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Preface

This book is a report on a research project in which computer
simulation techniques were used to test the rationality of
alternative methods of priee calculation in industrial firms.
Most of the work was done at the Norwegian School of
Economies, with the aid of the Computation Centre of the
University of Bergen. Drawing as it must from the various
fields of economies, accounting, mathematics, statisties, and
computer science, the book is partlya product of a rich inter-
disciplinary academic milieu, in which I am grateful for hav-
ing had the opportunity to work. Its defects, however, may
be attributed to me. The project was financed by grants from
AfS Norsk Varekrigsforsikrings Fond and Norges Handels-
høyskoles Forskningsfond.

O.L.





1. The Issues

1.1 The trouble with price theory

One of the minor conflicts caused by new economic thinking in the decade
preceding the Second World War had to do with industrial pricing. In
1933 the two books on imperfect and monopolistic competition! restated
neo-classical price theory in a way which seemed to imply a shifting of
the basis of explanation from impersonal market forces to the deliberate
maximizing behavior of individual price makers. If so, this was a theory
which could be tested, and towards the end of the decade there appeared
the first of a series of empirical studies of pricing behavior.s Generally
unfamiliar with marginal concepts, industrial price makers were reported
to adhere almost unanimously to a formula according to which price is
determined by adding an estimated profit margin to average or "full" cost.

To some critics of the neo-classical system this was clear evidence
against the marginal theory. In defense of the system, some "marginalists"
sought to discredit the empirical evidence by casting doubt on the
mental capacity of the full cost price makers and the analytical abili-
ties of their professional interpreters. Needless to say, this exchange did
little to clear the issue.'

Only gradually did it come to be realised that a confrontation of tradi-
tional theory with practice on the question of industrial price determina-
tion makes little sense. While no foundation can be found in theory for
the insistence of practitioners on full cost coverage, this does not neces-
sarily force us to reject either theory or practice. It may simply be an
expression of the fact that theory so far has addressed itself to other
tasks than that of guiding the practitioner.

! Cp. references 12] and 112].
2 Cp. IS]. On main points its findings are confirmed by recent research, e.g. [l]

and 13].
3 High point of the debate was a series of articles in The American Economic

Review 1946-8, including 14], 19], and [lO]. A critical survey of pricing literature
from the thirties is made by this author in 18].
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The marginal theory of price was never intended to serve as a blueprint
for entrepreneurial decision-making at all nor indeed to describe or ex-
plain in detail what takes place in the firm. It is of the nature of an expla-
natory device on a much higher level of abstraction, permitting only
broadly generalised deductions about the aggregate effects of entrepre-
neurial behavior. Its merit as such was never a settled question. But
obviously it takes more to disprove it than demonstrating that actual
price makers do without marginal reasoning. The crucial question is
whether the prices they reach in a different way for all that produce
aggregate market effects which are predictable in the marginal system.
This IS not so easy to test. So the theory still stands, invulnerable to facts.

For some years now there has been a tendency to leave the full cost
formula alone. This is understandable in view of the confused and bitter
dialogues it provoked in the past. But in consequence an important ques-
tion remains unanswered, besides that of the predictive value of abstract
marginal theory. This is the question to which this book is devoted. It
concerns the logic of full cost pricing from the point of view of the price
maker himself.

While it is recognised that full cost practice does not immediately
overthrow marginal theory, the reverse fact does not seem to have regis-
tered in the minds of many economists. It is still not unusual for those
educated in the neo-classical tradition to adopt a slightly condescending
attitude to the pricing procedures encountered in practice. The full cost
formula is seen as a rough rule of thumb, capable, it is to be hoped, of
producing results not too far inferior to those reached in theory and thus
not invalidating theoretical prediction too much, but certainly due for
replacement if only somebody could spare the necessary time and effort
to educate business men on the finer points of theory.
This position is not tenable. It should be realised that a theoretically
founded principle of pricing was never available to the industrial decision
maker as an operationally meaningful alternative to what he actually does.
From his point of view, motivated as he is by long-run objectives and
saddled from time to time with the task of pricing new members in an
ever-changing family of technically and economically interrelated pro-
ducts, the marginal constructions of neo-classical economic theory are too
naive to be taken seriously. But this is all that theory has managed to
come up with in the line of pricing rules. So, on the basis of experience,
practice has evolved its own rules. A priori they ought to command a
certain respect.

Next they should, if possible, be subjected to scientific scrutiny.

10



1.2 Directions for new research

To evaluate the rationality of observed behavior in the field of pricing,
models must be built in which more is preserved of the complicated envi-
ronment of reallife pricing than is the case with current theory. It seems
to be clearly indicated by business men's responses to questions about
pricing that some explanation of the full cost rule may be sought by
extending the neo-classical model in three dimensions, taking explicit
account of the empirical facts of multiple firms, multiple products, and
multiple periods, each of which is treated in that model only by implica-
tion, if at all. If stated explicrtly, the former fact completely erases the
simple picture of a demand curve for an individual product, from which
the marginal revenue curve is derived, while the latter two as effectively
obliterate that pleasant piece of art the individual cost-output curve,
which is the basis for deriving marginal cost. It is on the resultant tabula
rasa that practice has made its own tentative drawings.
The fact that more than one product is produced causes the price maker

to seek some allocation of common costs to products, thereby introdu-
cing the characteristic concept of the burden rate. The fact that his horizon
extends over more than one period forces upon him some recognition of
capital costs as an element in the burden. Finally the fact that he is usually
not alone in the market reduces his consideration of demand relations to
an experienced guess as to what profit margin he dare add to total costs.
In the maze of inter-product, inter-period, inter-firm relations in which
most industrial price makers are ensnared, they have thus found a way
out which is certainly not the only feasible way and perhaps not the best
way. But if the optimality of observed behavior is to be tested
scientifically, it seems a good start to build a model of the firm in
which some or all of these three complicating dimensions are present
simultaneously.
It should be possible to construct in the terms of such a model a set

of feasible pricing formulae in which those encountered in practice are
recognised as a subset. By operating the modelover a long sequence of
periods, using alternative pricing rules and measuring the degree to which
stated objectives are attained in each case, it is reasonable to hope that
some conclusion may be drawn as to the optimality of the em-
pirical rules and in what way they may perhaps be improved. Eventually
both practical business management and theoretical explanation on
various levels of abstraction might benefit from this line of re-
search.
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Let me emphasise that I do not think its primary purpose ought to be
that of assessing the relative merits of marginalism and full costing. In
fact it seems rather meaningless to state the problem in those terms. Mar-
ginalism in its broadest sense of an application of a maximum condition
for some objective function involving cost and revenue elements is, of
course, always valid. By this token any pricing formula or class of pricing
formulae arrived at by a process of maximizing such a function may be
termed a marginal formula or class of formulae, although the descriptive
merit of this term may be more or less evident. As for marginalism in
the narrow sense of an application of the particular maximum condition
of the neo-classical model to WhIChthe term has referred in the discus-
sion of pricing, this is a different matter entirely. The only chance for this
kind of marginalism to approach relevance in a more realistic environment
must be to redefine its cost and revenue functions to take implicit account
of relations to other products, firms, and periods. This has sometimes
been tried. There are some rather tricky problems involved in it. In any
case it can be attempted in many different ways and so comes to involve vir-
tually any feasible pricing rule for the more complex situation. Thus mar-
ginalism in that narrow sense disappears as a well-defined analytical
alternative. To conclude, l cannot see that marginalism is a relevant issue
at all once the question of optimal pricing has been released from its
artificial tie-up with the static equilibrium conditions of economic
theory.

Full cost coverage is a relevant issue, however. This is the key element
in the pricing formulae evolved by practice. Its definition is very simple.
Full cost pricing means that the burden rate or rates employed by the
firm are such that as an average per period in the long run, total costs
carried by products sold converge on total costs incurred. Moreover, the
degree of cost coverage in this sense can readily be measured for any
pricing rule formulated in a test model which describes a firm's produc-
tion and marketing activities with any degree of realism. For a given set
of pricing rules defined in such a model, if not entirely unrealistic, there
is a subset of full cost rules. The performance of these rules would be a
main object of study.
So it is in the study to be reported in this book. What I propose to do

here is to make an attempt at the pricing problem along the general line
of approach described above. However, it is a peculiar fact, which re-
quires some additional introductory remarks, that although the problem
thus attacked has been in the minds of able economists for more than a
generation, the present study must generally break its own path.

12



1.3 The failure of deductive methods

Naturally the discrepancies between existing theory and empirical fin-
dings, as soon as they were realised, fostered requests for new theoretical
studies of pricing in less restricted models. And of course this challenge
has not gone entirely unanswered. Over the years all three of the com-
plicating dimensions of multiplicity mentioned above have repeatedly
been unfolded for theoretical observation. But nearly always this has had
to be done partiallyand in severely simplified descriptions of the firm's
activities. Hence little useful information has come out of this research,
and in the end we do not seem to know very much more about optimal
pricing procedure than was on record thirty years ago.
Admittedly this is to some extent due to a certain lack of interest among

the majority of economists. Official price regulation during and after the
war and stickiness of prices for other reasons have drawn some attention
away from price to other market parameters. But this only takes us a
short way towards explaining the sparseness of analytical achievement.
The main reason is the inadequacy of the analytical tools so far available.
Economists relying on deductive mathematical analysis are traditio-

nally resigned to study rather simple problems or, which may not always
come to the same thing, to radically simplify the problems they want to
study. By this yardstick the problem before us is one of almost prohibi-
tive complexity. This is true even after the postwar introduction of the
more powerful management science tools, which decisively broadened
the scope of analysis.
The credo of management science used to emphasise the importance

of analysing the firm's decisions as integral parts of a total system rather
than isolated fragments. With the growing realisation of the immensity
ofthis task the point has been played somewhat down lately. Nevertheless
it would be possible to compile an impressive list of successfully completed
mathematical analyses of comprehensive industrial decision systems by
management scientists. The systems operated by price decisions would
seem to be eminently eligible for such study. But in fact the representation
in the list of achievement of management science of problems involving
industrial pricing is conspicuously poor. This speaks with eloquence of
the complexity of the problem and the futility of attacking it with analy-
tical methods at the present time.

This may not always remain so. I think we may hope with confidence
that the continuing rapid development of management science techniques
will some day bring even such problems as this within the compass of
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mathematical deduction. But as things stand at present it seems as though
we must follow some other route if we are to get any further for some
time to come.
In related problem areas promising results are shown by digital com-

puter simulation. It seemed worth while to try to bring these newly de-
veloped techniques to bear on the problem of optimal pricing. So this is
what I have tried to do in this book.

1.4 A philosophy of simulation

But simulation raises problems of research strategy all its own. The revo-
lutionary feature of simulation as a method of research in the social
sciences is its vastly increased capacity for processing descriptive detail.
The simulator is free to include in his model of analysis any type of quan-
titative relation between any number of variables and can have the com-
puter work out any complex result oftheir interaction, exactly and speed-
ily. In a field of enquiry checked so severely and for so long by the limi-
tations of mathematical deduction, as is the case with economics, it would
not be human to arrest the impulse to explore this capacity to the full.
Looking back upon the first decade of simulation research such compre-
hensiveness is very much in evidence. It has been tempting to admit almost
any detail that promises to lend more realism to the model. The result
is often a realistic mess.
The drawbacks of simulation are the necessity of working with nume-

rical prototypes and the limited possibility for tracing observed cause and
effect relations through the system. When the model is very complicated,
the combined impact of these phenomena can be very troublesome. The
advantages of a controlled experiment may slip away, the research situa-
tion reverting to something not much different from that of empirical
research in a complicated area. In a mass of confusing detail some results
stand out which the researcher is at a loss to explain or the significance of
which he is unable to assess. Empirical research in the field of industrial
pricing is exactly an instance ofthis dilemma. Applied uncritically, simula-
tion may offer little advantage over it.

However, the problems of interpretation of simulation results are now
recognised by workers in the field as involving some peculiar aspects of
prime importance, and the call is out for a uniform effort to stake out
rational research strategies. It is natural that anybody who attempts si-
mulation should take some interest in these questions, both for the bene-
fit of his own research achievement and because his study also adds mate-
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rial for the general methodological discussion. Unlike the case in some
stagnant fields, the researcher is also a methodologist. This has been the
economist's lot for a long time. It happens again for the economist as
simulator. And it is inevitable that this book should reflect some of its
author's preoccupation with what may perhaps be called a philosophy of
simulation.
It seems to me that past experience ought to teach the economic simu-

lator a lesson of more restraint in model construction. Some successfully
completed simulation studies of industrial decision systems have emplo-
yed models of moderate complexity. And observations of the conditions
of controlled experimentation in other fields can but confirm the wisdom
of such restraint.

Time and effort gained by sacrificing some of the "realism" of a com-
plex simulation model may perhaps be better spent on experimentation
with alternative sets of numerical values to get a better grasp of how the
system works. This is necessaryifthe simulator is to approacheven remotely
the knowledge of the deductive analyst, who can explore the relations of
his simpler, general system at leisure.

Obviously the simulation model could be stripped too much of detail.
After all, the whole idea of using simulation rather than traditional me-
thods is to permit more complex descriptions. In transition something is
necessarily lost in lucidity. It is a question here only of striking a reaso-
nable balance.

Moreover, these statements refer to general research only. The consul-
ting analyst will probably benefit much more from a comprehensive re-
presentation of the details of his problem. And in the second instance
such overall studies of special cases may also prove important as bases
for constructing a valid theory for general case. So there are no doubt
relevant lines of research approach along which simulation may be taken
other than the one advocated here.

I suggest that in many cases it may be wise to start by exploring the
possible avenues of extension of existing theory as far as possible by
deductive analysis and then to attempt a further advance by simulation
in carefully measured steps. This will assure a modicum of continuity,
which is essential. As familiarity with the new techniques increases and
results accumulate, the process may be carried on to gradually more
ambitious projects.

The present study is only a first step in such a process. Still, I do not
want to leave the impression that the model employed is not complicated.
Even when only relations of obvious importance are included and each
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is drawn in broad outline, the composite picture of multiple production
and marketing over time is bound to be rather involved.

Some of the building of the model is done in each of the two following
chapters. The single-product, static model of the theory of price is taken
as a point of departure. In Chapter 2 this model is extended partially in
different directions by deductive analysis. This serves to limit the search
for optimal pricing rules to a particular class of formulae. In Chapter 3
the partial extensions are merged, some new elements are added, and the
total system is operated by simulation to locate optimal rules for diffe-
rent sets of numerical values of important variables in the model.



2. Deductive Explorations

2.1 Theory and fact in pricing: Two points of divergence

The theory of price referred to in this book is a system of reasoning which
has gone through a series of adaptations from classical monopoly assump-
tions to the conditions of present-day markets with very little formal
change. In the following statement of the theory we rewrite one of its
basic functions to prepare for an explicit analysis of intertemporal rela-
tions. Furthermore, we introduce two or three specific assumptions re-
garding the shapes of some functions. These are the first in a series of
specifications through which we shall arrive at a complete state-
ment of the properties of the simulation model to be analysed in
Chapter 3.
Let q = q(P)1 be the quantity demanded of a given product from a

given firm in a given period and let c = c (q) be the total costs of producing
this quantity. In total costs there is usually an easily recognisable element
of short-run, variable costs such as material, some types of labor, etc. In
practice such costs are generally assumed to vary linearly with output.
We shall accept this assumption and write the total cost function in the
form / _- -, I. _ vA tA0/"'-1 (r.. lIt.

c = vq+v(q) V l.c o"m'\_;V'--'- J I r-
where v is a constant while the function v(q) comprises all other costs,
present and future, which may be relevant to the pricing decision.
Let 1J be demand elasticity, defined as a positive variable by

1J=

1 In the literature, quantity is commonly treated as the independent variable
rather than price. The mathematics then tends to be simpler. For the purpose of
the present analysis, however, it is better to state the problem in terms of price
throughout.
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assuming dqldp to be negative. The following analysis is further limited
to the normal case of Yl > 1. We also define

10(= ~-.
Yl-l

The firm seeks to maximize profit

n = pq-c.

The (first order) condition of maximum, stated as a pricing rule, is then'

p = (1 +0() (v+v'(q)] (1)

This is the form in which we shall compare the theory with empirical
pricing procedures.

The rule used in practice is, slightly modified, of the form

p = (1+/3) (v+xu) (2)

where p and v are defined as above, while /3 is an estimated profit margin,
x is the estimated cost of using the firm's capital production equipment
per unit of its capacity (the burden rate), and u is the number of capacity
units required for making one unit of the product.

The modification made in the formula is two-fold:
i) In some accounting systems elements of short-run variable costs are

treated differently according as they are classified as direct or indirect
costs. If this scheme is strictly adhered to, only the direct element should
be included in v, while the indirect variable costs, which may sometimes
amount to as much as ten or fifteen per cent of total costs, should be in-
cluded in the burden.s The distinction is purelyone of book-keeping ex-
pediency, however, and there seems to be now a growing recognition of
the rationality oftreating all short-run variable costs in a uniform manner.
So in interpreting contemporary accounting practice we shall assume
that there are no indirect variable costs in the traditional sense, all gen-
uinely short-run variable costs being included in v. Then the burden con-
sists only of certain overhead costs which bear no recognisable relation
to short-run variations in output. In this book such costs are called ca-
pacity costs".

I Cp. Mathematical Appendix 1.
2 Cp. [7].
3 This is a general definition of capacity costs. However, the term may not

be as appropriate when inter-product and inter-period relations in production and
demand are more complex than assumed in the following. Then there may be over-
head cost elements less directly related to capacity.
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ii) In most industrial firms capacity costs are allocated to a number of
different departments or processes and a burden rate is computed for each
of these. In this study that number is reduced to a single burden rate.
The reduction is motivated by a tremendous gain in analytical simplicity,
while there does not seem to be any immediate reason to think that we
have lost much in generality. But on this point we have not much more
than intuition to guide us, and this is true all along the line of model spec-
ifications that we have now embarked upon. While sacrificing for the sake
of manageability certain facets of the very complicated problem before
us, we can only hope that we have succeeded in preserving its fundamen-
tallogical structure.

Comparing formulae (1) and (2) we find that they differ in two respects
only. To the profit margin and to the burden applied p~it
in the full cost formula there correspond certain theoretical expressions
which mayor may not amount to the same things. Each point has been
the subject of much discussion. In this book we address ourselves only
to the latter point. The former is deliberately avoided by an assumption
which reconciles the conflicting views.

2.2 Not to be analysed: The profit margin

Some critics have seen a serious defect in the application of the profit
~ /!9,ll:rgin of the full cost formula. While IX of (1) is a function of demand

~/ \frerasticity, p of (2), it is held, is a fixed mark-up on cost, applied entirely
~' automatically with no attention to market forces.

I am inclined to doubt the weight of this criticism. Schmalenbach, who
may deserve to be called the founder of scientific cost accounting, stated
very emphatically that "der zugeschlagene Gewinn ist ... eine verånder-
liche Grosse, mit der der Kalkulator sich an den erziehlbaren Marktpreis
heranfuhlt'", and it is convincingly borne out by the empirical evidence
that this search for an appropriate profit margin is indeed an operative
fact.
It is true that the margin sometimes shows only slight alteration from

one period to the next and from one product to the next. Theorists un-
familiar with the inside workings of industrial decision processes may
easily be led astray by this peculiar rigidity. But it can be explained as a
natural result, partly of market strategy, partly of insufficient information
which tends, in practice as well as in theory, to favor the status quo.

1 [13], p. 273.
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The underlying relations are indeed very complicated. In this study no
attempt is made to unravel them. A simple assumption is made which
leaves out the entire question of the size of the profit margin. We assume
that there exists for each product, in each period, a known demand func-
tion with constant elasticity. Then IX is also a constant, given for each prod-
uct and period, but not necessarily identical for all products in all periods
The price maker applies this constant in each case, putting p = IX.

Two points should be commented upon concerning the implications of
this assumption. One tends to weaken it somewhat, the other to strengthen
it considerably.
On the one hand, once we assume the existence of a known demand

function, the assumption of a constant elasticity is not as strong as it may
seem. If it only serves to determine p for pricing purposes, it does not
necessarily amount to assuming q = QP-T/ with Q and 11constant for all
positive p. It is sufficient to assume the function known with such con-
stants in the relevant price range. This is a much weaker assumption, for
the relevant price range is usually quite narrow, and for most shapes of
demand functions it is possible to find constants Q, 11which give a very
good fit within limited ranges.
On the other hand, the very assumption of a given demand function

for each product is much stronger than may perhaps appear at first sight.
In the pricing theorem of the monopolistic and imperfect competition
theories the demand function has gradually come to be interpreted as a
subjective entity. In this way its meaning has also been preserved in cases
of oligopoly, where actual demand, measurable ex post, is a function both
of the firm's price and of competitors' reactions to that price. By the
nature of things these reactions cannot be foreseen. So it would seem
more appropriate, as has been attempted lately, to describe the pricing
process explicitly as a game of strategy with incomplete information on
the parts of all players. Defenders of the traditional theory argued, how-
ever, that all that is needed to explain the behavior of each individual
firm is its ex ante, subjectively estimated demand function. In this func-
tion the firm may take account implicitly of all intermediate effects on
demand caused by its own price decision, thus also of estimated compet-
itors' reactions.
The theory of games has not done much to explain industrial pricing

so far and there is much to be said for the simpler approach by subjective
demand curves. But it should be clearly realised that it is limited to a
static theory. If we are to analyse a series of successive price decisions, it
is impossible to leave out actual, "objective" demand relations. In each
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newperiod, as prices are to be chosen, the effectsofthose chosen in previous
periods come back to the decision maker in the form of actual sales figures.
Hence if we assume in a dynamic model constant demand elasticities

in the sense that the optimal profit margin can be determined solely by
the parameter 11of the demand function, it can only mean that we have
left out all oligopolistic uncertainty. We assume, in effect, a monopolistic
market (if (X > O). This is in reality the sacrifice which is made in the
present study to avoid all discussion concerning the profit margin.
To put it in terms of the dimensions discussed in Chapter 1: We retain

the single-firm limitation of traditional price theory. By doing this we
shall be able to extend the analysis to multiple products and to multiple
periods in a model which is still tolerably lucid.'

2.3 To be analysed: The burden rate

We are left with two formulae which are now completely reconciled ex-
cept for the terms v'(q) of (1) and xu of (2).2 We have certainly chopped
off large hunks of the problem involved in a final theoretical evaluation
of the significance of empirical pricing procedures. But I believe that the
question which remains is the essential one: How well does the burden
applied in full cost calculation express the costs relevant to optimal pricing
other than short-run variable expense?
Much of the confusion about this question is due to the deceptive for-

mal simplicity of the theory which gave rise to the debate. If its formal
character of a single-product, single-period theory is taken literally to
mean that the firms considered actually produce only one product and
seek maximum profit within a single-period horizon, then the term v'(q)
disappears and any burden included in the pricing formula is a clear-cut
deflection from rational procedure. This conclusion is evidently suscep-
tible of misinterpretation. The reason must be that the real assumptions
of the theory were not always stated sufficiently clearly. This mistake may

1 There is one further dimension in which we may even be said to have reduced
the multiplicity of the traditional theory. There is no mention in this book of other
market parameters than price, such as quality and selling costs, which played a
celebrated part in certain versions of the theory. However, the analyses of the diffe-
rent parameters were essentially partial. In the standard treatment of price the op-
timality condition, as evidenced by (1), includes no reference to other parameters.

2 The possibility of reconciling full costing with marginal theory in the case of
linear costs and constant demand elasticity is well known. Cp. for instance, [11] and
[14]. The present study adopts these views, but places a greater emphasis on the long-
run cost elements.
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seem naive, but it is nevertheless potentially very harmful, for instance
when expressed in those modern cost-accounting devices which ignore
long-run costs. So we must devote a few words to explain it.
The trouble is rooted in historical tradition. The price theory of the

early thirties is best understood when seen as an attempt to extend the
Marshallian industry analysis to the economics of the individual firm.
This immediately explains the formallimitation to a single product, since
the product is the very basis for defining the industry. When the impor-
tance of multiple production for the analysis of pricing in the firm is re-
alised, the theorist will of course try to take this into account, but in a
theory which employs a formally single-product model he can do so only
implicitly, for instance by redefining marginal cost of a given product to
include the opportunity loss on rival products. The circumstances are
almost identical in the case of the time horizon. The theory writhes in
the cruel grip of Marshall's static model, where intertemporal relations
affecting present decisions, however clearly acknowledged, can only be con-
ceived of as somehow projected into the shapes of the short-run curves.
On both points all recent responsible expositions of the theory are quite

unmistakable. It is clearly meant thus implicitly to take account of both
inter-product and inter-period relations to the extent that these do exist
and influence decisions. Hence if we are to approach the problem of the
burden rate in full cost pricing in terms of a comparison with the marginal
cost curve of the theory of price, we must envisage a general case where
v'(q) does exist. As for the shape of v'(q) , however, the theory in its im-
plicit form can tell us nothing. To get within reach of this problem we
need a model which is explicitly multi-product and dynamic.
We now proceed to build such a model. The way we shall go about

this is to take the slightly modified theoretical model in which (1) was
deduced and carefully loosen its two remaining singularity assumptions.
In the process we shall have to specify a whole host of new inter-period
and inter-product relations. By keeping these very simple we shall just
be able to extend the mathematical analysis partially to multiple products
in a single period and to a single product in a sequence of periods. We
do this in the following sections of this chapter preparatory to a simul-
taneous analysis by simulation in Chapter 3.

2.4 Multiple production in the static case

Analysis of multiple production has a long tradition. The classical expo-
sitions of the theory of monopoly, which in a sense was merged with the
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main body of value theory to form the theory of price we have discussed
above, usually included a section on the pricing of "joint" products. But
this treatment was limited to some extreme cases of substitution and com-
plementarity in production and demand. In modern industry there is an
important intermediate class of assorted production, characterised by zero
or negligible cross-elasticities of demand and by more or less constant
rates of substitution within most of the capacity range of production.
This class has only recently found its way into the theoreticalliterature.
Following the general trend towards a linear theory of the firm, attention
has then focused on the simplest case of assortment, where independence
between products is absolute except for competing claims on a fixed ca-
pacity. When extending the traditional single-product theory to multiple
products, we shall stay with this simple case.

Consider a firm which produces n products in a given period with a
given capacity M.1 For product no. i (i = l , ... , n) let Vi be unit variable
cost and Ui the number of capacity units required to produce one unit
of the product (unit capacity requirement), Vi and tu both being positive
constants.

Further let

be demand at price Pi . ø and fli are constants, Qi > O and 'li > 1 . Fi-
nally put

lIXi = --- --
'li -l

The firm seeks a set of prices which maximize period profit

n

Il= L qi(Pi - Vi)
;=1

under the constraint

The (first order) maximum condition, stated as a pricing rule, is2

Pi = (l+IXi)(Vi+).,Ui) (i = 1, ... , n)
') ', '

/, Measured in some unspecified capacity unit, e. g. one machine hour, one square
( fo~t of factory space, or the like.

2 Cp. Mathematical Appendix 2.

(3)
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where Å = Oif the capacity constraint is not effective in optimum, Å is
determined (along with the prices) by (3) and

if the constraint is effective in optimum.
Å is the cost ofusing scarce capacity on the margin ofproduction. Thus

(3) is certainly a marginal pricing rule and the term is highly meaningful
in this case. At the same time the formula shows a further approximation
to the full cost rule (2), the general term v'(q) of (1) having been reduced
to ÅU of (3), which differs from the xu of (2) only in the interpretation of
unit capacity costs.
But this result is circumstantial. It follows from the linear production

technology assumed in both cases. The difference is still a real one. While
Å is an opportunity cost, the burden rate x is an actual or normal average
expense computed on the basis of accounting data. So there is no assur-
ance that Å will approximate x and thus, when applied repeatedly, ex-
actly cover capacity costs. However, this question is of no great impor-
tance. A meaningful comparison requires an extended time horizon.
What we have achieved by the assumption of linearity is to further

narrow the field of comparison to a single, multiplicative factor. By re-
taining the linearity assumption in the dynamic case where the actually
incurred capacity costs must enter the theoretical model also, we shall be
able to discuss the significance of the full cost burden rate in equally
simple, but empirically more relevant terms.

2.5 Intertemporal relations

The crux of dynamic planning is present binding of future behavior with-
out full knowledge of the consequences. In a dynamic version of the pric-
ing model of the preceding sections, capacity change by investment in
capital equipment must be treated as a variable along with price. The
binding of future behavior involves both types of variable and is caused
by the fact that both products and capital have lives of more than one
period. We shall assume some simple intertemporal relations whereby
uncertainty is limited to product life.
The completely deterministic investment process is described by

t

Mt = .L mf
j=t-Zl+1
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where total capacity M; is the number of capacity units available in period
no. t, part capacity mj is the number of units added by investment in
period no.j , and Zl is the life (in number ofperiods) of capital equipment.
Investment may be made in any period. We may reasonably assume in-
vestment costs to be proportional to volume and life of new capital. To
add one unit of capacity then costs IjIZl in the period of investment, no
matter how many units are added. The investment entails no further cost
in this or subsequent periods, regardless of whether the unit in question
is used or not. We may say that the constant ljI expresses investment
costs per period per capacity unit or, less clumsily but using a more dan-
gerous term, the costs of depreciation per capacity unit. Capital equip-
ment is useless after Zl periods and has no scrap value.
In production future behavior is bound by price rigidity. Each product

is assumed to be priced once and for all in its period of introduction. If
we were to permit all types of intertemporal relations between different
products we should lose no generality by excluding the possibility of price
changes, since we might immediately define a new product, appropriately
related to previous products, when a new price is set. But since we assume
very simple inter-product relations, over time as well as in each period,
there is a certain loss of generality involved in the rigid price assumption.
To some extent it is justified empirically. Reluctance to change prices
prevails in many industries.
Except for a chance element, the price once set for a product uniquely

determines future demand and profit. There is no relation to other prod-
ucts except through the competing claims on present and future capacity.
In the precise shape of the life cycle of demand we cannot hope even to
approach full realism. The chief merit of the relations assumed here is
that they lend themselves readily to numerical analysis.

Let qt1 be demand for a given product in period no. t. Let t = r be the
period of introduction of the product and p its price chosen in that period.
Retainin~e previous assumption as to the shape of the demand func-
tion, we have

with Q and 1'/ constant for each product. We now assume these parameters
to be constant over time also, so that demand, once determined by the
price chosen, is stable throughout the life of the product. Product life is

1 Since we now proceed to an analysis of single production in the dynamic case,
we may omit the indices identifying individual products.
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determined by a random process. For any t > T we assume

1Piq, = O) =-
Zz

where P is probability. Hence product life has a geometric probability
distribution with expectation Zz.
In analysing the simultaneous process of production and investment

over time, our prime concern is still with the pricing decision. So we de-
liberately reduce investment to a secondary variable, dependent on price.
In any period where scrapping of old equipment or introduction of new
products or both require an addition to available capacity, the necessary
investment is made automatically. Thus while the consideration of capital
costs will playa dominant part in the dynamic problem, the problem is
still expressed solely in terms of a set of prices.
In conclusion of this section a few words must also be said about

pricing objectives. In the static analyses performed above we tacitly
adopted the traditional assumption of profit maximization. We now want
to retain the limitation to profit as a measure of preference, but in the
dynamic case, under risk, the precise statement of the objective function
needs an amendment. We state that the firm's objective shall be under-
stood to be that of maximizing expected average period profit within its
horizon.
There is no snag in this when used in our main simulation analysis of

the multi-product case. There we include an extended, randomly deter-
mined sequence of products over a very large number of periods so that
chance influence on the average is reduced to a minimum. But before
approaching this main problem we are also to consider a dynamic model
involving a single product. Here such seriability is not at work. Strictly
speaking this means that the objective function just formulated expresses
a "zero risk preference" or, in a more recent parlance, a "linear utility
function" of money profits. But this is accidental. The case in question
is merelya limiting one, included by way of introduction to the main
analysis of multiple production. When maximization of expected profit
is extended to this preliminary case, it is only because corresponding ob-
jectives are necessary for the purpose of comparing the results.

Finally it should be mentioned that "time preference" of all kinds is
omitted from the dynamic analysis. Since the model employed only de-
scribes the way profits accrue in a given productive activity without
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relating it to alternative activities in which these profits may be employed
or indeed touching on the financial aspects of investment at all, it seems
more reasonable to let all period profits weigh equally in the average than
to discount future profits by some arbitrary rate of interest.

2.6 Single production in the dynamic case. Optimal price

We now approach the problem of pricing an isolated product in the
period of its introduction, assuming that the firm throughout the life of
the product will make sure that there is capacity available to satisfy de-
mand at the chosen price. The firm's horizon within which it desires to
maximize expected average period profit on this product we assume to
coincide with the termination of the life of the product. This life is
unknown at the date of the pricing decision, but since product life is also
independent of the price chosen, the optimal price may be determined
by maximizing expected total profit defined as

where I is expected total capacity costs. The problem turns on the nature
and exact definition of I.
There may be a certain capacity already available and paid for before

the period of introduction of the given product and thus to be used for
its production without further expense. This is not included in I. We in-
clude only costs of investments made during the life of the given product
and for the purpose of its production, i.e. initial investment if available
capacity is insufficient and in addition possible reinvestments made nec-
essary in subsequent periods. When Zl > 1 (which is the general case),
a certain capacity may remain for a number of periods after demand
suddenly drops off. Although this capacity is not used for the production
of the given product in these remaining periods of the life of the capital
equipment in question (and may indeed be used for the production of
some new product), the capital costs are to be included in I in extenso,
provided the investment is made during the life of the given product.
If previous investment is staggered over time, the different units mak-

ing up initial capacity may not be all of the same age. Referring to the
description of the investment process in Section 2.5. we may simplify the
analysis of I if we rewrite the part capacities in terms of remaining life.
In the period t = 't" of investment of the given product, before any pos-
sible new investment is made in that period, the available capacity con-
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sists of a number of part capacities

mj=mT-z1+j (j=l"",zl-l)

with remaining life j periods (including the present period). Before in-
vestment there is no part capacity with remaining life Zl periods, so we
put

The part capacity with remaining life zero periods was just scrapped (if
there ever existed any such part capacity). Its actual size, therefore, will
not influence the subsequent investment process. For analytical purposes
we assume some large mo so that

for any q considered.
Then for any q there exists a number K so that

Zt Zl

L mj ;::: uq > L mj
j=K ;=K+l

and it can be shown that!

1= ZZQ(K)If/[uq-a(K)]

where

and
Z, [ ( I )J-K]a(K) = L mj l - l - - .

j=K+l Zz

Hence
li = zzq[P-V-Q(K)If/U] + ZzIf/Q(K)a(K).

We now seek maximum of this function to determine optimal price and
to see whether this price corresponds to an exact coverage of capacity
costs.

1 Cp. Mathematical Appendix 3.
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Since the first derivative of li is in general not continuous, we cannot
rely entirely on differentiation to find optimal price. It may be that it is
optimal to employ a number of the existing part capacities exactly, no
more, no less. It may then further turn out that ifmore had been available
of the oldest (or of course of a younger) of these employed part capacities,
it would have paid to extend production somewhat, but in fact it does
not pay to do so because this means using still older capacity units in-
volving higher expected reinvestment costs. The probability that optimum
shall be thus located depends on the ages of the initially available part
capacities and of their number relative to the optimal requirement. How-
ever, it may be shown! that the important conclusion as to cost coverage in
this limiting case does not differ materially from that of the general case
where optimum corresponds to a point in the interior of one of the avail-
able part capacities. So we are content to pass over the problem of how to
determine when a general case exists and assume that this is in fact the case.
The location of optimal price is then very simple. Mathematically our

assumption is that there exists a K so that the demand quantity corre-
sponding to optimal price falls in the interval

Zt Zj

L mj > uq > L mj
j~K j~K+l

In this interval ptx) and a{K) are constant. The problem is thereby reduced
to one of simple, linear costs. Differentiating li we find the following
(first order) maximum condition, stated as a pricing rule.s

p = (1 +oc)[v + {!(K)lf/U] (4)

where ocis defined as before.

2.7 Single production in the dynamic case. Cost coverage

We have thus found that in the single-product, dynamic case the pricing
formula also conforms closely to the one used in practice. To x of (2)
there corresponds a term {!(K)lf/ of (4) for which we shall henceforth adopt
the name of its empirical counterpart and call it a burden rate. The ques-
tion which still remains, however, is whether this theoretical burden rate
also ensures exact coverage of capacity costs as the empirical one is usu-
ally intended to do.

l Cp. Mathematical Appendix 6.
2 Cp. Mathematical Appendix 4.
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The answer is that in the single-product case, in general, it does not.
But there are some important exceptions. Moreover, a closer inspection
of the problem reveals some features which point to a rather different
hypothesis for the multi-product, dynamic case, which is to be analysed
in the next chapter.
Consider first the near-trivial case where capitallife is a single period.

When Zt = l, we must have K = 0, and it follows that Q(K) = 1, a(K) = O
for all Z2. Capacity costs are reduced to variable costs. Each unit of the
product produced carries a burden of 'flU, i. e. the costs of investment
in a capacity unit multiplied by the number of capacity units required to
produce a product unit. There is of course full cost coverage.
When Zt > l, risk is introduced. Investment in productive equipment

entails a fixed cost, the exact coverage of which cannot be guaranteed.
However, in view of the proposed extension of the analysis to the multi-
product case where seriability works to average out individual product
risks, it is relevant to restate the problem of cost coverage in terms of
expected values. Is the burden rate Q(K)'fI such that the mathematically
expected capacity costs incurred are exactly covered by the mathemati-
cally expected burden, i. e. is

1= R
where

R = Z2Q(K)'fIUq

is the total burden expected to be carried by the product during its life?
Two cases should be distinguished. One important case is defined by

the assumption that mi = O for all j = K + l, ... , Zt. while mK is large
enough to support any relevant production volume. In general this means
that all capacity units which are employed for the production of the given
product in any given period of its life are of a uniform age and will be
replaced simultaneously. Two special cases may be mentioned. K = Zt-l

means that no part capacity is zero except mZl' which is zero by definition,
but a part capacity with remaining life Zt-l periods is found to be suf-
ficient. K = O means that no capacity is available at all before investment
is to be made in the period of introduction of the product.
In the other main case, to which we shall return presently, different

part capacities employed may be of different ages. Mathematically, this
is of course the more general case. But I would like to stress that the
assumption of a uniform capacity age is by no means a far-fetched one
in the single-product case. If the production of a given product is seen
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in isolation from other uses of capacity, it is quite natural to imagine that
capacity is either bought outright for the occasion or otherwise that it
is available in a uniform bulk sufficiently large for the product in ques-
tion. Staggering of investment over time is primarily an effect of multiple
production where changes in product family causes sudden shifts in ca-
pacity requirement.
This is emphasised because if capacity is uniformly old, the optimal

pricing rule is, in terms of expected values, a full cost rule. It follows from
m} = o (j = K+ 1, ... , Zl) that a(K) = O,hence

I = Z2(J(K)If/Uq = R .

We shall find in the next chapter by simulating the multi-product case
that the size of the burden rate necessary to cover full cost exactly varies
considerably with the lives of products and capital. There is a correspon-
dence between these results and those that may be deduced in the present
case of single production with capacity of a uniform age. Since this latter
lends itself readily to analysis, brief attention should now be given to the
function (J(K). To state verbally what this function measures is not pos-
sible in any simple terms. It is the burden rate per unit of investment
costs per period (or of depreciation costs) of capacity employed in pro-
duction. The significance of the function may become clearer when we
describe it numerically. As it is larger than, equal to, or smaller than
unity, the product has to carry, in order to give expected full cost coverage,
a burden which is larger than, equal to, or smaller than the streightfor-
ward costs of depreciation of the capacity used to produce the product.
Although for economy of notation we have included only K in the ar-

gument of the function, the burden rate depends on Zl and Z2 as well. As
already noted, (J = 1 for all Z2 when Zl = 1 (i.e. K = O).New investment
in single-period equipment is then made for each new period. So all ca-
pacity units are already employed, and each unit pays evenly for its in-
vestment costs. The other case which entails no risk is Z2 = 1, K ;::: 1, for
which (J = O.When product life is a single period while there is available
sufficient capital equipment with at least this time to go, there are no in-
vestment costs at all and hence no burden. The same does not apply when
K ;::: Z2 for some Z2 > 1, since in this case product life is a stochastic
variable, and it may happen to exceed the remaining life of existing equip-
ment so that some reinvestment costs must be incurred. Then there is also
some risk that this new equipment willlay idle for one period or more.
In all cases save the two stated above, the value of (J is determined by

the risk of non-use of capacity invested in and paid for, weighed against
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the profitable use of existing, free capacity. These risks and consequent
losses and the gains counterweighing them are in turn determined by K,

Zj, and Z2 so that, depending on these variables, each capacity unit em-
ployed should, in order to give expected full cost coverage, sometimes
carry more, sometimes less burden than its straightforward depreciation
costs. As might be expected, the fraction K/Zl is crucial in this respect.
While it is impossible to describe in simple terms the detailed shape of
the function (2, it can be shown! that when the remaining life of existing
capacity is at least half that of new capacity, the rate is never above unity.
Otherwise it is sometimes above, sometimes below, depending on Zl and Z2.

When the pricing rule for the case of uniform capacity age was de-
scribed as a full cost rule, this may have struck the critical reader as being
something of a subreption. The justification for full cost coverage in this
case is clearly the fact that it coincides with a readily evident marginal
principle. When all productive equipment is of the same age, the expected
cost of capacity per product unit on the margin of production is equal
to average expected or full cost of capacity.
When we allow for different ages of parts of total capacity, this simple

equivalence no longer prevails. Then the expected capacity cost per prod-
uct unit on the margin of production is higher than the average because
the marginal unit employs capacity with a shorter remaining life. Hence
optimum price, determined by considering costs on the margin, includes
a burden which is expected to cover more than full cost, i. e.

R > l.

Mathematically, this follows from the fact that for finite Z2 and at least
one mf > o (j = K+ l, ... , Zl) we have

a(K) > O.

It can be shown- that this result obtains also when optimum does not,
as assumed here, correspond to a point in the interior of one of the avail-
able part capacities, but consists in employing a number of the existing
part capacities exactly.
However, the more we generalise the description of the capacity situ-

ation, the less satisfactory is a limitation to a partial analysis of a single
product. The capacity vacated by one product when its demand drops
off may give room for one or more new products. So the former product

1 Cp. Mathematical Appendix 5.
2 Cp. Mathematical Appendix 6.
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should perhaps not carryall the investment costs. By the same token, idle
capacity is no longer necessarily free to the new product. The full cost
hypothesis in this case would be that the possibility of reallocating capac-
ity after all tends in the long run to favor a pricing rule which aims at
covering only the costs which are actually incurred.
There is nothing inherently unreasonable about that. It may perhaps

even be said that the mathematical analyses in this chapter have indicated
that it cannot be far off the mark. But a full-fledged dynamic analysis of
multiple production is required to substantiate the hypothesis.

2.8 A class of pricing formulae

Before this task, mathematical deduction breaks down. The main ob-
stacle is the description of the life and death process of the family ofprod-
ucts which becomes too complicated even if stripped down to a minimum
of realistic detail. So in the next chapter we approach the problem by
means of computer simulation.
What this chapter has given us is a class of pricing rules to simulate.

We have analysed multiple products under single-period conditions and
a single product under multi-period conditions and have found in both
cases that the optimal pricing formula is equivalent to the empirical for-
mula (2) save for the burden rate x, which mayor may not ensure exact
coverage of (expected) capacity costs. In the simulation experiment the
class of pricing rules to investigate cannot be found by deduction but
must be part of the assumptions of the model. I propose to exclude from
consideration all pricing formulae except those of the general form (2).
This amount to taking it as sufficiently established by the analyses in this

chapter that in any situation in which the firm may find itself there is a
burden rate so that formula (2) applied with this burden rate is the optimal
pricing formula for all products to be priced in that period. It remains,
of course, to determine these burden rates for different periods. The op-
timal rate must be presumed to be a function of certain descriptive prop-
erties of the pricing environment. Some important properties are there-
fore specified and the functional relationships are estimated by simulation.
With this evidence on hand we may then again turn to the full cost

hypothesis and see whether the application of the burden rates thus lo-
cated will or will not in the long run tend to exactly cover investment
costs.
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3. The Simulation Experiment

3.1 Multiple production in the dynamic case

In the dynamic case the analysis of multiple production centers on the
notion of an ever-changing product family. To get to the core of the prob-
lem we must conceive of this change as a stochastic phenomenon.

Risk was introduced in the dynamic, single-product case by chance
termination ofproduct lives. Now risk is enhanced by chance introduction
of new products. We shall assume that the number of new products to be
priced in an arbitrary period is a Poisson variable with expectation Z3.

Different products might well be assumed to have different life expecta-
tions. But in this study I want to isolate expected product life as a main
determining variable and to define it as simply and clearly as possible.
For this reason we retain the assumption of constant demand through
a product life terminated or extended from one period to the next by a
random draw, and we assume the chances of termination to be the same
for all products and independent of each other. Then all products have
independent geometric life distributions with expectation Z2.

It follows from these assumptions! that the number of products in the
family in any period (after a number of periods sufficient for the system
to attain the equilibrium level) is also Poisson distributed. The expected
size of the product family is y = Z2Z3, in other words the expectation is in-
dependent of the individual values of Z2 and Z3. This will enable us, by
varying one of these parameters inversely to the other, to study the effect
of changes in product life on optimal pricing under constant conditions
as to fluctuability and average size of the product family.
Though the products are assumed to have equallife expectations, they

may differ in the values of the parameters Qt and rti of the demand func-
tion and of the cost parameters Vi and Uio These parameters will also be
treated as stochastic. The simulation experiment requires specification of
the probability distributions. For each product we assume the four par-

! Cp. Mathematical Appendix 7.
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ameters to be independent of each other. We further assume for each par-
amenter the same probability distribution to apply to all products. The
expectations we denote by Q, ii, D, and ii. As for the shapes of the dis-
tributions themselves, the computations required for the stochastic gen-
eration are reduced to a minimum if we assume them to be rectangular
with a range equal to the expectation in each case.
The actual numerical values of the expectations were chosen so as to

give the model a businesslike appearance and to simplify computations.
An average elasticity of ~ = 4 seems reasonably high. Q is purelya scale
adjuster. Q = 1000000 gives a suitable number of digits in aggregate
output figures. The appropriate relation between D and ii depends some-
what on the value of 'Il. When investment costs are assumed to be linear
both in life and volume of capital, we may put 'fl = 1 without loss of
generality by an imagined scale adjustment. Then empirically we should
expect D and ii to be of somewhat the same order of magnitude. The
assumption D = ii = 1 was chosen for convenience.'
Pooling the partial descriptions from several sections of Chapter 2 and

adding the life and death process of the product family, we now have the
complete outline of our multi-product, multi-period model. It remains
only to specify some secondary relations for the purpose of the actual
execution of the simulation experiment. A sample of such specifications
was just included. They grow increasingly technical as we proceed. Let
us pause now to assemble from the somewhat scattered assumptions
above the main features of the model.

* A firm's production and marketing activities are examined over a se-
quence of discrete time periods.

* In each period a number of new products are introduced, the number
being a Poisson variate.

* Parameters of the cost and demand functions of the products are also
generated by a random process.

* Each product is priced in the period of its introduction and the price
is held constant during the life of the product.

1 Note that when If! = 1, il = 1, several measures of capital costs coincide, sim-
plifying notation. When If! = 1 the burden rates per capacity unit and per unit of
periodic depreciation costs are both expressed by x. On the average this also coin-
cides with the burden rate per product unit when il = 1 and exactly so for any pro-
duct no. i for which Ut = 1.
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J,.. * The products are independent in demand.

* Demand is constant through product life.

* For each product, life is terminated or extended after each period
according to a probability which is the same for all products and con-
stant over time.

* Demand functions have constant elasticities.

* Variable costs are linear.

* All products compete for a single, common capacity.

* Capacity requirements are linear.

* Capacity is extended when required to support the production of old
or new products at chosen prices.

* Investment expence is proportional to volume and life of capital.

* Capitallife is fixed and known.

* There is no capital maintenance cost.

* There is no cost of removing obsolete capital and no scrap value.

* The objective of the firm is to maximize average period profit, disre-
garding time preference.

* The means to attain this objective is the pricing rule.

3.2 Pricing in terms of burden rate limits

As stated in the conclusion to Chapter 2, we assume that the firm will
always price its new products according to the formula (2), but with the
burden rate x adjusted to the different situations in which it may find
itself. Once those different situations are specified, i.e. once a class of
pricing rules is defined, this problem is reduced to that of locating an
optimal value of x for each situation considered. But there are of course
infinitely many different classes of pricing rules, depending on what prop-
erties of the pricing environment are chosen as pertinent bases for the
adjustment. In attempting to locate an optimal pricing rule by simulation
we cannot consider all classes of rules but have to limit the analysis to
a single, more or less broad class. This is the problem now before us.
Again we are inevitably influenced by the merits of simplicity. The

danger involved in this is obvious. Wemust believe that the closerwe exam-
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ine environmental properties and the more narrowlywe specifydifferent sit-
uations according to them, the better in terms of period profit, although
the more complicated to locate and to apply, is the pricing rule we are
able to construct. So it is imperative that some obviously superior class
of rules is not permitted to escape our attention only because it is slightly
more complicated than the one focused on.
If we are properly aware of this danger, however, there is no demerit

in cutting through a mass of descriptive detail and holding on to some few
really important determinants. The savings in computational costs by this
is tremendous in simulation, as will be readily appreciated when the ex-
perimental procedure is explained. So it is not only legitimate, and ratio-
nal, but absolutely necessary, to omit some detail. In principle this prob-
lem is no different from that which is encountered by scientific general-
ization anywhere, and there is no means of solving it but a familiar com-
promise.
In our case the purpose of the analysis is to test a specific hypothesis

concerning the degree of cost coverage as we approach maximum in a
set of alternative pricing rules. After examining carefully the pricing en-
vironment we construct a set of alternatives and carry out the experiment.
We find no reason to believe that the conclusions reached are much
damaged by the fact that the alternatives are not described in more detail.
But there is no way of proving this except by actually restating the prob-
lem on a broader scale and carrying out a new experiment. This grows
rapidly more cumbersome and the process has no natural end.
There may be some solace in an analogy to real life pricing. Any busi-

ness consultant could testify to the need for sacrificing some operational
advantages in administrative routines for reasons of analytical and oper-
ational costs. So the details that we omit in the simulation model might
very well have had to be omitted in reallife too if pricing routines were
to be worked out for a firm in this kind of environment.
But in the final evaluation we must rely on our own scrutiny of the

environment. And then there is one aspect of it which seems to stand out
as all-important, namely the capacity condition. Other things being equal,
the firm will not charge a higher price and thereby get a lower volume
of production and sales of a new product in a period with sufficient ca-
pacity than it would in a period when new investment would have to be
made to produce it. However, it is not obvious that the burden
rate would be zero even in periods of idle capacity. This was seen
not to be the case generally in the single-product, dynamic model of
Chapter 2.
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Hence if we want to extend the findings of that chapter to a simple yet
pertinent formulation of a class of pricing rules to try out in the simulation
experiment, it seems that we may pose the problem of pricing in terms of
burden rate limits: there is an upper limit, XI. which is used in periods of
investment. If investment is not necessary at this rate, the rate is lowered
until either all existing capacity is employed or until a lower limit, xz, is
reached.
If we consider the combined activities of pricing and investment, we

may distinguish between five different types of periods, in three of which
prices are to be made. They are periods with

1. new investment to support existing production, no new products,

2. no new investment, no new products,

3. new investment, new products priced with burden rate XI.

4. no new investment, new products priced with burden rate xz,

5. no new investment, new products priced with some intermediate bur-
den rate just sufficient to use up all available capacity.

In the simulation experiment this intermediate rate is located in each
case by a sequence of approximations. The pricing routine can then be
illustrated by a flow chart as in Figure 1.

In the general case where the two limits do not coincide, the number
of different situations considered by such a pricing rule is infinite (or in
practice finite, but very large), since there is an infinite number (or actually
a very large finite number determined by the number of decimals allowed)
of intermediate rates. But given the routine of Figure 1, it is only necessary
to state the two limits Xb Xz in order to define a pricing rule completely.
Mathematically the set of alternative rules to be examined is a point set
in the (Xb xz)-p1ane.
The range of adaptation to changing conditions needed to price op-

timally is measured by the interval between the two burden rate limits.
If all costs are covered in optimum, the pricing rule is a full cost rule in
the broadest sense, but it may be a little out of tune with empirical pro-
cedure. It is true that students disagree about the extent to which indus-
trial price makers are apt to vary the burden rate to meet changing con-
ditions, but I think the consensus may be said to be that such variation
is rather limited. In a narrower sense often encountered in practice, full
cost pricing means covering all capacity costs by means of a uniform
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burden rate. In the simulation experiment we shall keep an eye on this
limiting case also, defined by Xl = X2, in addition to the general case.
Obviously our description of the pricing situations could have been

elaborated. It is reasonable to think that we might increase period profit
above the level attained by optimum in our two-dimensional model if we
could find an optimal rule which discriminated between different age dis-
tributions of existing capital, for instance, or between different uses of
that capital as to size and volume distribution of the product family. But
any such extension would require a vast increase in the number of dimen-
sions required to describe each situation. In the first place this probably
means that it would simply be impossible to find the desired optimum by
simulation, at least for more than a single set or a few sets of values of im-
portant structural variables in the problem. In the second place it is highly
dubious whether such an analysis would really tell us much more than the
simpler one, even if it could be completed. So we stay with the two-dimen-
sional formulation in terms of the limits imposed on the burden rate
according to the capacity condition, and use the gain in time and cost of
computation for a more thorough examination of the structural relations
in the model.

3.3 Strategy of the experiment

In the simulation model there are still three important parameters which
have not been specified numerically. They are

Zl = capitallife
Z2= average product life
Z3= average number of new products per period.

In the experiment these are treated as structural variables in the sense
that optimal pricing rules are located for a number of combinations of
values of the variables to trace the basic fundamental dependence upon
them.

A standard combination Zl = 16,Z2= 8, Z3= 2 (i. e. y = 16)was cho-
sen for intensive study. For this combination, the whole (x], x2)-plane
was scanned and period profit (as a fraction of profit in optimum), capac-
ity employment, and cost coverage were recorded. For each of a number
of supplementary combinations of values of main structural variables,
analysis was limited to locating and examining the conditions in optimum.
In addition to the absolute optimum in terms of an upper and a lower
burden rate limit, the constrained optimum along the line Xl = X2was
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located ineach case. First, keepingy constant at the standard value y = 16
and varying Z3 inversely to Z2, optimal pricing rules were located for all
combinations Zl = 2i (i = 0, ... , 8) and Z2 = 21 (j = 0, ... , 6). Next
Zl and Z2 were kept constant at their standard values and optima were lo-
cated for all y = 2k (k = 0, ... ,8),1 Z3 varying accordingly. Finally some
scattered combinations were examined to test inferences drawn from the
main study.

For each combination of values of structural variables optimal Xl and
X2 were determined to the nearest percentage point. Closer approximation
would have been very costlyeven with the speed of the large computer
available, and two decimals were deemed adequate to trace the funda-
mental relations and test our hypothesis. Less than fifty points in the
(Xb x2)-plane sufficed in most cases to locate the optimal point. The con-
strained optima were of course much easier to find.
In addition to numerous computations for each period, the project was

rendered time-consuming because of a heavy burden of serial correlation
between periods, which necessitated extensive simulation runs. Much ef-
fort had to be devoted to reducing the run lengths to the minimum re-
quirement in each case.
For each combination of values of structural variables and burden rate

limits examined, average period profit and other variables were computed
in a "production run" following a "start run" estimated to be sufficient
to bring the system from zero product family up to its equilibrium level
and from zero capital to the equilibrium age distribution. As for the pro-
duction run, the aim was for all combinations ofmain structural variables
to reduce random fluctuation to a point where the average period profit
function was monotonously increasing in both Xl and X2 (or nearly so,
to the nearest percentage point) up to the absolute maximum. This sim-
plified the location operation and probably did not increase total compu-
tation time at all, since it reduced the need for investigating points sur-
rounding a located maximum area to make sure that the maximum was
not a local one.
After a long series of test runs, a system was chosen according to which

the lengths of both start run and production run were determined so as
to satisfy certain minimum conditions in terms of the structural variables
The start run was set at four times the maximum length of capital life

l As for the exponential expansion in the values examined for the structural va-
riables, this was based on a guess, partly confirmed by test runs, that some of the
basic relations might be approximately linear in the logarithms.
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and average product life. The production run should be either 1250periods
or else the maximum of 10000/z3and 10000zI!27if this maximum should
exceed 1250.As a result the computation time for the combined run came
to vary considerably with the combination of structural variables, from
less than half a minute to almost an hour in one extreme case. The stan-
dard combination required less than two minutes per run. Of course
computation time was determined not only by the length of the run but
also by the varying number of individual computations required in each
period for different combinations.
In some cases an automatic search program was employed to locate

optimum. In other cases the search was made by intutition, since after
a while it became rather easy to guess the location of the optimal burden
rate limits for new combinations, and it was not deemed worth while to
make this information the basis for any formal procedure.'

3.4 Execution

The bulk of the computational work was done on the IBM 360/50 instal-
lation of the University of Bergen, Norway, and took some 150 hours
on the central processing unit of that computer. Much exploratory work
before the definite choice of a model and some of the running in and
testing of parameters in this model was done on the smaller (and much
slower) IBM 1130 computer operated in the author's own Business Re-
search Institute at the Norwegian School of Economics in Bergen. Later
some supporting computations were undertaken at the Northern Europe
University Computing Center at Lyngby, Denmark, on an IBM 7090
computer.! Converting total time spent on each machine to '360'-hours
on the basis of a rough estimate of relative speeds, another fifty hours
must be added for a total of more than 200 hours for the entire project.
Technically the simulation was mostly a straightforward application

of standard computational procedures. Since the study retains the period-
icity of accounting and of the economic theory to which it refers, the
features which sometimes require a special simulation language were ab-
sent. The program was written in FORTRAN.

1 This decision partly reflects the fact that the author had ready and often con-
tinuous access to the computer for long stretches of the day (or rather night).

2 On this computer (though of course not on the 1130) the pseudo-random num-
ber generators (cp. below) adopted for the IBM 360 could be exactly reproduced
because of the longer computer word.
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The random determination of the number of new products in each
period and of the values of their cost and demand parameters, as well
as the random termination or extension of the lives of existing products,
were simulated by means of pseudo-random number generators in the
machine. This generation had to be handled with some care, since the
sequences generated were quite long, running well into six digits in some
cases. However, the word length of the IBM 360 is 32 bits, and this is
still easily sufficient to construct a simple multiplicative congruential gen-
eration formula with the required period length.
The standard formula of the IBM 360 Scientific Subroutine Package

was therefore used without any advance testing, but with different initial
values and different multipliers for several generators running in parallel.
A program for generating Poisson variates from a random fraction series
was developed and tested, but although this technique was not found in
the literature, it is probably quite well known.

These and other features of the FORTRAN program are best explained
by the appended program listing itself. A macro flow chart of the program
is found in Figure 2.

3.5 Output

According to the program listing, a total of 20 output figures are to
be listed after each simulation run. They include some data which serve
to identify the run, such as values of structural variables and burden rate
limits examined and lengths of start run and production run. The data
which describe the actual results are average period profit and, in addi-
tion to a number of intermediate sums and averages, the following cru-
cial variables:'

~ = relative unused capacity in production run
rp = relative coverage of capacity costs in production run.

The number and selection of output figures varied somewhat in intro-
ductory and supporting computations and even in the main study. The
numbers of periods of different types were sometimes computed, as seen
in the program listing. In the following discussion these numbers are pre-
sented as fractions:

fli = relative frequency of period type i (i = 1, ... , 5) .

1 Greek letters are used here to replace, for simplicity, the longer FORTRAN
variable names.
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For the standard combination of values of the main structural variables,
output for non-optimal pricing alternatives also included

( = period profit in production run relative to observed maximum.

The findings are presented in Figures 3-12 and in Tables 1-11. Their
contents and economic significance will be discussed in the following sec-
tions. Here some notes af a more technical nature are required.

Figures 3-5 deal with the standard combination of values of structural
variables. In the first two figures loci are drawn in the (Xl> x2)-plane for
some select values of ( and (/J(Figure 3) and ~ (Figure 4). Negative burden
rates are not considered. Since by definition Xl :2: X2, the area above the
line Xl = X2 is also left out.' In the three sections of Figure 5 curves are
drawn for the values of (, (/J,and ~ along this particular line.

Special mention should be made of the peculiarly distorted shapes of
the curves in Figure 3. They are not due to poor draftsmanship or to a
scarcity of observations, but came out like this as a result of the stoch-
astic element in the model. Prolonged simulation runs would presumably
have revealed more regular elliptic shapes for the (-curves and perhaps
straight lines for the (/J-curves. With the limited runs slight deviations from
these norms occur, and there is a certain regularity in these deviations,
because exactly the same sequences of random numbers are generated
for each of the points observed.

In Tables 1-3 and in the companion Figures 6-8 the standard combi-
nation of values of structural variables is taken as a point of departure and
results are shown for three partial variations. In Table l and Figure 6
we vary Zl (with Z2 and Z3 and hence y constant). In Table 2 and Figure 7
we vary Z2 (with Zl and y constant, varying Z3 inversely to Z2). And in
Table 3 and Figure 8 we vary y (and Z3, with Zl and Z2 constant). The
Tables record the optimal values of Xl and X2 for these combinations
and the values of ~, (/Jand f.1i (i = l, ... ,5) in the optimal points. In
the Figures the optimal values of Xl and X2 and the corresponding val-
ues of ~ are plotted. Logarithmic scales are used for the structural vari-
ables.

Tables 4--6 show some of the same results for simultaneous variations
in Zl and Z2 (with y constant, varying Z3 inversely to Z2). Optimal values
of Xl and X2 are found in Table 4. Table 5 shows the corresponding values

1 Pricing rules corresponding to points outside the boundaries of Figures 3 and
4 are technically possible, however, and a sample of such rules was tested. The general
shapes of the curves indicated in the Figures continue unbroken by the boundaries.
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of ~ and Table 6 the values of rp, with row and column averages. Figures
9-11 are companion Figures to Tables 4 and 5. In the (zJ, zz)-plane some
fixed level loci are shown for optimal Xl and Xz and for ~ in optimum,
based on interpolations between the 63 observations for y = 16recorded
in the Tables and a few supplementary observations. Continuous curves
are drawn to simplify exposition, although Zl (unlike zz) is actually a
discrete variable in number of periods. Logarithmic scales are used for
both structural variables.
Tables 7-11 are devoted to the constrained optima, i. e. the case of a

uniform burden rate. In addition to the optimal rate X = Xl = Xz itself,
(, ~, and rp are shown for each combination of values of structural vari-
ables. ( is again defined as period profit in the given point, i. e. in the
constrained maximum point, as a fraction of period profit in the absolute
optimum of burden rate limits. Table 7 records these data for variations
in y and Tables 8-11 for variations in Zl and Zz from the standard combi-
nation. Figure 12 is a companion to Table 9, showing some fixed level
loci for (. Technical notes to Figures 9-11 also apply to Figure 12.

3.6 Findings: capacity and burden rates

Before we launch on a discussion of the general findings of the study, it
is best to explain some peculiar results observed in the limiting cases Zl = 1
and Zz = l. This may also serve to familiarise the reader with the work-
ings of the model.
When Zl = l, i.e. when capitallife is a single period, there is never any

capacity left over at the beginning of a new period. Capacity needed to
produce a new product is always acquired by investment, hence the upper
burden rate limit is always the one used in pricing. One instance of this
is recorded in Table l, where it is seen that /14 = /15 = O for Zl = l.
Hence for this and all other combinations corresponding to an element
in the first row in Table 4, average profit is independent of the value of
Xz used in the experiment.' Optimal values of Xz do not exist and are
omitted in the first row of Table 4 (and of Table 1).
What happens in the case of Zz = l is rather more strange. In this case

the probability distribution of the number of new products in a period
is identical to that of the size of the product family. When the average
is as high as y = Z3 = 16,as is the case for Zz = l in Table 4, the deviation

I Different values were tried and confirmed this, providing in fact a test of the
logic of the model itself.
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relative to the average is so small that investment volume is fairly stable
and there is never any large discrepancy between capacity required and
capacity left over from the preceding period. Hence it is not optimal to
set a lower limit to the burden rate used in pricing. Available capacity
is never so large that it should not be entirely used up.
Ideally, this should mean that any value of X2 sufficiently low never

to be actually used, serves equally well as a lower limit. However, because
of chance variations coupled with the approximative computational pro-
cedure used to locate the appropriate intermediate rates in the frequently
occurring type 5 periods, this proved in the experiment to be true only
in an average sense. When X2 was gradually increased, Xl being held con-
stant at a near optimallevel (optimal Xl varied slightly with X2), average
period profit fluctuated around a horizontallevel until falling off abruptly
when X2 had become so large that it was actually used in some periods.
These chance fluctuations are irrelevant to our study. Hence for Z2 = l
the optimal value of Xl and other relevant parameter values were located
for the minimum value X2 = 0, this value appearing in parentheses in each
element in the first column of Table 4 (and in the first row of Table 2).1,2
The choice of X2 = ° to represent the optima for Z2 = 1 was not ar-

bitrary. A product existing for a single period does not bind the firm's
future behavior. Hence if there is vacant capacity to fill, it does not seem
rational to stop short of zero in reducing the burden rate. This is in ac-
cordance with the results obtained in section 2.7. for an isolated product.
It means that if relative fluctuations in capacity available and required
were considerably larger than in the cases depicted in Table 4, so that
much lower burden rates were sometimes needed to use up all capacity,
then one would expect a minimum level to be set at X2 = O. When the
average product family is smaller, relative fluctuations increase. There-
fore the combination Zl = 16, Z2 = 1, Y = 4 (instead of y = 16, as in
Table 4) was analysed. Optimal burden rate limits were then located at
Xl = 1.57, X2 = 0, while small positive values were found both for the

1 The explanation given above is not documented in the appended Tables for
other than the optima thus located, which in a sense begs the question. It is seen in
Table 2 that 114 = 0,115 = .754 for Z2 = 1 and in Table 5 that ~ = ° for all Z2 = 1.

2 It follows from the discussion of the case Zl = 1 that all capacity costs are al-
ways covered. This is also seen in Table 6, where rp = 1for all elements in the first row.
The values of rp appearing in the first column of the Table are not exactly comparable
to the rest because of the special condition under which the optima are located for
Z2 = 1. Hence row and column averages in Table 6 are computed exclusive of the
elements in the first row and column.
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relative frequency of type 4 periods (when the lower limit is used) and
for relative unused capacity in optimum, /14 = .017, C; = .019, which
confirms the hypothesis.
For all combinations of values of structural variables where Zl > 1,

Z2 > 1, optimal values exist for the lower as well as for the upper limit
of the burden rate. These optima do not in the general case consist in full
employment of all available capacity in all periods where this is possible.
On the contrary there exists, in all but the limiting cases, a definite, pos-
itive level below which the burden rate should not be lowered, even if
this means letting some capacity occasionally lie idle.
As seen in Tables 3 and 5, the relative size of this unused capacity

varies with the structural variables according to no simple function. In
general part of it remains, even when X2 is much lower than in optimum.
Figure 4 demonstrates this for the standard combination. The amount of
unused capacity depends very much on the frequency of type 2 periods,
when there are no new products to fill idle capacity at any price. A
striking example is offered by the first row of Table 3. Here the very
small product family means great fluctuation in available capacity relative
to the requirement. We find that no less than 83 per cent of all periods
in the production run are of type 2,1 with a consequent unused capacity
of 38.5 per cent, which is the highest recorded for any optimal pricing
rule. Table 3 shows that when the average size of the product family
increases, relative unused capacity falls off rapidly. With short capital
life and long average product life, a product family of a moderate size
also gives negligible unused capacity, as seen in Table 5.

Like capacity employment in optimum, the optimal burden rate limits
themselves vary considerably with the structural variables, and in rather
complex fashions. This is particularly true of the upper limit. Table 3
shows that it decreases with increasing size of the product family. For
the standard size, recorded in Table 4, it reaches a maximum for moderate
average product lives. The locus of this maximum varies only little with
capitallife, but the maximum level itself does so considerably. The high-
est value of Xl recorded in Table 4 is 2.36 for Zl = 256, Z2 = 4. See also
the companion Figures 8 and 9.
The variation in the lower burden rate limit in optimum is smaller and

depends mostlyon average product life, as best seen in Figure 10. Most
surprising may be the generally high levelon which X2 is to be set. Except

1 In optimum. The frequency of type 2 relative to type 1 periods may vary a little
with the pricing rule.
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for very short product lives, there is no cutting down to variable costs in
periods of idle capacity to get as much "contribution" as possible. In the
model such a policy does not pay because it binds capacity which may
be better employed in future periods.
The study indicates two general conclusion about the optimal levels

of the burden rate limits which accord well with the findings in Chapter
2 for a single product.' It seems clearly established that the upper limit
should never be below unity while the lower limit, though this is less
clear, should not be above unity. In fact there is a single observation in
Table 4, for Zl = 256, Z2 = 32,where X2 = 1.02.But this is most probably
due to stochastic variations. I think we are safe in concluding that Xl and
X2 should be above and below unity respectively for finite values of the
structural variables but approach this level asymptotically in limiting cases.
To describe the conditions in the optima of a uniform burden rate, a

few words suffice. Except in the irregular case of Z2 = 1, it is seen in
Tables 7-8 compared to Tables 3-4 that a uniform rate should
always be set between the limits found to be optimal in the uncon-
strained case. Comparing Tables 7 and 10 to Tables 3 and 5, we
also find that relative unused capacity is always at least as high and
usually much higher in the constrained than in the unconstrained optima.
This was to be expected, since the lower limit is valuable exactly as a
means to sop up idle capacity.
We can sum up this section by stating a principle which may now seem

obvious but which is nevertheless often overlooked in discussions about
pricing. When students are told to ignore capacity costs in price decisions
because they are sunk costs, the reciprocity of the relation between pricing
and investment is forgotten. Past investment is given, but present pricing
determines present and future investment. In our model the extended
product lives at fixed prices claim future capacity directly. In real life
there are numerous ways in which the future investment activity of a firm
is influenced, directly or indirectly, by its price policy. In this sense capac-
ity costs are also variable costs and a burden rate should be included in
the pricing formula to take account of these costs on the margin. Only
when there is definitely no competition for present capacity and a prod-
uct is definitely a single-period product with no future ties at all, should
the rate be zero. In all other cases it should be positive. It is naturally
higher when there is present investment to pay for, but it is positive even
when there is not.

1 Cp. Section 2.7 and Mathematical Appendix 5.
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3.7 The optimality of full cost pricing

We proceed then to examine our main hypothesis about the long-run
cost coverage achieved when these rates are chosen optimally. The answer
we get is beyond doubt. The study shows that in the model employed the
optimal pricing rule is indeed a full cost rule in the broad sense that all
capacity costs ought to be exactly covered by the burden applied to prod-
ucts sold. Consider first the standard combination of values of the main
structural variables. In the section of the (Xl. x2)-plane shown in Figure
3 total burden applied varies from zero to more than twice the amount
of total investment costs. The locus of all pricing rules where rp = I is
an approximately linear curve cutting steeply through the central part of
the diagram. The point of maximum period profit lies almost exactly on
this curve. Located to the nearest percentage point for both variables,
the maximum is Xl = 1.23, X2 = .85, and relative cost coverage in this
point is rp = .996.
This result obtains with very small variations for all other combinations

examined. Though, as we have seen, both the optimal burden rate limits
and the corresponding unused capacity vary considerably with the struc-
tural variables, in each case the limits should be so chosen that actual
production exactly carries the cost of this unused capacity. In most of
the cases recorded in Tables 3 and 6, rp lies between .99 and I in optima
located to the nearest percentage point. The average is significantly below
unity.' The reason for this deviation is not quite evident. It is probably
due at least to some extent to approximative computational methods.
The deviation is minute, however, and does not refute the very strong
general conclusion as to the optimality of full cost pricing in the broad
sense used here.

Now it should again be emphasised that this full cost coverage is
achieved in most cases by means of a varying burden rate. The interval
between the lower and the upper burden rate limits can be considerable,
depending on the structural variables. Thus the practice of covering full
cost by means of a uniform rate is clearly not optimal in our experiment.

However, if the interval between the limits is reasonably small, which
after all it is in many cases, full cost pricing in this narrow sense may be

I The output recorded in Table 6 was actually given with five decimals. Omitting
the first row and column, the arithmetic mean of the remaining 48 figures in the
Table is .9948 and the standard deviation is .0053, so that the standard deviation
of the mean (the standard error) can be estimated at about .0008. Hence we find
(10000-9948) /8 = 6.5, which is highly significant.
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almost optimal. As seen in Tables 7 and 9 and the companion Figure 12,
it is possible to achive 90 per cent or more of absolute maximum by a
uniform rate in about two-thirds of the cases recorded. Only when prod-
uct life is very short and capitallife very long is the percentage consider-
ably lower. Moreover, there are certain features in the relations involved
which make the application of this single-rate pricing rule more than
ordinarily simple.
This is demonstrated in Figures 3-5 for the standard combination of

values of the structural variables, which is a typical case of a moderate
interval between the burden rate limits. It is seen in Figure 3 that the
locus of exact coverage of capacity costs (the curve rp = l) passes through
the point of maximum average period profit. But in addition it passes,
if not through, then at least very close to, the constrained maximum on
the line Xl = xz. This is in fact true for all combinations tested. rp is
generally lower than in the unconstrained maximum points, but in no
case recorded in Tables 7 and 11 is it below .92. For the standard com-
bination the degree of approximation is best judged from Figure 5. Lo-
cated to the nearest percentage point, the optimum is X = Xl = Xz = 1.12,
where rp = .982, , = .963. The latter figure means that the constrained
maximum is only about four per cent short of absolute maximum.
Note also in Figures 4-5 that relative unused capacity is nearly con-

stant along the line Xl = xz. This means that all the price maker has to
do to come within a few percentage points of absolute maximum is to
estimate normal capacity in the sense of maximum capacity less average
unused capacity and then to allocate all capacity costs to products on
the basis of normal capacity. This is precisely what full-costers are usu-
ally reported to do.

3.8 Summaryand conclusion

Byextending the traditional model of the theory of price to multiple prod-
ucts in multiple periods and trying out alternative pricing rules by sim-
ulation, we have found in this study that it pays to use a rule which some-
what resembles the full cost pricing rule observed by empirical investi-
gators. This result is remarkable only because full cost pricing has been
treated with scorn by many theorists.

I anticipate the objection that the result is due to some special quirk
in the simulation model, absent in reallife. This is of course very possible.
It is the sorry lot of the simulator to be unable to state precisely what
interaction of factors causes the results that he observes. The most that
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can be said is that nothing has been put in deliberately to invite this
result.
The model is a much simplified replica of the industrial pricing situation.

Simplicity is partlya virtue of necessity in this case. Partly it expresses a
research policy. I wanted to see what happens when we move a first,
carefully measured distance away from the barren assumptions of traditi-
onal price theory. We have found, perhaps surprisingly, that even at this
short distance the rules observed in the much more complicated reallife
pricing situations have already replaced those of the theory left behind.
This may not suffice to remove the stigma from full cost pricing. But

if the study reported here could incite some new interest in a dormant
field, bolder ventures in the same direction might give us more and better
evidence for evaluating empirical behavior. This is the long-run objective
of the book. In itself, to use the words of one of its early critics, it is less
a guide for entrepreneurial action than a comment on economic theory.
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Mathematical Appendixes

l Appendix to Section 2.1

Single-product, static price optimum

We seek maximum with respect to p of the function

n = qp-qv-v(q)
dq p lwhere 1'/ = - ~ -, IX = ~~
dp q 1'/-1

Differentiating, we find the first order, necessary maximum condition

dn = p dq + q-v!J_ -v'(q)!J_ = O
dp dp dp dp

p+ X q = v+v'(q)

p (1- ~) = v+v'(q)

p = (l+IX) [v+v'(P)].

Whether this is in fact a maximum depends on the relative rates of in-
crease in C05tsand revenue. For the particular functions to be assumed
in this book the second order, sufficient condition of a maximum is satis-
fied. Cp. Mathematical Appendix 2. For an analysis of the second order
condition in the general case, cp. [6].

2 Appendix to Section 2.4

Multi-product, static price optimum

We seek first the unconstrained maximum of

n

II = 2: qi(Pi - Vi)
i=1
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where
1

Ct:i=--l'r/i-
(i = 1, ... ,n).

We find

(i # j)

(i = j)

dqi
dPi

d2qi
dPi2

'I@
Pi

'Ii( 'Ii + 1)qi
Pi2

(i=l, ... ,n, j=l, ... ,n).
The first order maximum condition is

i.e.
Pi = (I +Ct:i)Vi (i=I, ... ,n).

The second order condition is
Al < O, A2 > O, A3 < O ,

where
all a12 a13 alm

a12 a22 a23 a2m

(m = 1, ... , n)

o2II
ai} = 0PiOPj (i = 1, ... , n, j = i, ... , n) .

Since aij = O for all i # j, the condition is satisfied if all au < O. To

prove that this is the case, we substitute in the formula for ~2~ the ex-
UPi

pressions for ddqi and dd
2q

2
i and, according to the first order condition,

Pi Pi
put

PiPi-Vi =-
'li

52



to find

au = !fi_(1-f/i) < O (i = l, ... , n)
Pi

which completes the proof for the unconstrained case. It is of course
valid also in the special case of a single product. Cp. Mathematical
Appendix l.

n

Jf in the maximum point now located, 2 qu« ;;;;M, we say that the
i~1

capacity constraint is not effective. Prices are set at the unconstrained
n

optima. However, if 2 qa« > M, these unconstrained optima are not
i~1

feasible. The capacity constraint is effective. We then seek maximum of

n

II = 2 qi(Pi - Vi)
i~1

subject to

and define
n

U = Il-Å (2 qiUi-M).
i~1

The first order maximum condition is

(JUi dq; dqi-- = qi+(Pi-Vi)- -ÅUi - = O
{JPi dp, dp,

which may be reduced, analogously to the unconstrained case, to

(i = l, ... ,n)

(i = l, ... ,n).

These n equations plus the capacity constraint suffice to determine Å and
the n optimal prices.

The second order maximum condition is in this case

where

Bm =
bl bu b12
bz b12 bzz (m = 2, ... , n)
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bi= oM (' 1 )OPt 1=, ... , n,

oll
o2II 0Pi o2M

bti= -- - -- ---_
0PtOP1 oM OPtOpj

OPt

(i = 1, ... , n, j = i, ... , n) .

This condition is clearly satisfied if the sign matrix of En is

o - - -

- - o o

- o -

- o o -

- o o o

We shall prove that this is the case. Since bii = O for all i i= j, it suffices
to prove that

bi < O, bu < O, (i = 1, ... , n).

Substituting
eu dqc o2M d2qt
OPt = Ut dp---';, tJPt2 = Ut dPi2

oll o2II dqi d d-q,
and the expressions for ~, an

UPi 0Pi2' dpi ' dpt2

unconstrained case, we find

dqi 1'/t
bt = Ut - = - - Ut qt < O

dpi Pi

derived for the

(i = 1, ... , n)

= _ 2 1'/tqt + qi _P!_ 1'/i(1'/t+ 1)qt
Pi 1'/iqt Pi2

(i = 1, ... , n)

which completes the proof.
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3 Appendix to Section 2.6

Capacity cost function

To produce the product uq capacity units are needed in each period of
its life. It pays to wait as long as possible before reinvesting, hence at the
start the firm employs the existing capacity units with the longest remain-
ing life, i. e. the part capacities mj (j = K + l, ... , Zl) in full and what is
required of m", namely z,

il = uq - 2: mj.
j~,,+l

Let /j (j = K + l, ... , Zl) be the expected costs of reinvestment of mi
and let /" be the expected costs of reinvestment of il. Then

Let k be the actuallife of the product to be priced. We recall that k is
a geometrically distributed stochastic variable with expectation Z2. This

means that after each period there is a probability _!_ that the product
Z2

will not remain in the next period, there is a probability (1- :Ji that
it will remain for at least j periods, a probability 1-ft~-~2rthat it

will remain for less than j periods, and hence a probability

that it will remain for at least j periods but for less than j + i periods.

Consider now first the reinvestment process for il. The firm makes no
investment if k ~ K. (It may be that K = O. This means that total
capacity available in the initial period is insufficient. New investment
must be made immediately. Mathematically this is expressed by the fact
that k ~ K = O is impossible, since the product, once introduced, will
remain for at least this first period. Minimum expected product life is
Z2 = 1, which is a limiting case of the geometric distribution where the
event k = 1 has probability 1.) The firm invests i times (i > O) if
K+iz1 ~ k > K+(i-1)zt. i.e. if the product lasts at least the remaining
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life of the existing capacity units il plus more than i-l but not more
than i full reinvestment lives. The probability of this event is

(
1 ) K+(i-l)Zl [ ( 1 ) ZIJ1--- 1- 1--
Zz Zz

Each reinvestment costs If!zlil. Multiplying costs and probabilities and
taking the sum over all positive i, we find expected reinvestment costs for
this part capacity,

To analyse the reinvestment process for any of the part capacities that are
fullyemployed in the initialperiod, substitutej andmj (j = K+ 1,... , Zl)
for K and il and proceed as above. We find

Ij=-
1-

Hence

z,
l = .L Ij+IK

j=K+l

Z [Z, ( 1 ) j ( z, ) ( 1 ) K ]__ ~l ~ Z If! .L mj 1- -- + uq - .L mj 1- -1- (1 _ :J 1 j=K+ 1 Zz j=K+ 1 Zz

Zl (I - +) K [Z, 1 j-K]
= z ZI If! uq - .L mj (1- (1- -) )

l-(l-z~) j=K+I Zz

= ZzQ(K)If![Uq-O'(K)]

with Q(K) and O'(K) defined as in the text.
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4 Appendix to Section 2.6

Single-product, dynamic price optimum

We seek maximum of

ti = Z2Q[P-V-e(K)If/U]+Z2If/Q(K)a(K).

We have assumed that this maximum occurs in an interval where e(K)
and a(K) are constant, hence it coincides with maximum of

tt = q(p-i!)
where

i! = V+e(K)If/U.

Putting n = 1 in Mathematical Appendix 2 (i. e. assuming a single prod-
uct), dropping the indices identifying individual products, substituting i!
for v and proceeding as in the unconstrained case, we find the first order
maximum condition

p=(1+a)i!

which was proved also to satisfy the second order condition.

5 Appendix to Section 2.7

Analysis of burden rate function
We shall analyse the function

(
1- _l__)K

Zl Z2e = -- ~------- .------
Z2 ( 1 ) Zl1- 1- z;

for finite z-cfinite integer zj and x, Zl> 1, Z2> 1, O ~ K < zj.Deflning
1

v = 1- - (O ~ v < 1),we write
Z2

= zl(1-v)vK = ----~"_ --~-
e 1-vZ1 1+v+v2+ ... +VZ1-1

Consider first the case K = o. Then for all Z2, e = 1 for Zl = 1, e >
for Zl > 1.
Consider next the case K ;;;; 1, Z2 = 1 (i.e. v = O). We also have Zl >
by definition of K. We find e = O for all Zl.
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Finally consider the general case K ~ 1 (hence Zt > 1),Z2 > 1. Keeping
Zt and K constant at finite values, we differentiate (! partially with respect
to v and find

O(! ZtVK-te
av (1+v+v2+-~vit=i)2

where

so that

lime = KZt-(Zt-l)!t = Zt (K- Zt-
l).

v~t 2 2
Zt-1

Consider first the case K ~ -2- . Then

lim O(! = Zt lim e ~O.
v~l av u=s I

It is also easily verified that in this case ~~ > O for all v < l. Hence

maximum of (! with respect to v is found at

which means that (! < l for all v < 1, i. e. for all finite Z2.

Zt-l
K < --. Here

2
Then consider the case

1· O(! Oim --;:)< .
v~l uV

Hence maximum of (! with respect to v is found for v < 1 and is higher
Zt-lthan unity. However, it is also easy to find examples of K < 2

where (! < 1 for some finite Z2.

6 Appendix to Section 2.7

Cost coverage
With reference to assumptions and definitions in the text (cp. also Sec-
tion 2.6) a complete statement is given here of the conditions of cost
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coverage. For any optimal quantity q there exists a K so that

l = ZzQ(K)IJI[uq-a(K)] .

When optimal quantity falls in the interior of one ot the existing part
capacities, optimal price is found by differentiation, and total burden is

so that
R - l = ZzIJlQ(K)a(K) ,

where the three first factors to the right are always positive. When
capacity is uniformly old, all mi = ° (j= K + 1, ... , ZI). Hence a(K) = 0,
i. e. R = l. When part capacities with different ages are employed, there
must be at least one mi > ° (j = K+ 1, ... , ZI). Hence ø(«) > 0, i.e.
R > l (except when Zz -l>- 00; then a(K) -l>- O).
Now consider the case when optimal quantity exactly coincides with a
number of the existing part capacities, i. e. il = mk and

z,
uq = .L mi·

j~K

The problem is here that optimal price cannot be found by differentia-
tion, since the marginal cost curve has a break in optimum. However,
assuming that pricing rule (4) is used as in the general case, there is a
marginal cost r such that p = (l+ IX)r where p is the price chosen. It is
possible to reason about the size of r. Varying quantity from the optimal
level, we find marginal cost

(i)
z,

ri = V+Q(I(JIJIU for uq < .L mi·
j=K

(ii)
z,

rz = v+Q(I(-l)lJIu for uq > .L mi·
j~K

«i) is impossible if all mj = ° (.i = 1(, ••• , ZI), but we may ignore this
trivial case which means that the optimal quantity is zero. As for (ii),
this means investing in new capacity if I( = 1. I( = ° is impossible by
definition of mo.)

Since Q(j) is a non-increasing function of j, it follows that rI ~ rz- Hence
r should be chosen anywhere in the interval rI ~ r ~ r: and total burden
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R applied in this case should be

R = zzq(r- v) ~ z2q(rl - v) = Z2qQ(K)lf/U = R.

But we have just found R > I, hence R > I (except if all mj °
(j = K+ 1, ... , Zl) and r = rh in which case R = I).

7 Appendix to Section 3.1

Product family distribution

The proposition stated in the text holds even if the product life distribu-
tion is not geometric. But then the process is not a life and death process
in the proper sense. There is no simple way to describe the termination
of product lives in a given period. When product lives are geometrically
distributed, the number of products dropping off in anyone period has
a binomial distribution, which makes the proof very simple. We shall
consider only this case.

Assume then that m is the number of products produced by the firm
in an arbitrary period. Let

(m = 0, ... ,00, j = 0, ... , m)

be the probability that exactly j of these products remain in the next
period and let

Y2(k) (k = 0, ... ,00)

be the probability that exactly k new products are added in an arbitrary
period to those remaining from the previous one. Hence the conditional
probability that n products will be produced in a period immediately
succeeding one in which m products were produced, is

m

= 2: Yl(m,j)Y2(n-j) (m = 0, ... ,n-I)
j~O

(m = n, ... ,00)

(n = 0, ... ,00) .

The life and death process of products is then completely described by
the transition matrix

(m = 0, ... , 00, n = 0, ... ,00)

with a given initial number of products.
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When the products have independent geometric life distributions, as
assumed in the text, we have

We have further assumed

We then want to prove that the life and death process, starting with zero
products, converges to a stationary probability distribution

(n = 0, ... ,00)

for the number n of products produced in an arbitrary period.
A complete proof by iteration is possible. However, since all Y3(m, n)

are positive, the process is an irreductible Marcow chain, which is er-
godic if there exists a stationary distribution. Hence it suffices to prove
that the postulated distribution is stationary, i. e. that

wen) = .L w(m)y3{m, n)
m~O

(n = 0, ... ,00) .

This proof is now given.
Since for any matrix [am, j),

n-l m n n

.L .L am,] +.L .L am,] =.L .L am, j
m~O j~O m~n j~O j~O m =]

and since
zm-j.L __3 -- = eZ3

m=] (m-j)!
and

n (n) ( 1 ) n-j ( l ) j _.L . - 1- - - 1,
j~O } Zz Z2

we have

n~' m.L w(m)Y3(m,n) =.L .L w(m)y,(m,j)Yz(n-j)
m~O m~O j~O

n

+ .L .L w(m)y,(m,j)Yz(n-j)
mr=n j~O
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n 00

L L w(m)Yl(m,j)Y2(n-j)
j~O m=»j

= w(n)

which completes the proof.
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Fortran Program

C START

C PRICING SIMULATION. MODEL A. APRIL 1968.
C OPTIMAL BURDEN RATES IN PRICE CALCULATION.

C MULTI-PRODUCT FIR~;. INDEPENDENT PRODUCTS USING A COMMONCAPACITY.
C LINEAR COST RELATIONS. CONSTANT ELASTICITIES OF DEMAND.
C PRODUCTS PRICED AT INTRODUCTION. DEgAND CONSTANT THROUGH PRODUCT LIVES.
C RANDOM GENERATION OF NEVi PRODUCTS. RANDOM TERMINATION OF PRODUCT LIVES.
C CAPACITY EXTENDED \'IHEN REQUIRED. LIFE OF CAPITAL EQUIPr'IENT FIXED.
C BURDEN RATE VARYING BETWEEN Xl AND X2 ACCORDING TO CWACITY SITUATION.

C

C
C
C
C
C
C
C
C
C
C
C
C

NM·lES OF VARIABLES, VECTORS CONSTANTS.

Xl - UPPER LIMIT OF BUB.~~;J\ATE. (DECISION VARIABLE.)
X2 ---LOWER LIMIT OF BURDEN RATE. (DECISION VARIABLE.)
21 -LIFE OF CAPITAL EQUIPMENT. (MAIN STRUCTURAL VARIABLE.)
22 -_ AVERAGE LIFE OF PRODUCTS. (MAIN STR.UCTURAL VARIABLE.)
23 -_ AVERAGE NilllBER OF NEVI PRODUCTS PER PERIOD. (MAur STRUCTmL~L VAR.)
ISl INTEGER LINEAR TRANSFORM OF xi .
IS2 INTEGER LINEAR TRANSFORM OF );2.

(IS1,I32 USED IN INPUT TO PERMIT READING POS. INT. FOR NEG. Xl,X2.)
IZl INTEGER FORM OF Zl.
IZ2 INTEGER FORM OF Z2.
Y -- AVERAGE SIZE OF PRODUCT F~~ILY. (NUMBER OF PRODUCTS.)
lY INTEGER FORM OF Y.

C MTS-- LENGTH OF START RUN.
C ANTS REAL FORM OF MTS.
C ~lTP LENGTH OF PRODUCTION RUN.
C ~ITP REAL FORl~ OF MTP.
C MT TOTAL LENGTH OF RUN.
C NT PERIOD NUMBER IN RUN.
C ANT REAL FORM OF NT.
C NP NUMBER OF PRODUCTS IN PERIOD.
C IWP NUMBER OF OLD PRODUCTS.
C NOPl ONE MORE THAN NUJIlBER OF OLD PRODUCTS.
C NNP NUMBER OF NEI'I PRODUCTS.
C KPOIS RANDOM NUJVIBERGENERATED PERIODICALLY TO COMPUTE POISSON VARIATE NNP.
C POlS REAL FORM OF KPOIS.
C APOIS AUXILIARY VARIABLE USED IN THIS COMPUTATION.
C IPOIS DITTO.
C MPOIS MULTIPLIER USED IN GENERATION OF KPOIS.
C E ( I) ELASTICITY OF DEMAND FOR PRODUCT I.
C Q(I) SCALE DETERMINANT OF DEMAND FOR PRODUCT I.
C VII) VARIABLE COSTS PER UNIT OF PRODUCT I.
C U(I) CAPACITY REQUIRED PER UNIT OF PRODUCT I.
C K(I) RAND. FRACTION GEN. PERIODICALLY TO LOCATE END OF LIFE OF PRODUCT I.
C AKI AUXILIARY VARIABLE USED WITH K(I) TO LOCATE ENDS OF PRODUCT LIVES.
C KRECl RANDOM NUMBER GENERATED FIVE TIMES FOR EACH NEIV PRODUCT TO DETERMINE
C THE RECTANGULARLY DISTRIBUTED E(I) ,Q(I) ,VII) ,U(I) AND INITIAL K(I).
C S(J) AUXILIARY VECTOR USED WITH KRECl TO DETERMINE THESE VARIABLES.
C MRECl MULTIPLIER USED IN GENERATION OF KRECl.
C JIlREC2 MULTIPLIER USED IN GENERATION OF K(I) IN SUBSEQUENT PERIODS.
C X (I) BURDEN RATE APPLIED TO PRODUCT I.
C XH AUXILIARY RATE EMPLOYED IN smIE PEHIODS TO LOCATE X(I).
C XJIl,XL DITTO.
C ~(I) PRICE OF PHODUCT I.
C D(I) DEMAND FOR PRODUCT I.
C R(I) CAPACITY REQUIRED FOH PRODUCT I.
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C

C
C
C
C
C
C
C
C

C(I)
A(J)
AN
AA
RO
RN
RR
BB
PROF

CONTRIBUTION OF PRODUCT I.

CAPACITY AVAILABLE OF AGE J.
CAPACITY AVAILABLE FOR NEW PRODUCTS.
TOTAL CAPACITY AVAILABLE IN PERIOD.
CAPACITY REQUIRED FOR OLD PRODUCTS.
CAPACITY REQUIRED FOR NEW PRODUCTS.
TOTAL CAPACITY REQUIRED IN PERIOD.
TOTAL BURDEN APPLIED IN PERIOD.
PERIOD PROFIT.

C NI-N5 PERIOD CLASSICATION COUNTERS, DENOTING FREQUENCY OF PERIODS WITH
C (NI) NEW INVESTMENT, NO NEW PRODUCTS.
C (N2) NO NEW INVESTMENT, NO NEW PRODUCTS.
C (N3) NEW INVESTMENT, BURDEN RATE Xl APPLIED TO NEW PRODUCTS.
C (N4) NO NEW INVESTMENT, BURDEN RATE X2 APPLIED TO NEW PRODUCTS.
C (N5) NO NEW INVESTMENT, INTERMEDIATE RATE APPLIED TO NEW PRODUCTS.
C TA TOTAL CAPACITY AVAILABLE IN PRODUCTION RUN.
C TR TOTAL CAPACITY REQUIRED IN PRODUCTION RUN.
C TB TOTAL BURDEN APPLIED IN PRODUCTION RUN.
C TPROF TOTAL PROFIT IN PRODUCTION RUN.
C ARATE WEIGHTED AVERAGE OF BURDEN RATES APPLIED IN PRODUCTION RUN.
C RELUN RELATIVE UNUSED CAPACITY IN PRODUCTION RUN.
C SRATE BURDEN RATE WHICH EXACTLY COVERS ALL COSTS IN PRODUCTION RUN.
C RELCO RELATIVE COVERAGE OF CAPACITY COSTS IN PRODUCTION RUN.
C APROF AVERAGE PROFIT PER PERIOD IN PRODUCTION RUN. (OBJECTIVE VARIABLE.)
C DIMENSION AND FORMAT STATEMENTS.

DIMENSION E(900), Q(900), V(gOO), U(900), K(900)
DJ;MENSION X(900), P(gOO), R(900), C(900), D(900)
DIMENSION S(5), A(255)

C
700 FORMAT (313,214)
701 FORMAT (lHl)
702 FORMAT (IHO,2F9.0,FIO.2,2F8.3,7I9)
703 FORMAT (IHO,3F16.0,4Fll.5,F15.2)

C READ VALUES OF DECISION VARIABLES AND MAIN STRUCTURAL VARIABLES.
READ(1,700) IZ1,IZ2,IY,IS1,IS2
Y=IY
Zl=IZl
Z2=IZ2
Z3=Y/Z2
Xl=FLOAT(IS1)/100.-10.
X2=FLOAT(IS2)!100.-lO.

C C01~PUTELENGTHS OF START RUN AND PRODUCTION RUN.
MTS=4-:<IZl
IF(IZI-IZ2) 33,34,34

33 MTS=4"IZ2
34 AMTS=MTS

AMTP=10000./Z3
IF(AMTP-ZPIOOOO./256.) 36,37,37

36 AMTP=ZPIOOOO./256•
37 IF (AMTP-1250.) 38,39,39
38 AMTP=1250.
39 MTP=AMTP

MT=MTS+MTP
C SET INITIAL PARAMETER VALUES.

NT=O
NP=O
KPOIS=5887822I7
KREC1=4185I9179
MPOIS=65539
MREC1=65533
MREC2=65531
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DO 80 I=I,IZl
80 A(I)=O.

TA=O.
rs-o.
TR=O.
TPROF=O.
Nl=O
N2=0
N3=0
N4=0
N5=0

C START PERIODIC LOOP.
DO 20 NT=I,MT
ANT=NT

C IF START RUN IS TERMINATED,
C SET NEW INITIAL VALUES OF RANDOM NUMBER GENERATORS,
C ROTATE MULTIPLIERS,
C ZERO PERIOD CLASSIFICATION COUNTERS.

IF(NT-MTS-l) 42,41,42
41 KPOI3=915394631KRECl=385056621

MPOIS=55533
MRECl=65531
MREC2=65539Nl=O
N2=0
N3=0
N4=0
N5=0

42 CONTINUE
C COMPUTE NUMBER OF NEW PRODUCTS.

IPOIS=O
APOIS=O

l IPOIS=IPOIS+l
KPOIS=KPOIS*MPOIS
IF(KPOIS) 505,506 506

505 KPOIS=KPOIS+2147483647+1505 POI3=KPOIS
APOIS=APOIS-ALOG(POIS*.4656613E-9)
IF(APOIS-Z3) 1,1,2

2 NNP=IPOIS-l
C INSPECT OLD ·PRODUCT LINE.

NOP=NP
IF(NOP) 6,6,3

C PREPARE NEW NUMBERING OF RETAINED PRODUCTS.
3 M=O

DO 5 I=I,NOP
C DELETE TERMINATED PRODUCTS.

K(I)=K(I)*MREC2
IF(K(I)) 515,516 516

515 K(I)=K(I)+ 2147483647+1
515 AKI=K(I)

AKI=AKI*.4656613E-9
IF(AKI-l.j22) 5,4,4

C CHANGE NUMBERING OF RETAINED PRODUCTS IN OLD LINE.
4 M=M+lK(M)=K(I)
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X{M)=X{I)
R{M)=H{I)
C{M)=ca)

5 CONTINUE
NOP=M

C COMPUTE PARAMETER VALUES OF NEW PRODUCTS.
6 NP=NNP+NOP

IF{NNP) 10,10,7
7 NOPl=NOP+l

DO 9 I=NOPl,NP
DO 8 J=1,5KRECl=KRECl*MHECl
IF{KRECl) 525,526 526

525 KRECl=KHECl+2147483647+1
526 S{J)=KHECl

8 S{J)=S{J)*.4656613E-9+0.5E{I)=4.*S{1) -
Q{I)=1000000.*S{2)
V{I)=S{3)
U{I)=S{4)

9 K{I)=KRECl
C INSPECT NEW PHODUCT LINE.
C COMPUTE CAPACITY REQUIRED FOH OLD PRODUCTS.

10 HO=O.
IF{NOP) 72,72,601

601 DO 602 I=l,NOP
602 RO=HO+R{I)

C COMPUTE CAPACITY AVAILABLE FOR NEW PHODUCTS.
72 AA=O

IF{IZl-1) 14,14,1111 DO 12 I=2,IZl
J=IZl+2-1
A{J)=A{J-l)

12 AA=AA+A{J)
14 AN=AA-RO

C COMPUTE PRICES OF NEW PHODUCTS.
C COMPUTE CAPACITY REQUIRED FOR NEW PRODUCTS.
C DECIDE ON NEW INVESTMENT.
C CLASSIFY PERIOD.

IF{NNP) 603 603 606
603 IF{AN) 604,605,605
604 A{l)=-AN

Nl=Nl+l
GO TO 15

605 A{l)=O.
N2=N2+1
GO TO 15

606 RN=O.
DO 607 I=NOPl,NP
X{I)=Xl
PlI )={E (I)/(E!I)~1.) )*(V{I )+U{I)"X{I))
D{I)=Q{I)/P{I)**E{I)
R{I)=D{I)*U{I)

607 RN=RN+R{I)
IF{AN-RN) 608,608,609

608 A{l)=RN-AN .
N3=N3+1
GO TO 617

609 RN=O.. DO 610 I=NOPl, NP
X{I)=X2
P{I)={E{I)/{E{I)-I.))*{V{I)+U{I)*X{I))
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D(I)-Q(I)/P(I)**EII)
RII)-DII)*uII)

610 RN-RN+RII)
IFIRN-AN) 6n,611,612

Fin All)_O.
N4-N4+l
GO TO 617612 All)_O.
N5-N5+lXH_Xl
XL_X2
DO 616 IJ-l,10
XM-IXL+XH)/2,RN_O,
DO 613 I-NOP1,NPX(I)_XM
P(I)-(E(I)/(E(II-l.) )*(V(I)+U(I)*X(I»
D(I)-Q(II/P(I)**E(I)
R(I)-D(II*U(I)

613 RN_RN+R(II
IF(RN-ANI 614.614,615

614 XH-XM. GO TO 616
615 XL_liM
615 CONTINUE

C COMPUTE TOTAL CAPACITY AVAILABLE IN PEPIOD,
C CO]V'PUTETOTAL BURDEN APPLIED IN PERIOD,
C COMPUTE TOTAL CAPACITY REQUIRED IN PEEIOD,
C COMPUTE PERIOD PROFIT,

617 DO 618 I-NOPl. NP
618 C(I)-D(II*(P(II-V(IIIl')PROF__ZFA(l)

. ÅA-AA+A( lI
BR_O,
'lR-O,
IF(NP) 74.74.7373 DO Hi I_l,Np·
PROF-PROF+C(I)
BB_BB+R(I)*X(I)

16 RR_RR+R(I)
C END PERIODIC LOOP,
C COMPUTE AGGREGATE VALUES,
C SKIP IF STILL IN START RUN,

74 IF(NT-MTS) 20.20,17
17 TA-TA+AATB_TB+BB

TR_TR+RR
TPROF_TPROF+FROF

C IF PRODUCTION RUN IS TERMINATED.
C COMPUTE RELATIVE VALUES,
C PRINT RESULTS,

IF(NT-MT) 20,18,18
18 ARATE-TB/TRRELUN_(TA_TR)/TA

SRATE_TA/TR
RELCO_TB/TA
APROF_TPROF/(ANT_AMTS)
WRITE(3,701)
VJRITE(3,702) Zl,Z2,Z3,Xl,X2,MTS,MTP,Nl,N2,N3.N4,N5
WRITE(3,703) TA,TB,TR,ARATE,RELUN,SRATE,RELCO,APROF

20 CONTINUE
CALL EXIT
END
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PRODUCTION IF ANY)
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\

Yl+v~ i
I
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REPRICE NEW PRODUCTS
USING LOWER LIMIT
OF BURDEN RATE

DO NOT INVEST.
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BURDEN RATE WHICH
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General flow chart of simulation model.

FIGURE 2.
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FIGURE 4

Relative unused capacity (e) as a function of upper (Xl) and lower (X2)
limits ofburden rate, with constant capitallife (Zl = 16), average product

life (Z2 = 8), and average size of product family (y = 16).
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Relative profit (0, relative coverage of capacity costs (tp), and relative
unused capacity (¢") as functions of a uniform burden rate (x = Xl = X2),
with constant capital life (Zl = 16), average product life (Z2 = 8), and

average size of product family (y = 16).
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FIGURE 6

Optimal upper (Xl) and lower (X2) limits of burden rate and relative
unused capacity (C;) as functions of capitallife (Zl), with constant average

product life (Z2 = 8) and average size of product family (y = 16).
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Optimal upper (Xl) and lower (X2) limits of burden rate and relative
unused capacity (~) as functions of average product life (Z2), with constant

capitallife (Zl = 16) and average size of product family (y = 16).
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FIGURE 8

Optimal upper (Xl) and lower (X2) limits of burden rate and relative
unused capacity (~) as functions of average size of product family (y),
with constant capitallife (Zl = 16) and average product life (Z2 = 8).
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FIGURE 9

Optimal upper limit of burden rate (Xl) as a function of capitallife (Zl)
and average product life (zz), with constant average size of product

family (y = 16).
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FIGURE 11

Relative unused capacity (~) in optimum of burden rate limits, as a func-
tion of capitallife (Zl) and average product life (Z2), with constant average

size of product family (y = 16).
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FIGURE 12

Relative profit «() in optimum of a uniform burden rate, as a function
of capital life (Zl) and average product life (zz), with constant average

size of product family (y = 16).
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Tables

TABLE l

Optimal upper (Xl) and lower (X2) limits of burden rate, relative unused
capacity (C;), relative coverage of capacity costs (rp), and relative frequen-
eies (Ilt. ... , Ils) of period types 1-5, for different capitallives (z.), with
constant average product life (Z2 = 8) and average size of product fam-

ily (y = 16)

Zl Xl X2 .; rp III 112 113 114 Ils

1.00 .0 1.000 .131 .0 .869 .0 .0
2 1.01 .90 .006 1.001 .110 .021 .825 .038 .006
4 1.04 .89 .024 .997 .076 .055 .697 .139 .033
8 1.11 .86 .047 .993 .045 .086 .545 .247 .077
16 1.23 .85 .069 .996 .025 .107 .417 .317 .134
32 1.40 .86 .091 .989 .014 .117 .297 .390 .182
64 1.63 .91 .112 .993 .006 .125 .204 .458 .207
128 1.94 .90 .118 .982 .004 .127 .145 .471 .253
256 2.29 .95 .141 .981 .003 .128 .100 .516 .253

-2- l 'o
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TABLE 2

Optimal upper (x!) and lower (X2) limits of burden rate, relative unused
capacity (C;), relative coverage of capacity costs (Ip), and relative frequen-
eies (flI, ... , fls) of period types 1-5, for different average product lives
(Z2), with constant capital life (z! = 16) and average size of product

family (y = 16)

Z2 x! Xl ,; rp Il! III 113 114 Ils ./~

l2Y.f\
p:

1.24 (.00) .0 1.010 .0 .0 .246 .0 .754
2 1.35 .54 .010 .996 .0 .0 .322 .056 .622
4 1.33 .74 .054 .989 .003 .012 .397 .272 .316
8 1.23 .85 .069 .996 .025 .107 .417 .317 .134

16 1.14 .92 .066 .996 .093 .275 .359 .228 .045
32 1.07 .95 .046 .996 .212 .396 .275 .106 .011
64 1.03 .97 .027 .996 .314 .466 .178 .040 .002

TABLE 3

Optimal upper (x!) and lower (X2) limits of burden rate, relative unused
capacity (c;), relative coverage of capacity costs (Ip), and relative frequen-
eies (flI, ... ,fls) of period types 1-5, for different average sizes of product
family (y), with constant capitallife (z, = 16) and average product life

(Z2 = 8)

y I Xl Xl ,; rp Il! III 113 114 Ils

1.86 .92 .385 .985 .055 .830 .077 .017 .021
2 1.68 .91 .294 .988 .083 .697 .126 .051 .043
4 1.51 .87 .205 .985 .092 .516 .200 .120 .072
8 1.35 .89 .131 .999 .063 .305 .300 .239 .093
16 1.23 .85 .069 .996 .025 .107 .417 .317 .134
32 1.17 .81 .037 .992 .004 .011 .496 .304 .185
64 1.09 .83 .016 .988 .0 .0 .560 .244 .196
128 1.06 .86 .007 1.002 .0 .0 .637 .174 .189
256 1.04 .88 .004 1.002 .0 .0 .696 .124 .180
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TABLE 4

Optimal upper and lower limits of burden rate for different capitallives
(z.) and different average product lives (Z2), with constant average size

of product family (y = 16)

"-,,-
Z2

1 2 4 8 16 32 64
Zl "-

LOO 1.00 1.00 1.00 1.00 1.00 1.00

2 1.04 1.05 1.02 1.01 1.00 1.00 1.00
(.0) .60 .85 .90 .93 .94 1.00

4 1.10 1.13 1.08 1.04 1.02 1.01 1.00
(.0) .59 .80 .89 .95 .97 .99

8 1.15 1.23 1.20 1.11 1.05 1.02 1.01
(.0) .54 .76 .86 .93 .96 .97

16 1.24 1.35 1.33 1.23 1.14 1.07 1.03
(.0) .54 .74 .85 .92 .95 .97

32 1.34 1.48 1.50 1.40 1.29 1.17 1.08
(.0) .54 .77 .86 .90 .92 .96

64 1.35 1.63 1.77 1.63 1.48 1.31 1.17
(.0) .56 .78 .91 .93 .94 .96

128 1.38 1.74 1.99 1.94 1.81 1.54 1.32
(.0) .62 .82 .90 .96 .96 .97

256 1.43 1.95 2.36 2.29 2.19 1.85 1.53
(.0) .62 .80 .95 .97 1.02 .98
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TABLE 5

Relative unused capacity in optium of burden rate limits, for different
capital lives (Zt) and different average product lives (Z2), with constant

average size of product family (y = 16)

"'",

Z2

1
2 4 8 16 32 64

ZI '"

.000 .000 .000 .000 .000 .000 .000
2 .000 .007 .011 .006 .004 .002 .001
4 .000 .010 .030 .024 .015 .008 .004
8 .000 .010 .047 .047 .034 .021 .012
16 .000 .010 .054 .069 .066 .046 .027
32 .000 .011 .065 .091 .093 .075 .051
64 .000 .015 .069 .112 .118 .109 .084
128 .000 .022 .085 .118 .139 .138 .113
256 .000 .023 .075 .141 .149 .165 .145

rJ_B TABLE 6

~tive coverage of capacity costs in optimum of burden rate limits, for
different capital lives (Zt) and different average product lives (Z2), with
constant average size of product family (y = 16). Rowand column av-
erages (cp). (Elements in rows with Zt = 1 and in columns with Z2 = 1

are not included in the averages.)

2 4 8 16 32 64

l

I
1.000 1.000 1.000 1.000 1.000 1.000 1.000

2 .996 .992 .997 1.001 .995 .998 .999 .997
4 I .999 1.001 .995 .997 1.000 1.001 .996 .998
8 .996 .994 .998 .993 .995 .993 .996 .995
16 1.010 .996 .989 .996 .996 .996 .996 .995
32 1.030 .995 .997 .989 .991 .993 .999 .994
64 1.003 .995 1.004 .993 .994 .992 .999 .996
128 .996 .991 .991 .982 .996 .984 1.002 .991
256 .999 .999 1.006 .981 .986 .999 .985 .993
--

ip .996 .997 .991 .994 .994 .996 .995

6 .Tv.),{ (6$+ ~ O ekl (Mo) p Vl(..(_ .

~~I-"v1AVI.A ..c.,\1 [»> (jJj.-!. ~'r lroVVlb¥
ÆN £f-lk{vt··t/\/'V ~ O.i~ if
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TABLE 7

Optimal uniform burden rate (x), relative profit «(), relative unused ca-
pacity (¢), and relative coverage of capacity costs (rp), for different average
sizes of product family (y), with constant capitallife (z, = 16) and con-

stant average product life (Z2 = 8)

y x , .; rp

1.76 .941 .450 .970
2 1.54 .928 .376 .962
4 1.36 .936 .290 .966
8 1.22 .951 .197 .980
16 1.12 .963 .123 .982
32 1.08 .968 .086 .987
64 1.04 .981 .044 .995
128 1.04 .986 .027 1.012
256 1.01 .993 .014 .996

TABLE 8

Optimal uniform burden rate, for different capitallives (Zj) and different
average product lives (Z2), with constant average size of product family

(y = 16)

"'",
Z2

1
2 4 8 16 32 64

Zj '"
1.00 1.00 1.00 1.00 1.00 1.00 1.00

2 1.06 1.03 1.01 1.01 1.00 1.00 1.00
4 1.14 1.09 1.05 1.02 1.02 1.01 1.00
8 1.24 1.17 1.13 1.06 1.03 1.02 1.01

16 1.39 1.26 1.21 1.12 1.08 1.05 1.03
32 1.53 1.40 1.30 1.22 1.16 1.10 1.05
64 1.58 1.56 1.41 1.33 1.26 1.17 1.10
128 1.69 1.63 1.60 1.40 1.40 1.28 1.17
256 1.79 1.76 1.69 1.58 1.55 1.40 1.29
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TABLE 9

Relative profit in optimum of a uniform burden rate, for different cap-
itallives (z,) and different average product lives (Z2), with constant av-

erage size of product family (y = 16)

"'",

Z2

1
2 4 8 16 32 64

Z, '"

1.000 1.000 1.000 1.000 1.000 1.000 1.000
2 .944 .985 .999 1.000 1.000 1.000 1.000
4 .872 .940 .989 .998 1.000 1.000 1.000
8 .807 .885 .949 .987 .998 1.000 1.000
16 .724 .822 .897 .963 .990 .998 1.000
32 .644 .743 .835 .916 .960 .987 .998
64 .596 .674 .768 .856 .913 .960 .991
128 .562 .611 .673 .805 .858 .914 .968
256 .519 .556 .644 .737 .787 .862 .922

TABLE 10

Relative unused capacity in optimum of a uniform burden rate, for
different capital lives (z,) and different average product lives (Z2), with

constant average size of product family (y = 16)

"'",

Z2

1
2 4 8 16 32 64

Zj '"

.000 .000 .000 .000 .000 .000 .000
2 .066 .034 .014 .007 .004 .002 .001
4 .144 .094 .050 .028 .015 .008 .004
8 .210 .166 .119 .068 .037 .022 .012
16 .293 .237 .191 .123 .083 .050 .027
32 .368 .313 .263 .199 .150 .097 .055
64 .409 .374 .333 .274 .225 .163 .098
128 .442 .427 .418 .336 .303 .242 .157
256 .480 .475 .447 .404 .378 .313 .237
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TABLE 11

Relative coverage of capacity costs in optimum of a uniform burden rate,
for different capitallives (Zl) and different average product lives (zz), with

constant average size of product family (y = 16)

"'~zl 2 4 8 16 32 64

Zl '"

1.000 1.000 1.000 1.000 1.000 1.000 1.000
2 .990 .995 .996 1.003 .996 .998 1.000
4 .976 .988 .997 .992 1.004 1.002 .996
8 .979 .976 .995 .988 .992 .998 .998
16 .983 .962 .979 .982 .980 .998 1.002
32 .967 .962 .959 .977 .986 .993 .992
64 .934 .977 .940 .965 .977 .979 .992
128 .943 .934 .931 .929 .976 .970 .987
256 .931 .924 .935 .941 .964 .961 .984
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