled for the sign differences and the biases

in each model. The weights used in the cluster analysis of figure 9.3 have been adjusted for
sign differences and biases", but the Hinton diagrams are shown with the original weight
values.
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FIgure 9.3 Cluster analysis dendrogram and Hmton diagram of the constramed and combmed
models with two hidden units

To compare the hidden units, the Hinton diagrams show the weight pattern of each
connection between input and hidden units. The weights are placed in the following order:
OPMAI, OPMA2, ROll, ROI2, ROEI, ROE2, AIRI, AIR2, CURRI, CURR2, BERI and
BER2. When cluster analysis dendrograms and Hinton diagrams are combined in this way,

visual inspection of the weight pattern of subclusters is eased. Five clusters are marked in

figure 9.3.

l The adjustment was performed by computing the new weight as -[ Wij - (biasIl2)] for inhibitory hidden units
and Wij - (bias/12) for excitatory hidden units.
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We recognised the groups of functionally equivalent models described above and marked in
. .

figure 9.1. First we recognised the units of the functionally equivalent models A2, D2, F2,
02, H2 and 12 in clusters 1 and 4. Next, we found that the models B2, C2 and 12 that were
functionally equivalent in figure 9.1, had units placed in clusters 2 and 3 only. Finally, we
found the only model with the common hidden unit. The common hidden unit was placed in
cluster 1, even though it differed from the other units in this cluster. The distributed hidden
unit E12 was placed in the separate cluster 5.

We could now interpret the hidden units in each of the five clusters. In clusters 1 and 2, we

found units most strongly activating the trend diagnosis unit. This can be confirmed by
studying figure 9.2. The typical positive/negative weight pattern of a trend unit was also

found in these units. Units of clusters 3 and 4 most strongly activated the level diagnosis
units, and could be interpreted as level-oriented hidden units. The two subclusters in each of
the two clusters differed in the way they specialised on the trend and level diagnosis

respectively. Clusters 1 and 3 had more "common" trend- and level-oriented hidden units.

The model with the most common trend-oriented hidden unit was E2, but even this model
could be characterised similarly to the models belonging to cluster 1. Consequently, the
models organised their hidden units in one of two functionally different ways. The first group
organised their representations with a trend-oriented hidden unit, also taking care of the

common parts of both diagnoses, and used the second hidden unit to specialise on level
diagnosis adjustment. The opposite was done by the three resulting models. They had a level-
oriented hidden unit also taking care of the common parts, and used the second hidden unit to
specialise on trend adjustment. These two solutions could be characterised as similar local
solutions to the mapping problem solved by the connectionist models, and no indication was
found that one solution was better than the other.

In figure 9.4, a similar cluster analysis dendrogram of the input weights combined with a

Hinton diagram is shown for the lOversions of the model with three hidden units.

The first split of the dendrogram was now between the local and distributed hidden units. The
models with two hidden units had only local units, but with three hidden units, distributed
units seemed to develop. The next split was between the local hidden units focusing on trend
and the units focusing on level diagnosis.

The next split of the clusters was in functionally different hidden units within the level- and

trend-oriented hidden units clusters, and within the distributed hidden units cluster. The
resulting clusters have been marked and are numbered in figure 9.4. Cluster 1 consisted of
units with the typical positive/negative sign pattern of a trend-oriented hidden unit. However,
these units differed from the units in cluster 2 by their relatively large weights from input .
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units representing cues from the first of the two consecutive years. In figure 9.2, we see how
o o

weights from these units almost exclusively activated the trend diagnosis units. We
characterised these units as "exclusive trend" oriented hidden units.
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FIgure 9.4 Cluster analysis dendrogram and Hinton diagram of the constrained and combined
models with three hidden units

In cluster 2, we found the same sign pattern as in cluster 1, but weights coming from units
representing cues from the second of the two consecutive years were much larger than those
coming from units representing the first year cues. These units represented a more complex
concept of common aspects of level and trend diagnoses, but their main focus was on trend.

In the units of clusters 3 and 4, the positive/negative sign pattern of a trend-oriented hidden
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unit could not be found. These units were typicallevel-oriented units. The units in cluster 4
differed from the units in cluster 3 by their smaller absolute values. Small weight values can
be compensated by larger weights in the layer between hidden and output units, and could not
be used to discriminate the units of cluster 4 from the units in cluster 3 functionally.

Clusters 5 .and 6 consisted of distributed hidden units. As opposed to the distributed hidden
units in chapter 8, there was a typical weight pattern in some of these units. In cluster 5, we
found a pattern close to the pattern of cluster 1, but the positive/negative sign pattern was
weak. From the sign pattern of the connections between the hidden and the output units,
found in figure 9.2, we preliminarily interpreted these units as "difference" hidden units.
These units simultaneously inhibited the trend and excited the level diagnoses units, or the
opposite. Because of their large values on weights coming from input units representing cues
of the first consecutive year, we were tempted to characterise these units as "yesterday's

situation" detectors. It seemed that the adjustments of a common diagnosis performed by
these units, were done by focusing on the first of the two consecutive years. Thus, the values

from the cues of the first year were used to represent the exception to the rule that level and
trend were positively correlated. With the use of the combined cluster analysis and Hinton

diagram, we could now interpret how the exceptions to this rule were detected. They were
simply detected by focusing particularly on a set of cues representing several diagnostic

concepts of the first of the two consecutive years. This corresponded well to our interpretation

in chapter 8, that the trend diagnosis should be adjusted downwards from what was predicted
by a common hidden unit when the cue values of the first of the two consecutive years were
exceptionally large.

Cluster 6 consisted of only one unit with a weight pattern close to the units of cluster 4, and
was interpreted as a "miniature" level-oriented unit. The only reason why this unit was not
placed in cluster 4 was its generally lower absolute weight values.

Consequently, the functionality typical for the models with two hidderi units was also found
for models with three hidden units, but the use of the "yesterday's situation" detectors
adjusting for the exceptions to the rule that level and trend diagnoses were positively
correlated, was not found in the smaller models. The performance of the larger models was
not significantly better than that of the models with two hidden units, suggesting that the

additional hidden units of the larger models did not improve performance. Despite this, we
showed how the combination of Hinton diagrams of the connections between hidden and

output units and the diagrams of figure 9.4, could be used to identify units representing rule
exceptions and how this exception was detected in the stimulus material.
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A similar procedure was followed for the models with four hidden units. In figure 9.5, a
. .

cluster analysis dendrogram of the input weights of all hidden units in the models with four
hidden units is combined with a Hinton diagram of the connection weights.
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From figure 9.5, the functionality found in the models with four hidden units could be
analysed. We recognised a functionality very similar to the one found in the models with two
and three hidden units. The first split was found between local and distributed hidden units.
The local hidden units were split between level- and trend-oriented hidden units. A subcluster
in the trend-oriented hidden units cluster consisted of highly distributed hidden units. Eight
clusters could be identified when setting the cluster distance at an interpretable level. All

models except G4 had a unit in cluster 1 and all models except H4 had a unit in cluster 5. The
two clusters I and 5 contained the trend- and level-oriented hidden units respectively. Model
G4 had a unit in cluster 2 and H4 had a unit in cluster 4. These clusters were also trend- and

level-oriented hidden unit clusters, respectively. The rest of the hidden units were distributed
units found in clusters 3, 6, 7 and 8. Subclusters 6, 7 and 8 were placed in a separate cluster of

distributed hidden units, whereas cluster 3 was placed among the trend-oriented units'

clusters. The units of cluster 3 were "miniature" trend-oriented units, but nothing indicated

that these units significantly improved the performance of the model. Some "yesterday's

situation" indicators were found in the clusters 6, 7 and 8. Except for these, the units in these
clusters seemed to be quite redundant.

Consequently, most models with three and four hidden units implemented a functionality
close to the one implemented by the models with two hidden units. Additional hidden units
did not improve the performance significantly. The primary functional organisation of the
constrained connectionist models can thus be understood by investigating the smaller models.

If the connectionist models implemented a functionality as the one described above, one may
ask why the performance was superior to the linear models. Traditionally, connectionist
models perform in a more superior manner because they can detect and utilise nonlinearities
in the mappings (Smith, 1993). Nonlinearities may be implemented by hidden units and by
output units, or by combining the two groups of units. If both the mapping of inputs to hidden

unit outputs and the hidden unit outputs to output unit outputs are linear, the mapping of
inputs to outputs can be rewritten on linear form. Since our connectionist models with hidden

units performed better than the linear benchmarks and the connectionist models without
hidden units, nonlinear mappings were presumedly implemented in the models. By
performing linear regressions using the hidden unit outputs as dependent variables, and the
input cues as independent variables, the nonlinearities of the hidden unit mappings could be
detected as deviations from predicted response. The same procedure was followed by using
hidden unit outputs as independent variables, and output unit outputs as dependent variables.

Only the small models were analysed for nonlinearities. We have previously shown that the
larger connectionist models mainly implemented the fu~ctionality of the models with only
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two hidden units, and that the additional
units of the larger models did not
improve performance. A plot of actual
output values of the hidden units versus
the best linearly predicted value of the
outputs using input cues as independent
variables, is shown in figure 9.6 for each
hidden unit.

In the figure, predicted hidden unit

outputs are shown on the x-axis and
actual hidden unit responses are shown
on the y-axis. In the left column of figure

9.6, we have shown the units in the level-

oriented cluster, and in the right column

we have shown the trend-oriented hidden
units from the dendrogram of figure 9.3.

We found that the trend-oriented units
had an output that could be approximated

by a linear function of the inputs.
However, the level-oriented units had an

output that was highly nonlinear .

The functional form varied with
excitatory and inhibitory units. Only
model E2 deviated from this pattern.
Actually, the response of both hidden

units in E2 was somewhat nonlinear. The

nonlinearities seemed to be present both

in the common level-oriented units B2, 12
and C2, and in the more specialised level-
oriented units in the lower part of the
cluster. Since the trend-oriented hidden

units had approximately linear outputs
both for common trend-oriented hidden
units and for specialised trend-oriented
hidden units, we can conclude that it was

not the common part of the level
diagnosis that was modelled by
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nonlinearity in the connectionist models. Rather, it seemed to be the parts of the
representation that were uniquely associated with the level diagnoses that was modelled by
the nonlinearities of the hidden units. The nonlinearity was used to moderate the level

diagnosis of the cases with high cue values and to amplify the level diagnosis of stimuli

having cues in the medium high range.

Nonlinearities may also be introduced in the layer between hidden and output units. A similar

procedure as above was followed to investigate the nonlinearities introduced in this layer. The
results showed only approximately linear mappings between the hidden unit and output unit
response. Consequently, the hidden unit layer was used to form a nonlinear indicator of the

unique aspects of the level diagnosis and an approximately linear indicator of the common
and trend-oriented aspects. These indicators were linearly combined to form the level and

trend diagnoses.

Hidden unit outputs resemble factor scores in traditional models". In the connectionist models

one of these "factors" were nonlinear while the other was approximately linear. The two

"factors" were combined in two classes of models. In the models with the common part of the
level and trend diagnoses treated by the level-oriented hidden unit, the trend diagnosis was

formed by approximately linearly combining the common part and the uniquely trend-

oriented hidden unit output. Level diagnosis was modelled solely by the level-oriented hidden

unit, representing both the common part and the uniquely level-oriented part of the level
diagnosis. In the models with the common part treated by the trend-oriented hidden units, a
level diagnosis was formed by combing the common part and the uniquely level-oriented
part. Trend diagnosis was modelled solely by the trend-oriented hidden unit, representing
both the common part and the uniquely trend-oriented part of the trend diagnosis.

A second way to explain the common and unique parts of the different hidden unit

representations, is by considering the level and trend diagnoses as being composed of two
parts each. One part is common, while the unique part can be considered as the level
independent part of the trend concept. Similarly, we can think of a trend independent part of

the level concept. These common and independent parts of the concepts existed because the
two diagnoses level and trend, were highly correlated in empirical cases. As such, the
empirical measures of the level and trend diagnoses were correlated, while they may be

more "independent" or separated as theoretical concepts. The hidden units were used to
identify the relevant inputs to such theoretical concepts of "level" and "trend".

l Such as in the benchmarks A and B of chapter 6.
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If the connectionist model was expanded by adding a third hidden unit, one may expect the
task to he partitioned in the uniquely level-oriented; the uniquely trend-oriented and the

common parts. Generally, this did not seem to be the case. The functional organisation of the
task performed by the models with two hidden units was retained, and the additional hidden

unit did not improve performance significantly. Some of the additional hidden units were
very distributed, and the rest of them seemed to be "miniatures" of similar, but more local,
versions. However, some exceptions corresponding more to the "three dimensional"
organisation of the representation were found. Upon visual inspection of figure 9.2, the

closest functional organisation to the one proposed above was found in model C31• The first

hidden unit of this model seemed to be an inhibitory, specialised trend-oriented hidden unit.

The second seemed to be a hidden unit representing the common aspects of the level and

trend diagnoses, and the third seemed to be an inhibitory, specialised level-oriented hidden
unit. A procedure similar
to the one used in figure
9.6, was applied to the
hidden unit outputs in

model C3. The result is
shown in figure 9.7.

Level Trend
diagnosis diagnosis

Hidden units C23 and C33
had a very similar

incoming weight pattern.

However, the outputs of
the two units were

combined very differently
to form the two diagnoses.

While hidden unit C33
almost only connected to the level diagnosis unit, hidden unit C23 also connected to the trend
diagnosis unit. Despite their similar incoming weight pattern, the output function of the two

units transformed the incoming signals differently. The specialised level-oriented hidden unit

,.
,

~'w 1

,, "" ,

, .. I

" ,

, :"

",
"

'",
'",
"'2.n.

"'"" ,, ,

C13 C23
Figure 9.7 Linearities and nonlinearities in model C3

C33 was highly nonlinear. Consequently, hidden units with similar incoming weight patterns
may be used differently to form the responses of a connectionist model.

To compare the "factors" formed by the hidden units, traditional principal components
analysis- of the input variables revealed four factors with an eigenvalue greater than 1.00.

I The models B3. 03 and H3 also had a similar functional organisation.
2 The principal components analysis was done on the 12 independent variables of the constrained connectionist
models,
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These factors represented 81.2 % of the variance in the original twelve-variable set. The

rotated factor loadings of these factors using varimax rotation are shown in table 9.20.

In table 9.20, the highest factor loadings have been marked. We interpreted the factors as the
first representing a combined indication of "liquidity" and "leverage". The second factor

represented the
"profitability" level of the

second of the two
consecutive years. The

third factor represented
"financing", and the last

factor represented the
"profitability" level of the

first of the two
consecutive years.

Variable FACTOR 1 FACTOR2 FACTOR 3 FACTOR 4

OPMA1 0.068 0.225 -0.189 10.903
OPMA2 0.192 10.806 1-0.166 0.353
ROll 0.004 0.139 0.083 10.939
ROI2 0.115 10.864 10.176 0.238
ROE l -0.260 0.422 0.213 10.602
ROE2 -0.086 0.836 -0.026 0.055
AIR l -0.056 0.066 0.894

10.060AIR2 0.038 -0.017 0.877 -0.001
CURR1 0.921 .:.0.012 0.048 -0.033
CURR2 0.847 0.059 0.136 -0.122
BERI 0.716 -0.055 -0.548 0.161
BER2 0.711 0.199 -0.527 0.102

The factors were
recognised as belonging
to different diagnostic
areas, and no factor

loadings corresponding to the level- and trend-oriented hidden units of the connectionist
models were found. The pattern of the rotated factors roughly corresponded to the

Table 9.20 Factor loadmgs from principal components analysis
of the input variables with varimax rotation

hypothesised functional task partitioning. Regressing trend and level diagnosis on the factor

scores of the four factors gave an MSE of 0.214 for the level diagnosis and 0.380 for the trend
diagnosis, when the cross validation procedure was applied. This was a significant loss in
performance when compared to the connectionist models, but it represented no considerable

loss in performance when compared to the best traditionallinear regression or benchmark
models. Consequently, the difference between the "factors" developed by the connectionist

models and the traditional factors was that the "factors" of the connectionist models were
functionally related to the task the model performed. This implied that the "factors" of the
connectionist models were not necessarily functional in separating the input variables into

orthogonal dimensions, but they certainly represented a functional separation of the input
variables that had vital importance to the task the connectionist model was set up to minimise
the error of. This separation of the input variables represented the abstracted stimulus
dimensions used by the hidden units of the connectionist models.
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To summarise in terms used in classification research, three functionally different derived
. .

stimulus dimensions were represented by the hidden units of the constrained models. The

"common" dimension was common to both level and trend diagnosis, whereas the
"specialised level" dimension was only relevant to level diagnosis. The "specialised trend"
dimension was only relevant to trend diagnosis. The "common" dimension was an

approximately linear function of the values of the original stimulus dimensions of the task.
The "specialised level" dimension was a nonlinear function of the same values of the original
stimulus dimensions. The "specialised trend" dimension was an approximately linear
function of the change in the original stimulus dimension values. For all these abstracted
stimulus dimensions, no obvious selective attention (Kruschke, 1992, 1993a, 1993b) was paid

to stimulus dimensions presumed to represent different diagnostic concepts, such as
"profitability", "liquidity", "financing", or "leverage". In some of the larger connectionist

models, one hidden unit was allocated to represent each of the three abstracted stimulus
dimensions. In the smaller connectionist models, a combination of the "common" stimulus

dimension and one of the "specialised trend" or "specialised level" dimensions, was

implemented by one hidden unit alone.

To further interpret the behaviour of the models in classification research terminology, a

cluster analysis of hidden unit outputs during processing, so called "in vivo" clustering

(Hanson & Burr, 1990), was used. The outputs of the C3 model was recorded while all
stimulus-response patterns were presented to the model. Next, the recorded outputs were
cluster analysed to investigate how different stimulus-response patterns were placed in
different clusters of the hidden unit output space. A dendrogram illustrating the clusters is

shown in figure 9.8.

Figure 9.8 illustrates the clusters formed at an interpretable cluster distance. The diagnosis

values shown on the left are the average level and trend diagnoses of each cluster, whereas

the case indicator shows the number of firms found in each cluster. The cluster distance is
illustrated in an ordin~ dendrogram.

As can be seen in figure 9.8, the first split was between low and moderate to high level
diagnosed firms. The low level diagnosis cluster was divided into three subclusters. One
cluster consisted of extremely low valued firms, while the other clusters were split between

promising and less promising firms. The average trend diagnosis of the promising firms was

as high as 2.6.

The moderate and high level diagnosed firms were divided into two main subclusters
. depending on their trend diagnosis value. In the first main subcluster, average trend diagnosis
value was only 2.8, whereas it was 3.9 in the second. In the high trend diagnosis subcluster,
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new subclusters were formed
depending on the level diagnosis
value. In the low trend diagnosis
subcluster, a further split of both

level and trend diagnosis values
was found.

The most important conclusions
that could be drawn from this
analysis was that the hidden unit
output space was diagnosis

oriented. If, for example, similar
average diagnosis values had

been found in each subcluster,
we could infer that the hidden

units detected stimulus

dimensions or features in the
financial cues that later could be

used to form final diagnoses.
Then, firms with similar
diagnoses would be found in
different subclusters. However,
they would have been placed in
different subclusters for different
reasons found in the structure of
their financial cues. This was,
however, not the case.
Consequently, it was very

unlikely that a "subclass

detector" or a diagnosis
independent "feature detector"
representation of the kind
illustrated in figure 4.2 was
usedl.

l Average values were computed for each cluster of figure 9.8 for the subjects' judgements of the diagnostic
areas "profitability", "financing", "liquidity" and "leverage" also, showing pattern very similar to the average
values illustrated in figure 9.8.
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Furthermore, there seemed to be no explicit prototype representations directly implemented
. .

by hidden units in the model. However, looking at the cluster diagram of figure 9.8, cluster

centres represented prototypical combinations of level and trend diagnoses. The "prototypes"
did not consist of diagnosis independent subclasses, but rather of level and trend diagnosis-
relatedprototypes, such as "bankruptcy", "bad, but promising", or "good, but with alarming

trend", firms. Thus, prototype interpretation of the functional organisation of the task was

possible, even though no explicit prototype representation took place in the hidden units. In
this way, prototype-based explanation of the functional organisation was similar to a

heuristics- or rule-based interpretation. Even though no rules were directly implemented in
single hidden units, model behaviour could be described as if it followed rules.

Correspondingly, even though no hidden units directly implemented prototypes or measured
similarities to prototypes, a functional organisation of the task could be found in the

dendrogram of figure 9.8 that could be interpreted as if similarity to prototypes was used in

the model. Thus, both prototype and rule-based interpretations of connectionist model
behaviour seemed relevant.

9.3 Constraining complexity by cue importance

In the introduction to this chapter, we pointed out that the most successful constrained model

was developed by cue elimination when some sensitivity based measure of cue importance
was used. This procedure was followed in section 9.1. Subjects' cue importance indicators can

also be used for cue selection or elimination. In chapter 5, we used this approach to focus on
the ratio section of the stimulus material in order to develop the independent variables of the
models. Using the cue importance measures, we could either eliminate cues from the ratio cue
list of chapter 5, or we could use the importance indicator to select more freely from the total
list of cues. While the first approach led to elimination of cues also eliminated by the
sensitivity based method of section 9.11, the second approach was used in this section. In
table 9.22, a summary of the cues with the highest importance indicator- of each diagnostic
area is shown-'.

I The only exception to this rule was the selection of AIR as an important indicator. This cue had a low
importance indicator, but it had high sensitivity and was included in the models of section 9.1 and 9.2.
2 See chapter 5 for explanation of the importance indicator.
3 The table is an exhibit of table 5.3.
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Diagnøstic Priority 1 Priority 2 PriorityJ Priority 4 Priority 5
area (cumm.prop. ) (cumm.prop. ) (cumm.prop.) (cumm.prop. ) (cumm. prop.)
Profitability ROI PROMARG ROE OPMARG OPROF

(19.6) (33.3) ,(42.7) (50.4) (58.0)
Financing LTINV LTL BER STL ICOV

(19.0) (29.6) (38.8) (46.8) (54.3)
Liquidity CURR ACID CHLIK CASH APT

(19.6) (37.7) (46.7) (52.9) (58.7)
Leverage BER EQUITY ICOV ROE ROI

(50.1) (61.6) (66.2) (70.7) (73.5)
Table 9.22 FIve most Important cues of each diagnostic area (cumulative proportion of cues
indicated in parentheses)

From table 9.22, we found that the five selected indicators in each diagnostic area represented
over 50 % of all indicated cues. For "leverage", BER completely dominated the other cues.

Most of the cues were from the ratio section of the stimulus material. For LTL and STL, most
subjects had indicated a relationship between the two indicators. This was interpreted as if the

subjects had missed a ratio computed as LTLISTL or STLIL TL. Some of the cues were
multiple cues or cues indicating closely related concepts. The high correlation of such cues

was undesirable in both connectionist models and linear models. An example of two such
cues was CURR and ACID. Only one of these cues was selected.

To make the model comparable to the models of section 9.1, the number of cues should be
roughly similar to the number of cues used in these models. For "profitability", PROMA and
OPMA were closely related indicators. Selecting ROI, PROMA and ROE represented a
selection of the 42.7 % most indicated "profitability" cues. For "financing", a ratio of
STL/LTL was computed. BER was selected as the only indicator of the "leverage" concept,

and the selection of LTINV, LTLISTL and BER represented 46.8 % of the most indicated
"financing" cues. For "liquidity", CURR and ACID were closely related, and selecting one
should be sufficient. Selecting CHLIK in addition, implied selecting an indicator not of ratio
scale, but a total of 46.7 % of the indicators of "liquidity" was then represented. For
"leverage", selecting BER represented 50.1 % of the indicators used, and should be sufficient.

Consequently, a model with 15 input units was set up. 14 of these were from 7 ratios of the
two consecutive years, the last was a change indicator; CHLIK.

The standard cross validation procedure described above was followed with similar
parameters as in section 8.1 and 9.1. The performance results of the simulations are shown in
tables 9.23 and 9.24.
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Iterations: 5000 10000 15000 20000 25000 30000
Model:'
HIDO 0.219 0.220 0.226 0.229 0.234 0.235
HID2 0.241 0.209 0.200 ,0.197 0.201 0.203
HID4 0.202 0.203 0.205 0.211 0.214 0.217
HID6 0.189 ·0.202 0.203 0.206 0.209 0.215
HID8 0.191 0.196 0.197 0.201 0.203 0.208
HIDI0 0.201 0.193 0.196 0.200 0.205 0.206
HID12 0.196 0.201 0.200 0.206 0.208 0.208
HID14 0.199 0.197 0.199 0.207 0.208 0.212..Table 9.23. Mean squared error (MSE) of the level diagnosis m a combmed
subject selected model (N=75)

Iterations: 5000 10000 15000 20000 25000 30000
Model:
HIDO 0.357 0.350 0.351 0.355 0.359 0.363
HID2 00476 0.371 0.347 0.342 0.341 0.340
HID4 00422 0.345 0.328 0.332 0.342 0.340
HID6 00400 0.337 0.342 0.343 0.344 0.350
HID8 0.390 0.344 0.337 0.334 0.333 0.336
HIDIO 0.395 0.342 0.338 0.344 0.341 0.349
HID12 0.364 0.343 0.336 0.347 0.348 0.349
HID14 0.369 0.338 0.340 0.354 0.350 0.352

, ,

Table 9.24. Mean squared error (MSE) of the trend diagnosis m a combmed
subject selected model (N=75)

The model generally showed results comparable to the results of chapter 8 with a minimal

MSEs at 0.189 for level diagnosis and 0.332 for trend diagnosis. Tests of the correlation of
SE with targets and distance from mean targets showed a pattern similar to the models of

chapter 8. Consequently, selection by cue importance did not give an improvement in
performance results when compared to the results of chapter 8. In chapter 8, the models

"determined" cue importance by adjusting their weights to relevant input units. The selection
by subjects' cue importance indicators did not give a model with better generalisation results

than the "self selection" of cues performed by the models of chapter 8.

9.4 Conclusions

A main conclusion of chapter 8 was that the number of weights was too large to be properly
set by the relatively smalliearning sample of this study. To overcome some of these problems
and to improve the generalisation properties of the models, weights were reduced by
elimination of input units. Two procedures were explained, of which the quantitative
approach was the most successful. A procedure based upon selection by using subjects' cue
importance indicators did not prove significantly better than the original models of chapter 8.
However, the sensitivity analysis based procedure gave models with significantly better
performance results.
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The procedure of chapter 8 was followed, and no other parameters than the number of input
units were changed. The performance was significantly better for the constrained models

than for the models of chapter 8. Generalisation was improved by weight reduction in the
model. In our models, weight reduction was done by sensitivity analysis, but automated

weight reduction during learning may have given similar results (Weigend et al., 1991).

Furthermore, it was shown that the fit of the connectionist models was significantly better
than any of the 12 benchmarks provided in chapter 6 or in sections 8.1 and 9.1, whenjudged
by the recommended measure, cross validated average squared error (White, 1990), for
models of both level and trend diagnosis. These findings strongly supported the proposition

PI of chapter 4.

Furthermore, it was found that the connectionist models wi~ hidden units performed
significantly better than the models without hidden units. The comparisons between the
performance of the two sets of models were done using the same estimation methods l. Thus,

the improvement in performance was attributed to the internal representations formed in the
hidden units. These findings generally supported proposition P2 of chapter 4.

From the simulations, combined models were found superior to the separate models. It
seemed that level diagnosis was used as a "hint" to form relevant representations for trend
diagnosis and vice versa within the same model.

In addition to these findings, some observations of relevance to connectionist modelling
research were made. As expected, minimum average squared errors were found for a higher
number of learning iterations in the constrained models than in the models of chapter 8. Thus,
overfit did not occur so early. Furthermore, the reduced complexity gave better performance,
supporting our suggestion in chapter 8 that stopping learning and reducing the number of free

parameters were not equivalent methods for increasing model performance. Finally, the

sensitivity based method of input unit elimination applied here, was found more successful in
increasing performance than using subjects' indications of important input variables.

The representations of the best constrained and combined models were analysed following a
procedure similar to the one used in chapter 8. However, in this section we took the analysis
further by using separate cluster analyses for each set of models, and combined these analyses
with Hinton diagrams. Furthermore, we selected some representative models, and analysed

these using cluster analysis of the hidden unit output space and plots of nonlinearity.

l Learning rule and procedure.
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The final representations found in the constrained model were different from the
representations in the models of chapter 8. As expected, more local hidden units were
developed. Among the local units, we did not find that every model used common hidden

units as the models in chapter 8 did. In the smaller models, all local hidden units now had
either a level or a trend orientation. Cluster analysis showed that the two groups of units had

very different weight patterns. Two types of level-oriented and trend-oriented hidden units

were found, reflecting the two functionally different ways of organising the small models.

Some connectionist models developed level-oriented units also representing common aspects

of level and trend diagnosis, whereas the opposite situation was found for the other type of

small models.

In models with more than 2 hidden units, the additional units did not improve the
performance of the model, but their functional organisation differed somewhat from the
smaller models. Generally, the additional units were somewhat more distributed, and some
"miniatures" of the local hidden units were found. In some models, a special type of unit
presumed to detect "yesterday's situation" was found. This unit had a weight pattern to the

output units similar to the "difference" detectors of chapter 8. However, the most interesting

organisation of the larger models was illustrated by the analysis of the model C3. This model
had three hidden units representing the common aspects of the level and trend diagnoses by

one unit, the unique aspects of the level diagnosis in one hidden unit, and the unique aspects

of the trend diagnosis in the last hidden unit. The common hidden unit's output was an

approximately linear function of a selected set of financial cues from the last of the two
consecutive years. The specialised level-oriented hidden unit's output was a highly nonlinear

function of the same cues, whereas the output of the specialised trend-oriented hidden unit
was an approximately linear function of the change in a selected set of financial cues. Using

these representations, a level diagnosis was formed by linearly combining the common and
specialised level-oriented hidden units' outputs. Trend diagnosis was formed by linearly
combining the common and the specialised trend-oriented hidden units' outputs.
Consequently, the abstracted stimulus dimensions represented by the hidden units were

complex.

Because the connectionist models with two hidden units compressed the representation of two
of the hidden units in the model described above into one hidden unit, their representation

was even harder to interpret. When investigating the nonlinear outputs of these hidden units,
we found that the units showing nonlinear outputs, were always level-oriented. However,
some of these units also activated the trend diagnosis unit. The approximately linear outputs
of the trend-oriented hidden units were also used either to activate the level and trend

diagnosis, or only to activate the trend diagnosis units. Thus, we concluded that two
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functional organisations were used. In one organisation, level diagnosis was indirectly l a
nonlinear function of the value of a selected set of financial cues from the last of the two
consecutive years and an approximately linear.function of the change in the value of a
selected set of financial cues. Trend diagnosis was indirectly an approximately linear function
of the change in the same set of financial c~es. In the other organisation, trend diagnosis was
indirectly an approximately linear function of change in a selected set of cues and a nonlinear
function of the value of a selected set of financial cues from the last of the two consecutive

years. Level diagnosis was now only a nonlinear function of the value of the same selected

cues of the last of the two consecutive years.

As in chapter 8, we concluded that the hidden units did not specialise on diagnostic concepts

or diagnostic areas in the way expected by theory. To further elaborate on this conclusion, we

tested the performance of a model with the connections restricted to impose the expected
functional organisation of diagnostic task. The performance results of this model are shown in

table 9.25.

Iterations: 5000 10000 15000 20000 25000 30000
Model:
Restricted level 0.466 0.182 0.197 0.198 0.197 0.198
Restricted trend 0.651 0.377 0.345 0.349 0.346 0.347
Table 9.25. Mean squared error (MSE) of the level and trend diagnoses In a
constrained and restricted model (N=75)

From table 9.25, we found that the performance of the restricted model was quite comparable
to the corresponding restricted model of chapter 8. The correlation of errors and targets

followed the general results found in both chapter 8 and section 9.1. To illustrate the

restricted model, a Hinton
diagram of the weights of
one version of the models

is shown in figure 9.9.

The weights of figure 9.9
were quite different from
what should be expected
from theory. Hidden unit l
worked as a trend-oriented
common hidden unit.
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FIgure 9.9 HInton diagram of weights In a constrained and
restricted connectionist model

Hidden unit 2 was so far
considered to be a

"financing" indicator. Hidden unit 3 was a level-oriented unit, possibly detecting "liquidity

l By the tenn "indirectly", we mean that the diagnoses are functions of the functions specified in the text.
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level", and hidden unit 4 computed a reversed difference in BER 1 and BER2, and inhibited
both the level and trend diagnosis units. In chapter !e tested the relationship between the
hidden unit outputs and the responses collected on tile particular diagnostic variables from the

subjects. A similar test was performed here, and the correlations between hidden unit outputs
and subjects' diagnostic area responses are shown in table 9.26.

Diagnostic area HIDDENI HIDDEN2 HIDDEN3 HIDDEN4

PROFLEVEL 0.742** -0.091 0.105 -0.464**
PROFfREND 0.826** 0.017 0.152 -0.298**
FINLEVEL 0.411 ** -0.254* 0.561 ** -0.614**
FINTREND 0.591 ** -0.204 0.379** -0.529**
LIQLEVEL 0.223 -0.241 * 0.719** -0.562**
LIQTREND 0.380** -0.225 0.431 ** -0.506**
LEVLEVEL 0.420** -0.376** 0.475** -0.898**
LEVTREND 0.662** -0.163 0.297** -0.659**,Table 9.26. The constramed and restncted model s correlations of hidden unit
outputs with composite judge diagnosis' of the four diagnostic areas
"profitability", "financing", "liquidity" and "leverage" for level and trend
respectively (** and * indicates significantly different from O at a=O.Ol and
0.05 respectively) (N=75).

From table 9.26, we found that the correlation pattern did not correspond to the pattern

expected from theory. Both hidden unit 1 and 4 operated as detectors of a "common factor".

Hidden units 2 and 3 detected all but "profitability", and despite the restricted connections in
the model, the correlation with the corresponding diagnostic area was not particularly high
when compared across diagnostic areas. As in chapter 8, it seemed as if the restricted model

tried to implement the functionality also found in the unrestricted connectionist models of
section 9.1. The functional organisation of the task developed in the connectionist models by

learning still seemed superior to the one imposed by theory.

Consequently, the representations of the constrained connectionist models did not correspond
well to theoretical concepts in financial diagnosis. Rather, they corresponded more to

complex and coarse detectors of the common and unique aspects of the diagnostic concepts

"level" and "trend". The representations in the constrained models were more complex than

the representations of the models in chapter 8. Thus, analysis and interpretation was more
difficult. The complex concepts represented in the constrained models were implemented in
variables representations. Even though these variables were both linear and nonlinear, they
had response patterns more similar to a variable than to a feature detector.

Judging the cognitive relevance of these representations was difficult, but the rule-plus-
exception interpretation of the models in chapter 8 previously found to have cognitive
relevance did not give an accurate description of the behaviour of the models in this chapter.
As in chapter 8, further interpretation of the representations should be made with reference to
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the molar behaviour of the models. Two alternatives were found useful in chapters 8 and 9. A

rule-based interpretation was used for the models of chapter 8, whereas both rule-based and
prototype-based interpretations were used in this chapter.

Using a rule-based interpretation, we could describe very roughly what the simplest of the
constrained small connectionist models did. By simplifying, the functional organisation can
be described in the following way: One hidden unit detected a general change in most of the

financial cues over the two consecutive years. This change was combined linearly to form the
diagnosis of both level and trend. Another hidden unit focused on the cue values of the
second of the two consecutive years for most of the financial cues. The response of this
hidden unit was nonlinear. It was roughly linear in the low to moderate range, but highly
nonlinear for high and extremely high cue values. The response of this hidden unit was used
to reduce and enhance the value of the level diagnosis response unit, but extremely high cue
values did not add linearly to the level diagnosis. Thus, the simplified heuristic implemented

by these models were: Test if there is a positive change in financial cue values over the two
consecutive years. If so give a correspondingly good preliminary level and trend diagnosis.

Check the values of a broad range of financial cues in the second of the two consecutive

years. If they are generally low, adjust the level diagnosis down as a function of the value of
the financial cues, and retain the trend diagnosis. If they are moderate, retain both preliminary
diagnoses. If they are high or extremely high, retain trend diagnosis and adjust the level

diagnosis as a nonlinear function of the cue values somewhat upward.

Whether this heuristic had cognitive relevance was not definite, but if viewed in the light of a
bounded rational (Newell & Simon, 1972) diagnostician, it certainly seemed to reduce the
demands on cognitive information processing capacity.

A prototype-based explanation of the connectionist models could also be made. When cluster
analysing the hidden unit outputs of a model with three hidden units, the different stimulus

patterns were placed in,different clusters depending on their hidden unit output patterns. Eight
different clusters were identified in figure 9.8. The output of the hidden units could, when
they were combined, be interpreted as if they computed the similarity of the stimulus patterns
to the centre of each of these clusters. Thus, the cluster centres could be interpreted as

prototypes. Some interpretable prototypes could be identified, such as the "bankruptcy firm",
the "bad, but promising firm", or the "good, but with alarming trend firm". It seemed from

this analysis that using prototype theory terminology was a second fruitful way to interpret
the behaviour of the connectionist models .

. Consequently, the representations of the connectionist models could be explained by studying
the internal representations formed in the hidden units of the models. However, these
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representations were often difficult to interpret directly in terms like strategies, heuristics,
rules, variables, concepts, prototypes or classes, previously shown to have cognitive relevance
in either competence or behavioural theory of financial diagnosis, or in general classification

theory. However, the molar behaviour of the connectionist models could be interpreted using
several. of these terminologies, Two were applied here; the rule-based and the prototype-

based, andthese interpretations resembled quite closely similar explanations given in

production system terminology and in prototype theory terminology.

In addition to these findings on the representations of the constrained connectionist models,

some other observations of relevance to connectionist modelling research were made. The
weight pattern of the trained constrained connectionist models varied, but compared to the

models of chapter 8, weight initialisation did not have the same effect. For most constrained
connectionist models, a small number of local solutions to the minimisation problem was
found. These local solutions were represented by a similarly small set of local hidden units.
The use of distributed hidden units was considerably reduced in the constrained models, but
despite this reduction, the complexity of the local hidden units was very high.
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Chapter 10. Discussion

In this study, attempts were made to follow many of the principles traditionally applied to

studies in the "context of justification". To give some examples, propositions were developed,

an experimental research design was set up to provide valid measures (,f stimulus-response
data, a comparative perspective was applied to evaluate connectionist ni. .iel success, and
statistical measures and cross validation procedures were used to evaluate propositions.

Despite these attempts, connectionist modelling is research still in the "context of discovery"

(see Seidenberg, 1993). In the evaluation and discussion of the conclusions of this study, the
exploratory nature of connectionist modelling should be kept in mind.

The Cook and Campbell (1979) lists of threats to validity are often used as a basis for a

discussion of the conclusions in administrative science studies. There are several difficulties
with this approach in the present study. First, the framework of Cook and Campbell (1979)
was primarily developed for evaluation of causal studies, and this study is exploratory in
nature. Second, many of the methods used to establish that Cook and Campbell's (1979)

validity threats are insignificant, are based upon the application of linear methods. To take a
few examples, reliability is often documented using correlational measures or other linear

methods such as principal components analysis. Construct validity is often tested using linear

measures of convergence and discriminant validity. In fact, when these methods are used to

develop measures, linear models will benefit over alternatives even by the procedure of
measurement development. Despite these difficulties, the framework of Cook and Campbell
(1979) is carefully applied here to evaluate the empirical parts of the thesis. However,
modification of the framework is made to organise the discussion of simulations and results.

Before turning to the discussion of conclusions, section 10.1 summarises the research efforts
and conclusions documented in previous chapters. In section 10.2, we discuss and evaluate
our main conclusions. Some theoretical, methodological and practicalimplications of our

research effort are presented in section 10.3, and in section 10.4 suggestions for further
research on connectionist models of financial diagnosis are made.

10.1 Summaryand conclusions

In chapter 2, we showed how financial diagnosis has been studied from three different
perspectives; the judgement modelling, the cognitive, and the predictive perspective. Despite

their different foci and modelling methods, our understanding of the financial diagnosis task
benefited from this theoretical triangulation. Somewhat surprising was the absence of
applications of cognitive classification and categorisation theory to financial diagnosis.
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Classification theory has been applied to other diagnostic tasks with considerable success
. .

(e.g. Weber, Bockenholt, Hilton and Wallace, 1993). Consequently, traditional and
contemporary theories of classification were re~iewed in chapter 3, and a model of financial
diagnosis based upon a connectionist model of classification, was suggested in chapter 4.
Furthermore, propositions on the relationship between this model and traditional models of
the three approaches to financial diagnosis were made. The first proposition, Pl, stated that
connectionist models of financial diagnosis should show better fit than benchmarks of
traditional models. The second proposition, P2, stated that the improved fit could primarily be
explained by the ability of the connectionist models to build internal representations, and the

third proposition, P3, stated that these internal representations should have cognitive

relevance.

To evaluate these propositions, a financial diagnosis experiment was set up. 108 subjects
participated in the diagnosis of 75 randomly selected small and medium sized firms. Full

financial statements and selected ratios of two consecutive years were used as stimulus
material, and several measures of diagnostic responses were collected. The treatment plan
resulted in 324 diagnoses of the 75 firms,. averaging 4.32 diagnoses per firm. To create the
stimulus-response pairs representing learning and test samples of the connectionist model,

composite judge diagnoses were computed.

A simulation design was developed that accommodated resampling methods and cross
validated measures to evaluate the performance of the connectionist model. Furthermore, a
number of benchmarks were developed using traditional methods of the judgement modelling
approach to financial diagnosis.

In chapters 7, 8 and 9, the propositions of chapter 4 were evaluated using three simulation

experiments with varying stimulus and response representations. The first simulation used a
stimulus representation consisting of 17 selected financial ratios, of which 15 were provided
with values from two consecutive financial statements". Diagnostic response was measured
by a bankruptcy classification variable. The second simulation used the same stimulus

representation as the first, but diagnostic responses were measured by composite judge
assessments of level and trend diagnoses of the financial situation. In the third simulation, the
diagnostic response representations of the second simulation were used, but sensitivity based
measures were used to select a constrained set of stimuli. Generally, model fit was improved
from simulation one through simulation three. The main conclusions that could be drawn
from the simulations should be related to the propositions made above, but a set of

l Thus, 32 independent variables were used.
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conclusions with relevance to connectionist modelling in general could also be drawn, and

have been summarised in the concluding sectionsof chapters 7,8 and 9.

Strong support was found for proposition Pl. The connectionist models showed significantly
better fit than traditional benchmarks when evaluated by cross validated average squared
error. Furthermore, analysis of error distributions revealed a smaller standard deviation of
errors and explainable outliers for the connectionist models. In particular, the model with
constrained stimulus representations and composite judge diagnoses showed favourable fit to

the financial diagnostic data.

For the connectionist models showing significantly better fit than the benchmarks, tests were
made to evaluate proposition P2. In these tests, significantly better fit was found for the

connectionist models with hidden units than for the models without hidden units. Equivalent
initial weights and parameter settings Were used for both types of models, and the same

learning rules were applied. Furthermore, overfit was controlled by the optimal stopping point
rule for-both types of models. Consequently, it could be concluded that the difference in

performance was explained by the internal representations of the hidden units. These findings
supported proposition P2.

Evaluation of proposition P3 was much more difficult. The representations built by the
hidden units of the connectionist models were expected to consist of derived stimulus
dimensions reflecting different diagnostic concepts, such as "profitability", "financing",
"liquidity" and "leverage". The theoretical importance of these concepts documented in
chapter 2 and discovered in factor analysis studies of financial statement data (Gombola and

Ketz, 1983; Pinches et al., 1973), founded such expectations. However, completely different

and much more complex representations were built by the hidden units. Different internal
representations were developed when stimulus and response representations were changed. At

first sight, the internal representations also seemed sensitive to initial weights. These findings

complicated the analysis and interpretation of the representations. However, a method was

developed that made analysis of internal representations possible across models with different
initial weights, but differences in internal representations resulting from different stimulus
and response representations had to be interpreted separately for each model.

The most typical representation developed by the models with the large stimulus set consisted
of a local "common" hidden unit and one or several more distributed hidden units. Both these
representations were in the "variables" form. The way these hidden units formed the financial
diagnosis could be explained by using a rule plus exception heuristic. Empirically, level and
trend diagnoses were strongly correlated, and a rule stating that level and trend diagnosis
values were similar and depended partly upon the values of financial statement cues from the
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most recent year and partly upon the change in financial statement cue values, was
implemented by the "common" hidden unit. Exceptions to this rule were implemented by the
distributed hidden units. The rule plus exception heuristic has been proposed by several

authors (e.g. Nosofsky, Palmieri & McKinley, 1994) as a cognitive model of classification.

The representations developed by the models with the constrained stimulus set consisted of
two or three local, and no, one, or some distributed hidden units. The distributed hidden units
were not shown to improve model performance. For networks with-two hidden units, the
"common" hidden units previously found in the larger networks had developed an increased
focus on either level or trend diagnosis. The remaining unit was also local, and focused
exclusively on either trend or level diagnosis respectively. Of particular interest were the

networks with three hidden units with one "common", one trend independent level-oriented,
and one level independent trend-oriented hidden unit. The representations of the local hidden
units were still of the "variables" form, even though all level-oriented "common" and unique

hidden units, now were nonlinear and highly nonlinear, respectively.

A rule-based interpretation of the molar behaviour of the small models suggested that one
hidden unit still implemented the rule that level and trend diagnoses were correlated. If this
unit was trend-oriented, the remaining hidden unit was used to adjust the level diagnosis

nonlinearly. Thus, a linear rule and a nonlinear regulator were used. A rule-based
interpretation of the networks with three hidden units was simpler, suggesting one unit
implemented the rule that level and trend diagnoses were correlated. The two resulting hidden
units were used to adjust the diagnosis given by this rule linearly for the trend-oriented hidden
unit, and nonlinearly for the level-oriented hidden unit. An elaboration of the rule-based
interpretation was given in section 9.4. This representation constituted a more complex rule-
and-adjustment heuristic than the rule-plus-exception heuristic found in the connectionist
models of chapter 8. The cognitive relevance of this representation was open for discussion,

but compared to a functional division of the diagnosis into diagnostic areas later to be

combined into a final diagnosis, it represented an interesting simplification. For subjects of
limited cognitive capacity (Newell & Simon, 1972), a heuristic detecting the change in the
values of two financial cues and an adjustment based on the value of the most recent cues,

certainly reduces the strain put on cognitive resources.

Furthermore, the improved performance of the combined and constrained connectionist
model could be explained by the "hints" given to each diagnostic response variable from the
other. The representations developed in a model of level diagnosis were more favourable
when "hints" of the trend diagnosis were given to the same model, and vice versa. This
finding was exclusive to the constrained models, and illustrated that model representations
showed sensitivity to both correlated stimuli and correlated responses.
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. .
In addition to a rule-based interpretation of the molar behaviour of the connectionist models,

a constrained connectionist model's behaviour ~ould be interpreted using prototype

terminology. By using cluster analysis on hidden unit output space of a selected model with

three hidden units, we showed that the behaviour of the model could be interpreted as if

similarity to a set of prototypes was computed. Examples of the different prototypes were; the
"bankruptcy firm", the "bad, but promising firm", or the "good, but with alarming trend firm"

prototypes. Consequently, interpretation of the behaviour of connectionist models could be
made in terms used in several cognitive theories of classification, but the direct interpretation
of the representations formed by hidden units in such terms, was difficuI.t.

10.2 Discussion

A major threat to the validity of our conclusions is lack of validity in the collected stimulus-

response data pairs. The empirical validity of the data can be evaluated using the framework
of Cook and Campbell (1979). This evaluation is organised in a discussion of the statistical

conclusion validity, the internal validity, the construct validity and the external validity of the

empirical parts of the study. However, more threats to the validity of our conclusions are

related to the simulation design and to the models used to operationalise the proposed theory.
These threats are mostly threats to statistical conclusion, construct and external validity, and

are discussed separately. Finally, we discuss the validity of our conclusions in general.

Empirical validity in this study means that the stimulus-response pairs used in the

simulations were valid financial diagnoses. Of the traditional threats to statistical conclusion
validity, lack of reliability and small sample sizes were most relevant. To secure reliability,
the instrument was pretested, the stimulus situation was concentrated and treatments were
given simultaneously to all subjects. In general, small sample sizes also threaten validity, but
as shown in chapter 5, there was a close relationship between stimulus sample size and
subject sample size in this study. More financial diagnoses could only be obtained at the cost

of reduced controlover the individual variation among diagnosticians. Thus, we refer to the
considerations made on this subject in chapter 5.

Internal validity threats, such as history and maturation, constituted relevant threats in our

study. However, most of these threats were controlled by randomisation. For example,
maturation effects occurring as a consequence of repeated stimuli, were controlled by
randomising the order of the stimuli so that some subjects diagnosed a firm early, while other
diagnosed the same firm late during the experiment. The similar principle was used to control

. most threats to internal validity, such as test effects, instrument variation, mortality, imitation
and compensation. This procedure may have introduced random errors in our data, but the
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principle of avoiding bias at the cost of increased random errors was followed since these
errors would only strengthen significant findings.

Similar to other threats to internal validity, the interaction between treatment and selection

was controlled by randomisation. However, careful considerations were made of the
relationship between internal and external validity before the homogeneity of the subject
sample was accepted. A less homogeneous sample could weaken the internal validity, but

strengthen the external validity. Since the propositions of this study were related to modelling
properties of connectionist models and not to the generality of the final models, internal
validity considerations were regarded most important. Thus, the homogeneity of the subject
sample serves to strengthen internal validity in this study. Furthermore, there were no

findings in financial diagnosis research indicating that the homogeneity of the chosen subject
sample was in obvious favour of our propositions. Except for these considerations, the
internal validity obtained by the experimental design strengthened the assumption that the
stimulus-response pairs produced, were valid.

Whether or not these valid stimulus-response pairs were valid financial diagnoses further
depends on the construct validity of the study. Construct validity is three-fold. To secure

construct validity, theoretical concepts must be clarified properly, they must be

operationalised properly, and the relationship between them must be operationalised properly.
Of these presumptions, the first two are of primary relevance herel.

Proper clarification of theoretical constructs was attempted by the reviews of chapters 2, 3

and 4. To simplify, clarification of relevant stimuli and responses was attempted by the

review of financial diagnosis theory in chapter 2. Different theories clarifying the relationship
between stimuli and responses in classification tasks in general and in financial diagnosis
tasks in particular were reviewed in chapters 3 and 4. Thus, lacking theoretical clarification of

concepts was hopefully avoided by the weight put on theory reviews.

Using the reviews as theoretical bases, stimuli and responses of the financial diagnosis task
were operationalised in the stimulus material and response measures presented in chapter 5.
However, several threats to construct validity are relevant. Mono-operational bias was
reduced by multiple operations of both treatments and responses. However, mono-method
biases represented by the form of stimulus presentation and response measures are relevant

threats. The format, order and content of the stimulus material were carefully developed to

match a realistic set of information given in financial diagnosis tasks, and written form of this
material is traditional. Actually, giving the stimulus set in other forms could itself have

l Operationalisations of the relationship between stimuli and responses were done by model and are evaluated
separately below.



265

threatened construct validity (see Moriarty, 1979). To obtain realism in the stimulus
. .

manipulations, real financial statement information was used. To avoid mono-method bias in
the response measures, both predefined ordinal response scales and the subjects' own

linguistic terms were used as measures. Both measures were used in the simulations of part
IV. To further avoid effects resulting from different response styles and individual
measurement bias, composite judge diagnoses were used. These were designed by applying
composite judge rules, or by computing composite judge averages of the response IT): .xures

as explained in chapter 5.

A danger in using real financial statement stimuli and random allocation of this stimuli to

subjects, was the danger of insufficient manipulation. However, manipulation checks were

performed by analysis of variance showing sufficient variation on both the level and trend
diagnoses across firms. Hypothesis guessing would most likely give more extreme responses,

but no information that this was a problem was found, and prior probabilities of diagnostic
classes were not given. Furthermore, no indication was found that hypothesis guessing, if
present, would consistently favour connectionist models.

The homogeneity of subjects represents a major threat to external validity. However, several
actions were taken to investigate and control for this threat. First, previous research (see

Bonner & Pennington, 1991) had shown that financial diagnosis was likely to be a task where

small differences in task behaviour could be found between experienced and less experienced
subjects. Second, our subjects were graduate students with financial diagnosis experience, the
majority through professional experience, and a small fraction through prior education. Third,

a homogeneous sample of more experienced subjects may also have represented a threat to
external validity. To secure internal validity, some homogeneity of the subject sample was
desirable, and it was beyond the purpose of this thesis to generalise the stimulus-response

relationships obtained to more heterogeneous populations. However, it was a purpose of this

thesis to generalise the conclusions on propositions PI, P2 and P3. Of these, no prior

assumptions could be made that connectionist models with hidden units were favourably
sensitive to the homogeneity of our sample. However, the generality of the connectionist
model representations is in principle threatened by the homogeneity of our sample, and it is
not obvious that the heuristics implemented by the connectionist model representations
generalise to, for example, expert subjects. To establish whether this is the case or not, further

research is required.

The second way homogeneity threatens external validity in this study is caused by the small
and medium sized firms used in the sampling frame for the randomisation of stimuli. Again,

after carefulconsideration of the relationship between internal and external validity, we
concluded that internal validity would be strengthened by the homogeneity, while external
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validity would be weakened. As an example, subjects' firm recognition, a threat to internal

validity I,was considered reduced by using small and medium sized firms. The gain from
reducing internal validity threats due to homogeneity of firm size, was considered more
important than the small loss in external validity. Besides, with manipulation checks we
showed that stimulus variation was sufficient. In general, the homogeneity of subject and

stimulus samples in this study reduces the generality of our conclusions somewhat, but since
external validity presupposes internal validity, the relevant generality of our conclusions
must be considered high.

Interactions between situation or time and treatments represented inescapable, but minor
threats to external validity in this study. Actually, obtaining realism in the diagnostic situation
was a major goal in constructing the stimulus material, and time will always represent an
economic and historical context for financial diagnosis, reducing generality of the judgements

performed by the diagnosticians.

The methodological principle of using operationalisation by model, requires a special
discussion of relevant validity issues. Most of the validity issues of the simulation design

applied in this study are statistical conclusion, construct and external validity issues.

Statistical conclusion validity is threatened by inappropriate establishment of model
performance differences. Care must be taken not to violate statistical assumptions of

benchmark model methods and in the selection of performance measures. Since, for example,
multinormality and multicolinearity assumptions could easily have been violated in this
study, recommended methods for independent variable construction in benchmark models
were followed. In addition, a cross validation procedure was adapted and applied, making
statistical inference based upon learning sample data unnecessary. Similar procedures have
been recommended for modem nonparametric methods (Efron & Tibshirani, 1993). Statistical
inference was necessary in the evaluation of performance differences. A simple Hest of the
differences between means was applied, based upon the applicability of the central limit

theorem, even though cross validated squared errors were not normally distributed.

Traditional construct validity was evaluated above for the links of figure 3.10, going from
theoretical constructs to operations at the observationallevel. Three operationalisations

illustrated by short arrows in figure 3.10 have not been discussed; the operationalisations of
representational assumptions and the two implementations of stimulus and response
operations at the modellevel. These are all related to construct validity, but require special
discussion when operationalisation by model is used. To secure construct validity of the

I And consequently also to external validity.
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representational assumptions of connectionist theory, we stayed as close as possible to the

. .
original model implementation suggested by Rumelhart, Hinton and Williams (1986). Only
simulation parameters deviated somewhat, but these must always to be set relative to the data
set and size of the model. In addition, parameter settings were kept constant during all
simulations. Stimulus and response measures were only rescaled linearly to fit the transfer

functions of the connectionist models. No other change in the representational form of the
data was made to fit model operations.

Benchmark model operationalisations of the relationship between stimulus and response were

of the simplest form. These operationalisations took form either as linear transformations of
stimulus data weighted to form responses, or as direct linear weightings of stimuli to form
responses. Our proposition was that the mapping was more complex, and required internal
representations. Thus, the operationalisation of the connectionist model was an

operationalisation of the "relationship between putative stimuli and responses" l. Since this
relationship was cognitive, it was not directly observational. Consequently, evaluation of
model operationalisation and interpretation of developed representations are closely

interrelated. However, in the alternative proposed by information processing theory,

operationalisation is completely theory driven, and no posterior interpretation and evaluations

are allowed. As previously concluded, an advantage of connectionist models is that they are

open to validity evaluation based upon both responses and the internal representations

developed.

The external validity of the model simulations refers to whether or not there was something
unique with our subject data, simulation situation and time, that prevented similar simulation

results to be obtained in general. Again, the uniqueness of the data due to homogeneity of
subjects and stimuli seems the most relevant threat to such generalisations. Certainly, other
representations may develop if subjects using different representations and information
processes had performed the diagnoses, or if all diagnoses were of firms requiring different
diagnostic behaviour. The question is if it was something special with our subjects or stimuli

that prevents generalisation. If the intermediate abstractions are interpretable in the
"variables" form, for instance if they consist of variables representing traditional diagnostic
concepts, equally superior results should be obtained with similar connectionist models. If
exemplar based representations are used by the subjects, other models, such as ALCOVE,

may prove superior. The alternative model is also connectionist, and our model may be
modified to handle similar representations (see Kruschke, 1993b). There was no indication

available, a priori, that the homogeneity of subject or stimulus samples were consistently in
favour of our simulation results, or suggested different representations should be developed

l The terms are deliberately chosen to illustrate similarity to the "construct validity of putative causes of effects"
term used by Cook and Campbell (1979).
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that.our model could not implementl. In addition, the purpose of this study made us give
priority to internal validity of simulation design as well as to experimental design. However,
further investigation to increase the generality ~f simulation results and model representations
should be performed with other subject and stimulus samples.

Of the conclusions on the propositions in chapter 4, the conclusions on PI and P2 were

relatively decisive, and their validity has been justified above. The conclusions to be drawn
on proposition P3 seemed less obvious, and require further discussion. We generally applied
the principle that the internal representations were considered to have cognitive relevance if

they resembled intermediate abstractions, such as strategies, heuristics, rules, variables,

concepts, prototypes or classes, previously documented of relevance in either competence or
behavioural theory of financial diagnosis, or in general classification theory. The

hypothesised task partitioning into concepts or variable representations of different diagnostic
areas was not found. Neither were direct representations of prototypes or rules found. Rather,

the representations were complex variable representations of abstract concepts. These
concepts had not previously been identified in financial diagnosis research, but upon
investigation they seemed meaningful as concepts in simplified financial diagnosis.
Interpreted as heuristics, rules or prototypes, the operations on these representations could be
described at the molar level. As heuristics, they simplified the financial diagnosis task. The

question remains, however, whether the subjects actually applied the heuristics, or if the
heuristic only approximately described their behaviour. Unfortunately, this question remains
principally unsolved. Some investigation into the cognitive relevance of the heuristics may be
obtained by interviews and subjects' posterior introspection, but this is an issue for further
research-. However, there is a fundamental way in which the representations must be

considered cognitively relevant: As long as the representations are functional in the
description of subject behaviour, and they are based on a set of operating assumptions used to
describe similar cognitive phenomena, they must be considered cognitively relevant at a
molar level. As mentioned in chapter 3, the representations of any cognitive modeP should

• give functional explanations at a psychologicallevel, but we can not necessarily prove their
cognitive relevance at a lower level.

l A considerable number of cross validated and non-cross validated initial experiments were performed in our
project that are not reported in this study. Examples of these simulation experiments are tests of RBF-models
(Moody & Darken, 1988), tests of modular versions of the models (see Haykin, 1994, p. 473-478), auto
associative pre-processing of inputs (Chalmers, 1990), variations in binary and continuous stimulus and response
representations, models of individual general diagnoses and of diagnostic area response, models including
response error and measurement error representations, and models using modified learning rules (Jacobs, 1988),
just to mention a few. However, the most consistent results were obtained following the fairly simple principles
and formulations reported here.
2 As mentioned in chapters 1, 2 and 3, the methodological problems with such research were some of the
reasons why a connectionist approach was taken in this study.
3 And other models including latent variables or processes as well. For a similar discussion of models in
economics, see Cyert and Grunberg (1963).
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10.3 Implications

The main findings in this study have several theoretical and methodological, and some
practical implications. Before turning to these, we summarise some of the contributions made
by the research effort in this study.

In addition to the main conclusions drawn from the evaluation of propositions PI, P2 and P3,
summarised and discussed above, the research documented in this thesis contributes in
several ways. First, a theoretical framework was provided in chapter 2, integrating research

on the financial diagnosis task from several perspectives. Second, the application of

classification theory in general and connectionist classification theory in particular to
financial diagnosis, represents a new approach in cognitive accounting. The application of

connectionist classification theory to financial diagnosis further represents a new method for
studying cognitive phenomena in accounting, using the well known methodological principles

of judgement modelling research, while accepting the need for intermediate abstractions in

complex cognitive tasks.

The methodological contributions are represented by the experimental design used to provide

the stimulus-response data set for the connectionist models, and the simulation design
developed to evaluate these models. First, the controlled conditions of the experimental
setting represent a validity securing strategy, not traditionally applied in connectionist
research. Second, the realistic task context and stimuli used here are similarly important

validity securing techniques, not traditionally applied in classification research, whether
connectionist or not. Third, the randomisation of natural stimuli was an important premise in
creating task realism, but is also an important technique in eliminating internal validity
threats.

Among the most important contributions of the simulation design were the use of cross

validated performance measures and the method developed to provide these measures.

Furthermore, a method for simultaneous control of performance measures and complexity in
connectionist modelling was developed independently for our purpose, even though we

acknowledge that a similar procedure was developed simultaneously by Moody (Moody &

Utans, 1995). A sensitivity based method was combined with subjects' measures of cue
importance to further reduce connectionist model complexity. This method proved successful,
and has, to our knowledge, not previously been used in connectionist modelling.

In part IV, we showed how these measures and procedures could be used to develop and test
connectionist model fit against traditional models, and how different connectionist models
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could be compared. With cross validated measures, traditional statistical tests could be
applied to evaluate model performance differences 'formulated as propositions. To analyse the
representations of connectionist models, several known methods were applied (Hanson and
Burr, 1990), and new methods were developed to analyse several versions of a connectionist
model across different initial conditions. The use of cluster analysis techniques to investigate

common aspects of several versions of a connectionist model represents a new and promising
method.

10.3.1 Theoretical and methodological implications

The main findings and the other contributions referred to above, give implications of three
types; theoretical, methodological and practical. The theoretical implications relate both to the

application area of the study; financial diagnosis theory, and to the theory-supplying area of
the study; cognitive classification theory.

This study has shown that classification theory in general and connectionist classification
theory in particular, offer cognitive models of basic tasks in behavioural accounting, such as

financial diagnosis. However, the main implication for financial diagnosis research is that

these models can be used to unify judgement modelling research and methodology with
cognitive process research. With reference to the lens model of figure 2.1, connectionist

models can be used to build cognitive models of the right hand side of the lens model with the
use of methodological principles similar to judgement modelling methodology. Furthermore,
these cognitive models are open for posterior analysis and evaluation to determine the
cognitive relevance of their internal representations.

To cognitive classification research, this study has shown that practical task contexts in
accounting offer application areas of classification theory. We suggest this implies that
cognitive classification theory could fruitfully be applied to practical tasks with richer task
contexts than the "synthetic" classification tasks traditionally used. The discovery and

evaluation of internal representations in connectionist models of financial diagnosis in this

study illustrate how practical application areas require careful analysis and interpretation
when diagnostic relationships are not predefined by the experimenter.

The methodological implications of this study relate both to traditional experimental
methodology and to connectionist simulation methodology. The method for developing

internal representations in connectionist models is an indirect method of investigating
intermediate abstractions. This method can be applied to avoid the methodological problems
of the direct methods of information processing theory. Two methodological implications
stemming more directly from this thesis are the applicability of natural and of randomised
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stimuli: Particularly, when the stimulus material is complex and artificial construction of the
material represents a threat to validity, natural stimuli can be used. To secure realism in this
material, the selection can be controlled by a randomisation procedure. Here, we have shown
that this procedure is applicable in practice, and consequently, it may be applied in similar
experimental settings.

The method often used in connectionist simulations to test generalisation of model
performance is to hold a few preselected examples out of the learning sample! (Gluck &

Bower, 1988a, 1988b). Full cross validation is an extension of the hold-out principle,
traditionally considered to be too computationally demanding for practical applications. Here,

we have shown that the method is applicable in connectionist simulations of realistic tasks
when the sample size is not too large. Fortunately, cross validation has greater relevance

when the sample size is small. Thus, better measures of model fit can be obtained in
simulation studies in experimental psychology following the cross validation procedure. The

last methodological implication that can be drawn from this study is that connectionist models
are analysable across initial conditions using the cluster analysis techniques shown in part IV.
This represents an extension of previous cluster analysis techniques that have exclusively
focused on one version of a connectionist model (Hanson and Burr, 1990).

10.3.2 Practical implications

The support for the propositions Pl, P2 and P3 of chapter 4 found in this study, gives several

implications to practising financial diagnosticians, to financial diagnosis teaching, to financial

diagnosis expert systems applications, and to other practical task areas in accounting similar

to financial diagnosis.

The simple heuristics implemented by internal representations in our connectionist models-

stand in contrast to the rather complex diagnostic areas claimed to be functional by practising
financial diagnosticians. Accepting the claim that intermediate abstractions representing these

diagnostic areas are functional in diagnosis, the simplified heuristics applied by our models
may explain some of the diagnostic errors performed by practising diagnosticians. Itmay well
be the case that practising diagnosticians claim the functionality of complex intermediate
abstractions representing diagnostic areas, but actually apply simple heuristics in their own
diagnostic behaviour. The indirect methods applied in this study may have been an important
factor in revealing this discrepancy. As mentioned above, however, whether or not these
heuristics are generally applied by financial diagnosticians remains an unresolved question

requiring further research.

l So called "transfer" tests in experimental psychology (see Gluck & Bower, 1988a, 1988b; Shanks, 1992)
2 Even though the connectionist implementations are complex, the heuristics are simple.
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Since the subjects in this study were graduate students participating in an advanced course in
financial analysis, the findings have some implications for accounting teaching. First, the
implications above for practising financial diagnosticians also apply to students. Despite the
effort put on teaching analysis of diagnostic areas, simplified heuristics may still be applied
by diagnosticians, Second, the methods applied in this study for indirect cognitive mapping
may be applied during a financial analysis course to investigate how internal representations
change. Consequently, connectionist methodology complements other measures of
knowledge, and can be used in experimental settings that realistically simulate the tasks

financial analysis knowledge should be applied to.

A large area of practical knowledge modelling is the area applying the principles of cognitive

modelling, artificial intelligence and expert systems development to practical tasks.

Connectionist models have been proposed by several authors as providing the means to

indirectly elicit human knowledge (Hawley, Johnson & Raina, 1990; Liang, Moskowitz &
Yih, 1992). In this study, we have applied connectionist methodology to a task whereexpert
system applications are numerous'. Our research has two important implications for the

expert systems application area. First, connectionist models showed significantly better fit to
human financial diagnostic data than other well established traditional benchmarks. Thus,
connectionist models can competitively be applied to model human behaviour in financial
diagnosis tasks. However, this study has not established if artificial neural network
methodology is similarly superior to predictive benchmarks, even though research has been
reviewed that weakly supports this suggestion-. Consequently, connectionist methodology
should be applied in task contexts where human subjects have shown significantly better
performance than predictive models.

Second, this study has shown how careful analysis of the internal representations developed
in connectionist models can be performed, and that this evaluation should be an integral and

important part of the evaluation of model validity. Evaluation of model fit by performance

measures alone is not sufficient to establish the cognitive relevance of the internal
representations built by connectionist models. Thus, if connectionist models are applied by
expert systems practitioners, the principles developed in this study should be used to evaluate
the relevance of the proposed elicited knowledge. In this study, cross validation principles

were shown applicable in practice, and should be applied to establish if an observed model fit
is valid in general, or if it is only caused by favourable learning and test sample splits. When
applying these methods with care, connectionist methodology certainly represents an
alternative and indirect method of knowledge elicitation.

l See Klein and Methlie (1990) and chapter 2.
2 See chapter 4.
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Finally, the findings in this study suggest that connectionist methodology can be successfully
applied to practical tasks where human subjects have shown superior performance to formal
models, and to tasks where traditional knowledge elicitation methods threaten validity or are
costly.

10.4 Suggestions for further research

Two strategies can be used to suggest further research. One starts with the weaknesses and

limitations of this study, and suggests new research improving upon these. The other strategy
starts with the prospects of connectionist models demonstrated in this study and extends and

elaborates on these.

To increase and test the external validity of our findings, replications of the principal
methodology applied in this study with other, similarly homogeneous or heterogeneous
subject samples, other firms in the stimulus sampling frame, and in a different historical

context are suggested. Furthermore, replications of the principal methodology using other or

more specified task contexts, are suggested.

A second suggestion for further research is replicating the principles in this study on a larger

scale. First of all, increasing the subject and stimulus sample sizes is suggested. With a larger

subject sample, the validity of the composite judge diagnoses used in this study can be
evaluated. With a larger stimulus sample, more stimulus-response pairs can be obtained, and

the general validity of the cross validated measures of generalisation error used in this study
can be evaluated.

Finally, the generality of the internal representations of connectionist models discovered in
this study can be further investigated using methodological triangulation, such as

connectionist modelling, verbal protocol analysis and interviews, simultaneously.

These suggestions are all improvements in experimental and simulation methodology aimed
at answering the same research questions as those investigated here. Because of the
exploratory nature of the project, however, several new and interesting questions have been
generated by our research. Suggestions for further research based on these questions should
receive more attention.

A general question that can be raised from the research in our study is how formal and
"mathematical analysis can be used to explain similarities and differences between the
mapping functions implemented by connectionist models and by the traditional benchmark
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models, As an example, large differences were detected between "factors" represented by our
connectionist models and those extracted by principal components analysis. Similar topics are
currently investigated in the artificial neural network community (Cheng & Titterington,
1994), but should receive similar attention in cognitive connectionist modelling l.

The randomised stimuli used in this study can be applied to classification research, but the

control principles used in classification research can also be applied to accounting tasks. We
suggest that classification research should pay attention to realistic and practical task
contexts, and that research on such tasks can benefit both classification research and research

in the application area.

To behavioural accounting research, the success of connectionist models demonstrated in this
study suggests that similar models should be applied to other accounting tasks than financial
diagnosis. One question that is particularly interesting is if the favourable properties of
connectionist models demonstrated in this study generalise to other cognitive accounting
tasks. Another interesting suggestion stemming from our finding that connectionist models
and artificial neural network models can be combined within the lens model framework of

figure 2.1, is how this combination applies to accounting tasks. Judgement modelling studies
have a long tradition in behavioural accounting, and the lens model can both regain its

relevance and unify judgement modelling and cognitive studies with the application of

connectionist theory.

Several unanswered questions on financial diagnosis were also generated by our research. Of
special interest is how connectionist models' representations change as a consequence of
richer stimulus representations. One example is if the trend- and level-orientations shown to
be functional in some connectionist models in this study also extend to, for example,
"stability" representations if longer time series of financial data are presented to subjects and
models. Of similar interest is the question whether or not connectionist models show
superiority to traditional benchmark models when stimulus-response data on expert financial
diagnosticians are used. The preliminary suggestion stemming from our research is that this
will be the case.

No comparisons of model fit between information processing theory based models and

connectionist models have been made in this study, and differences in the two traditions make
comparisons difficult. However, connectionist methodology and traditional information
processing methodology can be combined. An interesting question is how the knowledge
elicited with information processing methodology relates.to the internal representations

l For an example, see the research on general recognition theory performed by Ashby and colleagues (Ashby,
1992).
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developed in connectionist models. Such a combination would represent a dual route

knowledge elicitation methodology.
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Appendix A. Summary of applications of neural networks to problems in business

administration.

Reference Application area l Model Benchmark RA2 Cog3
Altman, Marco & Varetto, 1994 Bankruptcy prediction'[ Backpropagation Discriminant N N

analysis
Baestens & van der Bergh, 1995 Stock index prediction Backpropagation Regression analysis y5 N
Barker, 1990 Financial analysis N/A None N N
Binks & Allison, 1991 Financial data recognition Backpropagation and None N N

Self-organizing map
Brown, 1992 Consumer schema modelling Constraint satisfaction None N Y

model
Chakaborty, Mehrotra, Mohan & Forecasting flour prices Backpropagation ARMA(l,l) and N N
Ranka,1992 AR(2)
Chang, Sheu & Thomas, 1993 Stock price prediction Backpropagation None N N
Coats & Fant, 1993 Recognizing financial Cascade correlation Discriminant N N

distress _jJ_atterns analysis
Collins, Gosh & Scofield, 1988 Emulation of mortgage Restricted Coulomb None Y n6

under-writing judgements Energy NN
Erxleben, Baetge, Feidicker, Bankruptcy prediction Backpropagation Discriminant N N
Koch, Krause & Mertens, 1992 analysis
Deng, 1993 Commercialloan evaluation Backpropagation None N N
Diamond, Shadbolt, Barac & Tactical asset allocation Backpropagation Weighted portfolio N N
Refenes, 1993
Dutta & Shekhar, 1988 Bond rating Backpropagation Regression analysis N N
Grudnitski & Osburn, 1993 Forecasting futures prices Backoropagation None N N
Grudnitski & Do, 1995 Forecasting futures prices Backpropagation None Y N
Hruschka, 1993 Estimating market response Backpropagation Regression analysis y7 N

functions
Hsu, Hsu & Tenorio, 1993 Predicting currency Supervised Clustering None N N

exchange rates Network
Hutchinson, Lo & Poggio, 1994 Pricing and hedging Radial basis function Regression analysis y8 N

derivative securities (Black- networks and and projection
Scholes test) backpr~ation pursuit

Jensen, 1992 Credit scoring Backpropagation None N N
Jung & Burns, 1993 Managerial problem Backpropagation None Y n9

diagnosis
Kamijo & Tanigawa, 1990 Stock price pattern Recurrent NN None Y nlO

recognition
Kimoto, Asakawa, Yoda & Stock price prediction Backpropagation Regression analysis Y N
Takeoka, 1990
Kim, Weistroffer & Redmond, Bond rating Backpropagation Discriminant, N N
1993 regression and

logistic analysis, ID3

1 In this summary, the author's terms indicating the application area are generally used.
2 Representational analysis is marked Y if the study contains an analysis of how the representations of the neural
network performs the vector mappings. Lowercase letters are used to indicate doubt about the classification.
3 Cognitive is marked Y if the study refers to the neural network as a cognitive model or compares it to a
cognitive model of the task performance. Lowercase letters are used to indicate doubt about the classification.
4 The authors use the term "corporate distress diagnosis".
5 Baestens and van der Bergh (1995) compute a "decisiveness" measure of input variables to evaluate the
sensitivity of the response to variations in these inputs.
6 However, Collins et al. (1988) state that: "The system was trained on several thousand previous underwriter
judgements and learned to mimic their underwriting skills".
7 Hruschka (1993) performs sensitivity analysis to investigate the input/output mapping of the neural network.
8 Comprehensive analysis of prediction errors.
9 lung and Burns, (1993) discuss the knowledge representation of connectionist systems in a systems
perspective, and make no comments on hypothetical resemblance to the cognitive system of humans.
10 However, the task of Kamijo and Tanigawa (1990) is a typical pattern recognition task performed by experts
in technical analysis.
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Kryzanowski, Galler &Wright, Stock return classification Boltzmann Machine None N N
1993
Liang, Chandler, Han & Roan, LIFOIFIFO classification Backpropagation Probit analysis and N N
1992 103
Malliaris & Salchenberger, 1993 Estimation of option prices. Backpropagation Black-Scholes N N
Martin-del-Brio & Serrano- Bankruptcy prediction l Selforganizing map None Y N
Cinca, 1993
Mehta, 1995 Exchange rate prediction Backpropagation None N N
Moody & Utans, 1995 Bond rating Backpropagation Regression analysis n2. N
Nottola, Condamin & Nairn, Company evaluation Backpropagation 103 y3 N
1992
Odom & Sharda, 1990 Bankruptcy prediction Backpropagation Discriminant N N

analysis
Piramuthu, Shaw & Gentry, Loan evaluation Backpropagation and Probit analysis and N N
1994 2. order modification 103
Poddig, 1995 Bankruptcy prediction Backpropagation and Discriminant N N

LVQ- analysis
Raghupathi, Schkade & Raju, Bankruptcy prediction Backpropagation N n4
1991
Rahimian, Singh, Thammachote Bankruptcy prediction Backpropagation, None N N
& Virmani, 1993 Athena and simple

perceptron
Refenes, Azema-Barac, Chen & Currency exchange rate Backpropagation None N N
Karoussos, 1993 prediction
Refenes, 1993 Exchange rate prediction CLS+ AR(4) and expo- N N

nential smoothing
Refenes, Zapranis & Francis, Stock price prediction Backpropagation with Regression analysis y5 N
1995 variations
Rehkugler & Poddig, 1991 Stock price prediction Backpropagation and "Naive prognose" N N

Boltzmann machine
Romaniuk & Hall, 1992 Evaluation of Feed forward network None n6 N

creditworthiness with cell recruitment
learning

Salchenberger, Cinar & Lash, Bankruptcy prediction 7 Backpropagation Logit model N N
1992
Schoneburg, 1990 Stock price prediction Adaline, Madaline, None N N

Simple perceptron and
Backpropagation

Sen, Oliver & Sen, 1995 Corporate merger prediction Backpropagation Logistic regression Y N
analysis

Sharda & Patil, 1992 Time series prediction Backpropagation AUTOBOX8 N N
Singleton & Surkan, 1995 Bond rating changes Backpropagation Discriminant N y9

analysis
Srivastava, 1992 Business loan evaluation Backpropagation None N nlO

Steiner & Wittkemper, 1995 Stock price prediction Backpropagation Regression analysis N N
Surkan & Ying, 1991 Bond rating Backpropagation None Y N

l Martin-del-Brio and Serrano-Cinca (1993) study bank classification and bankruptcy prediction.
2 Moody and Utans (1995) use sensitivity analysis to determine the importance of input units, and thus, study
the input/output mappings of corresponding variables.
3 Nottola et. al (1992) use !D3 to extract rules from the input to hidden unit response mapping.
4 However, Raghupati et al. (1991) state: "Various financial ratios may be giving some intermediate features
such as immediate financial health of the company, long-term financial health, recent revenue generating trends,
and others. Based on these higher-level features, the network may be arriving at a categorizing decision".
5 Refenes et al. (1995) perform sensitivity analysis to investigate the input/output mappings.
6 Romaniuk and Hall (1992) give examples of rules extracted from the neural network by "traversing" the
network. The exact method of this "traversing" is not explained.
7 Salchenberger et al. (1992) study failure of thrift institutions.
8 The specific ARIMA model selected by AUTOBOX is not reported in Sharda and Patil (1992).
9 Singleton and Surkan (1995) state that "Neural network success ........ suggests that neural networks may have
captured some of the judgement exercised by these analysts".
10 However, Srivastava (1993) states about the model: "It simulates humanjudgement and integrates it with
mathematical analytical tools". .
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Surkan & Singleton, 1990 Bond rating Backpropagation Discriminant N yl
analysis

Tam & Kiang, 1992 Bank failure prediction Backpropagation Discriminant N N
analysis, logistic
regression, KNN and
ID3

Tam,I991 Bank bankruptcy prediction Backpropagation See Tam & Kiang, N N
1992

Trigueiros & Berry, 1993 Modelling industry Backpropagation Discriminant Y n2
homogeneity analysis

Tsibouris & Zeidenberg, 1995 Stock price prediction Backpropagation and None N N
Temporal Difference
NN

Udo,I993 Bankruptcy classification Backpropagation Regression analYsis N N
Utans & Moody, 1991 Bond rating Backpropagation Regression analysis N N
Weigend, Huberman & Economic time series Backpropagation AR(2) N N
Rumelhart, 1990 prediction
White,I988 Stock price prediction Backpropagation None N N
Wilson & Sharda 1994 Bankruptcy prediction Backpropagation Discriminant N N

analysis
Windsor & Harker, 1990 Financial index prediction Backpropagation Regression analysis N N

and AR(4)
Wong, Wang, Goh & Quek, Stock ranking/stock selection Backpropagation None3 N N
1992
Wray, Palmer & Bejou, 1994 Modelling buyer-seller Backpropagation Regression analysis N N

relationships
Yamamoto & Zenios, 1993 Predicting prepayment rates Cascade correlation Naive and N N

for mortgages econometric model4
Yoon & Swales, 1991 Stock price classification Backpropagation Discriminant N N

analysis
Yoon, Swales & Margavio, 1993 Stock price classification Backpropagation Discriminant y5 N

analysis
Yoon, Guimaraes & Swales, Stock price classification Backpropagation Discriminant N N
1994 analysis6

I Surkan and Singleton (1990) state: "There is a hope that some of the intermediate representations may be
identified with concepts used by humans to analyze this bond classification problem".
2 In their original paper presented at INNe 1990, they state: "The emerging organization reproduces the wayan
expert in ratio analysis chooses variables ... Experts put together several points of view around a few significant
variables. And extended ratios seem to be trying the same sort of procedure" (Trigueiros & Berry, 1990, p.12).
3 Wong et al. (1992) focus on integrating the artificial neural network with an expert system.
4 Benchmark models are not explicitly formulated but reference to an "econometric model" is given.
5 Yoon et al. (1993) investigate the effect of the different inputs on the classification, not.the representation as
such.
6 Focus is on integrating the artificial neural network with a rule-based expert system.
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Appendix B. Introductory text, stimulus material, and response form.

FINANSIELL DIAGNOSE

Denne teksten blir lest høyt i klassen:

I dette eksperimentet skal du stille diagnose av tre selskapers lønnsomhet, finansiering, likviditet og soliditet,
samt dets generelle situasjon og utvikling. Dette er for at vi skal vite mer om hvordan dere stiller finansielle
diagnoser før kurset starter, og er helt anonym. Det er viktig at du følger prinsippene som blir forklart i denne
innledningen.

Diagnosen gjennomføres ved at du benytter svarskjemaet som følger etter presentasjonen av hvert selskap.
Hvert selskap med tilhørende svarskjema utgjør en dobbeltside i materialet (se neste sider).

På den venstre siden finner du reultatregnskap og balanse for selskapets to siste driftsår, endel beregnede
nøkkeltall, samt finansieringsanalyse for siste driftsår. En forklaring til enkelte av regnskapsstørrelsene og
formler som er benyttet for beregning av nøkkeltallene fmner du på siste side i materialet.

På den høyre siden finner du noen generelle opplysninger, plass for å utføre beregninger (dersom du vil regne
ut andre størrelser enn de som allerede er beregnet), og svarskjema for selve diagnosen. Svarskjemaet har fem
deler, en del for hvert av de områdene du skal-stille diagnose: Lønnsomhet, finansiering, likviditet, soliditet og
en generell totalvurdering.

Du skal stille diagnose for selskapets situasjon, og for dets utvikling. I tillegg er det viktig at du karakteriserer
situasjonen for de ulike områdene med ett eller få ord. Her skal du ikke bruke adjektiver, slik som for eksempel
tragisk lønnsomhet I stedet skal du bruke substantiver som karakteriserer selskapet, slik som for eksempel
krisebedrift, konkursbedrift, suksessbedrift eller liknende.

Til slutt skal du for hvert område angi inntil 4 opplysninger i datagrunnlaget som i størst grad understøtter din
karakteristikk av selskapets situasjon. Du skal maksimalt sette tall i 4 ruter. Forhold mellom tall angir du ved å
sette tall i to ruter, og trekker en strek mellom rutene.

Før diagnosen starter ber vi deg fylle ut noen generelle data, slik at vi kan vite litt mer om den som har utført
diagnosen.

Hva er din høyeste utdanning før du startet på høyere revisorstudium ?

Siviløkonom NHH, BI eller SiB Juridisk embetseksamen

Siviløkonom fra utlandet Revisorstudiet DH eller BI

Annen utdanning, vennligst
spesifiser: _

Sosialøkonomisk embetseksamen

Hvor mange års yrkeserfaring har du etter at du gjennomførte denne utdanningen?

År

Hvor mange års yrkeserfaring har du totalt ?

År

Da kan du starte diagnosen. Vær så grundig som mulig, og husk at du totalt har 40 minutter til rådighet for å
stille diagnose for de tre selskapene.

(Introductory text)
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AJSA

Res ultatre gnskap 8a1anse
1989 1988 1989 1988

SeJgsinntektekter: 13756944 O 12429718 O Kasse, blllk oL: 115682 O 2748860

Varekostnad: 10648347 O 9485488 O Kundefordringer: 43960 O 498818

Andre vw. kostnader: OD 00
Andre korts. fordringer: 36900 7901
Varelager: 926400 O 8010000

Dekningsbid~: 3108597 O 2944230 O Omlopsmidler: 1089732 O 1133668 O
Andre driftsinntekter: 274366 O 335932 O LlIlgsiktige fordringer: 53889 O 488088

Maskiner, inwntar o .I.: 260960 O 356235
Lonninger: 2093721 O 1748167 O Bygninger: 354400 O 3791708
Andre driftskostnader: 1146485 O 944675 O Annen fast eiendom: 502550 O 791815
Avskrivninger: 333109 O 279801 O

Anleggsmidler 1171799 O 15760280Tap pl fordringer: 00 00

Driftsresultat :
Sum eiendeler: 2261531 O 27096960

-190352 O 307519 O
12480

Kassekreditt : 191561 O 197720
Finlllsinntekter: 33940 LewrIJ'ldorgjeld: 651768 O 7259410
FinlIlskostnader: 190023 O 189522 O Offentlig gjeld: 266574 O 3182370

Resultat for e.o. poster: -379127 O 121391 O Annen kortsiktig gjeld: 199142 O 259200 O
Ekstrsord. inntekter: 245533 O 10377~ B Sum kortsiktig gjeld: 1309045 O 13231500

Ekstrsord. kostnader: 123781 O LlIlgsiktig gjeld: 865192 O 1095360 O
Resultat for m: .oppgj. disp.: -257375 O 225170 O Anleggsreserw : 00 00

Skattem. meravskrivning: -S5584 O 159997 O VarelagetTeserw : 00 00

Skatter: 21010 21388 O Konsolideringsfond: 35200 O 352000

Andre m:oppgjorsdisp.: 00 14000 O Andre bet. sk fr. avs.: 00 00

Arsresultat : -203892 O 29785 O Sum bet. skattefr. avs.: 35200 O 352000

Foreslltt utb')otte: 00 AksjekapiteJ: 125000 O 1250000
Reserwfond: 81500 O 815000
Frie fond: -154406 O 494860

Nøkkeltall
1989 1988

Sum egenkapiteJ: 52094 O 255986 O
Omsetningswkst: 10.7%0 Sum gjeld og egenkap .: 2261531 O 27096960
Vekst faste kostnader: 20.2%0

Dekningsgrad : 22.6%0 23.7% O Finansi erin gsanalys e

Omsetning pr.lIlsatt: 982639 O 1989

Dekningsbidrag pr.lIlsatt: 222043 O Resultat for m:oppgj. disp.: -257375 O
-Skatter: 2101

8Lonnsomhetsmargin: -1.4% O 2.5%0 +Ordinære avskrivninger: 333109
Owrskuddsgrad : -2.8% O 1.0%8 -Utb')otte 00
KapiteJens omløpshast .: 6.10 4.6 =Tilfort fra &rets drift: 73633 O
Rentabilitet toteJkapiteJ: -8.4% O 11.5%0
Rentabilitet egenkapiteJ: -727.8% O 47.4% O +Ny aksjekapiteJ 00

Gj. sn. gjeldsrente: 8.7%0 7.8%0 = Egenfinlllsiering: 73633 O
Rentedekningsgrad : -99.5% O 164.1% O

Endring IlIlgsiktig gjeld: -230168 O
LlIlgsiktig lagetfinlllsiering: -23.7% O -23.7% O Endring lIlleggsmidler: -126704 O
Gj. sn. lagertid (dager): 320 310 Endring arbeidskapiteJ: -298310Gj. sno kundekredittid: ID 10
Gj. sn. lewrlJ'ldorkredittid: 180 230 Endring kundefordringer:

-S
921

8
Lik'liditetsgrad 1: 83.2%0 85.7% O Endring IIldre korts. fordr.: -4211

(CutTent ratio) Endring varelager: 125400 O
Lik'liditetsgrad 2: 12.5% CJ 25.1%0 Endring lewrlJ'ldørgjeld: -74173 O
(Acid test) Endring offentlig gjeld: -S1663 O

3.1%0 10.1%0
Endring IIlnen korts . gjeld: -60058 O

EgenkapiteJlIldel: Netto lik'liditetsendring: -330993 O
Endring kassekreditt: 171789 O
Endring kasse, blllk: -159204 O

(Stimulus material)
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ytterlig ere opplysnin ger

AlS A er en bedrift lokalisert i Oppland D.Selskapet driver primært med produksjon av næringsmidler D·
11989 hadde selskapet totalt 14 D fast ansatte. Selskapet er ikke tilknyttet noe konsem, og det er forøvrig ikke noe

spesielt l bemerke vedrørende driften.

Plass til evt. utregninger:

Lønnsomhet
Svært dlrlig DlrIig

Hverken dlrlig
God Svært god

Hvordan "Yildu k8J'8.kterisere selskapets D D eilEjod
D Dlønnsomhet i 1989 ?

Svært negativ Negativ
Hverken positiv ..

Svært positivHvordan "Yildu k8J'8.kterisere den lønnsomhetsmessige eller negativ POSitiV
ut"Yikling selskapet er inne i? D D D D D
K8J'8.kteriser lønnsomhets situasjonen med
ett eller fl ord .

Sett tallet 1 i inntil "I ruter i datagrunnlaget som du mener i størst grad støtter din k8J'8.kteristikk av lønnsomhetssituasjonen .

Finansi enn g
Svært dlrlig DlrIig

Hverken dlrlig
God Svært god

Hvordan "Yildu k8J'8.kterisere selskapets D D eIlEjod D Dfinansielle situasjon i 1989 ?
Hverken positiv ..

Hvordan "Yildu k8J'8.kterisere den finansielle
Svært negativ Negativ eller negativ POSitiV Svært positiv

ut"Yikling selskapet er inne i ? D D D D D
K8J'8.kteriser den finansielle situasjon med
ett eller fl ord .

Sett tallet 2 i inntil 4 ruter i datagrunnlaget som du mener i størst grad støtter din k8J'8.kteristikk av finansieringen.

LikYiditet
Svært dlrlig DlrIig

Hverken dlrlig
Svært god

Hvordan "Yildu k8J'8.kterisere selskapets eIlEjod God

lik"Yiditet i 1989? D D D D
Svært negativ Negativ Hverken positiv ..

Svært positivHvordan "Yildu k8J'8.kterisere den Iik"Yiditetsmessige eller negativ POSitiV
ut"Yikling selskapet er inne i? D D D D D
K8J'8.kteriser Iik"Yiditetssituasjonen med
ett eller fl ord .

Sett tallet 3 i inntil "I ruter i datagrunnlaget som du mener i størst grad støtter din k8J'8.kteristikk av lik"Yiditetssituasjonen

Soliditet
SvæOlrli9 DlrIig

Hverken dlrlig
Svært god

Hvordan "Yildu k8J'8.kterisere selskapets eilEjod God

soliditet i 1989 ? D D D
Svært negativ Negativ

Hverken positiv ..
Svært positivHvordan "Yildu k8J'8.kterisere den soliditetsmessige eller negativ POSitiV

ut"Yikling selskapet erinne i? D D D D D
K8J'8.kteriser soliditetssituasjonen med
ett eller fl ord .

Sett tallet 4 i inntil "I ruter i datagrunnlaget som du mener i størst grad støtter din k8J'8.kteristikk av soliditetssituasjonen .

Generell sammenfatning
Svært dlrlig DlrIig

Hverken dlrlig
God S090dHvordan "Yildu k8J'8.kterisere selskapets D D eIlEjod Døkonomiske situasjon i 1989 ?

Hverken positiv ..
Hvordan "Yildu k8J'8.kterisere den økonomiske

Svært negativ Negativ eller negativ POSitiV Svært positiv

ut"Yikling selskapet er inne i ? D D D D D
K8J'8.kteriser selskapets totale økonomiske
situasjon med ett ellerflord.

Sett tallet 5 i inntil 4 ruter i datagrunnlaget som du mener i størst grad støtter din karakteristikk av totalsituasjonen.

(Response form)



Appendix C. Companies with complete financial statements and their code.

Company Location Code

Olaf Bryhn AlS
Frekhaug Støperi AlS
Friva AlS
Fotlandsvåg Fabrikk AlS
Joh. Fredheim AlS
Foss Snekkeri AlS
Forus Industri AlS
Formular Service AlS
Einersen Trykkeri AlS
Magnus Engmark AlS
E Trykk
AlS Demokraten
Sigurd Ecklund AlS
Eidsvold Blad AlS
Claussen &Heyerdahl AlS
AlS Bygg og Innbu
Central Plast AlS
Haakon Burø AlS
Brødr. Breste AlS
Bryne Offset AlS
Ingebjørg Almankås AlS
Audna Bruk AlS
Aanonsen Sats AlS
Falleth AlS
Fokus AlS
Folkestad KVV -Service AlS
Eik Sølv-Plett AlS
Eker Cementvarefabrikk
Elvarmovner AlS
O.c. Akselsen Fabrikker AlS
Thor Berntsen og søn. AlS
Binders AlS
Brandbu Pølsemakeri AlS
Brattværfisk AlS
Brevik Blikkvarefabr. AlS
Brd. Gilstad Sag & Høvl. AlS
Gjerde Bruk AlS
Goman-Bakeriet AlS
Grimstad Adressetid. AlS
H.O. Grindheim AlS
Grovane Sagbruk AlS
Grønland Grafiske AlS
Hanssen & Whist AlS
Olav Haug Møbelfabr. AlS
Hedpall AlS
Hillesvåg Ullvare AlS
Hollung Stålindustri AlS
Holmen betong AlS
Holten & Asgård møbelfabr.
John Holvik AlS
Instrumentbyrået AlS
I. C. Iversen eftf. AlS
Trygve Jespersen AlS
C.A. Johanson Snekker AlS

2436 Våler i Solør
5110 Frekhaug
1820 Spydeberg
5255 Fotlandsvåg
8200 Fauske
7396 Jerpstad
4033 Forus
1060 OSLO 6
10600SLO 6
09750SL09
05780SL05
1600 Fredrikstad
1010 OSLO 1
2081 Eidsvoll
04820SL04
6762 Almenningen
8056 Saltstraumen
1010 Oslo 1
6330 Verma
4341 Bryne
3800 Bø i Telemark
4520 Sør-Audnedal
1010 OSLO 1
1600 Fredrikstad
4909 Songe
3800 Bø
3101 Tønsberg
3300 Hokksund
4001 Stavanger
4400 Flekkefjord
1900 Fetsund
4000 Stavanger
2760 Brandbu
6580 Vestsmøla
3950 Brevik
7600 Levanger
5700 Voss
4301 Sandnes
4890 Grimstad
5000 Bergen
4700 Vennesla
1081 OSLO 10
2310 Stange
2400 Elverum
2340 LØten
5164 Hjelmås
1600 Fredrikstad
9322 Karlstad
6652 Surna
6800 Førde
2200 Kongsvinger
10400SL04
8500 Narvik
1060 OSLO 6

AlS A
AlSB
AlS C
AlSO
AlS E
AlSF
AlSG
AlSH
AlS I
AlS J
AlSK
AlS L
AlSM
AlSN
AlSO
AlS P
AlSQ
AlSR
AlS S
AlST
AlS U
AlS V
AlSW
AlS X
AlS Y
AlSZ
AlSAA
AlSAB
AlSAC
AlS AD
AlSAE
AlS AF
AlS AG
AlS AH
AlS AI
AlS AJ
AlSAK
AlS AL
AlS AM
AlS AN
AlSAO
AlS AP
AlSAQ
AlS AR
AlS AS
AlS AT
AlS AU
AlS AV
AlSAW
AlSAX
AlSAY
AlSAZ
AlS BA
AlSBB
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Johnson Controls AlS
Kilen Trevaresalg AlS
Kirkeby AlS
Langklopp & Halgunset AlS
Larsen & Mortensen AlS
Lerøy Metallindustri AlS
AlS Lettbetong
Lie Jærplast AlS
e.A. Ljungmann & sønn AlS
Mandal Teppeveveri .AlS
Moss Jern- og stans. AlS
Møre Skofabrikk AlS
N.K. Nielsen Jernstøp, AlS
NOFI SVolvær AlS
Nordtveit Skipsbyggeri AlS
Nordheimsund Mek. AlS
Olsens Vognfabrikk AlS
PIa-NY AlS
Polar-Boats AlS
Protectors AlS
Norpower AlS
Randsfjord Glassverk AlS
Rekon AlS
Ringerike møbel & tref. AlS
Rubb Motor AlS
ScanMatic AlS
Servoteknikk AlS
Signalco AlS
Slagterborg. Felless. AlS
Solli Plast AlS
Stavprodukter AlS

0667 OSLO 6
3100 Tønsberg
0661 OSLO 6
7391 Berkåk
4000 Stavanger
5250 Lonevåg
1827 Hobøl
4301 Sandnes
1060 OSLO 6
4500 Mandal
1580 Rygge
6138 Steinsvik
1060 OSLO 6
8301 Svolvær
5677 Nordtveitgrend
5600 Nordheimsund
1870 Ørje
6083 Haugsbygda
4818 Færvik
3000 Drammen
6500 Kristiansund N.
2700 Jevnaker
3200 Sandefjord
3503 Tyristrand
542Q Rubbestadneset
4920 Staubø
0502 OSLO 5
10400SL04
1010 OSLO l
4994 Åkland
7500 Stjørdal

AlSBC
AlSBD
AlS BE
AlSBF
AlSBG
AlS BH
AlS BI
AlS BJ
AlS BK
AlS BL
AlS BM
AlSBN
AlS BO
AlS BP
AlSBQ
AlS BR
AlS BS
AlSBT
AlS BU
AlSBV
AlSBW
AlSBX
AlS BY
AlSBZ
AlS CA
AlSCB
AlS CC
AlS CD
AlSCE
AlS CF
AlSCG
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Appendix D. Ratio formulas

Sales2 _ Sales)
SGROWTH= S Ia es)

CoStS2_ COStS2
CGROWTH= Costs,

. Contribution_margim
CONTPR;= S Ia es;

Operating profit; +Financial_ revenues;
PROMARG; = Sales;

Profit before extraordinary _ items;
OPMARG;=

Sales;
Sales;

ASSTURN; = ----
Total_ assets;

Operating profit; +Financial_ revenues;
ROI; = Total jassetsi

Profit before extraordinary ~ items;
ROE; = Equity;

Financial_ costs;
AIR; = Interest related j debu

Operating profit; + Financial_ revenues;
ICOV;= .. I tFinancia _ cos s;

Working_capital;LTINV; = ..:...:....:.-~=---...;:...,_-
Cost_of _goods;
Inventory» 365ITURNi = --___;;-----:-
Cost_of _ goods;

Accounts receivable;* 365
ART; = Sales» 1.2

Accounts _ payable» 365APT; = ~--=-=--....:.._---::--:--=-
Goods _ purchased» 1.2
Current jassetsi

CURR;=------
Current _ debts;
Quick assets;ACID;= -
Current _ debts;

Adjusted _ equity;BER; =__;'------
Total_ assets;
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Sales growth

Costs growth

Contribution margin (%)

Profit margin

Operating margin

Assets turnover (times)

Return on assets

Return on equity

Average interest rate

Interest coverage

Long term invent. financing

Invent. turnover time (days)

Collection period (days)

Accounts payable per. (days)

Current ratio

Acid test

Equity ratio
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Appendix E. Summary statistics of independent variables

Variable Mean Std. Dev. Minimum Maximum KIS N

SGROWTH 0.18 0.18 -0.30 0.75 0.10 75
CGROWTH 0.17 0.22 -0.20 1.15 0.15** 75
CONTPR1 0.51 0.19 0.17 0.91 0.053 75
CONTPR2 0.50 0.18 0.11 0.91 0.053 75
PROMARG1 0.05 0.05 .,0.06 0.26 0.14** 75
PROMARG2 0.04 0.04 -0.04 0.20 0.17** 75
OPMARG1 0.02 0.05 -0.08 0.21 0.13** 75
OPMARG2 0.02 0.04 -0.04 0.16 0.12** 75
ASSTURN1 2.52 1.09 0.79 7.08 0.15** 75
ASSTURN2 2.56 1.11 1.04 6.23 0.17** 75
ROll 0.10 0.09 -0.09 0.44 0.10* 75
ROl2 0.09 0.07 -0.08 0.29 0.08 75
ROE l 0.69 1.31 -1.65 7.88 0.18** 75
ROE2 0.39 1.86 -7.28 9.38 0.21 ** 75
AIR1 0.06 0.04 0.00 0.16 0.06 75
AIR2 0.06 0.04 0.00 0.18 0.06 75
ICOV1 5.02 14.56 -8.02 86.67 0.35** 75
ICOV2 6.97 21.15 -7.17 127.84 0.36** 75
LTINV1 0.70 1.50 -1.72 6.86 0.19** 75
LTINV2 0.65 1.91 -5.95 6.97 0.20** 75
ITURN1 102.77 81.08 0.00 442.54 0.09 75
ITURN2 89.98 79.47 0.00 474.96 0.15** 75
ART l 36.35 18.60 1.18 83.39 0.05 75
ART2 38.04 18.51 0.03 78.75 0.05 75
APT l 69.45 49.90 0.51 262.50 0.18** 75
APT2 69.62 42.20 2.80 221.08 0.12* 75
CURR1 1.27 0.43 0.67 2.79 0.17** 75
CURR2 1.27 0.51 0.24 3.90 0.16** 75
ACID1 0.78 0.34 0.21 2.02 0.09 75
ACID2 0.82 0.38 0.10 2.00 0.09 75
BERI 0.16 0.13 -0.06 0.56 0.10 75
BER2 0.16 0.12 -0.08 0.48 0.11 * 75
Summary statistics of mdependent variables: Mean, standard deviation, rmrumum value,
maximum value, Kolmogorov-Smirnov statistic for test of normality! (* and ** indicates
significant at a=0.05 and 0.01 respectively), and number of observations.

! A Lilliefors version of the Kolmogorov-Smirnov test is used as in the EXAMINE procedure of SPSS.
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Appendix F. Correlation matrix of independent variables

SGRO- CGRO- CONT- CONT- PRO- PRO- OPMARGI OPMARG2

WTH WTH PRI PR2 MARGI MARG2

SGROWTH 1.0000 .7045** .1268 .0250 .1688 .2354* .1473 .2967**

CGROWTH .7045** 1.0000 .0773 .0749 .3431** .1415 .3530** .2087

CONTPRI .1268 .0773 1.0000 .9715** .3207** .2620* .2150 .1913

CONTPR2 .0250 .0749 .9715** 1.0000 .2864* .2568* .1876 .1912

PROMARGI .1688 .3431** .3207** .2864* 1.0000 .6661 ** .9154** .5650**

PROMARG2 .2354* .1415 .2620* .2568* .6661** 1.0000 .5 139** .8790**

OPMARGI .1473 .3530** .2150 .1876 .9154** .5139** 1.0000 .5849**

OPMARG2 .2967** .2087 .1913 .1912 .5650** .8790** .5849** 1.0000

ASSTURNI -.2021 -.1313 -.2577* -.2277* -.3229** -.3945** -.1328 -.1628

ASSTURN2 -.0524 -.1026 -.3630** -.3782** -.3745** -.4589** -.1984 -.2304*

ROll -.0227 .1817 .3529** .3347** .8234** .4100** .8360** .4044**

ROI2 .1771 .0225 .2217 .2200 .4593** .8671** .3838** .8433**

ROEI .1682 .2531* .3012** .2614* .5787** .4157** .4997** .3504**

ROE2 .1612 .1183 .2276* .2231 .2659* .4476** .2314* .5131**

AIRI -.0626 -.1276 .3649** .3487** .2159 .3038** -.1385 -.0594

AIR2 -.0903 -.2185 .0850 .0504 .1359 .2528* -.1496 -.1586

ICOVI -.1089 -.0145 .0351 .0554 .1685 .0889 .2931* .2368*

ICOV2 -.0817 -.0257 -.0024 .0190 .0713 .0912 .1956 .2549*

LTINVI .0911 .2159 .1176 .1226 .3464** .1274 .3803** .1704

LTINV2 .0732 .0928 .0514 .0443 .1192 .0204 .1686 .0930

ITURNI .0535 -.2058 .4048** .3660** -.1815 .1197 -.3569** -.0401

ITURN2 -.2178 -.2475* .3620** .3945** -.1155 .1088 -.2480* -.0183

ART! .0919 .1251 .0021 -.0215 .3281** .3385** .3045** .3316**

ARTI .2056 .1875 .1186 .0853 .1394 .2694* .0817 .2527*

APT I .3143** .4236** .1970 .1751 .3999** .2486* .3608** .2364*

APT2 .1151 .2482* .3501 ** .3765** .1855 .0909 .1776 .1084

CURRI .0600 -.0271 -.0536 -.0519 .0389 .1434 .0224 .1297

CURR2 .0356 -.0783 -.0448 -.0530 -.0037 .1192 -.0272 .1145

ACIDI .0946 .1800 .0353 .0405 .3024** .1833 .3866** .2918*

ACID2 .1734 .1344 .0810 .0540 .1606 .1142 .2150 .2104

BERI .0034 -.0386 .0646 .0594 .0375 .0097 .2359* .2075

BER2 .0526 -.0647 .0607 .0448 .0576 .1709 .2377* .3941**

cont. ..



ASS- ASS- ROll R0I2 ROEI ROE2 AIRI AIR2

TURN 1 TURN2

SGROWTH -.2021 -.0524 -.0227 .1771 .1682 .1612 -.0626 -.0903

CGROWTH -.1313 -.1026 .1817 .0225 .2531* .1183 -.1276 -.2185

CONTPRI -.2577* -.3630** .3529** .2217 .3012** .2276* .3649** .0850

CONTPR2 -.2277* -.3782** .3347** .2200 .2614* .2231 .3487** .0504

PROMARGI -.3229** -.3745** .8234** .4593** .5787** .2659* .2159 .1359

PROMARG2 -.3945** -.4589** .4100** .8671 ** .4157** .4476** .3038** .2528*

OPMARGI -.1328 -.1984 .8360** .3838** .4997** .2314* -.1385 -.1496

OPMARG2 -.1628 -.2304* .4044** .8433** .3504** .5131** -.0594 -.1586

ASSTURNI 1.0000 .8772** -.0049 -.1501 -.0928 -.0839 -.2492* -.3246**

ASSTURN2 .8772** 1.0000 -.1439 -.2114 -.1347 -.1845 -.2635* -.1810

ROll -.0049 -.1439 1.0000 .3759** .5673** .2086 .1584 .0066

R0I2 -.1501 -.2114 .3759** 1.0000 .4041 ** .5544** .1879 .1960

ROEI -.0928 -.1347 .5673** .4041** 1.0000 .4893** .2244 .1614

ROE2 -.0839 -.1845 .2086 .5544** .4893** 1.0000 .0654 -.0835

AIRI -.2492* -.2635* .1584 .1879 .2244 .0654 1.0000 .7055**

AIR2 -.3246** -.1810 .0066 .1960 .1614 -.0835 .7055** 1.0000

ICOVI .2342* .0958 .3077** .1670 .0978 .0649 -.3407** -.3465**

ICOV2 .2252 .0967 .1848 .1875 .0435 .0894 -.3649** -.3788**

LTINVI -.2112 -.2449* .3745** .0422 .1712 .0232 -.1060 -.1600

LTINV2 -.1089 -.0818 .1352 .0227 .0376 -.0034 -.1597 -.1394

ITURNI -.3302** -.3210** -.2498* .0836 -.1237 .0341 .4354** .2942*

ITURN2 -.2553* -.3488** -.1421 .0589 -.1911 -.0175 .3989** .1793

ARTI -.3271** -.3454** .1369 .2471* .1962 .2103 -.0365 -.0801

ART2 -.2659* -.3512** -.0179 .1862 .2055 .2607* .0202 -.1330

APT 1 -.3590** -.3120** .1171 .1205 .3962** .2499* -.0965 -.1036

APT2 -.2764* -.3875** .0634 -.0599 .1287 .1695 -.0938 -.2452*

CURRI -.3440** -.3390** -.0135 .0363 -.2061 -.0192 -.0288 -.0075

CURR2 -.2711* -.2146 -.0618 .1110 -.1956 -.0026 -.0211 .0380

ACIDI -.1707 -.2377* .2925* .1055 .0920 .0896 -.2463* -.2756*

ACID2 -.1554 -.1522 .1196 .1239 .0635 .1379 -.2282* -.2110

BERI -.0984 -.1120 .0730 -.0343 -.1921 -.0546 -.4443** -.3594**

BER2 -.1084 -.0657 .0509 .2042 -.1149 .1054 -.4350** -.3226**

cont.,
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ICOVI ICOV2 LTINVI LTINV2 ITURNI ITURN2 ART! ART2

SGROWTH -.1089 -.0817 .0911 .0732 .0535 -.2178 .0919 .2056

CGROWTH -.0145 -.0257 .2159 .0928 -.2058 -.2475* .1251 .1875

CONTPRI .0351 -.0024 .1176 .0514 .4048** .3620** .0021 .1186

CONTPR2 .0554 .0190 .1226 .0443 .3660** .3945** -.0215 .0853

PROMARGI .1685 .0713 .3464** .1192 -.1815 -.1155 .3281 ** .1394

PROMARG2 .0889 .0912 .1274 .0204 .1197 .1088 .3385** .2694*

OPMARGI .2931 * .1956 .3803** .1686 -.3569** -.2480* .3045** .0817

OPMARG2 .2368* .2549* .1704 .0930 -.0401 -.0183 .3316** .2527*

ASSTURNI .2342* .2252 -.2112 -.1089 -.3302** -.2553* -.3271** -.2659*

ASSTURN2 .0958 .0967 -.2449* -.0818 -.3210** -.3488** -.3454** -.3512**

ROll .3077** .1848 .3745** .1352 -.2498* -.1421 .1369 -.0179

R0I2 .1670 .1875 .0422 .0227 .0836 .0589 .2471* .1862

ROE 1 .0978 .0435 .1712 .0376 -.1237 -.1911 .1962 .2055

ROE2 .0649 .0894 .0232 -.0034 .0341 -.0175 .2103 .2607*

AIRI -.3407** -.3649** -.1060 -.1597 .4354** .3989** -.0365 .0202

AIR2 -.3465** -.3788** -.1600 -.1394 .2942* .1793 -.0801 -.1330

ICOVI 1.0000 .9752** .1343 .0302 -.1016 -.0406 -.1328 -.1449

ICOV2 .9752** 1.0000 .1030 .0605 -.0619 -.0273 -.1281 -.0986

LTINVI .1343 .1030 1.0000 .7223** -.2350* -.2211 .1581 .0935

LTINV2 .0302 .0605 .7223** 1.0000 -.0500 -.1164 .1608 .1928

ITURNI -.I 016 -.0619 -.2350* -.0500 1.0000 .8348** .0245 .1106

ITURN2 -.0406 -.0273 -.2211 -.1164 .8348** 1.0000 .0589 .0436

ART! -.1328 -.1281 .1581 .1608 .0245 .0589 1.0000 .7426**

ART2 -.1449 -.0986 .0935 .1928 .1106 .0436 .7426** 1.0000

APT l -.1326 -.1365 .0417 .0563 -.0231 -.0902 .4440** .3365**

APT2 -.1377 -.1487 .0961 .0194 .0101 .0541 .2845* .3060**

CURRI .1449 .1788 .4559** .4423** .1243 .0956 .0039 -.0359

CURR2 .1108 .1416 .3073** .5301** .2307* .1767 .1698 .0547

ACIDI .1752 .1780 .7111** .5852** -.3404** -.2823* .2008 .1010

ACID2 .0903 .1263 .5430** .7393** -.1192 -.2697* .2392* .2429*

BERI .2855* .2875* .2350* .1764 -.0136 .0272 .0052 -.1810

BER2 .2954* .3185** .2089 .2299* .0066 .0091 .0836 -.1145

cont...
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APTI APT2 CURRI CURR2 ACIDI ACID2 BERI BER2

SGROWTH .3143** .1151 .0600 .0356 .0946 .1734 .0034 .0526

CGROWTH .4236** .2482* -.0271 -.0783 .1800 .1344 -.0386 -.0647

CONTPRI .1970 .3501 ** -.0536 -.0448 .0353 .0810 .0646 .0607

CONTPR2 .1751 .3765** -.0519 -.0530 .0405 .0540 .0594 .0448

PROMARGI .3999** .1855 .0389 -.0037 .3024** .1606 .0375 .0576

PROMARG2 .2486* .0909 .1434 .1192 .1833 .1142 .0097 .1709

OPMARGI .3608** .1776 .0224 -.0272 .3866** .2150 .2359* .2377*

OPMARG2 .2364* .1084 .1297 .1145 .2918* .2104 .2075 .3941 **

ASSTURNI -.3590** -.2764* -.3440** -.2711* -.1707 -.1554 -.0984 -.1084

ASSTURN2 -.3120** -.3875** -.3390** -.2146 -.2377* -.1522 -.1120 -.0657

ROll .1171 .0634 -.0135 -.0618 .2925* .1196 .0730 .0509

ROI2 .1205 -.0599 .0363 .1110 .1055 .1239 -.0343 .2042

ROEI .3962** .1287 -.2061 -.1956 .0920 .0635 -.1921 -.1149

ROE2 .2499* .1695 -.0192 -.0026 .0896 .1379 -.0546 .1054

AIRI -.0965 -.0938 -.0288 -.0211 -.2463* -.2282* -.4443** -.4350**

AIR2 -.1036 -.2452* -.0075 .0380 -.2756* -.2110 -.3594** -.3226**

ICOVI -.1326 -.1377 .1449 .1108 .1752 .0903 .2855* .2954*

ICOV2 -.1365 -.1487 .1788 .1416 .1780 .1263 .2875* .3185**

LTINVI .0417 .0961 .4559** .3073** .7111** .5430** .2350* .2089

LTINV2 .0563 .0194 .4423** .5301 ** .5852** .7393** .1764 .2299*

ITURNI -.0231 .0101 .1243 .2307* -.3404** -.1192 -.0136 .0066

ITURN2 -.0902 .0541 .0956 .1767 -.2823* -.2697* .0272 .0091

ART! .4440** .2845* .0039 .1698 .2008 .2392* .0052 .0836

ART2 .3365** .3060** -.0359 .0547 .1010 .2429* -.1810 -.1145

APT 1 1.0000 .6357** -.2494* -.1442 -.0043 .0855 -.1598 -.1067

APT2 .6357** 1.0000 -.1827 -.2450* .0483 -.0137 -.0987 -.1702

CURRI -.2494* -.1827 1.0000 .7953** .7010** .5792** .5792** .5223**

CURR2 -.1442 -.2450* .7953** 1.0000 .5157** .7052** .3586** .4123**

ACIDI -.0043 .0483 .7010** .5157** 1.0000 .7829** .512!** .4820**

ACID2 .0855 -.0137 .5792** .7052** .7829** 1.0000 .3290** .3927**

BERI -.1598 -.0987 .5792** .3586** .5121** .3290** 1.0000 .9279**

BER2 -.1067 -.1702 .5223** .4123** .4820** .3927** .9279** 1.0000

(* and ** indicates significant at a=O.OS and 0.01, respectively)
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Appendix G. Factor loadings of first benchmark (A)

FACTOR FACTOR FACTOR FACTOR FACTOR FACTOR FACTOR FACTOR FACTOR

1 2 3 4 5 6 7 8 9

SGROWTH .08136 -.06628 .22839 .03701 .03591 .01493 .01053 -.07604 .90519

CGROWTH .06698 .23641 -.00705 -.01378 .17767 -.03344 .00612 .03152 .86014

CONTPRI .03301 .15868 .13987 .13585 .05335 -.00572 .92796 -.01947 .05754

CONTPR2 .02027 .15768 .11434 .12439 .06496 .00788 .93509 .00578 .00302

PROMARG1 .08464 .83786 .33483 .25757 .10944 -.04829 .09305 .04270 .12899

PROMARG2 .02096 .34031 .79575 .38219 .06020 -.00090 .04181 .01235 .08361

OPMARG1 .09853 .85067 .26807 .02779 .15664 .19209 .02287 .I4114 .12190

OPMARG2 .06140 .28767 .81902 .07365 .14123 .26260 .02193 .14339 .14586

ASSTURN1 -.14725 -.10296 -.04437 -.81974 -.25192 -.06747 -.08040 .21330 -.15808

ASSTURN2 -.14474 -.16954 -.07751 -.77270 -.34804 -.06292 -.22019 .06718 -.01915

ROll .11439 .84726 .22080 -.02157 -.05400 -.06053 .21993 .15509 -.06666

ROI2 .01554 .19349 .90856 .1l020 -.03248 -.02151 .05424 .07670 -.00127

ROEI .01230 .53737 .40988 -.10666 .12987 -.30702 .19917 -.00170 .13770

ROE2 .03097 .04506 .68717 -.15800 .22176 -.01107 .21017 -.00637 .07091

AIRI -.07888 .05064 .18152 .41592 -.29005 -.58199 .32237 -.30936 -.13819

AIR2 -.09952 .06559 .13438 .46792 -.40164 -.48439 -.01911 -.38055 -.14419

ICOVI .05373 .19051 .07155 -.08000 -.11426 .14486 .01710 .93904 -.04908

ICOV2 .08082 .06364 .11289 -.08551 -.08786 .15751 -.00927 .94490 -.02808

LTINV1 .73940 .40354 -.10594 .01561 .07716 .03821 .07374 .04145 .07169

LTINV2 .86491 .04622 -.03293 -.07955 .11723 -.03777 .06439 .01323 .01691

ITURNI -.07766 -.52821 .14055 .54080 -.05151 -.12161 .47017 .06603 -.06480

ITURN2 -.16431 -.38228 .06061 .54741 -.00209 -.02963 .46087 .12697 -.27914

ARTl .17532 .08773 .31095 .22022 .73305 -.01523 -.18387 -.08543 -.10661

ARTI .20400 -:13127 .29693 .10274 .74279 -.22292 -.02759 -.02280 .03207

APTI -.10776 .25432 .07479 .11086 .66257 -.03821 .10429 -.09518 .37787

APT2 -.11555 .16084 -.15513 .05683 .69774 .07018 .37009 -.09807 .17151

CURRI .69758 -.09268 .02371 .41760 -.23871 .35464 -.09089 .08327 .00394

CURR2 .73888 -.24770 .13454 .34470 -.13551 .14787 -.09520 .10998 -.05689

ACIDI .78963 .30695 .04275 .00286 .05374 .35726 -.04923 .02138 .05194

ACID2 .88875 .01808 .13303 -.06699 .12201 .15342 .00291 .00759 .09650

BERI .26339 .04560 -.01131 .10663 -.13375 .89455 .05360 .12515 -.04477

. BER2 .28534 -.01749 .24563 .05566 -.11773 .85671 .01788 .12271 -.04508
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Appendix H. Factor loadings of second benchmark (B)

FACTOR FACTOR FACTOR FACTOR FACTOR
1 2 3 4 5

CONTPRA .33619 -.07195 .66571 .16113 .08514

PROMARGA' .90562 .15611 .15529 .14977 -.09498

OPMARGA .87184 .17299 -.05022 .18752 .26170

ASSTURNA -.16387 -.34328 -.57904 -.41760 .23256

ROIA .95104 .08023 .05145 -.07009 .03634

ROEA .69481 -.08286 .01491 .24313 -.02529

AIRA .19456 -.08167 .40358 -.30192 -.79263

ICOVA .24081 .02303 .00719 -.26931 .73082

LTINVA .13324 .77946 -.13902 .14356 .02634

ITURNA -.17501 -.07518 .87789 -.05870 -.07848

ARTA .17405 .20148 .03295 .70182 -.13061

APTA .17444 -.14378 .10311 .86813 .03593

CURRA -.07757 .87392 .23012 -.18546 .08170

ACIDA .16434 .87952 -.15030 .13717 .18346

BERA .01911 .48256 .16948 -.10942 .65580
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Appendix I~Summary statistics of dependent variables.

Variable Mean Std. Dev. Minimum Maximum KIS N

Levels:

Profitability 2.85 .88 1.25 4.75 0.08 75

Financing 2.82 .89 1.40 4.67 0.13** 75

Liquidity 2.96 .79 1.33 4.67 0.06 75

Leverage 2.72 .87 1.00 4.67 0.09 75

General 2.94 .78 1.25 4.33 0.07 75

Trends:

Profitability 2.86 .89 1.40 4.50 0.11 * 75

Financing 2.80 .73 1.40 4.33 0.08 75

Liquidity 2.87 .77 l.40 4.33 0.08 75

Leverage 2.76 .80 1.00 4.33 0.09 75

General 2.75 .85 1.00 4.33 0.13** 75..Summary statistics of Independent vanables: Mean, standard deviation, mmimum value,
maximum value, Kolmogorov-Smirnov statistic for tests of normality) (* and ** indicates
significant at a=O.OS and 0.01 respectively), and number of observations.

) A Lilliefors version of the Kolmogorov-Smirnov test is used as in the EXAMINE procedure of SPSS.
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Appendix J. Manipulation check for variables level and trend

*** ANALYSIS OF VARIANCE ***

GENERAL LEVEL

by CASECOOE
Sum of Mean Sig

Source of Variation Squares OF Square F ofF

Main Effects 185.907 74 2.512 4.951 .000
CASECOOE 185.907 74 2.512 4.951 .000

Explained 185.907 74 2.512 4.951 .000

Residual 118.733 234 .507

Total 304.641 308 . .989

*** ANALYSIS OF V ARIANC.E ***

GENERAL TREND

by CASECOOE
Sum of Mean Sig .

Source of Variation Squares OF Square F . ofF.

Main Effects 215.501 74 2.912 7.224 .000
CASECOOE 215.501 74 2.912 7.224 .000

Explained 215.501 74 2.912 7.224 ..000

Residual 93.117 231 .403

Total 308.618 305 1.012
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Appendix 1(. Typical relationships between learning and cross validated errors

Learning error and cross validated error for level diagnosis of the combined model of chapter
8. The best model with two hidden units is used. Only errors for each 5000 learning iterations
are reported

E 0.3
r
r
o
r 0.2

0.5 LEARNING- AND CROSS VALIDATED ERRORS

30000

E 0.3
r
r
o
r 0.2

0.4

14

Cross validated error
_ ....--------------------

0.1

Learning error and cross validated error for level diagnosis of the combined model of chapter
8. The errors are reported after 10000 learning iterations. Only errors for every second hidden
unit introduced are reported.

o
o 15000 25000200005000 10000

Learning iterations

0.5

0.4

I

LEARNING- AND CROSS VALIDATED ERRORS

r"- .......
"",~-~--------------------------Cross validated error

[
---- ~Le~arn~i~n~g~e~rr~o~r___

0.1 or-

I I Io
o 4 8 12102 6

Hidden units


