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1.

A MODIFICATION OF THE INTERNAL
RATE OF RETURN METHOD*

By CARL J. NORSTR0M

l. Introduction.
The internal rate of return method is one of the rnarn methods

used by economists for evaluating investments. Due to the pionering
work of Joel Dean [5] and others, it has also gained a certain accept-
ance in practice. During the last twenty years several distinguished
economists have attacked the internal rate of return and claimed
that it, in contrast to the present value method, will not always lead
to correct decisions. The aim of this article is to clarify the reasons
for the weaknessesof the internal rate of return method, and to suggest
a modification of the method. The most serious limitation in our
analysis will be that the discount rate is the same in each period.
The most important characteristics of the internal rate of return

compared with the present value are that
l. The internal rate of return depends only on the cash flows of the
projects and not on the discount rate.
2. The internal rate of return is independent of the size of the in-

vestment in the sense that it is unchanged if each element of the
cash flow is multiplied by the same number.
The present value has none of these properties. It is a function of

the discount rate and proportional to the scale of the investment.
It is a consequence of this difference in character of the two measures
that each is better than the other for some purposes. Thus the internal
rate of return is very suitable if we want to know for which values of
the discount rate a project is profitable, while the present value is
much simpler to use in the choice between mutually exclusive projects.
Moreover property 2 above indicates that the internal rate of return
is a better measure of the quality of an investment while the present
value also takes scale into consideration. We mention these points
to indicate that establishing a correct version of the internal rate of
return method not only is a matter of academic interest, but has some
practical relevance as well.
* The author is grateful to professor Jan Mossin for encouragement and advice.

Stats¢konc:misk 'I'i.dsskruf t nr. 4, 1971
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The main objections against the internal rate of return are the
following:
l. The internal rate of return is not unique. There exist cash flows

with none as well as cash flows with more than one internal rate
of return.

2. The internal rate of return method may lead to incorrect decisions
in the choice between mutually exclusive investments.

The readers interested in a more detailed discussion of these weak-
nesses are referred to Lorie and Savage [13], Solomon [15], Hir-
shleifer [7], Bailey [l], and Bernhard [2).1 These works have con-
tributed to the understanding ot both the present value and internal
rate of return method.

2. Assumptions and Definitions.
The article is based on the following fundamental assumptions:
l. Each project is fully described by a net cash flow, e. g.

(llo, at, ... , an), where a, is the net in- or outflow in period t.
Each flow takes place at the end of the corresponding period.
For convenience we shall assume flo *0.

2. In any period the firm may borrow or lend an arbitrary large
amount at a rate of interest, e. This rate will be referred to as the
cost of capital. Unless otherwise stated it will be assumed that
e ~O, but as will become clear this is not an essential assumption.

We shall make use. of the following definitions and notation:
3. Some mathematical notation will be used in the usual way.

(a,b) denotes the open interval between a and b, and [a,b) the
half-open interval. Note that if a=b, then (a,b) =[a,b) =O, the
empty set. The union of two sets is denoted by U and the inter-
section by n. 18 '1) denotes that 1 is an element in '1).

4. Since a project is fully described by the associated cash flow we
shall not distinguish between the project and the cash flow but
denote both by a capital roman letter without subscript, e.g.
A, B, C. Thus we have A=(flo, at> ... , an).

l Hirshleifer seems later to have modified his view. See Hirshleifer [9) for a more
recent statement of his opinion.



216

5. The cash flow A+B is defined by A+B=(tZo+bo, a1+b1, ... ,
a,,+b,,). A -B is defined in a similar manner. Note that the cash
flow resulting from accepting A and B is not necessarily A+B,
since the cash flows may be dependent.

6. The present value function (of project A) is defined as

where i is a rate of interest.
7. The present value, Pee), is the value of the present value function

when i=e.
8. A number r is a root in the equation P(i) =0 if the equation holds

for i=r. r is a simple root if.P(i) =0 and P(i)j(i -r) *0 when i=r.
r is a repeated root if P(i) =0 and P(i)j(i -r) =0 when i=r.

9. An internal rate of return r of the cash flow (tZo, al' ... , all) is
a root of the equation

P(i)=tZo+alj(l+i)+ ... +all/(l+i)"=O.

It is customary also to restrict r to some set of numbers. We shall
denote this set 1). It is a natural choice to let 1)=[0, 00) and
we shall do so unless otherwise stated.

10. A cash flow (ao,al' ... , all) is said to have a unique internal rate
of return if there exists one and only one r in 'l) such that r is
a root in P( i) =0 and that moreover it is a simple root."

Il. In the discussion of one project, rl>r2, ••• will denote the different
rates of return of this project. When discussing ditferent projects,
rA' rB etc. will denote rates of return of projects A, B etc. In the
same way PACe), PB(e) etc. will denote the present values of the
different projects.

I The restriction of T to be a simple root is made to make the internal rate of return
method more easily applicable. With this definition an investment project with a
unique internal rate of return will have a positive present value if and only if the
internal rate of return is greater than the cost of capital. This is not necessarily the
case, when r is a repeated root. It is therefor unpractical to define uniqueness in
such a way that cash flows with one set of repeated roots are counted as cash flows
with a unique internal rate of return. See Bernhard [3] who criticizes the internal
rate of return for this reason.

3.
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3. Independent Projects with Unique Internal Rates of Return.
It is well known that the present value method and the internal

rate of return method will always lead to the same results in accept-
reject decisions on independent projects with a unique internal rate of
return. This will be shown in this section in essentially the same way
as by Lorie and Savage [I3].

Multiplication with (1+i)" and substitution of x= 1-l-i transform
the equation P(i) =0 into the more suitable form

ffi) =a.,x"+atx"-l+ .. , +all=O.

Then i=x-l and the relevant range of values for x is [1,00). The
following theorem is well known" from the theory of algebraic equa-
tions:

Theorem 1. An odd number or an even number of real roots of an
equationf(x) =0 lie between the two values x=a and x=b according
asf(a),f(b) differ in sign or have the same sign.

We shall classify the cash flows with a unique internal rate of return
into two classes, according to the sign of flo.4 The fact that there is

•
an odd number of roots in [1,00) implies that Ilo and L at never

n t..",O

will have the same sign, sincef(l)= L at andf(x) for large values
1=1

of x have the same sign as ao• We define:
l. Projects with a unique internal rate of return,

n

flo <o and L at ~O, are called simple investment projects.
l-O

2. Projects with a unique internal rate of return,
n

flo >Oand L at ~ O, are called simple financial projects.
1=0

It follows from the theorem that a simple investment project has
a positive present value if the cost of capital fl is less than the internal
rate of return r and a negative present value if fl is greater than r,
Hence there is no conflict between the present value method and the
internal rate of return method in this case.

3 See e.g. Turnbull [17], page 95-96.
4 We have for convenience assumed that Ilo * O. If Ilo = O for some cash flow,

it may be classified according to its first non-zero element.
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The same line of argument holds for simple financial projects, but
now the present value is negative for e less than r and positive for e
grater than r, These projects are accepted when the internal rate of
return is lower than the cost of capital.

Many writers have presented examples of cash flows with either
none or multiple internal rates of return. However, the following suf-
ficient condition shows that uniqueness holds for a large and important
class of cash flows. Let At=ao+a1 + ... +a" i.e, the undiscounted
accumulation of the cash flow from O to t.

Theorem 2. A cash flow (ao, al' ... , an) with accumulated cash flow
(Aø, Al! ... , All) will have a unique nonnegative internal rate of return
if the accumulated cash flow changes sign once and AII"* O.

A proof of this theorem is given in Norstrøm [14].
The above theorem gives sufficient but not necessary conditions

for a unique internal rate of return. A general procedure for finding the
number of roots ofj(x) =0 in any interval was found by the French
mathematician Sturm in 1829 and is known as Sturm's Theorem.!

4. Dependent Projects.
Two projects A and B are dependent if the cash flow resulting from

accepting them both is different from the sum of the cash flows of
each separate project. The type of dependence mostly discussed in
capital budgeting is the case where the projects are mutually exclusive,
i.e. when only one of the projects in question may be chosen. This case
is important since any decision concerning acceptance of projects -
dependent or independent - may be seen as the choice between
mutually exclusive projects - or sets of projects. If e.g. the projects
A and B are dependent, but not mutually exclusive, the decision may
be seen as the choise between: A and B; A; B; neither A nor B.
Furthermore the choice between many mutually exclusive projects
may be seen as a sequence of choice between pairs of mutually ex-
clusive projects. It follows that it will be sufficient to give a treatment

5 For a statement and proof of Sturm's theorem see e.g. Turnbull [17J. The
application of Sturm's theorem to determine whether a cash flow has a unique
internal rate of return has been done by Kaplan [12J. Hf(x) = Ohas repeated roots,
they are counted as one in Sturm's theorem. See Bernhard [3J and Turnbull [17].

5.
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of the choice between two mutually exclusive projects, since then in
principle all cases are considered.

Formally the different investment methods may be said to consist of
l. A function which transforms the cash flow (and eventual para-

meters like the discount rate) into a measure of merit.
2. Rules for using this function and the measure of merit. These may

include guidelines on which cash flows should enter into the func-
tion and how the measure of merit should be used to reach a
decision.
There has been some disagreement on whether the internal rate of

return method will yield the same decisions as the present value
method in the choice between two mutually exclusive investments.
This disagreement is due to diff~rent definitions of what the internal
rate of return method is in this case, or more precisely - a different
opinion concerning the guidelines in 2. above. A specific example
will clarify the point.

A company with cost of capital e=O.IO has the choice between
the two mutually exclusive A and B with cash flows A=(-200, 264),
B=(-IOO, 143).

With the above cost of capital we have
PACe) =40; TÅ=0.32
PB(e) =30; TB=0.43

The most obvious way to use the internal rates of return is to choose
the project with the highest internal rate of return. If this is the guide-
line for using the internal rate of return method for this case, then
clearly we have presented an example showing that the present value
method and the internal rate of return method may lead to different
decisions."

• This version of the internal rate of return method has been criticized by e.g.
Bernhard [2] and Hirshleifer [7]. It is easy to demonstrate that it leads to in-
consistent results. Let C be another project, independent of A and B, and with cash
flow C = (- 100, + 115). Since r = 0.15 is greater than the cost of capital,
C is accepted. But B and C together has a cash flow B + C = (- 200, 258) which
clearly is inferior to A since Ilo = bo + Co and al > bl + Cl. To accept B and C
can not be optimal since there exists an alternative which is better. (Whether there
exists still better alternatives is irrelevant.) Hence it has been demonstrated that
this version of the internal rate of return method may lead to non-optimal decisions.
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The advocates of the internal rate of return method do not, however,
follow this procedure when choosing between two mutually exclusive
projects." They regard the marginal cash flow A-B to be the relevant
cash flow in this situation. Cash flow A is preferred to cash flow B if
and only if the marginal cash flow is preferred to nothing. Given that
the decision on the marginal cash flow is in accordance with the present
value method, this will lead to a correct choice between A and B,
because PÅ-B(e) >0 if and only it PÅ(e) >PB(e). In the above example
the marginal project is A-B = (-100, +121). The internal rate of
return rÅ_B=0.21 is greater than the cost of capital e and hence project
A is chosen, which is in accordance with the present value method.
Note that the decision is not influenced of whether A-B or B-A
is regarded as the marginal cash flow, since B-A will be rejected
if and only if A-B is accepted.

Essentially the same argument holds when the cash flow in question
may be continuously varied through the choice of some input variables.
We shall as an illustration consider the case that the cash flow at time t
is a continuously differentiable function of a single variable Å; a,(Å).
The optimization problem consists in choosing an optimal value for Å.
Let a,'(A.) denote the derivative of a,(Å) with respect to Å. The marginal
cash flow is then (llo'(Å), at'(Å), ... , an'(Å)), and the first order condi-
tion for optimum according to the marginal version of the internal
rate of return method is that an internal rate of return of this cash
flow should be equal to the cost of capital e. But this is exactly the same
first order condition as obtained when using the present value method,
SInce

dP d {n a'(Å)} n a,'(Å)
dA. = ri). l~o(l+e)1 = l~o(l+e)1 = 0,

which implies that e is an internal rate of return of the marginal cash
flow.

The marginal use of the internal rate of return in principie reduces
the choice between two mutually exclusive projects to an accept-
reject decision of an independent project. It has previousiy been shown
that the present value method and the internal rate of return method

1 See e. g. Grant and Ireson [6] which is a standard textbook in the field.

7.
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will give the same decision in such cases if the internal rate of return
is unique. It remains to consider the case of non-uniqueness. When we
in the following discuss a project, it is either an independent one or
the marginal cash flow between two mutuallyexclusive projects.

5. Multiple Internal Rates of Return.
In section 3 a theorem was stated which shows that it is only in ex-

ceptional cases that a project will have none or more than one internal
rate of return. It can not be denied, however, that such cases may oc-
cur, especially as marginal cash flows, and the issue of non-uniqueness
is undoubtly the most serious theoretical objection against the internal
rate of return method.

The perhaps most famous example of a project with multiple rates
of return is due to Lorie and Savage [13] and Solomon [15]. The
project considered is the installation of a larger oil pump that would
get a fixed amount of oil out of the ground more rapidly than the
existing pump. The marginal cash flow resulting from installation of
the larger pump is (-1,600, +10,000, -10,000). This cash flow has
two rates of return; Tl=0.25 and T2=4.00.

Examples of cash flows with more than two internal rates of return
are also easily constructed. The cash flow (-l, +6, -Il, +6) has
three rates of return; Tl=0.00, T2=1.00 and T3=2.00. Furthermore,
some cash flows have no internal rate of return, e.g., (-l, 3, -2.5).
(The two last examples are due to Hirshleifer [7].)
The natural question to ask is now, which of the internal rates

of return is the relevant one. If in the pump example the cost of capital
e=0.50, should the larger pump be rejected because Tl<e or accepted
because e <T2? It has been argued by many writers that the internal
rate of return method breaks down in this case." One of the best known
critics is Solomon [15] who answers the above question by saying:
"The answer is that neither of these rates of return is a measure of
investment worth, neither has relevance to the profitability of the
project under consideration, and neither, therefore, is correct.v"

8 See e.g. Lorie and Savage [13], Solomon [IS], Hirshleifer [7], and Bernhard [2].
9 Solomon [15], page 128.
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The Solomon argument against the internal rate of return is, beside
the existence of multiple rates, based on the fact that an increase in
the cost of the larger pump leads to an increase in one of the internal
rates of return of the project. See Table 1. Solomon concludes that
any definition of "profitability" that leads to such absurd results must
be in error. 10

Table I

Cost of Pumpl Tl

o 0.00
827 0.10
1600 0.25
2500 - 1.00

We shall not pursue this discussion of the weaknesses of the internal
rate of return due to non-uniqueness any further. Interested readers
are referred to the articles mentioned at the end of the introduction.

6. An Interpretation of the Internal Rate of Return.
The economic justification for the use of the internal rate of return

has been that it represents a rate of growth. Although this is not wholly
untrue, it may be misleading. As pointed out by Hirshleifer [7], a
project may then have more than one rate of growth. The purpose
of this section is to give another interpretation of the internal rate of
return. The interpretation will be used to explain the economic reality
behind an internal rate of return both in projects with a unique and
in projects with multiple rates of return.

The interpretation is based on the following result.
Theorem3. The number Tie1) is an internal rate of return of the cash

flow A= (ao, al' ... , all) if and only if A can be decomposed into two
cash flows, Ao=(ag, a?, ... , a~) and AI=(a~, al, ... , a,.l), such that

o la, +a,=a
"

t=O, l, , n,

t=O, l, , n-l,a:+1=-(1 +Tj)a?,

a~=O, a~=O.

10 Solomon [15], page 128.

9.
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The proof of this theorem follows directly from the fact that a poly-
nomialf(x) is divisible by (x-xi) if and only if Xi is a root inf(x) =0.

For example, the cash flow (-10, -15, +25, +30) has a unique
non-negative internal rate of return, Tl=0.50. Using this rate of retur
this cash flow is decomposed into the two cash flows, (-10, -30, -20,
O) and (O, + 15, +45, +30).
The important characteristic of the decomposition mentioned in

the theorem is that the cash flows AO and Al except for a shift of one
period have a similar development over time, so that it is meaningful
to compare the scale of the two cash flows. It is exactly the relative
scale of the two cash flows which is measured through the internal
rate of return. Nothing can be concluded from Tj about the profitability
of the project before something is known about the cash flow AO
and hence about AI. However, if A is regarded as an investment,
a? may be interpreted to be the unrecovered investment at time t.ll
One would then expect that like in the example a?;;; O for all t. A
large positive internal rate of return will then mean high profitability
as the cash flow Al will consist of positive elements and be large relative
to AO. Since for each t a~+1 is (l+Tj) times the absolute value of a?,
but occurs one period later, the benefits of Al will dominate over the
sacrifices of AO if and only if Tj > e. This is the well known rule from
section 3 that an investment should be accepted if and only if its
internal rate of return is greater than the cost of capital.

A similar line of argument holds for the case that a? ~ O and a: ;;;°
for all t, conditions which usually hold for loans. Al will as above
dominate over AO if and only if Tj > e, but since AO now represents
the benefits and A1 the sacrifices, A should be accepted if and only
if Ti <e.

The logic behind the above analysis is simple. The original cash
flow is decomposed by use of the internal rate of return into two cash
flows, in such a way that these are comparable, i.e. their relative size
may be expressed as a number. A condition for this decomposition
to be helpful is of course that it is easier to evaluate one of these cash
flows than the original one.

In both cases considered ahove it was true that AO dominated over
Al when Tl <e and Al over AO when Tl> (l. It is easy to see that this

11 See Bernhard (2).
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holds generally since nothing in the argument depend of the nature
of AO or AI, but only on the relation between them. A consequence of
this is that from a decisionmaking point of view the only interesting
internal rates of return are those who lie in the range of possible
values of the cost of capital (l. For example, if it is known that the cost
of capital always will be non-negative, it will be of little interest to
decompose a cash flow using a negative internal rate of return, since
AO will dominate over Al with any possible value at e. The above argu-
ment is to some extent an economic justification for the practice to
disregard by definition negative internal rates of return.

As an example consider again the cash Howfrom the example above
which in addition to the internal rate of return rI =0.50 has two nega-
tive ones, r2=-2.00 and ra=-3.00. Using ra the cash flow is
decomposed into' the two cash Haws, (-10, +5, +15, O) and
(0, -20, + 10, +30). The decomposition achieves virtually nothing
since the critical information about the profitability of the project is
hidden in the cash flows AO and Al and not contained in the internal
rate of return. Further calculations are necessary to find for which
values of e the project is profitable.

As will be clear from the above discussion the explanatory power
of the decomposition is best when it is obvious which of the cash Haws
AO and Al that represents the advantage and which the disadvantage.
Two important classes of cash flows have this propertywhen de-
composed.

The first of these consists of all cash flows which change sign once,
from negative to positive, and with total receipts exceeding total out-
lays. Such projects have been called conventional investments by some
writers.P It is well known that these cash flows have a unique non-
negative internal rate of return, and it is easy to prove that when they
are decomposed we obtain cash flows AO and Al with a? ~O and
a: ~ ° for all t. The cash flow in the example above belongs to this
class.

The other class to be mentioned consists of projects with disposal
costs, such that there are net outlays in the beginning and the end of
the project's life and receipts in the middle. It is still assumed that total
receipts exceed total outlays. Such projects will have one internal rate

12 Bierman and Smidt [4].

11.
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of return in (-1,0) and one in (O,CXJ)_l3When the cash flows are de-
composed, AO will contain positive as well as negative elements, but
the accumulated cash flow consisting of the elements A? = ag + a? +
... + a? will be negative or zero for all t. It is easily seen from this
that AO will be a clear disadvantage for all e ~O. An example of such
a cash flow is (-100, +110, +72, -18), with internal rates of
return Tl =-0.80 and T2=0.50. Using T2 it is decomposed into
(-100, -;40, + 12, O) and (0, + 150, +60, -18). AO contains one
positive element, but is a clear disadvantage. The project should be
accepted if and only if T2 > e.

We shall now use the decomposition on projects with multiple
internal rates of return. Let A be a project with exactly two rates,
Tl and T2• A can be decomposed using either of these rates. The rate
not used in the decomposition will be a unique internal rate of return
in AO and in AI. Two cases are "now possible depending on the sign
of ao: either AO is a simple investment project and Al a simple financial
project, or vice versa. We may conclude that any project with two
internal rates of return is a mixture of a simple investment and a simple
financial project.

An example of a project with two internal rates of return is the oil
pump project described in the previous section with the cash flow
(-1,600, +10,000, -lO,UOO) and the two rates Tl=0.25 and T2=4.00.
Using Tl this cash flow decomposed into (-1,600, +8,000, O) and
(0, 2,000, -10.000).
Note that noe only does the cash flow AO contain both negative and

positive elements, there is also a change in the accumulated cash
flow. It is easy to prove that this always will be the case when the
project A has more than one positive internal rate of return. Hence
it is no longer obvious whether a high internal rate of return indicates
high or low profitability. The decomposition is still helpful, however,
because it makes it possible to discuss projects with two internal rates
of return in terms of the more familiar projects with a unique one.

The case ao <O will be considered first. Let Tl and T2 be numbered

13 The fact that such cash flows have a unique internal rate of return has been
proved by Jean [10]. It does also follow as a corollary to Theorem 2 in section 3.
It is necessary that total receipts exceed total outlays. See the discussion between
Hirshleifer [8] and Jean [11].
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such that Tl ~T2 and let e.g. A be decomposed by use of Tl such that
a: +1 = -(l +TI)a,o. Since ag = ao, AO is a simple investment project
and Al a simple financial project, both with internal rate of return
T2• Hence AO is profitable and Al unprofitable when T2 > e; AO is un-
profitable and Al profitable when T2 < e. As known from the previous
discussion Al will dominate over AO when Tl> e, and AO over Al
when Tl <e. These results are combined in Table 2.

Table 2.

A unprofitable
A profitable
A unprofitable

Al dominates
AO dominates
AO dominates

Al unprofitable
AO profitable
AO unprofitable

The project A is unprofitable when e <Tl' profitable when Tl< e <T2

and unprofitable when T2 <e. The reader may easily verify that this
conclusion is independent of which of the rates Tl or T2 is used in the
decomposition.

When ao >0, AO is a simple financial project which is profitable when
T2 < e and Al a simple investment project. By the same line of argument
as above the following table is obtained.

Table 3.

A profitable
A unprofitable
A profitable

Al dominates
AO dominates
AO dominates

Al profitable
AO unprofitable
AO profitable

Project A is now profitable when e <Tl' unprofitable when rI <e <r2
and profitable when T2 < e.

The analysis holds also for the case Tl=T2, i.e. repeated roots.
Then no value of e wiil satisfy Tl < e < T2 and a project with e.g. ao < °
will not be profitable for any value of e.
The above analysis has shown that the occurrence of two internal

rates of return may be explained by the fact that the project in
question is a mixture between an investment and a financial project.
Both the internal rates of return are relevant when making a decision

13.
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on such a project.P Moreover, just as the unique internal rate of return
does in a simple investment or financial project, these rates determine
the range of vaiues of the cost of capital which makes the project
profitable.

The analysis could be extended to a discussion of projects with three
internal rates of return in terms of projects with two rates and so on.
In this way it is possible by economic arguments to obtain decision
rules for projects with any number of internal rates of return. With
these decision rules it is possible to use the internal rate of return
method correctly. A different approach will be taken here. In the next
section a measure of investment worth will be suggested, which may be
said to be another version of the internal rate of return, since it con-
tains essentially the same information.

7. A Modification of the Internal Rate of Return Method.

Before turning to our suggestion for a modification of the internal
rate of return method, two other approaches will be mentioned briefly.
To solve the problem of dual rates of return in the oil pump example
Solomon [15] introduces the reinvestment rate k. He defines a new
rate of return p as the root of the equation

-1,600(1 +i)2+ 10,000(1+k)-1O,OOO=O •

With the assumptions taken in this article the reinvestment rate will
be equal to the cost of capital. The project is accepted if and only if
p > (l. It is easy to see that p is unique for a given value of k and that
the approach leads to a decision in accordance with the present value
method.

A related approach has been taken by Teichroew, Robichek and
Montalbano [16]. In cases of non-uniqueness they define a measure
q, which in the pump example is the root in the equation

[-1,600( 1+i) + 10,000](1 +k)-1O.000=0

14 The fact that an internal rate of return also have some significance when it is
not unique, has been pointed out by Wright [18, 19].
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Teichroew, Robichek and Montalbano's approach contains too
many ideas to be given an adequate treatment here.P The important
points are again that q is unique for a given value of k, and that the
approach leads to the same decisions as the present value method.
Both the approaches mentioned above represent moditications of

the internal rate of return method, which eliminates the problem of
non-uniqueness of the internal rate of return. However, both have also
the weakness that the rate p or q, which is used when a project has
multiple rates of return is a function not of the cash flow alone, but
also of the reinvestment rate - or with our assumptions - the cost
of capital. This violates one of the fundamental characteristics of the
internal rate of return mentioned in the introduction, and makes the
method less useful when we want to know for which values of the cost
of capital a project is profitable ..
It was mentioned in section 4 that the different investment methods

may be said to consist of a function which defines a measure ot merit
and certain rules for reaching a decision from this measure. The most
obvious is to choose a real-valued function such that the measure of
merit is a real number. As pointed out in last section, however, the in-
formation given by the internal rate of return method is the values of
the cost of capital which makes the project profitable. This suggests
that we should let the measure of meric be this set, and make the func-
tion used a set-valued one.
It is assumed that '1) is an interval which includes all possible values

of the cost of capital e. We define

~(A) ={i lie'Il and P(i) >O},
3(A) . {ilie'Il and P(i)=O},
m(A)={ilie'Il and P(i) <O}.

We shall call ~(A) the acceptance range, 3(A) the indifference
range and m (A) the rejection range. ~ (A) is the proposed measure of
investment worth.

16 One of the important contributions in Teichroew, Robichek and Montalbano
[16] is a clear demonstration of the fact that a project has to be a mixture between
an investment and a financial project in order to have more than one internal rate
of return.

15.
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An independent project is accepted if and only if es~(A). The pro-
ject is rejected if esffi(A) and one is indifferent with respect to the
project if e~(A).
It is easy to see that the choice of the interval <1) has no influence

on the decision as long as <1) contains all possible values of the cost of
capital. The choice of SDis therefore primarilyone of convenience.

Certain properties of the above sets are immediate.

(1)
(2)
(3)

~(A) U 3(A) U ffi(A) =SD,
~(A) n 3(A) =~(A) n ffi(A) =3(A) n ffi(A) =O,

W(A) =ffi(-A), 3(A) =3(-A) •

(l) and (2) show that e is a number of one and only one of the three
sets ~ (A), 3(~) and ffi (A), such that the decision rule lead to a unique
decision.

In the choice between two mutually exclusive projects B and C,
B is accepted if esW(B-C), C is accepted if (!sffi(B-C), and one is
indifferent between B and C if e~(B-C). (3) assures that the decision
is not influenced by whether (B-C) or (C-B) is taken to be the mar-
ginal project.

The approach we here have suggested will obviously lead to the
same decisions as the present value method. Its advantage over the
internal rate of return method is that the acceptance range is unique.
The information given by the set W (A) is, however, essentially identical
with that given by the internal rates of return. This will be clear from
the following theorem.

Theorem 4. Let A be a cash flow with m ~ l internal rates of return
in the interval <1)=[0,00). Let the rates of return be numbered such
that r1~ r:a~ ..• ~ rm' Then the acceptance range of the project,
~(A), is given by

l) If llo<O and m odd: W(A)=[0,r1) U (r2,ra) u ... U (rm-l,rm).
2) If llo<O and m even: W(A)=(rUr2) U (ra,r4) U ..• U (rm-l,rm) •
3) If llo>O and m odd: ~(A)=(rl,r:a) U (ra,r4) U .•. U (rm, co) .
4) If llo>O and m even: ~(A)=[O,rl) U (r:a,Ts)U .•• U (rm,oo).

Proof: The theorem is an immediate consequence of theorem l in
section 3. It may also be proved by induction using the decomposition
principle used in the previous section. We shall do this for the case
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that m is odd and llo < O, i.e. case l. The proofs of the other cases are
similar.

Decompose A into AO and Al using the internal rate of return T",.
Since m is odd and llo <O, (m-l) will be even and og <O. Hence AO
represents case 2 and Al case 4 in the theorem. By induction hypothesis
&(AO)=(Tl,T2) U (T3,T.) U ... U (T",-2,T",-1) and 16(A1)=[0,T1) U (T2,T3) U
••• U (r"':'1>OO). Al dominates in the interval [O,T",) and hence A will
be profitable in {&(Al) (l [0,T",)}=[0,T1) U (T2,T3) U ... U (T"'_l,T",). AO
dominates in the interval (T""OO), but since T"'_l~T", AO and hence A
will be unprofitable in all of this interval. Combining the results prove
case l.

We have in the theorem assumed that '!l=[0,(0). It is easily ex-
tended to other choices of '!l. Note that & (A) is defined also when
there is no internal rate of return. When '!l= [0,(0), & (A) =0 if Ilo <O
and &(A)='!l if 1lo>0.

As a consequence of the uniqueness of & (A) certain apparent weak-
nesses in the usual internal rate of return method are eliminated.
It was mentioned in section 5 that one of Solomon's arguments against
the internal rate of return method was that an increase in the cost of
the large oil pump resulted in an increase in one of the rates of return.
(See Table 1, section 5.) This paradox is eliminated by the introduction
of the acceptance range. We see from Table 4 that although Tl in-
creases with an increase in the cost of the pump, the acceptance range
&(A) decreases.

Table 4.

Cost of Pump Tl '2 2t(A)

O 0.00 00 (0,00)
827 0.10 10.00 (O.10, l 0.00)
1600 0.25 4.00 (0.25, 4.00)
2500 1.00 1.00 e

Cost> 2500 No rate of return e

Norwegian School of Economics and Business Administration,

BeTgen.
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A mathematical connection between the
present value, the rate of return and the
scale of an investment
by Carl J. Norstrom
Assistant Professor, Norwegian School of Economics and Business Administration,
Bergen

AbstrfSGt: The purpose of this note is to show how discrepancies between the present values and rate of returns of investments are
due to differences in scale. A measure of the scale of a project is introduced and a mathematical connection between the present
value, rate of return and scale established.

THE two most important measures for evaluating
investments are the present value and the (internal)
rate of return. It is well known that these measures
are not in complete correspondence: an investment
A may have a higher present value than investment
B, while B has a higher rate of return than A. l A
bit imprecisely the reason for this may be said to be
that the rate of return measures only the quality of
the investment, while the present value takes into
consideration both the quality and the scale." The
purpose of this note is to make this idea more precise
and show that it indeed is a correct one.

ONE-PERIOD INVESTMENTS
It is convenient first to discuss the simple case of

one period investments, where an amount is invested
at time o and the benefits from the investment are
received at time I, one period later. The cash flow
from a project is of the form A= (ao, al), where for a
usual investment ao<o and al>o. Let p denote the
market interest rate, and r the rate of return of the
cash flow. The present value of the project is

V(A) = ao+-( al )'l+p

and the rate of return is given by

al
0= ao+-(-)l+r

In the one-period case the investment outlay (- ao)
is an obvious measure of the scale of the investment.

1 It is not an issue here whether the two measures lead to
different decisions. A discussion of that question may be found
in eg, Bailey [I], Bernhard [2], Hirshleifer [4. 5], Lorie and
Savage [6], Solomon [7] and Teichroew, Robichek and
Montalbano [8].

2 See Bierman and Smidt [3], pp. 4O-.P.

Using (2) al may be eliminated from (I) by
regular substitution. This gives

(r-p)
V(A) = -( -) (-ao)

I+p

Equation (3) states that the present value of a pro-
ject is equal to the difference between the rate of
return and the market interest rate, discounted one
period, times the scale of the project measured by the
investment outlay. (3) makes, for the one-period
case, explicit and precise how the present value takes
into account both the quality and the scale of a pro-
ject, and explains why one project may have a larger
rate of return than another and yet a smaller present
value.

MULTI-PERIOD INVESTMENTS
The ideas in the previous section will now be

generalized to multiperiod investments. The fol-
lowing theorem will playa central part in the discus-
sion:

Theorem. The number r is a rate of return of the
cash flow A=(ao, all' .. , an)if and only if A can be
decomposed into two cash flows
AO-( o o O) d AI_( l l l)- ao, al'"'' an-l an - al' a2'"'' an
such that

ag = ao

a?+ar = at t = 1,2, •.. , n- l

a! = an
a1+1= (l+r)(-af) t = o, l, ... ,n-l (S)

The proof of the theorem follows directly from the
fact that a polynomial/(x) is divisible by (x-a) if
and only if a is a root in the equation/(x)=o.
We note that the first element of the cash flow AO

JOURNAL OF BUSINESS FINANCE. Vol. 4 No.2 © 1972 Mercury House Business Publications Ltd. 75
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refers to the present, while the first element in Al
takes place at time L The cash flow AO plays a role
similar to ao in the one-period investments, and Al
to al' (When n= I, AO=(ao) and AI=(al».
The important characteristic of the decomposition

is that AO and Al have a similar development over
time. Mathematically they belong to a one-dimen-
sional vectorspace, and it is therefore meaningful to
compare their relative size. It is exactly this relative
size which is reflected in the rate of return r.

An Example.
It is easy to verify that the cash flow

A = (-1000, -1500, +2500, +3000)

has a rate ofreturn r=0·50. Decomposing A using
this rate gives

AO = (- 1000, - 3000, - 2000)
Al = (+1500, +4500, +3000)

The reader may verify that the decomposition
satisfies (4)- (5).

We want to find a measure of the scale of the
investment which is an extension of the investment
outlay (- ao), the measure in the one-period case. It
is easily seen that the cash flow A of the actual
investment project is identical with the total cash
flow resulting from n hypothetical, one-period
investments where the tth project takes place at time
I and has cash flow (ap, at + l)' The natural economic
. . f AO (0 ° 0)' hmterpretation o = ao, ah ... , an _ l IS t ere-
fore that (- ap) is the unrecovered investment at
time t of the actual project." We shall measure the
scale of the actual project by the present value of the
unrecovered investments

n-l ( 0)
V(-AO)- 2 ~

- t=o (I+p)t

It is now possible to derive a result for multiperiod
investments, which is similar to (3) and include this
equation as a special case. It follows easily from (4)-
(5) that the present value of the actual project is

V(A) = (r-p).V(_AO) (7)
(I+p)

3 This interpretation is used in eg, Bernhard [2].

76

The economic interpretation of (7) is similar to that
of (3). The present value of a project is the product of
the quality measured by (r-p) and the scale
measured by (V( - AO», discounted one period.
Eventual discrepancies between the present values
and rates of return of two projects are the result of
differences in scale.

The economic interpretation of AO suggests that
ap is negative and hence - ap positive, for all I. It
may be proved that this will be the case for all cash
flows A = (ao, ah' .. , an) with one change of signs.
In this case it is obvious that V( - AO) is positive for
all non-negative values of p, and that the information
of whether theproject has a positive present value
or not is contained in r. Although not so obvious
from an economic point of view, the same is true for
cash flows where some a? are positive as long as A
has a unique rate of return and ao is negative.

The economic interpretation of a positive a? is
that the unrecovered investment is negative, or that
the project at this point of time is a loan. It is well
known that there exist projects with more than one
rate of return. If such a cash flow is decomposed
using one of these rates, the remaining rates will also
be rates of return in the cash flow AO. V( - AO) will
then be positive or negative according to the value of
p, reflecting the well known fact that projects with
multiple rates of return will act predominantly as an
investment for some interest rates and as a loan for
others.
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UNIQUENESS OF THE INTERNAL RATE OF RETURN
WITH VARIABLE LIFE OF INVESTMENT:

A COMMENT)

IN the article" Uniqueness of the Internal Rate ofReturn with Variable
Life ofInvestment" published in the September 1969 issue of the ECONOMIC
JOURNAL,K.J. Arrow and D. Levhari consider the uniqueness of the internal
rate of return when it is possible to truncate the investment project at any
moment of time. It has earlier been proved by Soper [3] and Karmel [2]
that if the investor chooses the truncation period so as to maximise the
internal rate of return, then the truncated project has a unique internal
rate of return. Arrow and Levhari point out that with a perfect capital
market the truncation period should be chosen so as to maximise the present
value of the truncated project and not its internal rate of return. They
then go on to prove that if, with a given constant rate of discount, the
truncation period is chosen so as to maximise the present value of the
project, then the internal rate of return is unique.

The purpose of this comment is to demonstrate that the internal rate of
return Arrow and Levhari find, in reality, is Soper's maximal internal rate
of return, i.e., the one that is obtained when the truncation period is chosen
to maximise the internal rate of return.

In correspondence with Arrow and Levhari's article let x(t) be a given
continuous stream of net income and define

(l)

Thus t/>(r, T) is the present value of the stream x(t) when the discount rate is
r and the truncation period T. Further, let

(2)

(3)

"'(r) = Max t/>(r, T)
T

T(r)" = {Tlt/>(r, T) Max}

"'(r) is the maximum present value, for a given r, with the appropriate choice
of the truncation period, T; and T(r) is the set oftruncation periods leading
to the highest present value when the discount rate is r.

On the other hand, let T* be one of the truncation periods obtained
when the internal rate of return of the truncated project is maximised, and
let r* be the corresponding unique maximal internal rate of return.

In their article, Arrow and Levhari show that the maximum present
value "'(r) is a decreasing monotonic function of the discount rate r, and
hence that there is at most one solution of "'(r) = O. This result is not

l The author wishes to acknowledge valuable comments by Professor K.J. Arrow on the fint
version of this note.
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disputed.' What is claimed here is that the solution of t/J(r) = o (if such
a solution exists) is exactly Soper's maximal internal rate of return r*, i.e.,
that t/J(r*) = O.

In the following it will be assumed that the net stream x(t) is negative in
some interval before it turns positive for the first time, because otherwise
there will be no finite solution of the equation t/J(r) = O. This assumption
assures that for any truncation period T, (4)(r, T) is negative when r is large
enough.P
Itwill now be shown that tP(r*) = O. From the definition of r* and T*

it follows that 4>(r*, T*) = O. Let us show that 4>(r*, T*) = Max4>(r*, T).
T

Suppose, to the contrary, that there exists a truncation period Tl such that
4>(r*, Tl) > 4>(r*, T*) = O. Since 4>(r,Tl) by the assumption above will be
negative when r is large enough, there exists an rI > r* such that 4>(rl' Tl)
= O. But this is impossible, since r* is the largest possible internal rate of
return. Hence 4>(r*, T*) = Max 4>(r*, T). It follows that

T-
(4) tP(r*) = Max4>(r*, T) = 4>(r*,T*) = O.

T

This concludes the proof.
CARL J. NORSTRØM

. The Norwegian School of
Economics and Business Administration.
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1 Arrow and Levhari thus define the internal rate of return in the following way. They
compute for any given rate of interest the optimal truncation period, and define the internal rate
ofreturn to be the rate ofinterest which, when the truncation period has been optimised with respect
to it, yields a present value of zero.

2 Ifx(t) ;;i!: O,O.;; t .;; .,., and foTX(t)dt > Ofor some r > O, then for any finite r

.pCr) = Max 4>Cr, T) ;;i!: 4>Cr, .,.) > O.
T

If, on the other hand, there exists a .,.> Osuch that x(t) .;; O,O .;; t .;; .,., and [XCt)dt <O,then for

anyfinite T and bounded functionx(t) therewill be an r such that l~(t)e-rtdt < O,since l~(t)rrtdt
O T

approaches zero faster than [x(t)rrtdl when r approaches infinity.
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A SUFFICIENT CONDITION FOR A UNIQUE
NONNEGATIVE INTERNAL RATE OF RETURN

Cart J. NOl'stl'¢m*

1. Introduction
A proposition is proved which shows that each member of an important class

of investment and financing projects has a unique nonnegative internal rate of
return. Nonuniqueness of the internal rate of return is thus shown to occur
less frequently than formerly believed. The correspondence between the proposi-
tion and previous results on the uniqueness of the internal rate of return is
briefly indicated.

II. Method
One of the problems in applying the internal rate of return in the evalua-

tion of investment projects is that it is not necessarily unique. This fact has
been noted by a number of writers, who have presented examples of cash flows with
either no or more than one rate of return.1 We shall here prove a sufficient
condition for uniqueness, which shows that the members of a large and important
class of cash flows do have a unique rate of return.

Consider an inve8tment or financing project with cash flow fao' al' .,
an}' An internal rate of return is usually defined as a rate of interest r
having _the property that

(l) -n• + a (l+r) • O.n

thSince an ni order equation always will have n roots. real OT complex, the
range of r has to be restricted if the question of uniqueness is to be meaning-
ful. We shall restrict r to being a nonnegative real number. The cash flow
fao' al' •• " an} is said to have a unique internal rate of return if there is

*Univel'sity of ~higan.

lSee, e.g., Wright [12]. Samuelson [8]. Lorie and Savage [6]. Solomon [9),
and Hirsh1eifer (3).
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one and only one r ~ O, such that (1) holds and moreover that this r is a simple
root in (1).2

Multiplication with (l+r)n and substitution of x
into the more suitable form

l+r transforms (l)

(2) O .

Here r ..x-l and the relevant range of values for x is (l, 00). We define

(3) A ..
t

At is the undiscounted accumulation of the cash flow from T ..O to T ..t. The
main result in this note is:

Proposition 1. A cash flow {a , al' •• o, a } with accumulated cash flowo n
{Ao' ~, ••• , An} will have a unique" nonnegative internal rate of return if
the accumulated cash flow changes signs once and A + O.

n
Proof. Since f(x) = O is equivalent to -f(x) O, it may be assumed with-

out loss of generality that A .. a < O and hence A > O. There is at least one
o o n

root of f(x) in (l, 00), since f(l) = A and f(x) will have the same sign as A
n o

~hen x is large enough. x = l is not a root since A # O.
n

It remains to show that there is at most one root. Suppose that there is
more than one root and that these roots are numbered xl ~ x2 ~ •••• It will be
shown that ~ > l and f(~) ..O implies that the derivative f'(~) < O. This
implies that xl is unique. f'(xl) < O implies in the first place that xl is a
simple root and moreover that f(x) < O for xl < x < x2' but. then must -
f'(x2) ~ O, which is a contradiction.

We have

(4) f(x) .. (x-l) (A xn-l + A n-2 A ) + Ao lX + ... + n-1 n'

Define

2The restriction of r to being a simple root in (l) is made to make the
internal rate more easily applicable. With this definition an investment project
with a unique internal rate of return will have a positive present value if
and only if the internal rate of return is greater than the c'ilculation rate.
This is not necessarily the case when r is a repeated root in (l). It is there-
fore impractical to define uniqueness in such a way that cash flows with one set
of repeated roots are counted as cash flows with a unique internal rate of return.
See Bernhard. [2], who criticizes the internal rate of return for this reason.
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(5) g(x) A n-l + A 0-2
OX lX + ... + Ao_l

such that

(6) f(x) (x-l)g(x) + A , and
o

(7) f' (x) (x-l)g'(x) + g(x).

such
Let ~ > ~.and f(~) = O. We shaH show that g(~) < O and g'(~) < O

that from (7) f'(~) < O. g(~) < O follows immediately from (6) and
O. As there is only one change of signs in the accumulated cash flow,A >

n
there must be an integer m such that

A < O
t=

A > Ot-

for t = O, l, ..• , m, and

for t • m+l, ••.• n.

Hence,

(8) n-l n-mmAo~ + ... + Am_l~

- Am+l~-m-2 - ... - (n-m-l)An_l < O.

since all the coefficients are negative. Since n-m-l ~ O and g(~) < O, it
follows from (8) that gt(~) < O. Q.E.D.

The proposition g-ives sufficient but not necessary conditions for a unique
internal rate of return.3

We shall now briefly consider the correspondence between Proposition 1 and
some other results on the uniqueness of the internal rate of return.

Descartes Rule of Signs~ states that the number of positive roots in (2)
cannot exceed the number of signs of the coefficients. Hence, there will be at
most ane internal rate of return if the cash flow {a , al' .•• , a } changeso n
signs once. The advantage of this result over Proposition 1 lies in that it is
applicable to interest rates r > -l (not only to r ~ O). When r is restricted
to being nonnegative, Descartes's Theorem obviously is less general.

3The cash flow {-l, 2, -2, 4} has a unique internal rate of return, r = 1.0,
although the accumulated cash flow {-l, l, -l, 3} changes sign three times.

~See Turnbull [11], pages 99-102.
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It follows as a corollary to Proposition l that an investment will have a
unique nonnegative internal rate of return when there are two changes of signs
in the original casle flow {a • al •••. , a } and moreover A = a and Ao n o o n
ao + al + . . . + an have different signs. This result is immediate when one
notices that the above conditions imply that the accumulated cash flow {Ao' Ar •
• • " A } will change signs once and that A ~ O. The corollary is of some

n n
interest since it covers the case where there is an outlay at the end of an
investment's life, due, e.g., to disposal costs. A slightly less general result
than the corollary has previously been proved by J.ean [3].

The French mathematician Sturm found in 1829 a method for finding the exact
number of distinct roots of (2) within any given range of values. Thus, Sturm's
theorem may be used to find for any given cash flow whether it has none. one, orsmany rates of return. The weakness of Sturm's theorem is that it is relatively
cumbersome to apply and that it has no immediate economic interpretation.

Proposition 1 provides a convenieDt way of checking uniqueness, which may
be incorporated easily in computer programs calculating the internal rate of
return. Its economic significance lies in showing that the class of projects
with a unique internal rate of return is much larger than the class of projects
with one change of signs in the original cash flow. A project with nonunique
internal rates of return must have an accumulated cash flow which changes signs
more than once or not at all. This result is in accordance with the arguments
made by Teichroew. Robichek. and Montalbano [10] and Bernhard [l] that a project
has to be Il mixture of an investment and a loan in order not to have a unique
internal rate of return. Teichroew, Robichek, and Montalbano [10] have given an
extended version of the internal rate of return method which yields the same
decisions as the present value method also for such projects.
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Artikkelen .f.inneS

her
A COMMENT ON TWO SIMPLE DECISION

RULES IN CAPITAL RATIONING*

uction

l rationing problem, optimal allocation of scarce

available investment projects, was introduced by

Savage in their famous article [5J. Weingartner [7J

~n elegant solution to the problem through the use

Jr integer programming. His contribution and later

y Baumol and Quandt [lJ, Myers [5J and others, have

panded the und~rstanding of the capital rationing

j related problems in finance. The application of

~h in real life situaticns is, however, severly

limited by the st~ong assumptions about the available

information; that the cash flows of all future projects up

to the planning horizon of the firm is known. This

requirement will not be satisfied in most real situations,

and the firm is left with the choice between more

conventional procedures, like the present value per dollar

outlay or the internal rate of return method.l The purpose

of this article is to give conditions under which these

simpler methods lead to essentially the same solution as

Weingartner' s linear pr-cgr-arnming approach. The condit ions

will be stated in terms of the shadow discount rates from

the linear programming solution.

l A similar view on this point has been expressed e.g. by
Hughes and Lewellen [4J.

* Fortheaningin the Journal of BusinessFinance and Accounting.The
commentsof Karl Borch, SteinarEkern, Jan }bssin and Cary L. Sundern
are gratefullyacknowledged.
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2. Formulation of the Problem

In its typical linear programming form the general capital

rationing problem is

N
(l) Max I: V)' ( kl' ... ,kT)•x)'

j=l

subject to

t = O,l, ... ,T

( 3 ) o < x . < l
)

Here N is the number of projects, T the planning horizon and

a discount rate for period t,

the net cash flow obtained from a unit of project]
during period t,

the accepted proportion of project j,

amount of cash made available from sources external
to the project during period t.

(4) a,
)0

+ ••• +
a'T)

is the present value of project j at the discount rates

kl' ... ,kT·

The choice of discount rates in the objective function has

been discussed by Baumol and Quandt [lJ, Weingartner [SJ,

Carleton [2J, Elton [3J and Myers [6J,
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In the following we shall distinguish between current
2(a. < O) and future investment projects (a. = O). It

JO JO
is assumed that the cash flows of current projects are

known, but that the future projects, and a forteriori the

corresponding cash flows, are unknown. It follows that only

the current financial constraint (t = O in (2)) is known.

To distinguish this problem from the linear programming

problem (1)-(3), we shall call it Problem A.

We shall for convenlence make some simplifying assumptions.

It is assumed that the current financial constraint is

binding in the optimal sQlution of the primal problem

(1)-(3) as well as in the solutions obtained by the simpler

methods to be considered below. Otherwise there would not

be capital rationing in the usual sense. Moreover, we shall

assume that the optim~l solution of the problem (1)-(3) is

unlque and non-degenerate.

3. Analysis

The following result is an immediate consequence of the

duality theorems.

Proposition l. Assume that the primal problem (1)-(3) has a

unique, non-degenerate optimal solution. Then there exist

shadow interest rates Pl"" 'PT such that:

2 Deferment of projects lS not considered.
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(a) Any project which is fully accepted in the optimal

solution has a positive present value evaluated at

these interest rates.

(b) Any project which is partially accepted has present

value zero.

(c) Any project which is rejected has a negative present

value.

A firm which in addition to the cash flows of its current

projects knows the shadow interest rates Pl"" ,PT may

hence classify these projects into three classes.

Class l. Projects which ~n the optimal solution of the

primal problem (1)-(3) is fully accepted (x. = l).
J

Class 2. Projects which are partially accepted (O < x. < l).
J

Class 3. Projects which are rejected (x. = O).
J

In general it is not possible on the basis of Pl"" ,PT and

the current financial restriction to determine the

proportion of each partially accepted project. Weingartner [7J

has shown that the optimal solution of the primal problem

(1)-(3) will include at most T partially accepted projects.

With a reasonable number of accepted projects in each period,

the relative number of partially accepted projects will be

small, and the classification above will be a good

approximation to the optimal solution of the primal.
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Definition l. A correct solution of Problem A is defined as

a classification of the current investment projects into the

three classes above, which is in accordance with the optimal

solution of the primal problem (1)-(3).

Lorie and Savage [~ considered two methods for solving the

one-period capital rationing problem:

Method l. The projects are ranked according to the present

value per dollar of outlay required. To be more precise, let

( 5 ) vj(il'...,iT )
= Vj(il '...,iT)

(-a. )
JO -

where il"" ,1T are the interest rates used in evaluating the

investments. The interest rates in the objective function,

kl"" ,kT is a natural, but not the only possible choice for

il"" ,iT' The projects are ranked according to vj.

Method 2. The projects are ranked according to the internal

rate of return, r .. We shall assume that this rate exists and
J

is unique for each project.

Lorie and Savage [5] regarded Method l to be correct and

Method 2 incorrect in case of conflict. We shall now glve

sufficient conditions for each method to result ln a correct

solution of Problem A, which may be viewed as a more realistic

version of the one-period rationing problem.



34.

Proposition 2. A sufficient3 condition for Method l, always

to give a correct solution of Problem A is that

Proposition 3. A sufficient3 condition for Method 2. always

to give a correct solution of Problem A is that

. .. -

Proofs of these propositions are given in the Appendix.

The sufficient conditions of the two problems are seen to be

of a different nature. Method l. will give a correct solution

to any problem as long as the firm is capable of estimating

the shadow prices of future periods. This estimation is likely

to be difficult, however, unless the capital rationing is of

temporary character. In particular Lorie and Savage's

conclusion is correct in the case they considered, capital

rationing in only the current period. The conditions of

Method 2. put restrictions on the problem itself. The method

is likely to give a good approximation to the optimal

solution if the investment and financing opportunities ln

the future are approximately as in the current period. If the

scarcity of capital is temporary, Method 2. will have a bias

in favor of projects with a short pay-back period.

3 The conditions are also necessary in the following sense.
If the conditions are not satisfied, there will exist
problems where Method l. (Method 2.) lead to an incorrect
solution. However, in a particulår problem either method
may happen to result in a correct solution.
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Some corollaries follow from the proofs of Proposition 2.

and 3.

Corollary l. The ranking by Method l. is independent of the

interest rate 11,

The corollary implies that this interest rate may be chosen

arbitrarily, e.g. il = O.

The necessary and sufficient conditions in Proposition 2.

and 3. put (T-l) restrictions on the shadow discount rates.

The values of Pl"" 'PT may consequently be determined by

adding the current finan~ial constraint.

Corollary 2. Suppose that the condition in Proposition 2. is

satisfied, i.e. i2 = P2,··· ,iT = PT' Then

where project m is a partially accepted project.4

Corollary 3. Suppose that the condition ln Proposition 3. is

satisfied, i.e. Pl = ••• = PT = p.

Then

where project m is a partially accepted project.4

4 The existence of a partially accepted project follows from
the assumption of non-degeneracy in the optimal solution
of the linear programming problem.
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Corollary 2. provides in the application of Method l. a

possibility to check the realism of the discount rates

i2, ... ,iT' If the discount rate obtained from (6) e.g. is

much larger than i2, ... ,iT' this may indicate that these

rates are too low.

As seen above, Method l. and Method 2. both make implicit

assumptions on future shadow prices, which restrict these

rates to a one-dimensional curve in the T-dimensional space.

This order may be reversed, i.e., one may postulate a set of

conditions which restrict the shadow discount rates to a

one-dimensional curve, and then apply an iterative procedure

to select the investment projects. Whatever approach is taken

a record of past estimates of the shadow discount rates will

be valuable information in the firm's investment and

financial planning.
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Appendix

Proof of Proposition 2.

Sufficiency. Suppose that current project m belongs to

Class l. according to-the optimal solution of the linear

programming problem (1)-(3) and project n to Class 2. Then

and since for all current investment projects a. < O,
JO

( 9 ) vm(Pl '...,PT) > vn(Pl '...,PT) .

It lS easily derived tha~ for any current project J

(10) ( )=-1+ l ( )vj Pl '...,PT (l+ Pl) wj P2'...,PT

where

(11 )
l a'2= (--) [a. l + ]-a. J (1+P2)JO

+ ••• +

From (9) and (10) it follows that

and from (10) and (12) that

for all il > - l. Hence, if i2 = P2"" ,1T = PT' project m
is ranked before project n by Method l. In a similar manner

it can be shown that project m is ranked before project n
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by Method l. if the former belongs to Class l. or 2. and the

latter to Class 3. Moreover, all projects in Class 2. are

tied in the ranking by Method l. under the assumption in the

proposition, since

implies by (10) that

for all il + - l. Sufficiency now follows from the assumption

of tightness ln the current financial constraint.

To prove necessity5 we must show that it is possible to
>construct a counterexample if lt t Pt for some t = 2. Construct

a primal problem (1)-(3) with a unique non-degenerate solution

with shadow discount rates Pl"" ,PT' If the solution obtained

by Method l. is the same as the linear programming solution,

add a project n with cash flow given by

( 16a) = - e:

( 16b) anl

( 16c) t to, l,

5 See footnote 3.
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where T is smallest integer such that i 4 p and T ~ 2, andT T
E > O is sufficiently small to preserve the basis in the

primal problem if project n lS accepted. Then project n is

classified in Class l. by the linear programming solution

and in Class 3. by Method l. if l > P , and vice versa ifT T
i < P • Q.E.D.T T

Proof of Proposition 3.

It has previously been assumed that each project has a

unlque internal rate of return. Suppose that project m belongs

to Class l. and project n to Class 2. according to the linear

programming solution and-that Pl = ... = PT = p. Then

V (p, ... ,p) > V (p, ... ,p) = Om n

(17) implies that

r > r = p.m n

The remaining part of the proof is similar the proof of

Proposition 2.

Proof of Corollary 2.

Suppose that project m is a partially accepted project.

From (10)

(20)

Substitution of the last equation in (20) into (19) gives (6).
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THE ABANDONMENT DECISION UNDER
UNCERTAINTY

Carl J. Norstrem.
The Norwegian School of Economics and Business Administration, Bergen, Norway

Summary

Two approaches to the abandonment problem under uncertainty are considered;
the ECF-approach based on expected cash flows and the DP-approach using dy-
namic programming. The ECF -approach is demonstrated to sometimes give incor-
rect solutions. The DPcapproaoh is correct, but may be unfeasible due to the amount
of numerical calculations. Under certain oonditions Markov programming may be
used to obtain the correct solution. A general result on the connection between
the ECF-approach and the DP-approach is established.

l. One of the decisions in capital budgeting which has received special inter-
est, is that concerning optimal replacement of equipment. A special case of
this problem arises when it is assumed that the equipment will not be replaced,
but that the production will come to an end when the equipment is sold. The
choice of optimal time for abandoning production is easily solved under cer-
tainty. In this article we shall consider some of the aspects of the abandon-
ment problem under uncertainty.

2. It is assumed that the equipment in each period results in a net operating
inflow ZT which is realised at time T, the end of the period. The company con-
siders in the end of each period whether production should halt and the equip-
ment be sold for its abandonment value ST' If a decision is made not to sell
the equipment, production continues and the same question is considered
again at the end of the next period. When the decision is made at time T, the
firm is assumed to know the net operating inflows and the abandonment val-
ues up to that time, i.e. Zt and St for t ~T; as well as the conditional probability
distribution of Zt+l and St+1 for each t ~T,

(I)
The objective of the firm is to maximize, at a given rate of discount r, the ex-
pected present value of the total cash flow resulting from the equipment, and
our problem is to find the abandonment time which achieves this.

3. One approach to finding the optimal abandonment time is to base the de-
cision on the expected values for net operating inflows and abandonment
values. We shall call this the Expected Cash Flow approach, or for short the

Swed. J. of Economics 1970
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ECF-approach.l Let Zt.T be the expected value of the net operating inflow
from the equipment at time t as estimated at time T (with knowledge of ZT'
ZT_I' ... , ST> ST-l· ..) and SI.T the expected abandonment value at time t as
estimated at time T. Furthermore, let R = (l/l + r), the discount factor. Define

TG; = 2: g.1-T)ZI.T+R<T-T)ST.T
t-T+I

(2)

In economic terms G; is the expected present value of keeping the equipment
from T to T and then selling it.

According to the ECF -approach the firms should at time T maximise G; with
respect to T. It is easy to show that the following conditions are necessary for
T to be optimal in this sense.

ZT.T - (ST-I.T - ST.T) -rST-loT ~ O

ZT+loT - (ST.T - ST+I.T) - rSToT ~ O

(3)

(4)

If the decision made at time T is to postpone the sale of the equipment at least
another period, it is necessary to calculate the optimal selling time anew at the
end of this period, since normally ZtoHI and StOHl will be different from ZI.T
and StoT. Expectations have to be revalued as the firm obtains knowledge of
ZHI and SHI·

4. The ECF-approach is in principle equivalent to the approach taken under
certainty, except that expected values are used instead of certain values. As
may be suspected, this is too simple to be correct. It will in this section be shown
by a counterexample that the ECF-approach is not in general correct.
In the example the abandonment value is constant, SI=25, and the net

operating inflow ZI can take on only the values 8, 6 and 4, that is Zt =Z(i) =
10 -2i, i=1,2,3. We let Pli denote the conditional probability that ZI+1=
Z(j) given that Zt =Z(i) wheres

O [i
p = [p,J = ~

i
t
i

The discount rate r =0.25.
We shall first find the true optimal abandonment policy for the example

and then show that the decision given by the ECF-approach is not optimal. In
the example the economic situation at time t is completely described by the
value of ZI. Hence we shall call Zt the state variable and say that the process
is in state i when ZI=Z(i). It is easy to see that the optimal polioy" for the

1 This is the approach taken by Robichek & Van Horne [6], [7]; and Dyl & Long [3].
a

I It follows from the definition of Pli that PIJ~ Oand 2: Plj - 1.
l-l

3 By a policy we mean a rule which, dependent on the situation, determines a decision.
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Table 1

H('I·*)
i .*-0 .*= l .*-2 ,*=3

1 25 27.5 27.8 27
2 25 25 25,6 24
3 25 25 25 21

firm must be either never to abandon the equipment or to abandon it the
first time Zt falls below some critical limit; that is, the policy must be of the
form

Abandon whenZt=Z(i), i>i*
i* =0,1,2,3

Keep whenZt=Z(i),i~i*

It remains to find the optimal value of i*. Let H(ili*) be the expected present
value of the equipment when the process is in state i and a given i* is used.
Since the expected present value of the equipment if it is not abandoned, is
the discounted sum of the expected net inflow in the following period and the
expected present value of the equipment at the end of the period, we have

I
s i>i*

H(ili*) = R±PIIZ(j)+R±PIJH(ili*) i~i*
i-l i-l

(5)

i=1,2,3.

(5) represents three equations in three unknowns and H(i Ii*) can be found for
any given i*. The optimal i* can now be obtained by straightforward enumera-
tion. This is done in Table l, and the optimal i* is seen to be i* =2.1 The firm
should keep the equipment at time T if Z ..= 8 or Z ..= 6, and sell it only if
Z..=4.

Thc problem will now be solved using the ECF -approaeh. It is easy to show2

that the expected net operating inflow in period t as estimated in period T,

Zt ..., in this example is- 16+2(1)1- ..
Zt .. = 6

6-2(1)1-"

when Z .. = 8
when Z .. = 6
when Z .. = 4

Since the abandonment value St is a constant, the neeessary conditions for
T to be the optimal abandonment time ((3) and (4) in section 3) are simplified
to
ZT.T~rSt
ZT+1.T~rSt

l Note that H(i/2) is a maximum for all values of i.
I See e.g. Howard [5), chapter 1.
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Since rSt=6.25, the equipment should be sold at T if Z.,.=4 or Z.,.=6, and kept
for at least another period only if Z.,. =8. But this is not the true optimal policy
obtained in Table 1. On the contrary, it corresponds to the nonoptimal i* = 1.
Hence it has been demonstrated that the ECF-approach may lead to wrong
conclusions and that it is not generally correct.

5. The essential characteristic of the abandonment problem is that the deci-
sions are made sequentially and under uncertainty. Through the development
of dynamic programming, Richard Bellman has created a mathematical ap-
proach which is particularly suited to cope with such problems. We shall
now outline the Dynamic Programming approach, or for short the DP-ap-
preach, to the abandonment problem.

Let V t be the expected present value at time t given that the firm from t
onward uses an optimal abandonment policy. According to the Principle of
Optimality- it follows that

V = Max {ST_ -
T RZT+1-T + R· E[VT+1J

Here E[V HI] is the expected value of VHI taken over the values of ZH1

and SH1. The economic interpretation of (6) is as follows. In the case in which
it is optimal to sell the equipment at time T, the expected value of the equip-
ment V.,. is equal to the abandonment value S.,.. If it is not optimal to sell at
time T, the expected value of the equipment will be equal to the discounted
expected inflow generated by the equipment in the following period, plus the
discounted expected value of the equipment at time T+ l, given that an optimal
policy is used from that time.

(6) does not in general represent an explicit solution of our problem, since the
function VHI is not known. In order to obtain a solution, further analytic or
numerical analysis is required. The weakness of the DP-approach is that this
derivation of the explicit-solution from (6) may be difficult or impossible (with
present computere). The difficulty involved is strongly dependent on the gen-
erality of the underlying stochastic process.

(6)

6. In this section we shall consider the interesting subclass of problems which
is obtained when the stochastic process for Zt and St is a Markovian process
with stationary transition probabilities.s and Zt and St only can take on a fi-
nite number of values," From the first part of these assumptions it follows that
the problem at any time t is fully described by the combination of values of
Zt and St. In dynamic programming terminology each such combination of

l Bellman [1], page 83.
S When the stochastic process is a Markovian process with stationary transition probabil-
ities, the probability distribution for ZtH and StH is only dependent 'on the values of Zt
and St. The function Ft in (1) reduces to F(Zt+l' SI+lIZt. St).
a The example in section 4 is ta.ken from this subcla.ss of problems.
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values is called a state, and Zt and St are called the state variables. Since
each of the variables Zt and Slonly can take on a finite number of values, the
number of combinations of values of ZI and St is also finite. Hence it is pos-
sible to number the states of the process, i.e. to assign to each combination
of values of Zt and St an integer i, i= 1,2, ... , N. Let Z(i) and Sei) denote the
values of the variables when the process is in state i. The probability distribu-
tion (l) may now be replaced by a matrix

P=

where the element PI} denotes the conditional probability that the process will
be in state i at time t + l given that it is in state i at time t.

With these assumptions, equation (6) takes the form

jS(i)Vei) = Max N N_

R 2: PlJZ(i) +R 2: Pli Vei)
i-l }-l

(7)

Here Vei) is the expected present value of the equipment when the process
is in state i and an optimal policy is used. Again (7) is no explicit solution to
the problem, but the explicit solution may now be found by Markov Program-
ming-a branch of dynamic programming developed by Ronald Howard [5].
The optimal solution is found by successive approximations alternately to the
values Vei) and to the optimal policy. This iterative procedure has been shown
to converge to the optimal solution in a finite number of steps.!

7. Since the ECF-solution in general is simpler to apply than the DP-solution,
it is of interest to obtain possible connections between the two. The following
theorem holds for the general stochastic process described by (l).

THEOREM. If the decision resuUing from the Dynamic Programming approach
con8ist8 in selling at present, the decision given by the Expected Cash Flow ap-
proach will also consist in selling at present.

Proof. Suppose the DP-approach yields the decision to sell at present. Then
VT=ST' But VT~MaxT Gi soST~MaxTG;. On theotherhandMaxTG;~~=
ST' Hence MaxT G; = m.
Corollary. If the decision resulting from the Expected Cash Flow approach
consists in keeping the equipment for at least another period, then the deci-

1Readers who a:re not familiar with Markov-programming, are referred to Howard [6],
which beside being tp.e pioneer work still is the best introduction to the topic. A proof of
the convergence of the iteration procedure will be found there. Although the ECF-ap.
proach may lead to wrong decisions, it will no doubt in most cases give a good starting
point for the successive approximations.
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sion given by the Dynamic Programming approach will also consist in keeping
the equipment for at least another period.'

Due to the corollary it is not necessary to find the correct optimal policy
when the optimal decision according to the ECF-approach is to keep the
equipment.

8. As will be clear from the previous sections, we have not obtained a feasible
procedure which generally solves the abandonment problem under uncertainty.s
Dynamic programming will lead to correct solutions, but may be unfeasible
due to the amount of numerical calculations required. If the stochastic process
is a Markov process with stationary transition probabilities and finite state
space, thenMarkov programming may be used. Other approaches which
have not been considered here, are applicable under other assumptions.t The
ECF-approach is demonstrated to give incorrect results, but will no doubt usu-
ally be a good approximation. As the theorem in section 7 shows, the ECF-
approach leads to a tendency too sell too soon. When the optimal decision ac-
cording to this approach is to keep the equipment, this decision is known to be
correct even when the optimal policy is not known.
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WHEN TO DROP A PRODUCT: 47.

THE ABANDONMENT DECISION UNDER ATOMISTIC COMPETITION*

l. Introduction

The decision to drop unprofitable products forms an important

part of the overall marketing strategy. Excellent discussions

of the many aspects of this decision are given by Alexander [l]
and Kotler [6]. This paper is more narrow. The abandonment

of a product is in principle a capital budgeting problem,

and this will be the approach taken. More specifically we

shall develop a capital budgeting model for the abandonment

decision of an atomistic firm when the future prices of the

product form a stochastic process. Allthough many firms

are not atomistic, this may be a fair approximation of

the situation at the end of a product 's life, when many close
. . k lsubstltutes are ln the mar et.

The paper is organized as follows. The model is outlined

in section 2. In section 3 the optimal production policy

and the resulting net operating income is derived. The

abandonment decision is discussed in section 4. In section 5
some consequences of the abandonment decision are discussed.

Finally, in section 6 some examples are given which illustrates

the material in the previous sections.

* Published lO Markedskommunikasjon, No.2. 1975.
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2. The Model

We consider a product, which is independent of the other

activities of the firm. To avoid sam mathematical difficul-

ties, time is regarded to be discrete and is partioned into

time periods of equal length. The following events take

place at the outset of each period in the given order.

(i) The firm decides whether to decrease the capacity to

produce the product.

(ii) The firm decides how much to produce in the period.

(iii) A chance event occurs which determines the price of

the product during the period.

A more detailed description of each event is given below.

(i) Capacity. Let.

kt - capacity at the outset of period t

Yt - decrease in capacity at the outset of period t.

The capacity prevailing during period t is consequently kt - Yt'

This also forms the beginning capacity of next period, i.e.2

(l) o <

From the sale of the capacity the firm receives an amount sYt '

where s is a constant. The cash inflow (or outflow if s

is negative) takes place at the beginning of the period.
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(ii) Production. Further assumptions on the cost function

will be given in the next section.

(iii) Price. Let

p - the price at the beginning of the period,t

the beginning price.

qt - the price prevailing during the period, the prevailing

price.

We shall let the continuous function F(qlp) be the

probability distribution of the prevailing price q for a

given beginning price p. Prices are assumed to be bounded

above. The prevailing price in period t forms the

beginning price in period t+l, Pt+l = qt' Hence the prices

form a stationary Markov process. There are

two natural cases for the domain of

(a) Continuous case. The domain is an interval [a,S]

(a may be _00 but S is finite), and

(2) F(qlp) = fqf(~lp)d~
a

where f(qlp) is the probability density of q given p.

(b) Discrete case. The domain consists of a finite (or

infinite sequence of points {pel), p(2), ..., peN)} and

the matrix
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all a12

[a..]
a2l a22=lJ

l aNl aN2
!

gives the probability of a transition Pt = p(i) to

Pt+l = p(j).

We shall in the development of the model only consider the

continuous case, but some of the illustrations in section 6
will be discrete. Mathematically oriented readers will observe

that both cases may have been treated simultaneously by the

use of the Stieltjes integral.

We shall assume that a high prevailing price is more likely

when the beginning orice is high, and similarilY for low

prices. More precisely, it is assumed that for any two beginning

prices, l
P and 2

P than

( 3 ) >

for all q, with strict inequality holding for at least one

value of q.

The expactation of the prevailing price q based on the

information of the beginning price p is

(4) q(p) = Jq f(qlp)dq
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The expectation is a continuous function of the beginning

price, and from assumption (3) it is seen also to be

strictly increasing.

The objective of the firm is to maximize the expected present

value of all future cash flows. The cost of capital is

assumed to be given and equal to r in each period. The

discount factor R is defined as l/(l+r).

3. The Production Decision

We note as a preliminary observation that the quantity

produced has no influence on future periods. It may be

classified as a static or short run decision.

In cost accounting a usual assumption is that total short run

costs consist of fixed costs and variable costs which increase

linearly with output. If in addition it is assumed that there

are constant returns to scale in the long run, the cost

function may be written in the form

( 5 ) C(x, k-y) = (c-b)x + bek-y) , O < x < k-y.

Here x is output, (k-y) is the capacity, and the constants

(c-b), b and c denote respectively average variable costs,

average fixed costs at full capacity and average total costs

at full capacity.
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The expected net operating income at the outset of a period
before the prevailing price is known, but after an eventual
decrease in capacity, is

(6) n(p, k-y) = q(p)x - (c-b)x - bek-y).

The production pOlicy takes the simple form of producing
nothing if the expected price is less than average variable
costs and to produce up to capacity when the expected price
exeeds this cost. In terms of the beginning price it is
optimal to produce nothing when this price is less or equal

.to a certain level w, and to produce at full capacity
when it exeeds this level.3 Defining

rr(p)
when <p w

- c when p > w

the optimal expected net operating income may be written

(8) n*(p, k-y) = rr(p)(k-y).

rr(p) is the expected net operating income pr. unit of
capacity and is a continuous and monotonically increasing
function of the beginning price p.

4. The Abandonment Decision

The decision to decrease the capacity has an influence on the
state in future periods. The determination of the optimal
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pOlicy is a sequential decision problem. Such problems are
well suited for the use of dynamic programming, which will
be the mathematical approach taken.

If the net operating income takes place at the end of the
period, it follows from the description of the model in
section 2 and (8) that the expected present value of the cash
flow in the first period is

(9) sy + Rrr(p)(k-y) ,

where the first term represents the cash flow from sale of
capacity. We define the V(p,k) to be the expected present
value of all future cash flows from the product with an
optimal abandonment pOlicy. Proceeding formally from the
Principle of Optimality4 it follows from (l) and (9) that

(10) V(p,k) = ~a~ {sy + Rrr(p)(k-y)
O=y=k

+ R f V(q,k-y)f(qlp)dq}

The first two terms on the right hand side represent the cash
flow (9) of the first period, and the last term all later
cash flows. The optimization is achieved by balancing
immediate and future gains, the latter being a function of the
beginning price and the beginning capacity of next period.
Some results may now be derived from (10).

Proposition l. There exists a unique bounded and continuous
function V(p,k) satisfying (10).
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This proposition may be derived from a general result in
Denardo [4]. For a proof of a similar result, see Norstr¢m
[9 ] .

Proposition 2. The expected present value of all future
cash flows is a linear homogeneous function of the beginning
capacity,

(11) V(p,k) = A(p)k,

where A(p) is a continuous and monotonically increasing
function.

This proposition may be ierived by the method of successive
approximations. See e.g. Norstr¢m [9] for a similar result.
An alternative proof is given in Norstr¢m [8]. The result
is reasonable intuitively, since both the expected net operating
income and the cash flow from sale of capacity are linear.
A(p) is the average expected present value pr. unit of
capacity.

Proposition 3. There exists an optimal abandonment policy
y(p,k) of the form

rk for p s v
(12) y(p,k) = ~

·0 for p > v,
<,

where v is a real number.
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Proof. Substitute (11) into the right hand side of (10) and
differentiate with respect to y.

The form of the optimal abandonment policy is a consequence
of the assumptions of atomistic competition and the cost
structure.5

In general the constant in (12) must be found by some iterative
procedure, e.g. by successive approximations, or, in the discrete
case, by Markov programming. However, an explicit solution
may be found for the special case that the prices never increase.

First, we note that there are two possibilities with respect
to the relation between the abandonment and the production
decision. If v is less than w, it will be optimal to keep
the capacity forever without production when p falls below w.
If v is greater than w, it is optimal to produce up to full
capacity until the product is abandoned. It may be shown
that (under non-increasing prices) w > v if and only if the
scrap value of capacity is negative with an absolute value
greater than fixed cost divided by the interest rate, s < -b/r.

Proposition 4. Assurne that >s = -b/r and that prices are
non-increasing. Then it is optimal to abandon the product
the first time the expected prevailing price falls below the
sum c+rs.

This proposition follows from a well known result in Stopping-
rule problems.6 It is also easy to see intuitively. The
difference between the expected present value of abandoning
the product after one period and abandoning it now is
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(13 ) R[q(p) - (c+rs)]

When (13) is positive, it pays to wait at least one period.

When (13) is negative, the expected value of waiting one

period is negative, and since prices are non-increasing the

same will be true for any future period.

In the general case when prices are not necessarily non-increa-

sing, Proposition 4 does not hold. Instead we have

Proposition 5. It is never optimal to abandon the product

as long as the expected prevailing price is above c+rs, but

it may be optimal to keep the capacity if the expectation is

lower than this sum.

A proof of this proposition may be found in [7]. The reason

for this somewhat paradoxicalresult is an asymmetry in the

effect of price increases and decreases created by the

opportunity to abandon the product. A favorable prevailing

price will have an effect not only on the net operating

income in the present period, but also on the value of the

production capacity at the end of the period. The corresponding

negative effect on the value of capacity of an unfavorable

prevailing price is eliminated or reduced by the abandonment

of the product.

5. Some Consequences of the Abandonment Decision

!~~_~~~~_2[_~2~Q92Q~~Q!

In this section some of the implications of the abandonment
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decision. We shall first consider the time of abandonment,

which will be denoted T and obviously is a stochastic

variable. Not only the expected time of abandonment, but

the entire probability distribution of T, ought to be a

valuable input in the firm's planning. We define for p > v

the sequence of functions {gn(qlp)} by

(l4a) gl(qlp) = f(qlp)

(14b) gn(qlp) = JSf(ql~)gn_l(~lp)d~
v

The function gn(qlp) denotes for a given beginning price p

the joint event that the prevailing prices are above v in

first (n-l) periods and that the prevailing price in the n'th

period has the value q. The probability that the product

will be abandoned at time n (the end of nlth or beginning

(n+l)'st period) is consequently

(15) Gn(vlp) = JVgn(qIP)dq
a.

It is not always the case that

00

(16) l:
n=l

G (vip)n = l

since there may be a positive probability of never abandoning

the product. If (16) holds, the expected time to avandonment is
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00

(17) T(p) = E nGn(v!p)
n=l

However, as pointed out above, the entire

distribution of the time of abandonment ought to be of

interest to the firm.

In the previous section it was found that the expected present

value of all future cash flows from the product was A(p)k,

where k is the present-capacity. A(p) is consequently the

average and marginal expected present value pr. unit of capacity.

Clearly A(p) = s for <
p = v.

If we for convenience assume that <w v (that it is never

it may be shown7 thatoptimal to keep the capacity idle)

for p > v

00

(18) A(p) = E
n=l

Rn {f(q-c)g (q!p)dq + sG (q!p)}n n

Keeping in mind (14) and (15) it is seen that the ntth term

in (18) represents the sum of the expected net operating

income pr. unit in the n'th period and the expected cash from

selling the unit at time n.

The function A(p) is of particular interest for the decision

to increase the capacity, a decision which is not discussed in
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8this paper. However, we shall derive an interesting and
perhaps somewhat surprising result from (18). Differentiation
with respect to c gives9

(19) oA(p) 00

= L R
n Gn(Slp).o c n=l

Gn(Slp) denotes the probability that the beginning prices
of the n first periods will exeed v. Due to assumption
(3) this probability is an increasing function of the
beginning price at the outset of the first period. It follows
that a cost increase or-decrease has less impact on the value
of the product when the price is low. In particular, a one
shot cost - reducing investment is more profitable when the price
is high than when it is low. This result contradicts statements
like "it is necessary to rationalize because prices are low",
if these are made out from profit considerations. The economic
argument behind the result is that the life of the cost
reducing investment is longer when the beginning price is high.

It has often been an implicit assumtion in much of the economic
literature that uncertainty is undesirable. It will be
demonstrated that this is not necessarily true in the present
case. We assume first that the prices qt' qt+l'
stationary process with independent increments. To be consistent

is a

with the assumptions for existence and uniqueness in Proposition
l, it is further assumed that prices are nonincreasing. Let the
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price decrease be nt = Pt-qt' The assumptions may then be
summarized into the statements that >n = O and that the
probability density of n, hen) is independent of p.

Consider two probability densities hl(n)
the same mean, but where the dispersion of

and h2(n) having
10hl(n) is greater.

More precisely, for some number no

> for all <n
(20)

< for all n > no

We define V.(p,k) to be the value of the product when the
J

distribution is h.(n), and A.(p) in a similar manner.
J J

Proposition 6. If the prices ql' q2' ... form a stationary
process with independent increments, the value of the product
will increase with an increase in uncertainty in the sense
of (20).

Proof. By the method of successive approximations it may be
shown that Aj(P) is convex, and using convexity that

>Al(p) = A2(p). The result follows from (11).

The conclusion in Proposition 6 does not necessarily hold
when the assumptions of independent increments is lifted. We
shall prove a somewhat weaker result for the general case.
The expected prevailing price after n periods as for a
given p
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(21) = ,

where fn(q[P) is the ntth convolution of f(q[p).
Suppose that the firm in the planning uses the expected
prevailing price qt instead of the stochastic qt' We shall
call this the "expected price approach".

Proposition 7. The value of the product calculated by the
"expected price approach" is always less or equal to the
correct expected present value of the product defined by (10).

Proof. In the "expected price approach" the time of abandonment
would be deterministic time T. The pOlicy to sell at time T
irrespective of the values of Pl, ...,PT+l is possible (but
usually non-optimal) for the stochastic case. The expected
value of the product with this policy is equal to the value
of the product by the "expected price approach".

6. Some Illustrations

We shall in this section give some examples, which will serve
as illustrations of some of the points made in the earlier sec-
tions.

It is assumed that the domain of the prices is {18, 16, 14}
i.e. pel) = 18, etc. The transition matrix is
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3 l OIi Ii

[a..] l l l= Ii 2" IilJ

O l 3
,- Ii Ii

Let further r = 0.25 c = 10 , s = 25 and k = L,
It is easily calculated that

r16 + 2(t)n
- !

qn = J._ 16
I
(16 2(t)n_

c + rs = 16.25

Since the expected prevailing price is below c+rs in all
future periods if the present beginning price is 16 or 14, it
is tempting to abandon the product if either of these cases
occur. Actually this would be the policy used if the
firm's planning wa~ based on the "expected price approach".
However, this pOlicy is nonoptimal. The expected present
values with this pOlicy are respectively 27.5 , 25 and 25
when p is 18, 16 and 14. The optimal policy, which may be
found by Markov programmingll (or simply by trial and
error), is to abandon the product only if p is 14. The
optimal pOlicy results in the present values 27.8 , 25.6 and
25 when p is respectively 18, 16 and 14.12
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It is assumed that prices are discrete and that

q =
y- w

with probability

with probability

l - Y

This is a stationary process with independent increments. The

expected prevailing price is

q(p) = p - yw .

Since prices are non-increasing it follows from Proposition 4
that

v = c + rs + yw

We define the integer m by

>(p-v) + w > mw p-v.

m denotes the number of times the price will drop before the

product is abandoned. The probability that the abandonment

takes place at time n is for p > v.

for n < m

for >n = m.

This is the negative binomial density.

In the derivation of the function A(p) it is convenient to

restrict p to the values mw + v) m=O, l, ... Intermediate

values of A(p) may be obtained by linear interpolation.
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A(p) = E=£ _ (l+r)ym + ~ (_I_)m
2 2 r+Yr r r

In Table l we have calculated the values for A(p)
under the condition that c = 19, s = O, r = 0.10.

Table l.

Value of A(p), yw=l Value of
p y=l y=0,5 y=0,25 cost reduct
20 O O O 0,91
21 0,91 1,67 2,98 1,73
22 2,64 3,33 5,97 2,49
23 5,13 6,38 8,95 3,17
24 8,30 9,44 11,94 3,79
25 12,09 13,65 16,89 4,36
26 16,45 17,87 21,85 4,87
27 21,32 23,05 26,80 5,33
28 26,65 28,23 31,76 5,76
29 32,41 34,21 38,13 6,14
30 38,55 40,19 44,50 6,50
31 45,05 46,83 50,87 6,81
32 51,86 53,48 57,24 7,11

Three set of values for y and w are used: y = l and w = l,,
Y = 0.5 and w = 2, and y = 0.25 and w = 4 . Since
yw = l in all the three cases and qt' qt+l' is a process
with independent increments, it is easily seen that the expected
prices in any future period are identical. However, the degree
of uncertainty is different, the first case representing
certainty and the third (y = 0.25) greater uncertainty than•
the second in the sense of (20) as well as in terms of variances.
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(The variances are respectively O, l, and 3). According to
Proposition 6 the values of A(p) will be smallest for y = l
and largest for y = 0.25 for all values of p. This result
is confirmed in the table.

It may be shown that a cost reduction will have the same
effect as a price increase in the case of a process with
independent increments. A reduction ~ in average total costs
will hence increase the expected present value of the product
by

[A(p+~) - A(p)]k.

In the last column of Table l we have calculated the values
of [A(p+~) - A(p)] for ~ = l, Y = l, w = l and values
of c, sand r as specified above. The expected present value
of the cost reduction is seen to be an increasing function of p.

As in Example 2 it is assumed that the prices form a
stationary process with independent, but the domain is now
continuous with the density function

= -AnAe

It follows that

l= p - I
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and from Proposition 4

lv = c + rs + I

The probability that the product will be abandoned at time n is
for p > v

=
[A(p_v)]n-l
(n-l)!

-A(p-V)e

which is the density of the Poisson-distribution.

The function A(p) is for p > v

Ar(E-v)
A(p) £.:.£ + (l+r) l l+r= Ar2

+ -- e
r Ar2

Numerical values for A(p) are easily calculated, and the..
sensitivity with respect to the parameters may be investigated.
It is easily verified that A(p) is continuous, increasing
and convex.

•
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Footnotes

l) This point was brought to my attention by Johan Arndt.

2) The capacity is constant or decreasing. An extension to
investment in new capacity is given in Norstr¢m [91.

3) The existence of w follows from the as~umption that q(p)
is continuous and strictly increasing. w is defined by
q(w) = (c-b).

4) Bellman [2], page 83.

5) Proposition 3 may be shown to hold under the fOllowing,
less restrictive assumptions with respect to the cost function.
(a) Average total costs are not lower at any lower production
or capacity.
(b) Average fixed costs pr. unit of capacity are not lower
at any lower capacity.
(c) Average variable costs (including eventual escapable fixed
costs) are for any capacity lowest at full capacity.
A proof is given in Norstr¢m [81.

6) See Breiman [31, Theorem 10.1.

7) It follows from (la) and (12) that A(p) for> p v
satisfies the integral equation

A(p) = Rn(p) + R f A(q)f(qlp)dq

Expansion into the Neumann series gives (18)

8) See footnote 2.

9) The change in c will have an indirect effect through the
abandonment, but this will not influence the direction of the
change in A. To see this let A(v,c) be any function of the
variable v and the parameter c, where v is chosen so

A(v,c) is maximized. Assume < implies thatthat cl c2>A(v,cl) = A(v,c2) for any value of v. Let vl and v2 denote
the optimal values of v corresponding to cl and c2
respectively.
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Then

Hence the secondary effect working through the decision
variable may be ignored. See also Bellman [2], pp. 157-8.

la) See Rothschild and Stiglitz [la].

11) The best introduction to Markov programming is still the
original work, Howard [5].

12) A more detailed discussion of this example is given in
Norstr¢m [7].
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A STOCHASTIC MODEL FOR THE GROWTH
PERIOD DECISION IN FORESTRY*

l. Introduction

The growth period decision is a familiar problem in economic
theory, known from the work of Jevons, Wicksell and Irving
Fisher. The aim of this paper is to strengthen the realism of
the model when applied to forestry, by explicit recognition of
uncertainty in the future values of the trees.l In order to
investigate whether this extension may be important, a
comparison is made between a policy which takes account of
uncertainty and one where uncertainty is ignored.

2. The Model

In the deterministic growth period model the objective is to
maximize the present value

(l) WeT) = - C + (l+r)-T[g(T) + Gl

where

get) - the net value of the forest stand when cut t years old.
C - the cultivation cost, e.g. cost of seedling.
G - the value of land.2

r - the market interest rate.
T - the time the forest stand is cut.

The model is well known, and will not be elaborated here.3

Forthcoming in the Swedish Journal of Economics.
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The first task in the construction of a stochastic model is to
identify the main sources of uncertainty. The most critical
factor in the determination of the optimal time to cut a forest
stand is the value increase from waiting one period,

(2) g(t+l) - get).

This value is normally decomposed into three components: the
increase in total volume, the quality increase due to the larger
dimension of each tree, and the increase or decrease in the
basic price of timber. Due to research done by forest econo-
mists, reasonably good estimates exist for the volume and
quality increase, dependent on such factors as age, fertility
of the soil, intensity of thinning. There are, however,
very substantial fluctuations in the price of timber from season
to season.4 These fluctuations are here taken to be the only
source of uncertainty.

The basic assumption of the model is that the value of the
forest stand at a future time t is a product

where fet) is a deterministic growth function and Pt a
stationary stochastic process. The two elements in the product
may be given various economic interpretations. We shall let
fet) represent the expected value of the asset and Pt an
index reflecting the variation in the basic price of timber
relative to the long run expectation.

In addition to the above basic assumption, we shall in this and
the next three paragrap~es make some others, which are not
essential for the approach. - It is assumed that the
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sequence PI' P2"'" is a stationary Markow process with a
finite state space P = {p(I),p(2), ...,p(N)}, where
pel) > p(2» ...> peN). The transition probabilities will be
written in the form of a transition matrix

all al2 o • o alN

(4) A a21 a22 • • o a2N=
• • o

aNI aN2 • • o aNN

where the element a .. denotes the probability that
~J

Pt+l = p(j) given that Pt = p(i).

The cutting policy will depend on the information available to
the decisionmaker. Several alternative assumptions are possible,
and the'choice must depend on the real situation at hand. It
is assumed here that is fully known, when the decision

t is taken.Swhether to sell at time

The objective is taken·to be maximization of the expected
present value of future cash flows. This is the obvious genera-
lization of the objective in the deterministic model, but
contains the weakness that the possibility of risk aversion is
ignored.

Two cases will be consideres with respect to the value of land.
In the first the value of land is taken to be a given function
of the state of the price index Pt;

(S) Gt = G(i) when Pt = p(i).
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The second approach consists in determining the value of land
endogenously from the use in forestry.

The principal characteristic of the optimization problem
resulting from the specifications above is that the decisions
are made sequentially and without perfect foresight. The
importance of such problems for economics was first pointed out

6by A.G.Hart. The mathematical approach to be used, dynamic
programming, is due to the mathematician R. Bellman.7

To facilitate the solution of the optimization problem, we
introduce ;·he artificial'constraint

(6 ) <T = -r

where -r is some integer. For the given -r we define the
function V(i,t) to be the expected present value of the forest
stand and the land at time t when Pt = p(i) and an optimal
cutting policy is used. Proceeding formally from the Principle
of Optimality8 we obtain the following sequence of recursive
equations:

(7a) V(i,-r) = p(i)f(-r) + G(i)

(7b) V(i,t)
(p(i)f(t) + G(i)

= Max t -l
i (l+r) ta ..V (j , t+l)
~ . lJ. J

t = -r-l,-r-2,... ,1.

(7c) V(i,o)
f

t G( i)
= Max

- C + (l+r)-l t a ..V(j,l)
j lJ
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The values of V(i,t) are given by (7) for all i and t.
To formulate an optimal policy define the sets

(8) St = {p(i) EP1V(i,t) = p(i)f(t) + G(i)}

t = 1,2, ... , T, and similarily for S .o In presence of the
artificial constraint (6), the following pOlicy is optimal:

Cut the forest stand the first period the price index Pt
belongs to the set St'

In general the values of V(i,t) and the sets St will depend
on the number T in (6). Ideally T should be chosen large
enough to make it uneconomical to keep the forest stand beyond
this date regardless of the value of p. This is not always

T

possible, but it may be shown under fairly broad conditions
that V(i,t) for any fixed t can be made arbitrar11yclose to
the true values by choosing T sufficiently large.

We shall now consider the case that the value of land is not
given, but must be derived. For simplicily forestry is assumed
to be the only economic alternative.

The solution is obtained by solving a sequence of optimization
problems with the value of land taken from the previous problem
in the sequence. For a given value of T

(9a) G(i,O) = O

(9b) V(i,T,n) = p(i)f(T) + G(i,n)
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(9c)
f(i)f(t) + G(i,n)

V(i,t,n) = ~laxl<l+r)-lr a .. V(j)t+l,n)
j l.J

V(i,o,n) : -C + (l+r)-l r a .. V(j )l,n)
j l.J(9d)

(ge) G(i.n+l): V(i,o,n).

From (9) we obtain a sequ~nce of functions tv ( i ,t ,n »)

which under fairly broad conditions will converge to a function
V(i,t) re~}esenting the desired value. Clearly G(i) : V(i,o)
when determined endogenously.

In tne previous presentation it has been assumed that the prices
of timber and the value of land are stationary over time. A more
general assumption is that there is a positive (or negative)
trend due to inflation or to an increase in the value of timber
relative to other goods. When this increase (or decrease) takes
place at a constant rate, (3) may be replaced by

where y is the growth rate. Clearly (10) includes (3) as
a special case. However, the greater generality does not l~ad
to important new results. Provided the value of land and.the
cultivation cost increase at the same rate, it may be shown that
the problem (10) is essentially identical with the problem
(3), wnen the interest rate used in the latter is (r-y)/(l+y).
For this reason we shall in tne following use the simpler model.
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3. The Effect of Ignoring Uncertainty

We shall in this section make a comparison between the economic
result in the stochastic model of the previous section and the
same model when uncertainty is ignored in the decision process.
For convenience the latter will be called the corresponding
ignorance model.

The optimization problem in the ignorance model may be formulated
as the maximization of

where E denotes the expectation operator and are
random variables as defined in the previous section. Given that
the Markov chain (4) is ergodic, the probability that 'Pt = p(i)
will converge to a limiting probability
initial state. Since the actual value of

q.
~

independent of the
is ignored in the

ignorance model, it is reasonable to use for the expectations of
and G t the constants

(12a)

(12b)

The optimitation problem in the ignorance model is then reduced
to the maximization of

( 13) Z(T ) = - C + (l +r )-T lp f (T ) + G]

In the above we have assumed that the value of land is the same
random variable as in the stochastic model. This is inconsistent
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when this value is determined endogenously. The best use of

land is obtained by applying the optimal decision policy

of the stochastic model, which. is unfeasible since the

decisionmaker is assumed to ignore uncertaint.y. Instead the

value of land l~ill be defined fr~m the best use when uncertain-

ty is ignored, i.e. as the limit G of the sequence (G(n) }

defined by

14a) G(o) = O

Z(T,n)
_IT'

[pf(T) G(n)]= -C + (l+r) .l- +

G(n+l) = Max Z(T,n)
T

We shall let T* denote the best cutting time in the ignoranoe
model.

Al though the expected present value of a fcrest stand when the

optimal stochastic policy is used ~bviously will be at least as

large as the corresponding value with the best ignorance policy,

the absolute difference and proportion between these numbers

will depend on t and Pt . In ~he following we shall assume

that t = O and that Pc = pri) with probability qi . This

seems to be a fairly neutral choice cf situation 9 . The

expected present value when the optimal stochastic model is

used is then

(15) V = ~ qi V(i,o)
i

and correspondingly with the best ignorance policy

(16) Z = Z(T*) . NORGES HANDELSHØ,
BIBLIOTEKFT
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Before proceeding to an actual comparison between the stoc-
hastic and the ignorance models, some results will be derived
for the deterministic model. Comparison of (l) and (13)
shows that these two optimization problems are mathematically
identical when

(17a)

(17b)

g (t) = pf (t)

G = n .

The deterministic model satisfying (17) will be said to cor-
respond to the stochastic model. The following results are now
immediate.

Proposition l. The deterministic and ignorance models corre-
sponding to the same stochastic model are equivalent in the
sense that the decisions and expected present values are identi-
cal.

Proposition 2. The expected present value in a stochastic model
is at least as great as the present value in the corresponding
deterministic model.

Proposition 2 shows that the individual forest owner on the
average is better off with fluctuations in prices and the re-
sulting uncertainty, than he would have been with a constant
price equal to the long run average of actual prices. This re-
sult may be somewhat unexpected, but is easily understood if a
proper distinction is made between the fluctuations themselves
and the uncertainty following from the fluctuations. The effect
of the latter will always be negative or zero and represents
the loss due to lack of perfect information. The effect of the
fluctuations themselves may well be positive as ear:ier has been
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pointed out by Waugh [11], and does in the present case

always outweigh the negative effect of the lack of perfect
information. 10

In order to get some idea of the magnitude of the gain by

using the stochastic model we shall make a comparison between

this model and the corresponding ignorance model based en data

from Norwegian forestry. It should be emphasized that the

presentation has more the character of an illustration than

a systematic study.

Estimation of the transition matrix (4) is based on cal-

culated net price of timber deflated by the wholesale price

index in the periode 1918-62. After the elimination of a growth

trend (ry = .011) the probabilities of transition are found by
11the maximum likelihood procedure.

.,r 1/6
1/2 O O 1/3

4/13 4/13 4/13 1/13 O

(18) A = l O 4/11 4/11 2/11 l/Il
I
I

1/10 l/1O 3/10 3/10 2/10I ' ~

L O O O " O I.1. ~

where

(19) p(l) = 1.4, p(2) = 1.2, p(3) = 1.0, p(4) = .8, p(5) = .6 .

The transition matrix is ergodic, and the limiting probabilities

(20) (.126, .256, .245, .257, .116)
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and

(21) P = 1.004 .

The growth function fet) will depend on such factors as
the quality of the soil, intensity of thinnings etc .. However,
since growth functions have the same general shape, the choice
will be of small importance in the comparison. We shall use an
example taken from Risvand [7] . See Table l.

Table l

2. Thinning 3. Value of
l. Age value remaining

stand

34 O 38.46
38 O 146.68
42 O 301.87
46 -1.03 444.06
50 O 647.29
54 133.81 686.25
58 O 909.63
62 O 1,146.41
66 O 1,397.85
70 O 1,637.97
74 O 1,881.58

Source: R1svand [7].
There are two thinnings, one in the 46th an~ one in the 54th

.~

year.We shall restrict the final cut to the years after the
last thinning. The growth in the value of the remaining stand,~

is in this period nearly linear, and the value& of the inter-
mediate years are estimated by linear interpolation. The value
of l' used in the artificial constraint (6) is taken to be
74 years.
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In the comparison the value of land will be determined
endogenously. We let the interest rate r = .05 and the
cultivation cost 12C = O.

The results of the comparison are shown in Tables 2. and 3..
Table 2. shows the values of Ven) and Zen) .13 The converg-
ence to V and Z is seen te be fairly rapid. Table 3. shows
the optimal policy of the stochastic model represented by the
sets St' To facilitate comparison the best cutting time T*
in the ignorance is also expressed in terms of these sets by
letting St = ø when t <: T* and St = j> when t ~ T*.
(T*=63).

Table 2.
I !n Ven) , Zen)l,

,
l

l 73.29 l 56.25l

I I
I 2 76.77 I 58.74
I I

3 76.94 I 58.86

I 4 76.95 i 58.86I

II

5 76.95 I 58.86I I,

Table 3.
I

1. Age I I2. Stochastic I 3.,Model i
Ignorance
Model

I
i

56 - 62 i
I

63 - 681
69 - 721

73 I
74 !

i'

55 :
I

(p ( l) ) 11

(p (l))

(p(l), p(2)) !
(p(l), p(2), p(3))\

I

ø ø
ø

p

r
p
p

As is seen from Table 2. the expected present value of the
optimal stochastic policy is 76.95, compared with 58.86
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when uncertainty is ignored. The increase in present value is
17.04 , or 30.3 per cent.

4. Conclusion.

In the illustration above we have neglected several factors
of real life, and the result must hence be interpreted with
some care. None the less the comparison is a clear indication
of the importance of taking price fluctuations into account
in the determination of the final cut.

The stochastic model presented here may be further refined in
several directions, e.g. by adding som constraints on the
decisionmaker's actions. Another posSibility is to add other
state variables in order to improve the decisionmaker's in-
formation about future prices, and in this way obtain a still
better policy. Either addition will, however, lead to great
increases in computational requirements.

Footnotes:

*) The author would like to express his indebtness to several
menmbers of the Norwegian Forest Research Institute, in
particular John Eid, Jens Risvand, Asbjørn Svendsrud
Rolf Sæther, and to Agnar Sandmo. Thanks also go to

and
Helge

Gundersen, who carried out the computer programming.
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Footnotes continued

l) Although formally valid, the model is probably not a
realistic stochastic representation for other growth processes,
like wine-aging.

2) A more general approach would be to let the value of land
be a function of time.

3) Interested readers are referred to Lutz [4], Lutz and
Lutz [5] and Bierman [2].

4) See the study by Sæther [10], pp. 391-414.

5) This seems to be in reascnable agreement with the condi-
tions in Norwegian forestry.-See Sæther [10], pp. 415-417
for details.

6) Hart [3], especially chapter 4.

7) Bellman [l].

8) Bellman [l], p. 83.

9) The assumption may be greatly weakened with negligible conse-
quences for the actual comparison below.

10)
Oi

For discussion of Waugh s
[6] and Waugh [12].

result, see Samuelson [8,9],

Il) The data are taken from the study by Sæther [10]. The
matrix is based on observation of 6 transitions from state l,
13 from state 2, Il from state 3, 10 from state 4 and 4 from
state 5.

12) The growth function in Table l. is derived under the condi-
tion that r = .03 in which case T* = 74. The choice of
r = .05 is made in order to have T* somewhat smaller than T.

13) The definitions of ~(n) and Zen) are obvious extensions
of (15) and (16).



84.

References:

l. Bellman, R.: Dynamic Programming, Princeton University
Press, N.J. 1957.

2. Bierman, H. Jr.: The Growth Period Decision, Management
Science, Vol. 14, No.6, February 1968.

3. Hart, A.G.: An t.t cLpa t t ons, Uncertainty and Dynamic Plan-
ning, Studies in Business Administration XI (1940),
University cf Chicago Press, 1940. Also available as a
Reprint of Economic Classics, Augustus M. Kelley, 1951.

4. Lutz, F.A.: The Criterion on Maximum Profits in the
Theory of Investment, Quarterly Journal of Economics,
Vol. LX, No. l, November 1945.

5. Lutz, F.A. and V.Lutz: The Theory of Investment of the
Firm, Princeton University Press, Princeton, N.J., 1951.

6. Oi, W.Y.: The Consumer Does Benefit from Feasible Price
Stability: A Comment, Quarterly Journal of Economics,
Vol. LXXXVI, No.3, 1972.

7. Risvand, J.: Economic Analysis of Cutting Programs
Applying Dynamic Programming, in Readings in Forest
Economics, (A.Svendrud, Ed.), 73-80, Universitetsforlaget,
Oslo, 1969.

8. Samuelson, P.A.: The Consumer Does Benefit from Feasible
Price Stability, Quarterly Journal of Economics, Vol.
LXXXVI, No.3. August 1972.

9. Samuelson, P.A.: Rejoinder, Quarterly Journal of Economics,
Vol. LXXXVI, No.3, August 1972.



85.

10. Sæther, R.: Supply of Industrial Softwood in Norway. A
Statistical Inquiry into Annual Cuts and Factors Affecting
Quantities Cut during the Period 1918-1960, Norwegian
Forest Research Institute, Vollebekk, Norway. Written in
Norwegian with English Summary.

11. Waugh, F.V.: Does the Consumer Benefit from Price
Instability? Quarterly Journal of Economics, Vol. LVIII,
602-14, August 1944.

12. Waugh, F.V.: A Comment.
Quarterly Journal of Economics, Vol. LXXXVI, No.3,
August 1972.



86.

Reprinted from JOl'R'IAL OF ECONOMIC THEORY
All Rights Reserved by Academic Press, New York and London

Vol. 8, No.2, June 1974
Printed in Belgium

Optimal Capital Adjustment under Uncertainty*

CARL J. NORSTRØM

Norwegian School of Economics and Business Administration, 5(}()() Bergen, Norway

Received March 6, 1973

1. INTRODUCTION

The purpose of this article is to analyze the effect of existing capital
stock on the optimal investment policy of the firm under conditions of
uncertainty.
Pionering work on the optimal capital adjustment of the firm under

certainty has been done by Arrow, Beckmann, and Karlin [3], and Eisner
and Strotz [6]. Their work has later been extended by other authors like
Arrow [l, 2], Gould [7], Lucas [9,10], Rothschild [12], and Treadway [14].
More recently Hartman [8] introduced uncertainty in a model with
constant returns to scale and strictly convex cost of adjustment.
The article is organized as follows. After the presentation of the model

in Section 2, existence of an optimal investment policy is proved in
Section 3. The connection between the static returns to scale and the
value of the firm is established in Section 4. The implications for the
optimal investment policy are discussed in Section 5. It is assumed through-
out that the firm's objective is to maximize the expected present value of
the future cash flows, or in other words, that it is risk neutral.

2. THE MODEL

To avoid mathematical difficulties, time will be taken to be discrete.
The situation of the firm at the beginning of period t is assumed to be
completely described by the capital stock K, and a finite-dimensional
vector P, . This vector may consist of elements like the price of the product
produced by the firm, the wage rate, parameters for the cost of investment,
etc., in the current and a finite number of previous periods.

* This paper is an extension of a part of the author's licentiat thesis [lO]. The present
version owes much to a stay at the University of Michigan, made possible by a scholar-
ship from the Norway-American Association. The author is indebted to Karl Borch,
Jan Mossin, Agnar Sandmo, Sidney G. Winter, Jr., and a referee for valuable comments.

139
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The vector P, is restricted to lie in a bounded set 9. We let the function
F(PHI I Pt) defined on 9 X 9 be the conditional probability distribution
of PHI given Pt. Hence the vectors P, , Pt+l , ••• form a stationary Markov
process.
The dynamic behavior of the capital stock is governed by

where o is the depreciation rate and It is the gross investment in period t
measured in physical units. The cost of the gross investment is given by a
cost function C(It , PI). It is assumed that C(l, P) is continuous in P and
twice differentiable in I, that the first derivative Cl(/, P) ~ O and that
C(O,P) = O. Moreover the gross investment is assumed to be non-
negative and bounded, i.e.,

where I is a given constant. The net operating profit of the firm in any
period is a given function g(Kt , Pt) of the capital stock and the vector P, .
Any optimization necessary to obtain this function is assumed to be of
myopic character. g(K, P) is taken to be continuous in P, twice differen-
tiable in K, and bounded for finite K and P E 9.

The objective of the firm is to maximize the expected present value of
the future net cash flow, that is, the expectation of

co

I Rt(g(Kt , Pt) - C(It , Pt)],
t=l

where the initial capital stock Kl is given and R = (l + r)-1 is a discount
factor (O< R < 1).

3. EXISTENCE OF AN OPTIMAL INVESTMENT POLICY

It is known from the formulation of the model that the situation of the
firm at the beginning of period t is completely described by the capital
stock K, and the vector Pt. We define V(Kt, Pt) to be the expected present
value of all future cash flows of the firm, when an optimal investment
policy is used. In the absence of risk aversion the function will also
represent the value of the firm. Proceeding formally from the principle of
optimality+ it is seen that

V(Kt, Pt) = sup R [g(Kt, Pt) - co., Pt)
i,

+ f V(Kt+1, Pt+1) dF(Pt+1 I Pt)]. (4)
.CF'

1Bellman [4], p. 83.

87.

(1)

(2)

(3)
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Here the two first terms on the right side represent the net cash inflow in
the present period, and the last term the expected present value of the
total cash flow from next period onward. Using (1) and the fact that
Pt+l enters only as a vector of integration, (4) may be reformulated as

VeK, P) = s~p R ) g(K, P) - C(l, P) + Ja> V[(1' - sv: + l, Y] dF(Y [ p)I,
(S)

where for convenience subscripts have been dropped.
It must be shown that the function VeK, P) exists and is unique.

In the proof we shall use the fact that the capital stock is bounded.

LEMMA 1. The stock of capital in any period lies in the interval [O,K],
where K = max [Kl , o-IJ].

Proof. The proof is by induction.
The existence and uniqueness of the value of the firm now seems

plausible from an economic point of view, since the net cash flow in any
period is bounded, and the discount factor is less than unity.

PROPOSITION 1. There exists a unique bounded and continuous function
VeK, P) satisfying (S).

Proof+ Let r be the space of all bounded, continuous functions
defined on [O,K] x ~ with the metric

p(V, U) = sup! VeK, P) - U(K, P)[.
K.P

(6)

It is known from real analysis that r is a complete metric space. We shall
show that the transformation

T[V(K, P)] = sl}P R lg(K, P) - C(l, P)

+t V[(1 - o)K + l, Y] dF(Y [ p)l (7)

is a contraction mapping, i.e., there exists a positive number b < 1 such
that

p[T(V), T( U)] ;::;;bp( V, U) (8)

2 A more general approach to existence and uniqueness in dynamic programming
may be found in Denardo [5].
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for any pair of functions V and V in r. The proposition then follows,
since it is known that every contraction mapping defined on a complete
metric space has a fixed point, or that there is a unique function in r
satisfying (7). From (7) and Lemma 1

sup {T[V(K, P)] - T[V(K, pm
K.P

~ sup R J {V[(1 - S)K + l, Y] - V[(1 - o)K + l, Yl} dF(Y IP)
I,K,P l'

~ R J sup [V(K, Y) - VeK, Y)] dF(Y I P) ~ Rp(V, V). (9)
~ x,v

Repeating (9) with V and V interchanged gives (8) with b = R. Q.E.D.

We shall next establish the existence of an optimal investment policy.
Let f/J(K, P) be the set of optimal investments for a given pair (K, P),
Since the functions

W(Kt+1 , Pt) = t. V(Kt+l , Pt+1) dF(Pt+l I Pt) (10)

and C(l, P) are continuous and the domain of I compact, it follows from
(S) that f/J(K, P) will be nonempty. We define an optimal investment
policy as a function leK, P) with value belonging to the set f/J(K, P) for
each pair (K, P). The existence of an optimal investment now follows
from the fact that f/J(K, P) is nonempty.

4, RETURNS TO SCALE AND THE' VALUE OF THE FIRM

We shall in this section investigate the effect on the value of the firm of
three different assumptions on the returns to scale in the net operating
profit. It should be noted that "returns to scale in g(K, P)" is essentially a
static and short run concept describing how the net operating profit in a
given period varies with the capital stock. In contrast, the value of the
firm VeK, P) incorporates the opportunity to adjust the capital stock to a
more desired level, and in this way takes into account the dynamics of
the model. The three cases to be considered are

(1) Globally decreasing returns to scale; gl1(K, P) .~ Ofor all Kand P.
(2) Constant returns to scale; g(K, P) = yep) K.

(3) Globally increasing returns to scale; gl1(K, P) ~ Ofor all Kand P.

The effect on the value of the firm is given in the following three proposi-
tions.
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PROPOSITION 2. /f for all values of P the net operating income is a
concate function in K and the cost of investment a convex function in I, then
the value of the firm VeK, P) is a concave function in K.

Proof. Consider the sequence of functions {Vn(K, P)} defined by

Vo(K, P) = 0,

Vn(K, P) = T[Vn_l(K, P)].

(11)
(12)

It follows from Proposition l that the sequence converges uniformly to
VeK, P), which hence will be concave in Kif Vn(K, P) is concave in K for
any n. We shall proceed by induction. Vo(K, P) is concave in K. Assume
Vn_l(K, P) is the same. Let Kl and K2 be arbitrary values of K, and

(13)

where °~ A ~ 1. Let P and [2 be optimal investments for Kl and K2,
respectively, with the given n, and define

P = AP + (l - A) [2.

It follows immediately from (13) and (14) that

(14)

(I - S) KA + P = A[(l - S) Kl + P] + (1 - A)[(I - S) K2 + 12]. (15)

Since the optimal investment for KA (and n) will give at least as good a
result as P,

V..(KA, P) ~ R !g(KA, P) - C(IA, P)

+ fø' VlI-l[(1 - o) KA + P, Y] dF(Y I P)!. (16)

The fact that

follows easily from the assumptions in the proposition, the induction
hypothesis, and Eqs. (15) and (16). Q.E.D.

PROPOSITION 3. /ffor all values of P the net operating income g(K, P)
is a linear homogeneousfunction of K, say yep) K, than the value ofthefirm
is of the form

VeK, P) = a(P) K + f3(P). (17)

Proof. It is sufficient to show that the function V.,(K, P) defined by (11)
and (12) is of the required form for any n. This is easily done by induction.
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PROPOSITION 4. If for all values of P the net operating income g(K, P)
is a convex function in K, then the value of the firm VeK, P) is convex in K.

The proof is similar to the proof of Proposition 2 and is omitted.

5. IMPLICATIONS FOR THE OPTIMAL INVESTMENT POLICY

The results derived in the previous sections will now be used to derive
properties of the investment policy under different assumptions on the net
operating income and cost of investment. In the analysis we shall disregard
the possibility that there may be more than one optimal investment for
certain values of the pair (K, P), and assume that the optimal investment
policy 1*(K, P) is unique."

Using Eq. (10), (5) may be reformulated:

VeK, P) = sup R{g(K, P) - C(I, P) + W[(I - S)K + l, P]}. (18)
l

Economically interpreted W(Kt+1' Pt) is the expectation at time t of the
firm's value at time t + 1 with the capital stock Kt+1 • We shall assume at
this point that the function is twice differentiable in Kt+1 • Differentiation
of the expression in the parentheses on the right hand side twice with
respect to l, gives the sufficient conditions for an interior maximum:

-C1(I, P) + WÆl - S) K + l, P] = O,

-Cu(I, P) + Wu[(I - S) K + l, PJ < O.

From the equilibrium condition we obtain for a fixed value of P and an
interior solution of 1*, that

ol*/oK = (l - S) Wu/(Cu - Wu).

It is seen from (20) and (21) that the effect on investment depends only on
the sign of Wu. From Definition (lO) it is easily established that W is,
respectively, concave, linear, or convex in KH1 when V is concave, linear,
and convex in K. Hence we obtain from Propositions 2-4:

PROPOSITION 5. Let 1*(K, P) be the optimal investment policy. Then

ei-tes .::::;O

• A more general approach would be to consider the correspondence Ø(K, P), which
may be shown to have properties similar to the properties given in Proposition 5 for
the investment policy. For example, maxØ(K, P) and minØ(K, P) are both mono-
tonically increasing in K if g(K, P) is convex, constant if g(K, P) is linear homogeneous,
and monotonically decreasing if g(K, P) is concave and C(l, P) convex.
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if g(K, P) is concace in Kand C(I, P) is contex in / for all P;

o/*joK = O

if g(K, P) is linear homogeneous in K for all P;

C/*/oK ~ O

if g(K, P) is convex in K for 0/1 P.

Comment. It is possible to show by construction of counterexamples,
that "decreasing returns to scale in the net operating income" is not alone
a sufficient condition for the value of the firm to be concave in K or the
optimal investment policy to be a decreasing function of K.

With the possible exception of the case of decreasing returns to scale,
it is seen from Proposition 5 that the effect of existing capital stock on the
investment policy is as anticipated by economic intuition. Ceteris paribus
gross investment will increase with the size of the firm under increasing
returns to scale, not be influenced under constant returns, and (normally)
decrease with size under decreasing returns. Some care must be taken,
however, in comparison between different firms. There is no a priori reason
for all firms to have an identical cost structure, and the fact that a firm is
big may well be a consequence of a uniformly high net operating income
function, in which case the ceteris paribus assumption does not hold.

While Proposition 5 gives some information on the form of the invest-
ment policy under fairly general conditions, stronger results may be
obtained by a strengthening of the assumptions. The remainder of the
section will be used to discuss such cases, of which some will correspond
to known results in deterministic theory.

A. Constant Returns to Scale'

It is seen from Proposition 5 that the investment decision is not influ-
enced by the level of existing capital stock. As has been pointed out by
Hartman [8], this implies that the current investment decision has no
effect on the profitability of future investments and may be taken indepen-
dently of these.

With constant returns to scale (19) and (20) are reduced to

-Ct(/, P) -":-Tf(P)= O,

-en(/, P) < O,

• The results in this subsection have been proved by Hartman [8] for the case of a
strictly convex cost of investment.
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where the function 7](P) is given by the integral equation

7](P) = R r y(Y)dF(Y P) - RO - 8) r 7](Y)dF(Y P) .
• .? • .?

Expansion into the Neumann series gives

where F(t)( Y IP) is the tth convolution of F( Y i P). Economically inter-
preted 7](P) is the expectation as evaluated at time t of the marginal (and
average) value of capital stock at time t + 1. The optimal investment is
found where the marginal value of capital equals the marginal cost of
acquiring it.

B. Cost of Investment Is Linear in I

Arrow assumes in Ref. [1] that the cost of investment is linear homo-
geneous. The consequences of this assumption for the stochastic case will
now be considered. Let

C(I, P) = !f;(P) I. O ~ I ~ 1.

Equations (19) and (20) are reduced to

-!f;(Pt) + Wl(Kf~l • Pr) = O,

Wu(Kt+1 , Pt) < O.

Constant or increasing "returns to scale" leads to bang-bang solutions
where the optimal investment is either zero or 1.With decreasing returns
to scale there is for each P an optimal capital stock K*(P), independent of
the initial capital stock. The following result is easily proved:

PROPOSITION 6. Suppose that g(K, P) is concave in Kand CCI, P) is
linear homogeneous in I. Then for each P there exists an optimal long run
capital stock K*(P), and there is an optimal investment policy of the/orm

I*(K, P) = O
= K*(P)-(I-S) K,

=1

K*(P) ~ (l - S) K,
(l - S) K < K*(P) ~ (l - S) K -+- 1,
(I - S) K + 1 < K*(P).

Proposition 6 is a stochastic counterpart to a result in Arrow [1].
Arrow's net operating income is, however, more general than a concave
function.

93.
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C. Minimum Size of Investment

While many authors assume that the cost of investment is globally
convex, Rothshild [12] has given convincing arguments for a more general
cost of adjustment, e.g., cost functions which are initially concave and
ultimately convex. It will be shown that under constant or increasing
returns to scale there is a lower bound for a positive optimal investment,
viz., the highest point where the average cost of investment is at a minimum.

Let J(P) be defined for each P as follows:

J=O if lim [C(J, P)/J] < C(I, P)/I, O < I ~ l,
J~O

and otherwise the largest number in (O, l] satisfying

C(J, P)/J :S;; C(/, P)/I, O < I ~l.
Clearly J(P) > O if C(/, P) is initially concave.

PROPOSITION 7. Suppose that g(K, P) is convex in Kfor all P. Thenfor
each value of P such that I = O is not an optimal policy, I*(P) ~ J(P).

Proof Since 1* is optimal and I = O is not,

AW[(1 - 8) K, P] + (I - A) W[(1 - 8) K + J, P] - (l - A) C(J, P)

< W[(1 - 8) K + 1*, P] - C(/*, P)

for O< A ~ 1. If O< 1* < J, a contradiction is obtained by setting
A = (J - 1*)jJ. Q.E.D.

D. Independence

The assumption of constant prices in deterministic theory does not
correspond in stochastic models to stationarity, but to stationarity and
independence. Significant dynamic aspects of the model disappear when
the probability distribution F(Pt+l I Pt) is assumed to be independent of
r..

From (10) it follows that W under independence is a function only of
the capital stock. Uncertainty of the future investment levels comes only
from the uncertainty in the cost of investment. If in addition the function
C is independent of P, the first order condition (19) reduces to

-C'(l) + W'[(1 - 8) K + J] = O,

and the path of the capital stock is deterministic. The degree of uncertainty
may still influence the level of investment. As shown by Hartman [8], a
higher degree of uncertainty in the sense of Rothschild and Stiglitz [13]
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will in the case of constant returns to scale lead to an increase in the
expected benefit from the investment and hence to a larger investment.
This follows from the first order condition, which now takes the form

-C'(l) -:- r y( Y) dF( Y)/(r -:- b) = 0,.~ (22)

and the fact that yep) is convex in P. Equation (22) is a stochastic counter-
part to a first order condition under constant prices given by Gould [7].
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