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1. INTRODUCTION

This dissertation deals with the econometric specification and estimation of stochastic
production technologies when a panel data set is available to the researcher. In biological
production sectors it is often the case that not only mean output level is a function of input
levels, but also the variance of output. In econometric terminology this means that such
production technologies exhibit heteroskedasticity, where the variance of the error term and
thus the variance of the dependent variable - the level of output - is related to some
explanatory variables.

Since the introduction of flexible functional forms in the 1970s, a vast number of econometric
studies of production technology and firm behaviour have been provided in international
economic journals. The emphasis of these studies has been the measurement of producers'
responses to changes in input and output prices, or the measurement of productivity growth.
Most of these studies have, explicitly or implicitly, assumed a deterministic or homoskedastic
production technology. A deterministic setting implies that for a given level of inputs the
output level is known with certainty, while the assumption of homoskedasticity implies that
inputs do not affect output variability. For industries where the level of risk or the magnitude
of heteroskedasticity is relatively small such assumptions may be appropriate.

However, if substantial production heteroskedasticity is present, which is the case for many
sectors of biological production, this should be accounted for in the econometric model
specification. According to the theory of the competitive firm under production risk, the
structure of production risk, the firm's risk preference structure and the firm's expectation
formation process influence firm behaviour (see figure 1.1). In general, the competitive firm
chooses different input levels and responds differently to price changes under production
heteroskedasticity than it would have done under production homoskedasticity or certainty (see
Chapter 2). Furthermore, it can be shown that in the presence of production heteroskedasticity
and risk aversion, parameter estimates from conventional dual models of the firm generally
will be biased.' This means that the use of econometric models which assume output
homoskedasticity or certainty may provide regulators and policy makers with incorrect
inferences with respect to the effects of policy measures which affect input and output prices
(Leathers & Quiggin, 1991). Finally, homoskedastic and deterministic econometric models are
not able to provide any information on the risk-reducing or risk-increasing effects of inputs.

J Unlike dual models, primal models assuming a deterministic setting provide consistent but inefficient
parameter estimates.



We will see in chapters 2 and 3, that dual econometric modelling of the firm under uncertainty
generally forces the researcher to account for the firm's risk preference structure and
expectation formation process in the model specification. The specification of risk preference
structure and expectation formation process in a dual econometric model poses great
challenges to the researcher, because of substantial requirements both with respect to
theoretical consistency and functional flexibility. Previous econometric studies have to a
varying extent been able to find satisfactory solutions to the problems introduced by a
stochastic setting. Unlike the standard deterministic theory of production, there is no dual
model framework available that is easily tractable for econometric estimation. In this
dissertation we have therefore limited ourselves to specifying only primal models of
production.

Production technology
(elasticities of subst.,
scale economies, etc.)

Types and nature of

uncertainty (E.g. pdf "- [/,
of random variables) ,. Behavior (E.g. input

levels, harvesting

Riskpreference , profile),.
"I'structure (E.g. ARA

RRAand PRRA)

Expectation formation

(Adaptive, rational

expectations etc.)

Figure 1.1. Four determinants of producer behaviour under uncertainti

The foundation for the econometric study of heteroskedastic production technologies has to a
large extent been provided by Just & Pope (1978). They suggested eight postulates for the
stochastic production function which they claim to be reasonable on the basis of a priori
theorising and observed behaviour. Furthermore, they specified a particular functional form
which satisfies the eight postulates, the Just-Pope production function, which is given by (Just
& Pope, 1978)

(1.1) Yit =j(xit; Cl) + h(xit; (3)Cit'

2 See Appendix 2.A for the definitions of ARA, RRA and PRRA.
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where y is output level (with firm and time subscripts i and t), x is a vector of input levels, e is

a stochastic term, and E[e]=O. The function.f(·) is the mean productionfunction and hO is the
variance production function. The parameter vectors a and ~ are the mean and variance

function parameters, respectively.

In (1.1) the effect of input changes has been separated into two effects; the effect on mean
output and the effect on the variance of output. The Just-Pope production function is a
heteroskedastic specification, because the variance of y is a function of the input vector x. An
advantage of the Just-Pope model is that it allows us to analyse the effects of changing input
levels on mean output and output risk separately. This can be seen by deriving from (1.1) the

conditional variance of output

var[Yit] = [h(xit; ~)]2var[eit],

and the conditional mean output

E[Yit]= .f(xit; a).

As we shall see in Chapter 3, this particular functional form has been used extensively in
econometric analyses of heteroskedastic production technologies.

In Chapter 3 we discuss empirical studies of production risk that have been provided in the
literature. The empirical results from this body of studies give strong indications of the

presence of heteroskedasticity in biological production processes. On the other hand, the
results from individual studies should be interpreted with care, because weaknesses or
deficiencies with respect to methodology and data generally characterise the studies. Incorrect,

or more precisely, simplistic specification of the functional form has probably given rise to
biases in empirical estimates. Empirical studies have tended to use "simple" specifications
such as the Cobb-Douglas to facilitate estimation. Estimation has also largely been done by
feasible generalised least squares (FGLS), which recently has been criticised (Saba, Havenner,

& Talpaz, 1997).

1.1. Heteroskedasticity, Firm Heterogeneity and Econometric
Panel Data Techniques

An issue not to be ignored in econometric modelling of production technology and firm
behaviour isfirm heterogeneity with respect to production technology and productivity. Firms
which use the same vector of input levels often experience different output levels, and often
this can only to some extent be attributed to different outcomes of the stochastic variables in
the production process (s in model (1.1)). Often, some of the productivity differences between

firms are of a more persistent nature, which is related to (unobserved) firm characteristics. The
findings of a growing body of empirical studies using econometric panel data techniques

3



strongly suggest that firm heterogeneity should be accounted for in production model

specifications.'

In industries with cross-firm productivity differences, econometric specifications that ignore
heterogeneity will provide biased estimates and lead to incorrect inferences. This is
particularly the case for heteroskedastic production technologies. Ignoring firm heterogeneity
can lead to biased estimates of the parameters of both the mean production function j(x) and

the variance production function hex).

A heteroskedastic panel data model of production, which is an extension of the Just-Pope

production function (1.1), can be written as

(1.2) Yit =j(xit; ex) + 11i + uit'

where

i = 1, ... ,N, t = 1, ... , Ti'

Uit = h(xit; ~)eit,

i is the firm subscript, t is the time subscript, and Ti is the number of time periods firm i is
observed. If the time-invariant firm-specific 11/s are assumed fixed, we have the fixed effects

model (or the least squares dummy variable (LSDV) model), while ifthey are assumed random
we have the random effects model (or one-way error components model). In the random
effects model 11i is the firm-specific error component, and uit is the observation-specific error

component.

The use of econometric panel data techniques in empirical analysis of production risk
complicates econometric specification and estimation. A fixed effects model may have a large
number of firm dummy-variables, depending on the number of firms. A Just-Pope production
function is typically estimated by feasible generalised least squares (FGLS) or maximum

likelihood (ML) methods, and in practice it may be difficult to find the coefficient values that
optimise the objective function with a large number of parameters.

The fixed effects approach is sometimes not to be desired, because the researcher wants to
implement time-invariant regressors, such as regional dummies in the model specification. In
such cases a random effects model approach can be used. However, the variance-covariance
matrix has no longer a simple diagonal structure when one goes to a random effects model,
because the firm-specific error component 11i is correlated over time for the observations of

firm i (see Chapter 4). The block-diagonal structure of the variance-covariance matrix

complicates FGLS and ML estimation.

In the panel data literature the error components 11i and uit are generally assumed to be

homoskedastic." We shall see in Chapter 4 that FGLS and ML estimators for random effects

3 See chapter 3 for a discussion of empirical studies by Just & Pope (1979), Kumbhakar (1993), Traxler et al.
(1995), and others.

4 See Fuller & Battese (1973) and other references cited in Chapter 4.
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models with heteroskedastic 1]i and/or uit have been suggested, but their performance has been

evaluated only to a limited extent through simulation studies. Empirical application of these
estimators are even more sparse. It is certainly desirable to explore the performance of

heteroskedastic random effect estimators and gain more experience with them in empirical
applications.

1.2. The Empirical Application: Norwegian Salmon Aquaculture

The Norwegian salmon aquaculture industry has been chosen as an empirical application in

this dissertation to test various hypotheses on the structure of the stochastic production
technology. In the following it will be argued that substantial output uncertainty is present in
the salmon aquaculture industry. A limited understanding and knowledge of the biophysical

environment, combined with the high sensitivity of salmon mortality and growth to contagious
diseases, water temperatures and other stochastic environmental variables have resulted in
large variations in output at the firm level.

Another reason for choosing the salmon aquaculture industry for empirical application is that
there exists a firm level unbalanced panel data set which facilitates estimation of econometric
models, and should allow me to test a rich set of hypotheses.

The various types of uncertainty facing economic agents in this industry have only to a limited

extent been discussed in previous analyses of the industry, and to an even smaller extent been
implemented in formal models. For instance, uncertainty and risk preference structure have not
been included in earlier econometric models of salmon production, e.g. Salvanes & Tveterås
(1992), Salvanes (1993) and Tveterås (1993). The implicit assumptions of output certainty,

risk neutrality and homogeneous production technologies in these papers, may thus have lead
to biased estimates of input demand elasticities, output supply elasticities, and productivity
measures for the industry.

1.3. Hypotheses to be Tested on Norwegian Salmon Aquaculture

In this dissertation the following hypotheses with respect to the production technology and the
nature of production uncertainty in salmon farming will be tested for:

HI. The following factors explain observed cross-firm productivity differences in Norwegian
salmon farming in a given year: (1) economies of scale, (2) firm heterogeneity (with
respect to the quality of management, labour and capital equipment, etc.,), and (3) "true"

randomness in the production process.
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H2. The production technology in salmon farming is characterised by

(a) increasing output risk associated with a factor neutral expansion in inputs,
(b) decreasing marginal output risk associated with an increase in the input of capital and

labour, and
(c) increasing marginal output risk associated with an increase in the input of fish and

fish feed.

H3. During the period 1985-93

(a) the conditional mean output for a given combination of inputs has increased.
(b) the conditional distribution of output in salmon farming has been more condensed,

i.e., the level of production risk has decreased.
H4. There are differences in mean productivity and output risk levels between the regions.

The empirical motivation behind hypothesis HI is that we know little about the relative

importance of scale economies, firm heterogeneity and stochastic shocks (e.g. in terms of fish
disease outbreaks) for the productivity differences we observe between salmon farms.
Hypothesis H2 is motivated by the predictions of theoretical models, which state that a risk

averse producer will use less of a risk-increasing input, and use more of a risk-decreasing

input, than a risk-neutral producer (Ramaswami, 1992). Hence, if Norwegian salmon farmers
are risk averse, the risk properties of inputs are clearly of interest. Hypothesis H3 is concerned

with the effects of technologyadoption and learning-by-doing on mean output and output risk.
IfNorwegian salmon farmers are risk averse, then they should not only be concerned about the
increase in mean output, but also about output risk properties when they consider adoption of
new technologies. Furthermore, learning-by-doing should not only contribute to increase mean
productivity, but also reduce the level of output risk, ceteris paribus. Hypothesis H4 is
motivated by the concern which has always been present regarding the relative productivity of
different coastal regions along the north-south axis (Bjørndal & Salvanes, 1995). There are

several arguments for productivity differences across regions. The regions have different
biophysical conditions in term of temperatures, light conditions and water exchange (tidal
currents), etc. The regions also entered the industry at different stages; farms in southern

regions tended to enter at an earlier stage than farms in the northern regions. In this
dissertation we not only compare mean productivity across regions, but also analyse
differences in production risk.

Later chapters define more precisely the implications of the above hypotheses in mathematical
terms, and the implications of the above hypotheses for econometric model specification.

1.4. Objectives

The main objectives of this dissertation are:
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(1) Specify and estimate primal econometric models of the competitive firm under uncertainty
to test hypotheses on firm behaviour and production technology in salmon aquaculture.

(2) Assess biases associated with assuming a deterministic production technology or risk
neutrality in comparative static analyses of input demands and output supply in salmon
aquaculture.

(3) Specify and assess the performance of estimators for fixed and random effects models
with observation-specific error terms which are heteroskedastic in regressors.

The consequences of firm heterogeneity and productivity shifts over time for risk parameter
estimates, which have only been addressed to a very limited extent in the empirical literature,
will be accounted for using panel data techniques. Consequently, this dissertation should lead
to new insight with respect to the quantitative effects of production uncertainty on firm
behaviour in the salmon industry. Specifically, we should be able to provide more precise
quantitative statements on the effects of risk-reducing measures on input use and output
supply. In addition, we should also be able to quantify the effects of different levels of risk
aversion on input use and output supply. Since the quantitative empirical evidence so far is
somewhat limited due to methodological or data shortcomings of many previous studies, the
findings should be of interest beyond a small group of policy-makers and agents in the
industry.

The methodological focus will be on the specification of heteroskedastic panel data models,
and the assessment of their performance compared with homoskedastic panel data models and
heteroskedastic production models that ignore firm heterogeneity. In the context of empirical
analysis of production risk an important question is: What can we gain by using panel data
techniques in the econometric analysis of risky production technologies? A question of interest
in econometric panel data estimation is: What do we gain by using panel data models that
account for heteroskedasticity when heteroskedasticity is present in the data set? A related
issue that should be explored is which heteroskedastic panel data models are most appropriate,
the fixed or the random effects specification?

1.5. Outline
A presentation of underlying postulates and theories of the competitive firm under production
risk is provided in Chapter two. Chapter three discusses previous econometric models of
production technology and firm behaviour under production risk. Issues in econometric panel
data estimation is discussed in Chapter four. This chapter also presents some estimators for
heteroskedastic panel data models. Chapter five assesses the performance of different
estimators by means of simulation studies on finite samples.
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Chapters 6-9 deal with the empirical application: In Chapter six several issues which have
consequences for econometric modelling of the production technology of the salmon
aquaculture industry are discussed. In Chapter seven a discussion of the nature of risk and risk
responses in Norwegian salmon farming is provided. In Chapter eight the Norwegian salmon

farm data set is presented. Econometric models that facilitate testing of our hypotheses on
Norwegian salmon aquaculture production technology are specified and estimated in Chapter
nine. Finally, Chapter ten provides summary and conclusions.
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2. THE THEORY OF THE COMPETITIVE FIRM UNDER PRODUCTION
RISK

This chapter provides the theoretical motivation for analysing the structure of risk in stochastic
production technologies. Furthermore, it motivates the use of a primal approach in
econometric productivity analyses in stead of the popular dual approaches. This chapter
demonstrates that dual approaches loose much of their attractiveness when production risk is
introduced into the neo-classical production function. A primal model framework which is

tractable for econometric implementation is also presented here.

In the standard Expected Utility (EU) model the economic agent plays a passive role in the

sense that he or she has no possibilities to alter the distribution of the objective function to be
maximised. Broadly speaking, the standard EU model is limited to analysing lottery-type
decision problems. In the case of voluntary risk, the agent can only decide whether to
participate or not. If the agent chooses to participate in the gamble, he can only stand on the
sideline and watch the dice roll, without being able to affect its outcome.

In the theory of the firm under uncertainty, the agent (i.e., the firm) has a set of instruments
available to affect the probability distribution of his objective function. In addition to deciding

whether to participate or not, i.e., to produce or not, the firm is also able to affect the mean and

the variance of the objective function through adjustment of input (and thus output) levels. The
extension of the EU model to the firm thus makes the decision problem more interesting. But,
as we will see in this chapter, the analytical results are also complicated by allowing the firm
to affect both the mean and variance of profits (or wealth) through input-choices.

The EU model of the competitive firm is a member of a broad range of maximisation problems

that have been considered in the EU theory of choice under uncertainty. Many of these can be
fitted into the following general framework:

maxE[U(t/)(8,a, Wo»],
a

where UO is a von Neumann-Morgenstern utility function, a is a control variable (assumed to
take positive values), e is an economically relevant random variable, Wo is initial wealth, and
t/)(.) is a function mapping actions a and realisations of e into outcomes, normally taken to be

wealth levels.' In the theory of the firm the control variable a might be the production level y
or a vector of input levels x. The random variable e might be the production level y or the

l Quiggin (1993, pp. 28-31) provides a discussion of the conditions which must be satisfied for a unique
optimum to exist for the above EU general control problem. Furthermore, he provides the assumptions with
respect to the function Ø<:) which are necessary to obtain clear comparative results.
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output price p, or both. The argument of the utility function, t/JO, might be the profit function

plus initial wealth WO•
2

In the EU control problem one should distinguish between the direct outcome variable t/J(.) and
the indirect outcome variable e.3 In the EU maximisation problem of the competitive firm the

indirect outcome variable is output or output price, while the direct outcome variable is profits

plus initial wealth. If the direct outcome variable is a positive linear transformation of the
indirect outcome variable, which is the case, for example when output price is the only source
of uncertainty in the final wealth function, comparative static analysis of changes in the
probability density function of e is relatively easy. However, if the indirect outcome variable

enters t/JO in a nonlinear fashion, which is generally the case when production uncertainty is

present, comparative statics is much more complicated. In the latter case it may be impossible
to obtain unambiguous comparative static results.

Output risk is present in most types of agri- and aquacultural production, although the extent
of output risk may vary substantially across the various crops and species. In the case of output
risk the distributional properties of output has consequences for the optimal input combination
and output of the risk averse firm. When a firm alters the level of an input, it may not only

change the mean output, but also the variance of output and the skewness of output. For a risk

averse firm the optimal quantity of an input will be higher if an increase in the input quantity
only leads to a higher expected output, than if an increase leads to both a higher mean and a

larger variance of output. Furthermore, the optimal input quantity will be higher if an increase
in input does not alter the skewness of the output distribution, than if the increase leads to a
more positively skewed output distribution, ceteris paribus, because the latter implies that the
probability of low output outcomes increases.

A short digression on terminology is also required. The terms 'uncertainty' and 'risk' are
frequently used analogously in the literature, e.g. Quiggin (1993, p. 4). However, according to
Knight (1921) a situation is said to involve risk if the randomness facing an agent can be

expressed in terms of specific (objective or subjective) numerical probabilities to the possible
outcomes. Uncertainty is present if the agent cannot (or does not) assign probabilities to the

possible outcomes. In a complex world, it is not possible to assign objective probability
distributions to random prices or output levels. EU models of the firm generallyassume that
the firm forms subjective expectations on the probability distribution of random variables.
Thus, these are models of risk in the terminology of Knight. However, in the tradition of

Sandmo (1971) and other contributions to firm behaviour under uncertainty, we will use the
two terms interchangeably in this thesis.

2 For an individual decision maker who is the sole owner of a firm, wealth W can be defined as the firm's equity

plus the market value of physical assets and bank deposits.

3 Robison & Barry (1987, pp. 199-211) provide a discussion of indirect and direct outcome variables.
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In this chapter we present some theoretical models of the competitive firm when the

production function is stochastic. The point of departure will be some requirements for the
stochastic production function are presented (section 2.1), the so-called Just-Pope postulates.
Then we present different functional forms for output risk, such as the additive, multiplicative

and Just-Pope stochastic production functions, and discuss their properties (section 2.2). In
particular the conformity of the various production functions with the Just-Pope postulates is
assessed. Next, models of the competitive firm under production uncertainty are outlined
(section 2.3). In section 2.4 dual models, which, in principle, are tractable for empirical
research are presented. Section 2.5 discusses efficiency issues and technology adoption issues
in the context of output risk. Finally, the results from theoretical models are summarised and
their tractability for empirical research is discussed in section 2.6.

2.1. Just-Pope Postulates for the Stochastic Production Function
The following eight postulates have been proposed by Just & Pope (1978) for the stochastic
specification of the production function

y=f(x, s),

which they claim to be reasonable on the basis of a priori theorising and observed behaviour.

Pl. Positive production expectations, i.e., E[y]>0.

P2. Positive marginal product expectations, i.e.,

aE{y) >0.
dxk

P3. Diminishing marginal product expectations, i.e.,

a2 E{y) O
------=-2 - < .

dxk

P4. A change in the variance for random components in production should not necessarily

imply a change in expected output when all production factors are held fixed, i.e.,

aE{y) =Opossible.
avar{e)

ps. Increasing, decreasing or constant marginal risk should all be possibilities, i.e.,

a var{y) <=> O possible.
dxk

P6. A change in risk should not necessarily lead to a change in factor use for a risk-neutral
(profit-maximising) producer, i.e.,

dx·
_ ___::k_ =O possible,
avar(t:)
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where x; is the optimal input level.

P7. The change in variance of marginal product with respect to a factor change should not be
constrained in sign a priori without regard to the nature of the input, i.e.,

a var(dy / dxk) o 'bl---------'- <=> POSSI e.
dxj

ps. Constant stochastic returns to scale should be possible, i.e.,

I (ex) = 8f (x) possible for scalar B.

The postulates PI-P3 and P8 are analogue to postulates for the standard deterministic

neoclassical production function (Chambers, 1988, pp. 8-14; Driscoll, McGuirk, & Alwang,
1992). Postulates P4-P7 are concerned with the structure of production risk, and thus represent
an extension of the neoclassical postulates. Of particular interest is postulate P5, which states
that the specification of the production function should not restrict the effect of a change in the

level of an input on the variance of output a priori. For an econometric specification this
means that for some parameter values var(y) increases in Xh for some values the input level Xk

has no effect on var(y), and for some parameter values var(y) decreases in Xk.
4 Later in this

chapter it is demonstrated that the marginal risk properties of inputs have consequences for the

optimal input vector of a risk averse firm.

In the following section the conformity of popular stochastic specifications of the production
function with the Just-Pope postulates P1-P8 is discussed.

It should also be noted that none of the Just-Pope postulates address the issue of

"heteroskewness", or more generally, the possibility that higher moments of the conditional
output probability distribution are functions of the input vector x (see section 2.2). Both
Yassour, Zilberman & Rausser (1981) and Antle (1983, pp. 193-4) have shown that higher
moments may affect the optimal input levels of the EU maximising firm.

2.2. Functional Form of Output Risk

Newbery & Stiglitz (1981, p. 65) provide the following general form for the production

function under output risk

y= f(X,e,~),

4 Just & Pope motivate this postulate with examples from agriculture: "For example, agricultural inputs such as

land, fertilizer, and chemical thinning practices seem to make a positive contribution to variance of production

in some cases. On the other hand, pesticides irrigation, frost protection, disease-resistant seed varieties, and

overcapitalization all possibly have a negative effect on the variance of production attributable to weather,

insects, and crop diseases ..." (Just & Pope, 1978, p. 69).
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where x is a vector of inputs, e is the random variable which describes the state of the nature,

and ~ is the choice of technique of production (e.g. timing of smolts release, harvesting, etc.).

The above form is too general to be tractable for econometric work.

A functional form that has been suggested for output uncertainty is the Just-Pope production
function, which is given by (Just & Pope, 1978)

(2.1) y = j(x) + h(x)e,

where e is a stochastic term and E[e]=O. The effect of input changes has been separated into

two effects; the effect on mean and the effect on variance. The function fix) is the mean

production function and hex) is the variance production junction. The Just-Pope production
function is a heteroskedastic specification, because the variance of y is a function of the input

vector x, i.e., var(ylx). The conditional variance of output is

var[y] = var[f(x) + h(x)e] = var[h(x)e] = [h(X)]2 var]s].

Mean output is

E[y] = E[j(x) + h(x)e] = f(x) + h(x)E[e] = j(x).

Most important, Just & Pope (1978, p. 8S) show that the Just-Pope form satisfies all eight Just-
Pope postulates for a stochastic production function. We will later see that this particular form
has been extensively used in econometric analyses of stochastic production technologies.

The additive homoskedastic production function

(2.2) y = j(x) +e. E[e] = O, var(e) = (12 ,

has been used extensively in the literature. For example, in salmon farming homoskedastic

output risk implies that a disease reduces the production by a constant quantity, regardless of

the size of the production. The homoskedastic production function (2.2) is a special case of the
Just-Pope form (2.1), with h(x) = 1.Under homoskedastic risk the mean and variance of output

is

1fy] = j(x) + ~e] = j(x) +O= j(x) and var(y) = var(e) = (12,

respectively. Marginal risk is zero for all inputs. Additive homoskedastic risk is difficult to
justify for agri-/aquacultural production in general, and for salmon farming in particular,
because of the implicit assumption of zero marginal output risk in inputs. It can be shown that
the homoskedastic form will always violate the Just-Pope postulates PS, P7 and P8.

Production functions with multiplicative risk of the form

(2.3) y=j(x)e, E[e]=I,

have also been used in the literature (Newbery & Stiglitz, 1981). For salmon farming, for
instance, multiplicative risk implies that a disease reduces the production by a constant
fraction, regardless of the size of the production. It can be seen that (2.3) is a special case of
the Just-Pope form. The mean and variance of output is
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E[y] = j(x)E[ E] = j(X) and var(y) = [f(X)]2 varfs)

respectively. Marginal risk is given by

dvar(y) / ax; = var(E)d[j(x)f / ax; = 2j(x).t;(x)var(E) ~ O, i=l, ...,n,

if positive marginal product of input is assumed for all inputs. The multiplicative production
function is a special case of a stochastically separable production function. It can be shown

that the multiplicative form will always violate the Just-Pope postulates P5 and P7.

Another class of stochastic production functions which is discussed by Just & Pope, and which
later has been employed in empirical work by Kumbakhar (1993), is

(2.4) Jf = !(x)eli(X)E.

In the context of the popular translog parametrization of fix), this form is more convenient to

work with than the Just-Pope, because unlike the Just-Pope, a translog specification can be
linearized by taking logarithms on both sides. This facilitates estimation of fix) by OLS (in the

first step).

Assuming E - N(O,a) , the mean and variance of output is

E[y] = j( x )eh2 (-j<7/2 and var(y) = j2 (x )eh2(o)<7[eh2(-j<7/2 - 1]

respectively. Wee see that E[y] ~ j(x). Marginal risk is given by

dvar(y) / ax; = 2[eh2(X)<7/2 -1]E[y]dE[y]/ax; + E2 [y]ah(x)h; (x)eh2(X)<7 ,

where dE[y] / ax; = .t;(x)eh2(X)<7/2 + j(x)ah(x)h; (x)eh2(X)<7/2 and h, (x) is the partial derivative

of hO with respect to input i. Production function (2.4) always violates two of the postulates

set forth by Just & Pope; postulate P4 of independence between mean output E[y] and the
random term E, and postulate P8 of the possibility of constant stochastic returns to scale (Just

& Pope, pp. 83-84). The remaining six postulates may also be violated, depending on the
values of the parameters off(x) and h(x).

A functional form that is popular in econometric productivity analysis is

(2.5) y = f(x)ee, Ejs] = O.

It has been common to use Cobb-Douglas or translog specifications and take logarithms on
both sides to facilitate use of linear estimation techniques. Specification (2.5) is a special case
of (2.4), with h(x) = 1. The mean and variance of y is

E[y] =f(x)E[eE] and var(y) = [ftx)]2var(eE),

respectively. The expression for var(y) implies that marginal risks are restricted to be positive
for all inputs due to the positive marginal product assumption, of(x)/Xi' for production

functions. This production function always violate Just-Pope postulates P4-P7.

If the production process is risky, but we have little a priori information on the structure of
production risk, the Just-Pope form (2.1) is preferable to the specifications (2.2)-(2.5) in
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empirical work, because it imposes the smallest set of restriction on the stochastic technology.
Furthermore, an assessment of different stochastic production functions with respect to

conformity with the Just-Pope postulates P1-P8 shows that the Just-Pope form is the only
econometric tractable specification that satisfies all eight postulates. This explains to a large
extent the popularity of this specification in econometric studies of production risk. In Chapter
3 we will see that most econometric studies of production risk have applied the Just-Pope

form.

However, the Just-Pope specification has also been subject to criticism. Although the Just-

Pope form is flexible with respect to the effect of input changes on the first two moments of
the output distribution, it can be shown that it restricts the effects of inputs x across higher
moments (Antle, 1983). To see this, note that with u == h(X)e,

E(uJ = h(x)i E[ ei] == ,uio

For i>2 and E[ei] ::t Othe parameters of the ith moment are directly related to the parameters of

the second moment; in particular the elasticity of the ith moment with respect to input k is

(2.6) = d,ui.35. = i. dh(X) 3L = .!:_.
1Ji{ d~ u, d~ h(X) 2 1J2{' i>2.

Therefore, the elasticity of each higher nonzero moment with respect to an input is directly
proportional to the elasticity of the second moment with respect to that input. The restrictions

in (2.6) are valid if output conditional on inputs x follows a two-parameter distribution, such
as the normal distribution, otherwise they are generally not valid.

2.3. Models of the Competitive Firm under Production Uncertainty
This section presents theoretical models of the competitive firm under output risk. The
discussion here will serve to illustrate how introduction of output risk complicates

comparative statics, thus making it difficult to obtain unambiguous results similar to those we
are familiar with from the theory of the competitive firm in the deterministic setting. Since the
purpose of the presentation here is not to show mathematically how comparative static results
were obtained, the discussion is deliberately kept at a non-technical level, unless when judged
necessary to illustrate some particular points.'

The firm's EU maximisation problem under production risk of the general form y =fix, e) and

output price certainty is

maxxEU(W(x)) = EU(Wo + pf(x,e) - w' x),

5 The cited references will provide more rigorous mathematical derivation of results.

15



where Un is a von Neumann-Morgenstern utility function, Wo and W are initial wealth and

final wealth, respectively, p is output price, x is a vector of input levels, and w is a vector of

corresponding input prices.

Most models of the competitive firm under production risk use profits 1t as argument of the

utility function instead of end-of-period wealth W. Appendix 2.B discusses some issues that
surround the argument of the utility function, including the implications of choosing 1t as

argument for Ut-).

Pope & Kramer (1979) propose a model of production risk where the competitive firm
maximises expected utility in profits. Their model assumes that the firm's risk preferences are

characterised by decreasing absolute risk aversion (DARA) in profits, that there are two inputs
in the production process, and that the marginal products of the two inputs are positive and

diminishing." Comparative statics are provided for two stochastic specifications of the firm's
production function; the multiplicative form y = f(x)g(e), and the more general Just-Pope form
y = f(x)+h(x)e. As stated earlier in this chapter, the Just-Pope form satisfies the Just-Pope

postulates for stochastic specifications of the production function, while this is not the case for
the multiplicative form. In particular, the multiplicative form does not allow for decreasing
marginal risk in inputs.

Pope & Kramer provide the following results for the Just-Pope specification of the production
technology for a mean-preserving increase in risk: 7 If the two inputs are stochastic

complements and both inputs marginally increase (reduce) risk, then factor use declines
(increases) as risk increases." Furthermore, if the inputs are stochastic substitutes and only one

input marginally decreases risk, then the use of the other input decreases in risk.

Pope & Kramer also examine the effects of different levels of absolute risk aversion on input
demands in the context of a special case of the Pratt-family of utility functions exhibiting
decreasing risk aversion (Pratt, 1964): Under stochastic complementarity and marginally
decreasing (increasing) risk for both inputs, the firm with greater risk aversion will utilise

larger (smaller) quantities of both inputs. Further, if only one of the inputs marginally reduces

risk under stochastic substitution, then increased risk aversion implies an increase in the use of
this input. Pope & Kramer also find that input demand curves are downward sloping in own
prices if both factors marginally increase (decrease) risk under complementarity (substitution).

6 See appendix 2.A for a definition of DARA.

7 A mean-preserving increase in risk means a shift in the probability distribution of e that keeps E[e] constant,

while varjs] increases.

8 For the Just-Pope function with two inputs stochastic complementarity (substitutability) means that dZyldxldx2
= d2jOldxldx2 + d2h(·)/dxldX2£ > O«O). Concavity ofproduction does not imply restrictions on dZyldXldx2'
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Pope & Kramer find that it is difficult, within their model framework, to obtain unambiguous

results with respect to the effects of input and output price changes on input demands.
Additional assumptions on the structure of the production technology have to be imposed in

order to obtain unambiguous results. They find that if both factors marginally increase
(decrease) risk under stochastic complementarity (substitution), then factor demand curves are

downward sloping. Pope & Kramer are unable to sign the effects of an output price change on
input demands without imposing several restrictions on the stochastic production function.

Leathers & Quiggin (1991) use the Just-Pope production function and the results of Meyer
(1987) to obtain comparative statics results for a risk averse competitive firm. They use the
results of Meyer (1987), who showed that the expected utility function EU(ll(x)) can be

represented by a mean-standard deviation model V~, an), where J.Lrr. and an are mean profits

and standard deviation of profits, when the probability distribution of the objective function is
a linear transformation of the random variable. An attractive property of Meyer's approach is
that, unlike the traditional mean-variance model, it does not require any additional
assumptions about the form of the utility function or the distribution of the random variable, e.
The probability density function (pdf) of s is, for example, allowed to be skewed.

Leathers & Quiggin show that Meyer's condition is actually satisfied when the stochastic
production function is of the Just-Pope form. They can therefore utilise the mean-standard

deviation approach of Meyer instead of the EU model framework. This makes it possible to

obtain comparative static results that are not available in the EU framework. Leathers &

Quiggin derive the comparative statics for a single-input production technology, but their
approach is also valid in the multi-input case. It is shown that the mean-standard deviation

function is consistent with the EU function.

Leathers & Quiggin presents the following analytical results for a risk averse producer and

risk-reducing input:

(a) Input use decreases in own input price under increasing and constant absolute risk
aversion (lARA, CARA). 9

(b) Input use increases when the output price increases under constant absolute risk aversion

(CARA).
(c) Input use increases under a mean-preserving increase in exogenous yield risk under

decreasing and constant absolute risk aversion (DARA, CARA).
(d) Input use decreases under a variance-preserving increase in mean yield under decreasing

and constant absolute risk aversion (DARA, CARA).

The above results for a risk-reducing input can be summarised under decreasing absolute risk

aversion (DARA), which has been established as a stylised fact in the literature. According to

9 See appendix 2.A for a definition of CARA, DARA, and lARA.
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result (a) the effect of an increase in own input price on input demand is ambiguous under
DARA. This is also the case for the effect of an increase in the output price. Result (c) states
that an exogenous increase in yield risk, holding expected yield constant, will lead to a
decrease in input demand under DARA. An increase in the mean of the exogenous production
shock holding yield variance constant, will decrease the use of a risk-reducing input by DARA

producers.

Furthermore, for a risk averse producer and risk-increasing input, Leathers & Quiggin show

that:

(a) Input use decreases in own input price under DARA, CARA.

(b) The effect of a change in output price on input use is indeterminate under any assumption

on the coefficient of absolute risk aversion.
(c) Input use decreases under a mean-preserving increase in exogenous yield risk under

DARA,CARA.
(d) Input use increases under a variance-preserving increase in mean yield under DARA,

CARA.

The above results can be summarised as follows for a producer with DARA risk preferences:
An increase in own input price leads to a decrease in the demand for the risk-increasing input.
The effect of an increase in output price cannot be determined. A mean-preserving increase in
exogenous yield risk causes a decrease in the demand for the risk-increasing input. Finally, a
variance-preserving increase in exogenous mean yield leads to an increase in input demand.

The ambiguous results from Leathers & Quiggin's model suggest that under production risk,
policies aimed at altering output or input levels cannot be based on theory alone. Rather,
empirical knowledge of the production function and the risk attitudes of producers is required
in order to prescribe policies that obtain the desired objectives.

Ramaswami (1992) examines the impact of production risk on a producer's optimal input
decisions, and presents the weakest conditions on the production technology that are sufficient
to sign the marginal risk premium for all risk averse preferences. Output y has the conditional

cumulative density function F(yl x), where F is assumed twice differentiable and partial
derivatives Fy, Fx;' Fyyand Fx;y exists. Furthermore, F is contained in a compact interval [yo,

Ym]' i.e., F(yol x) = O and F(yml x) = 1 for all x. An increase in input use is assumed to lead to a
superior output distribution in the sense of first degree stochastic dominance. The producer
maximises

EU[7r(ylx)] = U[E7r(ylx)- r(x)],

where 7r(yl x) = y - w' x is normalised profits, and rex) is the risk premium the producer is

willing to pay in order to eliminate all output risk. The first-order condition for the EU
maximisation problem evaluated in EU maximising input levels x" is
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(En)x; -rx;(x*)=O,

or -Wi +J(y - W' x*)Fyx; (ylx*)dy = rx; (x*),

or J(Y - W' x*)~x; (ylx*)dy = Wi + rx; (x*).
The marginal risk premium rx of input i is the wedge between input cost and expected

I

marginal product at the EU maximising level of input use. The sign of the marginal risk
premium indicates whether the optimallevel of input use is smaller for risk averse producers
than risk neutral producers. Ramaswami proves that, for all risk averse producers, the marginal
risk premium is positive (negative) if and only if the input is risk-increasing (decreasing). This

is an important result, because it means that it is sufficient to obtain information on the
marginal risk of an input, e.g. byestimating the parameters of a Just-Pope production function,
in order to determine whether a risk averse producer uses less of the input than a risk-neutral

producer.

For completeness, a model of the competitive firm by Ratti & Ullah (1976) with a somewhat
different structure of production risk is also presented. The model assumes that output is
uniquely determined by a given input vector. but the flow of services from the inputs is

randomly distributed. More specifically, factor services are given by Kl = uK and LI = vL,
where K and L are the quantities of capital and labour employed by the firm, and u and v are

positive, independently distributed, random variables. Consequently, Kl and K2 are the
random quantities of factor service actually rendered by capital and labour. As in the previous
models the firm maximises the expected utility of profits:

max EU(n) = EU[(pf(KpL,) -rK-wL J,
K,L

where f(KI, LI) is the production function of the firm. Under plausible assumptions with
regard to the production function, the first-order conditions of the above maximisation

problem provides the following results: (a) Under output uncertainty the risk averse firm
demands less of both inputs than the risk neutral firm, and consequently the expected output is
smaller for the risk averse firm. (b) The risk averse firm demands less of both inputs than it
would under certainty. (c) More interesting, even a risk neutral firm demands less of both

inputs than under certainty. The latter result is different from that provided by other models of
the competitive firm under uncertainty, in which the input demands of the risk neutral firm is
the same under certainty and uncertainty. The reason for Ratti & Ullah's result, is that in their
model, profits are a concave function of the random variables u and v.

With respect to changes in the moments of v and u, Ratti & Ullah are only able to obtain
determinate analytical results for the risk neutral firm. They show that for the risk neutral firm
an increase in the expected flow of labour services from a given level of labour input leads to
an increase in the quantity demanded of labour, provided that the marginal product of labour
services is greater than minus unity. Furthermore, under certain assumptions on the production
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technology, an increase in risk leads to a decline in input demand and consequently expected

output of the risk neutral firm. In other words, risk aversion is not necessary for changing
optimal input levels when the level of risk changes in Ratti & Ullah's model.

Antle (1983, pp. 193-4) presents an EU model of the competitive firm which addresses the
effects of output heteroskewness on the optimal input choice. The firm's risk preference
structure is assumed to be described by the negative exponential utility function

U(Te) = a - be-An,

where a, b and A are positive parameters. For simplicity, prices are assumed to be
nonstochastic. Normalised profit is defined as

Te= s:~~P'.,""",=1 ,'~

where ri is the ith input price divided by the output price. An mth order Taylor series
expansion of U(n) about expected profit Ti: gives

~ (-Jl)i1{'lI(Te)] = a - 6e-.!(ii; - 6e-.!(ii; "",,-.,-J.li'
i=2 lo

To further simplify the discussion, consider a third-order expansion of the utility function. The

first-order condition for maximisation of expected utility can then be written as

(2.7) aE[ 'lI( Te)] = apl + O-I (- Jl) aJ.l2 + O-I (- Jl)2 aJ.l3 = r k = 1,..., n,
a~ a~ 2 a~ 6 a~ K.'

where
(-Jl)2 (-Jl)3

O= 1+ J.l2+ J.l3·2 6
Equation (2.7) can be rewritten as

(2.8) 111& + O-I (-Jl) J.l2 112& + O-I (-Jl)2 J.l3 11
3
& =~, k = 1,..., n,

'\. 2 J.l1 '\. 6 J.l1 '\. J.l1

which shows that the firm's behaviour can be expressed in terms of the elasticities of moments

with respect to inputs. Equation (2.8) shows that as the coefficient of absolute risk aversion A
approaches zero, inputs are chosen such that the mean production elasticity 11lk equals the

mean factor share rJcX!!J.ll' as would be the case for a risk-neutral firm. For large positive

values of A, (2.8) shows that the equilibrium condition of the risk-neutral firm generally is not
satisfied. Of course, the importance of the third order moment J.l3 for the optimal input levels

of the firm, depends on to what extent it deviates from zero, i.e., to what extent the pdf of
output is skewed. This is an empirical question that can be investigated by econometric
analysis of empirical data.

The importance of higher moments is also determined by the structure of the firm's utility
function. In Antle's model, the firm's attitudes to risk was represented by the negative
exponential utility function, which is a very restrictive and questionable representation of the
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firm's risk preference structure. For the general utility function U(W), the firm's level of

downside risk aversion is an important determinant of the effect of the skewness of output pdf
on optimal input levels. Menenez, Geiss & Tressler (1980) define downside risk: A
distribution is said to have more downside risk than another if it has more dispersion below a
specific target or if it is more skewed to the left. An individual is averse to downside risk if he
is decreasingly risk averse, i.e., if his utility function has a positive third derivative

(equivalently, his marginal utility function is convex).

This section has demonstrated that comparative statics become more ambiguous but richer
when production risk is introduced into the model of the competitive firm. The firm's response
to price changes now also depends on its risk preference structure and the risk structure of the

production function. In general, restrictions have to be imposed on risk preferences and the
stochastic production technology in order to obtain unambiguous comparative static results.
The results derived from theoretical models of production risk therefore underline the need for
econometric model estimates, because these can provide restrictions that make it possible to
sign comparative statics.

2.4. Dual Models For Empirical Research
Introduction of production risk means that risk preferences have to be accounted for. This

seriously complicates specification of dual functions for empirical work. However, dual model

frameworks which represent a step towards empirical tractability have been introduced
recently.

Pope & Chavas (1994) characterise cost functions which would be consistent with expected

utility maximisation under production uncertainty. When only output price uncertainty
prevails, cost minimisation is consistent with maximising expected utility of wealth. However,

according to Pope & Chavas the "validity and nature of cost minimisation is much less clear
when production is uncertain" (p. 196). Pope & Chavas provide necessary constraints for the
firm's cost minimisation problem which are consistent with expected utility maximisation
under different types of output level uncertainty. They show that there always exists a
nonrandom constraint function for which the ex ante cost minimisation problem is consistent
with expected utility maximisation. The ex ante cost function has the general form

c(w,,uy) = ~n{w' xl,uy s g(x,)},

where Jly represents the constraints on the relevant moments of output, and g(x, .) is a vector of

moment functions. The structure of the stochastic production technology and the risk

preference structure of the firm determines which moments of y are included. Pope & Chavas
show that if the stochastic production function takes the multiplicative form y =f(x)g(€), cost
minimisation subject to a given expected output y is consistent with expected utility
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maximisation. Furthermore, if the stochastic production function takes the Just-Pope form y =
f(x)+h(x)t:, then cost minimisation holding mean output y and variance of output var(y)

constant, is consistent with expected utility maximisation.'?

A nice property of the ex ante cost function derived by Pope & Chavas is that it is devoid of
risk preferences. For empirical implementation this means that the researcher does not have to
care about the firms' risk preference structure. It is still necessary to make assumptions on the
structure of the stochastic production technology. Furthermore, one has to estimate the

moments of output, which means that some assumptions have to be made regarding the firm's
output expectation formation. A limitation of the cost function approach is of course that it

does not explain (endogenize) the firm's output supply decision.

Ex ante cost functions have the same properties in w as conventional cost functions; ex ante
cost functions are nondecreasing in w, concave in w, positively linearly homogeneous in w,

and Shephard's lemma holds.

It is important to note that even under risk neutrality, i.e., when the firm maximises expected
profit, the appropriate argument of the cost function is expected output y, not realised output
y. This means that the appropriate ex ante cost function is c(w, y). A cost function that is
consistent with expected profit maximisation is obtained by substituting the argument y with

the distance function, which is the direct dual to the cost function (Pope & Just, 1996). The
advantage of embedding the distance function in the cost function is that it is possible to obtain

mean output and the cost function parameters simultaneously in an econometric estimation
procedure, which is demonstrated by Pope & Just (1996). With this approach it is not
necessary to make assumptions on the producer's output expectation formation and estimate
the moments of output prior to the estimation of the cost function.

Coyle (1995) presents a dual model which incorporates risk aversion and production risk
within the framework of a mean-variance utility function. Utilising the certainty-equivalent
version of the mean-variance function, the producer's objective function is

U*(P, w, WO, q) = maxx~ U(x) == {Wo +pEy(x, q1)-wx

- A(Wo + pEy(x, q1)-wx, p2Vy(x, q2»/2 p2Vy(x, q2)},

where A(·) is the coefficient of absolute risk aversion, q = (q1' Q2)', and Q1 and Q2 are
exogenous vectors of moments influencing mean and variance of output, respectively. Duality
between U*O and the primal function y = fix, e) is established indirectly via the cost function

(Coyle, 1995, App. A). A solution to the EU maximising problem in terms of input demands,
expected output and variance of output is denoted x(p, w, WO, Q), Ey(p, w, Wo' q) and Vy(p, w,
WO, q) respectively. These equations are derived from U*(·). Coyle also presents the properties
of U*(·) and the derived equations.

10 Under Just-Pope production risk gl(x, ·)=Jtx) and g2(x, ·)=h2(x)var(e).
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U*(-) is simplified by assuming constant absolute risk aversion (CARA), or that the primal

technology is of the Just-Pope form. Under CARA, which implies that changes in Wo do not
influence utility maximising input choices and that the risk premium in monetary terms is
constant, the mean-variance function simplifies to the linear form U*(-)= Wo + En: - a(· )/2 Vn:

(Coyle, 1995, p. 10). When the production technology is of the Just-Pope form
!f = !(x) + Ii(x)e, the vector q of moments of output has the scalar elements q! = Ee and
q2 = 11var(e) (Coyle, p. 11). Under CARA and Just-Pope assumptions, reduced form

equations for x(·) and Ey(') are obtained that can generally be estimated by linear methods.

The model is also extended to the case of simultaneous price and production risk. Of course,
this complicates the indirect utility function, because moments of the output price and

covariance between output price and the output level are now introduced.

In principle, the mean-variance model framework is tractable for empirical research. However,
nonlinearities and unobservable variables (e.g. moments of output and output price) will in

practice complicate empirical estimation.

A further discussion of the above dual models in the context of empirical research is provided

in Chapter 3.

2.5. Technical Efficiency and Technology Adoption
It is natural to ask. what implications output risk has for the way efficiency is viewed and
measured, and for the process of technology adoption. In this section we take a look at these

issues.

2.5.1. Technical and Allocative Efficiency

In the deterministic case efficiency can be represented by profits

fr = P . f(x) - w .x ,

where p is output price, x is a vector of inputs with associated input price vector w, and f(x) is

the (deterministic) production function. Under certainty the firm chooses x to maximise

profits.

Figure 2.1 depicts the profit lines for two technologies. The profit line 1[* corresponds to the
efficient technology j'Tx), and the profit line 1[' corresponds to the inefficient technology j(x).

Two types of inefficiency can be identified: The first type is technical inefficiency, which is the
difference between the maximum feasible output y~ = f* (x *) (point A) and the actual output

y~ = l (x *) (point B) for the chosen input levels x* . The vertical distance between points A

and B is due to technical inefficiency.

The second type of inefficiency is allocative inefficiency, which is the difference between
profits at profit-maximising input levels and profits at the actual input levels for a given
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technology j{x), and prices wand p. In the above figure A represents the allocative efficient
point for the technology j* (x). All other points, including point C, are allocative inefficient.
7t A

c

D:
..-- - - ,- - - 'B-- - -

<,
<, 7t0

x*I

Figure 2.1. Efficiency Analysis under Certainty

Hence, the first-order condition (f.o.c.) for allocative efficiency is the same as the f.o.c. for
profit maximisation

an a.r-=p·_-w; =0.ax; ax;
A firm that is both technically efficient and allocatively efficient for the prices (p, w) earns the
maximum possible profit, and is called profit efficient for (p, w) (Lovell & Scmidt, 1988, p. 7).
Assuming that the other inputs are at their profit maximising levels, point A represents profit
efficiency.

We now introduce production risk, to see what implications this has for the discussion of
efficiency. Parts of the discussion will be in terms of the Just-Pope production function
y = j(x;a) + h(x;f3)e and the utility function U(n;A), where 7t is profits and A is the

parameter vector of the utility function.

When production risk is introduced the relevant objective function is no longer profits, but the
expected utility derived from profits (or wealth), E[U(7t)]. A dual measure of technical

efficiency under output risk accounts for mean output, the variance (and possibly higher
moments) of output and the risk preference structure.

An example of a scenario when technical efficiency ranking under production risk may diverge
from the deterministic case is the following: Assume that for a given input vector xo, the Just-
Pope production technology 1 has a lower mean output than Just-Pope technology 2, but also a

lower output variance, i.e., E[fl(xo)] > E[f2(Xo)] and (h1(xo»2 > (h2(xo»2. Then technology 1
may not necessarily be less technically efficient than technology 2 in terms of expected utility;
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this will depend on the mean-variance profit trade-off represented by the producer's utility
function. This is illustrated in figures 2.2-2.3.
E[y1], E[y2]
var(y1). var(y2)

l-E[y1]

! -D-E[y2]
II--+- Var(y1 )

! --+- Var(y2)

x1

Figure 2.2. Mean and Variance of Just-Pope Production Technology 1 and 2

U1, U2 A

e _

xa1

Figure 2.3. Expected Utility Derived from Technology 1 (V1) and Technology 2 (V2)

In figure 2.2 we see that technology l is characterised by both a smaller mean output and
smaller variance of output than technology 2 for all levels of Xl' Figure 2.3 depicts the
expected utility of the producer associated with technology l (VI) and technology 2 (V2) for
given utility function parameters Aand prices (P, w). For low levels of input Xl (i.e., Xl < xla),

technology 2 provides a higher level of expected utility for the producer than technology l.
This means that the mean effect dominates the variance effect. However, for high levels of Xl
(i.e., Xl > Xl a), technology l gives a higher level of expected utility than technology 2, which
means that the variance effect now dominates the mean effect. If the variance of the random
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term E had been zero for both technologies, which is equivalent to the certainty case,
technology 1 would have provided higher expected utility than technology 2 for all levels of

xl·

In figure 2.3 allocative efficiency is represented by point A on line Ul, corresponding to input

level xl *.
The above example assumes homoskewness, i.e., the skewness of the output distribution is not
affected by changes in input levels. If the production technology exhibits heteroskewness and

the producer is downside risk averse, then the relative technical efficiency of technologies 1

and 2 in terms of expected utility may be different (Antle & Crissman, 1990).

Following Antle & Crissman (1990), a measure of relative technical efficiency (TE) which

encompasses both the deterministic case and the case of production risk can be defined as

TE(x,8) = f (x.S) / r (x.S),

where 8 is a vector of parameters. In the certainty case y = I( x;a), the objective function is

J = 7t = p. I(x) - wx, while in the case of Just-Pope production risk

J=E[U(7t;A)]=E[U(p·(/(x;a)+h(x;~)E-wx;A)]. In other words, under certainty the

parameters of Jare 8 = (p, w), while for the case of production risk 8 = (p, w, a, ~,A) Note
that TE is a function of the input vector x. As X changes the relative efficiency oftechnologies

k and l could be reversed.

An index of relative allocative efficiency (AE) can be defined as

where x, is the efficient input vector for technology i and Xj is some other input vector. It is
necessary to solve for the efficient input levels to find xi. Under certainty this means

maximising profits, while in the context of production risk expected utility maximising input
levels have to be derived. In practice solving for EU-maximising input levels can be a difficult
or impossible task (Antle & Crissman, 1990, p. 522).

2.5.2. Technology Adoption

It is a natural extension of the discussion of efficiency under risk to ask what characterises
technology adoption under production risk. Often the producer does not have full knowledge
of the properties of the stochastic production technology he has adopted, for example, its
marginal mean output and marginal output risk in inputs. In such a situation it is important for
him to learn about these properties. Experimenting with inputs today, knowingly not
optimising in the short run, will provide information about the technology that is useful in
optimising behaviour tomorrow (Welch, 1978). Hence, the input decisions in each period
become part of a dynamic decision problem, where the producer in each period balances
expected utility from short run optimisation in the current period against the gains from
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experimentation in terms of expected utility in future periods. In the short run, when producers

are experimenting and learning about the new technology, they make input decisions that are

technically and allocatively inefficient. However, if the producers gain valuable information
about the technology, there should be an increase in the measured technical and allocative
efficiency over time.

Feder, Just & Zilberman (1985) provide a review and discussion of the theoretical and
empiricalliterature on technology adoption in agriculture. The theoreticalliterature focuses on
the conditions for or degree of adoption of new technology under different assumptions on the
structure of production risk, risk preferences, credit constraints, etc. Several of the theoretical
models utilise the Just-Pope production function to characterise the structure of production

risk (Feder et al., 1985, pp. 258-61).

Another issue is the efficiency of early and late adopters of a new technology. Larger firms,
which can exploit economies of scale in information acquisition, may adopt a new technology
at an early stage (Feder & O'Mara, 1981). If smaller producers can observe the early adopters,
they can skip the experimentation phase and exploit the technology efficiently when they adopt

it at later stage.

The condition for adoption of a new technology can be formulated in terms of the firm's utility
function when the risk preferences are summarised by

(2.9) U = U(E[7r], var[7r]).

Total differentiation of (2.9) yields

d U = UE d E[7r]+ Uv d var[ 7r],

where UE and Uv are the partial derivatives of UO with respect to E[1l] and varjz],

respectively. The condition for adoption of a new technology is that dU~O.

By rearranging we obtain (Ghosh, McGuckin, & Kumbhakar, 1994)

U
(2.10) d E[7r];::: -__Ld var[7r],

UE

where -Uv/UE is the Pratt-Arrow coefficient of absolute risk aversion, which is positive under
risk aversion (i.e., for concave utility functions). Inwords, (2.10) states that the firm will adopt

a new technology if the increase in mean profits is larger than the increase in the variance of
profit weighted by the Pratt-Arrow coefficient of risk aversion. If the firm is risk neutral, then -
Uv/U E = O, which implies that the firm is only concerned about the effect on mean profits of
adopting a new technology. Under Just-Pope production risk y = fix) + h(x)e, the mean and

variance of profits are E[1l] = p!O - w'x and varjz] = p2·[h(·)]2oi, respectively. By

substituting these expressions into (2.10), we see that for fixed output price p and input prices
w the firm will adopt a new technology if the increase in mean output is larger than the
increase in the variance of output weighted by the Pratt-Arrow coefficient of risk aversion.
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2.6. Summary and Conclusions
Although we would like a theoretical model of firm behaviour under production risk to be as
general as possible, a minimum set of postulates for the stochastic production technology is
required in order to have some conformity with empirical observations and to obtain analytical
results. Just and Pope have suggested eight postulates for the stochastic production function
which they claim to be reasonable on the basis of a priori theorising and observed behaviour.

These postulates have been used extensively in subsequent theoretical and empirical research
on production uncertainty. The Just-Pope postulates can be viewed as an extension of the

postulates suggested for the deterministic production function in the neoclassical production
theory.

'It has been shown that the Just-Pope form y = f(x)+h(x)e satisfies all the Just-Pope postulates.

However, other stochastic specifications of the production function which have been employed
in theoretical and empirical models of production risk do not perform that well according to
the criteria suggested by Just & Pope; all of them violate several of the postulates.

Theoretical models of the competitive firm under production risk use the Expected Utility

model framework of von Neumann & Morgenstern. The traditional EU model is extended to
allow the firm to alter the probability distribution of the argument of the utility function by

changing input levels. The argument of the firm's utility function is usually profit or end-of-
period wealth. What complicates the analysis compared with the traditional EU model is that

the stochastic production function enters the profit (or end-of-period wealth) function in a
nonlinear fashion. This makes it difficult or impossible to obtain unambiguous comparative
static results in the general case.

Dual models of producer behaviour under production risk are less tractable for comparative
static analysis and econometric implementation than their deterministic counterparts. The dual
to the stochastic production function for the competitive EU maximising firm is an indirect
utility function which is the solution to the firm's EU maximisation problem, or an ex ante cost
function which is consistent with EU maximisation. It is generally difficult to derive the

indirect utility function, and even if it is recoverable, it is generally difficult to implement
econometrically because of nonlinearities and unobservables. The ex ante cost function is

more tractable for econometric work, partly because it is devoid of utility function parameters.
However, for risk averse producers estimation of an ex ante cost function requires assumptions

on the firms' expectation formation process for the moments of output, unless risk neutrality is
assumed. There are also other problems with ex ante cost functions which means that the usual
appeal of duality is lost in the stochastic production case. In Chapter 3 econometric
implementation of dual models will be discussed at greater length.

A more realistic setting for many sectors of biological production, and one which would be
appropriate for our empirical application, is the case of simultaneous output price and output
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uncertainty. The models presented here assume that output risk is the only type of risk present.

They are generally not suitable for making predictions on firm behaviour when output price
risk is also present; the optimal input levels of the EU maximising firm will generally not be

the same in the case when the variance of the output price is zero and in the case when it is
larger than zero, even if the mean output price is the same in both cases (Sandmo, 1971).
Furthermore, the responsiveness to price changes or changes in output risk will also differ in
the two cases. There exists only a limited body of theoretical models which includes both
output price and production risk in the literature. Problems are often associated with these
models; they may impose very strict restrictions on risk preferences or the stochastic

production technology, be intractable for econometric modelling, or preclude testing of certain

hypotheses.

We have seen that the introduction of production risk has implications for the way we view
technical efficiency. When comparing the technical efficiency of two different production
technologies, or measuring technical change over time, the measures of interest are no longer
only mean output or profit. A risk averse producer will also be concerned about the riskiness
of alternative production technologies, represented by the variance of output. The trade-off

between mean, variance and possibly higher moments is represented by the producer's utility
function. A risk averse producer may choose a production technology that provides a lower

mean output for a given input vector than alternative technologies, when this technology also

provides a sufficiently smaller output variance than the alternatives. This has implication for
empirical research on productivity in risky production processes. As an illustration, the green
revolution has been characterised as the culmination of an era when yield increases were
accompanied by higher yield variances (Traxler, Falck-Zepeda, Ortiz-Monasterio R., & Sayre,

1995). Producers that are particularly vulnerable to adverse yield outcomes, such as poor
farmers in third-world countries, may have experienced increased income variability and a
higher incidence of famine as a consequence of the introduction of new high yielding varieties.

The comparative static results, or the lack of such, from theoretical models presented in the
literature strongly suggest that specific assumptions or information on the structure of risk
preference and structure of the stochastic production technology are required in order to
unambiguously sign the effects of a change in production risk, and changes in input and output
prices on input demands and output supply. Unlike the deterministic dual framework,
unambiguous results are not available in the general case for the EU maximising firm. An
important implication from the theoretical models is that if one wishes to make predictions for
a particular industry, a natural first step will be to empirically estimate the parameters of the

production technology for that industry. If one can impose restrictions on the production
function based on empirical parameter estimates, then one may be able to provide empirical
comparative static statements for that industry. The empirical findings may also in a next step
be used to simplify a dual model specification.
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In the next chapter we will see how the theoretical framework presented here has been used in

econometric analyses of production risk. We will see that the extension of the deterministic
neoclassical production function to a more flexible form which allow for risk effects of inputs,
has complicated specification and estimation of econometric models.
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2.A. Appendix: Some Concepts in Expected Utility Theory

Two commonly used risk preference structure measures are the coefficient of absolute risk
aversion (ARA) and the coefficient of relative risk aversion (RRA). A third, less used measure,
is the coefficient of partial relative risk aversion (PRRA).

For a utility function in risky wealth, U(W), the coefficient of absolute risk aversion (ARA), A,

is defined as

A(W) = _ U' (W)
U(W) ,

and evaluated at some chosen level of final wealth W. It is not a dimensionless measure, and
depends on the units in which income is measured.

For a utility function in risky wealth, U(W), the coefficient of relative risk aversion (RRA), R,

is defined as

R(W)=- U'(W)W
U(W) ,

and evaluated at some chosen level of income (or wealth) W. As an elasticity it is

dimensionless, and hence a very convenient way in which to describe risk aversion. The two
measures are related by

R(W) = A(W)W.

A third measure of risk preference structure, developed by Menenez & Hanson (1970), is the
coefficient of partial relative risk aversion (PRRA), P, defined as

U'(W)
P(W,n) = - n= A(W)n.

U(W)

Note that U'(W)/U(W) is multiplied with profits n instead of W.

Briys & Eeckhoudt (1985) have implicitly shown that the coefficients of absolute, relative and
partial relative risk aversion (A, R and P respectively) are related by

P(W,n) = R(W) - WoA(W).

Consider a change in profits n. The resulting change in the coefficient of absolute risk

aversion, A(W), and the coefficient of relative risk aversion, R(W), is related to the change in
the partial relative risk aversion in the following way

dP _ dR _ lIT dA
- ryo

dm an dn

The effect of a change in n on P is unambiguous when A and R have opposite signs. When R is
increasing (decreasing) andA decreasing (increasing), dP/dn is positive (negative).
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Most models of producer behaviour under uncertainty apply expected utility in profits instead

of wealth. In this case the coefficient of relative risk aversion is identical to the coefficient of

partial relative risk aversion.

Having presented the common measures of risk aversion derived from the individual's utility
function - ARA, RRA and PRRA - and the risk premium of the individual, we are now in the
position to provide some statements about the relationships between them. The ARA, RRA
and PRRA measures are useful because each of them provides information on the effect of a
certain type of change in ex ante final wealth on the individual's risk premium. Il

The Markowitz' risk premium, r(WO, n), is defined as the difference between an individual's
expected wealth, given the gamble, and the level of wealth that individual would accept with
certainty if the gamble were removed, i.e., his certainty equivalent wealth (Copeland &
Weston, 1988, p. 87):

,.M(Wo, n) = E[W] - c(Wo, n),

where c(Wo, n) is the certainty equivalent wealth, which is equal to the inverse of the utility
function evaluated in expected utility, i.e., c(Wo, n) = U-l(E[U(W)]).

The coefficient of absolute risk aversion tells us how an individual will react to a change in

initial wealth for a given bet in terms of the risk premium he requires to be indifferent between
participating in the gamble and receiving the expected value with certainty. The following
relationships exist between A(W) and the effect of a change in initial wealth Wo on the risk

premium r(WO, n):

lARA:
CARA:

DARA:

Increasing
Constant

Decreasing

Increasing
Constant

Decreasing

A(W) r(Wo, n)===>

The following relationships exist between R(W) and the effect of a multiplicative change in Wo

and n; i.e. Wo and alloutcomes of n are multiplied by a constant A,on the risk premium r(WO,

n):

IRRA:
CRRA:

DRRA:

Increasing
Constant

Decreasing

Increasing
Constant

Decreasing

r(Wo, n)/A.R(W) ===>

The following relationships exist between pew, n) and the effect of a multiplicative change in
n, i.e. all outcomes are multiplied by a constant A, on the risk premium r(Wo, z):

IPRRA:
CPRRA:

DPRRA:

Increasing
Constant

Decreasing

Increasing
Constant

Decreasing
r(Wo, n)/ApeW, n) ===>

11 The relationships between ARA, RRA and PRRA, and the risk premium have been more formally discussed by

Pratt (1964) and Menenez & Hanson (1970).
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2.8. Appendix: The Argument of The Utility Function
The following two issues are important in the specification of utility functions for empirical
testing: (1) Should final wealth or profits be used as the argument of the utility function? (2)
Can the argument take both negative and positive values? The range of the argument has
consequences for the choice of parametric form for the utility function, as some forms are not
defined for negative values (e.g. the logarithmic utility function), while others provide
"perverse" risk preference measures in terms of ARA or RRA in the case of negative
outcomes.

There has been some debate regarding the use of end-of-period wealth or profits as the
argument of the firm's utility function.1 End-of-period wealth is a positive linear function of
profits:

W=Wo+n,

where W is random wealth at the end of the period, Wo is certain initial wealth, and n is the
flow of profits in the period. End-of-period wealth W increases if realised n>O, and decreases
ifrealised n<O.

Katz (1983) pointed out that the measure of relative risk aversion used by Sandmo (1971) and
others had profits as argument instead of terminal wealth, i.e., relative risk aversion was
defined by

R(n) = _ U" (n ) n
U'(n) ,

which deviates from the original definition of relative risk aversion provided earlier. In the
literature it is generally assumed that terminal wealth is always positive. This is, however, an
assumption that not always conforms with empirical observations? If terminal wealth is
always positive, the coefficients of absolute and relative risk aversion will always be positive
and monotonously decreasing or increasing for the risk averse firm. Profits may be negative in
some states of the world, and thus R(n) may take both negative and positive values.

Use of profits as the argument of the utility function may imply two things: (a) The special
case of initial wealth equal to zero. In this case W = n. (b) The individual's risk preference
structure is such that initial wealth has no influence on the individual's decision. This is the
case if the individual is risk neutral, or more generally if the individual's risk preference

1 See Katz's (1983) criticism of Sandmo's (1971) use of profits instead of fmal wealth as the argument of the

firm's utility function, and the subsequent debate (Briys & Eeckhoudt, 1985; Hey, 1985; Katz, 1985).

2 For example, for several years the net wealth of Norwegian salmon farmers, ifrepresented by the equity of the

farm, was negative for the industry on average.
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structure exhibits constant absolute risk aversion (CARA).3 In appendix 2.A we saw that
CARA implies that the risk premium required by the individual is invariant to changes in
initial wealth.

Assumption (b) is contrary to empirical observations, which provide plenty of evidence that
the scale of the bet relative to initial wealth to a large extent influences the risk premium
required by the individual. Ifparticipation in the gamble is voluntary, it determines whether an
individual will participate or not. If the magnitude of the bet is such that the individual may
loose his entire wealth in the case of an adverse outcome, and he can not buy an insurance, he
will probably refrain from participating.

3 Under risk neutrality, U'(W) = O,which implies that the coefficient of absolute risk aversion is A(W) = O
=constant.
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3. ECONOMETRIC MODELS OF FIRM BEHAVIOUR AND
TECHNOLOGY UNDER PRODUCTION RISK

This chapter is concerned with empirical implementation of the theoretical framework
provided by models of the competitive firm under production risk provided in Chapter 2. The
previous chapter presented theoretical requirements for stochastic production function
specifications, the so-called Just-Pope postulates. These postulates have several implications
for specification and estimation of econometric models of production. In this chapter we will
discuss how earlier empirical studies have dealt with these specification and estimation issues.

In recent years there have been some interesting developments in econometric modelling of
producer behaviour under output risk. Not surprisingly, agricultural production has been the
subject of most empirical studies, and overall they provide a substantial evidence on the
presence of production risk and risk aversion in agricultural decisions. For many empirical
studies, however, the methodological approach or the quality of the data may be questionable.
Consequently, the empirical results of these studies must be assessed with care. A survey of
the literature reveals that there still may be room for methodological improvements, and
certainly more empirical studies.

The empirical research on production risk has been overwhelmingly dominated by primal
model estimation. To some extent this can be explained by the fact that dual models that in
principle may be tractable for empirical application only recently have been provided in the
literature. It also turns out that dual models lose some of their attractiveness for empirical work
when production risk is introduced, because of unobservables and more complicated
functional forms. This chapter will be devoted mainly to discussion of primal specification and
estimation issues.

First, in section 3.1, we discuss the problems associated with using traditional neoclassical
production function specifications when output heteroskedasticity is present. Just-Pope
function approaches are discussed in section 3.2. Section 3.3 presents Kumbhakar's approach
to the econometric measurement of a stochastic production technology. Estimation of non-
normal production models is discussed in section 3.4. An example of joint estimation of risk
preference structure and production technology is presented in section 3.5. Section 3.6 presents
studies which deal with econometric measurement of technical change and technical
efficiency. Section 3.7 discusses the performance of the FGLS vs. the ML estimator for Just-
Pope production function specifications. A discussion of primal versus dual model estimation
is undertaken in section 3.8, while section 3.9 provides a summary of the chapter.
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3.1. Consequences of Using Traditional Production Function
Specifications under Production Heteroskedasticity

Since the introduction of flexible functional forms in the 1970s, a large number of econometric
productivity analyses have been presented. Most of these studies have, explicitly or implicitly,
assumed a deterministic setting. In terms of production risk, this is probably a relatively safe
assumption for a large number of industries, particularly in the manufacturing sector.

Production processes in manufacturing are generally characterised by a high degree of control.

However, for many sectors of biological production the assumption of a non-stochastic
production technology is more questionable. Variations in temperature, rainfall, diseases and

other factors that to a large extent cannot be controlled by producers, are undoubtedly

important sources of the substantial yield variations experienced in several sectors. These
factors make certain types of production inherently risky, but that does not necessarily mean
that the producers are unable to control the level of production risk. Empirical studies indicate

that some controllable inputs may increase the level of risk, while other may reduce the level

of risk.

While there has been much focus in deterministic productivity analyses on the marginal
productivity of inputs, i.e., dy1dxk' the marginal risks of input, dvar(y)ldxk> become an issue of

interest for the firm when input levels also may affect the level of risk. According the theory of

competitive firm under production risk presented in Chapter 2, the firm will take into account
both the marginal effect on mean production and on production risk when considering a
change in input use. Traditional econometric specifications of the production function are,

however, unable to measure the effect of input changes on output risk. Furthermore, they
produce biased estimates of the parameters of the mean production function.

These deficiencies of traditional neoclassical production function specifications can be
illustrated by the following example: Assume that the "true" production technology is given by
the Just-Pope form y = lex; a)+h(x; ~)e , where the mean production function/(x; a) takes the

Cobb-Douglas form
n

/(x;a) = aoI1x:t •

k=!

In traditional econometric production analyses it has been common to estimate

(3.1) y=ao(Ux:},
where ak > O for all k, e is an i.i.d. stochastic disturbance with E(e) = O and var(e) = 0e =
constant. The conditional variance of output is

var(y) =a~(U x;"' )var(e')'
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which gives the marginal risk associated with an increase in input k

uvar(y) _ 2ala~ (nn 2atJ (E) O--..;.;.....;....- Xl var e > ,
()xl Xl 1=1

assuniing that uk> O. Since the marginal productivity of an input is assumed to be positive, uk

must always be positive. Consequently, the marginal effect of increasing the use of an input
will always be to increase the variability of output. However, in agricultural production it is a

fact that for several inputs, such as pesticides and irrigation, the marginal effect of increasing
their use is to decrease the variability of output, at least up to a certain level. Hence, the use of
traditional production function estimates in evaluating policies may be questionable,
particularly for production processes where risk-reducing inputs are used extensively.
Although the above example uses the simple Cobb-Douglas specification, the criticism of
traditional stochastic specifications which impose positive marginal risks on all inputs also
applies to specifications such as homoskedastic trans log specifications. In Chapter two it was
shown that the Just-Pope form does not impose such restrictions. For example, both I(x) and

hex) can be specified with the Cobb-Douglas form, but the parameters of hex) may be negative
to allow negative marginal risk.

The econometric specification (3.1) is usually chosen because of econometric tractability; it

facilitates use of linear estimation techniques by taking logarithms on both sides. If the correct
specification of the Cobb-Douglas technology is not (3.1) but instead a Just-Pope

specification, which implies that there is an additive error term instead of a multiplicative error
term, then estimates of a will not only be inefficient, but also be biased.

Estimation can be accomplished by rewriting the Just-Pope form for observation i as

(3.2) y; = I(x;,a)+ up E(u; ]=O, E(u; uj] =O for i '# j,

where

Equation (3.2) can then be considered as a nonlinear, heteroskedastic regression of y on x, and
the parameters a can be consistently estimated by nonlinear least squares (NLS) under a broad

range of conditions (Just & Pope, 1978). However, there are several shortcomings associated

with this approach. First, hypothesis testing of the importance of various variables cannot
generally be performed because of misleading estimates of the standard errors due to the
heteroskedasticity in the model. The empirical results of Just & Pope (1979) suggest that
estimation assuming homoskedasticity can lead to standard error estimates that indicate much
greater precision in estimation than is obtained. Second, it is possible to improve the efficiency
of the estimates (at least asymptotically) by explicitly taking account of the heteroskedasticity.
Just & Pope (1978; 1979) present estimation procedures for obtaining asymptotically efficient
parameter estimates when the production technology is of the Just-Pope form.
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The problems associated with traditional production function specifications in the presence of

production heteroskedasticity in inputs can be summarised as follows:

(i) They do not provide information on the marginal output risks of inputs because of their

positive marginal risk restrictions.

(ii) They provide misleading estimates of the standard errors of estimated parameters, and

therefore make hypothesis testing difficult.

The subsequent sections will discuss how some studies have dealt with these shortcomings of
traditional production function specifications in empirical analyses of risky production

technologies.

3.2. Just-Pope Approaches to the Econometric Modelling of the
Stochastic Production Technology

Primal approaches in the econometric modelling of the firm under production risk encompass
a very heterogeneous group of studies. Table 3.1 presents an almost exhaustive overview of
primal approaches. As can be seen from the table, there are different approaches with respect

to the functional form of the production function, the probability density function (pdf) of the
error term, and method of estimation. Furthermore, most studies estimate only the production

function, while a few estimate a system consisting of the production function and the utility

function, or functions derived from the utility function. According to table 3.1, Just-Pope
production functions have been used in the majority of the empirical studies. Furthermore, the
restrictive Cobb-Douglas parametrization dominates in these studies. The most common

estimator is a linear or nonlinear feasible generalised least squares. In the following we discuss
some of these approaches in more detail.

3.2.1. Econometric Specifications of the Just-Pope Production Function

Following the introduction of the Just-Pope postulates for the stochastic production in Just &
Pope (1978), several econometric production models which satisfy these postulates have been
presented in the literature. Studies that estimate production models of the Just-Pope form y; =
f(x;; a) + Ub u; = h(xi; J3)Cb include Just & Pope (1979), Griffiths & Anderson (1982), Wan &

Anderson (1985), Love & Buccola (1991), Saba et al. (1994), and Traxler et al.(1995). These
studies have in common that the effect of input changes has been separated into two effects;
the effect on mean and the effect on variance. The majority of the above studies use Cobb-
Douglas parametrizations of the mean functionjix.; a) and the variance function h(xi; J3). One

departure from the Cobb-Douglas
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specification is Just & Pope (1979), who also estimate a simple translog parametrization - with
only one input - off(xi; a) and h(xi; ~). Saha et al. (1994) use an exponential specification for

the variance function hex). Traxler et al. (1995) assume a linear quadratic mean function and
Harvey's multiplicative heteroskedasticity for the variance function (see Appendix 3.A). The
error term e is generally assumed to be normally distributed. The exception is Saha et al.
(1994), who assume a Weibull distribution.

According to table 3.1 the dominant estimation procedure is linear/nonlinear feasible
generalised least squares (FGLS): Just & Pope (1979), Griffiths & Anderson (1982) and Wan
& Anderson (1985) estimate the parameter vectors a and ~ by a multi-stage nonlinear least
squares procedures. The procedures generally involve first estimating y = fix; a)+u, where

u=h(x; ~)t:, without considering the heteroskedasticity to obtain estimates of a and u. Then the
estimated residuals li are regressed upon hex; ~) to obtain estimates of ~. The obtained
estimates of a and ~ are consistent but not efficient. Further steps, which include weighted

A

least squares regressions with predicted variances hex; ~) as weights, are undertaken to obtain

asymptotically efficient estimators for a and ~.

Love & Buccola (1991) and Saha et al. (1994) estimate the production function together with
the utility function, and consequently these studies use other estimation procedures for their
econometric models.

3.2.2. Econometric Production Models with Firm- and Time-Specific Effects

One weakness of several econometric studies of production under risk is that firm- and time-
specific effects are not accounted for in the model specification. Chapter four provides several
arguments why firm heterogeneity and time-specific effects should be accounted for in

econometric models, particularly when the objective is to measure the structure of production
risk. A few studies of production risk, such as Griffiths & Anderson (1982), Wan & Anderson
(1985) and Kumbhakar (1993) have utilised the panel data sets available to them to account for

firm heterogeneity. 2

Griffiths & Anderson (1982) estimate the Just-Pope production model

i= 1,...,N, t= 1,...,T,

where uit is a heteroskedastic error term, on a balanced panel data set. Two specifications of
the variance function is estimated: (1) uit=h(xit; ~)(t:it+1J,+At), and (2) uit=h(xit; ~)t:it+1J,+At,

1 A GLS estimator assumes that the parameters of the covariance matrix of ui' E[uu'] = a,is known. In empirical

studies the covariance matrix is generally unknown, which means that an estimate of the covariance matrix, il,
is required in order to perform GLS. FGLS is GLS with the estimator il used for the covariance matrix.

2 Wan & Anderson (1985) is an empirical application of the model presented by Griffiths & Anderson (1982) on

Chinese foodgrain production.
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where Tli is the firm-specific random effect and A.t is the time-specific random effect. Inmodel
(1) all three error components, h(xit; (3)eit, h(xit; (3)Tli and h(xit; (3)A.t, are heteroskedastic in the
sense that their variances depend on input levels. In model (2) the firm- and time effects are
homoskedastic. All three random effects ei- Tli and A.t are assumed normally distributed.
Furthermore, for both models it is assumed that

E[eit]=E[Tli]=E[Åt]=O, E[E;,]=a~, E[Tln=~, E[A.;]=aL
and that the xit' eit, Tli' A.t are mutually uncorrelated for all i and t.

Griffiths & Anderson estimate several variants of models (1) and (2) by nonlinear FGLS. They
follow the estimation procedure of Just & Pope (1978), with some modifications to allow for
the inclusion of error components in the models.

Cobb-Douglas parametrizations of the mean and variance function are used in both Griffiths &
Anderson and Wan & Anderson. This specification has largely been abandoned after the
introduction of flexible functional forms, because it is regarded as an overly restrictive
representation of production technologies.

In both Griffiths & Anderson and Wan & Anderson the estimated variance function
parameters are generally insignificant at conventional significance levels. Tentative
explanations for the lack of significance, in addition to data problems, can be provided by the
theoretical and simulation study findings on FGLS estimators. Just & Pope shows that the
FGLS estimator provides asymptotically less efficient estimates of 13 than the ML estimator,
and also performs worse in small sample simulation studies (Saba, Havenner, & Talpaz,
1997).

A potential source of biases in parameter estimates are the random effects assumptions of no
correlation among the error components, and between the error components and regressors. It
is difficult to know a priori how sensitive parameter estimates are to violations of these
assumptions.

Wan, Griffiths & Anderson (1992) extend the above model into the seemingly unrelated
regressions (SUR) framework, which is relevant when there are severaloutputs and the
disturbances from the production functions corresponding to the different outputs are
correlated.

3.3. Kumbhakar's Approach: Translog Production Function with
Risk and Technical Efficiency

Kumbhakar (1993) demonstrates a method of measuring both production risk and mean
technical efficiency using panel data. A flexible (translog) production function is estimated on
a data set of Swedish dairy farms. Production risk is specified as a function of the inputs in the
following manner:
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Y. = I(x.. ex)el1j+ÅI+h(Xk;~)Ekd d' ,

where Tli is the firm-specific effect, At is the time-specific effect, and Eit is the random

exogenous production shock.

In the study 11iand At are treated as fixed, i.e., as dummy variables. Thus the only random
component is Eit. Kumbhakar uses a translog function for lnj(x; ex), and a linear function for

h(x; ~):

In y, = ao + Lak lnxkit +..!.LLakj lnxkitlnxjit +11i+ Åt +[Lf3/Xlit]Eil .
k 2 k j /

In the first step of the estimation procedure h(x; ~) is ignored and the function
1

In y; =ao +Lak lnxkil +- LLakj lnxkillnxjit +11i+Åt,
k 2 k j

is estimated by OLS. Using the estimators of ex, 11iand At' the residuals uit are calculated.
Then uit is regressed on h(x; ~) by non-linear methods to obtain estimates of ~. In a third step

weighted least squares are performed to obtain asymptotically efficient estimates of ex and ~

(see appendix 9.E).

A nice property of Kumbhakar's specification is that it allows linear estimation of the translog
10. This is not possible for a translog in the Just-Pope formulation, because the variance

function is additively related to the mean function.

The specification is flexible enough to allow both negative and positive marginal risks.
Technical efficiency is separated from risk and the usual error term. Thus, the model can be

viewed both as an extension of stochastic production frontier models, and as an extension of
standard neoclassical production models which include only risk. In Kumbhakar's formulation
of the production function, differences in realised output levels may not only be due to
different realisations of the production shock E; it may also be explained by farm-specific and

time-specific effects. Kumbhakar finds both negative and positive marginal risks in his
empirical application. Furthermore, he finds evidence of variations in mean farm efficiencies
over time and across farms within a particular year. However, in the presence of risk aversion
Kumbakhar does not measure "overall" technical efficiency, since he does not take into
account the variance function when ranking producers (see Chapter two).

A problem with Kumbhakar's specification is that h(x; ~) is not additively separable fromj(x;
ex). The variance function interacts with the mean function in a multiplicative manner. As

stated in Chapter two, this specification always violates two of the Just-Pope postulates and
may also violate the remaining, depending on the values of exand ~. Furthermore, unlike the

Just-Pope form direct interpretation of the estimated parameters of the variance function is not
possible with Kumbhakar's form, as can be seen from the expression for marginal risk
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presented in section 2.2. The functional form also makes ML estimation, which we later will
see can be an attractive alternative to FGLS, very cumbersome.

However, in the presence of firm heterogeneity with respect to mean productivity, the translog
has its advantages in the specification of firm-specific effects compared to linear
parametrizations of the Just-Pope model. In the usual formulation of translog production
function with firm-specific fixed effects,

which implies that

where j(x)=exp(ak+ Lkaklnxk+O.5LkLlakllnxklnxl). We see that the firm-specific

effect Tli interacts multiplicatively withj(xit). For two input vectors x and ax (a > l) and two

firms i andj where Tli > Tlj, the difference in mean output conditional on x, E[yitl x; Tli] - E[Yjtl
x; Tlj]' is smaller than the difference in output conditional on ax, E[yitl ax; Tli] - E[Yjtl ax; Tlj]

with the above formulation. However, the translog violates Just-Pope postulates for stochastic
production function because of the multiplicative interaction between the error term u andj(x).

A non-logarithmized translog function with additive error term is not tractable for estimation,

because of the difficulty of obtaining parameter convergence.

Alternatively, one can employ a Just-Pope parametrization which is linear in parameters Cl,

such as the linear quadratic form

s. =ao + Lkakxk.it +O.5LkLlaklxk.itXl.it +1]i+uit·

With the above specification the firm-specific effect enters the production function additively,
which implies that the difference in mean output between two firms i and j is the same for
input vectors x and ax (a > 1).

Intuitively, the multiplicative specification of the fixed effect in the translog model may be
considered more appealing than the additive specification in the linear quadratic model. The

fixed effects are assumed to represent (often unobservable) factors that are not included as
regressors in the model, such as the quality of management. Often unobserved factors are
correlated with inputs. It is reasonable to assume that with increasing scale of operation, the

difference in output levels between two firms with different unobservable characteristics will
not stay constant, but increase.

3.4. Econometric Modelling of the Stochastic Production
Technology with Non-Normal Error Terms

There are no a priori reasons to assume that the conditional distribution of output is normal (or

symmetric); it may be skewed to the right or to the left. Changes in input levels may have
effects on third and higher moments. Theoretical models outlined in Chapter two also suggest
that changes in third and higher moments affect the optimal input levels of the risk averse firm.
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Empirical researchers have responded to the problems associated with assuming normality in

two ways; (1) by using other parametric distributions, such as the conditional beta (Nelson &

Preckel, 1989) or the conditional Weibull (Saba et al., 1994), (2) by using a non-parametric
approach to avoid making any a priori distributional assumptions (Antle, 1983; Antle, 1987;
Collender & Chalfant, 1986), or (3) estimating a flexible parametric approximation of the
cumulative density function (Taylor, 1984). In the following, examples of the first two

approaches are presented.

3.4.1. Models with Beta and Weibull Probability Distributions

Nelson & Preckel (1989) propose a conditional beta distribution as a parametric model for the
probability distribution of output. If the distributional assumptions are correct, it will produce

more efficient estimates than nonparametric approaches, such as Antle's (1983).

For certain parameter values the beta distribution (cc-I and {3>1) becomes bell-shaped. The

bell-shaped case may exhibit skewness in both directions. The flexible skewness of the bell-

shaped beta distribution is not shared by the normal, log-normal, exponential, and gamma

distributions.

Crop yield, y, may be distributed as a beta random variable for several reasons. First, crop

yields are known to fall in a range from ° to some maximum possible value. The beta random
variable may be defined on an interval (0, yU), where yU is a finite upper bound on the random
variable. Second, crop yield distributions can be significantly skewed either to the right or to

the left. The beta distribution has such flexibility.

The probability density function of an unconditional beta random variable with a range from °
to yU can be written as

rea + {3) y(a-I)(y" _ y)(P-I)
(3.3) p(y) = r(a)r({3) x y"(a+P-I) ,

where a, {3,and yU are parameters, and rex) is the gamma function. The distribution can be
conditioned on a vector of inputs, x, by expressing the parameters a and {3as functions of x.

The parameter yU is not expressed as a function of x because regularity conditions for
maximum likelihood would be violated.

Implementation of the conditional beta model requires that functional forms for a(x) and !3(x)

are chosen. The functions a(x) and {3(x) must be consistent with regularity conditions for

maximum likelihood estimation. In addition to this requirement, arguments for simplicity and
parsimony might justify linear or log-linear functions. After some experimentation, a log-linear
functional form was chosen by Nelson & Preckel for their empirical application. They use the
following Cobb-Douglas functions for a(x) and f3(x):

m

(3.4) a(x) = aoIIx;;
i=1

and
m

{3(x) = boIlx;; ,
i=1
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where m is the number of inputs and ai (bi) is the percentage change in lX (P> as xi rises by 1 %.

Nelson & Preckel present expressions for the mean, variance and skewness of the conditional

beta distribution.

In order to obtain consistent estimates, the conditional beta distribution is estimated with a
two-step procedure. First, maximum likelihood (ML) estimation of the unconditional beta
distribution, (3.3), produces consistent, asymptotically normal and efficient estimates of lX, ø
and yU. ML estimates of lX, ø and yU in the unconditional model are obtained by numerically

maximising the log-likelihood function of this model. In the second step the functional
expressions (3.4) for lX(X) and Ø(x) are inserted into (1) for lX and ø to obtain a conditional beta

distribution. ML estimates of aQ, al"'" am and bQ, bl,'''' bm are obtained by numerically
maximising the log-likelihood function of the conditional beta distribution, using the
unconditional ML estimate of yu obtained in the first step.

ML estimates of the parameters are consistent, asymptotically normal, and asymptotically

efficient under weak regularity conditions. In order for the ML estimate of yu to have these
properties ø must be greater than two in the first stage of the estimation. Therefore, in the first
stage it is necessary to verify that {3>2.The parameters lX and ø must each be greater than one

in order for the beta distribution to be unimodal. If this condition is violated the beta
distribution is U or J shaped, implying that an alternative specification is probably needed.

The model was applied on farm-level data sets from five Iowa counties (see table 3.1).
Evaluation of the expression (3.3) at the ML estimates and the mean values of the explanatory
variables indicated that the yield distribution is negatively skewed in all counties. This implies
that a farm using mean values of the explanatory variables would experience above-average
yields more frequently than below-average yields in all counties. Nelson & Preckel also
undertake likelihood ratio tests to test for the independence of input levels and skewness. The
hypothesis is implemented by imposing the restrictions ai = bi for all i except O.For four of the
five counties the null hypothesis of independence is rejected.

Saba et al. (1994) use the Just-Pope parametrization y = Allxiai + exp{:un;x,+Ei}, where Ei is a

Weibull distributed error term. The Weibull distribution does not impose, nor preclude, a
symmetric pdf. The domain of a Weibull distributed variable is O to +00, which rules out the

possibility of negative output. The approach of Saba et al. will be described further in section
3.5. The derivation of ML estimators for the production function parameters by Saba et al.
clearly shows that the econometric estimation procedure is complicated by assuming a Weibull
distribution for the error term instead of a normal distribution. However, the empirical
estimates of the parameters of the Weibull distribution indicate that it is appropriate to use
such a non-normal error term distribution for Saba et aI's empirical application.
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3.4.2. Antle's Linear Moment Model Approach

Antle (1983) proposes a flexible moment-based approach to estimate the parameters of the
stochastic production technology. The basis for the specification is the moment functions

and i = 2, ..., m,

where J1i is the ith moment, x is the vector of inputs, a.i is the vector of parameters relating x to

J1i, and the model is specified with m moments.

Antle chooses a linear quadratic parametrization of the moment functions, where the ith

moment is given by

J1i =aiO + Lkaikxk +0.5LkL/aik/xkx/.

In the linear quadratic moment model there are different parameter vectors a.i for each moment
function. The LMM does not impose restrictions on the a.i either within or across equations

and is therefore a more general representation of the output distribution than the Just-Pope
models presented earlier in this chapter.

Antle presents a three step GLS estimation procedure, where the mean function is estimated

first, and then the higher moment functions are estimated by using the estimated residuals from .
the mean function. Antle shows that the GLS estimators converge in distribution to the true

parameter values.

Except for Antle (1983) Antle & Goodger (1984) and Antle & Crissman (1990), Antle's

approach has not been applied in this field of research. One reason may be that researchers
regard heteroskewness and heterokurtosis to have only limited significance for producer
behaviour. Another reason may be that the estimation procedure is very cumbersome. There

are also some practical difficulties with the estimation procedure: The estimated variances

used in the GLS regressions may be negative, and nonlinear programming methods with
nonnegativity restrictions thus have to be employed for estimating the even moments.
Although Antle shows that the nonlinear programming methods provide consistent estimates
of the parameters of the even moment functions, it makes estimation more cumbersome.

Taylor (1984) criticises Antle's approach for not being

"practical for use in empirical studies that directly require the equation of a pdf or cdf.
That is, even though the moments uniquely define (in a theoretical sense) the underlying pdf,

the analytical form of this pdf may be difficult, if not impossible to obtain except in special
cases. Thus, Antle's method may not be useful in safety-first and stochastic dominance
analyses, although it may be practical when the pdf or cdf is not needed per se" (Taylor, 1984,
p.69-70).
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3.5. Joint Estimation of Risk Preference Structure and Production
Technology

Most econometric models impose rather strict assumptions on the risk preference structure,
which may lead to biased risk response estimates. This issue is addressed by Saba (1993), who
introduces a new functional form for the utility function, the Expo-Power (EP) utility function.
This function allows both decreasing, constant or increasing absolute risk aversion (DARA,
CARA and lARA) and decreasing or increasing relative risk aversion (DRRA and IRRA),
depending on the parameter values of the function. Furthermore, EP can exhibit both risk
averse, risk neutral and risk loving preferences. Thus, the EP imposes no a priori restrictions
on the risk preference structure. The EP utility function is given by

U(W) = (J - exp(-{3Wa),

where W is wealth. Parameter restrictions of the EP utility function are fJ> 1 and a{3>O.The
measures of absolute and relative risk aversion are A(W) = (1- a + a{3Wa) / W and
R(W) = 1-a +a{3Wa . Under its parameter restrictions, the EP function exhibits DARA if a
<1, CARA if a=1, and lARA if æ-I. Also, EP exhibits DRRA if {3<Oand IRRA if {3>O.Saba
(1993, footnote 4) shows that a utility function can exhibit either CARA or CRRA but never
both under finite parameter values. Also, it follows from the EP utility function's parameter
restriction a{3>Othat DRRA ({3<O)implies DARA.

Saba et al. (1994) proceed to develop a method which allows joint estimation of risk
preference structure and production technology, using the expo-power utility function. The
model of Saba et al. assumes that output level risk is the only source of uncertainty facing the
producer. For the production function Saba et al. use a parametrization of the general Just-
Pope form y = f(x)+h(x, e), where f(x) takes the Cobb-Douglas form and hex, e) takes the
exponential fonn exp{Dn;:x,+e}. If mj<O, then the jth input is risk-reducing. The method is
applied on a firm level data set of 15 Kansas wheat farms for four years. According to the
parameter estimates, the farmers in the sample exhibit decreasing absolute risk aversion
(DARA) and increasing relative risk aversion (IRRA). All parameter estimates for the
deterministic part f(x) of the production function are well-behaved and significant. According
to the parameter estimates for the stochastic part, capital input exhibits increasing marginal
output risk, while materials inputs exhibit decreasing marginal output risk.

Saba et al. also estimate the production technology parameters under the hypothesis of CARA
and independently of the risk preference structure. Their empirical results show that the
parameter estimates are sensitive to alternative assumptions, both with respect to absolute
value and sign. Furthermore, they find that combined estimation of the production function
and the utility function is more efficient than separate estimation of each in the sense that the
standard errors of the estimates are consistently and considerably lower than those under
alternative settings.
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3.6. Econometric Analysis of Technical Change and Technical
Efficiency

An issue that until recently has been ignored in the econometric literature of the firm under
production uncertainty, is the effect of learning-by-doing and adoption of new technology on
risk. To some extent this can probably be explained by the fact that there has been little
discussion in the theoretical literature of the criteria for adoption of new technologies under
production risk compared with the deterministic case. In the standard deterministic model of
the competitive firm, new technologies are adopted in order to increase productivity. Under
production risk the competitive firm should not only adopt new technologies in order to
increase mean productivity; it should also be concerned about the effect of introducing a new
technology on the variance of productivity (see section 2.5). If a firm can choose between two
technologies which are identical with respect to mean productivity for different input vectors,
it will choose the technology with the smallest output variance conditional on the input vector.
Under risk aversion the firm may adopt a new technology even if it shifts the mean marginal
cost curve upwards, provided that the reduction in production risk is sufficiently large to
increase the firm's expected utility.

3.6.1. An Econometric Analysis of Production Risk and Innovations

One of the few econometric studies so far to address the issue of production risk effects of
technical change is Traxler et al. (1995). Traxler et al. analyse the effect of introduction of
new varieties of wheat for the period 1950-86 on the first two moments of the wheat yield in a
Just-Pope model framework. In a stochastic production function of the Just-Pope form,
technical change can be accounted for by implementing a trend variable t both in the
deterministic and stochastic component in order to decompose the effects on mean
productivity and production risk:

y =f(x; t)+h(x; ne.
By using a second-order approximation for h(x; t), it is possible to analyse if the rate of change
in production risk is decreasing or increasing over time. Traxler et al., however, do not use a
trend variable to proxy the effects of technological change. Because they have direct
information on the particular wheat variety used in each yield observation in the data set, they
can use the year of the release of the variety minus a base year as the explanatory variable to
analyse the effect on the mean and variance of production. Unlike the conventional trend
specification, this makes it possible for them to directly measure the effects of the individual
varieties. In general, data sets available to researchers do not provide direct information on
particular innovations, e.g. new types of machinery, for which it would be interesting to
analyse the productivity effects. Consequently, the researcher is forced to use the conventional
trend specification.
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Traxler et al. use a simple linear quadratic specification for the mean function. It has only one
input (nitrogen). For the variance function Harvey's multiplicative heteroskedastic
specification

var(ui) = h(xi; ~) = exp(xi~)'

is used (Harvey, 1976; Judge, Griffiths, Hill, Lutkepohl, & Lee, 1988, pp. 365-66). The

function is estimated by a three-stage FGLS procedure. A linear quadratic specification is used
as the argument of the exponent.

Traxler et al. find that the successive wheat varieties that were introduced until 1970 were
characterised by increasing mean yield, but also accompanied by higher yield variances. Thus
high yield potential was given higher priority than yield stability. However, for the varieties

released from 1971 and onward, yield stability was given much more priority. The post-1970

varieties were characterised by decreasing yield variance, but much slower mean-yield growth.
A conclusion to be drawn from the study of Traxler et al., is that there probably exists a mean-
variance trade-off also in wheat selection.

3.6.2. Measurement of Technical Efficiency

Antle & Crissman (1990) analyse technical efficiency as farmers adopt new production

technologies. The data set is a sample of Philippine rice farmers that use traditional varieties

and farms that use modern varieties. Antle & Crissman estimate relative technical efficiency,
as defined in Chapter two, by using a two-step procedure. First, the parameters of the
production technology are estimated by a linear moment model. This allows the moments of
the production technology to be calculated for chosen input levels. Second, the calculated
moments and different parameter values for the farmers' attitude towards risk are inserted into
an expected utility model. Antle & Crissman postulated a negative exponential utility function

expanded with a third-order Taylor series for the Philippine rice farmers:
3

EU = l-e-ÅIlI -e-ÅIlI L(-A);,uJ i!,
;=2

where A. is the risk aversion parameters and fli is the ith moment of farm revenue.' Thus, they

account for downside risk aversion.

The measure of technical efficiency (TE) is defined as

'TE = EU(,u(x;{JI),A)
Æ, kl {J'EU(,u(x; k),A)

3 Note that the argument of the EU function is the moments of revenue instead of the moments of profits. Given

input levels and input prices, the moments of revenue are equal to the moments of profits, except for mean

revenue, which differs from mean profits by the amount of input costs, wx.
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where Øk and Øl are the parameter estimates for technology k and I, respectively. Antle &

Crissman calculated relative technical efficiency for the two different technologies (traditional
and modem varieties) at two different stages (1-2 years and 3-5) years for different values of
the risk aversion parameter A.. Hence, they were able to compare different technologies

accounting for risk characteristics of output and the risk preferences of farmers. Antle &

Crissman found that traditional varieties were technically more efficient than modem varieties
in the first stage of the adoption process, but that the situation was reversed at the second stage

of the adoption process.

3.7. FGLS vs. ML Estimation of Just-Pope Production Functions

As can be seen from table 3.1 the overwhelming majority of previous econometric studies of
production risk have used linear or nonlinear FGLS methods in the estimation of Just-Pope
production functions.

Since the Just-Pope model is a heteroskedastic specification, we can exploit more general

results on the properties of different estimators under heteroskedasticity in the econometric
literature. Table 3.2 presents small sample and large sample properties of different estimators
which can be used in the estimation of Just-Pope production technologies.

Table 3.2. Theoretical small and large sample properties of different estimators for Just-Pope

production technologiesr---------~r-------------------------.--r_------------------------~

Harvey's two-stage: Consistent and as.
Harvey's two-stage: Consistent and as. efficient
efficient
OLS: Unbiased but inefficient estimate OLS: N.A.

Mean function (aparameters)

Large sample

OLS: Consistent and AND estimate of a,
but inconsistent estimate of var( a)
GLS: Consistent and AND estimate of a
White: Consistent estimates of both a
and var(a) (White, 1980)
FGLS. Consistent, AND and as. efficient
ML: Consistent and as. efficient estimate
ofa

of a, inconsistent estimate of var(a)
GLS: Unbiased and efficient estimate of
a
White: Generally unknown
FGLS: Unbiased but inefficient estimate
of a (Judge et al., 1988, p. 353)
ML: Generally unknown, but see Saha et
al. (1997)
Harvey's two-stage: Generally unknown

Small sample

Variance function (~parameters)

OLS: N.A.
GLS: Assumes ~ already known
White: N.A.
FGLS: Consistent (except ~o) but as.
inefficient estimate of ~
ML: Consistent and as. efficient estimate
of~

GLS: ~ already known
White: Not estimated
FGLS: Biased and inefficient (Saba et al.,
1997)
ML: Generally unknown, but see Saba et
al. (1997)
Harvey's two-stage: Generally unknown

N.A.: Not applicable AND: Asymptotically Normally Distributed
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If the primary interest is on the mean function, then OLS with White-adjusted standard errors

provides consistent and asymptotically efficient estimates (White, 1980). On the other hand, if
there is substantial heteroskedasticity that can be attributed to production risk, then the
variance function also becomes a subject of interest. We have seen in Chapter two that theories
of production risk predict that even under risk neutrality optimal input levels will diverge from
competitive levels. Therefore one should estimate the variance function, preferably by a
method that provides consistent estimates of both the parameters of the variance function, (3,
and the covariance matrix var((3). According to table 3.2 there are three estimators that provide

consistent estimates of (3; FGLS, maximum likelihood, and Harvey's two-stage estimator."

However, only ML and Harvey' s two-stage estimator provide asymptotically efficient
estimates of (3.

Previous empirical studies applying the Just-Pope framework have only used FGLS estimators.
Harvey (1976) has shown for the multiplicative heteroskedastic model, which is a special case
of the Just-Pope function with linear mean function and variance function var(ui) = exp(xi(3),
that the GLS and ML estimators of (3have asymptotic covariance matrices

COV(~GLS) = 4.9348(X'X)-1 and COV(~ML) = 2(X'X)-I,

respectively, where X is the matrix of stacked xi vectors (Harvey, 1976; Just & Pope, 1978).

Just & Pope (1978) have obtained similar results for the special case of the Just-Pope function
with both JO and hO log-linear in parameters, which is the case for the Cobb-Douglas and

translog form.' They show that the asymptotic covariances are

cov(~ GLS) = 1.2337(X'X)-1 and COV(~ML) = 0.5(X'X)-I,

Comparing the covariance matrix of the ML estimator of (3with the GLS covariance matrix we

see that both for Harvey's special case and Just & Pope's special case is the ML estimator for (3

more than twice as efficient asymptotically, or more precisely, by a factor of 2.4674.

The ML estimator involves distributional assumptions for uio If the distributional assumption is
not correct the ML estimator of ex. and (3 may be inconsistent. This is not necessarily so,

because ML estimates that are formed on the incorrect assumption of normality, so-called
quasi-maximum likelihood estimators, may provide consistent estimates of the population
parameters (White, 1982).6

4 See appendix 3.B for a presentation of Harvey's two-stage estimator for the parameters of the variance

function.

5 With Harvey's formulation of the Just-Pope model, both the mean and variance function can be estimated by

linear least squares, while for Just & Pope's special case the mean function has to be estimated by nonlinear

least squares.

6 White (1982) proposes tests for parameter inconsistency under distributional misspecification. See Godfrey

(1988) for a discussion of distributional rnisspecification and testing.
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In practice, econometric estimation will usually be undertaken on small samples, and it is

therefore maybe more appropriate to be concerned about the finite sample performance of
different estimators than their asymptotic properties. According to table 3.2 there are no

theoretical findings to support the choice of estimator in finite samples, as long as we are
interested in the variance function. But since we have to choose an estimator, it would be
useful to obtain some information about the small sample performance of alternative
estimators, in particular when underlying assumptions are violated (e.g. departures from
normality). The comparative small-sample performance of FGLS and ML estimators under
heteroskedasticity is largely unexplored (Fomby, Hill, & Johnson, 1984, p. 201; Judge,

Griffiths, Hill, Liitkepohl, & Lee, 1985, p. 455). Harvey (1976, p.464) suggests that if the
parameters of the mean function is estimated by FGLS with Harvey's two-stage estimator of ~

used to generate the weights "...it seems reasonable to suppose that such an estimator will have
better small sample properties than ..." the ordinary three step FGLS estimator.i

A recent paper by Saha, Havenner & Talpaz (1997) examines the small sample performance of
FGLS and ML. First, they compare the two estimators through the first order conditions. For

the Just-Pope function Yi = j(xi; a) + ui' ui = h(xi; ~)Ei>with variance var(ui) = h(xi; ~)2var(Ei)'

the three-step FGLS procedure consists of first estimating the mean function Yi = j(xi; a) + ui

by least squares. Then the residuals u i = Yi - j(Xj; a.) are used in the next step to estimate

ln( u 1) = ln(h(xi; ~)2) + vi'

where vi = lns, (Judge et al., 1988, pp. 367-9). Without loss of generality, the estimation

equation in (4) can be rewritten as:

InC u 2) = Po* + ln(h(xi; ~)2) + vi*,

where vt = vi - E[vi], and Po* = E[vj] = E[ln(E1)], which implies that E[vt] = O.Estimation of
A

the above variance function by least squares provides consistent estimates of ~, denoted by ~.

The third step is a weighted least-squares regression of the mean function:

Yt =!(Xi; a) + ut,

where Yt = y/h(xi; ~), !(xi; a) = j(xi; a)/h(xi; ~), and ut = u/h(xi; ~). Jobson & Fuller
A

(1980) have demonstrated that the second stage estimate ~, though inefficient, is consistent.

This all that is required to ensure that the third stage FGLS estimate a. is consistent,
distributed asymptotically normal. If the errors are normally distributed, the FGLS estimate a.
is asymptotically fully efficient, i.e., its covariance matrix vare a.) attains the Cramer-Rae

lower bound.

7 However, we have not found any empirical studies or simulation studies which actually compare the small

sample performance of Harvey's two-stage estimator versus the FGLS estimator.
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In small samples the situation is different. Because each vi is derived from the same estimate
of a in the first stage, the v;'s are serially correlated and heteroskedastic (Amemiya, 1985, pp.

200-7). Amemiya demonstrates that serial correlation is absent in large samples. However, the
problem of heteroskedasticity of Vi persists, thus yielding inefficient estimates of the variance

A

function parameters ~. In order to adjust var( ~) White's (1980) consistent estimator of the
A

covariance matrix can be used. This correction provides consistent standard errors of ~, but

the estimates ø and thus the third stage estimation weights (h(xi; ø )-1 remain unchanged.

Consequently, the FGLS estimates il and their standard errors also remain unaffected. The

ML estimator, on the other hand, provides consistent and asymptotically fully efficient
estimates of both a and ~, in a single stage.

To compare the small-sample performance of the two estimators analytically we provide the
criterion functions of the last two stages of FGLS, which for the second stage is

(3.5) minj3 S2 = Li {ln( u i2) - /30* - ln(h(xi; ~)2)}2

= Li {ln(yi - j(xi; il))2 - /30* -ln(h(xi; ~)2) }2,

and for the third stage is

(3.6) mina S3 = Li {(yi - j(xi; a))lh(xi; ø) }2.
The log-likelihood function is given by

(3.7) maxa,j3ln L = -1I2[n·ln(21l) + Li ln(h(xi; ~)2) + Li(Yi - j(xi; a))2Ih(xi; ~)2].

By comparing (3.6) and the log-likelihood function, we see that for a given ~, the FGLS and

ML estimates of a are identical. However, this is not the case for ~. For a given value of il
and attendant u i' the ML first order condition for ~ is

(3.8) dIn Ud~ = Li{ (u r1h(xi; ~)2) - 1}hj30Ih(Xi; ~) = O,

where hj30 denotes dh(·)ld~. From (3.5) the corresponding FGLS first order condition is

(3.9) dS2/d~ = -4 Li {ln(u r) - /30* -ln(h(xi; ~)2)}hj3(.)lh(Xi;~) = o.
The first order conditions (3.8) and (3.9) can never be identical regardless of the functional
form of h(xi; ~). Furthermore, iteration between the steps of FGLS will not lead to ML

estimates.

The question whether one can estimate a and ~ in a single stage through FGLS, is also

addressed by Saba et al. (1997). They show that it is not possible to find an interior solution
for ~ in a single stage FGLS optimisation problem. This contrasts with the criterion function in
ML, which is well defined, allowing a strictly interior solution for ~.

For the single-stage estimation problem the objective function is

(3.10) mina,j3 S = Li 8,2= Li {(yi - j(xi; a))lh(xi; ~)}2.
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By comparing (3.10) with (3.6) we see that the first-order conditions for exare identical. If an
interior solution existed with respect to ~, the first-order conditions would be:

(3.11) as/a~= 1:i 2{ (Yi - j(Xj; ex»2/(h(xj; ~»3}hl3(-) = O.

However, it can be shown that such an interior solution is not feasible. Assume for simplicity
that f3 is a scalar. Furthermore, assume that h130 > O « O), i.e., that the marginal output risk
with respect to x is positive (negative). Since, hex; {3) is the denominator of (3.10), S is
minimised as f3 goes to plus (minus) infinity. This implies that f3 will either explode positively

or negatively, and that the equality in (3.11) can never be satisfied. Similar arguments apply
for the more general case when ~ is a vector. Hence, single-stage optimisation of an FGLS

objective function is not possible.

In contrast, the log-likelihood function allows a strictly interior solution for ~, because the

term ln(h(xi; ~)2) has been included in addition to (yj - j(xi; ex))2/h(Xi; ~)2. The conclusion is
that only ML allows single-stage estimation; for FGLS the problem of ~'s unboundedness

necessitates a multi-stage estimation procedure.

Since the finite sample bias and inefficiency of FGLS compared to ML estimates cannot be
determined a priori, Saba et aZ. (1997) undertake Monte Carlo experiments to examine the
performance of the two estimators. They use a Cobb-Douglas parametrization of the mean

function and a Harvey's multiplicative heteroskedastic parametrization of the variance function
(See appendix 3.A). Saba et aZ. find that the standard errors of the ML estimates of ~ are

smaller than the standard errors of the FGLS estimates. Thus, if inferences were drawn from

FGLS estimates, one would to a larger extent conclude, incorrectly, that inputs do not have
significant risk effects They also find that the ML estimator have considerably smaller mean
square error than the FGLS estimator for both the mean function and the variance function.

Saba et aZ. also compared the performance of FGLS and ML when the distribution of the
underlying error term ei departs from normality. They find that even under pronounced

departures from normality ML performs better than FGLS in terms of MSE and power of t-
tests. The difference in performance decreases as the departure from normality increases.
These findings are important, because they support the use of the more efficient ML estimator

even when the underlying error distribution is skewed, which will generally be the case for

production risk.

It should be noted, however, that Saba et al. 's Monte-Carlo simulations assume homoskewness
and homokurtosis. It is difficult to say how the ML estimator performs when the data
generating process is characterised by heteroskewness and heterokurtosis. Simulation studies
may provide some answers to that question.

The Monte-Carlo study of Saba et aZ. focuses on a homogenous production technology. It is
difficult to say to what extent their simulation results apply to heterogeneous technologies and
relevant econometric panel data estimators.
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3.8. Primal vs. Dual Approaches
The first decision that has to be made in empirical research on firms based on microeconomic
theory is whether to use a primal or dual approach. The primal versus dual model specification
choice has been discussed by several authors, see for example Pope (1982) for a discussion
with relevance to agriculture. However, a discussion that accounts for the most recent
advances in dual modelling in the context of production risk has not been provided in the

literature.

The empirical research on firm behaviour and productivity has been dominated by applications

of duality theory. Estimation of flexible parametrizations of dual functions, particularly

translog cost functions, has been very popular the last two decades. Flexible functional forms
impose few restrictions on dual functions, and allow the testing of a rich set of hypotheses on
the structure of production technology, output supply and input demands. Under production

certainty or homoskedasticity the relevant objective functions are the profit function and the
cost function. In the case of heteroskedastic production technologies, the relevant objective

functions are the indirect utility function, which represents the solution to the EU
maximisation problem, and the ex ante cost function, which represents the solution to the cost

minimisation problem prior to the realisation of stochastic variables.

Several issues are ofinterest when comparing primal and dual approaches:

• What information can they provide on:
• the structure ofproduction risk (e.g. marginal risks),
• output supply and input demand response to changes in prices, and the level of output

risk,

• technical and allocative efficiency, and

• risk preferences.
• Restrictions on the structure of production technology, risk preferences, and expectation

formations.

• Empirical tractability: Data requirements and estimation methods.

In the following these issues will be discussed in relation to the stochastic production function,
the ex ante cost function and the mean-variance utility function. The two dual functions were
presented in section 2.4. For the empirical research on production risk we have the situation
that primal models have been applied to a much greater extent than dual models; in fact,
papers on dual models have been limited to discussions of how to facilitate empirical
implementation, a Monte Carlo simulation and an illustrative application (Coyle, 1995; Pope
& Chavas, 1994; Pope & Just, 1996).

56



Information Derived from Primal and Dual Models

The estimated mean function./{x; & ) of a Just-Pope production function provides information
on the elasticities of substitution between inputs, marginal productivity of inputs, and the

elasticity of scale (Chambers, 1988, Ch. 1). From the estimated variance function hex; ~),
information on marginal input risk and the elasticity of risk with respect to scale can be

derived.

From the estimated ex ante cost function c(w, I-!y;&) it is possible to derive input demand

functions x(w,l-!y;&) by Shephard's lemma, own-price and cross-price demand elasticities,

average and marginal costs, and elasticity to size.

From the estimated indirect utility function U*(p, w, Wo' q; & ) it is in principle possible to
derive input demand functions x(p, w, Wo' q), expected output supply function Ey(p, w, Wo' q)
and output variance function Vy(p, w, Wo' q).

According to Chapter two, which discussed efficiency concepts under production risk, the
relevant function for efficiency measurement is the EU function, because this function
accounts for the firm's subjective mean-variance trade-off when it chooses production

technology and input vector. By implementing time trend or dummy variables in the primal
model it is possible to obtain estimates of shifts in mean output and the variance of output, but
in order to perform efficiency ranking it is necessary to have information or make assumptions
on risk preferences.

Data Requirements

There are considerable differences in data requirements for the different approaches.

Estimation of production function only requires data on input and output levels, all which are
in principle observable.

The ex ante cost function estimation requires data on input levels and prices, and the moments
of output I-!y formed by the producer. The moments of output are unobservable quantities,
which means that assumptions have to be made regarding the producer's expectation
formation. As demonstrated by Pope & Just (1996), things are simplified if risk neutrality is

assumed, because expected output E[Ylx] is then the only relevant moment and is derived as
part of the cost function estimation procedure.

Estimation of the indirect utility function, or its derived demand and supply equations,

involves the most comprehensive data requirements. It requires all the data that are necessary
for cost function estimation, but also introduces the subjective moments of output price p,

initial wealth Wo, and the subjective moments of the exogenous error term E of the production
function as additional information. Both the moments of p and the moments of E are
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unobservables, which means that assumptions have to be made regarding the expectation

formation of producers.

The Production Function Approach to Obtaining Comparative Static Results

An advantage of production function estimation compared with the dual functions is that it
only relies on observables, and does not require assumptions on risk preferences and
expectation formation. On the other hand, an estimated production function does not provide
information on the input demand and output supply responses of producers to changes in

prices p and w.

However, if one has additional information or makes assumptions on the producers' risk

preferences, then the estimated production function can be inserted into an EU model and

numerical simulation studies can be performed. A Just-Pope specification of the production
technology is particularly convenient for simulation studies, because it allows a mean-variance

representation of the firm's EU maximisation problem (Leathers & Quiggin, 1991; Meyer,
1987). The firm's maximisation problem can be expressed by the certainty-equivalent version

of the mean variance function

(1) max U = Wo+En - A(Wo +En, var(n))/ 2 varot ),
x

where A(·) is the coefficient of absolute risk aversion. This means that the firm's risk premium,

which is the monetary representation of the firm's level of absolute risk aversion, can be

calculated as

where '*' indicates that the variables are evaluated in EU maximising input levels x". The
calculated risk premium can serve as a means to assess whether the chosen parameter values
for the coefficient of absolute risk aversion A(·) are sensible. If one is only measuring marginal

(or local) changes in prices p and w, the simplifying assumption of constant absolute risk

aversion (CARA) is probably safe to make. Under CARA, AO reduces to the constant A.

The most elegant way of obtaining empirical comparative statics based on the estimated

production function is to derive analytical expressions for input demand functions x(p, w, Wo,
q) and expected output supply Ey(p, w, Wo' q) from the maximisation problem (1), and insert
estimated production function parameters into these. In practice this is generally difficult, even
under restrictions on A(·) and the stochastic production technology. An alternative is to use
nonlinear maximisation techniques to obtain the input vector x" that maximises UO for
different values of A and prices p and w. There are several examples of numerical simulation

studies in the empiricalliterature on production risk, for example, Yassour et al. (1981), Antle
& Crissman (1990), and Ramaswami (1993). The two latter studies use empirical production
function estimates in their simulation models. We have seen earlier in this chapter that Antle &
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Crissman calculate technical efficiency indices of different technologies based on the
estimated primal model. Ramaswami calculates optimal input use under different levels of
insurance coverage.

The Cost Function Approach

When discussing the cost function approach it is useful to recall the decision process that
generates the input vectors and moments of output which are used in the estimation of the ex
ante cost function. The firm maximises its expected utility of profits or end-of-period wealth
given the structure of the stochastic production technology and output and input prices. The
moments of output are conditional on the EU maximising input vector x". Thus, only the
indirect utility function derived from the EU maximisation problem endogenizes expected
output supply and output variance. Herein lies one of the limitations of the ex ante cost
function; it can only provide input demands conditional on the EU maximising output mean
and variance.

There are basically two different approaches for addressing the problem of unobservable
moments of output in ex ante cost function estimation: (i) Assume risk neutrality or that firms
have no knowledge on the structure of the variance function, which implies that only mean
output is of relevance to the firm, and allows the cost function and mean output to be estimated
simultaneously by the procedure suggested by Pope & Just (1996). (ii) First estimate the
parameters of the production technology by e.g. a Just-Pope specification, then construct
proxies for the output moments based on the estimated primal model for each firm assuming
that the firms know the structure of the production technology and have rational expectations,
and finally estimate the cost function with the constructed proxies as arguments. For the first
approach it can be questioned whether risk neutrality or variance function ignorance is present
in the particular industry in question. For the second approach it is a problem that consistent
forms for the primal function and the cost function as implied by the primal/dual relationship
are difficult to obtain. In the deterministic case only simple specifications such as the Cobb-
Douglas and constant-elasticity-of-substitution (CES) functional forms are self-dual, while
common flexible functional forms such as the translog are not self-dual. In case (i) the
researcher runs the risk of specifying a cost function that is not valid empirically, while in case
(ii) the researcher may specify a model that is theoretically inconsistent.

The Mean-Variance Utility Function Approach

From a theoretical point ofview the mean-variance approach is a very attractive alternative for
analysing the behaviour of the firm under production risk due to the rich set of comparative
statics which can be derived. However, it is undoubtedly the most difficult to implement
empirically, due to the unobservables it requires and the functional form. Derivation of input
demands and expected output supply functions are much more complicated for the indirect
utility function than for the objective function under certainty, the profit function. The model
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specification can be simplified to some extent by assuming constant absolute risk aversion

(CARA), but except for small changes in initial wealth the CARA assumption is difficult to
defend. It is problematic to assume that optimal input levels x" are unaffected by larger

changes in initial wealth.

Input Fixity and Availability of Insurance

Both the ex ante cost function of Pope & Just (1996) and the indirect utility function of Coyle
(1995) assume that all inputs are variable, i.e., they are long-run functions. In many industries
one or several inputs are fixed or quasi-fixed, thus implying that a long-run specification is

inappropriate. Long-run specifications of dual functions may result in biased estimates of

economies of scale, economies of substitution, etc. (Braeutigam & Daughety, 1983; Brown &

Christensen, 1981; Caves, L.R., & Swanson, 1981; Nelson, 1985).

The indirect utility function of (Coyle, 1995) implicitly assumes that insurance is not

available. If insurance is available for some sources of output risk (e.g. diseases), then the
conditional probability distribution of revenue is altered (Ramaswami, 1993). Consequently,
the EU maximising input levels x" are also changed. The presence of insurance does not cause
any problem for specification and estimation of production or cost functions. However, an

indirect utility function that ignores insurance will provide biased estimates.

Firm Heterogeneity and Panel Data Availability

The assumption of homogeneous firms in the neoclassical production theory is probably not

valid for most industries. In recent years, panel data sets that allow the researchers to account
for firm heterogeneity have become available. Under risk, producer heterogeneity can operate
on several levels: (i) The production process, (ii) risk preferences, and (iii) expectation
formation with respect to prices and output.

For production function estimation only heterogeneity with respect to the production process

is relevant. This heterogeneity can be captured by implementing firm-specific effects, as
discussed in preceding sections. If a cost function approach is chosen, firm-specific effects can
be implemented in derived input demand or input share equations. This is a more satisfactory

specification of technology heterogeneity if the firm-specific effects are input related, i.e., the
productivity of inputs vary across firms. Unless risk neutrality is assumed, technology
heterogeneity also has to be accounted for in the construction of moments of output. Firm-
specific effects can also be implemented in the input demand and expected output supply
equations derived from the indirect utility function. But for a general specification of these
equations it is difficult to separate the effects of technology heterogeneity from risk preference
heterogeneity on the estimated firm-specific effects.

Concluding Remarks

This section has discussed model choice for econometric estimation at a general level. We
have seen that the primal approach has the smallest data requirements, while the largest data
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requirements are associated with the mean-variance approach. Dual function estimation also
forces the researcher to deal with specification issues that can be ignored for the primal
approach; risk preferences, expectation formation, fixity of inputs, and insurance possibilities.
The mean-variance approach involves the largest set of specification issues, while the cost
function approach represents an intermediate case between the mean-variance and the primal
approach.

Of course, the model choice decision will depend on data availability and the complexity of
specification issues for the particular industry which is the subject of the empirical analysis.
Furthermore, it depends on the focus of the study, e.g. whether the primary interest is the
structure of the production technology or input demand and output supply elasticities in prices.
However, it can be argued that the primal approach generally is a more attractive alternative to
dual approaches under production risk than in the standard deterministic case. The fact that
empirical implementations of dual functions are almost non-existent, while there are several
applications of the primal, supports this argument.

3.9. Summary and Discussion
The article of Just & Pope (1978), in which eight postulates for the stochastic production
function were proposed, introduced a theoretical framework for the modelling of production
risk. It also seems to have initiated econometric research on the structure of production risk,
although some research on this subject had been undertaken earlier (Day, 1965). Just & Pope
also proposed econometric estimation procedures that provide consistent and asymptotically
efficient estimates of the production function parameters when the production function takes
the Just-Pope form.

Most of the subsequent studies to a large extent use the model framework of Just & Pope, but
propose modifications of the model specification that may contribute to give a better empirical
description of risky production processes. Such modifications include introduction of firm-
and time-specific random effects (Griffiths & Anderson, 1982), non-normal error terms such
as the beta (Nelson & Preckel, 1989) and Weibull (Saha, et al., 1994), joint estimation of
production technology and risk preference parameters (Love & Buccola, 1991; Saha, et al.,
1994), more flexible functional forms for the mean production function (Kumbhakar, 1993),
and specification of the variance production function in order to allow testing of the effects of
technical change on production risk (Traxler, et al., 1995).

The majority of the empirical studies of production risk use the Just-Pope model specification
and estimation framework. The most dramatic departures from this framework are Nelson &
Preckel (1989), and Antle (1983). Saha et al. (1994) use a Just-Pope production function, but
estimate it jointly with a utility function. Computational complexity, limited knowledge about
the performance of these estimators for different data designs, and a belief that heteroskewness
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and heterokurtosis may have limited significance for producer behaviour in practice, may

explain why the approaches of Nelson & Preckel and Antle have not been adopted by other

empirical studies. Similar arguments may apply to Saha et al. (1994).

The empirical results of the above studies give strong indications of the presence of

heteroskedasticity in biological production processes. Both positive and negative marginal
risks associated with changes in input levels are found. Empirical results indicate that input
changes also affect the skewness of the output distribution. In other words, for several
agricultural sectors, the traditional neoclassical production function specification provides an

unsatisfactory description of the production technology. Since the theoretical models of firm

behaviour under production risk presented in Chapter 2 predict that the optimallevels of inputs

are affected by their effects on the variance and higher moments of output distribution, these
empirical findings should be of considerable interest.

However, the results of the individual studies should be interpreted with care, because
weaknesses or deficiencies with respect to methodology and data generally characterise the
studies. Most of the studies focus on the introduction of a particular methodological
improvement, and tend to give less attention to important specification and data issues. Having

said that, none of the studies explicitly pretends to have given the final word on the structure

of production risk in the particular industry they are analysing.

It is difficult to say something about the magnitude of biases due to errors in variables,
because the studies generally provide limited information on data collection and variable
construction. Omitted variables bias is probably present in the empirical models in some of the
studies listed in table 3.1, because very few inputs are implemented.

Incorrect functional form may also give rise to biases in several studies. Of course, we usually
do not know what is the "correct" functional form, but the results from econometric
productivity studies which employ second-order flexible functional forms, such as the
translog, suggest that the Cobb-Douglas form, which is used frequently in the studies listed in
table 3.1, generally provides a poor representation of the underlying production technology. l

The only study to use a flexible functional form for the mean production function is
Kumbhakar (1993).2 Potential effects of incorrect functional form on estimated residuals have
been demonstrated several times, e.g. Gujarati (1988, pp. 407-10); estimating a model that is

more restrictive than the "true" model that generated the data will produce residuals that are
much larger (in absolute value) than the residuals of the true model. In the context of a Just-

Pope production function, this will not only have effects on the parameter estimates of the

Remember that the Cobb-Douglas function is a special case of the trans log function Iny=aO + :E1"<lilnxi + :Ei:Ej
aijlnxilD.X'j>with aij = Ofor all iJ.

2 Just & Pope (1979) also employ the trans log for the mean function, but with only one input. Traxler et al
(1995) employ a linear quadratic mean production function, but again only one input is included in the model.
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mean function, but also on the parameter estimates of the variance function. Consequently, this

may lead to false inferences regarding the marginal effects ofinputs on production risk.' Using
an incorrect functional form may produce patterns of heteroskedasticity or autocorrelation that
in reality do not exist. Based on the large empirical evidence on the significance of second-
order terms in flexible functional forms, it can be argued that the results of those studies of
production risk that have employed Cobb-Douglas specifications for the mean function must

be interpreted with great care. There are good reasons to believe that parameter estimates of
the variance function presented in these studies are biased. Again, it should be emphasised that

the main objective of previous studies in general probably has not been to provide "correct"
estimates of production risk parameters for the particular industry chosen as an empirical

application, but rather to demonstrate methodological innovations.

Another potential methodological problem for most studies using the Just-Pope function, is the

use of FGLS estimators. The findings of Saha et al. (1997) suggest that an ML estimator based
on normality of the error term generally outperforms FGLS in finite samples, even when the
distribution of the true error departs significantly from normality. This last point is very

interesting, considering that normality probably is an unreasonable assumption for agricultural
production technologies. The analysis of Saha et al. indicates that the insignificance of
variance function parameters in several empirical studies may be due to the inefficiency of
FGLS, not the absence of production heteroskedasticity in inputs.

This chapter also provided a discussion of primal versus dual approaches. Dual models lose

some of their attractiveness under production risk due to presence of unobservables, the

difficulty of deriving comparative statics and computational complexity. A simulation

approach to obtaining comparative static results based on an estimated production function and

postulated risk preferences was outlined. The simulation approach represents an alternative to
estimating dual models, which may involve the use of questionable proxies for unobservables
and restrictions on technology and risk preferences which lack an empirical basis.

Econometric panel data issues has been given less attention in empirical studies of production
risk, although panel data have been available to most of the empirical studies discussed here.
There are several issues which deserve to be discussed, for example the specification of the
firm-specific effects, the estimation procedures to be used, and sample selection issues. In
particular, for the popular random effects model, which has become very popular and is used
by Griffiths & Anderson (1982), it is pertinent to ask to what extent the underlying
assumptions are appropriate, and what are the consequences for empirical estimates if these
assumptions are not valid. Chapter 4 discusses econometric panel data issues, while Chapter 5

3 If the purpose of a study was to produce "evidence" of substantial production risk, both total and marginal, for

an industry production data was available for, the chances for succeeding would be much greater by using a

restrictive form such as the Cobb-Douglas rather than the more flexible translog.
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provides a simulation study for a Just-Pope technology with firm-specific effects. The
simulation study in Chapter 5 can be regarded as an extension to the study of Saha et al.
(1997).

Finally, Chapter 9 provides a further discussion of the pros and cons of some of the
approaches presented in this chapter, particularly with respect to the empirical application in
this dissertation.
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3.A. Appendix: Efficient Estimation of the Mean Function of
Harvey's Multiplicative Heteroskedastic Model

The production function in Harvey's formulation is given by

where xi is the kx I input vector, and the variance of the error is specified as

where E(ui)=O, E(ui' Uj) for iej, and the first element in the lxI vector zi is taken as unity (zil=
l). The remaining elements in zi may be identical to, a subset of, or functions of the x's in the

mean production function. It is easily seen that the conditional variance of output, var(yil xi>

zi), is exp(z/~). The exponentiation of z/~ in (3.A2) ensures that the variance is always
positive. This is not the case for the conditional variance of the general Just-Pope model y =

j{x; a)+h(x; ~)E; in order to allow both negative and positive marginal risks, the p's may take

both negative and positive values. Consequently, var(yil xi, Zi) may be negative for certain
values of xi in the Just-Pope model, depending on the signs and values of the p's. Although it
is a nice property of Harvey's formulation that it always yields positive variances, it may be

discussed if there are any a priori reasons for postulating a natural exponential function for the

variance of production, and whether this may be a too restrictive assumption. In the following
we discuss the properties of two different specifications of the argument of the exponent, a

linear and a log-linear specification, in the context of production risk analysis.

Heteroskedasticity does not destroy the unbiasedness and consistency properties of the OLS
estimators. However, OLS estimators are no longer minimum variance or efficient. In this
appendix it is shown why the FGLS estimation procedure provides efficient estimates of the
mean function parameters in the presence of multiplicative heteroskedasticity of the form

(3.A2). Equation (3.A2) can be rewritten as

(3.A3) Ina: = Zi~ .

The a2's are unknown, but the least squares residuals fl i = Yi - j{xi; ei) from (3.AI) can be
used to estimate the above equation. Adding In fl l to both sides of (3.A3) yields

In fl l + In al = zi~ + In fl 1,
or

(3.A4) In it l = zi~ +Vi'

where vi = In fl 1- In al = (In fl l/In a1). Equation (3.A4) is estimated in the second stage.
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It can be shown that (Harvey, 1976)

E[v;*] = -1.2704

vanv,") = E[(v;* - E[v;*])2] = 4.9348,

covtv,", v/) = O, for i *j,
where v;* = (In ui2/ln ai2) is the random variable that vi = (In li ;/ln ai2) converges in

~
distribution to. Hence, the first element of the estimator ~ is inconsistent with an

inconsistency of -1.2704, but the remaining elements are all consistent. To make the first

element consistent 1.2704 has to be added to it.

In the third stage predicted standard deviations exp(zi~ )112 from equation (3.A3) are used as

weights for generating FGLS estimators for the mean production function. In order to show

that the use of predicted residuals make the errors in the transformed data homoskedastic,

define the constant a2=exp(~1)' and define zt'=(Xil, ...,xi/) and ~*=(~b...'~l). The weighted
regression equation is given by

=

where

• u.u = I
i {. 'A.~/2 •

exp\z;l-' }

The variance of ui* is given by

i.e., the error term has now become homoskedastic.
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3.8. Appendix: A Two-Stage Estimation Procedure for the Variance
Function Parameters of the Just-Pope Model

There exists a two-stage estimator with the same asymptotic distribution as the ML estimator
for the Just-Pope function. This estimator relies on the use of a consistent estimator of the

variance function parameter vector p in the first stage. In fact, this estimator can be applied to
a more general class of regression models where least squares yield consistent but not efficient

estimates (Cramer, 1986, pp. 71-72).

The least squares estimate of p is consistent, and can thus be used in the first stage. In the
second stage p is estimated by (Harvey, 1976, eqn. 15)

where 13(1) is the first-stage (least squares) estimate of the mxl parameter vector p, zi is the l x

m vector of regressors (with first element one), ~ is a mx l-vector in which the first element is
A

0.2704 and the remaining elements are zero. The second-stage estimate P(2) has the same

asymptotic distribution as the ML estimator of p, and is therefore asymptotically efficient.
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4. ISSUES IN ECONOMETRIC PANEL DATA ESTIMATION

According to one of the hypotheses presented in Chapter one, substantial firm heterogeneity is
present in the salmon farming industry. This heterogeneity should be accounted for in an
econometric model. As we have a panel data set available (see Chapter 8), use of econometric

panel data techniques to account for heterogeneity is possible. The fact that firm heterogeneity
has largely been ignored in empirical productivity studies until recently, can to a large extent
be attributed to the underlying theoretical framework. In particular, we saw in Chapter 2 that

the theory of the competitive firm under production risk is mainly a theory of the behaviour of

the representative firm. In Chapter 3 it was argued that although firm heterogeneity was
accounted for in a few studies, discussion of important econometric panel data issues and their

implication for empirical models of production risk has been neglected.

In the first sections of this chapter some important panel data issues will be discussed. The

discussion will both be at a general level and more specifically in the context of production
analysis. In some sections the focus will be on specific problems that are relevant to the
empirical application in this dissertation.

Much of the discussion will be in the context of the linear model specification

i = 1, 2, ...,N, t = 1, 2, ..., Tj,

where i refers to units (e.g. firms) and t refers to time periods. The parameter 11j is the group-
specific (or firm-specific) effect, while the parameter Af is the time-specific effect.

Econometric panel data models can be divided into two classes: Fixed effects models and

random effects models. The distinction between these two classes pertains to the assumptions
on 11j and Af' If 11j and Af are assumed to be fixed parameters, then (4.1) is the fixed effects (FE)

model.

Alternatively, if 11j and Af are assumed to be random parameters, then (4.1) is the random

effects (RE) model. In order to allow for an intercept, the vector xit should then include 1 as
the first element. The standard distributional assumptions of the RE specification are 11j -

IID(O,o112) and Af - IID(O'0.ll2) and uit - IID(O,ou2): In other words, the error components 11j,

Af' and uit are assumed to be homoskedastic, independent of each other and of the regressors

xi!' see e.g. Baltagi (1992, pp. 87-8). The random effects model is sometimes referred to as the
variance components or error components model (Hsiao, 1986, pp. 33).

In the discussion of RE models in this chapter, we will focus on the panel data model with
only firm-specific random effects, 11j. This special case of the RE model is known as the one-

l Appendix 4.AI presents the notation used in this chapter.
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way error components model. Of course, time-specific effects Af can be included as dummy

variables and included in the set of explanatory variables xit in the RE model. It is probably
also more reasonable to treat the time-specific effects as fixed in a data set with a small
number of periods, which is generally the case for empirical productivity studies, and for the
empirical application in this dissertation in particular.i

The observation-specific error term Uit is usually assumed homoskedastic with variance (Ju2 in

the panel data literature. For this study it is more appropriate to assume Just-Pope

heteroskedasticity for uit, i.e.,

(4.2) var(uit) = [h(zit; (3)]2er;,

where er; is the varian~e of the exogenous error term eit. Later in this chapter we discuss

estimation of FE and RE models with heteroskedasticity of this form.

The disposition of this chapter is as follows: Section 4.1 presents the fixed effects estimator
for the case of homoskedastic uit. Section 4.2 discusses advantages associated with using
econometric panel data models. Potential pitfalls and limitations of panel data models are

provided in section 4.3. Section 4.4 discusses balanced and unbalanced panel data in the
context of the particular empirical application in this dissertation. The issue of fixed versus
random effects is dealt with in section 4.5. Section 4.6 presents ML estimators for fixed effects

models. Estimation of RE models is dealt with in sections 4.7-4.8. Section 4.7 discusses
estimation of the homoskedastic random effects model in the case of unbalanced data. A brief
survey of previous RE models with different types of heteroskedasticity incorporated is
provided in section 4.8. Finally, section 4.9 provides a summary ofthis chapter.

4.1. The Fixed Effects Model in the Homoskedastic Case
A nice property of the model (4.1) in the fixed-effects context is that the computational
procedure does not require use of dummy variables for 17i' In fact, for model (4.1) without the
time-effects Af, the BLUE estimator of {l is given by the so-called within-estimator

where Xi and )Ii are the time-series means for the cross-sectional unit i, i.e.,
_ 1 T;
xj = - LXit and

7; t=1

1 T;
)li=-TLYit'

i t=1

2 The derivation of estimators is also simplified by using only firm-specific random effects.
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and

are the within-transformations of the independent and dependent variables (Hsiao, 1986).3

This estimator is also consistent when N or Ti or both tend to infinity. The estimator of the

firm-specific effects is

1]; = y; - X;Cl, i = 1, ...,N.

The estimator of the firm-specific intercept is BLUE, but is consistent only in Ti (Hsiao, 1986,

p. 32). Consequently, increasing the number of firms in the data set will not help in the
asymptotic sense. This is also intuitive, since more information on the firm-specific intercept
of firm i cannot be obtained by adding observations of other firms It-i to the panel.

4.2. Advantages Associated with Using Panel Data Techniques
There are several potential advantages associated with using panel data sets and econometric
panel data techniques (Baltagi, 1995, pp. 3-6; Baltagi & Raj, 1992; Hsiao, 1986, pp. 1-5,213-

218).4 First, if parameter heterogeneity exists among cross-sectional or time-series units, then

estimation of a model which ignores such heterogeneity could lead to inconsistent or
meaningless estimates of interesting parameters. An example of this is the case of
heterogeneous intercepts in the simple linear regression model Yit = 17i+ xita + uit. Estimation
of a "pooled" regression, i.e., a regression which assumes homogenous intercepts (171 =172 = ...
= 17n= 1J), on a data set generated by a model with heterogeneous intercepts will in general
lead to biased estimates of a. Moreover, the direction of the bias cannot be determined a
priori; it can go either way. Another consequence of particular importance for this empirical

study, is that the estimates of the residuals uit will also be biased, which in the next stage will
lead to biased estimates of the parameters fi of the variance function (4.2).

In empirical studies missing explanatory variables zit which are correlated with explanatory
variables xit included in the regression model is frequently a problem. The "true" regression

model is Yit = 17+ xitCl + ziti + uit' but the researcher may estimate Yit = 17+ XitCl + uit This
leads to biased parameter estimates of the xit variables included in the model. However, if
repeated observations for a group of individuals are available, they may allow us to get rid of

the effect of zit. If zit = zi for all t, i.e., Z values are time-invariant for all individuals but vary
across individuals, estimation of the regression modelon first difference form

3 The fixed effects estimator of (X with time-specific effects included uses a similar transformation of x and y, see

Baltagi & Raj (1992, pp. 87-88).

4 For a survey of the state-of-the-art in the econometrics of panel data, see the survey article of Baltagi (1992),

and the books by Matyas & Sevestre (1992) and Baltagi (1995).
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ss« - Yit-l) = {Xit - Xit_l)(l+ (Uit - Uit-l)

will provide unbiased and consistent estimates of (l. Similarly, if zit = Zt for all i, unbiased
estimates will also be provided by a regression model where the deviation from the mean
across individuals at a given time has been taken for all variables (Hsiao, 1986, pp. 3-4).

A recurrent problem in the application of econometric models on microeconomic data is
measurement errors. While it is difficult to find remedies for errors in variables in cross-
section or time-series data set, Griliches & Hausman (1986) have shown that availability of
panel data improves the possibility of obtaining consistent estimators.

Panel data sets also have advantages when it comes to dynamics, i.e., models with lagged
variables; it is not possible to estimate dynamic effects using a cross-sectional data set, while a
single time-series data set usually cannot provide precise estimates of dynamic parameters
because of multicollinearity. If panel data are available, the individual differences can be
utilised to reduce the problem of multicollinearity (Hsiao, 1986,p. 3).

For this particular study it is particularly the possibility of separating the effects of firm
heterogeneity and stochastic shocks on productivity that makes the use of panel data attractive.
Earlier it was hypothesised that the permanent firm-specific effects 1]i and the time-specific
effects At are the sources of nonstochastic productivity differences across firm observations,
while the error term uit is the source of stochastic (transitory) productivity differences.

4.3. Potential Pitfalls and Limitations of Panel Data
Although panel data provides several advantages compared with cross-section or time-series
data, there are also pitfalls and limitations associated with the use of panel data and panel data
techniques (Baltagi, 1995,pp. 6-7; Hsiao, 1986,Ch. 9).

For the purpose of making inferences from the sample to the population, the randomness of the
sample can often be questioned. When observations are not drawn in a random manner from
the population because of the design of the surveyor due to other reasons, a selectivity bias
may arise in the parameter estimates (Hsiao, 1986, pp. 7-8). There are several reasons for
nonrandom selectivity that can be distinguished (Klevmarken, 1989, pp. 526-7): (1) Self
selectivity is present if some units (e.g. individuals, firms) cannot be included in the sample
because they have made decisions which make them unavailable to sampling. For this
particular application the decision of some firms to integrate horizontally or vertically, which
makes them ineligible for the Directorate of Fisheries' profitability survey of "independent"
fish farms, is an example of self selectivity. However, we do not have any information that
leads us to believe that these farms are structurally different from the remaining sample with
respect to the production technology. (2) Nonresponse is another form of selectivity. A
designated respondent may choose not to respond to certain questions or decide not to
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participate at all. For our empirical application this does not constitute a major problem, since
fish farms are obliged by law to fill out questionnaires and because the Directorate of Fisheries
pursues a rather aggressive policy towards farms that do not respond satisfactorily. (3)
Attrition, i.e., units dropping out because they die, move or find the response burden to high, is
generally a serious problem in panel studies. For this empirical application attrition was
particularly present during the period 1990-92, when a substantial number of farms in the
Norwegian salmon farming industry went into bankruptcy. (4) Selectivity may also be built
into the sampling design, if the selection probabilities depend on economic response variables.

Heckman (1979) partitions the sources of sample selection bias into two groups: (1) self-
selection and non-response decisions by the units being investigated or (2) sample selection
decisions by survey statisticians/data processors or analysts. To some extent both these sources
of selectivity bias are present in this study. However, the magnitude of this bias depends on the
definition of the population. The profitability survey on Norwegian fish farms uses data only
from farms which are independent in a legal sense, as described in Chapter 8. If the relevant
population is defined as the population of independent farms then (2) is not a serious problem.
All in all, we do not consider the sample selectivity (or nonrandomness) problem to be of such
a magnitude that particular measures should be taken.

In the previous section it was argued that panel data under certain conditions allow the
researcher to account for omitted variables in the linear model. For nonlinear models,
however, the handling of omitted-variables bias is far more problematic. If the effects of
omitted variables stay constant for a given individual through time, or are the same for all
individuals in a given time period, the omitted-variables bias can be eliminated for linear
regression models by (1) differencing the sample observations, (2) using dummy variables, or
(3) postulating a conditional distribution of unobserved variables, given observed exogenous
variables. Unfortunately, the results for the linear model are generally not applicable for
nonlinear models (Hsiao, 1986, pp. 7-8). In nonlinear models, the FE and the RE approaches
yield different estimators.

In the case of an unbalanced panel where some units are observed only once, the use of panel
data techniques may force the researcher to drop observations. With a fixed effects
specification, two or more observations of each unit is required. Furthermore, most random
effects estimators require more than one observation of each cross-sectional unit, although
there are exceptions (which we will come back to later). In such cases it must be considered if
the heterogeneity among the cross-sectional units is large enough, or if there are other
specification problems of such a magnitude that the loss of observations can be defended. For
our particular empirical application degrees of freedom are lost when going from a "pooled"
regression model to a model with firm-specific effects because firms that are only observed
one year have to be dropped. If lagged variables are to be used in the model specification,
farms that are observed for two years or less have to be dropped from the estimating sample.
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For our empirical application the presence of substantial firm heterogeneity is a compelling
reason for constructing a panel data set, even though it will mean a loss of observations, e.g.
with a fixed effects approach. We suspect that the biases in estimated parameters associated
with using a pooled model specification are larger than the potential bias associated with
omitting firms which are observed one period from the sample.

The panel data literature has mainly focused on the regression model with heterogeneous
intercepts only, i.e., model (4.1). Models with heterogeneous slopes have been relatively less
explored. An example of a model with slope coefficients that vary over individuals is:
Yit = LkakfXkit + uit = Lk(ak + TJik)xkit + Uit, where ak is the mean coefficient and TJik is the
fixed or random firm-specific effect on the coefficient. There is at least three practical
explanations for the limited use of this type of model when TJik are assumed fixed: (l) Cross-
sectional units are often observed only for a few periods. Unlike the model with heterogeneous
intercepts, it is not possible to perform within transformations of the variables; one has to
implement dummies for each slope parameter. Consequently, one may soon run into a degrees-
of-freedom problem. (2) With a large number of cross-sectional units the computational
requirements associated with the estimation of the model may be substantial. The limits of
conventional econometric computer software packages may be violated. (3) Multicollinearity
makes inference difficult.

These problems can be avoided by assuming that the firm-specific coefficients TJik are random.
Several random coefficients models have been proposed in the literature (Judge, Griffiths, Hill,
Lutkepohl, & Lee, 1985, pp. 346-58). There are, however, problems associated also with this
class of models. First, the variances of the TJik's are assumed positive, which in the context of
production risk analysis implies that the possibility of negative marginal output risks is ruled
out. Second, the random coefficients vary around a constant mean ak» which may be a
questionable assumption for industries with technical change.

Unfortunately, heterogeneous intercept models, such as (4.1), have their own inherent
problems. Heterogeneous intercept models may give a poor description of the nature of
heterogeneity for many empirical phenomena. In particular, it may provide an unsatisfactory
description of the nature of firm heterogeneity. In Chapter three it was suggested that a
heterogeneous intercept is problematic in the linear quadratic model because it implies that
productivity differences between firms are independent of the level of output. However, this is
not the case for log-linear models such as the Cobb-Douglas and translog, where the
production function interacts multiplicatively with Tli' In log-linear specifications the
productivity difference increases with the scale of operation for two firms i andj with different
firm-specific effects Tli and 11,;,

The heterogeneous intercepts model (4.1) also implies that there are time-invariant differences
in productivity across firms. This restriction may be unrealistic; learning-by-doing and
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diffusion of innovations may over time contribute to reducing the productivity differentials
between the less efficient and the more efficient firms. This is believed to be the case for the
particular industry under investigation here. Cornwell et al. (1990) have proposed a production

function with time-variation in the efficiency levels of the firm of the form

TJit= Bil + Bi2t + Bi3t2.

This specification is able to capture the effects of learning-by-doing and diffusion of
innovations on relative firm efficiencies. They suggest a method for estimating the 6s by

regressing the estimated residuals il it = Yit - xitci on Bil + Bi2t + Bi3t2. The problem is that the
estimates from Cornwell et al. 's procedure is only consistent as T~O. A large number of time-

series observations is not very common for firm data, so this asymptotic requirement is rarely

met.

4.4. Balanced and Unbalanced Panels

Unequal time series for the cross-sectional units has primarily consequences for estimation of

random effects models. When the panel is incomplete, standard estimation methods cannot be
applied for the RE model (Wansbeek & Kapteyn, 1989, p. 355). However, estimators for the
RE model with incomplete observations have been derived (Baltagi, 1985; Baltagi & Chang,

1994; Wansbeek & Kapteyn, 1989). Later we will see that the weights used in FGLS
estimation of the RE model will depend on the length of the individual time series.
Heteroskedasticity is therefore introduced even with homoskedastic error components.

Although the computational complexity increases when going from a balanced to an
unbalanced panel, this does not constitute a major problem in empirical work.'

As we will see in Chapter 8 we have an unbalanced (or incomplete) panel data set: Firms are
observed from one to nine years. Furthermore, the first year of observation varies from 1985 to
1993. When data are missing, it has been a common procedure to focus on the subset of
individuals for which complete time-series observations are available (Hsiao, 1986, p. 197;
Verbeek & Nijman, 1992). In our particular case this may for instance mean including only the
firms that are observed throughout the nine year data period, alternatively, constructing a
balanced panel data set of firms that for example participate at least seven years using firms

that are observed seven, eight and nine years. Both designs willlead to a dramatic reduction in
the total number of observations. It will also lead to a loss of information, since the
incompletely observed firms contain information about unknown parameters. For example, in
the context of the random effects model, Baltagi & Li (1990) have shown that dropping

observations to make the panel data set balanced will produce an inferior estimate of the

5 Econometric software packages such as Limdep has implemented computational procedures for FGLS
estimation of homoskedastic RE models with unbalanced panels.
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variance components of the two-way random effects model. Simulation results of Baltagi &
Chang (1994) also suggests dropping observations to make the panel balanced reduce the

performance of RE model estimators compared to those from the entire unbalanced data set.

Omission of variables in order to obtain a balanced panel may be particularly dangerous in the
context of empirical modelling of production risk. In order to obtain a balanced panel of length

T, firms that are observed only for 1,2,... , T-l time periods are dropped from the panel. There
may be several reasons why a firm is observed less than T periods: (i) the firm entered the
industry relatively late, i.e., less than T periods before the last time period of the data set, (ii)

the firm dropped out because it was inefficient, (iii) the firm dropped out because it
experienced adverse realisations of stochastic variables (cit' in the context of the variance

function (4.2)), or (iv) the firm became ineligible for the survey because it merged with other
firms, diversified into other types of production, etc. For our application (ii) and (iii) probably
explain in many cases why firms are observed only for a short time period. Consequently, the
representativeness of the remaining subset may be questioned, because the firms in the

balanced panel subset probably are the most efficient firms and/or the firms that have
experienced favourable realisations' of the stochastic variables in the population. Both factors
will have an effect on the estimates of the error term uit and the estimates of the parameters 13
of the variance production function (4.2).

4.5. Fixed Versus Random Effects
A question that often arises in the literature is whether the FE or RE model should be used,"

Some have suggested that the distinction between fixed and random effects models is an
erroneous interpretation. Mundlak (1978) argues that we should always treat the individual
effects 17i as random. The fixed effects model is simply analysed conditionally on the effects

present in the observed sample. The fact is, however, that empirical results indicate that the
choice of model can have a large effect on the estimates of Cl in so-called longitudinal data

sets, where N is large and T is small (Hsiao, 1986, pp. 41-42), which is the case for our
application.

The random effects model has been criticised because it assumes that there is no correlation
between the individual effect 17i and the explanatory variables xit (Mundlak, 1978). There are
reasons to believe that 17i and xit are correlated in many circumstances. One example which has

been mentioned, and is relevant for our empirical study, is the estimation of a production

function using data at the firm level. The output of a firm may be affected by its unobservable
managerial quality, which is represented by 17i' Managerial quality is often positively

correlated with firm size, or the amount of inputs used xit. Larger firms can afford to recruit

6 Both Hsiao (1986, pp. 41-47) and Greene (1991, pp. 494-496) discuss this issue.
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highly skilled managers. In this situation 11i and xit cannot be regarded as independent, and the
standard random-effects model will provide biased estimates of (l. If the nature of the
correlation is known, it should in principle be possible to derive GLS estimators of (l in order

to obtain unbiased estimates for the linear specification (4.1).7 However, for dynamic, random-

coefficient, and discrete-choice models, it can be shown that the two approaches will never
lead to the same estimators, even when one allows for the correlation between 11i and xit

(Hsiao, 1986, p. 45).

It should be noted that when the RE assumptions, such as the assumption of no correlation
between the regressors xit and the individual effect 11i holds, then a RE is more efficient than

a FE (Wansbeek, 1995, p. 38). Degrees of freedom are saved with the RE approach because
one only estimates the variance of the firm-specific effect O; instead of all the N fixed effects

111' ... , 11N'

There are occasions when only the FE model is applicable. If one of the objectives is to make
statements about the particular cross-sectional units in the sample, then an FE approach is

required. For example, in productivity studies the researcher often wants to rank the firms in
the sample by efficiency (Kumbhakar, 1993). With a RE approach it is not possible to rank the
firms; one can only make statements on the relative magnitude of cross-sectional differences in
productivity based on the estimate of the variance of the firm-specific error term." An FE

approach is also required if one wishes to use Griliches & Hausman's (1986) procedure to
correct for errors of measurement.

When time-invariant variables (e.g. region-dummies, year of establishment) are included, the
fixed-effect estimators (4.2) cannot be derived, because the time-invariant variables are

eliminated when the individual time-series mean is subtracted from the x's. The alternative,

estimating a fixed-effect model using dummy variables for the individual effects, is not
possible either, because of perfect multicollinearity between the firm-specific dummies and the

other time-invariant variables. Time-invariant variables do not constitute a problem for the RE
model. Random effects models with four independent error components have also been

proposed in the literature (Baltagi & Raj, 1992, p. 98). Such a generalisation is useful when
one of the objectives is to separate e.g. regional effects from firm-specific and time-specific
effects.

7 Mundlak (1978) has presented a GLS estimator for a which provides asymptotically unbiased estimates (when

T tends to infinity). However, Mundlak's estimator is based on the assumption that the individual effect is a

linear function of the time-series mean of all explanatory variables, which is too restrictive for practical

purposes.

8 For example, an estimated RE model can tell us what per cent of the variance of output, y, can be explained by

the regressors (input levels, etc.), what per cent can be explained by the firm-specific effect, and what per cent
can be explained by the remaining observation-specific disturbance term.
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There are estimators which allow us to include firms that are observed for only one period in
the estimating sample when an RE approach is used (Biørn, 1981; Hsiao, 1986, pp. 194-6).
This is important if there are structural differences, e.g. with respect to mean productivity and
output risk, between firms which are observed for only one period and firms that are observed
for longer time periods. It may be the case that firms which are observed for only one period
are less productive or more risky than firms that are observed two or more periods.

It should be noted that the assumption of randomness of 1Ji and At in the RE model does not

carry with it the assumption of normality (Hsiao, 1986, p. 47). This assumption is often made

for random effects, but it is a separate assumption made subsequent to the randomness
assumption. Normality is usually assumed for the purpose of hypothesis testing.

Another issue is the small sample performance of FE and RE estimators in terms of precision
and efficiency. Both FE and RE estimators have been derived for unbalanced panel data, but
their performance may differ. In subsequent sections we will discuss this further.

The nature of the sample may also be a factor in determining whether an FE or RE model is
appropriate. If the sample is not randomly drawn from the population, then the RE approach
may be questioned. In other words, if the distribution of the firm-specific effects in the sample
departs from the true distribution, then the FE approach is to be preferred. However, also with
an FE approach one must be careful with respect to making inferences when sample selection
problems are present; the estimated parameter values should only be considered valid for the

present sample.

There are tests available to compare the FE and RE model specifications. Hausman's chi-
squared test statistic makes it possible to test whether the GLS estimator is an appropriate

alternative to the estimator of the homoskedastic, nonautocorrelated FE model (Greene, 1991,
pp. 495-496).

If there are no special considerations that clearly make one of the two approaches more
appropriate than the other, then one possible approach may be to estimate both the FE and RE
models, and then compare the estimates of a. to assess to what extent they deviate from each

other. If the estimates diverge, then a Hausman test could be undertaken to determine which
approach is most appropriate. One should, however, be aware of the assumptions underlying
this particular test, and the fact that other model specification errors may also affect the results.

One thing neither the estimated FE model nor the RE model tell us are the sources of cross-
sectional heterogeneity. Thus, we are still ignorant. But now our ignorance is partly general
and partly specific. Significant firm-specific effects or a significant time-invariant variance
component tell us that observed productivity differences across firms are not only due to white

noise disturbances. Hence, significant firm-specific effects can provide the rationale and
constitute the basis of a research programme to identify the underlying sources of productivity
differences. The FE model has an advantage if one wishes to undertake a detailed study of
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selected firms; based on estimated fixed effects one can e.g. pick out the most productive firms
and the least productive firms for further study.

4.6. Maximum Likelihood Estimation of Fixed Effects Models
In Chapter three we saw that for Just-Pope production functions, ML provides more efficient
estimates of the variance function parameters than FGLS. Furthermore, Monte Carlo studies

suggest that in small samples the precision (in terms of MSE) of both mean and variance
function parameter estimates are higher when estimated by ML compared with FGLS.
However, simulation studies have only been undertaken for homogenous firms, i.e., Just-Pope

models devoid of firm-specific effects. It may be the case that the relative performance of ML
and FGLS in small samples is changed when firm-specific effects are introduced. In Chapter
five the performance of FGLS and ML estimators for Just-Pope models with fixed effects will

be assessed in a simulation study.

The FGLS estimator for a Just-Pope model with fixed firm-specific intercepts will be the same

as the usual FGLS estimator when the fixed effects are implemented as dummy variables.

This section presents ML estimators for fixed effects models, both the standard homoskedastic
specification and a heteroskedastic specification. The fixed effects will be implemented as
firm-specific intercepts in the mean function. Both ML and marginal ML (MML) estimators
will be provided. The first estimator corresponds to ML with dummy variables for firm-
specific effects, which is the most straightforward procedure. However, with a large number of

individual effects (e.g. firm dummies), it may be difficult to find ML estimates that converge,

because of the problem of multicollinearity among right-hand side variables is aggravated
(Baltagi, 1995). Furthermore, it has been shown for the homoskedastic case (i.e., cri = cri, 'V
i,t), that the ML estimator of a is consistent, but the estimator of the variance cr2 is

inconsistent (Wansbeek, 1995, p. 13).

The MML estimator uses the within transformation of dependent and independent variables,
and thus avoids the use of a large number of dummies. Wansbeek (1995, p. 14), when

presenting the ML estimator for the fixed effects model in the homoskedastic case, mentions
that marginal maximum likelihood (MML) estimation and conditional maximum likelihood
(CML) are equivalent to ML estimation with dummy variables. Cornwell & Schmidt (1992)
state that for the linear regression model ML, CML and MML provide the same (consistent in
N) estimator.

Wansbeek points out that with a fixed effects model one experiences an incidental parameter
problem. Because of the individual effects 11i' we have in the fixed effects model a situation
where the number of parameters grows as fast as the number of observations (when N --7 00

and T is fixed). Such parameters are usually called incidental parameters or nuisance
parameters (Neyman & Scott, 1948). The parameters a are the structural parameters of the

78



model. For a general pdf Pi(Yil Cl, 11i) of the random variable Yi' the structural parameters are
contained in the finite parameter vector Cl, and 11i is the incidental parameter. Usually,

researchers are primarily concerned with the structural parameters. The problem is, however,
that the usual ML estimator of the structural parameters Cl is inconsistent in N, for fixed T

(Neyman & Scott, 1948). The objective is therefore to find alternative estimators that lead to
consistent estimates of Cl.9 In the linear regression model within-transformation of the

variables eliminates the incidental parameters problem.

Kalbfleisch & Sprott (1970) discuss elimination of incidental parameters from the likelihood

function by the use of CML and MML. They present the conditions that have to be satisfied in
order to be able to construct CMLs and MMLs. Chamberlain (1980) is the only who presents a

CML estimator for the fixed effects model with balanced panel and homoskedastic

observation-specific errors. MML and CML estimators have been provided for other model
specifications. Verbeek (1990) proposes a MML estimator for a fixed effects model with
sample selectivity.

We begin first with the simple case of a balanced panel and homoskedastic errors, then extend
to the unbalanced panel case, and finally introduce heteroskedasticity.

4.6.1. Derivation of the ML-Estimator for the Case of Balanced Data and
Homoskedastic Errors

For the special case of a balanced panel (i.e., Tl = T2 = ... = TN) and homoskedastic
observation-specific errors, the log-likelihood function with dummy-variables for the
individuals (represented by D) is:

(4.3) 1nL = - ~ lna~ - 2~2(y-XCl- Dtl)'(y-XCl- Dtl),
u

where y is a NT x 1 vector, X is a NT x k matrix, and D is the NT x N indicator matrix (or
individual dummy matrix) defined by D = IT ® IN' where IT is a T x 1 vector of ones (see
appendix 4.A3 for an example). The first-order conditions for maximum are

dlnL 1
(4.4a) --=--2 (-2X' y+2X' XCl+2X'Dtl)=O,

da 2au

dlnL 1
(4.4b) ~=--2 (-2Dy+2D XCl+2D Dtl)=O,

U" 20' u

dlnL NT 1 '
(4.4c) da2 = - 20'2 + 40'4 (y- XCl-Dtl)(y - XCl-Dtl) =°.

u u u

First, we solve (4.4b) with respect to Tl:

9 However, when the 77/s are not assumed to be arbitrary constants, but i.i.d. random variables, the ML estimator

of a. is strongly consistent in N under reasonable regularity conditions (Kiefer, 1956). The ML estimator of the

pdf of the 77/s is also consistent.
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" = (V D)-IV -(V D)-IV x«
(4.4b') 'Tl Y _ ,

= Y - x«
wheretheNx 1 vector Y=(YI'Y2' ... 'YN)' and theNxkmatrix X=(XpX2, ••• ,XN)'.

Then (4.4a) is simplified:
(4.4a') -X' y + X' x« + X' D1l = O,

Insert (4.4b') for 'Tl in (4.4a') and rearrange:

-X'y+X' Xa+X' D[(V DtVy-(V DtV Xa]=O,

X' Xa-X' D(V DriV Xa=X'y-X' D(V DtVy,

(4.4a") a=[X' X-X' D(V DtV xr[X'y-X' D(V DtVy],

which is the ML-estimator for a.

It can be shown that maximisation of In L with respect to (a, 'Tl, cri) yields the same
estimators for a and 'Tl as OLS. For the ML estimator of cri

. "2 T-l 2
phmau =-T au'
N--.-

which means that it is inconsistent for finite T (which is usually the case for panel data).

Next, we derive the MML estimator for a, i.e., the ML-estimator when the deviation forms

(within transformations) y = (Yll .Y12'···.YIT'···.YNP YN2'···.YNT )' and

i = (Xll,XI2, ... ,XIT'... ,XNPXN2,... ,XNT)' are used. The log-likelihood function is

(4.5) NT 2 1 (_ -)' (_ -)InL=--lna -- y-Xa y-Xa.
2 u 2a2

u

The first-order conditions for maximum are

alnL 1 (- - - )(4.6a) --=-- -2X'y+2X' Xa =0,
aa 2a~

a In L NT 1 (_ -)' (_ -)(4.6b) aa2 = - 2a2 + 4a4 y - Xa y - Xa = O.
u u u

By solving (4.6a) with respect to a we obtain the MML estimator

(4.6a') a = (x if x y

It can be shown that (Wansbeek, 1995, pp. 11-12)

(4.7) Y = My = (INT -K)y=(INT - ~DV )Y,
where M is the within-transformation matrix and K is the between-transformation matrix, both
of dimension NT x NT.

In order to show that the MML estimator (4.6a') is identical with the ML estimator (4.4a") we
replace y and it with the within-transformations
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a=[ X (/NT- ~DD )(INT- ~DD )xrX(/NT - ~DD )(/NT- ~DD}

=[(x- ~DD X) ( X - ~ DD X)nx- ~DD X) (Y- ~ DD Y)

[
2 1 ]-1a= X'X--X' DD X+-2 X'DD DD X

(4.6a") T T

.[X' y_l:X' DD y+_l X'DD DD Y]
T T2

It turns out that the above expression can be reduced to

il=[X' X-X' D(D DtD xt[X'y-X' D(D DtDy],

which is identical with the expression for the ML estimator (4.4a").

4.6.2. Derivation of the ML-Estimator for the Case of Unbalanced Data and
Homoskedastic Errors

We now examine the case when the N individuals are observed in Ti periods, where Ti may
vary over individuals i, but the error term is still homoskedastic. The total number of
observations is n = LiTi.

The expression for the estimator for the dummy-variable specification is identical with the ML

estimator (4.4a"), since the indicator matrix D also can describe the structure of an unbalanced
data set. The indicator matrix is defined by D = diag(ln, In, ... , ITN)' where lTi is a Ti x 1

vector of ones.

Looking back on the MML estimator (4.6a"), itmay appear to be a problem that it is implicitly
assumed that T is identical for all N individuals. However, it can be shown that (4.6a") is
identical with

a = [X'X -X' D'D"X +X' D'D"D'D"Xr

-[X'y-X' D'D"y+X' D'D"D'D"y]
(4.8)

where D* is the n x N matrix

D' = diag(d; , ... ,d~),

where d; is a Ti x 1 vector with elements l/.,ff;. D* can be viewed upon as a weighted

indicator matrix, with 1/.,ff; as weights.

Furthermore, it can be shown that if D* is replaced with D in (4.8), then il is unchanged,
which means that the ML estimator and the MML estimator are identical also in the
unbalanced panel case.
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4.6.3. Derivation of the ML-Estimator for the Case of Unbalanced Data and
Heteroskedastic Errors

We now examine the case when the individuals are not necessarily observed for the same
number of periods, Ti' and the error term is heteroskedastic, i.e., var(uit) = O"~. The log-

likelihood function is now

(4.9)

where y is a n x 1 vector, X is a n x k matrix, and D is the n x N weighted indicator matrix
defined by D* = diag(d; , ... ,d~), where d; is a Ti x 1 vector with elements 1I..,ff;. The first-

order conditions for maximum are

(4.lOa) aalnL = -!(-2X' g-ly+2X' g-IXa+2X' g-ID*11) = O,
a 2

(4.lOb) alnL = -!(-2D*'g-IY+2D*'g-lxa+2D*'g-ID*11) = O.
ih] 2

Rearrange (4.1Ob):
D*'g-I D*11=D*'g-Iy - D*'g-I Xa,

(4.lOb') 11= (D*'g-I D*t[D*'g-ly- D*'g-IXa].

Rearrange (8a):

(4.lOa') X'g-IXa =X' g-Iy-X' g-ID*11

Substitute (4.lOb') for 11in (4.10a) and rearrange:

X' g-I x« = X' g-Iy - X' g-I D*(D*'g-I D*) -ID*'g-Iy

+X' g-ID*(D*'g-ID*t D*'g-IXa

[X' g-IX -X' g-ID*(D*'g-ID*t D*'g-IXr =

X' g-Iy- X'g-ID*(D*'g-ID*t D*'g-Iy

O; = [X' g-IX -X' g-ID*(D*'g-ID*)-1 D*'g-IX]-I
(4.lOa")

{X' g-Iy-X' g-ID*(D*'g-ID*)-1 D*'g-Iy]

The covariance matrix g is symmetric and positive definite. This means that its inverse can be
factored into g-I = g-I/2(g-II2)' (Greene, 1991, p. 385). By substituting this factorisation into

(4.10a") and multiplying into the adjacent matrices, we obtain

O; = [X~Xp - X~D;( D;' D;rD;'x,r
.[x~yp- X~D;(D;'D;t D;'y p]'
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where Xp = n-l12 X, Yp = n-l12y, and D; = n-l12 D·. Except for the subscript P, this

expression is equivalent with the homoskedastic estimator of a. Of course, the covariance
matrix n may be a function of a vector of parameters ~, as in the variance function (4.2).

Then, it can be shown that the ML estimator for the fixed effects model will have the same
attractive property compared to the FGLS estimator, in that the parameters a and ~ are

estimated in a single stage instead of in separate stages.

The motivation for deriving an MML estimator, as mentioned earlier in this section, is that

with a large number of firm dummies it may in practice be difficult to find ML estimates that
converge. Hence, also for the heteroskedastic case it will be convenient with an MML

estimator that provides estimates which are identical with the ML estimates. However, in the
heteroskedastic case one has to rely on asymptotic results, i.e., as the number of firms N...-::,oo,
to show the similarity of the ML and MML estimators of a (Cornwell & Schmidt, 1992). The

question is then to what extent the ML and MML estimates diverge in finite samples. We
found in a simulation study (cf. Chapter 5), that ML and MML parameter estimates of a Just-

Pope model were very similar, and provided elasticity estimates that for all practical purposes
were equivalent, even when the number of firms N was much smaller than in our empirical

application. This finding suggests that MML can be used instead of ML in finite samples even
in the heteroskedastic case.

4.7. Estimation of the Homoskedastic Random Effects Model for
Unbalanced Data

This section presents a GLS estimator of the homoskedastic one-way error-components model
for the case of unbalanced panel data. Because of the relative complexity of GLS estimators
for random effects models it is useful to be familiar with the estimators for the homoskedastic
specification before proceeding to the heteroskedastic case. Moreover, in the simulation study
(Ch. 5) and the empirical analysis (Ch. 9) homoskedastic specifications will also be estimated

to assess the relative gain in performance by using heteroskedastic models. In order to gain
some a priori knowledge about the performance of different homoskedastic estimators for
unbalanced panel data, some finite sample simulation results are also presented at the end of

this section.

For the homoskedastic random effects model

(4.11) Yit=j(Xit; a)+ 11i+uit, i=1, ... ,N, t=1, ... ,Ti,

it is assumed that E[11i]= O, E[uit] = O, E[111] = all, E[ui] = au2, E[11i11j]= O for i "* j, E[11
iUjt]= O. For firm i the Ti x Ti covariance matrix of the composite error term vit = 11i+ Uit' is
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a2 +a2 a2 a2

" u " "
(4.12) ni= ailTi + ar?ITi =

a2 a2+a2 a2

" " u "
a2 a2 a2+a2

" " " u

where ITi is a matrix of ones of dimension Ti x Ti. We see that for a given firm i, the
correlation between any two disturbances in different time periods is constant. The n x n
covariance matrix for the entire panel data set (where n = Li Ti) is

o. = ailn + ar?I,

where I = diag(ITi)i=l,N is a n x n block-diagonal matrix. The off-diagonal elements of o. are
zero if the observations belong to different firms. The non-zero off-diagonal elements are all
equal to ar?, while the diagonal elements are all equal to ai + art It is the existence of non-

zero off-diagonal elements in the covariance matrix that makes GLS estimation necessary.

4.7.1. FGLS-Estimation

Examples of FGLS estimators presented in the literature for the error components model in the

balanced data case are Fuller & Battese (1973), Hsiao (1986, pp. 34-38) and Greene (1991, pp.
485-94). Wansbeek & Kapteyn (1989) present a GLS (not FGLS) estimator for the case of

unbalanced data.

The GLS estimator using the true variance components is

a GLS =(X'n-1 X)x'n-1 y

or

a GLS =(X*'X*)X*'y*,

where X* = x'n-1I2 and y* = y'n-1I2. Direct GLS estimation requires the inversion of an n x n

matrix, which can be too large in many practical applications. Therefore, it is desirable to find
an alternative way to estimate a.with reduced computational requirements.

The Ti x Ti covariance matrix (4.12) for firm i can alternatively be expressed as (Baltagi, 1985)

ni=(1ja1l + au2)ITiITi + ai(lTi - IT/Ti)·

By multiplying out the expressions in parentheses it can be verified that the above expression
reduces to (4.12). Following e.g. Fuller & Battese (1974), it can be shown that

nf =(1jarl + au2)pIT/Ti + (au2)p(ITi - IT/Ti)'

where p is any rational number. When p=-l one obtains the inverse, while p = -112 obtains

nr 112. Let wl = Tiar? + al. Then

a 0..-112 = (a 2/w·)(I1i.fT-) + (I".· - I"..fT·) = I".· - (J.T"..fT·u l u l l l ~l ~l l ~l r ~l l'

where
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(4.13) Bi = 1- aiwi.
It can easily be shown that auD.{1I2Yi has a typical element v« - BiY). This means that GLS

can be applied using a weighted least squares (WLS) procedure. Given the true values (or
. consistent estimates of) variance components or? and ai, one obtains Wi and Bi. Then WLS-

estimation is done by regressing

(Yit - BiYi ) on (1 - Bi) and (xit - BiXi)·

Of course, the true values of the variance components or? and ai are generally unknown in
empirical applications. Hence, consistent estimates of or? and ai have to be used instead.

The variance of the observation-specific error term, ai, can be estimated by

a i = LiLt u 2/(n - N - K - 1),

where u is the residual from the estimated fixed effects regression model

u = Yit - ry i - ei 'xit·

For the variance of the firm-specific error component, ar?, at least three estimators have been

proposed. An estimator (i) based on residuals from a regression of the N observed firms means
Yi on a constant and Xi' (ii) based on OLS-residuals from the pooled regression Yit= f.l+f(xit;
a) + Uit, (iii) based on the sample variance of the estimated fixed effects iL i.

The variance of the firm mean regression Yi = f.l* + ei *'xi + Vb is

avi2 = var[1Ji+ Liu;lTi] = ar? + ailTi·

We see that the variance is heteroskedastic because Ti is not constant across i's in the
unbalanced panel case. It can be shown that the OLS variance estimator in a heteroskedastic
regression is a consistent estimator of

al = plim(1/N)Liavi2 = ar? + au2plim(1/N)Li(1ITi)

= ar? + plim QN*ai = ar? + plim Q*ai,

assuming that the probability limit exists. The consistency result hangs on increasing N, not Ti'
which is taken as fixed. One has to make some assumption about the number of periods firms
are observed. We assume that Ti is randomly distributed across individuals with E[Ti] = T. If
Ti = Tfor all i, then QN* = Q* = Q = lIT. Assume that QN* converges to some well defined Q*.
Then, in our sample, the statistic

Q = (lIN) (liT} + llT2 + ...+ lITN)

is a consistent estimator of Q* (Greene, 1991, pp. 500-501). A consistent estimator for the
variance of the firm-specific error component is then

(4.14) a 7]2 = a v2 - Qai = y*'Y*/(N - K) - Qai,
where y are the residuals from the group means regression, i.e., Vi = Yi - ei *'Xi.

A disadvantage of the estimator (4.14) is that it can lead to negative variance estimates.
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A consistent estimator of the variance of the firm-specific error component can also be found
byestimating the pooled regression Yif = J1 + a'xit + Uit, and then use the OLS slope estimators
vots to calculate the residuals vi = )I; - a 'auX; to be used in (4.14).

The third estimator of the variance of the firm-specific error component is
" 2- NN" "2
(J 7] - (1/N)l.:;=/~:;=I11 ;IN - 11i) ,

where fl i' i = 1, 2, ... ,N, are the fixed effects estimators.

An estimator for e is now
ei = 1 - a i(Tia 7]2+ a l)1I2,

which can be applied in the next step to transform the observations and estimate the model by

OLS as shown earlier in this section.

4.7.2. Maximum Likelihood Estimation

Examples of studies which present an ML estimator for the error components model in the
case of balanced data are Amemiya (1971), Magnus (1982), Hsiao (1986, pp. 38-41). For the

unbalanced data case Wansbeek & Kapteyn (1989, pp. 350-352) and Baltagi & Chang (1994,
pp. 74-77) have presented ML estimators. An ML estimation procedure for the unbalanced
data case is presented in appendix 4.A4.

4.7.3. The Performance of Homoskedastic Estimators in Simulation
Experiments

A few simulation studies have been undertaken in order to compare the performance of

different homoskedastic panel data model estimators. Such studies are interesting because they
give us an a priori idea about which estimators may perform well under different data designs.
Performance is usually assessed in terms of mean square error (MSE) of estimated parameters,

and the power of (t-) tests. See Chapter 5 for a presentation of these and other performance
criteria. In simulation experiments several issues are of interest: (1) The effect on parameter

estimates of changing total sample size, n. (2) The effect of changing the degree of
unbalancedness. (3) For the error components model: The effect of changing the variance ratio
p = 07]2/ ol.

Wansbeek & Kapteyn (1989) assess OLS, FE, FGLS and ML estimators of a two-way error
components model (i.e., the model has both time-specific and firm-specific effects) with a
constant term and one regressor. The error components have the following variances: vare11i) =
07]2 = 400, varCAf)= o;._2= 25, var(uit) = ol = 25. They consider three panel cases: Balanced

data, random attrition, and rotating panel. For each case 50 runs are made. TMAX = 5 and there
is a maximum of N = 100 units each year. The OLS estimator clearly has the worst
performance of all estimators in terms of the difference between the average coefficient
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estimate and the true parameter value, and also in terms of the standard error of the coefficient.

The FE estimator of the slope coefficient has a slightly smaller average bias than the FGLS
and ML estimators, but the average standard error of the FE estimator is higher than the FGLS

and ML standard errors. The FGLS and ML estimators give nearly identical results for all three
panel cases; this applies to the average values of both coefficients and variance components.

Baltagi & Chang (1994) assess the performance of various estimators for different degrees of
unbalancedness and different variance ratios p for a one-way error model. The number of units

is N = 30 in all experiments, but the number of periods firms are observed vary over the cases.
In most cases the total number of observations is 210. The units are observed from one to 28

time periods. The performance of the OLS estimator in terms of MSE drops dramatically as
the variance ratio increases, i.e., as the magnitude of or? increases relative to ai. Its

performance was less affected by the degree of unbalancedness. The ML estimator of the
regression coefficient performs remarkably well for all degrees of unbalancedness and
variance ratios. According to Baltagi & Chang the ML estimators of the variance components
also perform well, although the results are not reported in detail. The performance of FE and
FGLS estimators are not assessed by Baltagi & Chang.

Khuri and Sahai (1985) and Baltagi & Chang (1994), also report the performance of other

error components model estimators (e.g. MNQUE) in simulation experiments, but these
estimators are outside the scope of this dissertation.

4.8. Heteroskedastic Random Effects Models in the Literature
Random effects models with heteroskedastic firm-specific and/or heteroskedastic observation-

specific error component are relatively new. Analyses of the performance of heteroskedastic
RE estimators are almost non-existent. Empirical applications of these estimators are also very

limited. The surveys of Baltagi & Raj (1992) and Baltagi (1995, pp. 77-81) give a good
indication of the status of heteroskedastic RE models.

Most of the estimation procedures suggested for heteroskedastic models are GLS

transformations of the variables which change the error terms into classical errors and thus

allow OLS estimation.

Mazodier & Trognon (1978) present a stratified two-way error components model for balanced
data with heteroskedasticity in the firm-specific error component, 1];. and the time-specific
error component, At. Stratified error components models can be relevant when there exist

meaningful stratifications of observations, e.g. industrial sectors for firms, or phases of the
business cycle. For the firm-specific effect the heteroskedasticity is of the form var(1]i) = or2,

where {r} is a subset of firms in the panel (e.g. firms that belong to industry r). Mazodier &

Trognon present GLS and FGLS estimators for this particular case.
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In Chapter three we saw that Griffiths & Anderson (1982) have presented FGLS estimators for

a nonlinear RE model with variance function uit=h(xit; ~)(eit+1J,+At)or uit=h(xit; ~)eit+1J,+At
under a balanced panel design.

Magnus (1982, section 8) presents a two-way error components model for balanced data with a
time-specific error component instead of a firm-specific error component. The observation-
specific error component exhibits heteroskedasticity of the form uit - N(O, wioi), i.e., the

variance differs across firms (not across observations) by a factor of proportionality Wi.

Magnus proposes an ML estimator under this assumption which is claimed to be

computationally feasible.

Baltagi & Griffin (1988) present a one-way error components model for balanced data which
assumes heteroskedasticity in the firm-specific effect. In Baltagi & Griffin's model var(1Ji) = a
l, i = I, 2, . . . , N, which implies that there are now N variances for the firm-specific
component rather than one constant variance. Baltagi & Griffin propose two feasible GLS

estimators: An iterative estimator based on OLS and within residuals, and a generalisation of
the MINQUE estimator. They also note that if normality is assumed on the disturbances, one
could derive ML estimators following Magnus (1978, eqn. 9 and 10). Baltagi & Griffin apply

their estimators on a panel data set, and reject homoskedasticity of the firm-specific error term
based on a Bartlett x-square test.

Kumbhakar & Heshmati (1996) apply Baltagi & Griffin's model framework in the estimation

of alternative cost function specifications with cost share equations by linear and non-linear
seemingly unrelated regressions (SURE). They first estimate the variances Oi2 and ai, and
then use these estimates to transform the variables to make the composite error term
homoskedastic.i'' Then they apply the usual SURE techniques to estimate the set of equations.

Li & Stengos (1994) presents a one-way error components model for balanced data which

departs from the standard model by assuming heteroskedasticity of unknown form in the
observation-specific error component, i.e., var(uit) = al- They propose FGLS estimators both

for the random effects model and the fixed effects model. Li & Stengos present Monte Carlo
simulation results which show that their proposed estimator performs adequately in finite

samples (T = 3 and N = 50, 100). They also propose a modified Breusch & Pagan test for
testing the random effects model, and a Hausman type test for testing the random effects
model against the fixed effects model.

The above papers all derive estimators for a balanced panel data set and assume that only one

of the error components is heteroskedastic. Randolph (1988b), however, proposes a GLS
estimator for a one-way error components model for unbalanced data with heteroskedasticity
in both the firm-specific and observation-specific error component. The variances can be

10 The transformation Kumbhakar & Heshmati apply is defined in Baltagi (1988, problem 88.2.2).
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written as functions of the regressors, the sampling design, or other parameters. Randolph's

GLS estimator is presented in appendix 4.A5.

In another paper Randolph (l988a) presents an error components model for unbalanced data
with heteroskedastic observation-specific error components. He presents an ML estimator for
his model. The model, which is designed for a particular empirical problem, has a somewhat
different covariance matrix structure than the error components model presented earlier in this
chapter. Randolph's model can be interpreted as a special case of an error components model

Yit = xita + vit' vit = 17i+ wlzit + W2Zil + uit' i = 1, ... ,N, t = 1, ... , Ti' where zit is an 1 x l
vector of observed non-stochastic regressors (e.g. input levels) and WI and w2 are l x 1 vectors

of stochastic parameters. As usual the term 17i is the firm-specific error, and uit is the

observation-specific white-noise error component. The variance of the composite error term is

var(vit) = ar?+ I.l (OlrZit} + 02rZitf) + ai,
where 0'12 and O'l are the l x 1 variance vectors of WI and w2' respectively.

The nature of heteroskedasticity is of a form which is somewhat different from that used in
econometric studies of production risk. However, as demonstrated by Randolph, this

specification of the observation-specific heteroskedasticity facilitates ML estimation. The
major problem with this specification in the context of production risk analysis is that the
variances aIr and 02r are assumed positive, hence precluding negative marginal output risks

(i.e., ay;lazit,l < O).

Randolph's (l988b) GLS estimator is the only of the above that encompasses the Just-Pope
case. Appendix 4.A5 translates his GLS estimator into a FGLS estimator for the variance
function chosen for the observation-specific error term in this dissertation. Appendix 4.A5 also
outlines a maximum likelihood estimation procedure for a random effects model with Just-
Pope heteroskedasticity in the observation-specific error term.

4.9. Summary
This Chapter has mainly discussed issues in econometric panel data estimation that are
relevant to our empirical study. The heterogeneous intercepts model (4.1), which has been the
focus of this chapter, has its weaknesses, such as the assumptions that there are time-invariant
differences in productivity across firms. Furthermore, these productivity differences are
independent of input levels (or scale of operation) unless a logarithimic transformation of the
variables is used. However, there are so many problems associated with heterogeneous slope

coefficients models, both random and fixed, that these do not represent attractive alternatives.
We have therefore chosen to use fixed and random specifications of the heterogeneous

intercepts model in our empirical modelling.
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There are arguments both for using a fixed effects specification and a random effects
specification. If the randomness of the sample can be questioned, then a fixed effects approach
may be more appropriate. Random effects estimators have some implicit assumptions of
uncorrelatedness for the error components TJi and uit. In particular, the degree of correlation
between the error components and the regressors xit may be a critical point of consideration
when choosing between the fixed effects and the random effects approach. Ranking of firms
by productivity requires a fixed effects approach. If one wishes to include time-invariant
regressors, such as region-dummies, then a random effects model is required. Because of the
hypotheses we want to test, both random and fixed effects specifications will be used in the
empirical study.

Estimators for both homoskedastic and heteroskedastic model specifications have been
presented here. It turns out that FGLS and ML estimation of random effects models for
unbalanced data are rather complicated, and that introduction of heteroskedasticity on the
observation-specific error term uit further complicates estimation. Since estimators for
heteroskedastic models are largely untested, their performance should be assessed in
simulation studies prior to empirical application. The next chapter will compare the small-
sample performance of different fixed effects and random effects estimators for Just-Pope
technologies by means of a simulation study.
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4.A1. Appendix: Variable List

D n x N matrix of firm-specific dummies

i subscript for cross-sectional unit (e.g. firm)

k number of parameters in mean function

m number of parameters in variance function h(·)

n (= r.i Ti) total number of observations in panel data set

N number of cross-sectional units (e.g. firms) in data set

t time period

Ti number of observations of firm i

nIx n vector of observations on observation-specific error component

ni 1 x Ti vector of observations on observation-specific error component for firm i

nit 1 x Ti vector of observations on observation-specific error component for firm i in
period t

v 1 x n vector of observations on composite error term

vi 1 X Ti vector of observations on composite error term for firm i

vit 1 X Ti vector of observations on composite error term for firm i in period t

xit 1 x k vector of observations on independent variables in mean function for firm i in
period t

X n x k matrix of observations on independent variables in mean function

Xi Ti x k matrix of observations on independent variables in mean function for firm i

y 1 x n vector of observations on dependent variable

yi 1 X Ti vector of observations on dependent variable for firm i

zit 1 x m vector of observations on independent variables in variance function hO for firm

i in period t

Z n X m matrix of observations on independent variables in variance function h(·)

Zi Ti x m matrix of observations on independent variables in variance function hO for

firmi

a. k x 1 vector of parameters in mean function

~ m x 1 vector of parameters in variance function hO

fit observation of exogenous error term in variance function hO for firm i in period t

11i observation of firm-specific error component for firm i
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p ratio of the variance of the finn-specific error component to the variance of the

observation-specific component

ai variance of the observation-specific error component

al (= or?+ ai) variance of the composite error tenn

or? variance of the finn-specific error component

n n x n covariance matrix for the entire panel data set

ni Ti x Ti covariance matrix for finn i
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4.A2. Appendix: Some Useful Matrix Rules

This appendix presents some matrix algebra rules that are useful in, for example, derivation of
first order conditions of the maximum likelihood functions presented in this chapter.

Determinants

For the block-diagonal matrix A = diag(A l, A2, ... ,AN)' where Ai has dimension Ti x Ti'

lAI = lA lHA2k ..·IAN·
Inverses

The inverse of a block-diagonal matrix is equal to the block-diagonal matrix containing the

inverses of the blocks. In notation, for a matrix

AI O O A-I O OI

O ~ O
kl =

O .4;1 O
A= the inverse is

O O ~ O O A-I
n

Matrix differentiation

For every matrix X and Y of appropriate orders (Magnus, 1982, p. 269)

d(XY) = (dX) Y +XdY,

and

dTrXY = Tr(dX) Y + TrXdY.

For every non-singular X (Magnus, 1982, p. 269),

dX-I = -X-I(dX)X-I,

and if IXl>O,

d loglål = TrX-1 dX.

Theil (1971, pp. 30-33) and Judge et al. (1988, p. 969) present the following rules:

dtrA/dA = I,
dIAI/dA = 1A1(A')-I,

dlnlAl/dA = (A')-l,

dAB/dX = A(dB/dX) + (dA/dX)B,

dA-I/dX = -A-I(dA/dx)A-I,

where X is a scalar.
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4.A3. Appendix: The Indicator Matrix O

For a panel data set with three firms, where firm 1 is observed 2 periods, firm 2 is observed 2
periods and firm 3 is observed 3 periods the indicator matrix D (or matrix of firm-specific
dummies) has dimension 7x3. D and DD' are given by

1 O O 1 1 O O O O O
1 O O 1 1 O O O O O
O 1 O O O 1 1 O O O

D= O 1 O DD= O O 1 1 O O O
O O 1 O O O O 1 1 1
O O 1 O O O O 1 1 1
O O 1 O O O O 1 1 1
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4.A4. Appendix: ML Estimation of a Homoskedastic Random Effects
Model in the Unbalanced Panel Data Case

To facilitate ML estimation we first redefine the covariance matrix slightly:

il = ou2(J),

where

(J)= In + pDD',

and p = o1J
2/ou2, D = diag(ITi)i=l,N is an n x N indicator matrix (or matrix of firm-specific

dummies), lTi is a vector of ones of dimension Ti' p is the ratio of the variance of the firm-

specific error component to the variance of the observation-specific error component. The
indicator matrix D describes the structure of the panel data set. (See appendix 4.A3 for an
example of the matrix D for a particular unbalanced panel).

The log-likelihood function can be written as (Baltagi & Chang, 1994, eqn. 17)

(4.15) In L = -n/2ln(2n:) - nl2ln oi - 1/2Inl(J)l- (y - Xa)'(J)-l(y - Xa)/2ai.

The first-order conditions give closed-form solutions for a. and &i conditional on p:
(4.16) a. = (X'<f,-lX)-lX'<f,-ly,

(4.17) & u2 = (y - Xa)'<f, -l(y - Xa)ln.

Unfortunately, the first-order condition based on p is nonlinear in p even for known values of

a and oi:

(4.18) olnLIop = 1/2 Tr(D'(J)-lD) + (y - Xa)'(J)-lDD'(J)-l(y - Xa)/2ai = O.

The second derivative of In L with respect to p is given by

(4.19) o2InL/(opop) = 1/2Tr{ (D'(J)-lD)(D'(J)-lD)} - (y - Xa)'(J)-lD(D'(J)-lD)D'(J)-l(y - Xa)/ai.

A numerical solution by means of iterations is necessary for p. Starting with an initial value of

Po( <f,o), a. O and & uo2 are obtained from equations (4.16) and (4.17). The GLS estimator can
provide the initial value Po( <f,o).

An iterative algorithm is used to update p.

The general expression for the updating formula (or algorithm) is

P(j+l) = p(]) - s(J#(])gv)'

where s(]) is the step size, Hv) a positive definite matrix, and g(j) is the vector of first
derivatives of the function to be optimised. The product H(])gv) is often called the direction
value. Hemmerle & Hartley (1973) use the Newton-Raphson formula, where the step size s(j)

= 1 for all j, Hv) = [o2InLI(opop)]-lv)' and gv) = [olnLIop](j)' Baltagi & Chang (1994)

modifies this by letting the step size sv) be adjusted by step halving. If the updated value is
negative, it is replaced by zero and the iteration continues until the convergence criterion is
satisfied. Harville (1977, pp. 329-30) discusses several algorithms in the context of variance
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components estimation, such as the Newton-Rhapson, the method of steepest ascent and the

method of scoring.

The iterative procedure is exited at some point when the change in the value of the objective
function, parameter values, and gradient is less than a prespecified value (e.g. 0.00001), or
when a prespecified upper bound for the number of iterations is attained (e.g. 100 iterations)

(Judge et al., 1985, p. 728).

Criteria used to compare different algorithms are the (1) robustness, for example, measured by
the number of times the algorithm has converged to the maximum, (2) precision in the
solution, (3) the number of function evaluations, and (4) execution time (Judge et al., 1985, p.
744). According to Harville (1977) no algorithm can be said to perform better in general than
the others for ML estimation of variance components models. Il

Unfortunately, the ML estimation procedure involves computation of the n x n covariance
matrix <1>-1. Hemmerle & Hartley (1973) have, however, provided a transformation that

eliminates the need for inverting an n x n matrix. The so-called W-transformation, which is

presented in the following, makes the iterative calculations independent of the total number of
observations, n, and it is not wedded to a particular iterative algorithm.

4.A4.1 The W-Transformation

For the one-way error components model the transformation matrix W is a (N + k + 1) x (N + k

+ 1) matrix with submatrix elements WC;,k),j, k = 1,2,3, i.e., it is defined as

[

W(1'l) W(1,2) W(1'3)]
W = W(2,1) W(2,2) W(2,3).

W(3,1) W(3,2) W(3,3)

The submatrices in column 1 are defined as follows:

W(l, 1) = D'<I>-ID, (a N x N matrix),

W(2, 1) = X<I>-ID, (a k x N matrix),

W(3,1)=(W(l,3»'=y'<I>-ID, (a 1 x Nmatrix).

The submatrices in column 2 are defined as follows:

W(l, 2) = (W(2, 1»' = D'<I>-IX, (a N x k matrix),

W(2, 2) =X<I>-1X,

W(3, 2) = y'<I>-IX,

(a k x k matrix),

(a 1 x k matrix).

The submatrices in column 3 are defined as follows:

Il A presentation and discussion of computational methods for nonlinear econometric models in general are
provided by Judge et al. (1985, section 17.4) and Greene (1991, Chapter 12)
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W(l,3)=(W(3,1»'=D'<I>-ly, (aNx 1 matrix),

W(2, 3) = (W(3, 2»' = X<I>-ly, (a k x 1 matrix),

W(3, 3) = y'<I>-ly, (a 1 x 1 matrix),

However, W does not have to be computed as above. Hemmerle & Hartley show that W can be
computed according to the following formula (H&H, eqn. 46):

(4.20) W= Wo - [~~] Q-l [D'DID'XID'y],

y'D

where

(4.21) Q = F-l +D'D,

is a N x N matrix, and F = P IN- The (N + k + 1) x (N + k + 1) matrix Wo is the matrix W with
""-1-1'V - n:

The determinant of the covariance matrix, <1>, can be calculated by (H&H, eqn. 48)

1<1>1= IF-l +D'DI IFl

The closed-form solutions for <i and a u2 based on the first-order conditions are now:

(4.22) <i = [W(2, 2)]-1 W(2, 3),

(4.23) a u2 = (1/n){W(3, 3) - <i 'W(2,3)}.

The first-order condition based on p is:

(4.24) alnLIap = -112 Tr{W(l, l)} + (ll2a u2)P'P = 0,

where

P' = W(3, 1) - <i 'W(2,1).

The second derivative of In L with respect to p is given by

(4.25) a21nLI(apap) = 1/2 Tr{W(l, I)W(l, l)} - P'W(l, I)Plai.

H&H presents an 8-step iterative procedure to obtain the ML estimates, as provided in table

4.1:
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Table 4.1. Eight-step Iterative Procedure to Calculate ML Estimates

Step EquationFactor computed

1

2

3

4

5

6

7

8

Q

w
A

a(j)

a i(j)

Ci)lnLIap)(j)

ca2InLIcapap»(j)

~P(j)

P(j)

4.11 CAGLS estimate can be used as initial value for p)

4.10

4.12

4.13

4.14

4.15

~(J) = [a2InLICapap)]-1(j)[alnLIap](j)

P(j+ 1) = P(J) - s(j) ~P(J) Cor another updating algorithm)
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4.A5. Appendix: Estimation of the Heteroskedastic Random Effects
Model for Unbalanced Data

This appendix deals with FGLS and ML estimation of two-way error components models for
unbalanced data with heteroskedasticity of the Just-Pope form var(uit) = h(zit, (3)2Cit for the

observation-specific component. It is assumed that the heteroskedasticity is of Harvey's (1976)

multiplicative form. Although we are primarily interested in heteroskedasticity in the
observation-specific component, we will see below that a GLS estimator is also available for
the case of heteroskedasticity in both error components.

4.A5.1. Randolph's GLS Estimator

Randolph (1988b) presents a GLS estimator for the heteroskedastic one-way error components

model

i = 1, ... ,N, t = 1, ... , Ti'

where E[17i2] = al, E[ui] = ai. In other words, both the firm-specific error component and

the observation-specific component are heteroskedastic. The firm-specific and observation-

specific variances are assumed to be functions of regressors, the sampling design or other

parameters. The other assumptions on the random components from the homoskedastic model

are retained.

For firm i the Ti x Ti covariance matrix of the composite error term vit = 17i+ uit' is

(j~
I

(j~
I

(j~
I

(j~
I

where JTi is a matrix of ones of dimension Ti x Tj• As in the homoskedastic model, for a given

firm i, the correlation between any two disturbances in different time periods is constant. The n
x n covariance matrix for the entire panel data set (where n = Li Ti) is

il= 0112J+ diag(0112, 0222,... , 02Tr, ... , 0NI2, 0N22,... , aNTi),

where J = diag(JTi)i=l,N is a n x n block-diagonal matrix. The off-diagonal elements of il are
zero if the observations belong to different firms. The non-zero off-diagonal elements are Oi2,

while the diagonal elements are al + ail

As usual the GLS estimator using the true variance components is

ei OLS =(X'il-l X)X'il-1 y.

Randolph shows that there exists a n x n transformation matrix R, such that X* = X'R and y* =
y'R, and
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ei GLS=(X*'X*)X*'y*.12

For each observation the transformation can be expressed as

(4.26) xit = [xit - Cl;(L~~!WisXis)]0it-1,

(4.27) Yit = [Yit - Cli(L~~! WisYis)]0it-1,

where

(4.28) Cli= [1 - (1 + Bi)-1/2],
_ 2 ~T; -2

(4.29) Bi - A, £.Js=!O'is '

(4.30) Wit = a? / (BiOi?), LT
I W. = 1.s=! IS

4.A5.2. An FGLS Estimator for a Special Case of Randolph's Model: Harvey's
Multiplicative Heteroskedasticity

It still remains to derive FGLS estimators for special cases of the above model in order to

facilitate estimation for empirical purposes. Randolph (1988b) does not provide FGLS
estimators for special cases of his one-way error components model. Furthermore, we have not

been able to find any FGLS estimators or empirical applications of his model in the literature.
The performance of this estimator is therefore an unresolved question.

Randolph mentions Harvey's multiplicative heteroskedastic model as one special case of his
heteroskedastic one-way error components model. In the following we present an FGLS

estimator for the special case of homoskedastic firm-specific error component and Harvey
multiplicative heteroskedasticity for the observation-specific error component. Properties and
estimators for Harvey's model in the absence of random firm-specific effects were presented in

Chapter 3.

The model is given by

i = 1, ... ,N, t = 1, ... , Ti'

where E[1J?] = 017
2 (i.e., constant), E[u;?] = ai? = exp(zit(3), where zit is a 1 x m - vector of

regressors with first element one, and (3is a m x 1 vector of parameters. In this case

2 ~T; I(4.31) Bi = 017 £.Jr-!1 exp(zit(3),

(4.32) wit = 017
2/ (B,-exp(zit(3))·

A consistent estimate of al can be found by first estimating the fixed effects model

!2 See the appendix of Randolph's paper for a derivation of this transformation.

100



and then use the residuals u it = Yit - ry i - Xi/i. to estimate the variance function by (Harvey,

1976)

A

After adding 1.2704 to the estimated intercept PI' following Harvey (1976), parameter
A

estimates l3 are used to provide estimates of the observation-specific variances

fJ il = exp(zitø), i = 1, ... ,N, t = 1, ... , Ti'

An estimate of the variance of the firm-specific error component 01]2 can be found by using

one of the estimators provided in section 4.7. By substituting the estimators ø and fJ 1]2 in

(4.31) and (4.32) for l3 and 01]2, respectively, we have the estimators for Bi and Wit. Next, Oi'
wit and fJ it is substituted into (4.26) and (4.27) to obtain the transformations of xit and Yit that

allow OLS estimation.

4.A5.3. Maximum Likelihood Estimation of Error Component Model with
Harvey's Multiplicative Heteroskedasticity

This appendix presents an ML estimator for a one-way error components model for

unbalanced data with Harvey's multiplicative heteroskedasticity in the observation-specific
error component. The derivation of the ML estimator relies to a large extent on Magnus
(1978), who derives an ML estimator for a covariance matrix with a finite number of unknown
parameters e. The covariance matrix of our model can be regarded as a special case of the

more general covariance matrix in his model. 13

The one-way error components model is

i = 1, ... ,N, t = 1, ... , Ti'

where E[1Ji2] = 01]2, E[ui] = oi = exp(zitl3), which implies that the variance of the
composite error term is E[vi] = 01]2 + exp(zitl3).

The n x n covariance matrix is n = E[vv'] = diag (ni)i=I,N, where

(4.34) ni = 01]2ITi + diag(exp(zitl3))t=I,Ti

O'~ + exp(Zill3) 0'2 0'2
11 11

0'2 O'~ + exp(zi2l3) 0'2
= 11 11

0'2 0'2 O'~ + exp(zml3)11 11

and where ITi is a matrix of ones of dimension Ti x Ti'

To simplify the notation in the following we first define

13 Magnus (1978) derives the ML estimators for two special cases of the covariance matrix, autocorrelated errors

and Zellner-type regressions.
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(4.35) e' = (ar?, (3')

as the 1 x (m+1) parameter vector of the covariance matrix.

The likelihood function is (Magnus, 1978, p. 284)

(4.36) L = 2n -n12 IQI-I/2exp{ -(1/2)(y - Xa)'Q-I(y - Xa)},

which gives the log-likelihood function

(4.37) In L = -nI2In(2n) + (1/2) InIQ-II - (1/2)(y - Xa)'Q-I(y - Xa),

The task is now to find the k + m + 1 estimators & and e '=( & T]2, ~ ') which maximise the

log-likelihood function. A prerequisite for the differentiation of InIQ-II is that IQI> O, which is

guaranteed when the observation-specific variance ai is specified as exp(zit~).

Differentiation of In L, using matrix differentiation rules provided e.g. in Neudecker (1969),
leads to the following expression

(4.38) d In L = (1/2) tr Q d(Q-I) - (y - Xa)'Q-Id(y - Xa) - (1/2)(y - Xa)'d(Q-I)(y - Xa),

or, by using the fact that v = y - Xa,

(4.39) d In L = (1/2) tr Q d(Q-I) - v'Q-Idv - (1/2)v'd(Q-I)v

= v'Q-IXda + (1/2)tr(Q - vv')d(Q-I).

A necessary condition for a maximum is that d In L = Ofor all da,* Oand de '* O.Hence, the k

+ m + 1 first-order conditions for a maximum are

(4.40) dIn Uo« = v'Q-I X = O (an 1 x k matrix of f.o.c.'s)

(4.41) dIn use, = (dIn Ud(Q-I»(d(Q-I)lde[) = tr{ (d(Q-I)lde[)Q} - v '(dQ-I/de[) v = O

1=1, ... ,m+I.

By replacing v in (4.40) with v = Y - X& , and solving with respect to &, we obtain the usual
closed-form solution for the parameters of the mean function:

(4.42) & =(X'Q-IX)-IX'Q-Iy.

Unfortunately there exists no closed-form solution for the parameters of the covariance matrix,
e:

1=1, ... ,m+I.

The estimation of the Ti x Ti matrix of partial derivatives d(Q{I)lde[ can be simplified by

using the matrix differentiation rule

d(Q{I)lde[ = Q{l{dQ/deLlQ{I.

Furthermore, one can exploit that for a block-diagonal matrix, the inverse can be constructed
by inverting the individual blocks.

For our particular model dQ/(JaT]2 is a Ti x Ti matrix of ones. The matrix dQ/dØo =
diag(exp(zi1~)' ... , exp(ziTi~»' while the matrices dQ/dØ[ = diag(exp(zi1~)zil' ... ,exp(ziTi~
)ziTi), l= 1, ... ,m-I.

102



It is convenient to rewrite (4.39) explicitly as a function of da and de. The last term of (4.39)

can be transformed as

(4.44) tr(Q - vv')d(Q-I) = vec(Q - vv')'vecd(Q-I)

= vec(Q - vv')'(avecQ-I/ae)'de.

By substituting (4.44) for the last term in (4.39) and do some rearranging we obtain

(4.45) d In L = (da)'XQ-Iv + (1/2)(de)'(avecQ-I/ae)vec(Q - Vy').

The Hessian and Information Matrix

Next, we will present the Hessian and information matrix of the log-likelihood function by
differentiating the log-likelihood twice with respect to its parameters

(4.46) d2 In L =I(da)', (d9)']H[ :] ,

where H is a (k + m + 1) x (k + m + 1) matrix. The structure of H is given by the following

theorem (Magnus, 1978, p. 285):

Theorem: Define the symmetric (m+l) x (m+l) matrices
.. 1 2 14l,] = , , ... , n,

and let Q = [wij]' then the Hessian of the log-likelihood function (11) is

_ [Hil H;2]H- ,Hl2 H22
with

H11 =-XQ-IX, (akxkmatrix)

H12 = (avecQ-I/ae)(X®v), (a (m+l) X k matrix)

H22 = (1/2)1:i,j (wij - ViVj)Mij -(1I2)(avecQ-I/ae)(Q®Q)(avecQ-I/ae)'

= (112)1:· . (w" - v·v·)Mij -(1/2)'PeI,J IJ I J ' (a (m+l) x (m+l) matrix)

where 'Pe is a symmetric (m+l) x (m+l) matrix with typical element

ij = 1, 2, ... , m+1.

The information matrix of the log-likelihood function, defined as minus the expectation of the
Hessian matrix, is (Magnus, 1978, Theorem 3):

[
XQ-1X O]

'P = O (l/2)'Pa'

14 To simplify notation in the following, the n (= r.iTi) observations are assumed ordered by firm and time, and

then renumbered from I to n. The sub- and superscripts i andj therefore refer to all observations 1,2, ... , n in

this theorem.
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The m+1 (n2x1) vectors of partial derivatives vecaO-l/a6l, vecaO-l/a62, ... , vecaO-l/a6m+l
have to be linearly independent in order to ensure that the information matrix is positive
definite and that all the parameters of the covariance matrix are identified (Magnus, 1978, pp.
288-9). This condition is satisfied for the particular parametric structure we have postulated for

the covariance matrix.I5

Estimation of the Model

Magnus (pp. 289-90) suggests using the "zig-zag" iterative procedure due to Oberhofer &
Kmenta (1974) to find the ML estimates of Cl and e. The advantage of this procedure is that it

does not involve inversion of the Hessian matrix at each step of the iteration. Unfortunately,
the procedure requires that there exists a solution of the m+1 first-order conditions aln Lla6/.
For our particular covariance matrix a procedure that does not need solutions for the first-order
conditions has to be used instead.

In the following a Newton-Rhapson estimation procedure for the estimation of Cl and e is

outlined. The procedure involves computation of matrices of an order that may exceed the
capacity of available computer hardware and software. Therefore, methods for reducing the
matrix computations are proposed, partly by exploiting the block-diagonal structure of the
covariance matrix.I6

A Newton-Rhapson estimation procedure would involve the following steps:
A

(1) Choose starting values eOfor e, e.g. based on the FGLS estimator derived in section 4.7.

(2) Calculate °0-1= 0-1(90), no = (X'00-lX)-lX'00-ly, and Vo = y -Xno·

The largest matrix that has to be computed in this step is the n x n matrix nO-I. Since O is

block-diagonal with diagonal submatrices 01, O2, ... ,ON' one can exploit that the inverse of
O is equal to the inverses of the diagonal submatrices, i.e., 0-1 = diag(O(l, O2-1, ... ,ON-I).

In other words, each 0i can be inverted independently.

In the computation of n O the following procedure is equivalent to computing (X'no -1X)-l
directly: First, define the k x k matrix R = (X'nO-lX)-l = Ok. Then, repeat the following steps

for all firms i = 1, 2, ... , N: (a) Compute the estimate of the covariance matrix of firm i, nor
1. (b) Compute X/nOr1Xb where Xi is the Ti x k matrix of observations of the regressors of

15 Computation of the partial derivatives vecon-l/oOl, vecon-l/o~, ... ,vecon-l/oOm can be simplified by

using the matrix differentiation rule oA-l/ox = -A-l(i)Alox)A-l, where x is a scalar. However, it is still quite a

task to derive these expressions analytically. We verified the linear independence among all the vectors through
a simulation study. Because of the block-diagonal structure of n, it is sufficient to verify that the condition is

satisfied for the observations of one firm, i.e., for any ni'

16 For instance, the computation of elements of the Hessian matrix involves matrices with dimensions n2 x k, n2 x

m, and n2 x n2. An econometric computer program such as Limdep has a limit of 20,000 values in its matrix

work area, and the maximum number of elements in a single matrix is 10,000. This implies that if the total
number of observations in the data set, n, is larger than 10, an n2 x n2 matrix cannot be constructed.
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firm i. (c) Add X;'00{lXi to R, i.e., R = R + x;,00{lXi. After N iterations of (a)-(c) we have

the matrix X'00-lX, which has to be inverted. An analogue procedure can be used in the

computation of X'OO-ly.

(3) Substitute Vo into the m+1 first-order conditions (4.43), i.e., estimate the first derivative
functions (dIn Llde/)o = vo'(dOo-l/deo/)Vo, 1=1, ... ,m+1.

This step involves the computation of the n x n matrix of partial derivatives (dO o-l/deO/). To

reduce the data storage requirements, repeat the following steps for all firms i = 1, 2, . . . , N:
(a) Compute the Ti x Ti matrix (dOo{l/deO/). (b) Compute the 1 x Ti matrix product VO;'(d

° O{l/deO/), where vOi is a Ti x 1 vector. After N iterations of (a)-(c) concatenate the N
products to obtain the 1x n matrix vo'(dOo-l/deO/). Finally, multiply with vo.

(4) Evaluate the Hessian matrix H for eo, ° 0-1 and Vo to obtain fl o.

This step has the largest computational requirements. Separate procedures have to be used for

each of the submatrices H11, H12, and H22 of the Hessian. For fl 0,11 one can use the
procedure suggested for X' ° 0-1X in step 2.

Direct computation of fl 0,12 involves computation of (m+1) x n2 and n2 x k matrices. The
following procedure reduces the data storage requirements: Define the (m+1) x k matrix G = O.
Repeat the following steps for all firms i = 1, 2, ... , N: (a) Compute the n x k matrix X'i@ v o'
where X'i is the ith row of X. (b) Compute the n x (m+1) matrix of derivatives of column i of
°0-1, i.e., dOO{l/dS. (c) Transpose dOO{l/dS into an (m+l) X n matrix. (d) Compute the

(m+1) x k matrix (dOO{l/dS)'(X'i@VO)' (e) Add (dOO{l/dS)'(X'i@VO) to G, i.e., G = G + (d

00{lfdS)'(X'i@VO)' After N iterations of (a)-(e) we have the matrix fl 0,12'

xxDirect computation of fl 0,22 involves computation of n x n matrices in the last term. The

data storage requirements are reduced by the following nested procedure with an outer loop for
covariance matrix parameters and an inner loop for firms: For covariance matrix parameters r,
s = 1,2, ... ,m+1: (a) Set the scalar c = O. (b) For all firms i = 1,2, ... ,N: (i) Compute the Ti
x Ti matrix product dD.{l/der)D.i(dD.{l/des)D.i. (ii) Compute the trace and add to c, i.e., c = c +
tr{dD.{l/der)D.i(dD.{l/des)D.i}. (c) After having completed N iterations of the steps (i)-(ii) we

A

put the scalar ('PO)rs = c into the r,s'th element of 'I' O. The steps (a)-(c) are repeated until r =

m+1 and s = m+1.

(5) Adjust the parameters of the covariance matrix:

e 1= eo - [fl 0]-1[(dIn Lldel)o, (dIn Lld(2)0, ... , (dIn Lldem+ 1)0]'

The steps (2) to (5) are repeated until convergence or the maximum number of iterations are

obtained.

An alternative to the above procedure is the "method of scoring" (Judge et al., 1985, p. 736),
where the Hessian H is replaced by the information matrix '1'. As seen from the definition of

the information matrix, the computational requirements will be somewhat smaller compared
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with the Newton-Raphson procedure. This is because the off-diagonal matrices iI 12 and iI 21

have only zero elements, and iI 22 reduces to (1/2) q, a.
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5. SIMULATION STUDY: PERFORMANCE OF ESTIMATORS UNDER
HETEROGENEITY AND HETEROSKEDASTICITY IN REGRESSORS

The empirical studies of production risk presented in Chapter 3 relied on a relatively limited
number of observations. Usually, only a few hundred observations have been available to the
researchers. Studies using the Just-Pope framework have produced rather disappointing results

in terms of the significance of risk parameters, and Saha et al. (1997) suggest that this is due
to the inefficiency of the FGLS estimators, which have predominantly been used in these
studies. Instead, Saha et al. suggest to use the maximum likelihood (ML) estimator, because
the ML estimator provides asymptotically more efficient estimates of the variance function

parameters, and also is found to perform better in simulation experiments with small samples
(see section 3.7).

Saha et al. examined the finite sample performance of FGLS and ML for firms which were
assumed to use a simple homogenous Just-Pope production technology y = fix; a) + h(x; (3).
The mean function JO had a Cobb-Douglas form, and the variance function hO was

exponential in a linear function of inputs. Since firms were assumed homogeneous, firm-
specific effects were not included.

In this chapter we extend Saha et aI's analysis to a more flexible parametrization of the Just-

Pope technology. A linear quadratic functional form is chosen for the mean function. This
functional form allows the elasticity of scale, substitution elasticities etc. to vary in input
levels. The production technology is also characterised by firm heterogeneity in terms of firm-
specific effects. We examine the performance of different estimators. Both fixed effects and
random effects specifications are estimated. The panel data set we use is unbalanced, which
has consequences for the random effects FGLS estimator, as it introduces heteroskedasticity
into the covariance matrix of the estimator.

This simulation study does not purport to provide an exhaustive comparison of small sample
properties of different estimators for a Just-Pope technology. The reason is that the scope for
changes in the design matrix, parameters, etc., which may affect the relative performance of
estimators, is almost endless. The results from a simulation study are sensitive to the
simulation design. It is difficult to know a priori under what changes to the simulation design
the findings in this chapter are no longer valid. Hence, one should be careful to generalise the
results here too much.

Although we are interested in the small sample performance of competing estimators in the
context of Just-Pope production functions, the results obtained in this chapter have relevance
for estimation of panel data models with heteroskedasticity in regressors in general. As
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indicated by the discussion in section 4.8, there is very limited evidence on the performance of

different panel data estimators when heteroskedasticity is present.

5.1. Sampling Distribution Properties

In this chapter the sampling distribution properties of competing estimators are compared for
small samples. Section 3.7 presented the distributional properties of different estimators in
large samples, i.e., as the number of observations approaches infinity. Although knowledge
about the large sample properties of an estimator is useful, we will seldom have a data set that

is large enough to invoke asymptotic properties when we choose an estimator.

To simplify the discussion, in the following 6 denotes any element of the parameter vector (a

l' ...,ak' 131, ... ,13m)· The following sampling distribution properties for the estimator tJ of
6 will be analysed:

(a) The estimated expected value:

where tJ i is the parameter estimate in sample i, and r is the total number of repeated samples

(e.g. 1,000).

(b) The mean square error (MSE) of tJ, which is estimated by the average of the squared
difference between tJ and the true parameter value 6:

MSE(&) = (t,(&, -Ø})' )r-I).
The MSE measures how much the estimator tJ varies around the true parameter value in r
repeated samples.

(c) The probability of rejecting a false null hypothesis Ho: 6 = 0, measured by the average

estimated t-ratio:
r

to = (11 r)I,(tJ; I SE(tJ;)),
;=1

where SECtJ i) is the standard error of the estimator in sample experiment i.

(d) The probability of rejecting a true null hypothesis Ho: 6 = actual value (Type I error). This

is measured by the t-ratio

t8 = (11 r)i {(tJ;-0)1 SE(tJ;)}.
;=1

The ranking of estimators may depend on which of the above criteria is chosen. Often, one
cannot find an estimator that is superior according to all criteria. Consequently, an overall
assessment, which will involve some degree of subjectivity, has to be made. For example, an
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estimator may have a smaller average bias than another (measured by the deviation of ti from
6), but at the same time also have a higher MSE than the other estimator. The question is then

what performance criteria one should give priority to. There is not a general answer to this. To
some extent the choice of estimator will depend on the magnitude of the biases and the

magnitude of the MSE's.

5.2. Simulation Design
The "true" model is a Just Pope production function with a linear quadratic mean function and

firm specific effects on the intercept. The mean function is
3 3 3

(5.la) Yit = j(x;a.) + 11i+ Uit = ao + LakXk,it +0.5LLakIXk,itXI,it + 11i+ Uit·
k=1 k=1 1=1

The variance function is specified as

(5.lb) var(uit) = [h(Zit)]2 = exp(zitl3),

where zit = (1, In(xI,it), In(x2,it)' In(x3,it)·

The variance of the exogenous error term eit is varts) = exp(!30)'

There are two design matrices. Both have three independent variables (xl' x2' x3) which were

generated by a uniform distribution with the following[min, max]-values for (xl' x2' x3); ([0.6,

1.4], [0.2, 1.8], [0.05, 1.95]). The first data set is an unbalanced panel with 250 observations,

consisting of 20 firms observed in 10 time periods, and 10 firms observed in 5 periods. The
second data set has 1000 observations, with 80 firms observed in 10 time periods and 40 firms

observed in 5 time periods. Summary statistics for (xl, x2' X3) are provided in table 5.A1.

Four different model specifications/estimators are compared in the simulation study:

I. Model (5.la) with 11;'streated as fixed and uit assumed to exhibit heteroskedasticity of

unknown form, estimated by OLS and with White-correction of the covariance matrix (White,

1980).

II. Model (5.1) with 11;'streated as fixed, estimated by three-stage FGLS (as described in

appendix 3.A).
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III. Model (5.1) with 1];'s treated as fixed, estimated by ML.I The log-likelihood function

for the Just-Pope form was presented in section 3.7. A quasi-Newton method is employed for
the nonlinear optimisation. The procedure is repeated until the estimates of a and (3converge.
The method of scoring may also be used to obtain the gradients of a and (3.(Greene, 1991, pp.

415-6; Judge, Griffiths, Hill, Liitkepohl, & Lee, 1988, pp. 538-41).

IV. Model (5.1) with 1];'streated as random, estimated by FGLS. The estimation procedure

is presented in appendix 9.E 1.

There is an almost endless list of combination of changes that can be made to a simulation
experiment which may affect the relative performance of competing estimators; the values of
the parameters a, (3and o,l,which includes the variance of the exogenous error term eit (here:

var(eit) = exp(!30», the degree of unbalancedness of the panel (which affects the random

effects estimates), the total number of observations, the functional specification of the mean
and variance functions, and the distribution of the errors (normal, chi-squared, etc.). In order
not to make the simulation study overwhelmingly large, it is necessary to draw some limits.

As mentioned earlier two sample sizes will be used. We will also compare the different
specifications/estimators under different values of (a, (3,01}2). Different values for a, (3and
01}2 will produce different values for the sample mean and variance of f(x; a), the
observation-specific variances var(ujt) = exp(zjt(3) that generates the errors Uit, and thus the

coefficient of variation of the dependent variable, CV(y).

In each of the six experiments 100 samples were generated. In other words, the observation-
specific error Uit was drawn (from a normal distribution) 100 times for each observation. The
parameters were estimated by all of the above estimators for each sample.

The simulation experiments were undertaken for three different parameter sets (a, (3, 01}2).

Since there are two samples, there will be six simulation experiments in all. The parameter
values are provided in table 5.A2, together with central sample statistics. Naturally, the
sample mean and variance of f(x; a) depends on the chosen values for a, and
var(ujt) = exp(zjt(3) depends on the chosen f3's. The coefficient of variation of y conditional

on x, CV(ylx), depends on all the chosen values of (a, (3,01}2).

Parameter set 1 is characterised by very low variation in mean output, as measured by var(f(x;
a», across observations. The average var(ujt) is small, but highest relative to var(f(x; a» of

l More precisely, it is the marginal maximum likelihood (MML) estimator which is used in this simulation study

(cf. section 4.6). The MML is ML on within-transformed variables. As noted in Chapter 4, the equivalency of

the ML estimator (with firm dummy variables) and the MML estimator is only asymptotic, as the number of
ftrms N --+ 00. However, the ML and MML estimates for our chosen design matrices and parameter values

were so similar that the choice had no consequences for all practical purposes. The problem with the ML

estimator is that when the number of firms, i.e., firm dummies, is large, it is difficult to find ML estimates that
converge.
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the three experiments. The value for the variance of the firm-specific effect in set 1 is the
smallest among the three sets.

In parameter sets 2 and 3 the mean function parameters and the variance of the firm-specific
effect have identical values. Parameter set 2 has the highest average var(uit) due to a high

value of /30. Furthermore, set 2 has the highest average coefficient of variation for the
dependent variable y conditional on x. The average var(uit) is smallest for parameter set 3.

Consequently, the average coefficient of variation of y conditional on x, is also smallest in set
3.
In all three experiments the variance of the firm-specific effect is small compared to the
average variance var(uit). This is also the case in the empirical models which are estimated

for the salmon industry in Chapter nine. All in all, parameter set 2 is most similar to the
empirical models estimated in Chapter nine in terms of the variances of 11i and Uit, and the
average coefficient of variation of y. However, the sample variance of j(x; a) is smaller than
for the estimated models.

It should be noted that in this simulation study the data generating process (dgp) satisfies the
assumptions underlying the random effects model; the error components 11i and uit are
independent of each other, and of the regressors (XI,it, X2,it' x3,it). This may not be the case in
other data generating processes, e.g. the dgp that generated the data set in the empirical
application in this dissertation.

It is difficult to have a meaningful economic discussion of the structure of the production
technology based on the estimated parameters alone. Here, this is particularly the case for the
mean production function. Therefore, in addition to investigating the sample distribution
properties of the a- and ,B-parameters,the estimated sample average and mean squared error
of derived elasticities will also be investigated. The elasticities of interest are the output
elasticity with respect to input k (ek), returns to scale (RTS), and the total variance elasticity
(TVE). The output elasticity with respect to input k (or input elasticity, for short) is given by

ek(x)=;! ~=[(ak +o.5LajkXj)~]'
OAk j(x) j j(x)

Returns to scale is defined as the sum of the ek's:

RTS(x;a) = Lk ek(x).

The total variance elasticity is the variance function counterpart of the RTS, and is given by

TVE(x' f3) = ~ J!!_ ~ = ~ f3
, £.Jk dx

k
hex) £.Jk k'

These elasticity measures are discussed in more detail in Chapter 9.
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5.3. Simulation Results
The simulation results are presented in tables 5.A3 to 5.A8.

5.3.1. General Findings

First, we present some findings that are general, in the sense that they apply to all estimators
in all experiments. As can be expected the precision of the parameter estimates in terms of
MSE is smallest for the parameters associated with the regressor with smallest variation, Xl,

while the precision is highest for the parameters associated with X3, which exhibits the highest
variation. The average bias of the estimated parameters can be measured by the deviation of

the average estimated parameters from the actual parameter values. In general, the average
bias tends to be smaller for the second-order parameters akl than the first-order parameters ak.

Among the first-order coefficients the average bias is roughly equal for parameter set 1, but
higher for al in sets 2 and 3 than a2 and a3. The average t-ratios for Ho: ak = O tend to be low
and insignificant for most coefficients. On the other hand, the average t-ratios for Ho: ak =
actual value are also very low in general.

Although the individual estimated parameters of the mean function may be biased and have
high mean squared error in some simulation experiments, the derived elasticities ek and RTS,
which are the magnitudes we are primarily interested in for economic analysis, tend to have a
smaller bias and MSE. This is particularly the case for the sample with 1000 observations.

The largest average biases in the estimates of ek and their sum, RTS, is found in the simulation
experiment with parameter set 2 and 250 observations (table 5.A5), where all estimators
underestimate el and RTS.

The sign of the average estimated parameters of the variance function is equal to the actual
sign in all simulation experiments. The average bias of the estimated f3's cannot be said to be

dramatic. However, in some experiments the precision as measured by the MSE is low, i.e.,
the estimated f3-values tend to vary much from sample to sample in an experiment. The

estimated t-ratio associated with Ho: f3k = O is much larger for f30 than the input coefficients.

For the total variance elasticity (TV£) the average bias is significant in most experiments, and
the level of precision in terms of MSE is smaller than for the analogue elasticity measure
derived from the mean function, RTS.

5.3.2. Effect of Increasing the Sample Size

The simulation experiments were undertaken for two sample sizes; 250 and 1000
observations. The effect of adding 750 observations on the average bias of the mean function

parameters is best assessed by examining the average estimates of the input elasticities ek and
their sum, RTS. Across the estimators the increase in sample size leads to a reduction in the
average biases, although the biases in most simulation experiments are not too large for the
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smallest sample. The most pronounced effect of adding observations is found for parameter

set 2, where the average bias in the estimate of el is reduced considerably, and the average
estimated RTS becomes larger than one for all estimators.

Adding observations leads to a substantial reduction in the MSE of the estimated mean
function parameters; usually the average reduction in MSE is around 70-80 %. The increase in
sample size also leads to a doubling of the t-ratios associated with Ho: ak = O in most cases.

For the estimated variance function parameters we also find that the introduction of new

observations leads to a decrease in the average bias across estimators in most cases. The only
exception may be parameter set 3. However, for all parameter sets there is a large reduction in

MSE associated with increasing the sample size. As for the mean function parameters there is
also a doubling of estimated t-ratios. The intercept f30 is always highly significant, regardless

of sample size, but for the input coefficients the increase in sample size has a pronounced
effect on the significance of the t-ratio associated with Ho: Pk = o.

5.3.3. Comparison of Estimator Performance

It is difficult to find any systematic differences in the average bias of the estimated mean
function parameters a. between estimators. Hence, we turn to the estimated output elasticities

with respect to inputs, which are derived from the estimated a's. Again, it is difficult to see

that any estimator is superior or inferior compared with the others. The different estimators
tend to provide pretty similar estimates of the input elasticities, ei. This is also the case for
RTS, the sum of the input elasticities.

Also for the MSE of the estimated a parameters there are no systematic differences across

estimators; in fact, in each experiment the MSEs tend to be pretty similar. This is even more
the case for the MSE of the elasticities derived from the mean function, which are almost
identical between the estimators.

Usually, the OLS estimator provides somewhat higher t-ratios for HO: ak = O than the other

estimators. However, the OLS estimator only has a slight superiority in this respect, and there
is no differences in significance; when measured at a given (conventional) confidence level all
estimators tend to give the same outcome of the test Ho: ak = O.

For the variance function we only compare the FGLS and ML estimates from the fixed effects
model, since the random effects model provides the same estimates of ~ as the fixed effects

model.

In terms of average bias no estimator seems to dominate the other. The FGLS estimator
provides a slightly less biased estimate of f30 in all simulation experiments, while the ML
estimates of the input coefficients (f3I' f3z, ØJ) tend to be slightly less biased on average than

the FGLS estimates. However, it is not possible to find any systematic difference for TVE,
which is the sum of the input coefficients.
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There is a pronounced and systematic difference between the ML and FGLS estimators with
respect to MSE; over all experiments the MSE' s of the ML estimates of (f3I, Ih., !h) are 40-70
% smaller than the FGLS MSE's. In other words, the distribution of the 100 {3-values

estimated by ML is more concentrated around the actual values than the FGLS estimates. The
superiority of the ML estimator with respect to MSE is smaller for f3o, but here too the MSE is

always smaller than for the FGLS estimator.

The ML estimator also dominates with respect to the estimated (asymptotic) t-ratios
associated with HO: f3k = O, which are always higher than the FGLS t-ratios, The main reason

for this is that the asymptotic covariance matrices are given by COV(~FGLS)= 4.9348(Z'Z)-1
A

and cov(~ML) = 2(Z'Z)-1, i.e., the ML estimator is more than twice as efficient

asymptotically.

5.4. Summary and Conclusions
There is very little evidence on the performance of different econometric panel data estimators

in the presence of heteroskedasticity, because the standard panel data models in the literature
assume homoskedastic errors. This simulation study provides some insight for the case of

heteroskedasticity in regressors.

Furthermore, this simulation study extends Saba et al. 's study of small sample properties of

estimators for Just-Pope technologies to a more flexible specification of the mean function,
and also incorporates firm-specific effects in the underlying production technology. A linear
quadratic specification is used for the mean function. Unlike the Cobb-Douglas specification
in Saba et al., this specification allows common elasticity measures (e.g. input elasticity and

RTS) to vary in input levels. We use three fixed effects estimators; an OLS estimator with
White-adjusted covariance matrix of the mean function parameters, an FGLS estimator and an
ML estimator. In addition a random effects model is estimated by FGLS. If we are unwilling

to make any assumptions on the structure of the variance function, or assume that firms are

risk neutral, the OLS estimator with White-correction is an alternative to the more
cumbersome FGLS and ML estimators, since the OLS estimates of the (l'S are still consistent

under heteroskedasticity.

In this study the biases and mean square errors of the parameter estimates are generally larger
than in Saba et al.'s simulation study. The performance of all the estimators is a bit
disappointing for the mean function, but to some extent this may be caused by the design
matrix, e.g. the small variation in the regressors. Despite this, the magnitudes which are of
economic interest, the estimated input elasticities and returns to scale (RTS) tends to have
smaller biases and MSE's. By increasing the sample size from 250 to 1000 observations the
average biases of the mean function parameter estimates are reduced somewhat, and the
variation in the estimated parameters from sample to sample is reduced by around 70-80 %, as
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measured by the MSE. For the mean function parameters it is difficult to find any systematic

differences in performance between the estimators. The OLS estimator with White-adjusted
standard errors is not inferior to the other estimators, which means that this estimator is a good

alternative if one is only interested in the mean function parameters and elasticities.

For the variance function we find that the estimated parameters on average provide the correct
sign for the marginal risk effect of inputs. The biases of the estimated Ws vary somewhat

across experiments, depending on the chosen parameter values and sample size. In some
experiments with the smallest sample (i.e., 250 obs.) the estimates of the Ws vary much in

repeated samples, as measured by the MSE. Adding observations leads to substantial

decreases in MSE. When we compare the FGLS and ML estimators for the fixed effects

model we find that no estimator strongly dominates the other. However, the ML estimates of
the Ws vary considerably less from sample to sample than the FGLS estimates; the mean

squared errors of the ML estimates are 40-70 % smaller than the FGLS estimates. The
estimated t-ratios of the ML estimates are always higher than the FGLS estimates.

The simulation results here suggest that the sample size should be of some concern in

empirical studies of production risk. There may be large gains in terms of unbiasedness and
efficiency of parameter estimates by increasing sample sizes. Simulation experiments which
are not presented here, suggested further gains when increasing the sample size from 1000 to

2000 observations. The empirical application in this dissertation, the Norwegian salmon farm
data set, has around 2000 observations.

Based on this simulation studyone draws the conclusion that no estimator of Just-Pope
technologies is superior if one is primarily interested in the mean function parameters, but that
the ML estimator is the preferred estimator if the risk structure is to be analysed. However, the
results here do not provide the overwhelming support that Saha et aZ. found for the ML
estimator relative to the FGLS estimator.

Again it is important to stress that it is difficult to know a priori how sensitive the simulation

results are to changes in the simulation design. Some caution should therefore be exercised
before one generalises the findings here too much.

Next, we will move on to our empirical application, the salmon aquaculture industry. One of
the interesting points is going to be whether the empirical results are similar to the simulation
results when one compares different estimators. For example, we will compare the FGLS and
ML estimates of the mean and variance function parameters and derived elasticities for the

fixed effects specification.
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5.A. Appendix A: Simulation Results

Table Description

5.Al Summary Statistics for Sample with 250 Observations and Sample with 1000
Observations

5.A2 Parameter Sets

5.A3 Simulation Results with Parameter Set 1 and Sample Size n=250

5.A4 Simulation Results with Parameter Set 1 and Sample Size n= 1000

5.A5 Simulation Results with Parameter Set 2 and Sample Size n=250

5.A6 Simulation Results with Parameter Set 2 and Sample Size n= 1000

5.A7 Simulation Results with Parameter Set 3 and Sample Size n=250

5.A8 Simulation Results with Parameter Set 3 and Sample Size n= 1000
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Table 5.A1. Summary Statistics for Sample with 250 Observations and Sample with 1000
Observations

250 Observations

Mean St.dev. Min Max
XI 0.993 0.230 0.601 1.397
X2 1.011 0.472 0.208 1.799
X3 1.029 0.559 0.051 1.945

1000 Observations
Mean St.dev. Min Max

XI 1.002 0.233 0.601 1.399
X2 1.004 0.472 0.202 1.800
X3 0.999 0.564 0.051 1.947

Table5.A2. Parameter Sets and Associated Sample Statistics

Parameters Set 1 Set2 Set3

al 0.300 0.050 0.050

~ 0.200 0.100 0.100
a3 0.300 0.900 0.900
all -0.020 -0.002 -0.002
al2 0.030 0.003 0.003
aI3 -0.025 -0.002 -0.002

~2 -0.050 -0.005 -0.005

a23 0.030 0.003 0.003

a33 -0.050 -0.005 -0.005

~I 0.150 0.300 0.500

~2 0.100 0.100 0.600

~3 -0.150 -0.200 -0.100

~o -3.000 -2.000 -4.000
Var(1li) 0.0036 0.0100 0.0100

Sample Statistics

250obs.

Var(f{x; a» 0.021741 0.246631 0.246631
Avg(Var(uiI» 0.051208 0.141435 0.018197
Avg(CV(ylx» 0.435606 0.681075 0.322315

1000 obs.

Var(f{x; a» 0.022126 0.252581 0.252581
Avg(Var(uiI» 0.051432 0.142412 0.018239
Avg(CV~l:lx~) 0.44037 0.696212 0.328793
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6. THE SALMON AQUACULTURE INDUSTRY: DISCUSSION OF
ISSUES WHICH HAVE CONSEQUENCES FOR ECONOMETRIC
MODELLING

This chapter discusses some features of the Norwegian salmon aquaculture which will have

direct consequences for the specification of econometric models of firm behaviour and
production technology in this industry.

6.1. The Production Process in Salmon Aquaculture
The biological production process in salmon aquaculture can be partitioned in the following
steps (Bjørndal, 1990, pp. 3-4):

(1) Production ofbroodstock and roe,

(2) production of fry,
(3) production of smolts, 1 and
(4) production of farmed fish.

These four stages are generally undertaken in distinct plants. The empirical analysis in this

dissertation will only be concerned with the production of farmed fish, i.e., the last step in the
biological production process.

Prior to the first release of salmon In a newly developed grow-out farm, considerable

investment in production facilities have to be undertaken. The farmer generally has to invest in
land facilities, such as a building for storage, processing and repairs, pier, road, etc., and the
sea-pen system, which consists of gangway, pens, nets, feeding equipment, etc. Initial

investments will vary greatly, depending on existing facilities on land and the scale of
operation. Typically, investments in capital equipment have been in the range of 4 to 10

million NOK.2

A schematic view of the production process in salmon aquaculture is depicted in figure 6.1.
Smolts are purchased from a smolt producer and released into the pens, usually in May/June
each year.' A cohort of salmon is kept in the pens and fed for a period of one to two years

Smolts are juvenile salmon which are able to adapt to sea water, i.e., it has been through the biological process

called the smoltification process.

2 See Bjørndal (1990, pp. 87-8) for a discussion of facility investments in salmon farming and a numerical

example.

3 In recent years, however, it has become more common to have a second release of smolts in late summer or

early fall.
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before harvesting. The length of the growth period depends to a large extent on the growth rate
of the fish, which again is mainly determined by feeding intensity and sea temperatures. In
figure 6.1 it is assumed that the last fish of each cohort is harvested after two years in the sea.
Due to the long growth period, substantial working capital is required.

May May May May May

1. cohort ----------------------------

2. cohort

3. cohort

4. cohort

Figure 6.1. The production process in salmon farming

The size of each farm in terms ofpen volume is regulated by the government (see section 6.3).
Consequently, pen volume is a fixed factor in the production process. The salmon farmer has

to take into consideration that pen volume is needed for a new cohort each spring, and he has
to form expectations on the prices of salmon in the relevant period when making his
harvesting profile decision. In some periods salmon prices have exhibited large short run
fluctuations, and consequently the choice of harvesting profile has had significant effects on

the profitability of salmon farms.

In terms of cost shares, the most important inputs are feed (about 40 % of total costs), smolts
(15 %), capital (10-15%), and labour (10 %) (Fiskeridir., several years).

Both mortality and growth will affect the production of salmon. The stock of salmon in cohort
c at the end ofmonth t is defined by,

(1 +g \.. n = (1 - m - h Yl +g \.. n ,c.t j"v c,t-l c.t \: C,I c.t J\ c.t j"v c,l-l c,l-l

where Sc.t is the growth rate in month t, me,t is the mortality rate of cohort c in month t, he,t is
the harvest rate in month t (with the restriction (1- me,t - he,t) 2:: O),ne,t-l is the initial number of
fish in cohort c in month t, we,t-l is the initial average weight of the fish.4 The production of

salmon in cohort c is often defined as

Y = (1+g \.. (n - n )+ h (1+g \.. n .c.t \: c,t j"v c.t-l ~ c.t c.l-l c.t \: c.t j"v c,t-l c,l-l

Thus, production in a given period is defined as the change III total biomass from the
beginning to the end of the period plus the harvested biomass in the period. It is interesting to
note that, in general, the harvest may not be equal to the level of production. The above

4 This definition of production implies that salmon in the same cohort is homogenous, i.e., the initial weight and

growth rate is identical across all individuals for all periods,
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definition also implies that production can be negative, for instance if the mortality rate is

extremely high.

The level of smolts input is chosen conditional on information available before production
begins. This means that smolt input is a predetermined variable relative to output. The use of
other variable inputs, particularly feed, is not predetermined. The quantity of feed input is an
important determinant of output. However, the actual quantity of feed used in the production
process to some extent also depends on stochastic biophysical variables (or shocks), such as
fish diseases and water temperatures. If the survival rate of the fish is lower than expected, e.g.

due to unexpected disease losses, the feed consumption will also be lower than expected. If sea

temperatures during the year are lower than expected, then feed consumption will also be
smaller, since the appetite of the fish depends on sea temperatures (Austreng, Storebakken, &
Åsgård, 1987). Thus, realised feed consumption is to some extent endogenously determined.
Ideally, this should be accounted for in a model of salmon production. Conventional static EU

models of the firm and empirical applications assume that ex ante optimal input quantities are
not different from ex post realised input quantities, because actual input quantities are not
affected by the production outcome. Thus inputs are predetermined variables in static EU

models. It is a problem, however, that the data set which is available to us, is of a nature that

precludes us to account for this. It has only annual observations, and lacks information on
diseases and other events which affect feed consumption.

According to EU models presented in Chapter two, risk aversion can explain why a firm
employs smaller quantities of inputs than would be optimal for a risk neutral firm. However,
this may not be the only explanation. Due to the long time from smolt release to harvesting
working capital requirements are substantial in salmon aquaculture. For "normal" production
levels the annualoperating expenses may range from 5 to 15 million NOK (Fiskeridir., several

years). Norwegian salmon farmers may also be subject to credit restrictions due to imperfect
capital markets.

6.2. The Regulation of the Norwegian Salmon Aquaculture
Industry

The data period for the empirical analysis in this dissertation is from 1985 to 1993. Hence, the
discussion of government regulations in this section will primarily be concerned with this

period.

Until 1991 the Norwegian salmon farming industry was heavily regulated through the Fish
Farming License Act (FFLA). The regulation reflected the government's desire for a small-

scale, owner operator industry characterised by regional dispersion of production and profits
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along the entire coast.5 A license is required to operate a salmon farm, and the government has
used this instrument as a device to ensure regional dispersion of farms. The license also
restricts the pen volume of the farm. In other words, one of the most important inputs in the
production process is, through government regulations, a quasi-fixed factor. Prior to the
introduction of the FFLA in 1973 there were no restrictions on pen volume. After 1973 the
maximum allowed pen volume for new fish farm licenses changed on several occasions; in
1981 the maximum pen volume was set to 3,000 m3 for new licenses, in 1983 5,000 m3, in
1985 8,000 m3, and in 1989 12,000 m3. Existing farms with a larger pen volume than the
prevailing limit were not forced to reduce their pen volume on these occasions. On the other
hand, existing farms with a smaller licensed pen volume could apply for an enlargement of
their pen volume. Recently, salmon farms have been allowed to apply for an enlargement of
their licensed pen volume to 15,000m3.

However, the pen volume regulation did not provide an effective limit on the production of
salmon. Firstly, the pen volume was only measured to a depth of five meters. Thus, farmers
could acquire pens which were deeper than five meters to avoid the regulation (Møller
Committee, 1990). Secondly, during most of the data period 1985-93 there was no limit on the
density of fish in the pens. The 1991 revision of the FFLA lead to the introduction of a limit
on the maximum production of fish per m3 pen volume. According to the FFLA, salmon farms
are not allowed to produce more than 25 kg fish per m3 of pen volume, regardless of the
biophysical conditions on the farm location. Together with the regulation of the pen volume,
this also constitutes a regulation of the total production of the farm. However, during the data
period 1985-93, the enforcement of the density regulation was so liberal that it, for all practical
purposes, can be ignored.

Ownership was also regulated by the FFLA. Majority ownership interests in two or more
farms were prohibited. Consequently, horizontal or vertical integration of firms was not
possible. In 1991 the FFLA was somewhat liberalised with respect to ownership interests. This
deregulation has lead to a restructuring of the industry into larger operations. It should be
noted, however, that firm mergers in the industry have taken the form of physical mergers of
farms only to a limited extent.

6.3. Arguments for the Presence of Risk Aversion in Salmon
Farming

In this section we provide some arguments, based on available empirical evidence, why agents
in the Norwegian salmon industry are risk averse.

5 See Salvanes (1989; 1993) and Bjørndal & Salvanes (1995) for a discussion of the various regulations of the

fish farming industry, and their effects on efficiency etc.

127



Production and marketing of farmed salmon are associated with sunk costs in the form of
investments in education and training of personnel, capital equipment, market research and
advertisement. Alternative use and second-hand markets exist only to a limited extent for such
firm- and industry-specific investments, and thus the firm will not be able to recover all
investment costs in the event of failure. In the short run, after initial investments have been
made, uncertainty also represents a problem for decision makers. Short run production
decisions in salmon farms, e.g. smolt, labour and food input decisions and harvesting
decisions, are made on the basis of expectations on future output levels and prices. Ex post
these production decisions may tum out to be suboptimal, i.e., the salmon farmer would have
chosen a different intertemporal production profile had he actually known the realised output
level and monthly market prices. The consequence may be significantly lower profits than
expected even if realised average prices during the period is equal to or higher than expected
pnces.

As noted earlier in this chapter, salmon farming requires large investments in physical capital.
Due to the long period between the release of smolt and harvesting, the operating capital
requirements are also substantial. Traditionally Norwegian salmon farmers have acquired a
large percentage of the required capital through bank loans. To some extent salmon farmers
have used personal assets as security for loans. The debt ratio is higher than for most
industries, at least for our data period, and consequently the average salmon farm must pay
large regular instalments (Fiskeridir., 1994).

Sunk costs, use of personal assets as security and a high debt ratio should indicate that the
salmon farmer is risk averse. This implies for instance that he prefers a set of low future prices
with certainty to a set of somewhat higher uncertain prices, provided that the set of low prices
gives him a revenue which is sufficient to cover debt service, variable expenses and wages. In
other words, uncertainty combined with risk aversion should give the salmon farmer
incentives to hedge some of his future income. Furthermore, risk aversion also has
implications for the optimal input combination. According to theory presented in Chapter 2,
the risk averse salmon farmer should take into account the marginal effects of changes in input
use on the level of risk. A risk averse salmon farmer should use more of a risk-decreasing
input and less of a risk-increasing input than a risk neutral farmer.

6.4. Firm Heterogeneity in Norwegian Salmon Farming
Different outcomes with respect to profitability, unit costs and output level across firms in the
Norwegian salmon aquaculture industry may have several causes. One explanation may be
different outcomes of the stochastic variables facing salmon farm operations across firms.
Another cause is different restrictions on pen volume across farms. Farms with a large licensed
pen volume can to a greater extent exploit economies of scale than farms which are restricted
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at a relatively small volume. However, there may also be a third explanation for cross-farm

differences. According to empirical studies, such as Berge & Blakstad (1989), Grongstad,
Blakstad & Kartevoll (1990), Johannessen et al. (several years), and Salvanes & Tveterås

(1992), there is substantial heterogeneity in the Norwegian salmon farming industry. Previous
empirical work suggests that salmon farm operations are heterogeneous with respect to the

• quality of the management, which manifests itself in different management practises with
respect to organisation of the work, design of incentive structure for workers, design of

quality control systems, etc.,

• quality of the workers,
• technology, e.g. quality of feed, feeding equipment and routines, sea pen system,
• range of operations, e.g. own feed production, own slaughter facilities,
• quality of the location, i.e., the constraints on maximum fish density in the pens and

maximum total production defined by the biophysical conditions of the location.

The above sources of heterogeneity may give rise to persistent differences in productivity.

Stochastic variables in the production process, on the other hand, can only give rise to
transitory differences. If substantial heterogeneity is present, this heterogeneity may be a more
important determinant of cross-firm differences in productivity than different outcomes of

stochastic variables in the production process.

In principle, the various sources of cross-firm heterogeneity can be treated as inputs and
included in the model of the firm. Ifthese variables are measured "correctly", then they should

to a large extent explain cross-firm differences in profitability in a regression model of salmon

farm production. In practice, however, it is difficult to measure variables such as the quality of
management, the quality of workers or the quality of the production equipment. Furthermore,
as is the case for our empirical application, measures of or proxies of the various sources of
heterogeneity are often not available to the researcher, or only at a very high cost.
Consequently, heterogeneity may give rise to errors-in-variables or omitted-variables biases in
econometric parameter estimates. As stated in Chapter one, the working hypothesis in this
dissertation - without making any a priori statement on the relative importance - is that both
firm heterogeneity and random variables in the production process explain cross-firm

productivity differences. The coefficients of the estimated econometric models will give us

some indication on what is the most important source of productivity differences.

6.5. Summary

Our empirical analysis will only be concerned with the production of farmed fish, i.e., the last
step in the biological production process in salmon production.

Salmon farming requires substantial investments in production facilities prior to the first

release of smolt. Initial investments will vary greatly, depending on existing facilities on land
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and the scale of operation. Typically, investments in capital equipment are in the range of 4 to
10millions NOK. Due to the long growth period, substantial working capital is also required.
A cohort of salmon is kept in the pens and fed for a period of one to two years before
harvesting.

In terms of cost shares, the most important inputs are feed (about 40 % of total costs), smolts
(15 %), capital (10-15%), and labour (10 %) (Fiskeridir., several years).

Smolts are inputs which are chosen conditional on information available before production
begins. This means that the smolt input is a predetermined variable relative to output. The use
fish feed is not entirely predetermined, since biophysical variables such as fish diseases and
sea temperatures influence feed consumption. The actual quantity of feed used in the
production process to some extent depends on the production outcome.

Production in a given period is usually defined as the change in total biomass from the
beginning to the end of the period plus the harvested biomass in the period. In the general case
the harvest will not be equal to the level of production. Production can be negative, for
instance if the mortality rate is extremely high.

The size of each farm in terms of pen volume is regulated by the government, and pen volume
is consequently a quasi-fixed factor in the production process.

Sunk costs, use of personal assets as security and a high debt ratio should indicate that salmon
farmers in general are risk averse. This imply that a salmon farmer would like to hedge some
of his future income, and that he should take into account the marginal effects of changes in
input use on the level of risk.

Previous empirical work suggest that salmon farm operations are heterogeneous with respect
to biophysical conditions at the farm location, and the quality of the management, workers,
and technology. These sources of heterogeneity may give rise to persistent differences in
productivity. Stochastic variables in the production process, on the other hand, can only give
rise to transitory differences. If substantial heterogeneity is present, then this heterogeneity
may be a more important determinant of cross-firm differences in productivity than different
outcomes of stochastic variables in the production process.
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7. THE NATURE OF RISK AND RESPONSES TO RISK IN SALMON
AQUACULTURE

From the beginning of the industry, economic risk has been a prominent feature of salmon
aquaculture. For example, this risk has for many farms manifested itself in terms of substantial
losses due to diseases, a large number of bankruptcies in some periods, and substantial cross-
firm variations in profitability. That the economic risk of salmon farming has been of great

concern both to the industry itself and to policy makers, has been reflected in the a number of

articles in newspapers and trade publications on this issue. The organisation which represents
the majority of Norwegian salmon farms, the Norwegian Fish Farmers' Association (NFF),
has also stated several times that a reduction of the economic risk in fish farming is a high
priority task, see e.g. NFF (1990, p. 10).

Table 7.1 serves to illustrate that salmon farming is a risky business. According to table 7.1 the
mean profitability exhibited substantial year-to-year fluctuations during the data period 1985-

93. Mean profits were positive from 1985 to 1988, and also in 1993, but were negative from
1989 to 1992. The negative profits were accompanied by a negative mean equity from 1989 to

1991, a period which was characterized by a large number ofbankruptcies in the industry. The

development in profits over time can to a large extent be explained by the development in

salmon prices and unit production costs in salmon farming. However, according to the

standard deviations (in parenthesis), there was also substantial cross-farm variations in
profitability each year. During the same period some farms had large positive profits while
others experienced large negative profits.

Table 7.1. Mean and St.Deviation of Profits (before Taxation and Extraordinary Items) and
Equity in Norwegian Salmon Farming 1985-93 in Real1000 NOK (1993=100)*

Year 1985 1986 1987 1988 1989 1990 1991 1992 1993
Profit 376.9 189.9 690.8 788.0 -615.4 -314.1 -1051.2 -10.0 645.5

(790.6) (1982.9) (1990.1) (2134.6) (2125.2) (2219.4) (2052.8) (2765.1) (2331.5)
Equity 2426.8 659.7 1381.5 505.5 -893.1 -1186.8 -775.0 2282.1 2559.1

(3427.0) (3835.0) (4309.2) (4727.1) (4826.7) (5118.0) (5038.7) (6131.0) (5491.7)

*Source: Norwegian Directorate ofFisheries (Fiskeridir., several years).

The question is then what factors explain the substantial cross-sectional differences in

profitability. Is it differences in obtained output prices, scale economies, stochastic shocks,
firm heterogeneity in terms of the quality of the farm location or the quality of management, or

other factors? This dissertation will try to identify the importance of some of these factors for
the economic performance of salmon farms, by analyzing the structure of the stochastic
production technology in salmon farming.
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It is useful to have some information on the structure of risk when we specify a primal model
of salmon production. The analysis of the structure of risk in this chapter will be the basis for
the specification of risk in our econometric models. First, however, we present some other
taxonomies of risk which are useful in order to understand the nature of uncertainty in salmon
farming (section 7.1). Section 7.2 discusses the structure of production risk. In section 7.3 the
use and characteristics of insurance in salmon farming is discussed. Section 7.4 deals with the
effect of innovations and leaming-by-doing on the level of production risk in salmon farming.
Finally, the discussion in this chapter is summarised in section 7.5.

7.1. A Taxonomy of Risk in Salmon Farming
For analytical purposes it can be useful to partition the risk facing the individual Norwegian
salmon farmer in three categories: (1) Biophysical risk, (2) market risk, and (3)political risk.

Biophysical risk encompasses uncertainty regarding sea temperature, the extent of poisonous
algae concentrations and fish diseases on the farm location. The outcome of these stochastic
variables will affect the growth rate, mortality and quality of the farmed salmon, and thus
production volume, average production costs and prices obtained.

Market risk, for lack of a better term, pertains to the performance of different producer groups
in the salmon markets and related markets, i.e., suppliers of inputs to the production process
and suppliers of substitutes to Norwegian farmed salmon. On the input side, the supply and
price of smolts have traditionally exhibited large variations. With regard to substitutes, the
supply ofwild-caught Pacific salmon has been the most important source ofuncertainty.

Political risk encompasses the uncertainty regarding major political events which may affect
the GDP, exchange rates or food demand patterns of importing countries (e.g. the Gulf war),
trade policy decisions which affect access to markets (e.g. antidumping measures such as
tariffs, minimum prices and veterinary restrictions) or actions taken by private groups in
importing countries (e.g. boycott of Norwegian salmon by supermarket chains in Germany and
elsewhere due to Norwegian whaling, and blockades by French fishermen against truckloads
of Norwegian salmon).

Table 7.2 summarises and classifies the most important sources of uncertainty facing
Norwegian salmon farmers. The sources of biophysical risk mainly give rise to production
uncertainty at the firm level, while the sources of market risk and political risk primarily give
rise to output price uncertainty.
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Table 7.2. Important sources of uncertainty facing Norwegian salmon farmers

Type of uncertainty Source of uncertainty Biophysical (B), Endogenous (E) or

market (M), or exogenous (X) risk

political (P) risk at firm level

Quality of smolt B,M E,X
Sea water temperature B X

Production uncertainty Losses due to fish B E,X
diseases and poisonous

algaes

Losses due to extreme B E,X
weather

Supply of wild-caught M X
Pacific salmon

Output price Supply of farmed salmon M X
uncertainty by other countries

Antidumping measures P X
by import countries

Actions by private P X
groups

Most of the uncertainty facing salmon farmers can be regarded as exogenous, but according to
table 7.2 there are also elements of endogenous uncertainty. If the outcome of a stochastic
variable is not affected by the behaviour of individual agents or the organisation of the market,
we have exogenous uncertainty. The sea temperature is an example of this. Endogenous
uncertainty is present if outcomes to some extent are affected by the behaviour of individuals
or the organisation of the market. Disease losses and smolt quality are examples of random
variables which are partly endogenous and partly exogenous. At the firm level only the
biophysical sources of risk are partly endogenous, while the sources of market and political
risk are purely exogenous.

Relocation of the farm is one means available to the salmon farmer for changing the
biophysical risk. By resettling to a sea location with higher recipient capacity, better water
exchange, and smaller frequencies of algae growth, the level of biophysical risk can be
reduced. However, relocation is only possible ifthere are available locations within reasonable
distance which are not already allocated to other types of use. In addition, the farmer must
obtain a permit from the authorities.
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This leads to the distinction between local and global (or micro and macro level) uncertainty
in salmon aquaculture. Local uncertainty pertains to random events whose outcomes affect one
or a few producers only (e.g. concentration of poisonous algaes), while global uncertainty
pertains to random events which to some extent affect all producers (e.g. anti-dumping
measures by the EU).

It may also be useful to draw a distinction between permanent and transitory risk. Salmon
farming is a young industry, and to a certain extent the observed volatility of salmon markets
can be regarded as an infant industry problem, and hence of a transitory character. There is
reason to believe that salmon farmers and exporters through a learning process have acquired a
better understanding of important aspects of salmon production and marketing, such as the
functioning of the biological production system, the mechanisms of salmon markets and the
political environment. In addition to reducing their unit costs, a result of this learning process
has been that some elements of uncertainty have been eliminated, i.e., that the probability
distribution of output prices and output has been condensed. However, both the supply and
demand side have inherent structural characteristics which imply that uncertainty will be
present and an important element of suppliers' decisions even after the industry has reached a
more mature stage. Regardless how much firms invest in education and training of staff,
forecasting models and information collection, they will not be able to eliminate risk
completely, i.e., not be able to make "correct" predictions of future prices and output. This
uncertainty represents costs both for the individual firm, the sources of financial capital for the
industry (e.g. banks), and for society at large.

7.2. Output Risk
There is plenty of empirical evidence that salmon production is more volatile than many other
types of biological production, such as livestock production (for example, cattle and chicken
meat production). For a given vector of inputs x, output y may vary dramatically. Thus, the
general stochastic specification r--1(x, E), where E is an "error term", is highly appropriate for
salmon farming. However, several issues remain to be resolved: What are the signs of the
marginal risks associated with inputs such as smolts, feed, labour and capital equipment? How
significant are the various marginal risks? What probability distribution provides the best
description of the "error term" E in salmon farming; the normal, the lognormal or another
distribution function? What specific stochastic specification of the production function is most
appropriate for salmon farming?

In section 2.1 we provided the functional relationship between the mortality and growth rate
and the production of salmon. Furthermore, we will shortly discuss the relationship between
the quality of salmon and the per-kilo-price obtained for the salmon. When a cohort of smolts
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is released into the pens, the following factors will determine the mortality and growth rates of

the cohort and the quality of the fish:

• The genetic quality of the smolts. Several types of salmon, which originate from different
wild stocks of salmon, are used in Norwegian salmon farming. Heterogeneity is present
both across stocks and within stocks with respect to robustness and growth potential. Due
to genetic improvements, farmed salmon generally grows at a significantly faster rate
today than some years ago, and the growth rate is still improving.

• The bioproductivity of the marine environment at the farm location, which is determined
by biophysical variables such as sea temperature, oxygen concentration, salinity, sea

currents, topography and concentration of disease bacterias/ viruses/ poisonous algaes. In

section 7.2.1 we provide a closer discussion of biophysical factors and their contribution

to risk.

• The stocking density of the salmon. Biophysical variables determine the maximum
stocking density in the pens. However, this maximum stocking density exhibits variations

through the year, and is very difficult to estimate; it may only be learned approximately
through a combination of experience and use of the established knowledge made available

by the scientific community. If the salmon farmer does not know the correct maximum
stocking density, he may under-utilise the capital equipment through low densities, or risk

high mortality and reduced growth rates through too high densities.

• Feeding routines and feed quality. Norwegian salmon farmers have determined that the
amount of feed and feeding frequencies have a significant effect on salmon growth. Due
to the difficulties of finding the appropriate feeding regime, feed quantities, feed qualities
and feeding frequencies have been subject to a lot of experimentation in salmon farms.

These issues have also been the focus of a considerable body of research. As the quality of
diets and the understanding of the salmon's feed requirements have improved, more

efficient feeding regimes have been implemented. According to feed input figures, there is

substantially less feed waste in Norwegian salmon farming today than five years ago.

• Monitoring and control routines. Monitoring of the fish is important in order to discover
diseases early, and thus limit disease losses. In addition, pens, nets and anchoring
equipment should be subjected to routine inspections in order to avoid capital equipment
and fish losses under extreme weather conditions.
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7.2.1. Biophysical Determinants of Salmon Production and Quality

The growth rate, the mortality rate and the quality of salmon are all very sensitive to changes
in the marine environment. The most important biophysical determinants of mortality rate,

growth rate, and quality are:"

• Oxygen concentration. With high fish densities in salmon farming, the oxygen
requirement of the fish biomass in the pens is substantial. The oxygen concentration in the
sea must be above a certain threshold level in order to avoid mortality and to obtain

maximum potential growth rates. The oxygen concentration is influenced by several
factors:
• The oxygen concentration decreases with water salinity.

• The oxygen concentration decreases with increases in water temperature.

• The oxygen concentration decreases with air pressure.

• Sea temperature. The growth rate of the salmon increases with the sea temperature up to
a certain level (around 18-20 QC),provided that the values of other biophysical variables

are appropriate. However, since the oxygen concentration in the sea decreases with an
increase in the sea temperature, high sea temperatures may often be associated with higher

mortality.
• Salinity. It is important that the sea salinity does not exhibit dramatic variations in order

to avoid excessive mortality and obtain maximum growth rates. Salinity variations may be
a problem in fjords that receive large amounts of fresh water from the inland.

• Sea currents. The high fish densities in salmon farming leads to high water exchange
requirements on the farm location. The water exchange on farm locations is driven by the
large coastal currents, variations in the sea water level due to tidal water conditions, and
meteorological conditions (i.e., wind and air pressure). Some farm locations may
experience large fluctuations in the water exchange and periods of insufficient water
supply, particularly in the summer months when water exchange requirements are high
due to the high oxygen requirements of the salmon.

• Concentration of disease bacterias/viruses and poisonous algae in the local marine
environment. The risk of disease losses increase with higher concentrations of bacterias
or viruses in the marine environment. Although one does not have full knowledge about

the spread of fish diseases, it is generally recognised that certain diseases can be carried

long distances by currents, wild fish, sea birds, etc. The experiences with fish diseases
since the 1980s have also lead to the conclusion that farms which are located close to each
other are more susceptible to contagion.

6 Tveterås (1993) provides a more thorough discussion of the biophysical determinants of salmon production,
and analyses the economic effects of changes in important biophysical variables.
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The above biophysical variables determines the bioproductivity of the marine environment at

the farm location. During the data period 1985-93 the sea temperature exhibited relatively
large year-to-year variations. Oxygen concentrations at farm locations have exhibited
substantial short-run fluctuations. A large number of salmon farms have also suffered from
disease outbreaks or extreme algae concentrations. The volatility of the above listed
biophysical factors have thus led to variations in salmon growth and mortality rates from year

to year at farm sites.

7.2.2. The Marginal Risks of Important Inputs in Salmon Farming

According to the theory of the competitive firm under production uncertainty, which was
outlined in Chapter 2, the risk averse firm is not only concerned with the marginal productivity

of inputs when deciding the input combination, but also the marginal risk of inputs. Based on
a priori knowledge of the production process in salmon aquaculture, the following can be said
about the marginal risk of important inputs in salmon farming:

• Feed: The salmon is not able to digest all the feed. A fraction of the feed, depending on
the quantity and quality of the diets being used, will be released into the environment as

feed waste and faeces. The feed requirement of the salmon in a certain period depends on
its growth potential during the period, which is again mainly determined by temperature

and light conditions, provided sufficient oxygen is available in the water. For a modem
salmon feed, a ratio between the quantity of feed supplied and the fish growth (the feed
conversion ratio) of approximately one is sufficient in order to obtain maximum growth.
However, the feed conversion ratio has traditionally been well above one in Norwegian
salmon farms.i An explanation for the high feed-growth ratios may be the difficulty of
estimating the potential growth rate of the fish, assessing the appetite of salmon and the

amount of feed that sinks through the cages. When the feed-growth ratio is well above

one, some of the feed is not eaten at all, but sinks to the sea bed below the cages. Organic
material, such as fish feed and faeces, lead to the consumption of large amounts of

oxygen, and hence compete with the salmon for the oxygen in the marine environment.
The bacterial decomposition of organic material also leads to the production of ammonia,
which is toxic (and lethal) in very small concentrations. If substantial amounts of organic
material are deposited at the sea bed under the cages, hydrogen sulphide - an extremely
toxic gas - can be produced in the sediment and emitted into the marine environment. Due
to the increased consumption of oxygen and production of ammonia and hydrogen

7 It has been calculated, on the basis of the total amount of commercial salmon feed sold to the industry, and the

salmon production figures, that until the beginning of the 1990s, Norwegian salmon farmers had been feeding

their fish roughly twice the amount offeed necessary (Wallace, 1993, pp. 139).
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sulphide, a marginal increase in the input of feed will increase the level of risk, i.e., the
variance of output.

• Smolts: The more fish (smolts) that are put into the pens, the bigger is the total oxygen
requirement of the fish, the production of oxygen-consuming organic by-products (faeces
and feed waste), and the production of toxic by-products such as carbon dioxide and
ammonia. Consequently, a marginal increase in the release of smolts will increase the
variance of output.

• Labour: An increase in labour input, ceteris paribus, will increase the ability to monitor
the physical condition of the fish, the state of equipment such as pens, nets, feeding
equipment, anchoring equipment etc., and important biophysical variables such as
temperature, oxygen concentration and alga concentrations. Furthermore, the ability to
repair equipment and maintain a high hygienic standard increases with labour input.
Consequently, a marginal increase in the input of labour will decrease the variance of
output.

• Pen volume: An increase in the pen volume, ceteris paribus, will lead to lower fish
densities. Hence more oxygen will be available per fish and there will be lower
concentrations of ammonia and carbon dioxide per m3 of water. A marginal increase in
the input of pen volume will therefore lead to a decrease in the variance of output.

• Other types of capital equipment: In general investments in capital equipment such as
feeding devices, monitoring equipment, anchoring facilities etc. will decrease the riskiness
of production.

Since the theory predicts that marginal risks are important for input decisions, and empirical
evidence suggest that both negative and positive marginal risks are present in salmon farming,
this should be accounted for in an econometric model of salmon production. The econometric
specification should impose no a priori restrictions on the marginal risk, so that both negative,
zero and positive marginal risks should be possible.

7.2.3. The Effect on Risk of Increasing the Scale of Operation at a Given Farm
Site

The exchange of water, sea temperatures and the topography to a large extent determine the
availability of oxygen to the fish in the pens. As the production of salmon increases, more
oxygen will be consumed by the fish and organic by-products such as faeces and redundant
feed. In periods of high temperatures (e.g. IS-20°C) the oxygen concentration in the in-
flowing water decreases. However, at the same time the oxygen requirement of fish increases
due to increased growth, which again leads to increased production of organic waste. In these
circumstances there may be periods when oxygen supply barely equals or is less than the
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oxygen demand of the salmon. The effect of a short-term oxygen deficit is usually decreased

growth and increased mortality among the fish.

Due to limitations in the capacity of a farm site, in terms of the amount of organic by-products
it is able to assimilate and the amount of oxygen available to the fish, an increase in the scale
of the operation beyond a certain level will increase the level of risk because of adverse effects

on growth and mortality rates.

7.2.4. The Probability Density Function of Output

According to Chapter two a few theoretical models of the competitive firm under production

uncertainty has emphasised the potential importance of third and fourth order moments of the
conditional output probability density function (pdf) for the input behaviour of the firm. Based
on the empirical evidence available so far, it is difficult to say whether the pdf in salmon
farming is symmetric (e.g. normal) or asymmetric (e.g. beta or Weibull). Several pdf's could
be tested in an econometric model, as demonstrated in Chapter 3, due to the limited knowledge
we have so far on the distributional properties of salmon production.

7.2.5. Time Series and Cross-Sectional Properties of Output Risk

Previous studies have noted that the time series and cross-sectional properties of the error term

EU of the stochastic production function YU=j(Xi,t, EU)' have consequences for the econometric
model specification. Spatial autocorrelation is present if COV(Ei,t' Ej,t) '# O for two farms i and}
in period t. One source of spatial autocorrelation are sea temperatures, which is an important
determinant of salmon growth. Sea temperatures are strongly correlated along the coast,

because they are to a large extent determined by the large currents that flow along the coast.
Negative production shocks due to bad weather conditions or diseases are also spatially
correlated, at least within regions. Sea temperatures, bad weather and diseases give rise to

positive correlation of production shocks across farms.

Time series autocorrelation is present if cov(Ei,s' EU) '# O for two time periods s and t for a
given farm i. To the extent that time series correlation of production shocks are present in
salmon farming, it will most likely be positive. For example, disease outbreaks often tend to

come in waves.

Based on our knowledge of the characteristics of the production process, it can be argued that
cross-sectional autocorrelation dominates time-series autocorrelation in salmon farming. It is

an empirical task to assess the magnitude of production shock correlation along these two

dimensions, and consequently how they should be handled in an econometric model

framework.
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7.3. Insurance in Norwegian Salmon Farming
Some theories of the competitive firm under production risk have suggested that the

introduction of insurance generally will alter the optimal input choices of the firm. Since there
exists a private insurance market for certain types of production risk in Norwegian salmon
farming, it is an important empirical question to what extent this is the case for this industry.
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Figure 7.1. Percentage of farms in the profitability survey of Norwegian salmon farming that

were insured and received indemnities 1985-93 (Source: The Norwegian

Directorate of Fisheries)

As indicated by figure 7.1 most fish farmers are insured against losses due to disease outbreaks
or technical accidents caused by extreme weather conditions. In the period 1985-93 between
93 and 99 % of the farms paid insurance premium ofsome kind each year. To some extent this

insurance reduces the economic risk for the farmer. However, the insurance does not provide

full coverage; there are several types of risk that the fish farmer cannot insure himself against.
The insurance contracts usually cover losses due to diseases, toxic algaes, extreme weather
conditions and accidents. Adverse production outcomes caused by lower than expected

temperatures are not covered by the insurance. Furthermore, the losses associated with disease
outbreaks must be of a certain magnitude in order to obtain indemnities from the insurance
company. The fish farmer is generally not fully compensated for losses, because the insurance
contract usually states that the fish farmer has to cover some of the losses himself, and because

of the insurance companies' valuation principles for the fish lost. Insurance contracts generally
state that losses above 20 % of the value of the biomass is to be indemnified. After 1990 losses
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on fish that have attained a weight of 2 kg or more have generally not been covered by the

insurance. For damages on production equipment there is a deductible of 5,000 NOK.

A common procedure for calculating the insurance premium for the biomass in the pens is to
multiply the average monthly biomass over the year with an insurance rate that reflects the
insurance company's assessment of the risk of the farm. The insurance companies to a large
extent use subjective criteria in determining the risk. The subjective assessment includes
interviews with the farmer, interviews with other people in the area (e.g. local representative,

veterinary), evaluation of the farm site and production facilities, and analysis of account

books.

To some extent the insurance companies use the history of the salmon farm when determining
the insurance rate for the biomass each year. Insurance companies increase the insurance rate if
the farmer tends to be more risky than initially perceived. However, the law prohibits
insurance companies from sharing information on insurers. This means that a farmer that

experiences an increase in the insurance rate due to an "unfavourable" history, can switch to
another insurance company which does not have the information that the original insurer

possesses, and pay a lower insurance premium. According to insurance companies this

frequently happens."

Insurance contracts also have clauses regarding the fish farmer's responsibility with respect to

hygienic precautions, anchoring and maintenance of equipment, and actions to be taken in the
event of disease outbreak or bad weather. If the insurance company can prove that the fish
farmer did not take the necessary precautions, this wi11lead to a reduction in indemnities. The
percentage of farms that received indemnities of some kind varied from a minimum of 11 % in
1992 to 40 % in 19.86 (see figure 7.1).

In general the farmer receives indemnities less than a month after an adverse event covered by

the insurance contract has terminated (e.g. a disease outbreak). An insurance company has to

pay 12 % interest on the amount of indemnity after one month, so it will have strong
incentives to process indemnity cases rapidly.

Figure 7.2 depicts the average insurance costs and indemnities as a percentage of harvest

revenues for farms in the annual profitability survey of Norwegian salmon farming. The figure
indicates a downward trend in both indemnities and insurance costs relative to harvest
revenues from 1986. It should also be noted that because of deductibles and liability clauses in
insurance contracts, the indemnities in the below figure probably underestimate the value of

the losses caused by diseases, toxic algaes, extreme weather conditions, and accidents.

In the 1980s salmon farming insurance generally was an unprofitable business area for
insurance companies. For the average farm in the profitability survey of Norwegian salmon

8 Source: Svein Arne Aas, representative of the insurance company UN! Storebrand, personal communication.
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farming the cumulative indemnities was larger than the cumulative insurance premium until
1988. In subsequent years, however, the cumulative insurance premium has always been
greater than the cumulative indemnities for the average farm. In other words, the insurance
companies have in recent years regained their losses from the mid-eighties.
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Figure 7.2. Average insurance costs and indemnities in percent of harvest revenues for the

farms in the annual profitability survey of Norwegian salmon farming 1985-93

(Source: The Norwegian Directorate of Fisheries)

7.4. Effects of Innovations and Learning-by-Doing on Production
Risk

Compared with other sectors ofbiological production, salmon aquaculture is a young industry.
In Norway small-scale salmon farming started as late as the early 1970s. Sea-based rainbow
trout farming operations has been active since the early 1960s. To some extent the production
risk in salmon farming may be explained by the fact that it is an infant industry. It is infant
both in the sense that the industry's product is relatively new, and in the sense that the
production technology is new.

The production technology has been subject to frequent innovations during the last 20 years.
Innovations have been introduced in several areas: The genetic quality of the salmon, the
quality of the fish feed, disease treatment and vaccines, feeding equipment, robustness of the
sea-pen system, monitoring of the fish, and hygienic routines. During the 1980s the
aquaculture industry received a very large share of government R&D funds. Large research
programmes, at least by Norwegian standards, were carried out to improve the understanding
of the salmon's biological requirements and the effects of intensive aquaculture on the marine
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environment, improve the genetic quality of the salmon, develop medication and vaccines,

improve the quality of the feed, etc. The generous government funding can to some extent be
explained by the fact that aquaculture became a part of the political authorities' regional policy
to support fringe areas. The development of aquaculture was regarded as an important element
in the struggle to maintain the present pattern of settlements along the coast. However, to some
extent the large funding was also a response to the particular problems of this infant industry.
Many farms experienced high mortality rates, and during the 80s new diseases were
introduced that lead to dramatic losses for some farms. In addition, the marine environment

was subjected to substantial emissions of organic material and antibiotics from fish farms in

many coastal areas. As manifested in a large number of articles in newspapers and trade

publications, these problems were of great concern both to the industry itself and to policy
makers. Furthermore, it became clear that they could not be effectively combatted without

research on the biology of salmon, and the effects of intensive aquaculture on the marine
environment. Undoubtedly, the extensive biological research has substantially contributed to
an improved understanding of the biological production system and the requirements of
salmon in the fish farmer population. Parallel with the developments on the research frontier,

the salmon farmers accumulated valuable production experience. It can be asserted that
innovations and learning-by-doing has not only contributed to increased productivity of the

average farm, but also to a reduction in production risk at the farm level. Given the general
concern among fish farmers with respect to production risk - most farms have experienced at

least one incident of substantial losses due to disease or environmental problems - it is
reasonable to assume that an important motive at the firm level for adapting new technologies
has been to reduce production risk.

The development of a public infrastructure (e.g. public veterinary service) for the industry and

the introduction of regulations aimed at promoting diffusion of innovations and reducing the

spread of diseases, also played an important part in increasing mean productivity and reducing

production risk. Courses in aquaculture were introduced both at the high school and university
level during the 1980s. An extensive semi-public veterinary field service was built up.

Evaluation of a large number of farm sites was undertaken by marine biologists in order to
determine the recipient capacity of the marine environment. Farms were often moved to better
locations after such evaluations. Publicly sponsored information campaigns aimed at fish
farmers were undertaken. Programmes for training of fish farmers in co-operation with
industry organisations were also carried out. Furthermore, regulations with respect to the
location of farms, the transportation of smolts, the treatment of dead fish and slaughter waste,
and the reporting of disease outbreaks, came into effect.

It is of great interest to measure the effect of adoption of new technology and learning-by-
doing on production risk in Norwegian salmon farming. Later we will see that the effect of
technical change on production risk is an issue which to a large extent has been ignored in the
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empirical (and to some extent in the theoretical) literature of the firm under production
uncertainty.

7.5. Summary
Since the beginning of the industry's history, economic risk has always been a prominent
feature of the Norwegian salmon farming industry. There are several sources of risk in the
salmon farming industry. Biophysical factors lead to production uncertainty at the farm level.
Actions taken by other economic agents in the salmon market contribute to salmon price
uncertainty. Actions by political agents also contribute to the price uncertainty in the industry.

Since both output and price risk is present in salmon farming, specification and estimation of
dual models of salmon production are complicated, according to chapters 2 and 3.

Empirical evidence suggests that the marginal risks of the feed and smolt inputs are positive.
In other words, feed and smolts increase the variance of the conditional output distribution.
The marginal risks of labour, pen volume and other capital equipment inputs are negative.
Empirical testing is required in order to verify these a priori conjectures on marginal risks.

Empirical evidence also suggests that an increase in the scale of operation at a given site
increases output risk. There is no empirical evidence available that can provide us with any
information on the pdf of output in salmon farming; whether it is symmetric or skewed, and to
what side it is skewed.

Besides adjusting input and output levels, salmon farms have other instruments at its
disposition to control total risk, for example insurance. There exists a private insurance market
for certain sources of production risk, e.g. diseases, toxic algaes and extreme weather
conditions. However, insurance cannot eliminate the economic risk. Consequently, the
farmer's input and output choices are still important instruments for controlling the level of
risk.
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8. THE NORWEGIAN SALMON FARM DATA SET: DATA AND
VARIABLE SELECTION ISSUES

In this chapter the features of the Norwegian salmon farm data set, a panel with firm-level
observations for the period 1985-93, are discussed. The data set is compiled by the Directorate
of Fisheries, which each year collects production, cost and revenue data in an extensive survey
of 200-300 farms. In most years the farms included in the data set produced more than fifty
percent of the total Norwegian salmon output.

Although the data set provides a very extensive description of the individual farms, there are
several problems associated with it. Depending on the chosen model specification, some

relevant variables are not available and some variables are probably measured with errors.

Consequently, both omitted-variables bias and an errors-in-variables bias may be present for
the parameters of a model estimated on this data set. To understand some of the features of the
data set, a description of the data collection process is provided in section 8.1.

The Norwegian salmon farm data set allows the construction of an unbalanced panel data set. 9
A panel data set will allow me to include firm-specific (fixed or random) 'effects, use lagged
firm level variables, detect errors in variables, and to utilise recent techniques for dealing with

measurement errors. However, there are also problems associated with the construction of the

panel data set, because the data set provides limited information on the owners and location of
the farm. Section 8.2 discusses the construction of a panel data set and potential pitfalls. Next,
a discussion of the construction of input and output quantities is provided in section 8.3.

8.1. The Norwegian Salmon Farm Data Set
Since 1982 the Norwegian Directorate of Fisheries has annually compiled data sets of salmon
farm production data for their profitability survey of so-called "independent" Norwegian fish

farms (Fiskeridir., several years). Firm level data for the years 1985-93 have been made
available for this study. lO All firms with an aquaculture license receive two detailed

questionnaires from the Directorate of Fisheries, which they by law are obliged to complete
and return together with their annual accounts. Il The 1985-1993 samples each year encompass

9 The panel data set is balanced if all units are observed in all time periods the data set spans; otherwise it is

unbalanced.

10 The 1982 and 1983 data sets have also been acquired, but they lack the farm identification number used by the

Directorate of Fisheries in subsequent data sets. The 1982-83 data sets are also somewhat different with respect

to cost categories.

11 Only firms with an aquaculture license are allowed to run their own salmon farming operation. This license

also specifies the sea location for the farm and the maximum "size" of the farm in terms of m3 Pen volume.
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200-293 farms out of a total population of 500-900 producing units. Roughly 80 variables are

reported for each farm. Some of the variables included in the 1985-93 data sets are firm
identification code, region, costs (feed, labour, smolts, interest on debt, insurance etc.),
revenues (harvest, compensations for disease and damages etc.), assets and liabilities,

production (in kg), harvest (in kg), stock of fish in pens at the beginning and end of year (in
kg), hours of labour, disease dummy, damages dummy, smolts supply problem dummy,
licensed pen volume, utilised pen volume etc. A complete list of the variables included in the

data set is provided in appendix 8.A.

The returned questionnaires and annual accounts are subjected to a quality assessment process
by the Directorate of Fisheries. For instance, for farms that were included in the data set in the
previous year, the consistency between the stock figures for December 31st in year (-1 and the

stock figures for January 1st in year t is supposed to be verified. Only farms that have been in

production the two preceding years, were in full operation the entire year, and have returned
questionnaires and annual accounts of sufficient quality are included in the final data set.12

Table 8.1. Share of Farms with Revenues from Other Activities and Average Ratio of Other

Revenues to Fish Harvest Revenues

Year 1985 1986 1987 1988 1989 1990 1991 1992 1993

% of farms with other activities 7.17 5.38 9.17 9.61 3.41 9.71 7.88 3.47 14.65

Other revJHarvest rev. in %

Only farms with other activities 1.30 5.37 15.65 13.34 18.30 9.24 3.65 14.42 13.51

All farms 0.09 0.29 1.44 1.28 0.62 0.90 0.29 0.50 1.98

The farms included in the sample are "independent" in a legal sense; only farms that deliver
separate annual accounts are included in the data set. If the revenue share of the firm's non-

aquaculture related business activities, e.g. traditional fisheries, agricultural production, fish
processing plant, exceed 10 %, the farm is excluded from the sample. Consequently, mainly

"pure" aquaculture operations are included. However, the revenue share of aquaculture-related
activities other than the production of farmed fish, such as sale of roe, feed, smolts, packaging
of fish etc., are allowed to exceed 10 %. For a few farms in the sample the revenue share of
other aquaculture-related activities are well above 10%. If there are not strong reasons to

12 Information on the data collection and analysis procedures, quality assessment process, etc. was obtained in

interviews with consultant Merethe Fauske at the Directorate of Fisheries. who has been responsible for these

tasks during the entire data period. The questionnares and guidelines for the questionnaires were also made
available.
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believe that the use of resources associated with these revenues are insignificant, these farms

may be candidates for exclusion from the estimating sample.

The data set includes the dummy variable "Other Activities", which indicates whether the firm
is engaged in other business activities. The variable "Other Ordinary Revenues" includes all
revenues except from sales of farmed fish, e.g. revenues from sale of roe, feed, smolts,

packaging of fish and rental income, and consequently may give an indication of the use of
resources in other activities. Table 8.1 shows the percentage shares of farms in the data set that
were engaged in other activities, and mean (other revenues)/(harvest revenues)-ratios. It should
be noted that the relatively large (other revenues)/(harvest revenues)-ratios observed in most
years are due to a few farms with extremely high revenues from other activities.

8.2. Construction of a Panel Data Set
As a large number of farms in the sample participate most of the years, it is possible to
construct a balanced or unbalanced panel data set. A panel data set will allows inclusion of

firm-specific (fixed or random) effects, use of lagged firm level variables, detection of errors
in variables, and utilisation of recent econometric panel data techniques for dealing with

measurement errors. Since the data sets cover the 1985-93 period, there are nine annual
observations on farms that participate in the sample each year.

The farms in the sample are anonymous; neither the name of the firm nor the aquaculture

license code are reported. The variable which allows me to trace a farm over time and
construct a panel data set is the farm identification code, which consists of a region code
followed by a number. However, this farm id. code corresponds to the aquaculture license
code. The farm id. code is only changed if the aquaculture license code is changed, and for
several types of events the latter code is not changed. It is usually not altered if

(1) the name of the firm is changed but the owner remains the same,
(2) the name of the farm is changed because another firm/person buys the farm,

(3) a new owner takes over the firm but the name of the firm remains the same, or
(4) the farm is moved to another sea location.

One of the reasons for constructing a panel data set is that we want to introduce firm-specific
effects into the model framework. These firm-specific effects are assumed to represent
unobservable firm characteristics such as the quality of management, the quality of workers
and the bioproductivity of the farm site. Furthermore, the econometric panel data model
framework assumes that these effects are constant over time (Hsiao, 1986, p. 25). If the firm-

specific effects are not constant over time, then the standard econometric panel data model
framework will be inappropriate for our application. In this context event (1) is unproblematic,
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but events (2)-(4) require some further discussion, because they may lead to changes in the
unobservable firm characteristics that are assumed to be constant.

Events (2) and (3), i.e. the introduction of a new owner, may have consequences for the quality
of management, which again will result in changes in efficiency and unit costs. However, there
is little reason to believe that a change in ownership has substantial consequences for the other
sources of heterogeneity listed in section 6.6, at least in the short run. Event (4), moving to a
"better" farm location, may have substantial consequences for maximum fish density in the
pens and maximum total production. This may lead to higher productivity and lower unit
costs. However, moving to a site with higher bioproductivity generallyalso means moving to a
more exposed site. Consequently, moving the farm may also involve investments in a more
robust sea-pen system, which will contribute to reduce the gains with respect to unit costs.
Several farms on exposed locations have also experienced dramatic losses, e.g. the loss of the
entire stock of fish, due to extraordinary weather conditions during the winter season.

The next question to ask is to what extent events (2) and (3) are present in the data set. That is,
to what extent have farms with the same farm id. code changed ownership during the data
period? Before going into this issue, a short discussion of some of the characteristics of the
salmon farmer population will be useful. The individuals that acquired aquaculture licenses
during the 1970s and 1980s were in general not arbitrageurs or speculators that entered the
industry to reap short run profits, and then sell their license if they could earn a profit on their
investments. Like farmers in traditional agriculture, it can be argued that most salmon farmers
have a high degree of attachment to their occupation and farm. This means, as empirical
studies have suggested, that a typical salmon farmer must face a severe economic crisis, such
as bankruptcy, before he will part with his farm. In addition to the non-economic attachment to
his occupation, there are also economic reasons why a salmon farmer must face bankruptcy
before he is separated from his farm. The small coastal communities along the Norwegian
coast in general offer few alternative employment opportunities. For many salmon farmers this
means that there are few alternatives to their present occupation. They may not have skills
which are attractive in the service or manufacturing sectors in urban areas. Furthermore,
relocation to another place may lead to substantial losses associated with sales of private
property, because second-hand markets may be little developed due to few employment
opportunities or because the region may experience a local recession.

Legal restrictions should also be taken into account in an assessment of the possible extent of
changes in ownership. Prior to 1991 majority ownership interests in more than one salmon
farm was prohibited by the Fish Farming License Act, although a few exemptions were
granted. This contributed strongly to limit sales of ownership interests in the industry. In 1991
the law was changed, and the ownership restriction was in reality not in effect any longer. As a
consequence of this deregulation and the large number of bankruptcies in 1991 and -92, the
.industry from 1991 onwards has experienced a much higher take-over activity than in the
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1980s. This development is also reflected in the salmon farm data set. A substantial number of
new firms entered the data set in 1991 and 1992.

According to the Directorate of Fisheries (Merethe Fauske, pers. comm.), farms that were in
the sample during the entire data period, did not change owners. This may be verified by
examining profitability and equity figures for the individual farms. A change of ownership is
not very likely for farms with positive profits in preceding years. For farms that experienced
negative profits in one or more of the preceding years equity figures should be examined.

Farms that eventually went bankrupt, are not included in the data set the year bankruptcy

occurred. This is because annual accounts are not produced for that year. If a particular farm
id. code is observed in year t-1 and year t+1, but not in year t, examination of profitability and
equity figures in the period preceding year t should give an indication whether the farm went
bankrupt or was excluded from the sample for other reasons (e.g. poor quality of returned
questionnaires or annual accounts). Of course, if lagged variables are included in the
econometric model specification, missing observations will represent a problem regardless
whether the farm went bankrupt or not.

There are also some instances of mergers of farms in the data set. These are not mergers in the

usual legal sense, i.e., that one firm buys another. Usually it is two independent firms that
decide to join their operations to exploit economies of scale. The original owners maintain
control of the assets they originally owned, and are relatively free to dissolve the joint

operation if they should so desire. When a joint operation is in effect the two farms will often
deliver a joint questionnaire and annual accounts to the Directorate of Fisheries. In the case of
such mergers the Directorate of Fisheries sometimes has assigned the farm id. code to one of
the firms to the joint operation. This is problematic, since the new operation will have different

characteristics than the previous one with the same farm id. code. The absence of mergers can
be verified by checking the licensed pen volume and utilised pen volume. If the pen volume
increases beyond the maximum allowed pen volume from year r-I to year t, then a merger may
have taken place. However, it should be noted that some farms which were established in the
1970s, prior to the introduction of pen volume restrictions, may have a pen volume above the
maximum level.

Identification of farm relocations may represent a bigger problem than identification of
ownership changes. According to the Directorate of Fisheries there was a substantial number

of relocations of farms during the data period. In the late 1980's and early 90's there was a
trend of moving pens to more exposed locations. The problem is that there is no information
available in the data set which makes it possible to account for relocation in the empirical
model specification. The biophysical factors which defines the bioproductivity of the location
can be regarded as fixed inputs in the production process. Since data on the relevant
biophysical factors are not available, we will not be able to directly account for changes in the
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levels of these inputs in the econometric model. Of course, this may bias the parameter

estimates of the model.

Before any farms are excluded from the data set due to data problems, 28 farms can be
observed for the entire nine-year data period, as shown in table 8.2. Further, 24 farms are

observed eight years, 45 farms are observed seven years, etc. There is a total of 2280

observations in the data set.

Table 8.2. Panel Structure of the Norwegian Salmon Farm Data Set

Farms observed ... Number of farms Number of obs.
9 years
8 years
7 years
6 years
5 years
4 years
3 years
2 years
I years

28
24
45
63
59
82
80
101
78

252
192
315
378
295
328
240
202
78

Sum 560 2280

A careful examination of several variables was undertaken for farms that could be observed for
3 years or more in order to determine whether data quality problems were present, or if

mergers may have taken place. li such problems were detected the observations considered as

problematic were dropped from the sample. Hence, the estimating sample is smaller than the
original data set in terms of the number of observations. The estimating sample is presented in
Chapter 9.

8.3. Construction of Input and Output Quantities

Previous econometric studies of salmon farming, such as Salvanes (1988; 1993) and Tveterås
(1993), have shown possible ways to construct output levels, output prices, and input levels
and prices from the salmon farm data set.

This study, unlike previous empirical studies of the industry mentioned here, uses a primal
approach. Hence, it is not necessary to construct farm level prices for inputs and output, only

input and output quantities. In the empirical analysis in Chapter nine, five inputs will be

implemented into the production function: fish feed, initial stock of fish in the pens, labour,
capital and materials input. See table 8.3 for a summary of output and input measures.

In previous studies it has been common practice to define output as the harvest of salmon plus
the difference between the stock of fish in pens from the beginning of the year to the end of the

year. A problem with this output measure is that it allows negative outcomes, and thus violates
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one of the postulates of the neoclassical production theory for the single-output case. If the
reduction in the stock of fish is greater than the sales of fish during the year, then output is

negative according to this measure. Examination of the data set reveals that some farms
experienced negative output.l ' The common practice has been to drop farms with negative

output from the estimating sample. However, this will probably give rise to a sample selection
bias, since farms which experienced adverse production shocks (e.g. fish disease outbreaks),

and/or used a risky vector of inputs tend to be dropped from the sample, which means that
valuable information on the structure of production risk may be lost.

Table 8.3. Output and Input Quantity Measures Used in Empirical Models in This Thesis

Output/input Unit of Comments

measurement

Sales of fish plus stock of fishSalmon output kg fish

Feed input kg feed

Fish input kg fish

Labour input hours

Capital input real NOK

Materials input real NOK

Feed expenditures divided by price (NOKIkg) of feed type "Edel"

Stock of live fish in pens January 1st

Hours of paid and unpaid work

Real replacement value of capital equipment

Real expenditures on maintenance and repairs, electricity, office equipment,

rent of equipment and buildings, etc.

An alternative way to define output is to set output equal to sales plus the stock of fish at the
end of the year: Since these two components of the output measure always will be
nonnegative, the problem of negative output outcomes is eliminated with this definition. This
definition will be employed in this thesis.

With the chosen definition of output, the stock of fish in the beginning of the year should be

included as input, because it will be an important determinant of the output quantity. The stock
of fish is measured as the total biomass of live fish in the pens on January 1st.

For feed, only data on total feed expenditure is available. To estimate the quantity of feed used,
the relationship that exists between the output of fish and the quantity of feed required, the
feed conversion ratio, has been utilised in previous studies. The quantity of feed is defined as
the product of output and the feed conversion ratio. Aggregate annual data are available for the
feed conversion ratio (Seymour & Bergheim, 1991), but not at the firm level. One of the

problems with the feed quantity and price proxies used in previous studies is that they assume
an identical feed conversion ratio across farms. This is a very strong assumption, since studies

13 Losses due to fish disease and extreme weather are usually the causes of negative output.
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indicate substantial cross-farm variations in feed conversion ratios (Berge & Blakstad, 1989;
Johannessen, several years). Based on the findings of Johannessen et al. and Berge &
Blakstad, it is reasonable to assume that the dominant source of the substantial cross-farm
variation in the feed price proxy found in Salvanes a.o. is the large variation in feed conversion
ratios. Several problems associated with the proxies for feed input and price in a dual
econometric model framework are discussed in Tveterås (1993, p. 72).

Each year smolts are also released into the pens, usually in May/June and/or early fall. For

smolts, expenditures are available, but not quantities. Consequently, it is not possible to obtain

direct measures of the quantity of smolts. However, aggregate regional data on smolts prices
can be utilised (CBS, 1985-92). Statistics Norway each year compiles average purchase prices
of smolts bought by salmon farms in each county. A proxy for the quantity of smolts can thus

be constructed by dividing expenditures on smolts by regional smolts prices. However, smolts
prices are reported per piece, not per kilo, which means that further assumptions on the
average weight of the smolts are necessary in order to transform into biomass (kilos), which is

the measure for output and fish input at the beginning of the year. Another problem with using

smolts prices, is that in several years there were substantial differences in the prices farms paid
for smolts, even within regions. Previous studies have avoided using smolts input proxies by
arguing that in a dual model framework it is possible to eliminate smolts input from the model
specification by choosing an appropriate time window for the fish farmer's optimisation

problem (Salvanes, 1988). In the one-year period from January 1st to December 31st, the
choice of smolts input can be regarded as weakly separable from the other inputs. Given the
problem of measurement, and because smolts input may have a limited effect on output the

year it is released, smolts are not included as inputs in the empirical models estimated in this
thesis. Furthermore, for farms which have been in full operation for two or more years, which

is the case for the farms in our data set, there is usually a high degree of correlation between
smolts input and the stock of fish in the pens January 1st.

It is possible to construct a proxy for the feed consumption by utilising feed price information

available from fish feed manufacturers. The proxy for feed consumption can be obtained by
dividing the feed expenditures by the feed price. There is, however, no data available at the
farm levelon the type of feed used. Then, if the price to some extent reflects the quality of the
feed, which has been the case in Norwegian salmon farming, this may not lead to very large
biases in the feed input proxy. In the empirical models in this thesis, feed input is measured by
the feed expenditures divided by the average annual price of "Edel", a common salmon feed
type produced by the largest Norwegian feed manufacturer, Skretting. The price index is
reported in table 8.4.

To some extent the fish farms have also been given different discount rates from the fish feed
manufacturers, depending on the purchased quantity. This means that there may be a
downward bias in the feed consumption proxy for large farms. A particular problem for the
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first years of the data period is that some farms produced their own feed because they had
access to very cheap raw materials, e.g. from the local fish processing industry. This problem
diminishes over the time because the fish farms gradually have learned about the superior
quality of commercial feed from professional manufacturers. For the farms that made their
own feed due to access to cheap raw materials, the value of the feed input proxy may be very

low. However, by dividing output quantity by the feed input proxy one obtains a proxy for the
feed conversion ratio of the farm and thus an indication of whether the farm used commercial
feed or not. Farms with feed conversion ratio proxies less than one should be excluded from

the sample, because it was in practice not possible to obtain such low feed conversion ratios
with the feed types available in the first half of the data period.

Table 8.4. Price of Salmon Feed "Edel" by Year (in NOKikg Feed)

Year 1985 1986 1987 1988 1989 1990 1991 1992 1993
Price Edel 6.23 6.29 6.19 6.96 7.61 7.14 7.19 7.13 7.13

The construction of measures for the services of capital input is generally regarded as
problematic, since "capital" is not a homogenous input. Capital includes pens, buildings,
feeding equipment, etc. In this study capital input is measured by the real replacement value of
capital equipment.

Labour input is measured by the hours of paid and unpaid work at the farm by

managers/owners and workers.

Materials input is the real expenditures on maintenance and repairs, electricity, office
equipment, rent of equipment and buildings, etc. Labour costs associated with maintenance
and repairs undertaken by own employees are not included in materials.

For both capital and materials input the nominal figures are deflated by the consumer price
index (CPI).

Appendix 8.B provides summary statistics for output and input variables constructed from the

Norwegian salmon farm data set, before problematic observations are dropped. Presentation of
summary statistics for the estimating samples is postponed to Chapter nine (see appendix 9.D).
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8.A. Appendix: List of Variables in Salmon Farm Data Set
No. Variable
1 Year
2 Farm_code

3 Fish species
4 Legalorg.
5 Parent fish
6 Other activities
7 Full utilisation of license
8 Full utilisation of capacity
9 Damages
10 Lack of smolts
11 Diseases
12 Year of establishment
13 Licensed pen volume
14 Actual pen volume
15 Sales of fish
16 Production of fish
17 Stock of salmon Jan. 1st
18 Stock of salmon Dee. 31st
19 Stock of trout Jan. 1st
20 Stock of trout Dee. 31 st
21 Stock of fish Jan. 1st
22 Stock offish Dee. 31st
23 Paid labour input
24 Unpaid labour input
25 Total labour input
26 Credit limit
27 Bank deposits
28 Short-term outstanding

claims
29 Value stock offeed
30 value stock of fish
31 Buildings and equipment
32 Long-term outstanding

claims
33 Debt to vendors
34 Bank overdraft
35 Other short-term debt
36 Long-term debt
37 Delayed taxes
38 Tax allocations
39 Equity
40 Sales revenues
41 Other revenues
42 Compensations
43 Income from interest
44 Operating revenues
45 Smolts costs

Unit Comment
Observation year
Format: x yyy, where xeregion CVA, R, H, SF, M, ST, NT, N, T, F)
and yyy is a three digit code.
Values: Lesalmon, 0=trout, B=both.
Joint stock company, etc.
Values: Yes/No
Values: Yes/No
Values: Yes/No
Values: Yes/No
Values: Yes/No
Values: Yes/No
Values: Yes/No

Maximum pen volume according to license issued by government

kg
kg
no. Fish in pens
no. Fish in pens
no. Fish in pens
no. Fish in pens
kg Fish in pens
kg Fish in pens
hours
hours
hours
NOK
NOK
NOK

NOK
NOK
NOK
NOK

NOK
NOK
NOK
NOK
NOK
NOK
NOK
NOK
NOK
NOK
NOK
NOK
NOK
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List of Variables in Salmon Farm Data Set Continued .••

No. Variable Unit
46 Feed costs NOK
47 Insurance costs NOK
48 Labour costs Nok
49 Calculated sal!!!! owner Nok
50 Harvesting costs Nok
51 Freight costs Nok
52 Other o~rating costs Nok
53 Losses on outstanding claims Nok
54 Calculated de~reciation historical costs Nok
55 Calculated depreciation replacement Nok

costs
56 Change in stock Nok
57 O~rating costs Nok
58 O~rating (!ofits Nok
59 Interest costs Nok
60 Profit before extraordin!!!! costs Nok
61 Man-xears No.
62 Utilisation ratio %
63 Prod.lm3 ~n volume kg
64 Prod.lman-xear kg
65 Value of ~roduction Nok
66 Value/man-xear Nok
67 Value/m- Een volume Nok
68 Calculated interest Nok
69 Calculated deEreciation mixed ErinciEle Nok
70 Total costs Nok
71 Total revenues Nok
72 Wagemeans Nok
73 Wage means/man-xear Nok
74 Profits Nok
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8.B. Appendix: Summary Statistics from the Norwegian Salmon
Farm Data Set

Table 8.81. Overall Summary Statistics (2280 Obs.)

Variable Mean Max.
Output (y) in kg
Materials (M) in real NOK*
Feed (F) in kg
Capital (K) in real NOK*
Labour (L) in hours worked
Fish (l) in kg

360472
1045773
344389

2513 372
6979

150265

St.dev. Min.
2028801
12736623
2479452
37212584

42906
1015800

* Deflated by Consumer Price Index (CPI)

244 208
1046963
250803

2295081
3754

110467

11050
O
O
O
O
O
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9. ECONOMETRIC MODELS OF THE STOCHASTIC PRODUCTION
TECHNOLOGY IN SALMON FARMING

In this chapter we specify and estimate econometric models of the stochastic production
technology for Norwegian salmon aquaculture in order to test the hypotheses HI-H4 provided
in Chapter l. The objective of the econometric analysis in this chapter is to uncover the
structure of the stochastic production technology in salmon farming, particularly the structure

of production risk, by utilising information provided by the data set on input and output levels.

A primal approach will be used here. A dual approach have previously been rejected (see

Chapter three). Testing of hypotheses HI-H4 only requires that the stochastic production

function is specified, so specification of utility functions and expectation formation models is

not required.

For sake of convenience the hypotheses are repeated here:

HI. The following factors explain observed cross-firm productivity differences in Norwegian
salmon farming in a given year: (1) economies of scale, (2) firm heterogeneity (with
respect to the quality of management, labour and capital equipment, etc.,), and (3) "true"
randomness in the production process.

H2. The production technology in salmon farming is characterised by

(a) increasing output risk associated with a factor neutral expansion in inputs,

(b) decreasing marginal output risk associated with an increase in the input of capital and
labour, and

(c) increasing marginal output risk associated with an increase in the input of fish and

fish feed.

H3. During the period 1985-93

(a) the conditional mean output for a given combination ofinputs has increased.

(b) the conditional distribution of output in salmon farming has been more condensed,
i.e., the level of production risk has decreased.

H4. There are differences in mean productivity and output risk levels between the regions.

The basis for the model specifications will be previous primal model specifications provided

in the econometric literature, and the description of the salmon industry presented in previous
chapters. In Chapter 3 we presented earlier econometric approaches and discussed important
issues in the econometric modelling of the stochastic production technology. In chapters 6-7
the features of the production process in salmon aquaculture were discussed.
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Chapter 4 discussed the use of panel data techniques to account for firm heterogeneity. Here,
firm heterogeneity will be accounted for by means of various econometric panel data
estimators. Both fixed effects and random effects models will be estimated.

According to the theoretical models presented in Chapter 2, information about the production
technology is required if one wishes to make predictions about salmon farms' response to
changes in input prices or the (expected) output price. The theory predicts that the firm's
output supply and input demand responses to price changes are affected by the structure of
production risk. Knowledge about the structure ofproduction risk is, however, not sufficient to
predict input demand and output supply responses, e.g. to changes in input and output prices.
According to the theory of firm behaviour under uncertainty, it is also required that one has
knowledge or makes assumptions on the risk preference structure and output price
expectations of salmon farmers.

The theoretical models of Chapter two also provided motivation for accounting for production
risk in analyses of technical change. Risk averse producers will not only be concerned about
the mean productivity when they consider adoption of new technologies (or production
practices); they will also be concerned about the change in output risk associated with new
technology adoption. Hence, for a risky production process such as salmon farming, analysis
of technical change should include the variance function. This will be done in the empirical
analysis below.

Continuing the discussion of estimators in chapters three to five, attention will also be given to
estimation issues in this chapter. The simulation study in Chapter five did not provide any
overwhelming support for any particular estimator, although the maximum likelihood
estimator seemed· to perform better in the estimation of the variance function parameters.
However, the assumptions underlying the data generating process in Chapter five may be
violated in the data generating process for the salmon farm data set. It is difficult to say what
effects this will have on the relative performance of different estimators. The empirical
production models specified here have several characteristics which should make one careful
about drawing conclusions based on a single estimator; the linear quadratic parametrization of
the mean production function has been used only to a limited extent in the empiricalliterature:
The same can be said for the specification of the output variance function.

Caution should be exercised in particular for random effects models, which have become very
popular recently since the efficiency of parameter estimates is increased if the underlying
assumptions are valid. The available panel data set is unbalanced. Estimation of random
effects specifications on an unbalanced panel with heteroskedasticity of the form chosen here
has not been tried before. In addition, it is difficult to know to what extent the random effects
assumptions, e.g. the assumption of independence between the firm-specific effects and input
levels, are valid.
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Given all the above considerations, several estimators should be tried in the estimation of the
production models for the salmon industry. Feasible generalised least squares (FGLS)
estimation will be undertaken for both fixed and random effects model specifications. l
Maximum likelihood and FGLS estimates of a fixed effects specification will also be
compared. In the assessment of the estimates we are concerned about whether the various
estimators provide significantly different estimates of important elasticities derived from the
mean and variance functions, and ifthe estimated t-values of different estimators give different
levels of confidence when making predictions. It should be noted that the empirical data set is
larger than the data set used in the simulation study in Chapter five. However, it is
questionable whether it is of a sufficient size to characterise it as 'large' in the asymptotic
sense.

The plan of this chapter is as follows: First, in section 9.1, we discuss important econometric
specification issues, both general and specific. Two classes of stochastic production functions
will be estimated; Just-Pope production functions and Kumbhakar production functions. In
section 9.2 the empirical Just-Pope specifications are presented, while section 9.3 presents the
Kumbhakar specifications. Section 9.4 presents summary statistics and the estimators which
will be used.

A natural first step in empirical analysis of production risk is to test if heteroskedasticity is
present in the data set, particularly if output is heteroskedastic in input levels. Testing of
heteroskedasticity is undertaken in section 9.5. Next, in section 9.6, we investigate whether the
linear quadratic and translog parametrization of f{x) provides similar elasticity measures. If
these two specifications provide similar elasticity estimates, this will increase our confidence
in the relatively less used linear quadratic form.

In section 9.7-9.12 empirical results from estimation of Just-Pope models are presented. First,
in section 9.7, we compare estimates of models with different assumptions on technical
change, the time trend model and the time dummy model. We will assess if the standard time
trend specification oftechnical change is valid for our empirical application, or if a model with
separate parameters for each year is required. Next, we examine the effect of different
estimators on estimated parameters and elasticities. In chapters three and five we discussed
FGLS vs. ML estimation of Just-Pope models. In section 9.8 we will see what effects the
choice of estimator has for the empirical estimates for the salmon aquaculture industry. In
section 9.9 we investigate the consequences of assuming firm homogeneity for estimated

Note that although we use the term "FGLS estimator" for both the fixed and random effects case, the least
squares estimators are different for the two cases since the structure of the covariance matrices are different
(cf. Chapter four). However, regardless of the assumptions we make about the frrm-specific effects, the least
squares estimation procedure is FGLS when we adjust for the heteroskedasticity in the observation-specific
error term.
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parameters and elasticities of the mean and variance functions. We are particularly interested
in what effects the homogeneity assumption has on estimated marginal output risk and
estimates of the overall output risk in salmon farming.

Next, in section 9.10, we compare estimates from fixed effects and random effects
specifications of the firm-specific effects. If the random effects assumptions of no correlation
between error components and between error components and regressors are valid, then it is
possible to introduce time-invariant variables, such as region dummies, into the production
function. In section 9.11 we analyse the effects of omitting farms which are observed one and
two periods by means of a random effects model. In section 9.12 we estimate models with
region-specific effects, which enable us to analyse if regional location has any effect on the
mean productivity and output risk of salmon farms. Some of the models we estimate are
random effects model which allow us to include both firm-specific effects (as random) and
region-specific effects (as fixed).

Section 9.13 compares Just-Pope and Khumbakar estimates.

Finally, in section 9.14, the empirical results are summarised, particularly with respect to the
hypotheses put forward at the beginning of this dissertation. Based on the empirical findings
we also discuss the appropriateness of the different econometric specifications, and assess to
what extent our results have implications for the econometric research on production risk in
general.

We have chosen to present tables with parameter estimates, tables with estimated elasticities
and figures in separate appendices. Estimated parameters are presented in appendix 9.A,
estimated elasticities in appendix 9.B, and figures in appendix 9.C. Estimated parameters and
elasticities have been presented with three decimals, but this should not be interpreted as an
indication of the level ofprecision of the estimates.

9.1. Discussion of Some Specification Issues
According to the discussion in the previous chapters, several requirements with respect to
theoretical consistency, functional flexibility and factual conformity should be accounted for
in the specification of the stochastic production model. Undoubtedly, an extensive set of
requirements may lead to some very difficult trade-offs when an econometric model
specification is to be chosen. In this section we will discuss some specification issues, both
general and specific.

Chapter 3, which discussed previous studies in this field of research, presented several
specifications of the stochastic production function. The focus will be on two classes of
production functions; (1) the Just-Pope form

Yit =!(xit; aj + lli +h(xit; ~jEit,
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and (2) the Kumbhakar form

Yit = j{xit; a)exp(h(xit; P)(T1i + Eit»·

For the Just-Pope form a Cobb-Douglas has usually been assumed for j{.) and hO in the
literature, while Kumbhakar postulated a translog form for j{.) and a linear form for h(·).
Econometric parametrizations of these two stochastic production function specifications will
be estimated in the empirical study. Both specifications have their advantages and drawbacks,
in general and with respect to the particular empirical application. A priori, it is therefore far
from a trivial question which of the above specifications (or modifications of above
specifications) is most appropriate to use. Difficult trade-offs have to be made. Some general
guidance has been provided by Lau (1986), who suggests five criteria for choosing a
functional form: theoretical consistency, domain of applicability, flexibility, computational
facility, and factual conformity.

In terms of theoretical consistency the Just-Pope form satisfies the Just-Pope postulates for the
stochastic production function. Just & Pope (1978) have shown that Kumbhakar's
specification always violates the postulate ofindependence between the mean functionj{·) and
the variance of the random term E (postulate P4), and the requirement that constant stochastic
returns to scale should be possible (postulate P8). Depending on the parameter values of a and
p it may also violate the other Just-Pope postulates.

In terms of the mean production function ji-) flexibility means that the functional form does
not impose any a priori restrictions on derived elasticities of substitution and scale. The
translog function is regarded as flexible in this sense, while the Cobb-Douglas is inflexible.2

Due to the a priori restrictions it imposes on the production technology, the Cobb-Douglas
form has been largely abandoned in applied production studies that assumes a deterministic
setting. The large body of empirical results from the application of flexible functions strongly
suggest that the use of these is warranted in production analysis. However, in econometric
studies ofproduction uncertainty the Cobb-Douglas has been widely employed (see table 5.1),
although all of these studies have been undertaken recently, after the introduction of flexible
forms.

Examples of studies that have used a Cobb-Douglas form are Just & Pope (1979), Griffiths &
Anderson (1982) and Saha et al. (1994).3This must be considered a weakness ofthese studies,
particularly since none provide arguments for rejecting a more flexible specification of the
production technology in favour of the Cobb-Douglas. The estimated models probably suffer
from an omitted-variables bias which not only affects the estimates of the mean production

2 The issue of flexibility, and the properties of the Cobb-Douglas and translog functions are discussed
extensively in Chambers (1988).

3 Just & Pope (1979) also estimate a translog, but this is a very simple version with only one input.
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function parameters a, but also translates into the estimates of the errors uit and thus the
estimates of the variance function parameters p.4
In addition to the general arguments presented against the use of a Cobb-Douglas function,

there is also a specific reason for not using it which is related to hypothesis HI. Since the
returns to scale for the Cobb-Douglas production function is equal to the sum of the
parameters, Lj-aj, it is too restrictive for the testing of the contribution of scale economies to
observed productivity differences in hypothesis HI.

On the other hand, there are also problems associated with more flexible functional forms in

terms of the domain of applicability. Results from empirical applications and Monte-Carlo

studies generally suggest that flexible functional forms are well-behaved around the mean
observation, but that the theoretical consistency requirements are violated for observations that
lie far from the mean. Due to the inability to approximate the production technology in
outlying observations, the accuracy of the predicted error terms is questionable for these
observations. Again, this may affect the estimates of the errors Ei and hence the estimates of p.
The performance of different flexible functional forms has been compared in several
simulation studies. The results from these studies tend to suggest that the translog is more

well-behaved than other functional forms at observations "far" from mean, i.e., it has a larger

consistency region than other functional forms.5 We know little about the performance of the
linear quadratic functional form, which will be used in the following, in this respect.

For the salmon farming industry the factual conformity criterion, which implies consistency of

the functional form with known empirical facts, supports the use of flexible functional forms
such as the translog. The empirical results of Salvanes (1989; 1993) a.o. provide solid support

for the use of second order approximations to the underlying production technology in salmon

farming: The majority of second-order term coefficients in Salvanes' estimated translog cost

and profit functions were significant at conventional confidence levels, which strongly suggest
that a Cobb-Douglas specification is inappropriate."

4 In the first step of a FGLS estimation procedure the mean function Yi/ = j{Xit; u) + Uil is estimated. If some of

the parameters a. are omitted, then this will in generallead to biased estimates of Ui/. In the second step of the

estimation procedure the estimates of Uit from the first stage are regressed on the variance function h(xiI; 13),
which means that the estimated UiI'S provide biased estimates of 13 unless very strict conditions on the nature

ofmeasurement errors in the Uit'S are satisfied.

5 Some of the studies that discuss the global properties of the translog and other flexible functional forms are

Barnett, Lee & Wolfe (1985), Barnett & Lee (1985), Caves & Christensen (1980), Diewert & Wales (1987),

Gallant (1981), Gallant & Golub (1984), Guilkey & Lovell (1980), Guilkey, Lovell & Sickles (1983), Wales

(1977), and Westbrook & Buckley (1990).

6 A translog function with all second-order parameters equal to zero reduces to a Cobb-Douglas function.
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Computational considerations probably explains the widespread use of the Cobb-Douglas

function in econometric analyses of production risk. The problem with using the Just-Pope
form in econometric modelling is that the error term does not appear multiplicatively withji).

In standard deterministic production. functions a multiplicative relationship between the

production function and the error term of the form Yit = j(xit; a)exp(Eit) is assumed. For the
Cobb-Douglas and translog parametrizations ofj(·) this allows one to linearize the function in

parameters a by taking logarithms on both sides. However, in the Just-Pope setting the
additive error term forces the researcher to use nonlinear least squares or nonlinear maximum
likelihood in the estimation ofj(·).

One potential problem with nonlinear models is that the obtained parameter estimates may not
minimise (maximise) the objective function globally, only locally. Nonlinear methods may

therefore provide biased parameter estimates. This is however a much larger problem for the

translog function than for the Cobb-Douglas function. The inability to find the parameters that
globally optimise the objective function, may it be the residual sum of squares or the

likelihood, is probably an important reason for not using the nonlinearized translog. 7 The
problems with nonlinear estimation suggest that a flexible functional form which is linear in

parameters should be employed.

Kumbhakar's specification allows a Cobb-Douglas or translog j(.) to be linearized in

parameters, because the variance function is related to the mean function in a multiplicative
exponential manner. The mean function ji-) was specified as a translog by Kumbhakar, and

consequently it satisfies Lau's flexibility requirement. The Kumbhakar form allows the use of
linear estimation techniques forj('), but h(·) has to be estimated by nonlinear least squares.

For the variance function both theoretical consistency and flexibility requirements suggest that
the econometric specification should allow the conditional variance of output to both increase
and decrease in inputs. In this particular application, the testing of hypothesis H2 requires that
the production function specification allows both positive and negative marginal effects on
risk of changing input levels, i.e., avar(y)/Bxi <=> O is possible for all i.

In this empirical study, Harvey's (1976) specification of the variance function is applied. The

flexibility of the variance function of Harvey's model may be questioned, because it is given

by a linear-in-parameters function which is raised to the power of e. The exponentiation
ensures that the variance is always positive. This is not the case for the conditional variance of
the general Just-Pope model y =j(x; a)+h(x; I3)E;in order to allow both negative and positive

7 Discussions of nonlinear estimation of translog functions have not been found in the literature. However,

preliminary Monte-Carlo results from the estimation of parameters of a nonlinearized, well-behaved trans log

function indicate that it is very difficult to tind estimates that are close to the true parameter values. This is the

case even if the true parameter values of the trans log function are given as starting values for the estimation

procedure.
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marginal risks, the Ws may take both negative and positive values. Consequently, var(Yilxi)
may be negative for certain values of xi in the Just-Pope model, depending on the signs and

values of the P's. Although it is a nice property of Harvey' s formulation that it always yields
positive variances, it may be discussed if there are any a priori reasons for postulating a
natural exponential function for the variance of production.

Firm heterogeneity should be accounted for in the models in order to uncover the 'true'
production risk, according to the discussion in chapters 4 and 7. In salmon farming

heterogeneity may be a more important determinant of cross-firm productivity differences in a

given period than different outcomes of stochastic variables across firms. Ignoring

heterogeneity in the econometric model specification may consequently lead to over-
estimation of the importance of risk, and biased estimates of the parameters of the production
function. Furthermore, hypothesis HI explicitly requires the implementation of firm-specific
effects. In section 9.1 we argued that the Kumbhakar form with translog jl-) provides a more
satisfactory representation of firm heterogeneity than the Just-Pope form with a linear
quadratic ./(.). The former allows the absolute difference in output Yi - Yj between two firms

with different firm-specific effects Tliand llj to increase as the scale of operation increases. In

other words, for two input vectors x and ax (a > 1) and two firms i and} where Tli> llj, the
difference in mean output conditional on x, E[yitl x; Tl;] - E[yjtl x; llj], is smaller than the

difference in output conditional on ax, E[yitl ax; Tl;] - E[yjtl ax; llj] for the Kumbhakar form.
For the Just-Pope form with linear quadratic parametrization, the firm specific effect interacts

additively with./(·), and thus the absolute difference in output v, - Yj will be constant regardless

of input levels x.

In order to test hypothesis H3 of increasing conditional mean output and decreasing
production risk in Norwegian salmon farming over time, a trend variable or time-dummies

must be implemented in both the mean and variance production function. With a trend variable

the general Just-Pope production function is y = ./(x; t)+h(x; t)e. By using a second-order
approximation for h(x; t), it is possible to analyse if the rate of change in production risk is
decreasing or increasing over time. Flexibility is further increased if time-specific effects, both
as separate dummy variables and as interaction terms with input levels, are used instead. The
specification of technical change will be discussed further in subsequent sections.

To summarise the above discussion, the Just-Pope form satisfies the theoretical conformity
criterion, but violates the flexibility criterion if the restrictive Cobb-Douglas function is used
for ./(.). Alternatively, if a translog function is used for ./('), then the computational facility

criterion is violated, due to the difficulty of finding the nonlinear parameter estimates that
optimise the objective function. My solution is to use a linear quadratic specification of./(·) in
the Just-Pope model, which is linear in parameters and flexible. Harvey's multiplicative
heteroskedastic specification, which is used for the variance function, has the nice property
that the variance of output will always take positive values due to the exponentiation of the
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variance function. Finally, the Kumbhakar form satisfies the flexibility requirement with

respect toft·), but violates some of the Just-Pope postulates set forth in Chapter two. However,
it may be more problematic with respect to the computational facility criterion of Lau, because

hO has to be estimated by nonlinear least squares.

One can thus conclude that none of the above econometric model specifications are able to

satisfy all ofLau's criteria simultaneously. What has the literature then to say in general about
which requirements should be given most weight? Unfortunately, the answer is that none of

Lau's criteria for choosing a functional form can easily be ignored. According to Lau

"It is however not recommended that one compromises on local theoretical consistency
- any algebraic functional form must be capable of satisfying the theoretical consistency
restrictions at least in a neighbourhood of the values of the independent variables of interest. It
is also not recommended, except as a last resort, to give up computational facility, as the
burden of and probability of failure in the estimation of nonlinear-in-parameters models is at
least one order of magnitude higher than linear in parameters models and in many instances
the statistical theory is less well developed. It is also not advisable to sacrifice flexibility -
inflexibility restricts the sensitivity of the parameter estimates to the data and limits a priori
what the data are allowed to tell the econometrician. Unless there is strong a priori information
on the true functional form, flexibility should be maintained as much as possible. This leaves
the domain of applicability as the only area where compromises may be made." (Lau, 1986, p.
1558)

Given the problem of a priori determining a superior econometric specification - the Just-Pope

form and the Kumbhakar form have different advantages and drawbacks - we choose to
estimate several specifications of the stochastic production function. The elasticity of scale,

elasticities of substitution, marginal input risks etc. of the estimated models will be evaluated
at the mean observation and its neighbourhood in order to determine if the estimated

production function is well-behaved. Hopefully, this will also give some information about the
sensitivity of the predictions of different functional forms with respect to the characteristics of
the production technology.

It should be noted that the neoclassical production function is a frontier function; it gives the

maximum possible output that can be produced from a given vector of inputs. The production

functions we estimate, however, are average functions; they give the mean output for a given

set of inputs rather than the maximum output. Empirical measurement of production frontiers
is outside the scope ofthis analysis.

9.2. Just-Pope Production Function Specifications

The general Just-Pope production function is given by
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where Eit is an observation-specific i.i.d. random variable representing the exogenous

production shock, lli is a firm-specific effect, and zit is identical to, a subset of, or functions of
the kx1 input vector xit. In (9.1)-(9.2) the Just-Pope model is specified as an error component
model, i.e., with random firm-specific .effects, The composite variance function for this error
components model is given by

where 0'; and O'~ are the observation- and firm-specific variances, respectively. If the firm-

specific effects are instead assumed to be fixed, lli is dropped from (9.2) and included in (9.1)

to be estimated together with the parameters oflO.

An important issue is the specification of technical change. In order to be able to test for
technical change a deterministic trend-variable t or time-dummies DI have to be implemented
in./{·). In the case of a trend-variable, a quadratic term t2 should also be included in order to
test for increasing or decreasing rate of technical change over time. One question is whether

the technical change is embodied in new inputs. The only new inputs introduced during the

data period were certain vaccines and medicines, which data are not available for. However,

technical change was not independent of inputs. Improvements in the quality of existing
inputs, such as the fish feed and the genetic quality of the salmon, is believed to have been

important sources of productivity increase in the data period. Improvements in the quality of
inputs, or factor-augmenting technical change, should thus be accounted for in the model
specification' If the trend-variable is allowed to interact multiplicatively with input levels in
the econometric model, it is possible to test whether technical change is factor-augmenting or

not.

Use of a trend-variable in the production function implies that technical change is assumed to

be a continuous monotonic process. Time-dummies, on the other hand, allow the technical
change to be discontinuous and non-monotonic. Biophysical productivity shocks of temporary

nature, such as year-to-year changes in sea temperature, can thus be captured in the model.
Since there is no information available in the data set that allows us to separately identify the
effects oftechnical change and time-specific random biophysical shocks on productivity, time-
dummies may be considered to be a more satisfactory approach. This will be analysed in the

following.

A note on terminology is also required. The term 'productivity change' will be used

analogously to 'technical change' in the following. Since our estimates of technical change

will be influenced by biophysical shocks, which we cannot control for due to lack of data, it

8 See for example Chambers (1988, pp. 210-213) for a discussion of concepts such as embodied technical
change and factor-augmenting technical change.
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may probably be more appropriate to talk about productivity change. However, the two terms

will be used interchangeably in the following.

The inputs that will be included in the model are feed (xp), labour (XL)' capital (xK)' the stock

of fish in the pens in the beginning of the year (XI)' and materials (xM)' Output y is defined as
the sales of fish during the year plus the stock of fish in the pens at the end of the year. Unlike
the output measure used in previous econometric studies of the industry, e.g. Salvanes (1989;
1993), this measure ensures that the observed values are always non-negative, cf. the
discussion in Chapter eight.

A linear quadratic functional form was chosen for the mean function. The linear quadratic
allows common elasticity measures, such as returns to scale, to vary in input levels. A problem

with the linear quadratic specification is that it does not allow testing of constant returns to

scale (Driscoll, McGuirk, & Alwang, 1992). The trans log and Leontief production function, on
the other hand, allow testing of constant returns to scale. In the previous section we argued
why the translog cannot be used in the context of a Just-Pope production function.9 The use of
a linear quadratic form can be defended on empirical grounds; previous econometric studies of
the salmon industry strongly suggest nonconstant returns to scale (Salvanes, 1989; Salvanes &

Tveterås, 1992a; Tveterås, 1993), which implies that homogeneity flexibility is not an
important issue for this particular application.

Two linear quadratic specifications, denoted model JP1 and model JP2, are presented for the

mean production functionj{x; a.). The first specification, Model JP1, is given by:

y = j(x;t,a.) + v

(9.4) =0.0 + Ia.kXk +0.5IIa.jkxjXk +a./t+0.5a.l/t2 + Ia.klXkt+V
k=F,/,K,L,M j k k=F,/,K,L,M

For notational convenience observation subscripts it have been dropped from the above
specification.

The second specification, model JP2, is given by

9 The Leontief production function was dropped for practical reasons; the right-hand side variables exhibited

more multicollinearity and the estimated parameters in the Leontief formulation were consequently to a much

greater extent insignificant than in the linear quadratic model.
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y = f( x;DS5, ... ,D92 , a) + v

=0.0 + LakXk +O,SLLajkxjxk
(9.5) k=F,l,K,L,M .i k

+L~:S5a,D, + L~:S5aFtD,x F + L~:85a I,D,x l + L~:85a K,D,x K

+L~:85a L,D,x L + L~:85a MtD,xM + v

where the subscripts of the time-dummies D, refers to years, with 1993 as base year. In both
the above models the input subscripts}, k =F, l, K, L, M.

The difference between model JP1 and lP2 lies in the specification oftechnical change; in JP1
a trend-variable t is used to capture the effect of technical change, while in JP2 time-dummies
are used instead.

For the linear quadratic specification with time trend (model JP1) the elasticity of scale, or
returns to scale (RTS), is given by

(9.6)

where ek(x) is the elasticity of output with respect to input k. If the estimate of RTS(x) is
greater than, equal to, or less than unity, the returns to scale are increasing, constant, or
decreasing, respectively.

For the time dummy model JP2, RTS in year t is given by

where the term a k/ in model JP1 is replaced by the term akt in model JP2.

For the time trend model (JP1) the elasticity oftechnical change (TC) is given by

(9.8) J!( ) alnf(x,t;a) 1 ( ~)TC x,t;a = = at +attt+ LJaktxk .
at j(x,t;a) k=!

Technical change can be decomposed into two components; pure technical change and non-
neutral technical change. These are given by

(9,9) TCPURJ!(x,t;a)= 1 (at +at/),f(x,t;a)

and
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(9.10) TCNONJ1(x;t,a)= 1 (±aktXk),j(x,t;a) k=1

respectively. Note that, unlike the popular translog parametrization, pure technical change
(TCPUR) in the linear quadratic model is not monotonous, as it also depends on the factor

1ij(x).

Elasticities of technical change cannot be derived in the same manner from the model with

fixed time-specific effects, JP2, since technical change is formulated as discrete shifts. For a
given vector of inputs x the absolute difference in productivity between two time periods t and
s (t>s) can be expressed as

Hence, the rate oftechnical change from period s to period t is given by

TC:';(x;a)= {r(x;aIDt =l,Du =O,u*t)- j~;aIDs =l,Du =O,u*s)}

(9.11) /j(x;aIDs = 1,Du =O,u * s)

= ta t + Lf=la ktXk)- (a s + Lf=la ksXk)}/ j(x;aIDs = l,Du = O,u * s)

Pure technical change and non-neutral technical change are given by

(9.12) TCPUR:; (x;a)= {at -a s}/ !~;aIDs = l,Du = O,u * s),

and

(9.13) TCNON2(x;a)= {Lf=laktXk -Lf=laksxk}/ !(x;ajDs =l,Du =O,u*s),

respectively.

We now tum to the specification and estimation of the vanance function. Harvey's

specification of the variance function will be used for the above Just-Pope specifications. A
nice property of the variance function h(z) = exp[zp] in Harvey's formulation is that positive

output variances are always ensured. This is not necessarily the case for other parametrizations
of the variance function. The function vit is defined as

with variance

170



The first element in zi will be taken as unity (zi1=l). The other z's could be identical to, a

subset of, or functions of, the x's in the mean function.lo

The subscript c of the variance O" ~ of the firm-specific effect indicates that the variance of lli

may be a function of firm characteristics c such as year of entry, type of fish reared, location
and licensed pen volume. Both RE models with homoskedastic firm-specific effects (i.e.,

O" ~ = O" ~ for all i) and RE models with heteroskedastic firm-specific effects will be estimated.

If the firm-specific effects are assumed fixed, then the last term is dropped from the above

variance function and lli (i = 1, ... ,N) is instead estimated together with the parameters of the

mean functions JPl and JP2.

For the variance function u = h(x) two parametric specifications were chosen. Model VI IS

specified as

(9.16) In(u2)= P o + P FX F + P KX K + P LX L + P MX M + P sX s + A(t) ,

while Model V2 is given by

(9.17) In(u2)= P o + P F In x F + P K In x K + P L In x L + P M In x M + P s In x s + A(t) .

See appendix 9.F for a discussion of some of the properties of these two variance function
specifications.

Two parametrizations of the technical change function A(t) will be tried, depending on
whether VI and V2 are estimated with JPl or JP2; a time-trend variable specification and a
time-dummy variable specification. These are given by

(9.18) A(t) = P ,t + O.Sp IIt2,

and

",92
(9.19) A(t)= L..1:8sPID"

respectively. Since there are two vanance function parametrizations with two possible
specifications oftechnical change, there are four different Just-Pope models to be estimated, as
illustrated in figure 9.1.

10 GLS estimation ofmodels with this particular form ofmultiplicative heteroskedasticity is discussed in Harvey
(1976) and Judge et al. (1988, pp. 365-9). Testing of models with this particular form of multiplicative
heteroskedasticity is discussed in Godfrey (1978). See also Judge et al. (pp. 370-1).
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Mean JPl JP2
functions eqn. (9.4) eqn. (9.5)

/~ I~
Variance VI (9.16) V2 (9.17) VI (9.16) V2 (9.17)
functions w/time trend w/time trend w/time dummy w/time dummy

(9.18) (9.18) (9.19) (9.19)

Figure 9.1. The Four Just-Pope Models

In the following we present some elasticity measures for the variance function hO which are

analogous to the RTS and Te elasticities for the mean functionji-). The total output variance
elasticity (TV£) in inputs is defined as

ah x
(9.20) TVE(x;P)=" VEk(x)=" __ k ,

L.Jk L.Jk ax k h(x)

where VEK is the output variance elasticity with respect to input k. For the parametric
specifications VI and V2 the total output variance elasticities are given by

and

respectively. From the TVE expression for variance function V2 we see that the output
variance elasticity with respect to input k is equal to the associated coefficient Pk. If input
levels are normalised by their sample means this will also be the case for variance function VI

for the mean firm (i.e., Xk = 1, Vk).

The elasticity of technical change for the variance function (TeV) with time trend variable is

given by

(9.23) TeV(x,t;a)= alnh(x,t;a) = Pt + Pilt
at

for both specification VI and V2.

If time-specific effects are used instead of the time trend variable, the rate of technical change

from period s to period t for the variance functions VI and V2 are
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and

(9.25) TCV2 (x;l3) = {exp(13t)- exp(13s)}/ exp~ o + Lk 13k lnxk,s + 13s)

respectively.

9.3. Kumbhakar Production Function Specifications
In this dissertation the main purpose of estimating Kumbhakar specifications, where fix) has

the well-known translog parametrization, is to use these as means to assess the reliability of
estimated elasticities (e.g. returns to scale and technical change) from the linear quadratic
parametrization of the Just-Pope model, and to compare marginal risks. Also, as noted earlier,
the translog parametrization of the Khumbakar form has a more satisfactory implementation of
firm-specific effects, and unlike the linear quadratic is homogeneity flexible (Driscoll et al.,
1992). The linear quadratic parametrization has only been used to a limited extent In

empirical productivity studies, while the translog parametrization of the Khumbakar model is
abundant in empirical studies. If the two parametrizations of j{x) provide similar elasticities,
our confidence in the linear quadratic form will increase.

We will also compare the estimated marginal risks from the Just-Pope and Khumbakar
production functions, although one should have in mind that the Khumbakar formulation may
violate Just-Pope postulates.

The general specification of the Kumbhakar model is given by

(926) y. = I(x. 'u)eUit = I(x. 'u)eh(xil;I})&it
• It Il' It' ,

which implies that var(uit) = [h(xit; u)]2var(Eit).

Assuming E - N(O,cr E)' the mean and variance of output is

(9.27) E[y]= I(X)eh2
(.)crc/2 ,

and

(9.28) var(y)= 12(x)eh2
(.)crc ~h2(.)crcl2 -1]

respectively. We see that E[y]~ I(x) because eh2(.)crcl2 zt. We see by the above expression

that for the Kumbhakar form it is not appropriate to use the terminology 'mean function' and
'variance function' forj{·) and hO respectively.

Marginal risk is given by
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where

and hj{x) is the partial derivative of hO with respect to input i. An alternative specification of

marginal risk is given by:

a var(y) / aX
i
= 2f(·)ecr:h2(0)12(8fjax;)rcr:h20 -1]
+2f(·)ecr:h2(0)12 f(-)cr ~h(.)cr~(ahjax

i
)fecr;h2(O) -1]

Random firm-specific effects are implemented by reformulating the model as

(9.30)

Like in Kumbhakar, a translog function is used for ln./{x;a). This means that the production
function with time trend, which we call Kumbhakar modell (Kl), can be log-linearized as:

(9.32)

InYit = lnf(xil;t,a) + Vil

=0.0 + Lak lnxkil +alt+!(LLaij In X kilInX}il+attt2J.
k 2 k }

+La tk lnxkilt + Vit
k

The production function with fixed time-specific effects, hereafter called Kumbhakar model 2
(K2), is specified as

(9.33)
lnYit = Inf(xit;D85,···,D92,a) +Vit

=0.0 + Lak lnxkit +.!..LLaij lnxkit lnx}it +atDt + Lakt InxkitDt +vit '
k 2 k .i k

with the same variance function specification as Kl.

To compare the empirical results from the linear quadratic and translog specifications of./{x),
it is necessary to use dimensionless measures, i.e., elasticities. However, as can be seen from

the expression for mean output in (9.27), introduction of input heteroskedasticity leads to

much more complicated expressions for returns to scale (RTS) and technical change (TC).

These elasticity estimates may also be sensitive to the nonlinear estimates of the parameters of
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h(} We choose to compare elasticities from the OLS estimates of the translog and linear

quadratic, which implies the restriction hO = 1 for the Kumbhakar model.

For the restricted Kumbhakar modell returns to scale (RTS) is given by

(9.34) RTSK1(x,t;a)= Lkek(x;t,a)= Lk~k + Ljajk ln x, +atkt)

where ek (x) = alnfO / alnxk is the output elasticity with respect to input k.

For model the restricted K2 RTS in year t is given by

(9.35) RTS" (x,D", ...,D,,;a.) = I, (a., +O.SIa.j' Inxj + a..,J
.I

For the restricted time trend model Kl the elasticity oftechnical change (TC) is given by

alnf(x,t;a) K
(9.36) TC(x;t,a)= =at +artt+ Lakt ln xj ,

at k=1

while pure technical change and non-neutral technical change are given by

(9.37) TCPUR(x;t,a)=at +al/t,

and

K

(9.38) TCNON(x;t,a)= Lakt lnxk,

k=1

respectively.

For the restricted K2 model technical change is given by

(9.39) TC2(x;a)= {r(x;aIDt =l,Du =O,u:;ct)- f(x;afDs =l,Du =o,u:;cs)}.

=(at + L:=la/ctxk)-(aS + L:=laksxk)

Pure technical change and non-neutral technical change are given by

(9.40) TCPUR:;(x;a)=at -as'

and

(9.41) TCNON:;(x;a)= L:=laktXk - L:=laksxk'

Next, we tum our attention to the random part of the production function. Following
Kumbhakar (1993), the composite error term Vit is specified with a linear function for hex; ~):
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For the random effects specification the variance of vit is given by

If a fixed effects specification is used instead, o~ is dropped from the above expression, and

the parameters lli, i = 1, ... , N, is instead estimated together with the parameters of the mean

functions Kl and K2.

Derivation of analogue output variance elasticities with respect to inputs and time, as proposed
in section 9.2, leads to much more complicated expressions for the Kumbhakar form than was

the case for the Just-Pope form. Here we will limit ourselves to estimate the total output
variance elasticity (TVE), by exploiting that TVE is given by

where var(y) is given by (9.28) and evar(y)/8xk is given by (9.29).

9.4. The Estimating Sample and Estimation Procedures
The original sample contained 560 farms observed from one to nine years, and 2280
observations. As discussed in Chapter 8, problematic observations were first dropped from the
sample.11 This reduced the sample to 2238 observations and 555 firms. Due to the estimation
of fixed effects models farms that were observed for less than three years were also omitted,
which further reduced the estimating sample to 372 farms and 1953 observations. Henceforth,
the latter sample (n=1953) is called sample 1and the former (n=2238) sample 2. Most of the

time we will use sample 1, while sample 2 will be utilised in conjunction with a random
effects estimator which allows the inclusion of firms which are observed only one period. The
panel data structure of the two samples are shown in table 9.Dl in appendix 9.D.

Appendix 9.D presents summary statistics for the estimating samples, both overall statistics
(table 9.Dl and 9.D2 for sample 1, and table 9.D8-9.D9 for sample 2) and sample means by
farm characteristics (tables 9.D4-9.D7 for sample 1, and tables 9.D10-9.Dll for sample 2).

II Observations with input levels equal to zero were dropped from the sample. Observations with input level

equal to zero is particularly problematic in the context of trans log production function estimation, because the

logarithm of zero is undefmed.
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According to tables 9.D4 the period 1985-93 was characterised by a large growth in output at

the farm level. For the mean farm the production of salmon was three times higher in 1993
than in 1985. The output growth was accompanied by a similar increase in feed input and fish
input. Other inputs experienced smaller growth rates, particularly labour input, which only
increased by 25 %.

Prior to estimation, input levels are normalised to their sample means. This procedure

simplifies analysis of estimated elasticities, particularly for the variance function.

According to table 9.D5 there is some differences in mean output across regions. The farms
located in Hordaland had the highest mean output, 20 % above the national average output,

while Nord-Trøndelag had the smallest mean output, 21 % below the national average. Mean

output was above the national average for the four southernmost regions, while for the four
northernmost regions mean production was below the national average.

The Just-Pope models will be estimated with fixed firm-specific effects by feasible generalised

least squares (FGLS) and maximum likelihood (ML) methods. Random effects specifications
of the Just-Pope models will also be estimated by FGLS. The Kumbhakar model will be

estimated with fixed firm-specific effects by FGLS. Chapter three outlined FGLS and ML
estimation procedures for Just-Pope models which also apply when fixed effects are

introduced, since these can be implemented as dummy variables. Appendix 9.E presents
estimators for random effects specifications of Just-Pope models. The FGLS estimation
procedure for the Kumbhakar model with fixed effects is also presented in this appendix.

9.5. E~pirical Testing for Heteroskedasticity

Prior to estimating Just-Pope models for the salmon industry, we test for the presence of
significant marginal output risk in input levels. This is a test of hypothesis H2. In the context

of a regression model, H2 states that the variance of the error term is a function of four of the
inputs included in the mean production function. Before one proceeds to implement variance
functions in the estimating models, it is wise to test that heteroskedasticity is actually present
in the data. Several tests for heteroskedasticity, which vary both in generality and power, have
been proposed in the literature.

Table 9.1. Goldfeld-Quandt test statistics

Central obs. omitted'' Materials Feed Capital Labour Fish

One 11.202

1/6 12.626

24.620

30.712

0.861

0.861

17.279

20.250

21.846

25.006

a The two subsamples which separate regressions were estimated for each have 976 and 814 observations
respectively in the two tests.
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First, Goldfeld-Quandt (G-Q) tests are undertaken for all five inputs (Goldfeld & Quandt,
1965).12 The JP2 mean function was estimated under the assumption of firm homogeneity.

The Goldfeld-Quandt test involves sorting of data by right-hand variables, splitting the

observations in two subsamples, and estimating separate regressions for each subsample. The
G-Q test was not undertaken with firm-specific effects included since one risks being left with
only one observation of some firms. Two tests were run for each input; in the first test only the
central observation was omitted, and in the second test the 1/6 central observations were
omitted. Table 9.1 presents the test statistics, which are F distributed with ((nrr-K2)/2, (n1-r-
K1)/2) degrees of freedom, where r is the number of central observations skipped. For all

inputs, except capital, the G-Q test rejects the null hypothesis of homoskedasticity with wide
margins at conventional significance levels. For capital the homoskedasticity hypothesis is

maintained.

Harvey- tests (Harvey, 1976) were also undertaken for model JP2 both with and without firm-

specific fixed effects for variance functions VI and V2. This test is based on the FGLS

estimator. The null hypothesis of the Harvey test is that all coefficients of the multiplicative
variance function except the intercept Po, is zero. The Harvey test statistic is RSS/4.9348,
where RSS is the residual sum of squares of the estimated variance function, is asymptotically
distributed as a chi-square with degrees offreedom equal to the number ofregressors. For the

JP2 model without firm-specific effects the Harvey test statistics were 317.645 and 329.828

for variance functions VI and V2, respectively. This is much higher than the critical chi-
squared value of 27.688 (13 di) at the 1 % level. When fixed firm-specific effects were
introduced into JP2, the estimated Harvey test statistics decreased to 165.249 and 169.466 for
VI and V2, which still is well above the critical value.

Other conventional tests ofheteroskedasticity that were undertaken, but not reported here, also
clearly rejected homoskedasticity.l'' All in all, the tests provide evidence of output
heteroskedasticity in input levels, and accordingly indicate that output risk is present in salmon

farming.

12In the Goldfeld-Quandt test the observations are ranked by the independent variable which the variance is

assumed to be a function of. The sample is then divided into two groups with nI and n2 observations, and the
model is estimated separately for these two sets of observations. The test statistic is

F = s~1s;,
where s2 is the OLS estimator of the regression variance (12.

13 Other tests included White's general test (White, 1980), the Breusch-Pagan test (Breusch & Pagan, 1979), and
Glejser's tests (Glejser, 1969).
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9.6. Comparison of Estimates from Linear Quadratic and Translog
Earlier in this dissertation it has been argued that the linear quadratic has been far less used in
estimation of production functions than the translog, for which there exists a large body of
empirical applications in the literature. Furthermore, the specification of the firm-specific
effects differs between the two functional forms; for the linear quadratic the firm-specific
intercepts are added toj{x), while for the translog the intercepts are multiplied withj{x).

In the following we compare estimated elasticities from linear quadratic and translog
parametrizations ofj{x). We use the JP2 form for the linear quadratic and K2 for the translog,
and estimate by OLS. We are interested in elasticity measures derived from the OLS estimates
of the parameters, which still are unbiased and consistent under heteroskedasticity. A
comparison on the basis of OLS estimates is therefore appropriate, even though this
dissertation postulates that input heteroskedasticity is present in salmon farming.

Table 9.2. Estimates of Mean Returns to Scale and Elasticity of Technical Change (RTSITC)
for Linear Quadratic (JP2) and Translog (K2) Mean Production Functions

Model Pooled Models Firm-Specific FE

JP2 0.953 / 0.033 0.896 / 0.044

K2 0.927 / 0.028 0.850/ 0.039

We estimated both pooled models and models with firm-specific fixed effects and pooled
models. Parameter estimates are presented in table 9.Al for the JP2 pooled model and 9.A3
for the K2 pooled model. For the pooled models we find that sample mean returns to scale
(RTS) are 0.953 for IP2 and 0.927 for K2. According to table 9.2 the sample mean elasticity of
technical change (TC) is 0.033 and 0.028 for JP2 and K2 (see also tables 9.Bl and 9.B3),
respectively. The introduction of firm-specific fixed effects into the models result in an
decrease in mean returns to scale for both IP2 and K2 to 0.896 and 0.850, respectively (see
tables 9.B2 and 9.B4), and an increase in the mean elasticity of technical change for both
models (0.044 and 0.039, respectively).

The introduction of firm-specific fixed effects instead of a common intercept was tested using
likelihood ratio tests and F-tests for both models. The null hypothesis is that all firm-specific
effects are equal to the common intercept, i.e., Ho: al = a2 = ...aN = ao. For the IP2 model the
likelihood ratio test statistic is 541.4, while the statistic is 581.5 for the K2 model, which are
clearly above the critical chi-square value for both models. F-tests also supported the fixed
effects specification at all conventional confidence levels, with F-test statistics of 1.306 and
1.413 for JP2 and K2, respectively.
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Analysis of the estimated sample mean elasticities from JP2 and K2 with firm-specific fixed
effects reveals that the two models provide very similar values for the input elasticities eÆ(x).
Feed is the most important input in terms of its output elasticity, with sample mean values of

0.487 and 0.483 for JP2 and K2, respectively, while the stock of fish in the beginning of the
year is the second most important input, with sample mean input elasticity values of 0.276 for

JP2 and 0.254 for K2, respectively. Materials, labour and capital have much smaller input

elasticities in both models.

Although sample mean returns to scale are similar for the two parametrizations, we find some
differences when we analyse by year and by regions. Figure 9.C2 shows the development in

RTS over the data period. We see that for the two first years, 1985-86, the estimates of RTS are
somewhat higher for the two JP2 models than for the two K2 models. However, in subsequent

years the difference seems to be more between the pooled models and the fixed effects models.

The pooled JP2 and K2 models provide somewhat higher estimates of RTS than the fixed

effects models.

Next, we analyse RTS by region for the fixed effects specifications of JP2 and K2 (the pooled
models provided similar patterns). As shown in figure 9.C4, the two specifications provide

very different rankings of regions by RTS. The JP2 model tends to give the four northernmost
regions a higher than average RTS, while the K2 tends to give the four southernmost regions a
higher than average RTS.

Models JP2 and K2 provide only modest differences in mean year-to-year technical change.
Furthermore, the estimated patterns of technical change over the data period are very similar

according to figure 9.Cl. The homogeneity assumption, i.e., the inclusion of firm-specific
fixed effects, seems to be more important for the mean TC estimates over time than the
functional form choice. The ranking of TC by region is also similar, as suggested by figure

9.C3.

Since the linear quadratic and trans log are not nested models, we cannot test for structural
differences between the two functional forms. One means of assessing to what extent they

provide similar estimates of elasticities is to calculate correlation coefficients based on

estimates at the observation level. For example, we can calculate the coefficient of correlation
between the RTS estimates from JP2 and the RTS estimates from K2. Ifthe RTS estimates are
highly correlated, then the correlation coefficient is close to 1.14

14 The coefficient of correlation between returns to scale estimates from JP2 and K2 is defined as

cov(RTSJP2,RTSK2)
P = -r==~=::==='==='=;;::=

~var( RTSJP2) var( RTSK2)
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Table 9.B31 (a)-(c) presents correlation coefficients for the models estimated in this section
(see App. 9.B). According to the table functional form is more important for the coefficient of
correlation than the homogeneity assumption. We see that the elasticity estimates derived from
the two JP2 models, the pooled model and the model with firm-specific fixed effects, are
highly correlated; all correlation coefficients are above 0.80. The correlation coefficients for
RTS and TC are 0.97 and 0.90, respectively. To some extent the same applies to the two K2
models, where the correlation coefficients are 0.78 and 0.91 for RTS and TC, respectively.
However, when we compare between functional forms, we find that the correlations are
significantly weaker. This is particularly pronounced for returns to scale (RTS), with
correlation coefficients of 0.24 and 0.31 for the pooled models and the fixed effects models,
respectively. The correlation is considerably higher for the rate of technical change (TC), with
calculated values ofO.71 for the pooled models and 0.67 for the fixed effects models.

Overall, we find that the linear quadratic and translog parametrizations estimated here provide
pretty similar overall sample mean elasticities and sample means by year, both for the pooled
models and for the models with firm-specific fixed effects, but that RTS differ somewhat when
broken down by region. At the observation level the differences between the elasticity
estimates derived from the linear quadratic and the translog specifications are much larger, as
measured by the coefficient of correlation.

According to the estimated models, the homogeneity assumption also has an effect on
elasticity estimates. In fact, the homogeneity assumption seems to be more important for the
overall sample mean elasticity estimates than the choice of functional form. The pooled
models predict higher returns to scale and a lower rate of technical change than the fixed
effects models. Tests of the homogeneity assumption suggest that firm-specific effects should
be included in the models.

9.7. Comparison of Estimates from Time Trend and Time Dummy
Specification of Just-Pope Model

Previously, we have argued that the standard time trend variable model may not be the most
appropriate specification of technical change for the salmon farming industry, due to
biophysical productivity shocks which we have no data for, and because it is problematic to
envision technical change as a smooth process. In the following we compare the elasticity
estimates from the time trend model JPl with the more flexible time dummy model JP2. For
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mean production function elasticities comparisons are made for OLS estimates and FGLS
estimates based on both variance functions VI and V2.IS

A comparison of overall sample mean elasticities, cf. table 9.3 below, reveals that estimates of
returns to scale and elasticities oftechnical change based on the time trend model JP1 are very

similar over estimators. This is also the case for the time dummy model JP2. The two model
specifications provide roughly similar Te estimates for the mean firm, but the time dummy
model JP2 provides a somewhat higher estimate of RTS than the time trend model JP1 for all

estimators.16

Table 9.3. Estimates of Mean Returns to Scale and Elasticity of Technical Change (RTS/TC)
for Different Time Specifications and Estimators

Model OLS FGLS with VI FGLS with V2

JP1 0.841 /0.038 0.841 /0.037 0.840/0.037

JP2 0.896 / 0.044 0.896 / 0.041 0.904/0.041

However, an examination of the patterns of estimated TC and RTS over time show substantial
differences between the JP1 and the JP2 model. Figure 9.C5 suggests that TC exhibit a

cyclical pattern in all estimated models, but that the peaks and throughs do not appear in the
same year for the Jp I and JP2 models. The cyclical pattern is also much more pronounced in

the estimated JP2 models. According to the estimated time dummy models productivity

growth was zero or negative from 1985 to 1986. From 1986 to 1988 productivity growth was
high, followed by four years of much lower rates of productivity growth. The productivity
growth rate increased again from 1992 to 1993.

IS Within-transformed variables were used instead of firm dummies (LSDV) in the FGLS estimation procedure
for the fixed effects models. With a large number of firms the computational requirements are reduced
substantially when using the within estimator instead of the LSDV estimator. Within and LSDV estimates are
identical when estimated by OLS in the first step, but may diverge in the third step because the firm-specific
fixed effects are not weighted. However, the differences in mean function elasticities derived from third stage
within estimates and those derived from LSDVestimates were in practice found to be negligible, with
differences in sample mean RTS and Te of less than I %.

16 It should be noted that the empirical models also were estimated with the age of the farms (i.e., years since
establishment) implemented as regressors, with the rationale that farm age may be a proxy for leaming-by-
doing. However, the coefficients of the first and second order age terms were both insignificant. Collinearity
with the time trend variable does not explain the insignificance of the age coefficients; the pair-wise
correlation coefficients were small, and the age coefficients remained insignificant when the regressors
involving time were dropped from the model specification. These empirical results suggest that time-specific
effects were more important than firm age effects for productivity changes.
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Figure 9.C6 depicts the estimated returns to scale from the estimated JPl and JP2 models over

time. For the JPl models RTS is pretty stable over the data period, fluctuating between 0.81
and 0.88. According to the JP2 models, on the other hand, RTS starts around 1.04-1.11 in 1985
and then drops rapidly, until it reaches. approximately the same levels as in the JPl models in
1987 and thereafter fluctuates between 0.78 and 0.92, depending on the year and estimator.

Examination of the sample mean output elasticities with respect to inputs leads to another
interesting finding. All the time trend JPl models (both estimated by OLS and FGLS) provide

negative mean output elasticities with respect to labour input, while none of the mean input

elasticities are negative for the time-dummy specifications (see tables 9.B5-9.B7 for the JPl

models, and tables 9.B2, 9.B8 and 9.B9 for the Jp models). Thus, the estimated time-dummy

models provide more sensible results in this respect than the time trend models.

Next, we examine marginal risks and the derived elasticities from the variance functions VI

and V2, the elasticity oftechnical change of the variance function (TeV) and the total variance
elasticity (TVE). The variance functions that are estimated together with the time trend model

JPl have first- and second-order time variables, while for the variance functions estimated

together with JP2 the time trend variables are replaced by time dummies, cf. section 9.2.

Table 9.4 presents the estimated input coefficients for all four estimated models that we
compare in this section. For model V2 these coefficents can also be interpreted as output
variance elasticities with respect to inputs. The same applies for VI if evaluated in mean input
levels, since input levels have been normalised prior to estimation. In all four models feed,

capital and fish are significantly risk increasing at conventional confidence levels. According
to the estimated variance function VI, both when estimated with JPl and JP2, materials input

have no significant risk effects. However, in both estimated V2 models, materials are

significantly risk increasing at the 5 % level. Labour is risk decreasing in all four models, but

the labour input coefficient is only significantly negative when VI and V2 are estimated
together with JP2. Hence, the time trend model rejects while the time dummy model supports
the hypothesis of decreasing marginal output risk for labour.

Table 9.4. FGLS estimates of Input Parameters of Variance Functions V1 and V2

Materials Feed Capital Labour Fish

VI and JPl -0.027 0.580e 0.096a -0.030 0.263 e

V2 andJPl 0.153 b 0.537e 0.230e -0.104 0.162b

VI and JP2 -0.061 0.531 e 0.112 a -0.189a 0.273 e

V2 and JP2 0.145b 0.470e 0.159 b -0.204 a 0.144b

a Significant at 10 % level (one-tailed test), b significant at 5 % level, e significant at 1 % level.
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Figure 9.C7 plots the elasticities of technical change derived from the variance functions. We
see that the TCVs from the variance functions with time trend variables are very stable over
time, as implied by the restrictions imposed by the time trend specification. According to the
estimated time trend specification of VI, the output variance increased over the data period,
while the time trend specification of V2 predicts a decrease in the output variance. On the
other hand, the TCVs derived from the time dummy specifications exhibit large year-to-year
fluctuations. There are four years of increasing output risk and four years of decreasing output
risk, according to the time dummy specifications. If there were substantial year-to-year
changes in the biophysical conditions during the data period, this may be reflected in both
negative and positive TCVs.

For variance function V2 the total variance elasticity is restricted to be constant both for the
time trend and time dummy specification. According to figure 9.C8, TVE is 0.979 for V2 with
time trend and 0.713 for V2 with time dummies. For variance function VI TVE increases
during the data period, which can be attributed to the fact that the marginal input risks are
positive for all inputs except labour, and that the level of input use increases during the data
period.

An overall assessment of the empirical results from the time trend models and the time
dummy models leads to the conclusion that the more flexible time dummy representation of
technical change is more appropriate for this empirical application. The time dummy model
strongly supports year-to-year fluctuations in technical change both for the mean function and
for the variance function. The time trend and time dummy model also provide different results
on the marginal risk properties of inputs, particularly for labour.

9.8. FGLS vs. ML Estimation of Just-Pope Models
In this section we compare the three stage FGLS estimates with the iterative ML estimates.
Previously, we have discussed the performance of FGLS vs. ML in the context of Just-Pope
models. ML estimates of the variance function parameters are asymptotically more efficient
than the FGLS estimates. Saha et al. (1997) showed that the FGLS and ML first order
conditions with respect to the parameters of the variance function can never be identical (see
section 3.7), and that iteration of the FGLS steps will not lead to ML estimates. Saha et al. also
found the ML estimator to be superior in Monte Carlo simulations with Cobb-Douglas
parametrization and no firm-specific effects. However, the simulation study in this
dissertation, which assumes a data generating process which is more similar to the empirical
models estimated here, does not provide the same support for the ML estimator relative to the
FGLS estimator, although it suggests that the ML estimator is the preferred estimator for the
variance function parameters (see Ch. 5).
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The basis for the comparison is the time dummy Just-Pope model JP2. Tables 9.A8 and 9.A9
present FGLS parameter estimates for JP2 with VI and V2, respectively. The ML estimates
are presented in tables 9.A10 and 9.A1l. First, we study the estimated mean production
functions. We find that there are no dramatic differences between the FGLS and ML first-
order input coefficients. Furthermore, when we examine the overall sample mean output
elasticities with respect to inputs, we also find very similar values (see tables 9.B8 and 9.B9
for FGLS estimates and tables 9.B10 and 9.Bl1 for ML estimates). This leads to very similar
estimates of returns to scale, as seen from table 9.5 below. According to the same table the
overall mean technical change estimates are identical for variance function VI, and only
slightly different with V2.

Table 9.5. FGLS and ML Estimates of Mean Returns to Scale and Elasticity of Technical
Change (RTS/Te) for Just-Pope Model with Firm-Specific Fixed Effects

Model FGLS ML

JP2 and VI 0.896/0.041 0.899/0.041

JP2 and V2 0.904/0.041 0.916/0.039

If we break down RTS and TC by year we come to similar conclusions as for the overall means
(see figures 9.C9 and 9.C10). In most years mean RTS and TC are roughly identical for the
two estimators.

Table 9.6. FGLS and ML Estimates of Input Parameters of Variance Functions V1 and V2

Coeff. FGLS ML

VI and JP2 V2 andJP2 VI andJP2 V2 andJP2

-0.061 0.145 b 0.126c 0.358 c

0.531 c 0.470 c 0.532 c 0.376 c

0.112 a 0.159b 0.159c 0.154 c

-0.189a -0.204a -0.122 a -0.028
0.273 c 0.144b 0.350c 0.163c

Materials
Feed
Capital
Labour
Fish
a Significant at 10% level (one-tailed test), b significant at 5% level, c significant at 1% level.

We find larger differences when we compare the FGLS and ML estimates of variance function
parameters and derived elasticities. The input coefficients have the same signs, except for
materials in VI, which is negative according to the FGLS estimator and positive according to
the ML estimator. Except for labour input in V2, the absolute values of the t-ratios are
generally higher for the variance functions estimated by ML, which is largely due to the fact
that their asymptotic standard errors are equal to the FGLS standard errors multiplied by the
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factor (2/4.9348)°.5.17 Based on the estimated t-ratios one will therefore tend to draw

inferences with more confidence from the ML estimates than from the FGLS estimates.

Figure 9.CII plots the elasticities of technical change for the FGLS and ML estimates of the
variance functions (TCV). One can clearly see that for both VI and V2, the ML estimator

predicts much smaller fluctuations in TCV than the FGLS estimator. The pattern of TCV over
time is largely the same for the two estimators. According to figure 9.CI2, the total variance
elasticity (TVE) based on ML estimates is higher than the TVE based on FGLS. For variance
function VI TVE follows the same pattern for the two estimators, but the ML estimate is at

least 0.2 higher in each year. For V2 the FGLS estimate of TVE is 0.713 in each year, while
the ML estimate is 1.022.

An overall assessment of the findings in this section leads to the conclusion that the ML and

FGLS estimators provide more similar estimates for the mean production function than for the

variance function. However, according to the estimated parameters of the variance function the
ML estimator seldom provides results that are significantly different from those of the FGLS

estimator.

9.9. Effects of Assuming Firm Homogeneity for FGLS and ML
Estimates

In section 9.6 we compared estimates from pooled models, i.e., models assummg

homogeneous firms, versus models with firm-specific effects in the context of the OLS
estimator. Both for the linear quadratic and the translog functional form we found that the
homogeneity assumption had significant consequences for the estimated mean function
elasticities (RTS and TC). Likelihood ratio and F-tests based on the (consistent) OLS estimates

supported the presence of firm-specific effects, both for the linear quadratic and the translog
parametrization of the mean function. In this section we extend the analysis to the FGLS and
ML estimators, and examine both the mean and variance functions, with an emphasis on the

effect on risk estimates of implementing firm-specific effects.

First, we examine the effects of going from a pooled model to a model with firm-specific

effects on the elasticities derived from the mean production function. Table 9.7 presents
estimates of means returns to scale (RTS) and elasticity of technical change (TC) from pooled

JP2 models and JP2 with firm-specific fixed effects. The introduction of firm-specific effects

leads to a 4-5 % reduction in mean returns to scale. We also see that there are pronounced
differences in technical change estimates between the pooled models and the fixed effects
models; for the four pooled models mean TC ranges between 2.6 % and 2.8 %, while mean TC

17 See section 3.7.
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ranges between 3.9 % and 4.1 % for the fixed effects models. These findings are similar to

those based on the OLS estimates of JP2 in a previous section.

Table 9.7. FGLS and ML Estimates of Mean Returns to Scale and Elasticity of Technical
Change (RTS/TC) for Just-Pope Models without and with Firm-Specific Effects

Model Pooled Fixed Effects

JP2 and V 1 by FGLS 0.951 / 0.027 0.896/0.041

JP2 and V2 by FGLS 0.953 / 0.027 0.904/0.041

JP2 and VI by ML 0.950 / 0.028 0.899/0.041

JP2 and V2 by ML 0.954/0.026 0.916/0.039

The finding that the assumption on the firm-specific effects is more important than the choice
of estimator for the mean production function elasticities is reinforced if we break down TC
and RTS by year. According to figure 9.C13 the FGLS and ML estimates of the fixed effects
specification of JP2 predicts the same pattern of technical change over time. The same holds

for the pooled specification. It is clear from the figure that the conclusions regarding the
development in productivity over the data period depend on whether firms are assumed
homogenous or not. Figure 9.C14 suggests that similar conclusions can be found for returns to

scale.

Next, we examine the effects of going from pooled models to models with firm-specific

effects for variance function elasticities. Overall sample mean variance function elasticities are
presented in table 9.8. For the FGLS estimator introduction offirm-specific effects leads to an

increase in the total variance elasticity (TVE). However, the effect on TVE is negligible for the

ML estimator; mean TVE increases slightly when JP2 is estimated with VI, but decreases
when JP2 is estimated with V2. When we examine mean technical change of the variance
function (TCV), we find that the effect of going from the pooled model to firm-specific effects
is pretty similar for the FGLS and ML estimators, as TCV falls from 18-21 % to 6-8%. Hence,
the pooled models predict much larger increase in output variance in salmon farming during
the data period than the pooled models.

Table 9.8. FGLS and ML Estimates of Total Variance Elasticity and Technical Change of
Variance Function (TVE/TCV) for Just-Pope Models without and with Firm-Specific
Effects

Model Pooled Fixed Effects

JP2 and VI by FGLS 0.884/0.212 0.666 / 0.082

JP2 and V2 by FGLS 0.930 / 0.179 0.713/0.066

JP2 and VI by ML 1.037/0.205 1.045 / 0.066

JP2 and V2 by ML 1.043/0.197 1.022 / 0.061
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A graphic analysis of the technical change of the variance function VI over time, as shown in
figure 9.CI5, suggests that both the choice of estimator and the homogeneity assumption is
important for the conclusions one draws regarding the development of TCV. According to
figure 9.C15 the pooled JP2 model estimated by FGLS provides the most erratic pattern for
TCV, while the fixed effects specification estimated by ML gives the smallest year-to-year
changes. For the total variance elasticity (TVE) associated with VI, figure 9.C16 suggests that
the homogeneity assumption is not so important if the model is estimated by ML, but more
important when estimated by FGLS.

Table 9.9 presents input coefficients of the estimated variance functions, which can be
interpreted as input elasticities for V2, and also for VI when evaluated at the normalised
sample mean input levels. Implementation of fixed effects has no effect on the signs of input
coefficents, regardless of variance function (VI or V2) or estimator (FGLS or ML). For both
the FGLS and ML estimator we see that the feed coefficient is relatively stable when going
from the pooled models to the fixed effects specifications. The most dramatic change is found
for the FGLS estimates of the labour coefficient, which is negative but not significantly
different from zero for the pooled models, but takes much larger negative values and becomes
significantly negative both for VI and V2 when firm-specific effects are implemented. The
ML parameter estimates are generally highly significant both with and without firm-specific
effects. For the FGLS estimator, on the other hand, there is a tendency that more coefficients
become significant at conventional levels when going from the pooled models to models with
firm-specific effects, particularly for VI.

Table 9.9. Estimates of Input Parameters of Variance Functions from Pooled JP2 Model and
JP2 with Firm-Specific Fixed Effects

Coeff. Pooled Model JP2 JP2 Model with Fixed Effects
FGLS ML FGLS ML

VI V2 VI V2 VI V2 VI V2
Materials -0.022 0.171 c 0.124 c 0.356c -0.061 0.145 b 0.126c 0.358 c

Feed 0.569c 0.468 c 0.509c 0.355 c 0.531 c 0.470c 0.532 c 0.376 c

Capital 0.073 0.137b 0.232 c 0.171 c 0.112 a 0.159 b 0.159c 0.154c

Labour -0.037 -0.093 -0.149c -0.034 -0.189 a -0.204a -0.122 a -0.028
Fish 0.300c 0.248 c 0.322 c 0.194 c 0.273 c 0.144b 0.350c 0.163c

a Significant at 10% level (one-tailed test), b significant at 5% level, c significant at 1% level.

An overall assessment suggests that for mean production function elasticity estimates, the
inclusion or exclusion of firm-specific fixed effects is more important for elasticity estimates
than the choice of estimator. For the variance function both the inclusion of fixed effects and
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the choice of estimator have significant influence on elasticity estimates. We also found that

for the FGLS estimator, our ability to make statements on marginal risks of inputs increases
when fixed effects are introduced, because variance function coefficients become more

significant.

9.10. Comparison of Estimates from Fixed Effects and Random
Effects Specifications

In this section, we examine if a random effects (RE) specification is appropriate, and what

effects the RE assumption has on estimated parameters and derived elasticities. One advantage

of the RE approach, if its assumption of no correlation between the regressors Xii and the firm-
specific effect 11i is valid, is that efficiency increases, since one only estimates the variance of

the firm specific effect instead of all the N fixed effects. The RE approach has become popular
in analyses that involve large longitudinal data sets, partly because of computational
considerations, because with an RE model it is not necessary to estimate a large number of so-
called nuisance parameters (here: the firm-specific effects). Another advantage of the RE

approach is that it allows us to introduce other time-invariant variables, such as region
dummies, into the model. Finally, there are estimators which allow us to include firms that are

observed for only one period in the estimating sample when an RE approach is used. This is
important if there are structural differences, e.g. with respect to mean productivity and output

risk, between firms which are observed for only one period and firms that are observed for
I . . d 18onger time peno s.

We continue to focus on the IP2 mean production function, which we estimate with both
variance functions VI and V2. Two different FGLS estimation procedures are used for the

random effects specification. Both estimators are presented in appendix 9.E. In the first FGLS
estimation procedure (called RAJ), the fixed effects model is estimated in the first step, and

used as basis for estimating the variance function and the variance of the firm-specific effect.
This estimator will therefore provide the same parameter estimates for the variance function.

Furthermore, unlike other RE estimators, this estimation procedure uses estimates of the firm-
specific intercepts, so there is no bias due to correlation between Xii and 11i . However, the RAJ
procedure does not allow the inclusion of firms which are observed only one period.

The second FGLS estimation procedure (called RA2), does not involve estimation of a fixed

effects model in the first step. It therefore has the advantage that firms which are observed for

18 Firms which are observed only one period can be included in the estimating sample with a fixed effects

approach if it is possible to group firms in cohorts based on observable firm characteristics, such as regional

location and year of establishment (Heshmati & Kumbhakar, 1997). The firms must then be assumed to be

homogeneous within each cohort, i.e., the firm-specific effect 1li takes the same value for all firms in a cohort.
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only one period can be included in the estimating sample. However, the RA2 procedure

provides estimates of the observation specific residuals Uit that differ from those of the fixed

effect model and the estimates from the RAI estimator, and thus different estimates of the
parameters of the variance function. This is because the estimation procedure assumes no

correlation between Xit, 11i and Uit. In the first step a pooled OLS regression is estimated by
OLS, and in the second and third steps the variances of the observation-specific error

component and the firm-specific error component are calculated under the implicit assumption

of uncorrelatedness.

Hausman tests were undertaken to test for appropriateness of the random effects specification

RAI versus the fixed effects specification. The Hausman test statistic is chi-square distributed

with degrees of freedom equal to the number of regressors in the model. Large values of the
Hausman statistic argue in favour of the fixed effects modelover the random effects model.

Even if the Hausman test supports the RE specification, the FE specification will still provide

consistent parameter estimates. However, the RE estimates will be more efficient, since one
estimates one variance parameter instead of N firm-specific effects. First, we estimated the JP2
model with random effects under the assumption of homoskedastic observation-specific
effects with the RAI FGLS estimator, and tested it against the lP2 model with fixed effects

estimated by OLS. The Hausman test statistic under homoskedasticity was 51.8, which is
outside the 95 % area. Hence, the RE specification is favoured under the homoskedasticity

assumption. Next, the JP2 model was estimated with both variance functions. For variance
function VI the Hausman test rejected the RE assumption, with a test statistic of 143.5. For

variance function V2, on the other hand, the Hausman test statistic of 63.6 supported the RE
specification at conventional confidence levels.

First, in table 9.10, we compare the overall sample mean elasticities derived from the
estimated parameters of the mean production function JP2. We find that the RTS estimates
from both the RAI and RA2 estimates of the RE modellie between the FGLS estimates from
the fixed effects and the pooled JP2 models. The RA2 estimates of the rate of technical change
(TC) also lie between pooled and fixed effects model estimates, but substantially closer to the
latter. However, the RAI estimates of the rate of technical change, are above both the pooled

and fixed effects model estimates, with values of 4.2 % when JP2 is estimated with variance
function VI, and 4.6 % when estimated together with V2. Both for RTS and TC the random
effects RAI estimates are closer to the estimates from the fixed effects specification than those
from the pooled models. This also applies to the TC estimates from RA2, while the absolute

difference between the RA2 estimates of RTS and the pooled and FE estimates are roughly
equal.
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Table 9.10. Estimates of Mean Returns to Scale and Elasticity of Technical Change (RTSITC)
under Random Effects and Fixed Effects Assumptions

Model Pooled FE RE (RAt) RE(RA2)

JP2 and VI by FGLS 0.951 / 0.027 0.896/0.041 0.914/0.042 0.930 / 0.039
JP2 and V2 by FGLS 0.953 / 0.027 0.904/0.041 0.914/0.046 0.934 / 0.039

JP2 and VI by ML 0.950/0.028 0.899/0.041 N.A.* N.A.*

JP2 and V2 by ML 0.954 / 0.026 0.916/0.039 N.A.* N.A.*

* N.A. = Not Available

Next, we examine the predicted time patterns of Te and RTS.According to figure 9.C17 both
RAI and RA2 estimates of technical change are close to the fixed effects estimates for JP2
estimated together with variance function VI, while there is a more pronounced difference
between the former and the pooled FGLS estimates. For RTSwe come to a similar conclusion
(see figure 9.CI8).

The variance function parameter estimates are equal for the fixed effects model and the
random effects model estimated by RAI, because in both cases the estimated variance
functions are based on the consistent first-stage residuals from a fixed effects model estimated
by OLS. For RA2, on the other hand, the residuals used in the estimation of the variance
function rely on the validity of the random effects assumptions of no correlation between the
error components, and between the error components and regressors. In table 9.11 we see that
the variance elasticities TVE and TeV estimated by RA2 differ substantially from both the
fixed effects and the pooled model FGLS estimates for variance function VI. For variance
function V2 the total variance elasticity estimated by RA2 is an intermediate case between the
estimates from the pooled and fixed effects models. But, as for VI, the estimate of the
technical change of the variance function is negative, while both the FE and pooled models
predict positive TCVs.

Table 9.11. Estimates of Total Variance Elasticity and Technical Change Variance Function
(TVEITCV) under Random Effects and Fixed Effects Assumptions

Model Pooled FE RE (RAt) RE (RA2)

JP2 and VI by FGLS 0.884/0.212 0.666 / 0.082 0.666 / 0.082 1.056 / -0.085

JP2 and V2 by FGLS 0.930 / 0.179 0.713 /0.066 0.713/0.066 0.826 / -0.077

JP2 and VI by ML 1.037/0.205 1.045 / 0.066 N.A.* N.A.*

JP2 and V2 by ML 1.043/0.197 1.022 / 0.061 N.A.* N.A.*

* N .A. = Not Available

The conclusion that the variance function estimates from RA2 are problematic, is reinforced
when we examine the time patterns of TeV (figure 9.CI9). In several years the RA2 estimates
predict a development in Tev that is the opposite of the pooled and FE estimates. The time
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pattern of the total variance elasticity (TVE) is more similar to those of the pooled and fixed

effects model.

When we compare variance function coefficients from the fixed effects model estimated by
FGLS and the random effects model estimated by RA2, we find that the choice of estimator

has severe consequences for the conclusions regarding the direction and magnitude of
marginal risks. Table 9.12 presents the estimated input parameters of the two models. For VI
four of five input coefficient change sign, although the sign change is not significant according
to estimated t-ratios. For V2 two coefficients change sign.

Table 9.12. Fixed and Random Effects Estimates of Input Parameters of Variance Functions
V1 and V2

Coeff. Fixed Effects by FGLS Random Effects by RA2

VI and JP2 V2 and JP2 VI and JP2 V2 and JP2

-0.061 0.145 b 0.157c 0.178 c

0.531 c 0.470 c 0.877c 0.643 c

0.112 a 0.159 b -0.020 -0.092

-0.189a -0.204 a 0.154 0.065
0.273 c 0.144 b -0.111 0.032

Materials

Feed

Capital

Labour

Fish

a Significant at 10 % level (one-tailed test), b significant at 5 % level, c significant at 1% level.

When comparing the fixed and random effects approaches, an overall conclusion is that the
specification of the firm-specific effects does not have any dramatic consequences for the
estimated elasticities derived from the mean function. This applies for both random effects
estimators used here. However, use of the random effects FGLS estimator RA2, which relies
on the validity of the random effects assumptions, has severe consequences for marginal risk
estimates and elasticities derived from the variance function. Hence, it seems like one should

be extremely cautious with drawing conclusions regarding the structure of production risk
based on FGLS estimators that rely on the validity of the random effects assumptions.

9.11. Estimates from Random Effects Model for the Full Sample

As mentioned in the previous section, the FGLS estimator RA2 allows one to estimate the

random effects models also for firms that are observed only one period. Although the RA2
estimator provides different results for the variance function than the other estimator, we

would like to assess what effects omission of farms which were observed only one or two
periods have on estimated parameters and elasticities. Itmay be the case that the reason some

farms are observed only for a short period, is that they are less productive in terms of mean
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output, or have higher output risk, or have experienced very adverse outcomes of biophysical

stochastic variables, as discussed in Chapter eight.

The number of observations increases by 285, to 2238, when going from sample 1 to sample 2.
Summary statistics for sample 2 are presented in appendix 9.D. From the appendix we see that
the introduction of new observations does not lead to dramatic changes in overall sample mean
output and input levels. However, a majority of observations that are added, are from the latter

part of the data period, particularly 1992 and 1993.

Table 9.13. Overall Sample Mean Estimates of Mean Function and Variance Function
Elasticities

Mean Production Function Elasticities (RTS/TG)

Model FE on sample 1 RE on sample 1 RE on sample 2

IP2 and VI by FGLS 0.896/0.041 0.930/ 0.039 0.962 / 0.027

IP2 and V2 by FGLS 0.904/0.041 0.934/0.039 0.963 / 0.026

Variance Production Function Elasticities (TVE/TCV)

Model FE on sample 1 RE on sample 1 RE on sample 2

JP2 and VI by FGLS 0.666 / 0.082 1.056 / -0.085 0.437 / 0.128

JP2 and V2 by FGLS 0.713 /0.066 0.826 / -0.077 0.228/0.141

The coefficients of the RE model JP2 estimated on the full sample by FGLS procedure RA2

are reported in tables 9.A20 and 9.A21. Table 9.13 compares elasticity estimates of the fixed
effects model estimated by FGLS on sample 1, and the random effects model estimated by

FGLS procedure RA2 on sample 1 and 2. The introduction of new observations leads to a

slight increase in returns to scale, around 3 %, when compared with the RA2 estimates on

sample 1. There is a pronounced decrease in the rate of technical change when going from

sample 1 to sample 2; TC is more than a percentage point lower when estimated on the full
sample. The time patterns of RTS and TC (not depicted here) were similar for the two samples.

For the variance function the changes are more dramatic. The overall sample mean estimate of

the total variance elasticity (TV£) is reduced to less than half for variance function VI, and to
less than a third for variance function 2. The TVE values are lower than any estimate provided
by other specifications and estimators. An explanation for the low TVE estimates is the

parameter estimates for the variance functions, which are reported in tables 9.A20 and 9.A21.

More inputs have negative marginal risks than in any of the previously estimated models. The
rate of technical change of the variance function (TV£) experiences a large increase through
the introduction of new observations. The RA2 estimates of TVE on sample 1 was negative,
while the RA2 estimates on sample 2 are positive and even larger than the estimates from the

fixed effects model.
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Based on the above findings one may conclude that if one is primarily interested in the mean
production function, the inclusion of firms observed one or two periods in the estimating
sample does not lead to significant changes in the empirical findings. For the variance function
the impact of adding observations is much more dramatic. However, as stated in the previous
section, the uncertainty regarding the validity of the random effects estimator that are used to
estimate the variance function, and the substantial differences in estimates we find for sample
I when compared with all other estimated models, implies that the reliability of the variance
function estimates is questionable.

9.12. Models with Region-Specific Effects

Hypothesis H4 asserted that there are differences across regions with respect to mean
productivity and output risk levels. This section tests this hypothesis by means of production
models which incorporate region-specific effects on mean output and region-specific effects
on output variance. The preferred mean production function specification is still JP2. The
salmon farms in the data set are located in IO regions, but we have chosen to group the very
few farms in the southernmost county Vest-Agder together with the neighbouring county
Rogaland. The two northernmost counties, Troms and Finnmark (T&F) have also been
grouped together, which means that there are eight regions in all. See appendix 9.D for
regional sample mean output and input levels. In all appendices regions are listed from south
to north.

The regions differ in two respects. Firstly, the biophysical conditions in terms of sea
temperatures and water exchange (tide) are different. Sea temperatures decrease steadily as
one travels along the coast from the southernmost to the northernmost regions. The growth
rates of salmon increase with higher sea temperatures. On the other hand, due to tidal currents
the water exchange is higher in the northern regions than in the southern regions.

Secondly, the regions differ with respect to the time of entry into the industry. Farms in
southern regions tended to enter the industry at an earlier stage than farms in northern regions,
and hence may have travelled further down the learning curve.

9.12.1. Region-Specific Effects on Mean Output

It is of interest to investigate whether firm-specific effects or region-specific effects are the
most important for mean productivity. If there is substantial inter-firm variation in the
biophysical productivity of the farm sites and the quality of management etc. within a region,
then firm-specific effects may be the most appropriate. However, if biophysical conditions
tend to be similar within the region, and also the quality of management is similar within the
region due to diffusion of knowledge etc., then a specification with region-specific effects
instead of firm-specific effects could be tested. In order to test whether region-specific effects
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dominate firm-specific effects with respect to mean productivity, restricted least squares

estimation is undertaken.

We first estimate a fixed effects model with region-specific intercepts instead of firm-specific
intercepts. Then we estimate the model with firm-specific fixed effects, with the restrictions

that the firm-specific intercept is equal to the region-specific intercept estimated in the
previous step. For the OLS estimates the F-test statistic is 1.188, which has a p-value of 0.015

(df1=372 and df2=1513). At the 5 % level the null hypothesis of equal intercepts within
regions is supported, while at the 1 % level Ho is rejected. A Wald test rejects the null

hypothesis of equal intercepts at all conventional confidence levels, with a chi-square statistic

of442.05.

Despite the lack of support for pooling the firm-specific effects by region, we will say a few
words about the empirical results. The OLS and FGLS parameter estimates from the model
with region-specific fixed effects are presented in tables 9.A22-9.A24.19 Table 9.14 presents

estimated elasticities from the model with region-specific effects, together with estimates from
the pooled model and the model with firm-specific FE.

Table 9.14. Estimates of Mean Function and Variance Function Elasticities

Mean Production Function Elasticities (RTSITC)

Model Pooled FirmFE Region FE

JP2 and VI by FGLS 0.951 10.027 0.896/0.041 0.9501 0.032

JP2 and V2 by FGLS 0.953 10.027 0.904/0.041 0.951 10.031

Variance Production Function Elasticities (TVEITCV)

Model Pooled FirmFE Region FE

JP2 and VI by FGLS 0.884/0.212 0.666 / 0.082 0.904/0.198

JP2 and V2 by FGLS 0.930 / 0.179 0.713 / 0.066 0.937/0.175

For RTS, TC and TCV the estimates from the model with region-specific fixed effects lie
between the estimates from the pooled model and the model with firm-specific effects, but
generally much closer to the estimates from the pooled model. The only exception is the total
variance elasticity, where the estimates of the model with region-specific effects are higher
than the others. There are no dramatic differences in the time patterns of the above elasticities

between the region-specific and the firm-specific FE models.

According to all three estimators of the model with region-specific FE, both the OLS and two
FGLS estimates, farms in Vest-Agder and Rogaland (VA&R) are the most efficient in terms of
mean productivity. But the relative differences in productivity are small; for all of the

19 The regions are listed from south to north.
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estimators the farm with sample mean output (i.e., the normalised output y = 1) in VA~R is
less than 10 % more efficient than the mean farm in the least productive region, which is Sør-
Trøndelag (ST) according to all three estimators.

The problem with the fixed effects model is that time-invariant firm-specific and region-
specific effects cannot be implemented simultaneously, because of perfect collinearity. A

solution is to estimate a random effects model, where the firm-specific effects are assumed to
be random, and the region effects are treated as fixed. This was done, with the FGLS RA2

estimator being used to provide parameter estimates. The FGLS parameter estimates are
presented in tables 9.A25-9.A26. According to both FGLS estimates of the region-specific
intercepts, Vest-Agder & Rogaland still has the most productive farms in terms of mean

output, and Sør-Trøndelag still has least productive farms. However, the introduction of firm

effects into the model leads to a reduction in efficiency differences between the regions; the
mean farm in VA&R now has only a 5 % higher mean output than the mean farm in ST,

according to both estimates. According to the estimated t-ratios of the region-specific

intercepts, the differences in mean output between regions are significant at conventional
confidence levels.

A likelihood ratio test of the new random effects model with fixed region effects added versus
the restricted random effects specification which were estimated in the previous section (all

regional intercepts equal) provided chi-square test statistics of 9.41 and 9.35 for the FGLS

estimator with variance functions VI and V2, respectively. These low values support the null
hypothesis that the region-specific intercepts are all equal at conventional confidence levels.

When we compare with the restricted random effects model estimated in the previous section,
we find that the introduction of region-specific effects leads to only small changes in elasticity
estimates.

9.12.2. Region-Specific Effects on Output Risk

Next, we analyse if there are structural differences in output risk between regions. First, we

estimate the mean production function JP2 with firm-specific fixed effects, and introduce

region-specific fixed effects into the variance function. The variance function VI with time-
specific effects now becomes

var(uit) = exp(~O+'~::;k~JcXk,it+Lt~tDt+Lr~,Dr)

= exp(~O)nkexp(~tcXk,it)ntexp(~pt)nrexp(~,Dr),

and similarly for V2 (with x replaced by lnx), where r is the region subscript. We see that the

region-specific effects interact multiplicatively with the input levels and the year-specific

effects. For two regions with different ~r's, the difference in output variance will increase with
an increase in the scale of operation.
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The FGLS parameter estimates are reported in tables 9.A27 and 9.A28 for variance functions
VI and V2, respectively. Troms & Finnmark (T&F) was chosen as the reference region.

According to the estimated region-specific effects ofboth VI and V2, Sogn og Fjordane (SF)
has the highest output variance, while the output risk is smallest in Nord-Trøndelag (NT). The
differences in output risk cannot be said to be dramatic; at sample normalised mean input
levels the standard deviation of output is 0.144 in SF and 0.107 in NT for variance function

VI (the corresponding values for V2 are 0.164 and 0.123). The introduction of region-specific
effects leads to a reduction in estimated marginal input risks and to a loss of significance in

terms of t-ratios, Likelihood ratio tests of the restricted variance function with one common
intercept Po versus region-specific intercepts were undertaken for both variance functions. The

chi-square test statistics were 12.96 and 12.08 for VI and V2, respectively. These values fall
within the 90 % area of the chi-square distribution (critical value 12.02 with 7 df), but outside
the 95 % area (critical value 14.07), thus lying in the zone ofindecision.

The introduction of region-specific intercepts into the variance functions only lead to marginal

changes in overall sample means of the elasticities we have been concerned about in this

chapter. The effects on the time patterns of the estimated elasticities were also limited,

compared with the restricted model.

In an analysis of structural differences in output risk across regions another possibility is to
introduce heteroskedastic firm-specific error components into the random effects model, with

region-specific variances of the error component, i.e., var(Tli,)=o}, as suggested in the
discussion of the RE specification of the Just-Pope model in section 9.2. This specification
differs from the one above not only in the specification of the firm-specific effects, but also

that the difference in output variance between two regions is constant, regardless of input

levels. We estimated the Just-Pope model by the FGLS procedure RAI, with the modification
to allow for heteroskedastic variances of the firm-specific random effect (see appendix 9.E).
The parameter estimates, including the estimated variances of the firm-specific effect, are

presented in tables 9.A29 and 9.A30. Once again, farms in Nord-Trøndelag (NT) has the
smallest output risk, ceteris paribus. But now Sør-Trøndelag (ST) has the highest output risk.

Based on the models we have estimated in this section, we draw the conclusion that there are
regional differences in mean output and output risk for otherwise equal farms, but that regional
effects are less important than input levels and unobservable firm-specific characteristics in

explaining differences in mean productivity and output risk in salmon farming.

9.13. Comparison of Just-Pope and Khumbakar Estimates

In section 9.6 we compared the estimates from a linear quadratic and translog./(x), focusing on
the elasticities of the mean production function. This section provides an analysis of the
empirical results on the structure of output risk from the Kumbhakar model K2, which has a
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translog j{x), against the results from the Just-Pope model JP2. The firm-specific effects are

assumed to be fixed.

Appendix 9.E provides a three-stage FGLS estimation procedure for the Kumbhakar model
with fixed effects. The first-stage parameter estimates are the OLS estimates for the translog

j{x) with fixed effects presented in table 9A.4. In the second step the variance function is
estimated by nonlinear least squares, and in the third stage the translog j{x) is estimated by
least squares with predicted variances from the second step as weights. The second- and third-
stage estimates are presented in table 9.A31. We see that the FGLS estimates of the translog

are dramatically different from the OLS estimates. It also turns out, as shown in table 9.15,

that the estimates of marginal output risk elasticities (VEk) and total output variance (TV£) are
very different from those derived from the estimated Just-Pope model.

Experimentation with different starting values for the nonlinear estimation of the variance

function revealed that the parameter estimates are sensitive to the choice of starting values.

The year dummies included in the variance function probably contribute to the sensitivity of
parameter estimates to starting values. Kumbhakar (1993) specified a simpler variance

function, without time dummies, and this may have lead to more invariant parameter estimates
with respect to starting values. The starting values for the estimated variance function

parameters presented here are based on OLS estimates.

When the estimation procedure fails to converge to the same parameter values with different

starting values, it is recommended that one chooses the parameter values which provide the
'highest value of the objective function (e.g. log-likelihood function). The parameter estimates
presented here were found to give the highest log-likelihood value for the variance function.

Table 9.15. Estimated Marginal Output Risk Elasticities and Total Output Variance from
Kumbhakar Model K2.

Elasticity VEL VEF VEI VEK VEM TVE
Mean 0.003 0.005 -0.003 -0.004 0.381 0.380
St.dev. 0.010 0.013 0.009 0.012 0.244 0.245
Min. -0.002 0.000 -0.148 -0.176 0.006 0.005
Max. 0.171 0.200 0.002 0.001 0.986 0.985

Because of the sensitivity of the nonlinear estimates of 13 to choice of starting values, it seems
like caution is required when analysing the structure of output risk with a Kumbhakar model.

9.14. Summary and Conclusions

In this chapter we have tried to shed some light on the structure and magnitude of production
risk in Norwegian salmon farming in the period 1985-93 by means of estimation of primal

models of production. Since efficiency analysis and analysis of firm behaviour under risk

198



aversion require knowledge about both the conditional mean and variance of output, we have

investigated both the mean production function and the variance production function. This has
mainly been done through estimation of Just-Pope models.

In the following we will try to summarise the findings from the estimated models. First, we
will discuss the effects of model specification choices and estimator choices on empirical
results, and give and assessment of the different approaches (section 9.14.1). We have
estimated an extensive set of production models, and have found that the elasticity measures

we are concerned about to a varying degree are influenced by the choice of functional form,

the specification of technical change, the specification of firm-specific effects, and the choice

of estimators.

Secondly, we summarise the empirical results for the mean and variance function (section
9.14.2). The findings are related to the theory of the competitive firm under production risk,
and also discussed in relation to the information we have about the industry for the data

period.

We also discuss the implications of the empirical results for the industry and policy makers

(section 9.14.3). Finally, we propose directions for future research on production risk in

general and salmon farming in particular (section 9.14.4).

9.14.1. Effects of Specification and Estimator Choices on Results

This chapter has demonstrated the importance of model specification and estimator choice for
empirical results. The issue of model specification involves the choice of. functional form for
the stochastic production function (e.g. linear quadratic or trans log), the interaction between

the deterministic part and the stochastic part of the production function (linear or additive),

and the treatment offirm-specific effects (pooled effects, fixed effects or random effects).

We first examined whether a linear quadratic and a translog functional form for j{x) would
provide the same elasticity estimates for the mean function. The overall sample mean returns
to scale and technical change elasticities (RTS and TC) were found to be similar. This was also

the case for the time patterns of RTS and Te. However, the RTS estimates derived from the
linear quadratic and translog differed somewhat when broken down by region. An analysis of
correlation of the elasticity estimates between the two functional forms at the observation level
revealed a low correlation for returns to scale. It seems like the choice of a linear quadratic or

translog form for j{x) is not critical if one is mainly concerned about elasticities around the
sample mean, but the choice of estimator becomes more critical for analysis of observations
far from the sample mean. Translog elasticity estimates at observations far from the mean tend
to take less extreme values than elasticities derived from the linear quadratic. In other words,
the translog seems to be well-behaved in a larger region. This finding suggests that the
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trans log functional form is to be preferred as long as one is only concerned about mean

function elasticities.

Two classes of stochastic production functions were estimated when we extended the analysis
to production risk; the Just-Pope form ·and the Kumbhakar form. The Kumbhakar production
function can be interpreted as a modification of the standard homoskedastic-in-inputs translog

production function, where the variance of the error term is a function of input levels. The
FGLS estimates of the Kumbhakar model rely on nonlinear parameter estimates of the
variance function, which unfortunately were found to be sensitive to starting values. The
FGLS parameter estimates of the translog function were dramatically different from the OLS
estimates. Furthermore, we obtained estimates of marginal risks that were very different from

those obtained from the Just-Pope models. The sensitivity of the nonlinear estimator of the

variance in the Kumbhakar model to starting values, and the violation of Just-Pope postulates,

lead us to prefer the Just-Pope model.

In the modelling of technical change both a time trend an a time dummy approach were tried,
although we had strong a priori reasons to be critical to the validity of the standard time trend

approach in the context of salmon farming. The empirical results from the estimated time
dummy models strongly indicated large year-to-year fluctuations in the rate of technical

change, both for the mean and variance function. Based on this we rejected the time trend

model.

The issue of firm heterogeneity specification has also been central here. Inclusion of firm-

specific fixed effects had significant impact on elasticity estimates derived from both the mean
function and the variance function. This finding applies both to the linear quadratic and the
translog parametrization of the mean function, and for different estimators. We found that the
pooled models tended to overestimate returns to scale, and underestimate the rate of technical
change during the data period.

Several estimators were compared for the Just-Pope model specifications. When we compared

FGLS and ML estimators for Just-Pope models with fixed effects, we found that the choice of

estimator had greater consequences for variance function estimates than for the mean function

estimates. FGLS and ML estimates of sample mean returns to scale and technical change (RTS
and TG) were very similar. However, the total variance elasticity (TVE) derived from the
estimated variance function was much higher according to the ML estimates. The ML
estimates of the variance function parameters generally had higher t-ratios than the FGLS

estimates, which means that inference based on ML estimates could be done with greater
confidence.

Two variance functions were specified for the Just-Pope models, VI and V2. They both have
their weaknesses; variance function VI has some undesirable convexity properties for risk-

increasing inputs (see appendix 9.F), while V2 restricts the total variance elasticity (TVE) to be
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constant, regardless of input levels. When we estimated the Just-Pope models by FGLS and
ML, we found that the mean function parameter estimates were not very sensitive to the choice
ofvariance function. The sample mean function elasticities RTS and Te were very similar for
both estimators. Furthermore, the choice of variance function did not have any significant
effect on the sign of the marginal output risk, although the magnitudes of marginal risks were
affected. Variance function VI seems to be the preferred one, because it does not restrict TVE,

and because we found that the magnitude of the undesirable convexity properties in practice

was very small. There is probably also scope for improvement in the specification of variance

function for econometric Just-Pope models.

We also compared estimates of the Just-Pope models under the two different assumptions on
the nature of the firm-specific effects; the fixed effects and the random effects assumption. The

popular random effects approach was found to provide mean function elasticity estimates that
did not differ substantially from the fixed effects approach. However, when we used random
effects FGLS estimation procedures which rely on the standard random effects assumptions of

no correlation between error components and between error components and regressors, we
found that the estimated marginal risks and elasticities of the variance function differed

dramatically from those of the fixed effects FGLS estimator. Since there are strong reasons to
question the random effects assumptions, we tend to give more trust to the fixed effects model

estimates.

In addition to comparing sample mean estimates of elasticities from different specifications

and estimators, we also compared elasticities at the observation level by means of coefficients
of correlation (cf. table 9.B31). For the mean function elasticities RTS and Te, we found a

high degree of correlation when using different estimators for the JP2 model with fixed

effects. The correlation coefficients between OLS, FGLS and ML of RTS and Te were around

0.9 or higher. In particular, the FGLS and ML estimates are highly correlated, with values
close to one. We also found high correlation coefficients between FGLS estimates of RTS and

Te based on difference variance functions (VI and V2). The same applies for the ML
estimator. When estimates from pooled models and models with firm-specific fixed effects
were compared, we also find a relatively high degree of correlation. The lowest correlations
were found between different functional forms (linear quadratic vs. translog), and between
different specifications of technical change (time trend model JP! vs. time dummy model

JP2).

For the variance function comparison of total variance elasticities (TVE) derived from different

specifications and estimators by means of correlation coefficients is less meaningful, due to
the restrictions on TVE. For example, variance function V2 imposes constant TVE across
observations. For the technical change of the variance function (TeV), we come to similar

conclusions as for the mean function elasticities. For the JP2 model with fixed effects,
correlation is relatively high between the FGLS and ML estimates (0.72 and 0.79), and also
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between the two variance functions VI and V2 (0.84 and 0.98). When we compare the fixed

effects model with the pooled model, however, we find much smaller correlations (0.43 and

0.50) for TeV. The weakest correlations are found between the time trend and time dummy
models (0.02 and 0.18).

Based on the empirical results in this chapter the preferred stochastic production function is
the Just-Pope model with time dummy variables and firm-specific fixed effects. The empirical
results do not give strong support to any particular estimator for the fixed effects specification,
although the marginal risk effects of inputs are more significant according to the ML estimator
than the FGLS estimator.

9.14.2. Empirical Results and Implications for the Norwegian Salmon Farming
Industry

Next, we summarise our empirical results on the structure of the stochastic production

technology in Norwegian salmon farming. We discuss the implications of our findings in

relation to the theory of the competitive firm under production risk. We also relate the results
to the hypotheses presented in Chapter one, and the information we have about developments
in the industry during the data period.

One feature that all estimated Just-Pope models have in common is that the determinant of the

Hessian of the mean production function takes very small negative values. This means that the
Hessian is negative semidefinite, thus implying diminishing marginal productivity of inputs
(Chambers, 1988, pp. 9-10).

The estimated mean output elasticities vary somewhat across model specifications and
estimators, but are fairly consistent in terms of the ranking ofinputs. In all estimated Just-Pope
models feed is the most important input with respect to mean output, i.e., the highest elasticity
of mean output with respect to inputs, Eh is found for feed. The output elasticity with respect
to feed ranges from 0.49 to 0.59 across models. The input of fish in the pens at the beginning

of the year is the second most important, with output elasticity ranging from 0.23 to 0.31. The

third most important input is materials, with output elasticity in the range 0.030-0.053,
followed by labour and capital. The ranking and the high elasticity values for feed and fish

input were as expected. However, the low output elasticity with respect to capital was
somewhat unexpected. The reason may be that our proxy only to some extent reflects the real
services of capital. According to the summary statistics for the inputs in appendix 9.D, small
variation in capital (as measured by the sample standard deviation) can not explained the
limited significance of capital input.

Returns to scale is equal to the sum of all the output elasticities with respect to inputs. The
overall sample mean estimated RTS varies from 0.840 to 0.957 across the estimated models.

RTS was highest in the first two years of the data period, when according to most models it

was above one, and then stabilised below one. According to the preferred models and
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estimators, sample mean RTS lies in the range 0.89-0.92. An examination of the development

of RTS over time reveals that except for the first year of the data period, 1985, returns to scale
was below one for the mean firm. In other words, the size of the mean firm was sufficient to

exhaust economies of scale. This finding is similar to that of Bjørndal & Salvanes (1995), who
estimated a cost function for the industry based on data for 1988.

The period 1985-93 was characterised by a large growth in output at the farm level. For the

mean farm the production ofsalmon was three times higher in 1993 than in 1985, according to

the summary statistic presented in appendix 9.D. To a large extent this production increase is

caused by increases in input levels, but productivity increases is also a factor behind the output
growth. The overall sample mean estimated rate of technical change (TC) for the mean
production function varies from 0.026 to 0.044 across models. According to the preferred
specifications and estimators, the overall sample mean rate of technical change is in the range

3.9-4.1 %. We rejected the standard time trend representation of technical change, which
seems to be too inflexible to describe technical change in salmon farming.

According to most models, including the translog parametrization of the mean production

function, the rate of technical change was high from 1986 to 1988, and from 1992 to 1993.

The models also seem to agree that the rate of technical progress was very low, or even

negative from 1985 to 1986, and also that the rate of technical progress was substantially
smaller in the period 1988-92 than in the peak years.

Since biophysical shocks are unobserved at the farm level, and thus cannot be controlled for, it
is difficult to say to what extent our estimates of technical change explain true productivity
growth or year-to-year shifts in sea temperatures, diseases, toxic algae concentrations, etc.

However, it is interesting to note that the profile of the rate of technical change, as depicted in

figure 9.C9 for the preferred models and estimators, to a large extent mirrors the indemnities
from the insurance companies to the farms in the sample as plotted in figure 7.2 (Chapter 7).
These indemnities cover economic losses due to diseases and extreme weather conditions.
Two years of low rates of technical progress, 1986 and 1990, coincide with peaks in
indemnities, while two years with high rates of technical progress (1988 and 1993) coincide
with low indemnities. It is also interesting to note that periods with low rates of technical
progress correspond with periods of major disease outbreaks in Norwegian salmon farming. In
1986 there was a major outbreak of the so-called "Hitra" disease, while in 1990-92 one had the

"ILA" (infectious salmon anaemia) disease and furunculosis (Asche, 1997). However, one

should be careful in giving diseases a major role, since a number of other factors are important
for explaining technical change in the industry.

The rate of technical progress is found to be low in each year from 1989 to 1992. This was
also a period with poor profitability and small equity for the industry as a whole, according to

table 7.1 in Chapter 7. In each year during this period the mean farm had negative profits.
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Furthermore, the mean equity was also negative from 1989 to 1991.20 Hence, farms did neither
have the means to invest in new and improved technologies, nor undertake anyon-farm

experimentation, during this period. However, at the end of the data period the profitability
improved, which too some extent may explain the estimated upswing in technical progress

from 1992 to 1993.

Next, we summarise the empirical results for the variance function. We exclude the results
from the random effects FGLS RA2 estimator, which we regard as problematic in the context
of variance function estimation. First, the findings with respect to marginal risks are

summarised. For both variance function specifications, VI and V2, the input coefficient can be

interpreted as the output variance elasticity (or marginal risk elasticity) with respect to the

input when evaluated at normalised mean input levels. For the materials input the coefficient

varies from -0.64 to 0.358. It is positive in most cases, and never significantly negative. The
feed input coefficient ranges from 0.355 to 0.580, and is always significantly positive. Capital

also has a risk increasing effect, with estimated parameters ranging from 0.073 to 0.232. For

most estimated models the capital input coefficient is significantly positive. The input of fish
coefficient ranges from 0.139 to 0.373, and like feed is significantly positive in all estimated
models, but at lower confidence levels. Labour input is the only input which always has a
negative coefficient (excluding the random effects model estimated by RA2). Its coefficient

varies from -0.028 to -0.204 across estimated models, and is significantly negative in several
estimated models. To summarise, feed, capital and fish are risk-increasing, with feed having
clearly the most significant effect on output variance. Materials input also seems to increase

output risk. Labour is the only input which plays a risk-reducing role.

Thus, the models estimated here generally supports our initial hypotheses regarding marginal
risks, H2 (b) and (c), for feed, fish and labour. Our null hypothesis of negative marginal output
risk in capital is rejected. Still, we believe that an increase in capital services with all other
inputs held fixed should lead to a decrease in output risk. However, it may be the case that

increases in capital input are strongly correlated with increases in the scale of operation, which

we have found is associated with higher levels of output risk, or that our measure of capital
input is a poor proxy for the real services of capital.

Following Ramaswami (1993), the marginal risk premium of feed, fish and capital is positive
for all risk averse salmon farmers, since these inputs are risk-increasing (see Chapter 2).
Furthermore, the marginal risk premium is negative for the risk-reducing input labour. A risk

averse salmon farmer will therefore use smaller quantities of feed and fish input than a risk-
neutral producer, and use more of labour input.

20 The depressed economic conditions for the industry during this period can probably to a large extent be
attributed to failure of salmon demand to shift as the total supply of Norwegian salmon increased dramatically
at the end of the 1980s (Asche, 1997).
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Figures 9.2 and 9.3 illustrate both the marginal risk and the marginal mean productivity
properties of feed and labour, respectively, in 1993_21The figures are based on FGLS
estimates of model VI and JP2 with firm-specific fixed effects, but other estimated models
provide a similar pattern. We see that increases in feed input levels lead to an increase in both
mean output and the output risk. An increase in labour input increases mean output, but
reduces the level of output risk.
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21 The levelofthe other inputs are held fixed at the sample mean values (i.e., 1).
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The overall sample mean of the output variance elasticity (TVE), which is equal to the sum of

the input coefficients at all input levels for variance function V2 and at the normalised sample

mean input levels for VI, ranges from 0.635 to 1.045 across the estimated models. However, it

is below 1 for most models. These results imply that hypothesis H2(a) of increasing output
risk associated with a factor neutral expansion in inputs cannot be rejected, since TVE is
positive for V2 regardless of initial input combination, and TVE will only be negative for VI
under very high levels of labour input relative to the other inputs.22 When we analyse the
development in TVE over time, we have to focus on the variance function VI, because V2

restricts TVE to be constant. For all estimated models TVE increases during the data period.
This can be explained by two factors; the risk-increasing inputs dominate in the production

process, and the scale of operation (i.e., input levels) increases over time.

The overall sample mean rate oftechnical change of the variance function (TeV) varies from -

0.035 to 0.212. However, it is only the time trend model JP1 estimated together with variance
function V2 that produces a negative overall sample mean. For the preferred models and

estimators, the IP2 models with fixed effects estimated by FGLS and ML, sample mean TeV
lies between 6 % and 9 %. An analysis of Tev over time reveals large year-to-year

fluctuations for all models, except the time trend model, which restricts the flexibility of TeV.
All estimated time dummy models agree that TeV was positive from 1988 to 1989 and from

1990 to 1991, which means that for constant input levels output risk increased during these

two periods. Furthermore, according to all time dummy models TeV was negative between
1989 and 1990, i.e., the variance of output decreased for constant input levels. As for the

estimated technical change of the mean production function, year-to-year shifts in biophysical
variables probably influence the TeVestimates. However, since we have no information that
gives us reason to believe that biophysical conditions have deteriorated during the data period,
leading to higher exogenous output risk, the empirical results suggest that output risk actually
has increased from 1985 to 1993.

In Chapter two we argued that risk averse producers are not only concerned about mean

productivity in their learning process or when they adopt new technologies. They should also
be concerned about output risk. Consequently, if salmon farmers are risk averse, new

technology adoption and adjustment of production practices should lead to decreases in output
risk over time, particularly since the industry was very young at the beginning of the data
period and therefore should have a potential for risk reduction through these means.

One explanation for the counterintuitive empirical results is that the agents who are

responsible for most of the research and development activities related to salmon farming, e.g.
the Norwegian government and the Norwegian Research Council, are less concerned about the

22 For VI and JP2 with fixed effects estimated by FGLS there is actually one farm observation for which TVE is

negative.
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risk properties of a new technology than the effect on mean output. If exogenous biophysical

shocks are only weakly correlated across salmon farms, and there is a large number of farms,
then a social planner may mainly be concerned about funding research and development which
has the potential to increase mean productivity .
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Until now mean output and output risk have been discussed separately. In the following we

will analyse these together. Figure 9.4 depicts mean output and the standard deviation of
output when the normalised sample mean input vector is multiplied by different scale factors.
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Hypothesis H3 in Chapter 1proposed that for a given level ofinputs (a) mean output increased
during the period 1985-93,while (b) output risk decreased during the same period. Figure 9.5,
plots the development in mean output and the standard deviation of output for the normalised
sample mean input levels over the data period. The figure is based on model VI and JP2 with
firm-specific fixed effects estimated by FGLS, but other preferred estimated models provide a
similar pattern. We see that output risk exhibits a much more erratic pattern than mean output,
but seems to experience an upward trend from 1985 to 1993. Thus, figure 9.5 supports
hypothesis H3(a), but rejects hypothesis H3(b).

Hypothesis H4 asserted that there was differences in mean productivity and output risk
between regions. The rationale for this is different biophysical conditions with respect to
temperatures, water exchange, etc. Furthermore, there may be diffusion of improved
technologies and production practices which is mainly within regions, through the regional
fish farmer organisations or other more informal networks. We find regional differences with
respect to both mean output and production risk, although not very large. For mean input
levels the difference in mean output between the most productive region (Vest-Agder &
Rogaland) and the least productive region (Sør-Trøndelag) is between 5 and 10 %, depending
on model specification and estimator. When evaluated at mean input levels, output risk
measured by the standard deviation of output is around 33-34% higher in the riskiest region
(Sogn og Fjordane) than in the region with smallest output risk (Nord-Trøndelag) for the
estimator we have most confidence in.

9.14.3. Implications for Industry and Policy Makers

It is difficult to say'to what extent the risk properties ofinputs have influenced the farms' input
choices. This depends on the risk preference structure of the decision makers in Norwegian
salmon farms, which we did not measure here, and have very limited knowledge about. During
the data period Norwegian salmon farms have increased their scale of operation, which has
served to increase both mean output and the level of output risk. There are several possible
explanations for this development in mean output and output risk, assuming that salmon
farmers are optimising agents. One explanation is that salmon farmers are risk neutral, in
which case they are only concerned about mean profit, i.e., mean output. A second explanation
is that even if salmon farmers are risk averse, their risk preference structure is such that the
increase in mean output (profit) associated with the increase in the scale of operation is
sufficient to more than compensate for the increased output (profit) risk, and thus provide
them with a higher level of utility. The third explanation is that salmon farmers have limited
knowledge about the structure of production risk, which means that they know little about the
effects of altering input levels on output risk.

The findings here should be of interest to the industry, since this study is the first of its kind to
examine the structure of production risk in salmon farming. Furthermore, the data set used
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here is the most extensive in productivity studies of this industry so far, both with respect to
the length of the time period and the number of firms. For an individual salmon farmer it is
difficult to estimate the effects of changing input levels on output risk only based on his own
production history. This study provides information on the structure of production risk based
on a sample with around 2000 observations, which means that conclusions can be drawn with
greater confidence than if one have to rely on observations from an individual farm only.
However, some caution is required in the interpretation of the results due to the quality of the
data (see Chapter 8).

According to the empirical results the level of output risk increases as the scale of operation is
increased. This finding suggests that risk averse salmon farmers instead of increasing the scale
of operation at the existing farm site, should consider to produce some of the salmon at
another farm location. During the first half of the 1990s the industry in fact experienced an
increasing degree of multi-site operations, probably because the biophysical capacity of
existing farm sites precluded further increases in production. The decentralisation decision
involves a mean-variance trade-off, because it has effects on both the mean and variance of
output. Decentralisation of the salmon farming operation leads to a lower mean output and
profits, due to the increased logistical requirements, and the necessity for undertaking
investments in certain types of capital equipment which would have been redundant with only
one farm location. On the other hand, the variance of output is decreased, since the salmon
may be subject to less stress, and the potential for loss is reduced if a fish disease outbreak
occurs at a site.

The structure of production risk is also relevant with respect to horizontal integration of
salmon farms. Since the liberalisation of the Fish Farming License Act with respect to
ownership interests, the industry has experienced an increasing degree of horizontal
integration. This may be because increasing output variance did not encourage firms to
undertake further expansion of production at existing farm sites. Acquisition of other farms
represents an alternative in such a situation. Furthermore, if stochastic shocks, such as disease
outbreaks and extreme weather conditions, to some extent are correlated across adjacent farm
sites, then a salmon firm may reduce the total level of output risk by acquiring farms in
different regions instead of increasing the production at existing neighbouring sites. Reduced
output variance associated with such regional diversification may also make the firm a more
reliable supplier of salmon, and increase the possibility for long-term production planning.

According to the theoretical results of Leathers & Quiggin (1991), policies aimed at altering
output supply and input demands cannot be based on theory alone when production risk is
present (see Chapter 2). Thus, when a tax on for example fish feed is considered, policy
makers should also take into account the risk properties of this input.
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For public research programmes aimed at salmon farming, an implication of the empirical
results here is that one should be concerned about both mean and risk properties in research on
new technologies. The results suggest that technical progress has contributed more to
increasing mean output than to reduce the level of risk. However, it is an open question to
what extent this development has been driven by the farmers or the government-sponsored
research and development.

9.14.4. Limitations and Future Research

Based on the findings here, it is believed that this empirical study has increased our knowledge
about the structure of the stochastic production technology in salmon farming in particular,
and also has contributed to the discussion of model specification and estimator choice for
empirical modelling of risky production technologies in general. However, this study has its
limitations. In the course of the research work several interesting paths were not followed up,
mainly because the scope of the analysis would otherwise be too large.

This empirical study of production risk only used a primal approach. In the absence of
information on risk preferences and expectation formations, a primal model is not sufficient to
provide predictions on the effects of price change on input demands and output supply. In
principle, dual approaches provide input demands and output supply elasticities under risk.
However, econometric implementation necessitates restrictions on risk preferences,
expectation formation, etc., which means that in practice one may not get any further with a
dual approach. At the current stage the primal approach is still regarded as fruitful compared to
a dual approach in the context of production risk.

In future research on production risk within the Just-Pope framework, other parametrizations
of the mean function, such as the generalised Leontief, should be tried. The emphasis should
be on flexibility, global properties and effects on variance function estimates. The linear
quadratic seems to have a rather limited consistency region, i.e., estimated elasticities take
extreme values as one moves from the mean observation. If a functional form is ill-behaved at
data points far from mean, then this may also have consequences for variance function
estimates. It is difficult to say what effects outliers may have had on variance function
estimates, and this should be investigated in future studies. Even though the generalised
Leontief may provide less significant mean function parameter estimates due to high
multicollinearity, it may be more well-behaved far from mean than e.g. the linear quadratic. In
addition, it is more flexible than the linear quadratic in some respects (Driscoll, et al., 1992).

For the variance function more flexible forms than those used here should be tried. Second-
order approximations are natural candidates. Tentative experimentation with these suggests,
not unexpectedly, that first-order parameters become less significant. On the other hand, the
variance function elasticity measures presented here become more flexible with a second-order
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functional form. The effects of different variance function specifications on (third-stage FGLS

or ML) mean function estimates should also be investigated.

For the empirical application here, the salmon aquaculture industry, it would be interesting to
adjust estimates of technical change for the effect of diseases, damages due to extreme weather
conditions, and sea temperatures. Disease outbreaks, which tend to be concentrated in certain
period, can be regarded as noise when we are interested in the underlying technical change in

the production technology. Sea temperatures, which influence the growth rate of salmon, have
been found to exhibit cyclical movements to some extent.r' By implementing indicators for

diseases and damages caused by extreme weather conditions into the production function
specification, for example indemnity payments or disease and damages dummy variables, one
should be able to obtain estimates of technical change which to some extent are devoid of
these factors. For sea temperatures there are regional data available which have been utilized
by Tveterås (1993).

Another empirical issue worth investigating is the autocorrelation properties of stochastic

shocks in salmon farming, both within firms over time, and across firms in a region (see

section 7.2). Panel data estimators which facilitates estimation of model with different

autocorrelation structures have recently become available (Baltagi & Raj, 1992). It should be

interesting to learn to what extent stochastic shocks carry over to the next period for a firm,
and to what extent stochastic shocks are correlated between firms within a region.

23 For example, during the winter 1990-91 temperatures above the seasonal mean lead to an increase in total
Norwegian salmon production by 10.000 tonnes, which was a substantial fraction of the production during this
period (Salvanes & Tveterås, 1992.
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9.A. Appendix A: Estimated Parameters
Table Description
9.AI JP2 pooled estimated by OLS
9.A2 JP2 with firm-specific fixed effects estimated by OLS
9.A3 K2 pooled estimated by OLS
9.A4 K2 with firm-specific fixed effects estimated by OLS
9.A5 JPI with firm-specific fixed effects estimated by OLS
9.A6 VI and JPI with firm-specific fixed effects estimated by FGLS
9.A7 V2 and JPI with firm-specific fixed effects estimated by FGLS
9.A8 VI and JP2 with firm-specific fixed effects estimated by FGLS
9.A9 V2 and JP2 with firm-specific fixed effects estimated by FGLS
9.AIO VI and JP2 with firm-specific fixed effects estimated by ML
9.AII V2 and JP2 with firm-specific fixed effects estimated by ML
9.AI2 VI and JP2 pooled estimated by FGLS
9.A13 V2 and JP2 pooled estimated by FGLS
9.A14 VI and JP2 pooled estimated by ML
9.AI5 V2 and JP2 pooled estimated by ML
9.AI6 VI and JP2 with firm-specific random effects estimated by FGLS proc. RAI
9.AI7 V2 and JP2 with firm-specific random effects estimated by FGLS proc. RAI
9.AI8 VI and JP2 with firm-specific RE estimated by FGLS proc. RA2
9.AI9 V2 and JP2 with firm-specific RE estimated by FGLS proc. RA2
9.A20 VI and IP2 with firm-specific RE estimated by FGLS proc. RA2 on sample 2
9.A21 V2 and JP2 with firm-specific RE estimated by FGLS proc. RA2 on sample 2
9.A22 JP2 with Region-Specific Fixed Effects Estimated by OLS
9.A23 VI and JP2 with Region-Specific Fixed Effects Estimated by FGLS
9.A24 V2 and JP2 with Region-Specific Fixed Effects Estimated by FGLS
9.A25 VI and IP2 with Firm-Specific RE and Region-Specific FE Estimated by FGLS

Procedure RA2
9.A26 V2 and JP2 with Firm-Specific RE and Region-Specific FE Estimated by FGLS

Procedure RA2
9.A27 VI with Region-Specific Effects and JP2 with Firm-Specific Fixed Effects Estimated

byFGLS
9.A28 V2 with Region-Specific Effects and JP2 with Firm-Specific Fixed Effects Estimated

byFGLS
9.A29 VI and JP2 with Firm-Specific Region-Heteroskedastic Random Effects Estimated

by FGLS Procedure RAI
9.A30 V2 and JP2 with Firm-Specific Region-Heteroskedastic Random Effects Estimated

by FGLS Procedure RA I
9.A31 Kumbhakar model K2 with firm-specific fixed effects estimated by FGLS
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Table9.A1 JP2 Pooled Estimated by OLS

Coeff. St.error t-value Coeff. St.error t-value

aM 0.095 0.027 3.448 <lFss -0.005 0.059 -0.093

<li' 0.520 0.062 8.405 aFS6 0.046 0.063 0.734

aK 0.071 0.039 1.791 aFS7 0.052 0.065 0.795

<XL 0.068 0.054 1.261 aFS8 0.012 0.075 0.162

al 0.393 0.056 7.006 <lFs9 0.100 0.070 1.439

aMM 0.002 0.004 0.533 aF90 -0.037 0.077 -0.475

aML 0.035 0.019 1.888 <lF91 0.012 0.074 0.158

aMI -0.013 0.015 -0.886 am 0.036 0.059 0.601

aMF -0.038 0.D18 -2.067 aLSS 0.053 0.052 1.019

aMK -0.004 0.011 -0.334 aL86 -0.026 0.050 -0.523

<XFF -0.019 0.018 -1.038 aL87 -0.024 0.051 -0.461

aFK 0.008 0.017 0.438 aL88 -0.003 0.053 -0.056

aLF -0.006 0.041 -0.135 aL89 0.029 0.048 0.611

alF 0.084 0.031 2.706 aL90 0.014 0.050 0.274

aKK 0.003 0.004 0.628 <XL91 -0.038 0.064 -0.589

<XLK -0.019 0.018 -1.057 aL92 0.011 0.050 0.210

<lIK 0.001 0.017 0.055 al8S -0.029 0.059 -0.487

aLL -0.016 0.013 -1.234 al86 -0.016 0.075 -0.212

<XLI -0.034 0.032 -1.058 al87 -0.091 0.060 -1.529

au -0.024 0.016 -1.498 al88 -0.041 0.067 -0.615

ass -0.097 0.049 -1.973 al89 -0.156 0.064 -2.324

as6 -0.063 0.048 -1.314 al90 -0.087 0.065 -1.332

a87 -0.001 0.050 -0.018 <lI91 -0.068 0.063 -1.073

as8 -0.011 0.058 -0.180 al92 -0.125 0.056 -2.232

a89 -0.010 0.055 -0.182 aKSS -0.067 0.039 -1.697

<l9(I 0.005 0.054 0.091 aK86 -0.025 0.039 -0.623

(lgl -0.007 0.055 -0.134 aKS7 -0.069 0.039 -1.773

(lg2 0.011 0.056 0.199 aKS8 -0.040 0.040 -1.012

aMSS -0.073 0.039 -1.850 aKS9 -0.064 0.042 -1.514

aM86 -0.132 0.037 -3.532 aK9Q -0.074 0.040 -1.828

aM87 -0.082 0.030 -2.752 aK91 -0.027 0.043 -0.627

aM88 -0.063 0.031 -2.059 aK92 -0.019 0.038 -0.494

aM89 -0.056 0.031 -1.802 <lo 0.050 0.050 1.005

aM90 0.016 0.030 0.522

aM91 -0.008 0.028 -0.284 Log-likel. 704.049

aM92 -0.032 0.026 -1.217 R2-adj. 0.933
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Table9.A2 JP2 with Firm-Specific Fixed Effects Estimated by OLS

CoetJ. St.error t-valae CoetJ. St.error t-value

aM 0.098 0.026 3.827 aF8S -0.022 0.070 -0.313
ap 00429 0.059 7.333 <XF86 -0.039 0.069 -0.566

aK 0.095 0.037 2.580 <XF87 0.024 0.064 0.368

aL 0.098 0.055 1.769 aF8S 0.033 0.072 00458
al 0.340 0.051 6.619 aF89 0.098 0.063 1.568

aMM -0.001 0.003 -0.287 <lf9() -0.056 0.067 -0.832

aML 0.045 0.018 2.589 af91 0.053 0.070 0.763

aMI -0.014 0.014 -1.025 af92 0.020 0.054 0.373

aMP -0.037 0.017 -2.222 <XLss 0.063 0.054 1.163

aMK 0.000 0.012 0.031 aLB6 -0.020 0.050 -0.396
(Xpp -0.008 0.019 -00431 aLB7 -0.057 0.050 -1.134

afK 0.000 0.018 -0.001 aLBS -0.025 0.049 -0.504
aLP 0.013 0.037 0.355 <XLs9 0.039 0.042 0.937
alP 0.071 0.029 2.617 <XL90 0.019 0.045 00428
aKK 0.004 0.005 0.905 aL91 -0.012 0.058 -0.212
aLK -0.037 0.017 -2.225 aL92 -0.010 0.043 -0.228

alK 0.003 0.016 0.204 alSS 0.025 0.062 0.397
aLL -0.030 0.015 -1.951 alS6 0.025 0.076 0.324

au -0.017 0.031 -0.542 alS7 -0.058 0.055 -1.050
an -0.020 0.D15 -1.287 alSS -0.070 0.062 -1.126

ass -0.168 0.047 -3.562 alS9 -0.165 0.059 -2.808

as6 -0.117 0.047 -2.500 al90 -0.093 0.057 -1.619
aS7 -0.028 0.048 -0.574 al91 -0.112 0.057 -1.968

ass -0.026 0.056 -00454 al92 -0.123 0.052 -2.354

as9 -0.017 0.051 -0.344 aKSS -0.052 0.038 -1.368

<Xoo 0.018 0.046 0.398 aKS6 -0.015 0.036 -00402
<X91 -0.015 0.049 -0.308 aKS7 -0.056 0.036 -1.545
<X92 0.016 0.046 0.359 aKSS -0.039 0.036 -1.085
aMSS -0.094 0.050 -1.892 aKS9 -0.061 0.037 -1.664
aMS6 -0.109 0.037 -2.986 aK90 -0.078 0.037 -2.128
aMS7 -0.084 0.034 -2.506 aK91 -0.024 0.038 -0.621
aMSS -0.055 0.029 -1.905 aK92 -0.014 0.032 -0.445
aMS9 -0.052 0.029 -1.788

aM90 0.024 0.027 0.888
aM91 -0.020 0.026 -0.760 Log-likel. 974.771
aM92 -0.015 0.023 -0.639 R2-adj. 0.937
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Table9.A3 K2 Pooled Estimated by OLS

CoetT. St.error t-value CoetT. St.error t-value
aM 0.107 0.023 4.734 <Xru 0.154 0.078 1.971
(lp 0.396 0.045 8.722 aF86 0.258 0.064 4.029
aK 0.017 0.025 0.660 aF87 0.228 0.061 3.768

<XL 0.048 0.034 1.440 aF88 0.211 0.063 3.352
al 0.340 0.032 10.494 <XF89 0.294 0.064 4.590
aMM 0.015 0.005 2.791 <lf9C) 0.070 0.059 1.170
aMI.. 0.049 0.018 2.729 (Xpgl 0.112 0.065 1.725
aMI -0.032 0.018 -1.758 aF92 0.150 0.056 2.713
aMP -0.055 0.019 -2.934 <lLss 0.007 0.066 0.106
aMK 0.003 0.013 0.231 aL86 -0.120 0.055 -2.181

<XFF 0.096 0.012 8.312 aL87 -0.047 0.052 -0.909

<lFK -0.010 0.025 -0.410 <lLs8 -0.065 0.052 -1.256
<Xu: -0.036 0.038 -0.930 <lLs9 -0.021 0.042 -0.495
alf -0.043 0.021 -2.073 aL90 -0.022 0.045 -0.494
aKK 0.006 0.007 0.930 <XL91 -0.069 0.050 -1.363
aLK -0.028 0.020 -1.409 <XL92 -0.019 0.044 -0.432
aIK 0.025 0.013 1.946 aI8S 0.047 0.050 0.931
au. 0.008 0.D18 0.476 aI86 0.028 0.056 0.492

au -0.057 0.027 -2.126 aI87 -0.003 0.043 -0.079
au 0.052 0.005 10.908 <Xt88 -0.035 0.043 -0.813

ass -0.244 0.039 -6.280 aI89 -0.124 0.052 -2.403
as6 -0.238 0.036 -6.715 aI90 -0.003 0.048 -0.068

as7 -0.221 0.028 -7.827 aI91 -0.028 0.041 -0.683

as8 -0.167 0.025 -6.585 aI92 -0.127 0.042 -3.012
as9 -0.180 0.025 -7.281 aKSS 0.013 0.038 0.342
ago -0.182 0.027 -6.696 aKS6 0.036 0.039 0.929
(Xg1 -0.141 0.026 -5.499 aKS7 -0.023 0.038 -0.588
(Xg2 -0.123 0.026 -4.757 aKS8 0.026 0.036 0.717
<XM8S -0.111 0.044 -2.544 aKS9 -0.002 0.034 -0.059
aM86 -0.149 0.041 -3.624 aK90 -0.031 0.030 -1.041
aM87 -0.123 0.036 -3.429 aK91 0.029 0.035 0.825
aM88 -0.099 0.033 -3.028 aK92 -0.001 0.030 -0.038
aM89 -0.110 0.031 -3.517 Cl(, 0.164 0.021 7.705
aM90 -0.035 0.029 -1.210
aM91 -0.039 0.029 -1.348 Log-likel. 570.438

<XM92 -0.033 0.028 -1.194 R2-adj. 0.931
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Table9.A4 K2 with Firm-Specific Fixed Effects Estimated by OLS

CoetT. St.error t-value CoetT. St.error t-value

(XM 0.098 0.020 4.933 <Xru 0.089 0.067 1.324
(lp 0.370 0.037 9.905 1'lFs6 0.190 0.053 3.562
(XK 0.039 0.025 1.573 1'lFs7 0.191 0.053 3.602
(XL 0.064 0.033 1.919 (XF88 0.189 0.056 3.348
(XI 0.291 0.031 9.449 (XF89 0.233 0.057 4.096
(XMM 0.013 0.006 2.280 <Xf9() 0.021 0.051 0.420
(XML 0.035 0.018 1.884 I'lF9I 0.073 0.056 1.306
(XMI -0.038 0.016 -2.344 1'lF92 0.105 0.044 2.377
(XMF -0.030 0.018 -1.634 <Xus 0.058 0.067 0.866
(XMK 0.008 0.012 0.683 <Xu6 -0.126 0.056 -2.274
(XFF 0.095 0.012 8.270 (XU<7 -0.082 0.053 -1.561

l'lFK -0.032 0.024 -1.316 <Xu8 -0.095 0.047 -2.030
(XLF -0.033 0.037 -0.912 (XU<9 0.010 0.041 0.235
(XIF -0.045 0.022 -2.014 (XL90 0.007 0.045 0.145
(XKK 0.021 0.008 2.782 <XL91 -0.005 0.048 -0.097
(XLK -0.036 0.022 -1.674 <XLn -0.009 0.040 -0.220
(XIK 0.027 0.011 2.400 (X18S 0.097 0.046 2.109
<XLL 0.011 0.019 0.567 (X186 0.061 0.050 1.223
(XLI -0.044 0.027 . -1.614 (X187 0.020 0.041 0.498
(XII 0.052 0.004 11.736 (X188 -0.062 0.039 -1.577
(X8S -0.283 0.041 -6.871 (X189 -0.167 0.048 -3.506

<Xs6 -0.281 0.034 -8.300 (XI90 -0.009 0.047 -0.181

<Xs7 -0.262 0.027 -9.585 (X191 -0.031 0.038 -0.813

<Xs8 -0.194 0.023 -8.555 (X192 -0.112 0.037 -3.012
<Xs9 -0.164 0.022 -7.520 (XK8S -0.013 0.035 -0.362
<Xw -0.167 0.025 -6.632 (XK86 0.018 0.034 0.517
<X91 -0.136 0.021 -6.332 (XK87 -0.047 0.034 -1.379
<X92 -0.119 0.022 -5.515 (XK88 0.007 0.029 0.230
(XM8S -0.092 0.041 -2.258 (XK89 -0.016 0.029 -0.546
(XM86 -0.102 0.037 -2.783 (XK90 -0.068 0.026 -2.600
(XM87 -0.098 0.032 -3.013 (XK91 0.008 0.029 0.279
(XM88 -0.070 0.028 -2.545 (XK92 -0.018 0.025 -0.712
(XM89 -0.080 0.028 -2.858
(XM90 -0.003 0.026 -0.125
(XM91 -0.038 0.026 -1.468 Log-likel. 861.177
(XM92 -0.007 0.024 -0.284 R2-adj. 0.936
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Table9.AS JP1 with Firm-Specific Fixed Effects Estimated by OLS

CoetT. St.error t-value CoetT. St.error t-value
(XM 0.008 0.029 0.290 (XICK 0.008 0.008 1.060
<Xi: 0.423 0.044 9.502 (XLK -0.072 0.030 -2.354
(XK 0.029 0.027 1.086 (XIK -0.004 0.021 -0.178
(XL 0.116 0.043 2.685 (XLL -0.053 0.028 -1.873
(XI 0.301 0.038 7.963 (XLI -0.047 0.046 -1.014
(XMM -0.009 0.006 -1.361 (Xn -0.073 0.020 -3.662
(XML 0.060 0.031 1.945 (XT 0.003 0.010 0.257
(XMI 0.002 0.021 0.108 (XTT 0.002 0.001 1.543
(XMF -0.071 0.022 -3.202 (XMT 0.011 0.004 2.777
(XMK 0.001 0.018 0.029 <XFT 0.004 0.006 0.716

<lFF -0.037 0.021 -1.741 (XKT 0.003 0.004 0.849
<XFK 0.018 0.023 0.798 <Xt.T -0.003 0.006 -0.572
<Xu 0.073 0.043 1.702 (XIT -0.004 0.006 -0.680
(XIF 0.166 0.033 5.048

Log-likel. 889.045
R2-adj. 0.873
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Table9.A6 V1 and JP1 with Firm-Specific Fixed Effects Estimated by FGLS

Coeff. St.error t-value Coeff. St.error t-value
~M -0.027 0.073 -0.374 ~I 0.263 0.111 2.381

~F 0.580 0.124 4.689 rh 0.114 0.095 1.201

~K 0.096 0.074 1.305 !hr -0.003 0.009 -0.348

~L -0.030 0.126 -0.236 ~ -5.595 0.226 -24.784

Log-likel. -4432.21
R2-adj. 0.083

Coeff. St.error t-value Coeff. St.error t-value
(lM -0.024 0.026 -0.924 (lKK -0.001 0.009 -0.139

<lF 0.465 0.042 11.114 (lLK -0.050 0.034 -1.493
(lK 0.029 0.023 1.276 (lIK 0.009 0.032 0.273

<XL 0.093 0.036 2.578 (lLL -0.045 0.026 -1.705
(lI 0.347 0.035 9.800 (lu -0.117 0.052 -2.249
(lMM -0.001 0.008 -0.166 (ln -0.056 0.026 -2.134
(lML 0.078 0.035 2.245 (lT 0.009 0.008 1.180
(lMI 0.013 0.026 0.490 (lTT 0.001 0.001 1.005
(lMF -0.132 0.026 -5.019 (lMT 0.015 0.004 4.039
(lMK 0.D15 0.021 0.702 (lFT 0.001 0.006 0.147
(lFF 0.005 0.031 0.152 (lKT -0.001 0.004 -0.227
(lFK 0.025 0.031 0.786 (lLT 0.000 0.005 -0.045
(lLF 0.066 0.054 1.237 (lIT -0.006 0.005 -1.125
(lIF 0.140 0.048 2.946

Log-likel. 1135.70
R2-adj. 0.881
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Table9.A7 V2 and JP1 with Firm-Specific Fixed Effects Estimated by FGLS

Coeff. St.error t-value Coeff. St.error t-value

~M 0.153 0.080 1.908 ~I 0.162 0.090 1.807

~F 0.537 0.113 4.773 J3-r -0.069 0.100 -0.689

~K 0.230 0.082 2.824 ~ 0.013 0.009 1.448

~L -0.104 0.140 -0.746 ~o -4.032 0.254 -15.894

Log-likel. -4419.85
R2-adj. 0.095

Coeff. St.error t-value Coeff. St.error t-value
<XM -0.022 0.027 -0.820 (lKK -0.001 0.009 -0.169
(lp 0.445 0.039 11.337 ClLK -0.036 0.033 -1.071
(lK 0.020 0.023 0.882 (lIK 0.009 0.028 0.322

ClL 0.107 0.035 3.095 ClLL -0.057 0.027 -2.132
(lI 0.363 0.033 10.882 (lLl -0.140 0.053 -2.659
(lMM 0.009 0.008 1.183 (lrr -0.060 0.025 -2.450
(lML 0.063 0.036 1.740 (lT 0.006 0.007 0.855
(lMl 0.024 0.025 0.930 arr 0.001 0.001 1.366
(lMF -0.162 0.023 -7.184 (lMT 0.016 0.004 4.215
(lMK 0.010 0.021 0.447 (lFT 0.000 0.006 0.052
(lFF 0.013 0.027 0.494 (lKT 0.000 0.004 0.095
(lFK 0.019 0.029 0.668 (lLT 0.002 0.005 0.286
(lLP 0.095 0.051 1.847 (lIT -0.008 0.005 -1.610
(l1F 0.153 0.044 3.497

Log-likel. 1142.43
R2-adj. 0.892
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Coefl.

Table 9.A8 V1 and JP2 with Firm-Specific Fixed Effects Estimated by FGLS

St.errorSt.error t-value

~M

~F

~K

~L

~I

~8S

~86

-0.061
0.531
0.112
-0.189
0.273
-0.367
-0.443

Log-likel.
R2-adj.

-4493.69
0.060

0.074
0.128
0.074
0.127
0.117
0.250
0.243

-0.824
4.139
1.519
-1.496
2.332
-1.468
-1.819

CoetJ. t-value

~8?

~88

~89

l3ro
~91

~2

~o

-0.375
-0.459
0.024
-0.311
0.105
0.138
-4.805

0.236
0.221
0.217
0.220
0.232
0.222
0.211

-1.590
-2.082
0.112
-1.414
0.453
0.624

-22.822

CoetJ. t-valueSt.error t-value
(XM

(XF

(XK

(XL

(XI

(XMM

(XML

(XMI

(XMF

(XMK

(XFF

(XFK

(XLF

(XIF

(XKK

<XLK

(XIK

(XLL

<XLI

(Xn

0.110
0.400
0.046
0.101
0.411
0.001
0.045
-0.004
-0.057
0.001
0.012
-0.009
0.021
0.056
0.001
-0.032
0.032
-0.021
-0.048
-0.021
-0.127
-0.088
-0.023
-0.028
-0.008
0.006
-0.022
0.032
-0.074
-0.116
-0.108
-0.075
-0.068
-0.005
-0.027
-0.033

ass
as6
as?
ass
as9
<l9o
<X91
<X92
(XM8S

(XM86

(XM8?

(XM88

(XM89

(XM90

(XM91

(XM92

0.027
0.045
0.034
0.051
0.041
0.004
0.017
0.014
0.014
0.010
0.016
0.016
0.027
0.025
0.004
0.016
0.016
0.013
0.028
0.014
0.047
0.047
0.048
0.047
0.050
0.047
0.050
0.047
0.046
0.035
0.031
0.029
0.029
0.028
0.026
0.026

4.119
8.907
1.357
1.988

10.056
0.287
2.726
-0.258
-3.952
0.134
0.763
-0.603
0.803
2.249
0.161
-2.043
1.950
-1.639
-1.737
-1.502
-2.740
-1.871
-0.473
-0.588
-0.160
0.130
-0.450
0.679
-1.617
-3.332
-3.466
-2.582
-2.357
-0.166
-1.059
-1.308

CoetJ. St.error

(XF91

<XF92
(XLSS

(XLS6

(XLS?

(XLS8

<lu9

<XL90

(XL91

(XL92

(X18S

(X186

(X18?

(X188

(X189

(X190

(X191

(X192

(XKSS

(XU6

(XU?

(XU8

(XU9

(XK90

(XK91

(XK92

Log-likel. ,
R2-adj.

-0.063
0.008
0.075
0.134
0.177
0.017
0.043
0.088
0.032
-0.036
-0.055
-0.053
0.009
-0.007
-0.032
-0.023
-0.017
-0.065
-0.118
-0.162
-0.249
-0.119
-0.118
-0.160
-0.015
0.014
-0.024
0.002
-0.019
-0.064
0.015
-0.034

1208.75
0.886

0.065
0.063
0.057
0.051
0.050
0.046
0.053
0.044
0.051
0.046
0.049
0.045
0.044
0.046
0.054
0.046
0.053
0.055
0.051
0.047
0.047
0.039
0.042
0.043
0.038
0.034
0.034
0.033
0.034
0.033
0.036
0.036

-0.970
0.130
1.307
2.647
3.544
0.383
0.801
1.985
0.627
-0.771
-1.131
-1.189
0.195
-0.159
-0.591
-0.502
-0.325
-1.194
-2.320
-3.497
-5.345
-3.036
-2.820
-3.756
-0.398
0.420
-0.698
0.067
-0.551
-1.903
0.416
-0.958
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CoetT.

Table 9.A9 V2 and JP2 with Firm-Specific Fixed Effects Estimated by FGLS

St.errorSt.error t-value
0.145
0.470
0.159
-0.204
0.144
-0.238
-0.430

Log-likel.
R2-adj.

-4491.91
0.062

0.081
0.116
0.082
0.140
0.092
0.261
0.249

1.786
4.042
1.937
-1.453
1.568
-0.911
-1.729

~87

~88

~89

~90

~91

~92

~o

CoetT.
-0.405
-0.602
-0.148
-0.423
0.024
0.122
-3.863

0.239
0.218
0.214
0.214
0.226
0.220
0.162

t-value
-1.694
-2.761
-0.692
-1.980
0.108
0.556

-23.834

CoetT. t-valueSt.error t-value
0.123
0.389
0.060
0.116
0.391
0.003
0.041
-0.004
-0.062
0.004
0.010
-0.015
0.030
0.071
-0.001
-0.020
0.025
-0.026
-0.057
-0.023
-0.122
-0.083
-0.042
-0.040
-0.025
0.008
-0.026
0.026
-0.085
-0.124
-0.119
-0.087
-0.084
-0.011
-0.023
-0.037

au.
<Xu
(lu

ass
as6
as7
ass
<ls9
<X9o
(Xg1

(Xg2

(lM8S

~86

~87

(lM88

(lM89

(lM90

(lM91

(lM92

0.028
0.043
0.034
0.053
0.039
0.004
0.018
0.014
0.014
0.011
0.015
0.014
0.026
0.023
0.004
0.016
0.014
0.013
0.029
0.013
0.045
0.045
0.046
0.045
0.048
0.045
0.048
0.045
0.050
0.037
0.034
0.031
0.030
0.029
0.028
0.028

4.359 <XFss

8.958 <XFs6
1.771 (lF87

2.212 (lF88

9.976 <XFs9
0.732 <XF9O

2.290 <lF91

-0.308 (lF92

-4.469 (lL8S

0.422 (lL86

0.657 (lL87

-1.059 (lL88

1.147 (lL89

3.097 «kCJO

-0.339 «k91
-1.218 «k92

1.752 (l18S

-1.932 (l186

-1.992 (l187

-1.784 (l188

-2.681 (l189

-1.833 (loo

-0.915 (l191

-0.889 (l192

-0.514 (lK8S

0.174 (lK86

-0.532 (lK87

0.588 (lK88

-1.694 (lK89

-3.381 (lK90

-3.482 (lK91

-2.832 (lK92

-2.749
-0.390
-0.840 Log-likel.
-1.325 R2-adj.

CoetT.
-0.056
0.003
0.068
0.124
0.181
0.011
0.033
0.071
0.011
-0.041
-0.044
-0.046
0.008
-0.004
-0.029
-0.028
0.020
-0.048
-0.090
-0.129
-0.214
-0.103
-0.092
-0.143
-0.029
-0.005
-0.037
-0.015
-0.035
-0.075
-0.013
-0.027

1209.53
0.893

St.error
0.064
0.063
0.057
0.050
0.049
0.045
0.052
0.043
0.054
0.048
0.051
0.047
0.046
0.049
0.056
0.050
0.052
0.055
0.051
0.046
0.046
0.039
0.042
0.042
0.038
0.035
0.034
0.032
0.034
0.034
0.036
0.035

-0.871
0.046
1.198
2.502
3.714
0.251
0.643
1.781
0.204
-0.845
-0.865
-0.986
0.170
-0.084
-0.512
-0.573
0.383
-0.881
-1.789
-2.822
-4.638
-2.666
-2.190
-3.398
-0.768
-0.150
-1.086
-0.449
-1.021
-2.196
-0.356
-0.769
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CoetT.

Table 9.A10 V1 and JP2 with Firm-Specific Fixed Effects Estimated by ML

St.errorSt.error t-value
0.126
0.532
0.159
-0.122
0.350
-0.401
-0.510

0.047
0.082
0.047
0.081
0.075
0.159
0.155

2.694 ~87

6.514 ~88

3.374 ~89

-1.516 ~90

4.692 ~91

-2.517 ~92

-3.289 ~o

CoetT.
-0.360
-0.356
-0.007
-0.096
-0.053
0.070
-4.958

0.150
0.141
0.138
0.140
0.148
0.141
0.134

t-value
-2.396
-2.535
-0.052
-0.682
-0.360
0.496

-36.985

CoetT. t-valueSt.error t-value

<XF
(XK

<XL
(XI

(XMM

(XML

(XMI

(XMP

(XMK

(XFF

(XFK

(XLF

(XIF

(XKK

(XLK

(XIK

0.111
0.410
0.041
0.125
0.403
-0.001
0.049
-0.001
-0.060
0.004
0.014
-0.007
0.011
0.058
-0.002
-0.026
0.033
-0.021
-0.061
-0.018
-0.108
-0.072
-0.016
-0.023
0.003
0.017
-0.021
0.039
-0.084
-0.120
-0.111
-0.079
-0.081
-0.013
-0.032
-0.033

(XMSS

(XM86

<XMS7

(XMSS

(XMS9

(XM90

(XM91

(XM92

0.029
0.044
0.034
0.052
0.040
0.005
0.018
0.015
0.016
0.011
0.017
0.017
0.028
0.026
0.005
0.017
0.017
0.013
0.029
0.014
0.045
0.045
0.046
0.046
0.048
0.047
0.047
0.045
0.045
0.035
0.033
0.031
0.031
0.031
0.028
0.029

3.809 <XFss

9.355 <XFs6

1.194 <XFs7
2.429 (XF8S

10.026 (XF89

-0.109 <lPJO

2.698 (XF91

-0.082 <XF92
-3.736 (XLSS

0.352 (XL86

0.832 au7
-0.411 aus
0.402 (XL89

2.253 (XL90

-0.505 <XL91

-1.560 <XL92
1.911 (XISS

-1.662 (XIS6

-2.102 (XIS7

-1.294 (X188

-2.395 (XIS9

-1.602 (X190

-0.347 (X191

-0.491 (Xm

0.061 (XKSS

0.365 (XK86

-0.440 (XK87

0.857 (XK88

-1.870 (XK89

-3.438 (XK90

-3.332 (XK91

-2.545 (XK92

-2.646
-0.412
-1.156
-1.151 Log-likel.

Coeff.
-0.072
0.012
0.067
0.129
0.172
0.009
0.029
0.086
0.009
-0.054
-0.066
-0.066
-0.004
-0.019
-0.040
-0.031
0.003
-0.058
-0.103
-0.150
-0.237
-0.104
-0.094
-0.153
-0.015
0.013
-0.023
0.007
-0.012
-0.062
0.015
-0.038

1231.195

St.error
0.061
0.059
0.055
0.051
0.049
0.048
0.053
0.044
0.051
0.046
0.049
0.046
0.045
0.050
0.055
0.048
0.050
0.051
0.050
0.046
0.046
0.040
0.041
0.041
0.037
0.034
0.034
0.033
0.034
0.035
0.036
0.037

-1.193
0.197
1.215
2.546
3.484
0.191
0.545
1.973
0.184
-1.169
-1.329
-1.425
-0.079
-0.386
-0.734
-0.658
0.063
-1.139
-2.082
-3.258
-5.217
-2.588
-2.323
-3.700
-0.399
0.376
-0.689
0.205
-0.356
-1.769
0.420
-1.026
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CoetT.

Table 9.A11 V2 and JP2 with Firm-Specific Fixed Effects Estimated by ML

St.errorSt.error t-value

~M
~F

~K

~L
~I

~85

~86

0.358
0.376
0.154
-0.028
0.163
-0.336
-0.648

0.052
0.074
0.052
0.089
0.058
0.166
0.158

6.929 ~87

5.079 ~88

2.951 ~89

-0.315 1300
2.794 ~91

-2.026 ~92

-4.095 ~o

CoetT.
-0.590
-0.515
-0.239
-0.258
-0.147
0.003
-3.502

0.152
0.139
0.136
0.136
0.144
0.140
0.103

t-value
-3.872
-3.712
-1.754
-1.897
-1.021
0.021

-33.948

CoetT. t-valueSt.error t-value
(lM

(lp

(lK

(lL

(lI

(lMM

(lML

<XMI
(lMP

(lMK

(lff

(lfK

(lLP

(llf

(lKK

<Xt.K
(lIK

(lLL

<Xu
(ln

ass
<Xs6

<Xs7

<Xss

<Xs9

<X9o
<X91

<X92

(lMSS

(lMS6

<XMS7

(lM88

(lM89

(lM90

(lM91

(lM92

0.118
00407
0.060
0.136
0.395
0.002
0.047
-0.005
-0.062
0.007
0.011
-0.014
0.014
0.075
-0.004
-0.017
0.027
-0.025
-0.061
-0.024
-0.098
-0.055
-0.033
-0.034
-0.012
0.021
-0.017
0.040
-0.094
-0.120
-0.115
-0.093
-0.090
-0.008
-0.025
-0.029

0.029
0.042
0.034
0.052
0.038
0.005
0.019
O.ot5
0.015
0.011
0.015
0.015
0.027
0.024
0.004
0.016
O.ot5
0.013
0.029
0.013
0.043
0.043
0.044
0.044
0.046
0.045
0.046
0.043
0.048
0.036
0.034
0.032
0.031
0.031
0.028
0.028

4.108 (lpgs

9.616 (lpg6

1.762 (lpg7

2.592 (lm

10.292 ~
0.385 <XF9o

2.540 <lF91

-0.373 (lm

-4.224 <Xt.ss
0.595 (lL86

0.698 <Xt.s7

-0.923 <Xt.ss

00493 (lL89

3.168 (lL90

-0.879 CXt.91

-1.023 (lL92

1.800 (lISS

-1.909 (lIS6

-2.093 (lIS7

-1.885 (l188

-2.248 (l189

-1.291 (l190

-0.758 (l191

-0.786 (l192

-0.257 (lKSS

00474 (lKS6

-0.382 (lKS7

0.932 (lK88

-1.947 (lK89

-3.379 (lK90

-3.397 (lK91

-2.931 (lK92

-2.928
-0.274
-0.903
-1.027 Log-likel.

CoetT.
-0.057
0.005
0.068
0.124
0.177
0.003
0.021
0.068
-0.006
-0.062
-0.048
-0.050
-0.009
-0.019
-0.043
-0.038
0.025
-0.055
-0.093
-0.130
-0.204
-0.098
-0.074
-0.139
-0.026
-0.007
-0.036
-0.006
-0.028
-0.070
-0.005
-0.030

1235041

St.error
0.060
0.058
0.054
0.050
0.048
0.047
0.051
0.042
0.053
0.048
0.050
0.047
0.046
0.052
0.056
0.051
0.049
0.050
0.048
0.046
0.045
0.040
0.041
0.041
0.037
0.034
0.033
0.033
0.034
0.036
0.036
0.036

-0.950
0.085
1.258
20466
3.704
0.073
0.399
1.614
-0.106
-1.289
-0.950
-1.054
-0.187
-0.371
-0.769
-0.746
0.511
-1.087
-1.934
-2.831
-4.563
-20481
-1.827
-30423
-0.704
-0.196
-1.066
-0.188
-0.832
-1.974
-0.130
-0.848

223



CoelY.

Table 9.A12 V1 and JP2 Pooled Estimated by FGLS

t-value
-0.022
0.569
0.073
-0.037
0.300
-1.143
-1.121

Log-likel.
R2-adj.

-4450.71
0.1198

St.error
0.074
0.128
0.074
0.127
0.117
0.250
0.243

-0.296
4.441
0.987
-0.293
2.560
-4.570
-4.606

CoetT.
-0.445
-0.215
0.127
-0.292
-0.029
0.253
-4.740

St.error
0.236
0.221
0.217
0.220
0.232
0.222
0.211

t-value
-1.887
-0.972
0.588
-1.326
-0.126
1.139

-22.514

CoetT. t-valueSt.error t-value

aK

aL
al
aMM

aML
aMI

aMF
aMK

0.106
0.456
0.029
0.074
0.475
0.002
0.020
-0.006
-0.053
0.018
0.027
-0.008
0.013
0.016
-0.003
-0.018
0.021
0.004
-0.057
-0.013
-0.064
-0.049
-0.019
-0.026
-0.024
-0.003
-0.036
0.034
-0.063
-0.133
-0.111
-0.071
-0.083
-0.020
-0.014
-0.041

aM8S

aM86

aM87

aM88

<XM89
aM90
aM91

aM92

0.025
0.045
0.032
0.044
0.040
0.004
0.016
0.013
0.014
0.010
0.017
0.017
0.026
0.026
0.004
0.014
0.016
0.010
0.025
0.013
0.041
0.042
0.044
0.045
0.050
0.046
0.048
0.049
0.033
0.028
0.029
0.029
0.029
0.027
0.025
0.027

4.180 <XFss

10.055 aF86

0.895 <XFs7

1.676 <XFs8
11.928 <XFs9
0.388 <lf9()

1.245 aF91

-0.422 <XF92

-3.680 <Xus

1.788 aL86

1.525 aL87
-0.496 <Xu8

0.474 <XL89
0.636 <XL90

-0.874 <XL91

-1.355 <XL92

1.337 aI85

0.366 aI86

-2.259 aI87

-0.988 aI88

-1.563 aI89

-1.169 aI90

-0.439 aI91

-0.587 aI92

-0.485 aKS5

-0.068 aKS6

-0.752 aKS7

0.687 aK88
-1.907 aKS9

-4.795 aK90
-3.875 aK9I

-2.655 aK92

-2.832 <l()

-0.745
-0.575 Log-likel.
-1.520 R2-adj.

CoetT.
-0.025
0.109
0.130
0.128
0.201
0.029
0.040
0.102
-0.001
-0.067
-0.044
-0.048
-0.027
-0.021
-0.047
-0.027
-0.077
-0.094
-0.126
-0.115
-0.197
-0.101
-0.091
-0.166
-0.017
0.008
-0.034
-0.009
-0.024
-0.056
0.004
-0.030
0.056

1050.60
0.9212

St.error
0.050
0.051
0.053
0.052
0.052
0.045
0.052
0.048
0.044
0.043
0.047
0.046
0.047
0.048
0.055
0.051
0.040
0.043
0.047
0.047
0.047
0.038
0.040
0.045
0.033
0.031
0.033
0.033
0.035
0.033
0.035
0.038
0.041

-0.506
2.162
2.443
2.447
3.868
0.645
0.769
2.138
-0.032
-1.558
-0.929
-1.057
-0.575
-0.431
-0.844
-0.531
-1.943
-2.204
-2.700
-2.456
-4.216
-2.618
-2.292
-3.742
-0.531
0.270
-1.043
-0.262
-0.702
-1.692
0.103
-0.779
1.360
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CoetJ.

Table 9.A13 V2 and JP2 Pooled Estimated by FGLS

St.error t-value
0.171
0.468
0.137
-0.093
0.248
-0.953
-1.087

Log-likel.
R2-adj.

-4445.32
0.1247

0.081
0.116
0.082
0.140
0.092
0.261
0.249

2.110
4.027
1.668
-0.666
2.705
-3.654
-4.374

CoetJ. St.error t-value

~S7

~88

~S9

f3w
~I

~2

~o

-0.461
-0.354
-0.070
-0.440
-0.137
0.226
-3.533

0.239
0.218
0.214
0.214
0.226
0.220
0.162

-1.928
-1.627
-0.329
-2.060
-0.607
1.028

-21.798

CoetJ. t-valueSt.error t-value
0.141
0.444
0.035
0.090
0.418
0.007
0.023
-0.004
-0.070
0.014
0.019
-0.011
0.014
0.046
-0.003
-0.011
0.014
-0.002
-0.062
-0.012
-0.090
-0.076
-0.059
-0.060
-0.053
-0.017
-0.055
0.000
-0.095
-0.157
-0.137
-0.105
-0.117
-0.046
-0.039
-0.066

(Xn

(XMS'

(XMS6

(XMS7

(XMSS

(XMS9

(XM90

<XM91
(XM92

0.027
0.041
0.031
0.044
0.037
0.004
0.017
0.013
0.013
0.010
0.014
0.014
0.025
0.022
0.004
0.014
0.014
0.011
0.025
0.012
0.039
0.039
0.040
0.042
0.047
0.043
0.045
0.044
0.036
0.030
0.032
0.031
0.031
0.028
0.027
0.029

5.254
10.732
1.119
2.042
11.276
1.583
1.362

-0.322
-5.354
1.390
1.334
-0.815
0.550
2.077
-0.762
-0.779
0.965
-0.160
-2.449
-1.045
-2.332
-1.978
-1.467
-1.450
-1.122
-0.405
-1.241
0.006
-2.617
-5.325
-4.338
-3.372
-3.795
-1.607
-1.435
-2.290

CoetJ. St.error
<lFs,

<lFs6

<lFs7

<lFss

<lFs9
(XF9Q

(lpgl

(lpg2

<Xu,
<Xu6
(XLB7

<Xus
(XLB9

(XL90

(k91

(k92

(XIS'

(X186

(XIS7

<liss
(XIS9

(X19O

(X19I

(X192

(XKS'

(XK86

(XKS7

(XK88

(XK89

(XK9Q

(XK91

(XK92

Log-likel.
R2-adj.

0.008
0.124
0.132
0.131
0.207
0.044
0.055
0.109
-0.023
-0.073
-0.041
-0.051
-0.031
-0.021
-0.065
-0.039
-0.036
-0.057
-0.079
-0.065
-0.146
-0.085
-0.057
-0.131
-0.016
-0.002
-0.039
-0.013
-0.031
-0.055
0.000
-0.014
0.083

1054.29
0.9381

0.047
0.048
0.052
0.050
0.050
0.044
0.050
0.046
0.045
0.043
0.047
0.046
0.047
0.048
0.055
0.053
0.039
0.042
0.046
0.046
0.046
0.038
0.040
0.043
0.032
0.031
0.033
0.033
0.035
0.034
0.035
0.038
0.038

0.169
2.574
2.547
2.599
4.162
1.003
1.114
2.376
-0.510
-1.685
-0.857
-1.110
-0.662
-0.440
-1.175
-0.733
-0.928
-1.334
-1.717
-1.428
-3.148
-2.242
-1.446
-3.033
-0.491
-0.076
-1.185
-0.394
-0.893
-1.620
-0.010
-0.382
2.156
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Coeff.

Table 9.A14 V1 and JP2 Pooled Estimated by ML

t-value

13M
I3F
I3K
I3L
131
1385
1386

0.124
0.509
0.232
-0.149
0.322
-1.331
-1.178

St.error
0.047
0.082
0.047
0.081
0.075
0.159
0.155

2.632
6.233
4.939
-1.851
4.318
-8.360
-7.606

1387
1388
1389
1390
1391
1392
130

Coeff.
-0.798
-0.486
-0.082
-0.327
-0.274
-0.182
-4.479

St.error
0.150
0.141
0.138
0.140
0.148
0.141
0.134

t-value
-5.312
-3.456
-0.593
-2.333
-1.852
-1.291

-33.417

Coeff. t-valueSt.error t-value

(lp

aK
aL
al
aMM
aML
aMI
aMF
aMK

0.115
0.463
0.038
0.081
0.457
0.000
0.027
-0.008
-0.050
0.018
0.024
0.000
-0.002
0.018
-0.008
-0.015
0.016
0.003
-0.053
-0.009
-0.062
-0.047
-0.021
-0.030
-0.019
0.003
-0.039
0.035
-0.078
-0.143
-0.117
-0.087
-0.096
-0.035
-0.025
-0.043

au
an
as,
as6
as7
as8
as9
<loo

<l91

<l92
aM~
aM86

aM87

aM88

aM89

aM90
aM91

aM92

0.030
0.047
0.036
0.045
0.041
0.005
0.017
0.015
0.016
0.011
0.018
0.019
0.026
0.026
0.005
0.014
0.017
0.010
0.025
0.013
0.042
0.043
0.044
0.045
0.050
0.048
0.049
0.047
0.035
0.031
0.031
0.031
0.032
0.031
0.029
0.030

3.880
9.929
1.041
1.787

11.124
-0.074
1.576
-0.556
-3.218
1.614
1.339
0.013
-0.083
0.686
-1.626
-1.051
0.943
0.259
-2.127
-0.706
-1.456
-1.087
-0.475
-0.650
-0.385
0.059
-0.809
0.750
-2.211
-4.581
-3.761
-2.782
-2.986
-1.115
-0.873
-1.465 Log-likel.

aF89

<XF91
aF92

aLS'

aLS8

<lL91

aK91

Coeff.
-0.021
0.114
0.122
0.142
0.190
0.025
0.036
0.100
-0.011
-0.071
-0.049
-0.057
-0.038
-0.021
-0.040
-0.038
-0.060
-0.088
-0.103
-0.109
-0.177
-0.091
-0.079
-0.155
-0.022
0.002
-0.037
-0.011
-0.018
-0.055
0.000
-0.030
0.052

1079.91

St.error
0.050
0.052
0.052
0.052
0.053
0.048
0.053
0.045
0.045
0.044
0.046
0.046
0.047
0.050
0.055
0.049
0.040
0.045 .
0.046
0.046
0.048
0.041
0.041
0.042
0.036
0.035
0.036
0.035
0.038
0.037
0.039
0.040
0.042

-0.413
2.207
2.332
2.743
3.607
0.518
0.681
2.192
-0.237
-1.612
-1.063
-1.249
-0.811
-0.425
-0.728
-0.786
-1.482
-1.975
-2.255
-2.355
-3.727
-2.232
-1.933
-3.652
-0.602
0.070
-1.035
-0.317
-0.473
-1.466
0.009
-0.761
1.234
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Coeft'.

Table 9.A15 V2 and JP2 Pooled Estimated by ML

t-value

~M
~F

~K

~L
~I

~8S

~86

0.356
0.355
0.171
-0.034
0.194
-1.293
-1.321

St.error
0.052
0.074
0.052
0.089
0.058
0.166
0.158

6.897 ~87

4.800 ~88

3.285 ~89

-0.376 ~90

3.321 ~91

-7.785 ~92

-8.345 ~o

Coeft'.
-0.959
-0.634
-0.296
-0.472
-0.382
-0.218
-3.037

St.error
0.152
0.139
0.136
0.136
0.144
0.140
0.103

t-value
-6.296
-4.567
-2.175
-3.466
-2.653
-1.554

-29.435

Coeft'. t-valueSt.error t-value
(lM

<Xi:
(lK

<XL
(lI

(lMM

(lMl.

(lMl

(lMF

(lMK

0.140
0.469
0.041
0.094
0.411
0.004
0.032
-0.013
-0.064
0.018
0.015
-0.013
0.000
0.049
-0.004
-0.010
0.011
-0.002
-0.060
-0.009
-0.067
-0.051
-0.037
-0.038
-0.028
0.007
-0.036
0.020
-0.107
-0.159
-0.140
-0.112
-0.127
-0.046
-0.042
-0.062

(lM8S

(lM86

(lM87

(lM88

(lM89

(lM90

(lM91

(lM92

0.030
0.043
0.034
0.046
0.038
0.004
0.018
0.014
0.014
0.010
0.015
0.014
0.025
0.022
0.004
0.014
0.014
0.011
0.025
0.012
0.040
0.040
0.041
0.043
0.048
0.046
0.046
0.044
0.037
0.032
0.033
0.033
0.033
0.032
0.030
0.030

4.743 (lru

11.003 <XFs6

1.228 <XFs7
2.021 <XFs8

10.705 (lF1l9

0.962 ClF9()

1.826 <XF91
-0.926 (lm

-4.534 (lw

1.772 <Xt.s6

1.028 <Xt.s7
-0.863 (lL88

-0.004 <Xt.s9
2.213 (lL90

-1.083 <XL91
-0.710 <XL92

0.794 (l18S

-0.187 (l186

-2.387 (l187

-0.752 (l188

-1.660 (lJ89

-1.277 (lJ90

-0.902 (lJ9J

-0.881 (l192

-0.594 (lKSS

0.151 (lKS6

-0.779 (lKS7

0.446 (lK88

-2.891 (lKS9

-4.937 (lK90

-4.300 (lK91

-3.408 (lK92

-3.841 ~
-1.444
-1.407
-2.064 Log-likel.

Coeft'.
-0.001
0.116
0.122
0.132
0.183
0.021
0.039
0.096
-0.025
-0.078
-0.043
-0.058
-0.034
-0.021
-0.060
-0.046
-0.025
-0.055
-0.073
-0.070
-0.125
-0.080
-0.051
-0.124
-0.024
-0.011
-0.045
-0.015
-0.033
-0.057
-0.005
-0.021
0.057

1075.57

St.error
0.047
0.049
0.050
0.051
0.051
0.047
0.051
0.044
0.047
0.046
0.048
0.048
0.050
0.052
0.057
0.052
0.040
0.043
0.045
0.046
0.047
0.041
0.041
0.042
0.034
0.033
0.034
0.035
0.037
0.037
0.038
0.038
0.040

-0.017
2.338
2.426
2.603
3.619
0.446
0.753
2.184
-0.524
-1.701
-0.901
-1.223
-0.686
-0.398
-1.055
-0.876
-0.638
-1.255
-1.645
-1.507
-2.667
-1.962
-1.237
-2.992
-0.711
-0.321
-1.319
-0.435
-0.905
-1.550
-0.127
-0.549
1.430
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CoetT.

Table 9.A16. V1 and JP2 with Firm-Specific Random Effects Estimated by FGLS proc. RA1'

t-valueSt.error t-value
-0.061
0.531
0.112
-0.189
0.273
-0.367
-0.443

Log-likel. -4493.69

0.074
0.128
0.074
0.127
0.117
0.250
0.243

-0.824
4.139
1.519
-1.496
2.332
-1.468
-1.819

CoetT. St.error
-0.375 0.236
-0.460 0.221
0.024 0.217
-0.311 0.220
0.105 0.232
0.138 0.222
-4.805 0.211

0.0605

-1.590
-2.082
0.112
-1.414
0.453
0.624

-22.822

CoetT. t-valaeSt.error t-value
(lM

(lp

(lK

<XL
(lI

(lMM

(lML

(lMI

(lMf

(lMK

0.102
0.453
0.095
0.092
0.348
0.000
0.048
-0.017
-0.039
-0.005
-0.013
0.005
0.004
0.089
0.004
-0.034
0.003
-0.027
-0.026
-0.021
-0.146
-0.097
-0.009
-0.012
-0.006
0.020
-0.008
0.021
-0.093
-0.111
-0.083
-0.054
-0.052
0.029
-0.020
-0.019

<Xu.

<XLI
(ln

ass
as6
as7
as8
<Xs9

aw
<X91

<X92

(lM8S

(lM86

(lM87

(lM88

(lM89

(lM90

(lM91

(lM92

0.022
0.036
0.027
0.047
0.032
0.003
0.014
0.011
0.011
0.008
0.010
0.011
0.022
0.017
0.004
0.014
0.011
0.013
0.023
0.010
0.046
0.047
0.047
0.046
0.045
0.043
0.044
0.038
0.055
0.041
0.032
0.029
0.024
0.023
0.021
0.020

4.611
12.518
3.518
1.967

10.880
0.126
3.385
-1.631
-3.499
-0.577
-1.233
0.479
0.202
5.210
1.187
-2.405
0.318
-2.119
-1.116
-2.207
-3.189
-2.062
-0.197
-0.261
-0.144
0.458
-0.173
0.550
-1.701
-2.740
-2.601
-1.894
-2.145
1.221
-0.938
-0.950

CoetT. St.error
(lf8S

{lf86

{lf87

{lf88

am
(lf90

(lf91

{lf92

<Xt.ss

(l1.89

(lL90

(lL91

<XLn
(l18S

CXJ86

CXJ87

(lI88

(lI89

(loo

(lI91

(lm

(lK8S

(lK86

(lK87

(lK88

(lK89

(lK90

(lK91

(lK92

exa,,~
Log-likel.
R2-adj.

-0.018
-0.041
0.014
0.017
0.093
-0.057
0.044
0.017
0.060
-0.018
-0.051
-0.020
0.041
0.018
-0.024
-0.002
0.022
0.020
-0.063
-0.065
-0.167
-0.093
-0.097
-0.122
-0.057
-0.017
-0.059
-0.039
-0.063
-0.079
-0.026
-0.016
0.1187
0.009

913.730
0.9328

0.064
0.071
0.057
0.048
0.040
0.038
0.042
0.032
0.054
0.047
0.050
0.044
0.039
0.042
0.044
0.038
0.054
0.061
0.051
0.045
0.040
0.033
0.034
0.032
0.039
0.033
0.031
0.029
0.028
0.028
0.027
0.024

0.0438

-0.284
-0.574
0.238
0.354
2.340
-1.513
1.051
0.532
1.119
-0.377
-1.013
-0.462
1.040
0.425
-0.541
-0.047
0.408
0.334
-1.235
-1.445
-4.232
-2.857
-2.872
-3.771
-1.479
-0.529
-1.879
-1.339
-2.248
-2.831
-0.984
-0.670
2.7127

* The parameter estimates of the variance function are the same as those of the FE model.
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Coeff.

Table 9.A17. V2 and JP2 with Firm-Specific Random Effects Estimated by FGLS proc. RA1·

t-valueSt.error t-value

~M
~F

~K
~L
~I

~85

~86

0.145
0.470
0.159
-0.204
0.144
-0.238
-0.430

Log-likel. -4491.91

0.081
0.116
0.082
0.140
0.092
0.261
0.249

1.786
4.042
1.937
-1.453
1.568
-0.911
-1.729

Coeff. St.error
~87

~88

~89

~90

~91

~92

~o

-0.405
-0.602
-0.148
-0.423
0.024
0.122
-3.863

0.0622

0.239
0.218
0.214
0.214
0.226
0.220
0.162

-1.694
-2.761
-0.692
-1.980
0.108
0.556

-23.835

Coeff. t-valueSt.error t-value
0.097
0.451
0.095
0.091
0.354
0.000
0.046
-0.015
-0.037
-0.003
-0.011
0.003
0.007
0.082
0.004
-0.034
0.003
-0.027
-0.024
-0.021
-0.148
-0.098
-0.012
-0.015
-O.OlD
0.019
-0.009
0.019
-0.090
-0.110
-0.081
-0.053
-0.050
0.028
-0.017
-0.017

(ln

<lss

ase.
as7
asB
<lø9

<loo

<l91

<l92
<lMøs

(lMB6

(lM87

(lMBB

<lM89
(lM9Q

(lM91

(lM92

0.022
0.037
0.027
0.047
0.032
0.003
0.014
0.011
0.011
0.008
0.011
0.011
0.022
0.017
0.004
0.014
0.011
0.012
0.024
0.010
0.046
0.047
0.047
0.046
0.045
0.043
0.044
0.038
0.054
0.040
0.031
0.029
0.024
0.023
0.021
0.020

4.418
12.350
3.538
1.945

11.055
-0.073
3.255
-1.403
-3.322
-0.377
-1.043
0.305
0.327
4.762
1.159
-2.479
0.318
-2.145
-1.029
-2.174
-3.241
-2.099
-0.264
-0.316
-0.214
0.438
-0.209
0.508
-1.665
-2.735
-2.567
-1.841
-2.047
1.194
-0.831
-0.864

Coeff. St.error

am
<lui,

(lL86

(lL87

(lL8B

<luI9
(lL90

(lL91

<lL92

(lIB'

(lI86

(lIB7

(lI88

(lI89

(lI90

(lI91

(lm

(lK8S

(lKll6

(lKll7

(lKllB

(lKll9

(lK9Q

(lK91

(lK92

&!
Log-likel.
R2-adj.

-0.017
-0.038
0.019
0.022
0.097
-0.055
0.045
0.020
0.065
-0.016
-0.050
-0.018
0.040
0.020
-0.020
-0.002
0.015
0.017
-0.066
-0.070
-0.171
-0.096
-0.102
-0.125
-0.058
-0.018
-0.059
-0.041
-0.063
-0.080
-0.027
-0.017
0.118
0.009

920.856
0.9220

0.064
0.071
0.057
0.048
0.040
0.038
0.042
0.032
0.054
0.047
0.050
0.044
0.039
0.042
0.044
0.038
0.054
0.061
0.051
0.045
0.040
0.033
0.034
0.032
0.039
0.033
0.031
0.029
0.028
0.028
0.027
0.024
0.044

-0.269
-0.538
0.327
0.459
2.440
-1.456
1.091
0.617
1.206
-0.335
-0.997
-0.410
1.029
0.488
-0.467
-0.043
0.275
0.277
-1.298
-1.562
-4.325
-2.933
-3.015
-3.856
-1.511
-0.546
-1.878
-1.389
-2.260
-2.861
-0.998
-0.692
2.697

* The parameter estimates of the variance function are the same as those of the FE model.
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Table 9.A18. V1 and JP2 with Firm-Specific Random Effects Estimated by FGLS proc. RA2

CoeR. St.error t-value
0.157 0.074
0.877 0.128
-0.020 0.074
0.154 0.127
-0.111 0.117
0.963 0.250
0.879 0.243

Log-likel. -4307.73

2.130 ~87

6.837 ~88

-0.273 ~89

1.214 ~90

-0.947 ~QI

3.852 ~92

3.613 130

CoeR. St.error t-value
0.629
0.183
-0.026
0.348
0.196
-0.040
-2.848

0.0712

0.236
0.221
0.217
0.220
0.232
0.222
0.211

2.667
0.828
-0.121
1.582
0.843
-0.181

-13.526

CoeR. t-valueSt.error t-value
0.096
0.480
0.097
0.070
0.361
0.001
0.043
-0.015
-0.036
-0.005
-0.016
0.004
0.002
0.089
0.004
-0.029
0.001
-0.021
-0.027
-0.023
-0.136
-0.092
-0.013
-0.018
-0.009
0.010
-0.008
0.019
-0.085
-0.121
-0.080
-0.056
-0.047
0.028
-0.014
-0.021

(Xpp

(XfK

(XLF

(XIF

(XKK

(XLK

(XIK

(XLL

(Xu

(Xu

ass
as6
as7
as8
as9
<Xoo
<X91

<X92

<XM8S

(XM86

(XM87

(XM88

(XM89

(XM90

(XM91

(XM92

0.022
0.036
0.027
0.046
0.032
0.003
0.014
0.011
0.011
0.008
0.010
0.011
0.021
0.017
0.004
0.014
0.011
0.012
0.023
0.010
0.046
0.046
0.047
0.046
0.046
0.044
0.045
0.039
0.054
0.040
0.031
0.029
0.025
0.023
0.021
0.020

4.372
13.212
3.649
1.521

11.163
0.204
3.042
-1.382
-3.271
-0.628
-1.555
0.409
0.116
5.159
1.217
-2.108
0.071
-1.830
-1.157
-2.382
-2.994
-1.970
-0.271
-0.386
-0.192
0.237
-0.177
0.487
-1.574
-3.042
-2.533
-1.946
-1.906
1.183
-0.671
-1.029

CoeR. St.error
<XFss
<XFs6

<XFs7

<XFs8
(XF89

(XF90

<XF91
(XF92

<XLss
<XLs6

<XLs7

<XL88
(XL89

(XL90

(XL91

<XL92
(X18S

(X186

(X187

(X188

(X189

(XJ90

(X191

(X192

(XKSS

(XKS6

(XKS7

(XKS8

(XK89

(XK90

(XK91

(XK92

d";
Log-likel.
R2-adj.

-0.008
0.008
0.028
0.018
0.096
-0.043
0.031
0.016
0.066
-0.015
-0.034
-0.007
0.041
0.021
-0.024
0.008
0.009
0.007
-0.068
-0.056
-0.169
-0.095
-0.089
-0.123
-0.070
-0.027
-0.070
-0.046
-0.065
-0.083
-0.027
-0.017
0.0939
0.029

846.395
0.9389

0.063
0.070
0.057
0.048
0.040
0.038
0.042
0.033
0.053
0.047
0.050
0.044
0.040
0.042
0.045
0.039
0.053
0.061
0.051
0.046
0.040
0.033
0.035
0.033
0.038
0.033
0.031
0.029
0.028
0.028
0.027
0.025

0.0419

-0.121
0.108
0.500
0.365
2.387
-1.140
0.742
0.497
1.236
-0.327
-0.681
-0.158
1.027
0.502
-0.542
0.220
0.170
0.115
-1.325
-1.220
-4.190
-2.882
-2.576
-3.750
-1.810
-0.826
-2.247
-1.557
-2.317
-2.954
-0.996
-0.674
2.2393
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CoetT.

Table 9.A19. V2 and JP2 with Firm-Specific Random Effects Estimated by FGLS proc. RA2

t-valueSt.error t-value
0.178
0.643
-0.092
0.065
0.032
0.912
0.779

Log-likel. -4337.15

0.081
0.116
0.082
0.140
0.092
0.261
0.249

2.199
5.533
-1.119
0.461
0.346
3.495
3.136

~87

~88

~89

~90

~91

~92

~o

CoetT.
0.493
-0.027
-0.260
0.112
0.030
-0.139
-1.445

0.0428

St.error
0.239
0.218
0.214
0.214
0.226
0.220
0.162

2.061
-0.125
-1.215
0.524
0.133
-0.630
-8.913

CoetT. t-valueSt.error t-value
O.M

I:XF
aK

<XL
al
<Xt.tM
aML
aMI

aMP
aMK

0.094
0.487
0.094
0.072
0.369
0.001
0.042
-0.015
-0.036
-0.004
-0.015
0.004
0.002
0.084
0.004
-0.028
0.001
-0.020
-0.029
-0.022
-0.128
-0.084
-0.010
-0.015
-0.009
0.010
-0.009
0.020
-0.082
-0.125
-0.080
-0.056
-0.049
0.025
-0.014
-0.021

aIK

aU.
au
an
CIss
CIs6

CIs7

ass
CIs9

<X9o

~I

<l92

<XM8S

aM86

aM87

aM88

aM89

aM90
aM91

aM92

0.022
0.036
0.026
0.045
0.032
0.003
0.014
0.011
0.011
0.008
0.011
0.011
0.022
0.017
0.004
0.014
O.oIl
0.012
0.023
0.010
0.045
0.046
0.047
0.046
0.046
0.044
0.045
0.039
0.054
0.040
0.031
0.029
0.025
0.023
0.021
0.020

4.257 apss

13.389 {lf86

3.567 am
1.585 aPS8

11.520 {lf89

0.236 <XF9O

2.980 aF91

-1.376 am
-3.238 <lLss

-0.435 aL86

-1.401 aL87

0.329 <lLs8

0.075 <lLs9

4.821 aL90

1.182 <XL91
-2.089 <XL92

0.090 aI8S

-1.697 0.186

-1.250 0.187

-2.241 0.188

-2.819 0.189

-l.805 0.190

-0.213 0.191

-0.325 0.192

-0.199 aK8S
0.236 aKS6

-0.192 aKS7

0.497 aKS8

-1.531 aKS9

-3.134 aK90
-2.552 aK91

-1.954 aK92
-1.972 CXo
1.078 .,.~
-0.650 Log-like!.
-1.033 R2-adj.

CoetT.
-0.005
0.014
0.036
0.022
0.099
-0.044
0.030
0.019
0.062
-0.019
-0.034
-0.009
0.037
0.019
-0.026
0.006
0.000
0.005
-0.070
-0.056
-0.165
-0.090
-0.085
-0.123
-0.070
-0.028
-0.071
-0.047
-0.066
-0.082
-0.027
-0.018
0.083
0.019

831.238
0.9325

St.error
0.063
0.070
0.057
0.048
0.041
0.038
0.042
0.033
0.053
0.047
0.050
0.044
0.040
0.042
0.045
0.039
0.052
0.060
0.051
0.046
0.040
0.033
0.034
0.033
0.038
0.033
0.031
0.029
0.028
0.028
0.027
0.025
0.041

-0.075
0.203
0.624
0.454
2.442
-1.167
0.709
0.592
1.158
-0.408
-0.691
-0.208
0.928
0.452
-0.582
0.144
-0.006
0.076
-1.368
-1.232
-4.120
-2.757
-2.483
-3.749
-1.816
-0.846
-2.285
-1.600
-2.325
-2.938
-0.997
-0.707
2.019
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Table 9.A20. V1 and JP2 with Firm-Specific Random Effects Estimated by FGLS proc. RA2 on
Sample2

CoetT. t-valueSt.error t-value CoetT.
0.099
0.458
0.100
-0.087
-0.134
-0.409
-0.567

Log-likel. -4756.55

0.063
0.117
0.067
0.116
0.106
0.232
0.223

1.566
3.920
1.491
-0.748
-1.262
-1.763
-2.548

-0.858
-1.061
-0.512
-0.541
-0.285
-0.551
-1.191

St.error
0.217
0.202
0.194
0.200
0.212
0.199
0.188

-3.946
-5.254
-2.631
-2.704
-1.346
-2.770
-6.322

CoetT. t-valueSt.error

0.0435

t-value CoetT.
(lM

(lp

(lK

(lL

(lI

(lMM

(lML

(lMI

(lMP

(lMK

(lFF

0.028
0.589
0.139
0.002
0.298
0.002
0.026
-0.003
-0.009
0.003
0.042
-0.046
-0.007
-0.035
0.000
0.006
0.019
-0.028
-0.005
0.009
-0.191
-0.166
-0.101
-0.147
-0.137
-0.069
-0.115
-0.092
-0.008
-0.022
-0.057
-0.068
-0.085
0.009
-0.006
-0.018

(lMSS

(lMS6

(lMS7

(lMSS

(lMS9

(lM90

(lM91

(lM92

0.016
0.027
0.020
0.036
0.023
0.002
0.011
0.008
0.010
0.007
0.009
0.010
0.021
0.017
0.003
0.011
0.010
0.011
0.018
0.009
0.044
0.035
0.041
0.035
0.031
0.041
0.035
0.031
0.065
0.029
0.034
0.030
0.019
0.022
0.020
0.015

1.720 ClFss
21.836 ClFs6

7.089 ClFs7

0.059 (lF8S

13.241 (lF89

0.840 (lF90

2.412 <lF91

-0.344 <lF92

-0.949 (lL8S

0.468 (lL86

4.862 Clu7

-4.535 Clus

-0.336 ClLS9

-2.105 (lL90

-0.049 ClL91

0.504 (lL92

1.999 (lISS

-2.638 (l186

-0.288 (lIS7

1.055 (lISS

-4.351 (lIS9

-4.744 (lm

-2.456 (l191

-4.180 (lI92

-4.408 (lKSS

-1.686 (lKS6

-3.251 (lKS7

-2.955 (lK88

-0.120 (lKS9

-0.764 (lK9Q

-1.675 (lK91

-2.244 (lK92

-4.556 «lo

-0.132
-0.053
0.023
-0.028
0.089
0.002
0.007
-0.059
0.128
0.027
0.006
0.096
0.140
0.044
0.022
0.103
0.069
0.065
0.001
0.133
-0.013
-0.048
0.020
0.072
-0.135
-0.119
-0.119
-0.138
-0.179
-0.120
-0.101
-0.193
0.1570
0.039

461.091
0.9813

St.error
0.075
0.076
0.061
0.046
0.034
0.030
0.042
0.029
0.057
0.042
0.050
0.041
0.031
0.042
0.046
0.032
0.058
0.061
0.051
0.039
0.026
0.029
0.031
0.024
0.042
0.030
0.024
0.024
0.020
0.025
0.024
0.019

0.0297

-1.753
-0.696
0.384
-0.606
2.586
0.058
0.168
-2.022
2.255
0.651
0.122
2.331
4.529
1.051
0.482
3.240
1.185
1.080
0.020
3.428
-0.499
-1.652
0.629
2.959
-3.208
-3.979
-4.925
-5.804
-8.754
-4.786
-4.195

-10.023
5.2918

0.389
-0.305
-1.181

Log-likel.
R2-adj.
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Table 9.A21. V2 and JP2 with Firm-Specific Random Effects Estimated by FGLS proc. RA2 on
Sample2

CoetJ. t-valueSt.error t-value
0.104
0.299
-0.033
-0.130
-0.013
-0.479
-0.641

Log-likel. -4710.31

0.074
0.108
0.074
0.126
0.085
0.242
0.230

1.413
2.761
-0.442
-1.032
-0.155
-1.978
-2.790

CoetJ. St.error
~87

~88

~89

~90

~91

~92

~o

-0.935
-1.158
-0.625
-0.668
-0.381
-0.606
-0.594

0.0312

0.222
0.200
0.192
0.196
0.207
0.198
0.144

-4.206
-5.787
-3.254
-3.417
-1.839
-3.064
-4.117

CoetJ. t-valueSt.error t-value
0.024
0.591
0.146
-0.007
0.302
0.002
0.026
-0.004
-0.007
0.005
0.044
-0.050
-0.004
-0.042
0.000
0.003
0.020
-0.026
-0.004
0.011
-0.190
-0.167
-0.103
-0.148
-0.140
-0.066
-0.117
-0.094
-0.002
-0.018
-0.053
-0.065
-0.082
0.014
-0.002
-0.014

(XI

(XMM

(XMI..

(XMI

(XMF

(XMK

(XFF

(XFK

(Xu:

(XIF

(XKK

<X!.K

(XIIe:

<Xu.

<Xu
(XII

<XBs
<XB6
<XB1
<XB8
<XB9
(Xgo

(XgI

<X!n
(XM8S

(XM86

(XM81

(XM88

(XM89

(XM90

(XM91

(XM92

0.016
0.027
0.020
0.036
0.022
0.002
0.011
0.008
0.010
0.007
0.009
0.010
0.022
0.017
0.003
0.011
0.010
0.011
0.018
0.009
0.044
0.035
0.041
0.035
0.031
0.041
0.035
0.031
0.065
0.029
0.034
0.030
0.019
0.022
0.020
0.015

1.494
22.002
7.432
-0.200
13.494
0.687
2.329
-0.502
-0.736
0.666
5.116
-4.801
-0.189
-2.458
-0.034
0.237
2.048
-2.458
-0.211
1.264
-4.339
-4.789
-2.536
-4.267
-4.523
-1.605
-3.337
-3.033
-0.030
-0.613
-1.550
-2.137
-4.402
0.639
-0.090
-0.906

CoetJ. St.error

(XP91

(XLSS

<XL86
(XLS1

(XLS8

<XL89
(XL90

(XL91

<X!.92

(XISS

(X186

<lI81
(X188

(X189

(X190

(XI91

<lI92
(XKSS

(XK86

(XKS1

(XKS8

(XKS9

(XK90

(XK91

(XK92

<lo

A2

Log-likel.
R2_adj.

-0.136
-0.058
0.022
-0.029
0.085
-0.006
0.003
-0.063
0.134
0.034
0.013
0.102
0.143
0.045
0.030
0.107
0.063
0.063
0.000
0.131
-0.012
-0.047
0.018
0.074
-0.139
-0.123
-0.123
-0.142
-0.179
-0.124
-0.104
-0.197
0.157
0.037

456.824
0.9817

0.076
0.076
0.061
0.046
0.034
0.030
0.043
0.029
0.057
0.042
0.050
0.041
0.031
0.042
0.046
0.032
0.058
0.060
0.051
0.039
0.025
0.029
0.031
0.024
0.042
0.030
0.024
0.024
0.020
0.025
0.024
0.019
0.029

-1.791
-0.763
0.363
-0.630
2.495
-0.195
0.073
-2.172
2.355
0.807
0.253
2.481
4.654
1.079
0.650
3.374
1.090
1.043
0.001
3.412
-0.483
-1.629
0.588
3.061
-3.287
-4.128
-5.067
-5.984
-8.823
-4.930
-4.367

-10.291
5.338
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Table 9.A22. JP2 with Region-Specific Fixed Effects Estimated by OLS

CoetT. St.error t-value CoetT. St.error t-value CoetT. St.error t-value
aM 0.099 0.022 4.506 aMSS -0.070 0.055 -1.277 aIKS -0.016 0.053 -0.308
ap 0.510 0.036 14.125 aMS6 -0.116 0.040 -2.876 aIS6 -0.003 0.061 -0.048

aK 0.071 0.025 3.038 aMS7 -0.079 0.032 -2A83 aIS7 -0.088 0.051 -1.714

aL 0.086 0.044 1.958 (lMSS -0.059 0.029 -2.044 aISS -0.058 0.046 -1.280

al 0.386 0.032 12.193 aMS9 -0.050 0.025 -2.010 aIS9 -0.160 0.040 -4.021

aMM 0.002 0.003 0.564 aM90 0.019 0.024 0.808 aI90 -0.082 0.033 -2.456
aML 0.036 0.014 2.577 (lM91 -0.012 0.021 -0.571 aI91 -0.065 0.035 -1.873
aMI -0.014 0.011 -1.286 aM92 -0.033 0.021 -1.563 aI92 -0.126 0.033 -3.788
aMP -0.037 0.011 -3.262 <XFss -0.018 0.065 -0.284 aKSS -0.070 0.039 -1.814
(lMK -0.006 0.008 -0.737 <XFs6 0.013 0.071 0.186 aKS6 -0.031 0.033 -0.928
<Xpp -0.019 0.011 -1.811 <XFs7 0.023 0.058 0.403 aKS7 -0.067 0.031 -2.159

<XFK 0.008 0.011 0.722 <XFss 0.007 0.048 0.151 aKSS -0.039 0.029 -1.334

<XLF -0.003 0.022 -0.137 <XFs9 0.091 0.041 2.227 aKS9 -0.063 0.028 -2.204
aIP 0.088 0.018 4.965 (lF90 -0.047 0.039 -1.201 aK9Q -0.077 0.028 -2.692
aKK 0.004 0.003 1.082 <XF91 0.012 0.043 0.286 aK9I -0.030 0.028 -1.081
aLK -0.022 0.013 -1.650 <XF92 0.035 0.033 1.039 aK92 -0.020 0.026 -0.787
(lIK 0.002 0.011 0.213 (lLSS 0.048 0.054 0.890 aVA&R 0.081 0.040 2.019
aLL -0.016 0.011 -1.480 (lLS6 -0.031 0.047 -0.663 aH 0.050 0.040 1.251
au -0.037 0.023 -1.613 (lLS7. -0.027 0.050 -0.545 (lsp 0.077 0.041 1.896
an -0.024 0.010 -2.471 (lLSS -0.009 0.044 -0.193 aMR 0.025 0.040 0.634

ass -0.093 0.045 -2.063 (lLS9 0.031 0.040 0.756 aST -0.007 0.041 -0.169
aS6 -0.055 0.046 -1.193 (lL90 0.017 0.043 0.408 aNT 0.014 0.041 0.336
as7 0.012 0.046 0.255 (lL91 -0.034 0.046 -0.737 aN 0.045 0.040 1.104

ass 0.004 0.046 0.093 (lL92 0.015 0.040 0.368 aT&p 0.032 0.041 0.783
as9 0.000 0.046 0.006
<X9() 0.006 0.045 0.131
{XgI -0.005 0.046 -0.118
{Xg2 0.011 0.041 0.274 Log-1ikel. 724.472 R2-adj. 0.9341
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Table 9.A23. V1 and JP2 with Region-Specific Fixed Effects Estimated by FGLS

Coeff. St.error t-value
~M
~
~K

~L
~I

~85

~86

Log-likel.

-0.064 0.074
0.552 0.128
0.111 0.074
-0.069 0.127
0.373 0.117
-1.105 0.250
-1.071 0.243

-4432.40

-0.863 ~87

4.304 ~88

1.510 ~89

-0.544 ~90

3.184 ~91

-4.419 ~92

-4.399 ~o

Coeff.
-0.882
-0.454
0.013
-0.496
-0.101
-0.020
-4.659

0.1232

St.error
0.236
0.221
0.217
0.220
0.232
0.222
0.211

t-value
-3.740
-2.059
0.058
-2.255
-0.435
-0.089

-22.129

Coeff. St.error t-value Coeff. St.error t-value
aM

<li'
aK

aL
al

aMM
aML
aMI

aMP
aMK

aFF
<lI'K

au
alP
aKK
<XLK

0.105 0.025 4.157 aM8S

0.427 0.047 9.084 <XM86

0.041 0.034 1.219 aM87

0.095
0.469
0.001
0.018
-0.004
-0.050
0.015
0.029

0.046 2.066 aM88

0.042 11.291 aM89

0.004 0.266 aM90

0.016 1.146 aM91

0.013 -0.288 aM92
0.014 -3.624 aF8S

0.010
0.018

1.511 <XF86
1.652 am

-0.010 0.017 -0.618 aF88

0.020 0.026 0.747 <XF89

0.022 0.026 0.843 aF90
-0.001 0.004 -0.333 <lF91

-0.022 0.014 -1.631 <lF92

0.022 0.016 1.364 aLHS

0.011 -0.250 <XL86

0.025 -2.145 au7
0.014 -1.183 au8
0.043 -1.699 aLH9

0.044 -1.210 <XL90

0.044 -0.315 <XL91
0.046 -0.416 <XL92

<Xs9 -0.017 0.052 -0.327
<X9O -0.005 0.047 -0.105

Coeff. St.error t-value
-0.049 0.034 -1.431 al8S

-0.116 0.029 -4.030 al86

-0.100 0.027 -3.731 al87

-0.071
-0.070
-0.012
-0.011
-0.036
-0.038

0.028 --2.492 al88

0.029 -2.380 al89

0.027 -0.440 al90

0.025 -0.423 al9l
0.026 -1.385 al92

0.053 -0.727 aKSS
0.080 0.054
0.102 0.051
0.128
0.194
0.019
0.035
0.107
0.004
-0.062
-0.038
-0.045
-0.019
-0.014
-0.040
-0.019

-0.039 0.050 -0.780
0.026 0.049 0.535 Log-likel.

0.052
0.053
0.046
0.054
0.047
0.046

1.489 aKS6

1.983 aKS7

2.488 aKS8

3.643 aKS9

0.418 aK90
0.661 aK91

2.279 aK92

0.091 aVA&R

-0.003
-0.054
-0.016
-0.073
-0.053
-0.014
-0.019

0.045 -1.390 aH
0.046 -0.820 <XsF

0.046 -0.970 aMR
0.048 -0.399 aST

0.048 -0.292 aNT
0.057 -0.696 aN
0.050 -0.387 aT&;F

1078.42

-0.071 0.043 -1.663
-0.085 0.046 -1.857
-0.131 0.045 -2.890
-0.137
-0.213
-0.097
-0.092
-0.174
-0.027
-0.002
-0.039
-0.015
-0.030
-0.064
-0.001
-0.033
0.094
0.070
0.077
0.055
0.016
0.035
0.060
0.037

0.047 -2.922
0.049 -4.392
0.040 -2.447
0.042 -2.174
0.045 -3.913
0.035 -0.789
0.033 -0.050
0.033 -1.182
0.034 -0.434
0.036 -0.842
0.034 -1.867
0.037 -0.023
0.038 -0.868
0.043 2.171
0.043
0.043
0.043
0.043
0.044
0.043
0.043

1.617
1.771
1.276
0.362
0.802
1.382
0.851

0.9202

235



Table 9.A24. V2 and JP2 with Region-Specific Fixed Effects Estimated by FGLS

CoetT. St.error t-value

~M
~F

~K

~L
~I

~85

~86

Log-likel.

0.161
0.379
0.227
-0.099
0.270
-0.998
-1.131

-4429.66

0.081
0.116
0.082
0.140
0.092
0.261
0.249

1.987
3.256
2.768
-0.708
2.950
-3.824
-4.552

~87

~88

~89

~90

~91

~92

~o

CoetT.
-0.988
-0.651
-0.221
-0.661
-0.238
-0.058
-3.379

0.1257

St.error
0.239
0.218
0.214
0.214
0.226
0.220
0.162

t-value
-4.129
-2.989
-1.032
-3.093
-1.053
-0.261

-20.853

CoetT. St.error t-value

(XM

(XF

(XK

(XL

(XI

(XMM

(XML

(XMI

(XMF

(XMK

<XFF

<XFK
(XLF

(XIF

(XKK

(XLK

(XIK

(XLL

(Xu

(Xn

ass
as6
as?
as8

Coeft'. St.error t-value
0.137 0.028 4.963
0.429 0.043 9.957
0.044
0.125
0.403
0.004
0.026
-0.006
-0.060

0.033 1.314
0.046 2.714
0.038 10.491
0.004 0.846

(XM8S

(XM86

(XM8?

(XM88

(XM89

(XM90

0.017
0.013
0.013

1.542 (XM91

-0.439 (XM92

-4.468 (XFBS

0.011 0.010 1.111 (XFB6

0.016
-0.013
0.011
0.050
-0.001
-0.012
0.014
-0.010
-0.058
-0.012
-0.094

0.014
0.014
0.025
0.022

1.121 (XFB?

-0.896 <XFS8

0.451 (XFB9

2.267 (XF90

0.004 -0.354 (XF91

0.014 -0.884 (XF92

0.014 0.978 O:Us

0.011 -0.868 (XL86

0.025 -2.310 (XL8?

0.012 -1.008 (XL88

0.040 -2.324 (XL89

-0.075 0.040 -1.866 (XL90

-0.052 0.041 -1.253 (XL91

-0.053 0.042 -1.253 <XL92

as9 -0.044 0.048 -0.918

Coeft'. St.error t-value
-0.082 0.038 -2.142
-0.148 0.031 -4.773
-0.125 0.030 -4.134
-0.099 0.031 -3.224
-0.106 0.032 -3.346
-0.036 0.029 -1.232
-0.034
-0.059
0.006

0.028 -1.231 (XI9J

0.029 -2.054 (X192

0.050 0.128 (XKSS

0.098 0.052 1.885 (XKS6

0.108
0.135
0.199
0.032
0.048
0.111
-0.033
-0.081
-0.052

0.050
0.050
0.051
0.045
0.052
0.045
0.047
0.045
0.047

2.157 (XKS?

2.703 (XKS8

3.891 (XK89

0.707 (XK9Q

0.934 (XK91

2.466 (XK92

-0.691 (XVA&R

-1.789 (XH

-1.102 (XSF

-0.060 0.046 -1.299 (XMR

-0.036 0.049 -0.743 (XST

-0.027 0.049 -0.546 (XNT

-0.061 0.057 -1.069 (XN

-0.047 0.052 -0.900 (XT&F

-0.013 0.044 -0.292
-0.055 0.046 -1.189
0.000 0.045 0.006 Log-likel. 1082.42

-0.025 0.041 -0.617
-0.040 0.045 -0.882
-0.077 0.044 -1.756
-0.080 0.046 -1.753
-0.154
-0.080
-0.054
-0.132
-0.028

0.048 -3.235
0.039 -2.067
0.041
0.043
0.035

-1.315
-3.080
-0.822

-0.009 0.033 -0.284
0.033 -1.236
0.034 -0.516
0.036 -0.884
0.035 -1.678
0.037
0.038
0.041
0.040
0.041
0.041
0.041

-0.154
-0.433
2.829
2.107
2.385
1.894
1.140

-0.041
-0.018
-0.032
-0.059
-0.006
-0.016
0.115
0.085
0.097
0.077
0.047
0.058 0.041 1.409
0.085 0.041
0.055 0.041

2.093
1.347

0.9381

236



Table 9.A25. V1 and JP2 with Firm-Specific RE and Region-Specific FE Estimated by FGLS
Procedure RA2

CoetJ. St.error t-value

~M
~F

~K

~L
~I

~85

~86

Log-likel.

0.153
0.852
-0.017
0.179
-0.103
0.968
0.887

0.074
0.128
0.074
0.127
0.117
0.250
0.243

2.077
6.644
-0.224
1.416
-0.876
3.872
3.646

CoetJ.

~87

~88

~89

~90

~91

~92

~o

0.607
0.203
-0.011
0.352
0.215
-0.028
-2.864

St.error
0.236
0.221
0.217
0.220
0.232
0.222
0.211

t-value
2.575
0.918
-0.052
1.597
0.925
-0.127
-13.603

-4303.22 0.0706

CoetJ. St.error t-value CoetJ. St.error t-value

<li'
(lK

(lL

(lI

<lMM
(lMl.

(lMI

(lMP

(lMK

(lFF

(lFt(

(lLF

(llF

(lKK

ULK

<lIK
ULL

<Xu
(ln

0.098 0.022 4.469 (lMS'

0.477 0.036 13.152 (lMS6

0.097 0.027 3.627 (lMS7

0.079
0.358
0.001
0.043
-0.015
-0.036
-0.006
-0.017
0.005

0.046 1.712 (lMSS

0.032 11.079 (lM89

0.003 0.208 (lM90

0.014 3.050 (lM91

0.011 -1.399 <lM92

0.011 -3.273 <XFs,
0.008 -0.731 (lFS6

0.010 -1.602 (lF87

0.011 0.446 (lFSS

0.004 0.021 0.172 (lFS9

0.090 0.017 5.230 (lF9Q

0.005
-0.030
0.002
-0.022
-0.029
-0.023
-0.132
-0.086
-0.006
-0.011
-0.004

0.004 1.340 (lF91

0.014 -2.206 <XF92

0.011 0.139 (lLS'

0.012 -1.864 <XL86

0.023 -1.244 <XL87

0.010 -2.374 <XL8s
0.046 -2.911 <XL89

0.046 -1.855 UL90

0.047 -0.125 UL91

0.046 -0.236 UL92

0.046 -0.090
<X9O 0.011 0.044 0.248
<X91 -0.007 0.045 -0.149

CoetJ. St.error t-value
-0.084 0.054 -1.556 (lIS'

-0.115 0.040 -2.886 (lIS6

-0.079 0.031 -2.517 (lIS7

-0.055
-0.046
0.028
-0.016
-0.021
-0.015
-0.007
0.017
0.014

0.029 -1.901 (lISS

0.025 -1.854 (lIS9

0.023 1.198 (l190

0.021 -0.772 (l191

0.020 -1.050 (l192

0.063 -0.243 (lKSS

0.070 -0.104 (lKS6

0.057 0.293 (lKS7

0.048 0.287 (lKSS

0.092 0.040 2.269 (lKS9

-0.048 0.038 -1.271 (lK9Q

0.030 0.042
0.016 0.033
0.064 0.053
-0.018
-0.035
-0.009
0.041
0.023
-0.024
0.011

0.018 0.039 0.471 Log-likel.

0.714 (lK91

0.488 (lK92

1.192 (lVA&R

0.047 -0.381 (lH

0.050 -0.706 ClsF

0.044 -0.202 (lMR

0.040 1.041 (lST

0.042 0.543 (lNT

0.044 -0.531 (lN

0.039 0.281 <l()

&!

851.099

0.014 0.053 0.270
0.013 0.061 0.210
-0.066 0.051 -1.290
-0.062
-0.171
-0.091
-0.086
-0.123
-0.070
-0.029
-0.069
-0.044

0.046 -1.354
0.040 -4.235
0.033 -2.758
0.035 -2.483
0.033 -3.754
0.038 -1.834
0.033 -0.888
0.031 -2.214
0.029 -1.496

-0.064 0.028 -2.285
-0.083 0.028 -2.986
-0.028
-0.018
0.017
0.003
0.014
-0.012
-0.032
-0.022
-0.003
0.092
0.027

0.027 -1.037
0.025 -0.724
0.014 1.242
0.012 0.273
0.013 1.081
0.013 -0.948
0.014 -2.279
0.013 -1.670
0.011 -0.228
0.044 2.099

0.9392

237



Table 9.A26. V2 and JP2 with Firm-Specific RE and Region-Specific FE Estimated by FGLS
Procedure RA2

Coeft'. St.error t-value

~M
pP
~K

~L
~I

~85

~86

Log-likel.

0.175
0.634
-0.089
0.081
0.032
0.924
0.797

0.081
0.116
0.082
0.140
0.092
0.261
0.249

2.163
5.457
-1.092
0.579
0.345
3.544
3.205

Coeft'.

~87

~88

~89

~90

~91

~92

~o

0.480
0.000
-0.238
0.124
0.056
-0.123
-1.459

St.error
0.239
0.218
0.214
0.214
0.226
0.220
0.162

t-value
2.005
0.000
-1.113
0.580
0.249
-0.557
-9.004

-4332.15 0.0426

Coeft'. St.error t-value

al

aMM

aMI.
aMI

aMF
aMK

aFF
aPK

aIF
aKK
(kK

alK

alL
au
an
ass
as6
as7
as8
as9
<l9o
(lgl

<X!n

0.096 0.022
0.484 0.036
0.095 0.026
0.082
0.366
0.001
0.042
-0.015
-0.036
-0.005
-0.016
0.004
0.003
0.086
0.005
-0.030
0.002
-0.020
-0.031
-0.022
-0.122
-0.076
-0.001
-0.007
-0.004
0.011
-0.007

4.379
13.338
3.621

0.046 1.805 aM88

0.032 11.443 aM89

0.003 0.235 aM90

0.014 2.986 aM91

0.011 -1.403 aM92

0.011 -3.234 aF8S

0.008 -0.562 aF86

0.011 -1.471 aF87

0.011
0.022
0.017

0.357 aF88

0.134 <XFs9
4.925 aF90

Coeft'. St.error t-value Coeft'. St.error t-value
-0.081 0.054 -1.504 al8S

-0.117 0.040 -2.934 al86

-0.079 0.031 -2.525 al87

-0.054 0.029 -1.895 al88

-0.046 0.025 -1.884 al89

0.026 0.023 1.117 al90

-0.016 0.021 -0.759 al9l
-0.022 0.020 -1.066 aI92

-0.014
-0.004
0.021
0.017
0.094
-0.050
0.029
0.019
0.059
-0.022
-0.036
-0.011
0.038
0.021
-0.025
0.009

0.019 0.039 0.485 Log-likel.

0.004 1.308 aF91

0.014 -2.192 aF92

0.011 0.159 aL8S

0.012 -1.730 aL86

0.023 -1.353 au7
0.010 -2.246 au8
0.045 -2.700 aL89

0.046 -1.652 aL90

0.047 -0.026 (k91

0.046 -0.142 (k92

0.046 -0.082
0.044 0.246
0.045 -0.163

0.063 -0.222 aKSS

0.070 -0.058 aK86

0.057 0.366 aKS7

0.048 0.358 aKS8

0.041 2.311 aKS9

0.038 -1.318 aK90
0.042 0.673 aK91

0.033 0.586 aK92

0.053 1.102 aVA&R

0.047 -0.472 aH
0.050 -0.716 aSF

0.044 -0.251 aMR
0.040 0.950 aST

0.042 0.504 aNT
0.045 -0.561 aN
0.039 0.223 <lo

&~

835.914

0.006 0.052 0.109
0.011 0.060 0.189
-0.068 0.051 -1.343
-0.064
-0.169
-0.086
-0.082
-0.124
-0.071
-0.031
-0.070
-0.046
-0.065
-0.084
-0.029
-0.019
0.023
0.005

0.045 -1.404
0.040 -4.206
0.033 -2.629
0.034 -2.380
0.033 -3.761
0.038 -1.855
0.033 -0.943
0.031 -2.262
0.029 -1.549
0.028 -2.299
0.028 -2.990
0.027 -1.053
0.025 -0.771
0.015 1.540
0.013 0.414

0.019 0.014 1.360
-0.012 0.013 -0.909
-0.034 0.015 -2.295
-0.022 0.014 -1.624
-0.001 0.012 -0.072
0.0769 0.0430 1.7878
0.017

0.9333

238



Table 9.A27. V1 with Region-Specific Effects and JP2 with Firm-Specific Fixed Effects
Estimated by FGLS

CoetT. St.error t-value CoetT. St.error t-value

~M
~F

~K
~L
~I

~85

~86

Log-likel.

-0.057 0.074 -0.769 ~87

0.470 0.132 3.554 ~88

0.086 0.075 1.150 ~89

-0.133 0.131 -1.015 ~90

0.268 0.118 2.268 ~91

-0.459 0.252 -1.820 ~92

-0.509 0.245 -2.079 ~VA&R

-4487.2

-0.423 0.237 -1.788 ~H

-0.491 0.221 -2.217 ~SF

0.007 0.217 0.031 Ik
-0.317 0.221 -1.434 ~ST

0.092 0.233 0.396 ~NT

0.132 0.222 0.596 ~N

-0.017 0.238 -0.070 ~o

0.0634

CoetT. St.error t-value
0.384 0.214 1.798
0.501 0.227 2.201
0.409 0.221 1.854
0.275 0.238 1.157
-0.093 0.234 -0.397
0.343 0.213 1.607
-5.007 0.259 -19.306

CoetT. St.error t-value

(XM8~

(XM86

(XM87

(XM88

(XM89

(XM90

(XM91

(XM92

0.113
0.427
0.047
0.095
0.391
0.000
0.043
-0.005
-0.053
0.003
0.003
-0.008
0.014
0.071
0.000
-0.030
0.030
-0.020
-0.040
-0.027
-0.119
-0.074
-0.016
-0.024
-0.001
0.020
-0.012
0.044
-0.088
-0.123
-0.110
-0.071
-0.067
-0.007
-0.027
-0.031

0.027
0.045
0.033
0.052
0.041
0.004
0.017
0.014
0.015
0.010
0.016
0.015
0.027
0.025
0.004
O.ot5
0.016
0.012
0.028
0.014
0.046
0.046
0.047
0.046
0.049
0.046
0.049
0.045
0.045
0.035
0.031
0.029
0.029
0.028
0.026
0.025

4.238 <XFs~

9.476 (XF86

1.426 <XFs7
1.841 <XFs8
9.438 (XF89

0.008 (XF90

2.579 (XF91

-0.391 (Xm

-3.634 CXt.s~

0.247 (XU6

0.175 (XU7

-0.495 <Xus
0.542 (XU9

2.880 (XL90

-0.084 <XL91

-1.916 <XL92

1.871 (XJ8~

-1.571 (XJ86

-1.445 (XJ87

-1. 895 (XJ88

-2.594 (XJ89

-1.603 (XJ90

-0.348 (XJ91

-0.528 (XJ92

-0.027 (XK8~

0.433 (XK86

-0.248 (XK87

0.981 (XK88

-1.939 (XK89

-3.527 (XK90

-3.551 (XK91

-2.657 (XK92

-2.337
-0.240
-1.052 Log-likel.
-1.200 R2-adj.

CoetT.
-0.073
-0.006
0.048
0.117
0.156
-0.007
0.021
0.070
0.039
-0.037
-0.055
-0.052
0.008
-0.009
-0.033
-0.031
-0.010
-0.054
-0.094
-0.146
-0.234
-0.107
-0.102
-0.150
-0.015
0.015
-0.023
0.003
-0.017
-0.057
0.011
-0.029

1228.99
0.8902

St.error
0.064
0.062
0.057
0.051
0.050
0.045
0.053
0.044
0.051
0.047
0.049
0.045
0.044
0.046
0.054
0.046
0.053
0.055
0.051
0.047
0.047
0.040
0.042
0.043
0.036
0.033
0.033
0.031
0.033
0.033
0.035
0.035

t-value
-1.138
-0.093
0.833
2.311
3.114
-0.163
0.396
1.587
0.753
-0.799
-1.125
-1.157
0.188
-0.199
-0.606
-0.675
-0.197
-0.985
-1.865
-3.128
-5.011
-2.695
-2.435
-3.525
-0.407
0.458
-0.694
0.085
-0.519
-1.742
0.312
-0.843

239



Table 9.A28. V2 with Region-Specific Effects and JP2 with Firm-Specific Fixed Effects
Estimated by FGLS

CoetT. St.error t-value

Log-likel.

0.113
-0.123
0.139
-0.343
-0.504

0.084 1.345
0.148 -0.831
0.093 1.498

0.251
0.264 -1.299

-2.006

-4485.9

CoetT. St.error t-value
-0.455 0.241 -1.890
-0.622 0.219 -2.846
-0.152 0.214 -0.708
-0.420 0.214 -1.958
0.013 0.226 0.058
0.120 0.220 0.545
-0.018 0.241 -0.073

0.0646

CoetT. St.error t-value
0.389 0.216
0.490 0.229
0.418 0.222

1.804
2.138
1.879

0.267 0.237 1.123
-0.080 0.234 -0.340
0.297 0.215 1.385
-4.110 0.225 -18.247

0.151 0.082 1.846 ~87

0.405 0.121 3.333 ~88

~89

~90

~91

~92

~o

CoetT. St.error t-value

(XI

(XMM

(XML

(XMI

(XMP

(XMK

(XFF

(XFK

<Xu.
<XLI

(Xu

ass
as6
as7
as8
as9
<loo
{lgI

{lg2

(XM8S

(XM86

(XM87

(XM88

(XM89

(XM90

(XM9I

(XM92

0.122
0.418
0.058
0.107
0.374
0.001
0.042
-0.006
-0.056
0.004
0.001
-0.012
0.020
0.083
-0.002
-0.018
0.024
-0.024
-0.047
-0.027
-0.116
-0.073
-0.031
-0.035
-0.016
0.022
-0.015
0.041
-0.102
-0.127
-0.117
-0.087
-0.080
-0.011
-0.021
-0.031

0.028
0.044
0.033
0.053
0.040
0.004
O.oI8
0.014
0.014
0.011
0.014
0.014
0.026
0.023
0.004
0.016
0.014
0.013
0.028
0.013
0.045
0.044
0.046
0.045
0.048
0.045
0.047
0.044
0.049
0.037
0.034
0.031
0.030
0.029
0.027
0.027

4.328
9.579
1.775
2.024
9.398
0.265
2.334
-0.453
-3.925
0.395
0.043
-0.850
0.749
3.633
-0.511
-1.181
1.686
-1.846
-1.659
-2.101
-2.599
-1.635
-0.683
-0.785
-0.328
0.503
-0.306
0.932
-2.073
-3.472
-3.474
-2.853
-2.658
-0.395
-0.763 Log-likel.
-1.131 R2-adj.

(XF9I

<XL9I

(XK9I

CoetT.
-0.065
-0.011
0.040
0.108
0.159
-0.013
0.010
0.057
0.024
-0.040
-0.047
-0.046
0.008
-0.006
-0.025
-0.036
0.021
-0.041
-0.073
-0.118
-0.204
-0.096
-0.082
-0.135
-0.025
-0.001
-0.033
-0.011
-0.031
-0.065
-0.014
-0.022

1231.99
0.8959

St.error
0.064
0.062
0.057
0.050
0.049
0.045
0.052
0.043
0.054
0.048
0.051
0.047
0.045
0.048
0.055
0.048
0.052
0.055
0.050
0.046
0.046
0.039
0.042
0.042
0.037
0.034
0.033
0.031
0.033
0.033
0.035
0.034

t-value
-1.016
-0.172
0.699
2.186
3.263
-0.283
0.187
1.338
0.445
-0.821
-0.927
-0.980
0.178
-0.123
-0.459
-0.735
0.402
-0.745
-1.463
-2.574
-4.421
-2.447
-1.956
-3.219
-0.682
-0.018
-1.007
-0.347
-0.929
-1.957
-0.387
-0.634
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Table 9.A29. V1 and JP2 with Firm-Specific Region-Heteroskedastic Random Effects Estimated
by FGLS Procedure RA1*

Coeff. St.error t-value Coeff. St.error t-value Coeff. St.error t-value

(lM 0.102 0.022 4.616 (lMS' -0.093 0.055 -1.694 (lIS' 0.021 0.054 0.384

<li' 0.454 0.036 12.559 (lMS6 .-0.110 0.041 -2.717 (lIS6 O.oI8 0.061 0.291
(lK 0.096 0.027 3.554 ~S7 -0.082 0.032 -2.573 (lIS7 -0.064 0.051 -1.262

<XL 0.090 0.047 1.925 (lMSS -0.054 0.029 -1.898 (lISS -0.066 0.045 -1.467
(lI 0.350 0.032 10.959 (lMS9 -0.052 0.024 -2.115 (lIS9 -0.167 0.040 -4.233
(lMM 0.000 0.003 0.126 (lM90 0.028 0.023 1.210 (lI90 -0.095 0.033 -2.903
(lML 0.048 0.014 3.350 (lM91 -0.019 0.021 -0.909 (l191 -0.097 0.034 -2.846
(lMI -0.018 0.011 -1.649 (lM92 -0.019 0.020 -0.939 (l192 -0.121 0.032 -3.754
(lMF -0.039 0.011 -3.481 <XFs, -0.016 0.064 -0.253 (l~ -0.057 0.039 -1.482
(lMK -0.005 0.008 -0.559 <XFs6 -0.037 0.071 -0.520 (lKS6 -0.018 0.033 -0.538

<XFF -0.013 0.010 -1.281 <XFs7 0.014 0.057 0.251 (lKS7 -0.059 0.031 -1.880

<XFK 0.005 0.011 0.502 <XFss 0.019 0.048 0.394 (lKSS -0.040 0.029 -1.378

au 0.005 0.022 0.227 (lF89 0.093 0.040 2.352 (lK89 -0.062 0.028 -2.224
(lIF 0.089 0.017 5.220 <XF9O -0.055 0.038 -1.472 (lK9Q -0.078 0.028 -2.810
(lKK 0.004 0.004 1.198 (lF91 0.042 0.042 1.018 (lK91 -0.025 0.027 -0.946

<XLK -0.034 0.014 -2.444 (lf92 0.016 0.032 0.512 (lK92 -0.016 0.024 -0.644
(lIK 0.003 0.011 0.261 (l1.8' 0.061 0.054 1.122 <Xo 0.1150 0.0431 2.6695

<Xu. -0.026 0.012 -2.145 (lu6 -0.017 0.047 -0.364

<Xu -0.025 0.023 -1.059 (lu7 -0.049 0.050 -0.983 (1~A&R 0.006

(lIl -0.022 0.010 -2.259 (l1.8S -0.019 0.044 -0.432 (12 0.010H

as, -0.146 0.046 -3.192 (l1.89 0.040 0.039 1.004 (1iF 0.007

as6 -0.098 0.047 -2.085 (lL90 0.017 0.042 0.407 (1~R 0.008

as7 -0.010 0.047 -0.220 <XL91 -0.025 0.044 -0.559 (12 0.013ST

ass -0.013 0.046 -0.275 (lL92 -0.003 0.038 -0.078 (12 0.003Nr

as9 -0.007 0.045 -0.155 (12 0.008N

~ 0.020 0.043 0.467 (1~&F 0.005

~1 -0.009 0.044 -0.194

~2 0.021 0.038 0.559 Log-liket. 909.830 R2-adj. 0.9336
* Parameter estimates for the variance function are identical with the fixed effects estimates presented earlier.
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Table 9.A30. V2 and JP2 with Firm-Specific Region-Heteroskedastic Random Effects Estimated
by FGLS Procedure RA1*

CoetT. St.error t-value CoetT. St.error t-value CoetT. St.error t-value
(XM 0.097 0.022 4.429 (XM8S -0.090 0.054 -1.661 (X18S 0.014 0.054 0.255

<XI> 0.452 0.036 12.400 (XM86 -0.109 0.040 -2.707 (X186 0.014 0.061 0.237
(XK 0.096 0.027 3.564 (XM87 -0.080 0.031 -2.541 (X1B7 -0.067 0.051 -1.325

<XL 0.088 0.046 1.904 (XM88 -0.053 0.029 -1.842 (X188 -0.072 0.045 -1.588
(XI 0.356 0.032 11.129 (XM89 -0.049 0.024 -2.014 (X189 -0.171 0.040 -4.330
(XMM 0.000 0.003 -0.078 (XM90 0.028 0.023 1.179 (X190 -0.097 0.033 -2.982
(XML 0.045 0.014 3.214 (XM91 -0.017 0.021 -0.802 (XWI -0.101 0.034 -2.992
(XMI -0.015 0.011 -1.415 (XM92 -0.017 0.020 -0.852 (X192 -0.124 0.032 -3.836
(XMP -0.037 0.011 -3.306 (XF8S -0.016 0.064 -0.245 (XKSS -0.058 0.039 -1.511
(XMK -0.003 0.008 -0.356 (XF86 -0.036 0.071 -0.500 (XKS6 -0.018 0.033 -0.554
<Xt:F -0.012 0.011 -1.120 (XF87 0.019 0.057 0.333 (XKS7 -0.059 0.031 -1.875
(XFK 0.004 0.011 0.338 <XF88 0.024 0.048 0.493 (XKS8 -0.042 0.029 -1.422

<XLF 0.008 0.022 0.357 <XF89 0.098 0.040 2.449 (XKS9 -0.062 0.028 -2.231
(XIF 0.083 0.017 4.786 <XF9O -0.053 0.038 -1.423 (XK9Q -0.079 0.028 -2.833
(XKK 0.004 0.004 1.160 (XF91 0.044 0.042 1.046 (XK91 -0.025 0.027 -0.955
(XLK -0.035 0.014 -2.513 (XF92 0.019 0.032 0.595 (XK92 -0.016 0.024 -0.667
(XIK 0.003 0.011 0.255 (XLBS 0.065 0.054 1.209 ao 0.1153 0.0432 2.6672
(XLL -0.027 0.012 -2.189 (XLB6 -0.015 0.047 -0.321
(XLI -0.023 0.024 -0.963 aLB7 -0.048 0.050 -0.970 O'~A&R 0.006

(Xu -0.022 0.010 -2.239 aLB8 -0.017 0.044 -0.384 0'2 0.010H

ass -0.148 0.046 -3.243 aLB9 0.039 0.039 0.989 O'~F 0.007

as6 -0.099 0.047 -2.113 aL90 0.019 0.042 0.465 O'~R 0.008

as7 -0.013 0.047 -0.280 aL91 -0.021 0.044 -0.485 0'2 0.013ST

as8 -0.015 0.046 -0.324 <XL92 -0.003 0.038 -0.071 0'2 0.003NT

as9 -0.010 0.045 -0.224 0'2 0.008N

<l9() 0.020 0.043 0.459 O'~&F 0.005

<l91 -0.010 0.044 -0.219
<l92 0.020 0.038 0.519 Log-likel. 917.108 R2-adj. 0.9232
* Parameter estimates for the variance function are identical with the fixed effects estimates presented earlier.
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Coeff.

Table 9.A31. Kumbhakar Model K2 with Firm-Specific Fixed Effects Estimated by FGLS

t-valueSt.error t-value
-0.288
-0.233
0.224
-0.136
0.147
0.164
0.320

Log-likel. -5056.661

0.037
0.061
0.037
0.062
0.058
0.092
0.089

-7.810
-3.832
6.123
-2.203
2.522
1.786
3.617

Coeff. St.error

~87

~88

~89

~90

~91

~92

0.141
0.278
0.290
0.520
0.330
0.263

0.084
0.081
0.084
0.089
0.095
0.091

1.682
3.441
3.466
5.862
3.485
2.888

Coeff. t-valueSt.error t-value
aM
aF
aK
<XL
al

aMM
aML
aMI
aMF
aMK

0.384
0.220
-0.219
0.537
0.178
0.038
-0.005
-0.156
0.021
0.025
0.194
0.045
-0.362
-0.155
-0.030
0.052
0.007
0.126
0.173
0.092
-0.477
-0.507
-0.562
-0.423
-0.258
-0.400
-0.250
-0.292
-0.446
-0.534
-0.591
-0.390
-0.369
-0.087
-0.498
-0.366

0.044
0.059
0.041
0.066
0.046
0.012
0.029
0.019
0.024
0.D15
0.017
0.020
0.042
0.019
0.008
0.031
0.014
0.032
0.030
0.006
0.049
0.042
0.043
0.039
0.034
0.042
0.035
0.038
0.056
0.061
0.052
0.058
0.053
0.058
0.056
0.047

8.752 aFliS

3.750 aFll6

-5.365 aFll7

8.094 aFll8

3.904 aFll9

3.134 aF9Q
-0.179 <XF91

-8.140 aF92

0.874 aw
1.638 (kg6

11.371 aU7

2.279 (kg8

-8.562 aU9

-8.289 aL90

-3.801 <XL91

1.712 <XLn

0.521 al8S

4.000 al86

5.700 al87

16.110 al88

-9.807 al89

-11.983 al90

-13.123 al91

-10.898 al92

-7.534 aKSS
-9.533 aK86

-7.167 aK87

-7.601 aK88

-8.019 aK89

-8.703 aK90
-11.322 aK91

-6.705 aK92

-7.043
-1.487
-8.893
-7.800

Coeff. St.error
0.340
0.303
0.313
0.461
0.155
0.211
0.007
0.221
-0.257
-0.433
-0.688
-0.711
-0.307
-0.501
-0.321
-0.474
0.215
0.167
0.115
-0.068
-0.052
0.097
0.365
0.183
0.130
0.164
0.248
0.097
0.226
0.006
0.314
0.181

Log-likel.
R2-adj.

-1462.08
0.9719

0.067
0.069
0.066
0.073
0.078
0.077
0.073
0.073
0.080
0.085
0.074
0.081
0.073
0.083
0.082
0.073
0.054
0.055
0.048
0.051
0.053
0.067
0.059
0.052
0.047
0.050
0.047
0.041
0.052
0.047
0.053
0.043

5.052
4.408
4.752
6.296
1.987
2.759
0.101
3.015
-3.226
-5.102
-9.249
-8.827
-4.215
-6.002
-3.918
-6.468
4.020
3.023
2.411
-1.332
-0.972
1.449
6.229
3.500
2.783
3.297
5.284
2.377
4.396
0.121
5.949
4.205
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9.B. Appendix B: Estimated Elasticities

Table Description

9.BI lP2 pooled estimated by OLS

9.B2 lP2 with firm-specific fixed effects estimated by OLS

9.B3 K2 pooled estimated by OLS

9.B4 K2 with firm-specific fixed effects estimated by OLS

9.B5 JPI with firm-specific fixed effects estimated by OLS

9.B6 VI and lPI with firm-specific fixed effects estimated by FGLS

9.B7 V2 and lPI with firm-specific fixed effects estimated by FGLS

9.B8 V I and lP2 with firm-specific fixed effects estimated by FGLS

9.B9 V2 and lP2 with firm-specific fixed effects estimated by FGLS

9.BIO VI and lP2 with firm-specific fixed effects estimated by ML

9.BII V2 and lP2 with firm-specific fixed effects estimated by ML

9.B12 VI and lP2 pooled estimated by FGLS

9.B13 V2 and JP2 pooled estimated by FGLS

9.B14 VI and JP2 pooled estimated by ML

9.B15 V2 and JP2 pooled estimated by ML

9.B16 V I and JP2 with firm-specific random effects estimated by FGLS proc. RA I

9.B17 V2 and JP2 with firm-specific random effects estimated by FGLS proc. RAI

9.B18 V I and JP2 with firm-specific random effects estimated by FGLS proc. RA2

9.B19 V2 and JP2 with firm-specific random effects estimated by FGLS proc. RA2

9.B20 VI and lP2 with firm-specific random effects estimated by FGLS proc. RA2 on
sample 2

9.B21 V2 and lP2 with firm-specific random effects estimated by FGLS proc. RA2 on
sample 2

9.B22 JP2 with Region-Specific Fixed Effects Estimated by OLS

9.B23 VI and JP2 with Region-Specific Fixed Effects Estimated by FGLS

9.B24 V2 and lP2 with Region-Specific Fixed Effects Estimated by FGLS

9.B25 V I and lP2 with Firm-Specific RE and Region-Specific FE Estimated by FGLS
Procedure RA2

9.B26 V2 and lP2 with Firm-Specific RE and Region-Specific FE Estimated by FGLS
Procedure RA2

9.B27 V I with Region-Specific Effects and lP2 with Firm-Specific Fixed Effects Estimated
byFGLS
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Table Description

9.B28 V2 with Region-Specific Effects and JP2 with Firm-Specific Fixed Effects Estimated
byFGLS

9.B29 VI and JP2 with Firm-Specific Region-Heteroskedastic Random Effects Estimated
by FGLS Procedure RAI

9.B30 V2 and JP2 with Firm-Specific Region-Heteroskedastic Random Effects Estimated
by FGLS Procedure RA I

9.B31 Coefficients of Correlation Between Estimated Elasticities Derived from Different
Model Specifications and Estimators
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Table9.B1 JP2 Pooled Estimated by OLS

Summary Statistics Estimated Elasticities
Elasticity EL EF E[ EK EM RTS Te TepUR TeNON
Mean 0.026 0.564 0.307 0.019 0.037 0.953 .0.033 0.030 0.002
St.dev. 0.083 0.160 0.111 0.039 0.062 0.213 0.081 0.080 0.093
Min. -0.533 0.002 0.000 -0.113 -0.223 0.380 -0.490 -0.153 -0.892
Max. 0.982 3.204 1.073 0.293 0.694 4.507 1.216 1.259 0.295

Mean Elasticities by Year
Year EL EF E[ EK EM RTS Te TepUR TeNON
1985 0.192 0.578 0.320 -0.011 0.035 1.114
1986 -0.004 0.593 0.385 0.069 -0.041 1.002 -0.011 0.103 -0.114
1987 0.003 0.583 0.280 -0.013 0.024 0.878 0.072 0.152 -0.080
1988 0.020 0.563 0.294 0.029 0.030 0.936 0.070 -0.015 0.085
1989 0.041 0.649 0.236 0.000 0.025 0.950 -0.003 0.000 -0.004
1990 0.014 0.498 0.330 -0.010 0.092 0.925 0.009 0.D15 -0.005
1991 -0.020 0.507 0.338 0.032 0.080 0.937 0.021 -0.013 0.034
1992 0.014 0.576 0.262 0.038 0.035 0.925 0.014 0.019 -0.006
1993 0.001 0.528 0.335 0.043 0.043 0.950 0.086 -0.009 0.095

Mean Elasticities by Region*
Region EL EF E[ EK EM RTS Te TepUR TeNON
VA&R 0.022 0.535 0.312 0.018 0.029 0.915 0.021 0.017 0.004
H 0.015 0.589 0.297 0.022 0.026 0.949 0.032 0.023 0.009
SF 0.024 0.556 0.302 0.019 0.030 0.930 0.029 0.027 0.002
MR 0.025 0.568 0.328 0.020 0.031 0.973 0.028 0.025 0.003
ST 0.023 0.581 0.317 0.025 0.049 0.995 0.034 0.043 -0.010
NT 0.039 0.555 0.304 0.014 0.048 0.960 0.051 0.050 0.001
N 0.033 0.561 0.292 0.013 0.039 0.937 0.031 0.029 0.001
T&F 0.039 0.542 0.317 0.023 0.059 0.979 0.041 0.037 0.004

* VA&R =Vest-Agder & Rogaland, H = Hordaland, SF = Sogn og Fjordane, MR =Møre og Romsdal, ST = SØr-

Trøndelag, NT = Nord-Trøndelag, N =Nordland, T&F = Troms & Finnmark.
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Table9.B2 JP2 with Firm-Specific Effects Estimated by OLS

Summary Statistics Estimated Elasticities
Elasticity EL EF EI EK EM RTS Te TepUR TeNON
Mean 0.045 0.487 0.276 0.037 0.051 0.896 0.044 0.049 -0.006
St.dev. 0.111 0.141 0.111 0.054 0.061 0.217 0.096 0.116 0.109
Min. -1.054 0.002 0.000 -0.196 -0.128 0.126 -0.395 -0.201 -0.933
Max. 1.230 2.600 1.021 0.541 0.615 4.345 1.781 1.827 0.289

Mean Elasticities by Year
Year EL EF EI EK EM RTS Te TepUR TeNON
1985 0.237 0.478 0.337 0.035 0.024 1.111
1986 0.028 0.429 0.392 0.106 0.008 0.964 0.002 0.153 -0.151
1987 -0.042 0.482 0.279 0.031 0.035 0.784 0.089 0.220 -0.132
1988 0.008 0.515 0.241 0.038 0.051 0.853 0.099 0.003 0.096
1989 0.076 0.582 0.187 0.009 0.041 0.895 0.026 0.009 0.017
1990 0.049 0.419 0.289 -0.008 0.111 0.861 0.017 0.035 -0.017
1991 0.033 0.487 0.252 0.043 0.071 0.887 0.009 -0.035 0.043
1992 0.024 0.502 0.233 0.048 0.057 0.863 0.004 0.033 -0.029
1993 0.028 0.478 0.308 0.044 0.050 0.907 0.095 -0.013 0.108

Mean Elasticities by Region*
Region EL EF EI EK EM RTS Te TepUR TeNON
VA&R 0.047 0.465 0.269 0.031 0.039 0.851 0.029 0.029 0.000
H 0.035 0.512 0.266 0.036 0.039 0.888 0.041 0.038 0.003
SF 0.044 0.471 0.272 0.037 0.041 0.872 0.035 0.044 -0.009
MR 0.052 0.492 0.297 0.038 0.043 0.921 0.037 0.040 -0.003
ST 0.026 0.501 0.291 0.050 0.074 0.942 0.055 0.070 -0.015
NT 0.056 0.477 0.277 0.031 0.068 0.910 0.072 0.081 -0.009
N 0.049 0.482 0.264 0.030 0.054 0.879 0.042 0.048 -0.007
T&F 0.053 0.468 0.284 0.047 0.073 0.925 0.049 0.060 -0.011

* VA&R = Vest-Agder & Rogaland, H = Hordaland, SF = Sogn og Fjordane, MR = Møre og Romsdal, ST = Sør-

Trøndelag, NT = Nord-Trøndelag, N = Nordland, T&F = Troms & Finnmark.
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Table9.B3 K2 Pooled Estimated by OLS

Summary Statistics Estimated Elasticities
Elasticity EL EF EI EK EM RTS Te TepUR TeNON
Mean 0.024 0.553 0.300 0.015 0.036 0.927 0.028 0.030 -0.002
St.dev. 0.068 0.115 0.081 0.028 0.049 0.039 0.068 0.040 0.065
Min. -0.239 -0.518 -0.362 -0.156 -0.109 0.694 -0.258 -0.014 -0.310
Max. 0.478 0.880 0.529 0.118 0.353 1.051 0.345 0.123 0.327

Mean Elasticities by Year
Year EL EF EI EK EM RTS Te TepUR TeNON
1985 0.123 0.494 0.326 0.004 0.043 0.991
1986 -0.019 0.574 0.340 0.039 0.000 0.935 -0.027 0.005 -0.032
1987 0.050 0.560 0.307 -0.018 0.021 0.920 0.053 0.017 0.035
1988 0.007 0.608 0.274 0.032 0.021 0.942 0.058 0.055 0.003
1989 0.027 0.703 0.215 0.013 -0.009 0.948 -0.007 -0.014 0.007
1990 0.013 0.469 0.359 -0.009 0.059 0.891 0.021 -0.002 0.023
1991 -0.020 0.488 0.332 0.052 0.063 0.915 0.025 0.041 -0.015
1992 0.015 0.584 0.221 0.015 0.053 0.889 0.019 0.018 0.000
1993 0.031 0.468 0.335 0.012 0.080 0.925 0.079 0.123 -0.044

Mean Elasticities by Region
Region EL EF EI EK EM RTS Te TepUR TeNON
VA&R 0.010 0.567 0.315 0.020 0.021 0.934 0.021 0.031 -0.010
H 0.007 0.587 0.304 0.019 0.023 0.939 0.023 0.030 -0.007
SF 0.012 0.561 0.312 0.019 0.028 0.932 0.026 0.030 -0.005
MR 0.012 0.555 0.317 0.020 0.029 0.933 0.019 0.030 -0.011
ST 0.036 0.524 0.289 0.014 0.053 0.916 0.036 0.029 0.007
NT 0.050 0.528 0.279 0.005 0.052 0.914 0.040 0.024 0.015
N 0.037 0.553 0.285 0.010 0.041 0.926 0.031 0.029 0.002
T&F 0.038 0.507 0.293 0.012 0.058 0.909 0.036 0.033 0.003

* VA&R = Vest-Agder & Rogaland, H = Hordaland, SF = Sogn og Fjordane, MR = Møre og Romsdal, ST = Sør-

Trøndelag, NT = Nord-Trøndelag, N = Nordland, T&F = Troms & Finnmark.
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Table9.B4 K2 with Firm-Specific Fixed Effects Estimated by OLS

Summary Statistics Estimated Elasticities
Elasticity EL EF E[ EK EM RTS Te TepUR TeNON
Mean 0.053 0.483 0.254 0.012 0.048 0.850 0.039 0.035 0.004
St.dev. 0.073 0.110 0.093 0.042 0.040 0.050 0.076 0.037 0.072
Min. -0.142 -0.531 -0.345 -0.214 -0.065 0.651 -0.296 -0.003 -0.347
Max. 0.461 0.773 0.523 0.231 0.307 1.037 0.317 0.119 0.315

Mean Elasticities by Year
Year EL EF E[ EK EM RTS Te TepUR TeNON
1985 0.190 0.394 0.332 -0.004 0.043 0.956
1986 -0.010 0.474 0.327 0.044 0.026 0.862 -0.024 0.002 -0.026
1987 0.028 0.491 0.285 -0.018 0.028 0.814 0.060 0.019 0.041
1988 -0.008 0.557 0.200 0.031 0.040 0.819 0.090 0.068 0.022
1989 0.075 0.616 0.122 0.016 0.013 0.843 0.032 0.030 0.002
1990 0.062 0.397 0.303 -0.029 0.081 0.814 0.034 -0.003 0.038
1991 0.062 0.430 0.278 0.050 0.052 0.871 0.006 0.031 -0.026
1992 0.048 0.511 0.187 0.009 0.074 0.829 0.015 0.017 -0.002
1993 0.053 0.443 0.285 0.018 0.071 0.876 0.088 0.119 -0.031

Mean Elasticities by Region
Region EL EF E[ EK EM RTS Te TepUR TeNON
VA&R 0.047 0.500 0.263 0.011 0.034 0.854 0.030 0.037 -0.007
H 0.036 0.514 0.257 0.017 0.041 0.865 0.032 0.036 -0.004
SF 0.041 0.487 0.267 0.018 0.042 0.855 0.034 0.036 -0.001
MR 0.045 0.483 0.272 0.019 0.042 0.861 0.031 0.035 -0.004
ST 0.059 0.455 0.245 O.ot8 0.061 0.838 0.053 0.035 0.018
NT 0.076 0.463 0.234 -0.003 0.059 0.829 0.058 0.031 0.027
N 0.063 0.486 0.240 0.004 0.052 0.846 0.044 0.036 0.008
T&F 0.068 0.440 0.249 0.013 0.063 0.832 0.042 0.038 0.004

* VA&R = Vest-Agder & Rogaland, H = Hordaland, SF = Sogn og Fjordane, MR = Møre og Romsdal, ST = Sør-

Trøndelag, NT = Nord-Trøndelag, N = Nordland, T&F = Troms & Finnmark.
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Table9.BS JP1 with Firm-Specific Fixed Effects Estimated by OLS

Summary Statistics Estimated Elasticities
Elasticity EL EF E[ EK EM RTS Te TepUR TeNON
Mean -0.006 0.563 0.237 0.004 0.042 0.841 0.038 0.025 0.013
St.dev. 0.147 0.162 0.080 0.052 0.065 0.240 0.023 0.019 0.009
Min. -2.143 0.002 -0.244 -0.559 -0.660 -1.021 0.003 0.003 -0.004
Max. 0.838 2.829 0.760 0.846 0.432 3.806 0.295 0.290 0.101

Mean Elasticities by Year
Year EL EF E[ EK EM RTS Te TepUR TeNON
1985 0.017 0.565 0.238 -0.017 0.038 0.841 0.033 0.020 0.013
1986 -0.021 0.542 0.269 -0.017 0.060 0.833 0.043 0.027 0.016
1987 -0.014 0.529 0.248 0.001 0.059 0.823 0.046 0.030 0.016
1988 -0.014 0.558 0.230 0.003 0.042 0.821 0.037 0.024 0.013
1989 -0.006 0.575 0.250 0.009 0.035 0.863 0.033 0.020 0.013
1990 -0.014 0.590 0.230 0.008 0.036 0.850 0.033 0.021 0.012
1991 0.005 0.542 0.217 0.016 0.043 0.824 0.040 0.026 0.014
1992 -0.006 0.590 0.232 0.017 0.039 0.874 0.040 0.029 0.011
1993 0.003 0.575 0.223 0.014 0.024 0.840 0.034 0.025 0.009

Mean Elasticities by Region
Region EL EF E[ EK EM RTS Te TepUR TeNON
VA&R 0.024 0.534 0.237 0.013 0.032 0.840 0.033 0.023 0.010
H -0.006 0.589 0.243 0.015 0.017 0.857 0.035 0.023 0.013
SF 0.003 0.550 0.229 0.006 0.033 0.822 0.034 0.022 0.012
MR 0.004 0.579 0.247 0.009 0.028 0.867 0.035 0.023 0.012
ST -0.061 0.588 0.242 0.001 0.072 0.843 0.047 0.029 0.017
NT 0.001 0.549 0.232 -0.007 0.068 0.842 0.042 0.029 0.013
N -0.007 0.554 0.226 -0.007 0.047 0.813 0.036 0.023 0.013
T&F -0.017 0.542 0.242 -0.001 0.069 0.835 0.045 0.031 0.014

* VA&R =Vest-Agder & Rogaland, H =Hordaland, SF = Sogn og Fjordane, MR =Møre og Romsdal, ST = Sør-

Trøndelag, NT =Nord-Trøndelag, N =Nordland, T&F = Troms & Finnmark.
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Table9.B6 V1 and JP1 with Firm-Specific Fixed Effects Estimated by FGLS

Summary Statistics Estimated Elasticities
Elasticity EL EF E1 EK EM RTS TVE Te TepUR TeNON Tev
Mean -0.030 0.588 0.236 0.014 0.032 0.841 0.882 0.037 0.026 0.010 0.106
St.dev. 0.138 0.192 0.091 0.038 0.090 0.240 0.595 0.028 0.024 0.011 0.004
Min. -1.560 -0.372 -0.196 -0.634 -0.677 -0.849 0.025 0.002 0.004 -0.011 0.100
Max. 0.669 3.170 0.848 0.227 0.878 4.028 5.997 0.442 0.410 0.133 0.112

Mean Elasticities by Year
Year EL EF E1 EK EM RTS TVE Te TepUR TeNON Tev
1985 -0.009 0.610 0.238 0.004 0.018 0.861 0.419 0.048 0.038 0.011 0.112
1986 -0.039 0.569 0.267 0.001 0.048 0.846 0.477 0.053 0.038 0.014 0.111
1987 -0.024 0.554 0.249 0.007 0.051 0.838 0.528 0.049 0.035 0.013 0.109
1988 -0.021 0.594 0.224 0.009 0.029 0.834 0.754 0.036 0.025 0.011 0.107
1989 -0.032 0.601 0.249 0.019 0.021 0.857 0.974 0.030 0.020 0.010 0.106
1990 -0.057 0.598 0.238 0.023 0.030 0.831 1.132 0.028 0.019 0.009 0.104
1991 -0.028 0.535 0.231 0.026 0.049 0.813 1.098 0.034 0.022 0.012 0.103
1992 -0.033 0.617 0.226 0.020 0.034 0.863 1.151 0.031 0.024 0.008 0.101
1993 -0.019 0.618 0.206 0.018 0.006 0.829 1.314 0.026 0.020 0.007 0.100

Mean Elasticities by Region
Region EL EF E1 EK EM RTS TVE Te TepUR TeNON Tev
VA&R -0.009 0.559 0.248 0.019 0.Q18 0.835 0.871 0.03 0.023 0.007 0.105
H -0.028 0.629 0.243 0.025 -0.001 0.867 1.083 0.032 0.023 0.009 0.106
SF -0.023 0.581 0.232 0.018 0.024 0.832 0.88 0.032 0.024 0.009 0.106
MR -0.03 0.603 0.251 0.022 0.014 0.861 0.987 0.034 0.025 0.009 0.106
ST -0.066 0.605 0.236 0.001 0.076 0.852 0.84 0.047 0.032 0.015 0.106
NT -0.023 0.566 0.223 0.005 0.06 0.832 0.69 0.044 0.032 0.012 0.106
N -0.029 0.572 0.221 0.008 0.038 0.809 0.782 0.036 0.025 0.011 0.106
T&F -0.036 0.559 0.236 0.004 0.067 0.829 0.751 0.044 0.032 0.012 0.105

* VA&R = Vest-Agder & Rogaland, H = Hordaland, SF = Sogn og Fjordane, MR = Møre og Romsdal, ST = Sør-

Trøndelag, NT = Nord-Trøndelag, N = Nordland, T&F = Troms & Finnmark.
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Table9.B7 V2 and JP1 with Firm-Specific Fixed Effects Estimated by FGLS

Summary Statistics Estimated Elasticities
Elasticity EL EF EI EK EM RTS TVE Te TepUR TeNON Tev
Mean -0.027 0.588 0.232 0.016 0.030 0.840 0.979 0.037 0.025 0.013 -0.035
St.dev. 0.150 0.207 0.097 0.029 0.106 0.253 0.000 0.027 0.021 0.014 0.016
Min. -1.694 -0.603 -0.272 -0.512 -0.657 -1.012 0.979 -0.002 0.004 -0.012 -0.062
Max. 0.767 3.115 0.865 0.189 1.133 4.062 0.979 0.397 0.345 0.149 -0.009

Mean Elasticities by Year
Year EL EF EI EK EM RTS TVE Te TepUR TeNON Tev
1985 -0.004 0.609 0.239 0.004 0.006 0.854 0.979 0.045 0.029 0.016 -0.062
1986 -0.041 0.566 0.266 0.004 0.041 0.835 0.979 0.052 0.032 0.019 -0.055
1987 -0.017 0.549 0.248 0.010 0.046 0.836 0.979 0.049 0.032 0.018 -0.049
1988 -0.013 0.593 0.223 0.012 0.019 0.833 0.979 0.037 0.024 0.013 -0.042
1989 -0.031 0.601 0.246 0.020 0.018 0.855 0.979 0.031 0.019 0.012 -0.036
1990 -0.062 0.599 0.230 0.024 0.033 0.824 0.979 0.029 0.019 0.010 -0.029
1991 -0.031 0.528 0.225 0.026 0.072 0.820 0.979 0.035 0.023 0.013 -0.022
1992 -0.028 0.622 0.217 0.022 0.039 0.872 0.979 0.034 0.025 0.008 -0.016
1993 -0.007 0.627 0.198 0.020 0.001 0.839 0.979 0.028 0.021 0.007 -0.009

Mean Elasticities by Region
Region EL EF EI EK EM RTS TVE Te TepUR TeNON Tev
VA&R -0.004 0.559 0.244 0.019 0.019 0.838 0.979 0.030 0.022 0.008 -0.032
H -0.020 0.629 0.242 0.025 -0.008 0.868 0.979 0.033 0.022 0.011 -0.034
SF -0.018 0.581 0.228 0.019 0.023 0.834 0.979 0.032 0.022 0.010 -0.036
MR -0.026 0.604 0.247 0.022 0.013 0.861 0.979 0.034 0.023 0.011 -0.035
ST -0.064 0.603 0.230 0.008 0.073 0.850 0.979 0.048 0.030 0.019 -0.036
NT -0.026 0.566 0.217 0.009 0.056 0.822 0.979 0.045 0.030 0.016 -0.037
N -0.031 0.571 0.217 0.011 0.039 0.807 0.979 0.037 0.023 0.014 -0.037
T&F -0.033 0.557 0.229 0.009 0.070 0.832 0.979 0.046 0.030 0.015 -0.032

* VA&R =Vest-Agder & Rogaland, H =Hordaland, SF = Sogn og Fjordane, MR =Møre og Romsdal, ST = Sør-
Trøndelag, NT =Nord-Trøndelag, N =Nordland, T&F = Troms & Finnmark.
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Table9.BB V1 and JP2 with Firm-Specific Fixed Effects Estimated by FGLS

Summary Statistics Estimated Elasticities
Elasticity EL EF EI EK EM RTS 1VE Te TepUR TeNON Tev
Mean 0.034 0.504 0.283 0.026 0.049 0.896 0.666 0.041 0.037 0.004 0.082
St.dev. 0.096 0.161 0.120 0.042 0.064 0.201 0.518 0.084 0.090 0.101 0.303
Min. -0.897 0.001 0.000 -0.180 -0.175 0.181 -0.121 -0.334 -0.173 -0.873 -0.285
Max. 1.099 2.207 0.919 0.302 0.678 3.823 4.693 1.316 1.326 0.432 0.622

Mean Elasticities by Year
Year EL EF EI EK EM RTS 1VE Te TepUR TeNON Tev
1985 0.202 0.402 0.352 0.022 0.060 1.038 0.254
1986 0.027 0.446 0.360 0.082 0.015 0.929 0.299 -0.016 0.120 -0.135 -0.073
1987 -0.012 0.502 0.283 0.012 0.018 0.803 0.353 0.079 0.160 -0.081 0.070
1988 -0.009 0.596 0.212 0.038 0.038 0.875 0.546 0.089 -0.008 0.097 -0.081
1989 0.052 0.634 0.158 0.020 0.033 0.896 0.745 0.026 0.022 0.005 0.622
1990 0.021 0.455 0.323 -0.015 0.093 0.878 0.892 0.025 0.014 0.011 -0.285
1991 0.012 0.440 0.313 0.056 0.080 0.902 0.862 0.014 -0.030 0.044 0.517
1992 0.014 0.546 0.246 0.007 0.048 0.860 0.914 0.021 0.057 -0.036 0.034
1993 0.032 0.466 0.342 0.024 0.050 0.914 1.047 0.082 -0.025 0.107 -0.129

Mean Elasticities by Region
Region EL EF EI EK EM RTS 1VE Te TepUR TeNON Tev
VA&R 0.031 0.485 0.278 0.026 0.036 0.856 0.690 0.031 0.023 0.008 0.101
H 0.025 0.531 0.276 0.024 0.032 0.889 0.856 0.038 0.029 0.008 0.086
SF 0.031 0.497 0.279 0.028 0.040 0.876 0.676 0.038 0.034 0.004 0.072
MR 0.035 0.503 0.308 0.031 0.041 0.918 0.769 0.035 0.030 0.005 0.081
ST 0.022 0.517 0.305 0.030 0.072 0.946 0.605 0.049 0.053 -0.004 0.089
NT 0.046 0.500 0.276 0.021 0.063 0.906 0.473 0.061 0.059 0.001 0.062
N 0.040 0.498 0.264 0.023 0.052 0.876 0.561 0.041 0.036 0.006 0.080
T&F 0.043 0.480 0.293 0.028 0.073 0.917 0.538 0.045 0.045 0.000 0.083

* VA&R = Vest-Agder & Rogaland, H = Hordaland, SF = Sogn og Fjordane, MR = Møre og Romsdal, ST = Sør-

Trøndelag, NT = Nord-Trøndelag, N = Nordland, T&F = Troms & Finnmark.
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Table9.S9 V2 and JP2 with Firm-Specific Fixed Effects Estimated by FGLS

Summary Statistics Estimated Elasticities
Elasticity EL EF E[ EK EM RTS TVE Te TepUR TeNON Tev
Mean 0.049 0.495 0.281 0.026 0.053 0.904 0.713 0.041 0.033 0.008 0.066
St.dev. 0.087 0.159 0.115 0.037 0.073 0.200 0.000 0.075 0.073 0.092 0.310
Min. -0.667 0.001 -0.001 -0.253 -0.177 0.201 0.713 -0.282 -0.204 -0.768 -0.240
Max. 1.061 2.175 0.900 0.278 0.851 3.786 0.713 0.977 1.254 0.353 0.574

Mean Elasticities by Year
Year EL EF E[ EK EM RTS TVE Te TepUR TeNON Tev
1985 0.183 0.402 0.361 0.028 0.060 1.034 0.713
1986 0.043 0.433 0.347 0.078 0.021 0.922 0.713 -0.023 0.118 -0.140 -0.175
1987 0.036 0.487 0.282 0.017 0.021 0.842 0.713 0.066 0.099 -0.034 0.025
1988 0.020 0.577 0.218 0.035 0.037 0.888 0.713 0.091 0.003 0.088 -0.178
1989 0.063 0.634 0.169 0.015 0.028 0.909 0.713 0.027 0.017 0.010 0.574
1990 0.033 0.449 0.311 -0.016 0.098 0.875 0.713 0.027 0.032 -0.005 -0.240
1991 0.023 0.430 0.314 0.041 0.103 0.910 0.713 0.017 -0.035 0.052 0.564
1992 0.020 0.533 0.240 0.021 0.055 0.869 0.713 0.023. 0.055 -0.032 0.103
1993 0.043 0.462 0.326 0.030 0.057 0.918 0.713 0.085 -0.021 0.106 -0.115

Mean Elasticities by Region
Region EL EF E[ EK EM RTS TVE Te TepUR TeNON Tev
VA&R 0.041 0.478 0.278 0.024 0.040 0.862 0.713 0.031 0.022 0.009 0.093
H 0.040 0.520 0.275 0.021 0.037 0.893 0.713 0.038 0.027 0.011 0.074
SF 0.045 0.488 0.277 0.028 0.044 0.882 0.713 0.037 0.030 0.006 0.054
MR 0.047 0.495 0.306 0.030 0.046 0.922 0.713 0.033 0.027 0.007 0.070
ST 0.046 0.506 0.298 0.030 0.079 0.960 0.713 0.048 0.045 0.003 0.068
NT 0.063 0.491 0.272 0.024 0.066 0.916 0.713 0.058 0.051 0.006 0.038
N 0.053 . 0.489 0.262 0.025 0.056 0.886 0.713 0.040 0.030 0.011 0.056
T&F 0.061 0.471 0.288 0.033 0.080 0.933 0.713 0.045 0.037 0.008 0.075

* VA&R = Vest-Agder & Rogaland, H = Hordaland, SF = Sogn og Fjordane, MR = Møre og Romsdal, ST = Sør-

Trøndelag, NT = Nord-Trøndelag, N = Nordland, T&F = Troms & Finnmark.
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Table 9.810 V1 and JP2 with Firm-Specific Fixed Effects Estimated by ML

Summary Statistics Estimated Elasticities
Elasticity EL EF E[ EK EM RTS TVE Te TepUR TeNON Tev
Mean 0.035 0.504 0.287 0.026 0.046 0.899 1.045 0.041 0.033 0.009 0.066
St.dev. 0.097 0.163 0.122 0.040 0.062 0.201 0.717 0.081 0.083 0.098 0.166
Min. -0.760 0.001 -0.021 -0.418 -0.216 0.054 0.024 -0.319 -0.232 -0.826 -0.103
Max. 1.104 2.186 0.909 0.234 0.610 3.764 7.579 1.14 1.146 0.44 0.418

Mean Elasticities by Year
Year EL EF E[ EK EM RTS TVE Te TepUR TeNON Tev
1985 0.196 0.396 0.359 0.019 0.054 1.023 0.471
1986 0.030 0.453 0.353 0.074 0.016 0.926 0.563 -0.015 0.107 -0.123 -0.103
1987 0.006 0.499 0.286 0.007 0.020 0.818 0.631 0.074 0.138 -0.064 0.162
1988 -0.004 0.596 0.213 0.041 0.038 0.884 0.879 0.088 -0.010 0.099 0.003
1989 0.050 0.635 0.162 0.026 0.022 0.895 1.152 0.026 0.028 -0.003 0.418
1990 0.016 0.453 0.334 -0.013 0.088 0.878 1.373 0.026 0.014 0.012 -0.085
1991 0.012 0.433 0.335 0.057 0.076 0.913 1.379 0.016 -0.040 0.055 0.043
1992 0.012 0.551 0.246 0.004 0.050 0.863 1.343 0.023 0.063 -0.039 0.131
1993 0.035 0.473 0.337 0.025 0.051 0.920 1.495 0.081 -0.031 0.112 -0.068

Mean Elasticities by Region
Region EL EF E[ EK EM RTS TVE Te TepUR TeNON Tev
VA&R 0.030 0.486 0.285 0.026 0.034 0.861 1.018 0.031 0.020 0.011 0.073
H 0.024 0.533 0.281 0.024 0.030 0.892 1.276 0.037 0.026 0.011 0.066
SF 0.031 0.498 0.283 0.029 0.038 0.879 1.036 0.038 0.030 0.008 0.064
MR 0.033 0.503 0.314 0.032 0.038 0.920 1.172 0.034 0.026 0.008 0.057
ST 0.030 0.516 0.307 0.025 0.071 0.949 1.019 0.050 0.047 0.004 0.071
NT 0.051 0.498 0.277 0.022 0.061 0.909 0.813 0.059 0.052 0.006 0.062
N 0.042 0.496 0.267 0.024 0.049 0.878 0.928 0.042 0.031 0.011 0.070
T&F 0.050 0.479 0.295 0.026 0.071 0.921 0.898 0.045 0.038 0.007 0.065

* VA&R = Vest-Agder & Rogaland, H = Hordaland, SF = Sogn og Fjordane, MR = Møre og Romsdal, ST = Sør-

Trøndelag, NT = Nord-Trøndelag, N = Nordland, T&F = Troms & Finnmark.
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Table9.B11 V2 and JP2 with Firm-Specific Fixed Effects Estimated by ML

Summary Statistics Estimated Elasticities
Elasticity EL EF EI Ex EM RTS TVE Te TepUR TeNON Tev
Mean 0.049 0.500 0.285 0.031 0.051 0.916 1.022 0.039 0.027 0.012 0.061
St.dev. 0.090 0.160 0.115 0.037 0.071 0.203 0.000 0.072 0.072 0.094 0.155
Min. -0.676 0.001 -0.003 -0.517 -0.180 0.080 1.022 -0.249 -0.237 -0.804 -0.268
Max. 1.059 2.241 0.918 0.250 0.765 3.839 1.022 1.068 1.372 0.370 0.318

Mean Elasticities by Year
Year EL EF EI Ex EM RTS TVE Te TepUR TeNON Tev
1985 0.183 0.409 0.367 0.034 0.049 1.041 1.022
1986 0.035 0.443 0.341 0.075 0.027 0.919 1.022 -0.019 0.129 -0.148 -0.268
1987 0.060 0.495 0.281 0.018 0.024 0.877 1.022 0.058 0.054 0.004 0.060
1988 0.032 0.585 0.219 0.045 0.030 0.910 1.022 0.084 -0.002 0.086 0.078
1989 0.056 0.639 0.180 0.022 0.020 0.917 1.022 0.028 0.025 0.003 0.318
1990 0.025 0.452 0.316 -0.009 0.099 0.882 1.022 0.027 0.033 -0.005 -0.019
1991 0.019 0.428 0.333 0.050 0.095 0.924 1.022 0.D18 -0.041 0.059 0.118
1992 0.016 0.534 0.244 0.020 0.059 0.874 1.022 0.022 0.060 -0.038 0.162
1993 0.043 0.471 0.327 0.031 0.056 0.929 1.022 0.084 -0.032 0.116 -0.003

Mean Elasticities by Region
Region EL EF EI Ex EM RTS TVE Te TepUR TeNON Tev
VA&R 0.040 0.485 0.285 0.029 0.037 0.875 1.022 0.031 0.019 0.012 0.080
H 0.036 0.527 0.280 0.026 0.035 0.903 1.022 0.036 0.024 0.013 0.064
SF 0.044 0.494 0.281 0.033 0.042 0.894 1.022 0.035 0.026 0.009 0.058
MR 0.044 0.501 0.311 0.034 0.043 0.933 1.022 0.031 0.023 0.009 0.054
ST 0.053 0.509 0.302 0.032 0.078 0.974 1.022 0.049 0.038 0.010 0.063
NT 0.067 0.494 0.275 0.029 0.065 0.930 1.022 0.055 0.044 0.011 0.047
N 0.055 0.494 0.265 0.030 0.053 0.898 1.022 0.040 0.024 0.016 0.056
T&F 0.068 0.475 0.292 0.036 0.078 0.949 1.022 0.042 0.029 0.014 0.067

* VA&R = Vest-Agder & Rogaland, H = Hordaland, SF = Sogn og Fjordane, MR =Møre og Romsdal, ST = Sør-

Trøndelag, NT = Nord-Trøndelag, N =Nordland, T&F = Troms & Finnmark.
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Table 9.812 V1 and JP2 Pooled Estimated by FGLS

Summary Statistics Estimated Elasticities
Elasticity EL EF EI EK EM RTS TVE Te TepUR TeNON Tev
Mean 0.019 0.574 0.312 0.013 0.033 0.951 0.884 0.027 0.017 0.010 0.212
St.dev. 0.064 0.187 0.125 0.037 0.064 0.200 0.601 0.074 0.052 0.086 0.385
Min. -0.424 0.001 0.000 -0.331 -0.213 0.404 0.025 -0.656 -0.202 -0.791 -0.343
Max. 0.734 2.845 1.014 0.257 0.695 3.992 5.793 0.610 0.599 0.359 0.966

Mean Elasticities by Year
Year EL EF EI EK EM RTS TVE Te TepUR TeNON Tev
1985 0.144 0.501 0.330 0.002 0.058 1.036 0.409
1986 -0.020 0.600 0.365 0.057 -0.026 0.976 0.467 -0.029 0.048 -0.077 0.022
1987 0.024 0.608 0.307 -0.022 0.002 0.919 0.518 0.057 0.072 -0.015 0.966
1988 0.009 0.642 0.269 0.017 0.025 0.962 0.744 0.057 -0.011 0.069 0.259
1989 0.014 0.703 0.228 0.008 0.007 0.961 0.975 -0.006 0.002 -0.008 0.408
1990 0.002 0.496 0.365 -0.012 0.068 0.918 1.148 0.012 0.021 -0.009 -0.343
1991 -0.015 0.467 0.366 0.044 0.088 0.951 1.115 0.023 -0.035 0.057 0.300
1992 0.006 0.601 0.251 0.005 0.034 0.897 1.161 0.025 0.073 -0.048 0.326
1993 0.029 0.517 0.343 0.022 0.045 0.955 1.320 0.078 -0.027 0.104 -0.223

Mean Elasticities by Region
Region EL EF EI EK EM RTS TVE Te TepUR TeNON Tev
VA&R 0.010 0.541 0.320 0.014 0.025 0.909 0.882 0.021 0.013 0.008 0.196
H 0.011 0.608 0.294 0.013 0.025 0.951 1.081 0.028 0.016 0.012 0.198
SF 0.014 0.569 0.307 0.015 0.028 0.933 0.882 0.029 0.017 0.012 0.215
MR 0.013 0.569 0.333 0.018 0.030 0.962 0.992 0.023 0.014 0.009 0.189
ST 0.020 0.591 0.330 0.008 0.052 1.001 0.832 0.024 0.023 0.001 0.246
NT 0.032 0.572 0.310 0.010 0.037 0.960 0.690 0.034 0.026 0.008 0.216
N 0.028 0.571 0.295 0.011 0.031 0.936 0.785 0.028 0.015 0.014 0.236
T&F 0.031 0.545 0.329 0.009 0.054 0.968 0.751 0.034 0.021 0.013 0.212

* VA&R = Vest-Agder & Rogaland, H = Hordaland, SF = Sogn og Fjordane, MR = Møre og Romsdal, ST = Sør-

Trøndelag, NT = Nord-Trøndelag, N = Nordland, T&F = Troms & Finnmark.
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Table 9.813 V2 and JP2 Pooled Estimated by FGLS

Summary Statistics Estimated Elasticities
Elasticity EL EF EI EK EM RTS TVE Te TepUR TeNON Tev
Mean 0.025 0.565 0.310 0.013 0.041 0.953 0.930 0.027 0.018 0.009 0.179
St.dev. 0.059 0.181 0.118 0.032 0.078 0.202 0.000 0.069 0.039 0.078 0.368
Min. -0.287 0.001 0.000 -0.276 -0.200 0.445 0.930 -0.570 -0.230 -0.685 -0.309
Max. 0.663 2.920 0.993 0.173 0.940 4.069 0.930 0.440 0.461 0.312 0.870

Mean Elasticities by Year
Year EL EF EI EK EM RTS TVE Te TepUR TeNON Tev
1985 0.119 0.518 0.321 0.020 0.059 1.038 0.930
1986 -0.009 0.596 0.351 0.050 -0.011 0.977 0.930 -0.037 0.041 -0.078 -0.125
1987 0.053 0.589 0.305 -0.019 0.013 0.940 0.930 0.048 0.042 0.007 0.870
1988 0.021 0.621 0.277 0.017 0.029 0.965 0.930 0.062 -0.001 0.063 0.113
1989 0.021 0.689 0.246 0.001 0.004 0.960 0.930 -0.007 0.008 -0.015 0.329
1990 0.010 0.498 0.348 -0.014 0.074 0.915 0.930 0.011 0.034 -0.023 -0.309
1991 -0.021 0.466 0.370 0.037 0.104 0.955 0.930 0.021 -0.040 0.060 0.354
1992 0.004 0.591 0.260 0.017 0.039 0.910 0.930 0.024 0.058 -0.034 0.439
1993 0.036 0.492 0.327 0.020 0.062 0.937 0.930 0.085 0.000 0.086 -0.203

Mean Elasticities by Region
Region EL EF EI EK EM RTS TVE Te TepUR TeNON Tev
VA&R 0.013 0.538 0.320 0.013 0.030 0.914 0.930 0.021 O.oI5 0.006 0.175
H 0.016 0.595 0.297 0.011 0.027 0.947 0.930 0.026 0.017 0.010 0.169
SF 0.019 0.561 0.305 0.015 0.035 0.934 0.930 0.026 0.017 0.009 0.180
MR 0.016 0.562 0.333 0.017 0.036 0.964 0.930 0.022 0.015 0.007 0.163
ST 0.031 0.578 0.323 0.011 0.064 1.007 0.930 0.025 0.022 0.003 0.205
NT 0.039 0.562 0.303 0.011 0.046 0.961 0.930 0.032 0.024 0.007 0.169
N 0.033 0.562 0.293 0.013 0.041 0.941 0.930 0.028 0.015 0.013 0.190
T&F 0.038 0.536 0.321 0.014 0.067 0.976 0.930 0.034 0.021 0.013 0.192

* VA&R = Vest-Agder & Rogaland, H = Hordaland, SF = Sogn og Fjordane, MR = Møre og Romsdal, ST = Sør-

Trøndelag, NT = Nord-Trøndelag, N = Nordland, T&F = Troms & Finnmark.
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Table 9.814. V1 and JP2 Pooled Estimated by ML

Summary Statistics Estimated Elasticities
Elasticity EL EF EI EK EM RTS TVE Te TepUR TeNON Tev
Mean 0.018 0.572 0.312 0.013 0.035 0.950 1.037 0.028 0.016 0.011 0.205
St.dev. 0.061 0.185 0.125 0.049 0.062 0.202 0.717 0.071 0.052 0.085 0.229
Min. -0.323 0.001 0.000 -1.171 -0.255 -0.104 0.022 -0.615 -0.257 -0.743 -0.217
Max. 0.678 2.884 1.016 0.207 0.628 4.009 8.141 0.541 0.618 0.353 0.498

Mean Elasticities by Year
Year EL EF EI EK EM RTS TVE Te TepUR TeNON Tev
1985 0.135 0.505 0.332 0.004 0.056 1.032 0.477
1986 -0.013 0.605 0.355 0.051 -0.023 0.976 0.573 -0.027 0.045 -0.073 0.164
1987 0.026 0.599 0.314 -0.024 O.OlD 0.925 0.645 0.057 0.063 -0.006 0.463
1988 0.002 0.657 0.262 0.015 0.029 0.964 0.886 0.058 -0.013 0.071 0.366
1989 0.007 0.690 0.236 0.016 0.005 0.954 1.144 -0.005 0.011 -0.017 0.498
1990 0.006 0.491 0.365 -0.010 0.063 0.914 1.352 0.009 0.022 -0.013 -0.217
1991 -0.003 0.464 0.368 0.042 0.084 0.954 1.360 0.024 -0.044 0.068 0.055
1992 -0.002 0.596 0.253 0.008 0.040 0.895 1.320 0.025 0.078 -0.053 0.096
1993 0.027 0.511 0.335 0.026 0.053 0.952 1.463 0.079 -0.028 0.107 0.200

Mean Elasticities by Region
Region EL EF EI EK EM RTS TVE Te TepUR TeNON Tev
VA&R 0.008 0.539 0.321 0.017 0.026 0.911 0.997 0.021 0.013 0.009 0.193
H 0.009 0.607 0.293 0.013 0.026 0.948 1.276 0.028 0.015 0.013 0.197
SF 0.012 0.568 0.307 0.DI8 0.029 0.933 1.030 0.029 0.016 0.013 0.2lD
MR 0.012 0.567 0.333 0.019 0.030 0.961 1.163 0.023 0.013 0.011 0.185
ST 0.022 0.591 0.328 -0.002 0.055 0.994 1.033 0.027 0.021 0.006 0.223
NT 0.031 0.568 0.309 0.012 0.040 0.960 0.799 0.032 0.024 0.008 0.208
N 0.026 0.568 0.295 0.DI5 0.032 0.936 0.913 0.029 0.014 0.016 0.230
T&F 0.032 0.542 0.327 0.010 0.056 0.968 0.890 0.035 0.019 0.016 0.197

* VA&R =Vest-Agder & Rogaland, H = Hordaland, SF = Sogn og Fjordane, MR =Møre og Romsdal, ST = Sør-

Trøndelag, NT = Nord-Trøndelag, N = Nordland, T&F = Troms & Finnmark.
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Table 9.815. V2 and JP2 Pooled Estimated by ML

Summary Statistics Estimated Elasticities
Elasticity EL EF EI EK EM RTS TVE Te TepUR TeNON Tev
Mean 0.024 0.566 0.311 0.013 0.041 0.954 1.043 0.026 0.015 0.011 0.197
St.dev. 0.061 0.180 0.119 0.034· 0.075 0.202 0.000 0.067 0.042 0.079 0.207
Min. -0.283 0.001 0.000 -0.401 -0.183 0.452 1.043 -0.508 -0.260 -0.649 -0.161
Max. 0.655 2.974 0.969 0.173 0.838 4.074 1.043 0.416 0.490 0.308 0.436

Mean Elasticities by Year
Year EL EF EI EK EM RTS TVE Te TepUR TeNON Tev
1985 0.122 0.523 0.325 0.014 0.053 1.037 1.043
1986 -0.011 0.601 0.345 0.044 -0.004 0.976 1.043 -0.033 0.046 -0.078 -0.027
1987 0.055 0.592 0.303 -0.022 0.017 0.945 1.043 0.048 0.035 0.014 0.436
1988 0.013 0.635 0.268 0.020 0.029 0.964 1.043 0.061 0.000 0.062 0.384
1989 0.019 0.676 0.261 0.003 -0.003 0.957 1.043 -0.004 0.010 -0.014 0.401
1990 0.013 0.488 0.349 -0.012 0.075 0.912 1.043 0.007 0.035 -0.028 -0.161
1991 -0.013 0.464 0.371 0.038 0.098 0.957 1.043 0.022 -0.045 0.067 0.094
1992 -0.002 0.588 0.264 0.015 0.044 0.909 1.043 0.022 0.058 -0.036 0.178
1993 0.033 0.500 0.325 0.023 0.067 0.946 1.043 0.084 -0.016 0.100 0.243

Mean Elasticities by Region
Region EL EF EI EK EM RTS TVE Te TepUR TeNON Tev
VA&R 0.012 0.540 0.323 0.013 0.029 0.916 1.043 0.020 0.012 0.008 0.196
H 0.014 0.594 0.298 0.010 0.029 0.945 1.043 0.026 0.015 0.012 0.191
SF 0.017 0.562 0.307 0.014 0.035 0.934 1.043 0.025 0.015 0.010 0.201
MR 0.015 0.563 0.335 0.016 0.035 0.964 1.043 0.022 0.012 0.009 0.178
ST 0.033 0.578 0.322 0.009 0.067 1.009 1.043 0.027 0.019 0.008 0.212
NT 0.039 0.563 0.303 0.012 0.048 0.963 1.043 0.031 0.023 0.008 0.190
N 0.032 0.563 0.293 0.013 0.040 0.941 1.043 0.028 0.013 0.016 0.213
T&F 0.039 0.538 0.320 0.013 0.068 0.978 1.043 0.033 0.017 0.016 0.198

* VA&R = Vest-Agder & Rogaland, H = Hordaland, SF = Sogn og Fjordane, MR = Møre og Romsdal, ST = Sør-

Trøndelag, NT = Nord-Trøndelag, N = Nordland, T&F = Troms & Finnmark.
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Table 9.816. V1 and JP2 with Firm-Specific Random Effects Estimated by FGLS proc. RA1

Summary Statistics Estimated Elasticities
Elasticity EL EF EI EK EM RTS TVE Te TepUR TeNON Tev
Mean 0.038 0.502 0.281 0.040 0.053 0.914 0.666 0.042 0.046 -0.004 0.082
St.dev. 0.107 0.144 0.111 0.054 0.065 0.220 0.518 0.094 0.114 0.108 0.303
Min. -0.944 0.002 0.000 -0.170 -0.141 0.224 -0.121 -0.406 -0.167 -0.909 -0.285
Max. 1.179 2.742 1.005 0.600 0.643 4.443 4.693 1.732 1.780 0.270 0.622

Mean Elasticities by Year
Year EL EF EI EK EM RTS TVE Te TepUR TeNON Tev
1985 0.225 0.504 0.337 0.034 0.028 1.127 0.254
1986 0.027 0.448 0.389 0.108 0.009 0.981 0.299 -0.001 0.150 -0.151 -0.073
1987 -0.036 0.492 0.277 0.032 0.039 0.804 0.353 0.086 0.215 -0.128 0.070
1988 0.007 0.518 0.249 0.045 0.053 0.871 0.546 0.093 -0.004 0.098 -0.081
1989 0.068 0.597 0.190 0.014 0.040 0.909 0.745 0.022 0.006 0.015 0.622
1990 0.036 0.441 0.294 -0.004 0.114 0.881 0.892 0.D18 0.026 -0.008 -0.285
1991 0.012 0.500 0.273 0.044 0.073 0.902 0.862 0.010 -0.029 0.038 0.517
1992 0.020 0.519 0.241 0.051 0.053 0.883 0.914 0.007 0.030 -0.023 0.034
1993 0.016 0.494 0.316 0.049 0.049 0.924 1.047 0.093 -0.017 0.109 -0.129

Mean Elasticities by Region
Region EL EF EI EK EM RTS TVE Te TepUR TeNON Tev
VA&R 0.038 0.481 0.278 0.033 0.039 0.870 0.690 0.027 0.026 0.002 0.101
H 0.027 0.528 0.273 0.040 0.038 0.907 0.856 0.039 0.035 0.004 0.086
SF 0.036 0.493 0.278 0.040 0.042 0.889 0.676 0.034 0.041 -0.008 0.072
MR 0.042 0.509 0.304 0.041 0.043 0.938 0.769 0.035 0.037 -0.002 0.081
ST 0.024 0.516 0.294 0.054 0.074 0.962 0.605 0.053 0.066 -0.013 0.089
NT 0.051 0.490 0.279 0.034 0.071 0.925 0.473 0.070 0.076 -0.005 0.062
N 0.043 . 0.496 0.268 0.032 0.057 0.896 0.561 0.040 0.045 -0.005 0.080
T&F 0.048 0.483 0.288 0.050 0.076 0.944 0.538 0.047 0.055 -0.008 0.083

* VA&R = Vest-Agder & Rogaland, H = Hordaland, SF = Sogn og Fjordane, MR =Møre og Romsdal, ST = Sør-
Trøndelag, NT = Nord-Trøndelag, N = Nordland, T&F = Troms & Finnmark.
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Table 9.817. V2 and JP2 with Firm-Specific Random Effects Estimated by FGLS proc. RA1

Summary Statistics Estimated Elasticities
Elasticity EL EF E[ EK EM RTS TVE Te TepUR TeNON Tev
Mean 0.040 0.503 0.282 0.038 0.051 0.914 0.713 0.042 0.046 -0.004 0.066
St.dev. 0.108 0.144 0.111 0.053 0.062 0.219 0.000 0.093 0.113 0.107 0.310
Min. -0.968 0.002 0.000 -0.178 -0.130 0.201 0.713 -0.388 -0.171 -0.925 -0.240
Max. 1.206 2.748 1.018 0.577 0.618 4.454 0.713 1.703 1.748 0.270 0.574

Mean Elasticities by Year
Year EL EF E[ EK EM RTS TVE Te TepUR TeNON Tev
1985 0.232 0.504 0.335 0.030 0.026 1.128 0.713
1986 0.029 0.450 0.392 0.106 0.004 0.980 0.713 0.000 0.151 -0.152 -0.175
1987 -0.037 0.496 0.279 0.031 0.036 0.806 0.713 0.086 0.211 -0.125 0.025
1988 0.009 0.522 0.248 0.042 0.051 0.872 0.713 0.092 -0.003 0.096 -0.178
1989 0.067 0.600 0.190 0.012 0.040 0.909 0.713 0.021 0.006 0.016 0.574
1990 0.039 0.439 0.295 -0.005 0.112 0.879 0.713 0.Dl8 0.028 -0.010 -0.240
1991 0.015 0.498 0.273 0.044 0.073 0.902 0.713 0.011 -0.029 0.040 0.564
1992 0.021 0.519 0.240 0.049 0.053 0.882 0.713 0.006 0.030 -0.024 0.103
1993 0.017 0.493 0.316 0.048 0.048 0.922 0.713 0.092 -0.016 0.108 -0.115

Mean Elasticities by Region
Region EL EF E[ EK EM RTS TVE Te TepUR TeNON Tev
VA&R 0.040 0.481 0.277 0.032 0.039 0.869 0.713 0.027 0.026 0.001 0.093
H 0.029 0.529 0.272 0.038 0.037 0.906 0.713 0.039 0.035 0.004 0.074
SF 0.038 0.494 0.278 0.038 0.041 0.889 0.713 0.034 0.041 -0.007 0.054
MR 0.044 0.509 0.303 0.039 0.042 0.938 0.713 0.035 0.037 -0.002 0.070
ST 0.024 0.517 0.296 0.052 0.072 0.960 0.713 0.052 0.066 -0.014 0.068
NT 0.052 0.492 0.280 0.032 0.068 0.926 0.713 0.070 0.076 -0.006 0.038
N 0.045 0.498 0.269 0.031 0.054 0.896 0.713 0.039 0.045 -0.005 0.056
T&F 0.049 0.484 0.290 0.048 0.073 0.943 0.713 0.047 0.055 -0.008 0.075

* VA&R =Vest-Agder & Rogaland, H = Hordaland, SF = Sogn og Fjordane, MR =Møre og Romsdal, ST = Sør-

Trøndelag, NT = Nord-Trøndelag, N =Nordland, T&F = Troms & Finnmark.
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Table 9.818. V1 and JP2 with Firm-Specific Random Effects Estimated by FGLS proc. RA2

Summary Statistics Estimated Elasticities
Elasticity EL EF EI EK EM RTS TVE Te TepUR TeNON Tev
Mean 0.028 0.531 0.288 0.036 0.046 0.930 1.056 0.039 0.041 -0.002 -0.085
St.dev. 0.095 0.149 0.110 0.052 0.063 0.217 0.696 0.089 0.103 0.103 0.243
Min. -0.793 0.002 0.000 -0.150 -0.176 0.330 0.030 -0.387 -0.112 -0.939 -0.360
Max. 1.066 2.961 0.996 0.616 0.636 4.480 8.032 1.556 1.606 0.278 0.454

Mean Elasticities by Year
Year EL EF EI EK EM RTS TVE Te TepUR TeNON Tev
1985 0.206 0.541 0.334 0.019 0.028 1.127 0.565
1986 0.004 0.522 0.385 0.099 -0.018 0.991 0.620 -0.004 0.136 -0.140 -0.080
1987 -0.030 0.530 0.281 0.019 0.033 0.833 0.675 0.081 0.194 -0.113 -0.221
1988 0.007 0.540 0.265 0.043 0.043 0.897 0.968 0.084 -0.008 0.092 -0.360
1989 0.053 0.620 0.197 0.014 0.040 0.924 1.169 0.015 0.010 0.005 -0.189
1990 0.025 0.472 0.301 -0.005 0.108 0.900 1.237 0.016 0.019 -0.003 0.454
1991 -0.003 0.506 0.292 0.046 0.074 0.914 1.233 0.014 -0.019 0.034 -0.141
1992 0.016 0.535 0.247 0.053 0.047 0.897 1.335 0.010 0.028 -0.019 -0.210
1993 0.005 0.509 0.322 0.051 0.046 0.933 1.613 0.090 -0.015 0.105 0.041

Mean Elasticities by Region
Region EL EF EI EK EM RTS TVE Te TepUR TeNON Tev
VA&R 0.028 0.506 0.287 0.030 0.036 0.887 0.970 0.025 0.024 0.001 -0.081
H 0.019 0.556 0.280 0.037 0.033 0.925 1.290 0.037 0.032 0.005 -0.076
SF 0.027 0.522 0.284 0.036 0.037 0.905 1.026 0.032 0.037 -0.005 -0.094
MR 0.031 0.537 0.310 0.037 0.038 0.953 1.133 0.033 0.034 -0.001 -0.071
ST 0.016 0.546 0.300 0.051 0.063 0.976 1.026 0.048 0.060 -0.012 -0.104
NT 0.039 0.521 0.286 0.030 0.062 0.937 0.894 0.063 0.068 -0.005 -0.074
N 0.033 0.527 0.274 0.028 0.049 0.912 0.985 0.037 0.041 -0.004 -0.099
T&F 0.036 0.510 0.296 0.046 0.068 0.956 0.924 0.045 0.050 -0.005 -0.087

* VA&R = Vest-Agder & Rogaland, H = Hordaland, SF = Sogn og Fjordane, MR = Møre og Romsdal, ST = Sør-

Trøndelag, NT = Nord-Trøndelag, N = Nordland, T&F = Troms & Finnmark.
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Table 9.819. V2 and JP2 with Firm-Specific Random Effects Estimated by FGLS proc. RA2

Summary Statistics Estimated Elasticities
Elasticity EL EF EI EK EM RTS TVE Te TepUR TeNON Tev
Mean 0.029 0.537 0.293 0.032 0.044 0.934 0.826 0.038 0.039 -0.001 -0.017
St.dev. 0.094 0.152 0.111 0.049 0.062 0.216 0.000 0.087 0.098 0.101 0.259
Min. -0.778 0.002 0.000 -0.151 -0.196 0.337 0.826 -0.415 -0.116 -0.931 -0.406
Max. 1.059 3.024 1.013 0.560 0.625 4.507 0.826 1.456 1.500 0.273 0.451

Mean Elasticities by Year
Year EL EF EI EK EM RTS TVE Te TepUR TeNON Tev
1985 0.205 0.550 0.330 0.013 0.029 1.126 0.826
1986 0.004 0.533 0.388 0.092 -0.025 0.992 0.826 -0.003 0.134 -0.137 -0.124
1987 -0.024 0.541 0.285 0.012 0.030 0.844 0.826 0.078 0.181 -0.103 -0.249
1988 0.009 0.549 0.267 0.038 0.041 0.904 0.826 0.080 -0.008 0.088 -0.406
1989 0.051 0.626 0.204 0.011 0.036 0.929 0.826 0.011 0.006 0.005 -0.208
1990 0.024 0.472 0.310 -0.007 0.104 0.904 0.826 O.oI5 0.019 -0.004 0.451
1991 -0.004 0.506 0.301 0.044 0.073 0.920 0.826 0.016 -0.020 0.036 -0.079
1992 0.015 0.541 0.250 0.050 0.046 0.901 0.826 0.010 0.030 -0.020 -0.155
1993 0.006 0.513 0.323 0.049 0.045 0.936 0.826 0.089 -0.016 0.105 0.149

Mean Elasticities by Region
Region EL EF EI EK EM RTS TVE Te TepUR TeNON Tev
VA&R 0.028 0.511 0.292 0.028 0.034 0.892 0.826 0.024 0.023 0.002 -0.067
H 0.019 0.562 0.283 0.034 0.032 0.929 0.826 0.036 0.030 0.006 -0.065
SF 0.027 0.528 0.288 0.032 0.035 0.910 0.826 0.032 0.036 -0.004 -0.086
MR 0.031 0.542 0.314 0.033 0.036 0.956 0.826 0.032 0.032 0.000 -0.058
ST 0.017 0.553 0.304 0.046 0.060 0.980 0.826 0.045 0.057 -0.011 -0.100
NT 0.040 0.528 0.290 0.026 0.058 0.943 0.826 0.061 0.065 -0.004 -0.076
N 0.034 .0.534 0.278 0.025 0.047 0.917 0.826 0.035 0.038 -0.003 -0.097
T&F 0.038 0.516 0.301 0.041 0.065 0.961 0.826 0.044 0.048 -0.004 -0.070

* VA&R = Vest-Agder & Rogaland, H = Hordaland, SF = Sogn og Fjordane, MR = Møre og Romsdal, ST = SØr-

Trøndelag, NT = Nord-Trøndelag, N = Nordland, T&F = Troms & Finnmark.
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Table 9.820. V1 and JP2 with Firm-Specific Random Effects Estimated by FGLS proc. RA2 on
Sample2

Summary Statistics Estimated Elasticities
Elasticity EL EF EI EK EM RTS TVE Te TepUR TeNON Tev
Mean 0.034 0.577 0.330 -0.002 0.023 0.962 0.437 0.027 0.037 -0.010 0.128
St.dev. 0.099 0.190 0.153 0.060 0.052 0.228 0.355 0.112 0.099 0.125 0.400
Min. -0.568 -0.088 0.000 -0.616 -0.164 0.247 -0.049 -0.743 -0.745 -1.190 -0.252
Max. 1.058 2.941 2.212 0.521 0.372 4.287 4.280 1.317 1.361 0.740 0.734

Mean Elasticities by Year
Year EL EF EI EK EM RTS TVE Te TepUR TeNON Tev
1985 0.216 0.489 0.355 -0.005 0.048 1.104 0.197
1986 -0.028 0.546 0.404 0.034 0.046 1.003 0.223 -0.072 0.083 -0.155 -0.147
1987 -0.056 0.594 0.318 0.029 -0.006 0.877 0.266 0.095 0.174 -0.079 -0.252
1988 0.077 0.583 0.378 -0.022 -0.016 0.999 0.398 0.074 -0.075 0.149 -0.184
1989 0.104 0.683 0.291 -0.062 -0.036 0.980 0.483 -0.034 0.011 -0.045 0.732
1990 0.004 0.554 0.297 0.003 0.062 0.920 0.505 0.003 0.066 -0.064 -0.029
1991 -0.005 0.529 0.363 0.020 0.055 0.963 0.508 0.014 -0.049 0.063 0.292
1992 0.056 0.547 0.362 -0.068 0.034 0.930 0.566 -0.009 0.024 -0.033 -0.233
1993 -0.037 0.621 0.231 0.067 0.039 0.920 0.679 0.137 0.075 0.062 0.734

Mean Elasticities by Region
Region EL EF EI EK EM RTS TVE Te TepUR TeNON Tev
VA&R 0.031 0.546 0.331 -0.002 0.016 0.923 0.396 0.030 0.030 0.000 0.157
H 0.027 0.608 0.301 -0.015 0.021 0.943 0.576 0.033 0.032 0.001 0.142
SF 0.034 0.569 0.326 -0.006 0.019 0.942 0.438 0.027 0.032 -0.005 0.120
MR 0.041 0.579 0.346 -0.007 0.022 0.982 0.488 0.021 0.030 -0.009 0.142
ST 0.041 0.585 0.359 0.000 0.031 1.016 0.418 0.025 0.048 -0.023 0.095
NT 0.034 0.581 0.327 0.005 0.020 0.968 0.327 0.032 0.048 -0.016 0.100
N 0.034 0.575 0.318 0.000 0.021 0.947 0.394 0.020 0.033 -0.014 0.129
T&F 0.035 0.549 0.362 0.021 0.036 1.001 0.345 0.027 0.049 -0.022 0.125

* VA&R = Vest-Agder & Rogaland, H = Hordaland, SF = Sogn og Fjordane, MR = Møre og Romsdal, ST = Sør-

Trøndelag, NT = Nord-Trøndelag, N = Nordland, T&F = Troms & Finnmark.
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Table 9.821. V2 and JP2 with Firm-Specific Random Effects Estimated by FGLS proc. RA2 on
Sample2

Summary Statistics Estimated Elasticities
Elasticity EL EF E[ EK EM RTS TVE Te TepUR TeNON Tev
Mean 0.033 0.576 0.332 -0.003 0.023 0.963 0.228 0.026 0.036 -0.010 0.141
St.dev. 0.098 0.192 0.155 0.061 0.052 0.228 0.000 0.112 0.097 0.125 0.415
Min. -0.552 -0.120 0.000 -0.568 -0.170 0.238 0.228 -0.766 -0.727 -1.198 -0.254
Max. 1.036 2.941 2.237 0.494 0.365 4.285 0.228 1.265 1.303 0.734 0.832

Mean Elasticities by Year
Year EL EF E[ EK EM RTS TVE Te TepUR TeNON Tev
1985 0.214 0.488 0.353 -0.004 0.051 1.102 0.228
1986 -0.030 0.544 0.406 0.033 0.047 1.001 0.228 -0.074 0.080 -0.154 -0.150
1987 -0.058 0.595 0.321 0.029 -0.005 0.882 0.228 0.094 0.166 -0.072 -0.254
1988 0.077 0.585 0.379 -0.023 -0.016 1.001 0.228 0.073 -0.073 0.147 -0.200
1989 0.102 0.682 0.294 -0.061 -0.036 0.981 0.228 -0.035 0.010 -0.046 0.704
1990 0.001 0.547 0.301 0.001 0.064 0.915 0.228 0.001 0.072 -0.070 -0.042
1991 -0.002 0.527 0.365 0.019 0.056 0.964 0.228 0.013 -0.055 0.068 0.332
1992 0.056 0.546 0.366 -0.070 0.034 0.932 0.228 -0.009 0.025 -0.033 -0.201
1993 -0.039 0.626 0.231 0.067 0.037 0.921 0.228 0.137 0.076 0.061 0.832

Mean Elasticities by Region
Region EL EF E[ EK EM RTS TVE Te TepUR TeNON Tev
VA&R 0.031 0.545 0.334 -0.002 0.016 0.924 0.228 0.029 0.029 0.000 0.173
H 0.027 0.607 0.302 -0.016 0.022 0.942 0.228 0.033 0.032 0.001 0.156
SF 0.033 0.568 0.328 -0.006 0.020 0.943 0.228 0.027 0.031 -0.005 0.134
MR 0.040 0.578 0.348 -0.007 0.022 0.981 0.228 0.021 0.030 -0.009 0.154
ST 0.038 0.584 0.361 -0.001 0.033 1.015 0.228 0.024 0.046 -0.022 0.103
NT 0.033 0.582 0.330 0.004 0.021 0.970 0.228 0.031 0.047 -0.016 0.105
N 0.033 0.575 0.320 0.000 0.021 0.949 0.228 0.019 0.033 -0.014 0.138
T&F 0.032 0.548 0.365 0.021 0.036 1.001 0.228 0.026 0.048 -0.022 0.143

* VA&R = Vest-Agder & Rogaland, H = Hordaland, SF = Sogn og Fjordane, MR = Møre og Romsdal, ST = Sør-

Trøndelag, NT = Nord-Trøndelag, N = Nordland, T&F = Troms & Finnmark.
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Table 9.822. JP2 with Region-Specific Fixed Effects Estimated by OLS

Summary Statistics Estimated Elasticities
Elasticity EL EF EI EK EM RTS Te TepUR TeNON
Mean 0.041 0.548 0.302 0.023 0.044 0.957 0.036 0.031 0.005
St.dev. 0.090 0.154 0.112 0.041 0.060 0.217 0.082 0.088 0.093
Min. -0.604 0.002 0.000 -0.123 -0.156 0.399 -0.435 -0.120 -0.889
Max. 1.096 3.062 1.018 0.406 0.688 4.520 1.297 1.355 0.291

Mean Elasticities by Year
Year EL EF EI EK EM RTS Te TepUR TeNON
1985 0.214 0.556 0.325 -0.009 0.042 1.128 0.000 0.000 0.000
1986 0.015 0.553 0.390 0.066 -0.014 1.010 -0.006 0.115 -0.121
1987 0.020 0.548 0.277 0.000 0.031 0.876 0.078 0.163 -0.085
1988 0.030 0.551 0.274 0.037 0.036 0.929 0.079 -0.012 0.091
1989 0.055 0.634 0.219 0.006 0.035 0.949 0.004 -0.004 0.009
1990 0.028 0.486 0.329 -0.008 0.098 0.932 0.013 0.005 0.008
1991 -0.007 0.505 0.334 0.034 0.077 0.942 0.019 -0.012 0.031
1992 0.029 0.571 0.256 0.041 0.036 0.932 0.011 0.017 -0.006
1993 0.011 0.524 0.331 0.046 0.045 0.956 0.086 -0.009 0.095

Mean Elasticities by Region
Region EL EF EI EK EM RTS Te TepUR TeNON
VA&R 0.034 0.522 0.305 0.021 0.034 0.915 0.023 0.017 0.006
H 0.027 0.572 0.293 0.026 0.031 0.949 0.034 0.023 0.011
SF 0.037 0.539 0.296 0.023 0.035 0.930 0.031 0.028 0.003
MR 0.038 0.553 0.324 0.024 0.037 0.975 0.030 0.025 0.005
ST 0.039 0.564 0.312 0.033 0.059 1.007 0.042 0.046 -0.004
NT 0.058 0.538 0.299 0.017 0.058 0.969 0.058 0.053 0.005
N 0.048 0.543 0.286 0.016 0.047 0.940 0.035 0.031 0.004
T&F 0.057 0.527 0.310 0.028 0.066 0.988 0.044 0.039 0.005

* VA&R = Vest-Agder & Rogaland, H = Hordaland, SF = Sogn og Fjordane, MR = Møre og Romsdal, ST = Sør-

Trøndelag, NT = Nord-Trøndelag, N = Nordland, T&F = Troms & Finnmark.
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Table 9.823. V1 and JP2 with Region-Specific Fixed Effects Estimated by FGLS

Summary Statistics Estimated Elasticities
Elasticity EL EF EI EK EM RTS TVE Te TepUR TeNON Tev
Mean 0.038 0.552 0.307 0.015 0.039 0.950 .0.904 0.032 0.021 0.012 0.198
St.dev. 0.072 0.182 0.126 0.034 0.060 0.202 0.625 0.076 0.059 0.088 0.324
Min. -0.551 0.001 0.000 -0.209 -0.154 0.404 0.007 -0.607 -0.212 -0.787 -0.399
Max. 0.909 2.633 1.035 0.241 0.696 4.008 5.876 0.756 0.765 0.361 0.595

Mean Elasticities by Year
Year EL EF EI EK EM RTS TVE Te TepUR TeNON Tev
1985 0.177 0.466 0.335 0.002 0.071 1.051 0.413
1986 0.005 0.552 0.375 0.057 -0.008 0.982 0.474 -0.025 0.064 -0.088 0.035
1987 0.050 0.563 0.300 -0.012 0.010 0.910 0.528 0.067 0.092 -0.026 0.208
1988 0.024 0.628 0.250 0.022 0.027 0.951 0.755 0.070 -0.009 0.078 0.534
1989 0.033 0.683 0.212 0.011 0.013 0.951 0.997 0.003 0.004 -0.001 0.595
1990 0.015 0.476 0.367 -0.013 0.073 0.918 1.191 0.015 0.010 0.005 -0.399
1991 0.003 0.453 0.362 0.044 0.091 0.952 1.149 0.020 -0.036 0.056 0.485
1992 0.022 0.602 0.236 0.007 0.036 0.903 1.193 0.027 0.071 -0.044 0.085
1993 0.039 0.509 0.342 0.026 0.042 0.958 1.341 0.076 -0.022 0.098 0.020

Mean Elasticities by Region
Region EL EF EI EK EM RTS TVE Te TepUR TeNON Tev
VA&R 0.027 0.521 0.311 0.016 0.030 0.905 0.912 0.024 0.015 0.009 0.208
H 0.027 0.587 0.288 0.014 0.029 0.945 1.109 0.031 0.017 0.014 0.193
SF 0.032 0.547 0.301 0.017 0.033 0.929 0.908 0.033 0.020 0.013 0.198
MR 0.032 0.548 0.327 0.019 0.035 0.960 1.023 0.026 0.016 0.010 0.181
ST 0.039 0.566 0.326 0.016 0.058 1.005 0.852 0.032 0.028 0.003 0.220
NT 0.055 0.547 0.308 0.012 0.044 0.966 0.694 0.043 0.032 0.011 0.183
N 0.047 0.547 0.290 0.013 0.038 0.935 0.793 0.033 0.019 0.015 0.212
T&F 0.054 0.523 0.324 0.015 0.059 0.976 0.764 0.040 0.025 0.015 0.189

* VA&R = Vest-Agder & Rogaland, H = Hordaland, SF = Sogn og Fjordane, MR = Møre og Romsdal, ST = Sør-

Trøndelag, NT = Nord-Trøndelag, N = Nordland, T&F = Troms & Finnmark.
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Table 9.824. V2 and JP2 with Region-Specific Fixed Effects Estimated by FGLS

Summary Statistics Estimated Elasticities
Elasticity EL EF E[ EK EM RTS TVE Te TepUR TeNON Tev
Mean 0.042 0.547 0.303 0.013 0.045 0.951 0.937 0.031 0.021 0.010 0.175
St.dev. 0.072 0.174 0.118 0.027 0.069 0.204 0.000 0.071 0.046 0.079 0.301
Min. -0.404 0.001 0.000 -0.166 -0.153 0.446 0.937 -0.562 -0.275 -0.706 -0.356
Max. 0.851 2.788 0.973 0.169 0.848 4.120 0.937 0.496 0.545 0.305 0.538

Mean Elasticities by Year
Year EL EF E[ EK EM RTS TVE Te TepUR TeNON Tev
1985 0.153 0.496 0.320 0.006 0.075 1.050 0.937
1986 0.023 0.556 0.358 0.048 -0.002 0.982 0.937 -0.034 0.051 -0.085 -0.125
1987 0.073 0.552 0.297 -0.011 0.023 0.933 0.937 0.058 0.060 -0.002 0.155
1988 0.034 0.614 0.259 0.018 0.030 0.954 0.937 0.071 0.001 0.070 0.400
1989 0.034 0.671 0.232 0.006 0.007 0.950 0.937 0.001 0.011 -0.010 0.538
1990 0.021 0.479 0.345 -0.013 0.079 0.910 0.937 0.014 0.031 -0.017 -0.356
1991 0.005 0.454 0.360 0.033 0.105 0.956 0.937 0.019 -0.047 0.066 0.526
1992 0.010 0.592 0.250 0.018 0.039 0.910 0.937 0.026 0.060 -0.033 0.198
1993 0.047 0.480 0.327 0.025 0.060 0.939 0.937 0.085 0.001 0.084 0.059

Mean Elasticities by Region
Region EL EF E[ EK EM RTS TVE Te TepUR TeNON Tev
VA&R 0.030 0.521 0.312 0.013 0.035 0.910 0.937 0.023 0.016 0.007 0.197
H 0.029 0.578 0.291 0.012 0.033 0.942 0.937 0.029 0.018 0.011 0.175
SF 0.035 0.542 0.299 0.015 0.039 0.929 0.937 0.030 0.020 0.010 0.174
MR 0.034 0.545 0.327 0.016 0.040 0.962 0.937 0.025 0.017 0.008 0.164
ST 0.051 0.559 0.316 0.015 0.067 1.007 0.937 0.031 0.026 0.004 0.191
NT 0.061 0.541 0.297 0.011 0.052 0.963 0.937 0.040 0.029 0.010 0.147
N 0.050 0.542 0.286 0.012 0.046 0.936 0.937 0.032 0.019 0.014 0.178
T&F 0.063 0.519 0.313 0.015 0.071 0.981 0.937 0.041 0.025 0.016 0.180

* VA&R = Vest-Agder & Rogaland, H = Hordaland, SF = Sogn og Fjordane, MR = Møre og Romsdal, ST = Sør-
Trøndelag, NT = Nord-Trøndelag, N = Nordland, T&F = Troms & Finnmark.

269



Table 9.825. V1 and JP2 with Firm-Specific RE and Region-Specific FE Estimated by FGLS
Procedure RA2

Summary Statistics Estimated Elasticities
Elasticity EL EF EI EK EM RTS TVE Te TepUR TeNON Tev
Mean 0.036 0.525 0.287 0.036· 0.048 0.932 1.065 0.040 0.041 -0.001 -0.087
St.dev. 0.098 0.147 0.111 0.052 0.062 0.218 0.690 0.089 0.105 0.103 0.235
Min. -0.823 0.002 0.000 -0.155 -0.153 0.307 0.031 -0.363 -0.107 -0.935 -0.333
Max. 1.125 2.898 1.001 0.670 0.635 4.481 8.050 1.580 1.635 0.283 0.437

Mean Elasticities by Year
Year EL EF EI EK EM RTS TVE Te TepUR TeNON Tev
1985 0.218 0.531 0.335 0.018 0.030 1.131 0.581
1986 0.014 0.505 0.387 0.095 -0.007 0.994 0.636 -0.002 0.140 -0.142 -0.078
1987 -0.019 0.516 0.280 0.022 0.035 0.833 0.689 0.084 0.197 -0.113 -0.244
1988 0.014 0.535 0.257 0.046 0.045 0.896 0.978 0.087 -0.008 0.095 -0.333
1989 0.060 0.615 0.192 0.016 0.042 0.924 1.177 0.017 0.007 0.010 -0.193
1990 0.031 0.467 0.302 -0.006 0.109 0.904 1.246 0.017 0.015 0.002 0.437
1991 0.002 0.504 0.293 0.045 0.073 0.917 1.239 0.014 -0.018 0.032 -0.128
1992 0.023 0.534 0.244 0.052 0.047 0.901 1.338 0.008 0.026 -0.018 -0.216
1993 0.010 0.508 0.320 0.051 0.047 0.936 1.611 0.090 -0.015 0.105 0.029

Mean Elasticities by Region
Region EL EF EI EK EM RTS TVE Te TepUR TeNON Tev
VA&R 0.034 0.501 0.284 0.031 0.037 0.887 0.975 0.026 0.023 0.003 -0.083
H 0.025 0.550 0.278 0.038 0.035 0.925 1.293 0.037 0.031 0.006 -0.078
SF 0.034 0.515 0.282 0.036 0.039 0.906 1.034 0.033 0.037 -0.004 -0.096
MR 0.038 0.531 0.309 0.037 0.040 0.954 1.140 0.034 0.034 0.000 -0.073
ST 0.025 0.540 0.298 0.052 0.066 0.981 1.041 0.051 0.060 -0.009 -0.106
NT 0.049 0.514 0.284 0.030 0.065 0.942 0.907 0.066 0.069 -0.003 -0.076
N 0.042 0.520 0.272 0.028 0.052 0.914 0.996 0.038 0.041 -0.003 -0.101
T&F 0.046 0.504 0.294 0.046 0.070 0.961 0.937 0.046 0.051 -0.004 -0.090

* VA&R = Vest-Agder & Rogaland, H = Hordaland, SF = Sogn og Fjordane, MR = Møre og Romsdal, ST = Sør-

Trøndelag, NT = Nord-Trøndelag, N = Nordland, T&F = Troms & Finnmark.
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Table 9.826. V2 and JP2 with Firm-Specific RE and Region-Specific FE Estimated by FGLS
Procedure RA2

Summary Statistics Estimated Elasticities
Elasticity EL EF E[ EK EM . RTS TVE Te TepUR TeNON Tev
Mean 0.038 0.529 0.290 0.034 0.047 0.938 0.833 0.039 0.039 0.000 -0.080
St.dev. 0.096 0.149 0.112 0.050 0.062 0.218 0.000 0.087 0.101 0.101 0.251
Min. -0.809 0.002 0.000 -0.156 -0.159 0.313 0.833 -0.387 -0.111 -0.923 -0.381
Max. 1.123 2.950 1.020 0.632 0.625 4.514 0.833 1.481 1.532 0.278 0.436

Mean Elasticities by Year
Year EL EF E[ EK EM RTS TVE Te TepUR TeNON Tev
1985 0.218 0.538 0.332 0.014 0.032 1.133 0.833
1986 0.015 0.513 0.391 0.089 -0.012 0.997 0.833 0.000 0.139 -0.139 -0.120
1987 -0.011 0.525 0.282 0.017 0.033 0.846 0.833 0.082 0.185 -0.103 -0.272
1988 0.017 0.543 0.258 0.042 0.044 0.904 0.833 0.083 -0.008 0.092 -0.381
1989 0.060 0.620 0.197 0.014 0.040 0.931 0.833 0.014 0.003 0.011 -0.212
1990 0.032 0.466 0.311 -0.007 0.106 0.909 0.833 0.016 0.014 0.002 0.436
1991 0.003 0.504 0.302 0.044 0.072 0.924 0.833 0.015 -0.019 0.034 -0.065
1992 0.023 0.540 0.247 0.050 0.046 0.906 0.833 0.009 0.028 -0.019 -0.164
1993 0.012 0.512 0.321 0.050 0.046 0.940 0.833 0.089 -0.015 0.105 0.130

Mean Elasticities by Region
Region EL EF E[ EK EM RTS TVE Te TepUR TeNON Tev
VA&R 0.035 0.505 0.290 0.029 0.036 0.894 0.833 0.025 0.022 0.003 -0.070
H 0.026 0.554 0.281 0.035 0.034 0.930 0.833 0.036 0.030 0.007 -0.069
SF 0.035 0.520 0.286 0.033 0.038 0.912 0.833 0.032 0.035 -0.003 -0.089
MR 0.039 0.535 0.313 0.034 0.039 0.959 0.833 0.033 0.032 0.001 -0.062
ST 0.028 0.545 0.302 0.048 0.065 0.988 0.833 0.049 0.057 -0.008 -0.102
NT 0.052 . 0.519 0.288 0.027 0.063 0.950 0.833 0.065 0.065 0.000 -0.079
N 0.044 0.525 0.276 0.026 0.050 0.921 0.833 0.037 0.038 -0.001 -0.100
T&F 0.049 0.509 0.298 0.042 0.069 0.968 0.833 0.045 0.048 -0.003 -0.074

* VA&R = Vest-Agder & Rogaland, H = Hordaland, SF = Sogn og Fjordane, MR = Møre og Romsdal, ST = Sør-

Trøndelag, NT = Nord-Trøndelag, N = Nordland, T&F = Troms & Finnmark.
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Table 9.827. V1 with Region-Specific Effects and JP2 with Firm-Specific Fixed Effects
Estimated by FGlS

Summary Statistics Estimated Elasticities
Elasticity EL EF EI EK EM RTS TVE Te TepUR TeNON TCV
Mean 0.030 0.507 0.283 0.030 0.047 0.897 0.635 0.042 0.036 0.006 0.094
St.dev. 0.095 0.157 0.115 0.041 0.062 0.200 0.476 0.081 0.091 0.103 0.303
Min. -0.830 0.001 0.000 -0.184 -0.163 0.172 -0.058 -0.286 -0.194 -0.935 -0.276
Max. 1.099 2.262 0.887 0.303 0.655 3.852 4.261 1.163 1.452 0.375 0.645

Mean Elasticities by Year
Year EL EF EI EK EM RTS TVE Te TepUR TeNON TCV
1985 0.209 0.414 0.346 0.026 0.045 1.040 0.256
1986 0.017 0.454 0.356 0.087 0.007 0.921 0.298 -0.005 0.136 -0.141 -0.049
1987 -0.018 0.496 0.293 0.016 0.018 0.805 0.345 0.068 0.141 -0.073 0.090
1988 -0.013 0.597 0.217 0.041 0.038 0.880 0.521 0.090 -0.012 0.102 -0.065
1989 0.049 0.633 0.161 0.023 0.035 0.901 0.707 0.028 0.025 0.002 0.645
1990 0.019 0.455 0.319 -0.007 0.091 0.877 0.848 0.025 0.021 0.004 -0.276
1991 0.011 0.444 0.312 0.054 0.080 0.900 0.818 0.013 -0.033 0.046 0.505
1992 0.005 Q.547 0.244 0.013 0.051 0.859 0.863 0.025 0.059 -0.034 0.041
1993 0.029 0.478 0.336 0,.025 0.052 0.921 0.983 0.082 -0.036 0.118 -0.124

Mean Elasticities by Region
Region EL EF EI EK EM RTS TVE Te TepUR TeNON Tev
VA&R 0.028 0.489 0.276 0.028 0.036 0.857 0.655 0.031 0.022 0.009 0.111
H 0.022 0.532 0.277 0.028 0.032 0.891 0.802 0.039 0.029 0.009 0.098
SF 0.028 0.500 0.278 0.032 0.038 0.876 0.642 0.039 0.034 0.005 0.084
MR 0.033 0.507 0.307 0.035 0.039 0.920 0.728 0.036 0.030 0.006 0.092
ST 0.018 0.520 0.305 0.034 0.069 0.946 0.580 0.051 0.052 -0.001 0.101
NT 0.041 0.502 0.276 0.026 0.061 0.904 0.463 0.061 0.059 0.002 0.075
N 0.036 0.501 0.264 0.027 0.049 0.877 0.543 0.041 0.034 0.007 0.094
T&F 0.039 0.484 0.292 0.033 0.071 0.919 0.520 0.044 0.042 0.003 0.093

* VA&R = Vest-Agder & Rogaland, H = Hordaland, SF = Sogn og Fjordane, MR = Møre og Romsdal, ST = Sør-
Trøndelag, NT = Nord-Trøndelag, N = Nordland, T&F = Troms & Finnmark.
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Table 9.828. V2 with Region-Specific Effects and JP2 with Firm-Specific Fixed Effects
Estimated by FGLS

Summary Statistics Estimated Elasticities
Elasticity EL EF EI EK EM RTS TVE Te TepUR TeNON Tev
Mean 0.044 0.498 0.281 0.031 0.050 0.903 0.684 0.042 0.033 0.008 0.078
St.dev. 0.088 0.155 0.111 0.036 0.068 0.200 0.000 0.074 0.081 0.096 0.306
Min. -0.622 0.001 0.000 -0.329 -0.158 0.189 0.684 -0.257 -0.225 -0.842 -0.235
Max. 1.085 2.251 0.878 0.300 0.791 3.846 0.684 1.098 1.407 0.302 0.601

Mean Elasticities by Year
Year EL EF EI EK EM RTS TVE Te TepUR TeNON TCV
1985 0.199 0.415 0.354 0.035 0.039 1.041 0.684
1986 0.034 0.442 0.345 0.085 0.014 0.920 0.684 -0.011 0.132 -0.143 -0.148
1987 0.019 0.481 0.290 0.022 0.020 0.832 0.684 0.060 0.102 -0.043 0.050
1988 0.012 0.580 0.222 0.039 0.036 0.890 0.684 0.092 -0.006 0.098 -0.154
1989 0.059 0.632 0.171 0.019 0.030 0.911 0.684 0.029 0.022 0.007 0.601
1990 0.030 0.449 0.307 -0.007 0.095 0.874 0.684 0.027 0.037 -0.010 -0.235
1991 0.024 0.432 0.311 0.039 0.099 0.906 0.684 0.015 -0.039 0.053 0.541
1992 0.009 0.532 0.241 0.026 0.058 0.865 0.684 0.027 0.058 -0.031 0.113
1993 0.037 0.474 0.324 0.030 0.057 0.923 0.684 0.085 -0.033 0.117 -0.113

Mean Elasticities by Region
Region EL EF EI EK ' EM RTS TVE Te TepUR TeNON Tev
VA&R 0.037 0.482 0.276 0.027 0.039 0.862 0.684 0.032 0.022 0.010 0.104
H 0.035 0.521 0.217 0.026 0.035 0.894 0.684 0.039 0.028 0.011 0.086
SF 0.040 0.491 0.276 0.033 0.042 0.881 0.684 0.038 0.031 0.007 0.067
MR 0.044 0.499 0.305 0.034 0.043 0.924 0.684 0.035 0.027 0.007 0.081
ST 0.041 0.509 0.299 0.034 0.074 0.957 0.684 0.051 0.047 0.005 0.082
NT 0.056 0.493 0.272 0.029 0.063 0.912 0.684 0.058 0.054 0.005 0.053
N 0.048 0.493 0.263 0.029 0.052 0.885 0.684 0.041 0.030 0.011 0.070
T&F 0.056 0.476 0.288 0.037 0.017 0.933 0.684 0.046 0.037 0.009 0.086

* VA&R = Vest-Agder & Rogaland, H = Hordaland, SF = Sogn og Fjordane, MR = Møre og Romsdal, ST = Sør-

Trøndelag, NT = Nord-Trøndelag, N = Nordland, T&F = Troms & Finnmark.
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Table 9.829. V1 and JP2 with Firm-Specific Region-Heteroskedastic Random Effects Estimated
by FGLS Procedure RA1

Summary Statistics Estimated Elasticities
Elasticity EL EF E, EK EM RTS TVE Te TepUR TeNON Tev
Mean 0.036 0.504 0.282 0.040 0.052 0.915 0.666 0.042 0.045 -0.004 0.082
St.dev. 0.106 0.144 0.111 0.055 0.064 0.220 0.518 0.093 0.113 0.107 0.303
Min. -0.951 0.002 0.000 -0.171 -0.140 0.214 -0.121 -0.403 -0.175 -0.903 -0.285
Max. 1.160 2.760 1.003 0.615 0.640 4.446 4.693 1.728 1.777 0.265 0.622

Mean Elasticities by Year
Year EL EF E, EK EM RTS TVE Te TepUR TeNON Tev
1985 0.221 0.507 0.337 0.034 0.028 1.128 0.254
1986 0.025 0.453 0.388 0.108 0.009 0.984 0.299 -0.002 0.147 -0.149 -0.073
1987 -0.036 0.494 0.277 0.032 0.040 0.807 0.353 0.086 0.214 -0.128 0.070
1988 0.006 0.521 0.249 0.044 0.052 0.873 0.546 0.093 -0.004 0.097 -0.081
1989 0.065 0.599 0.191 0.014 0.041 0.910 0.745 0.021 0.006 0.015 0.622
1990 0.035 0.443 0.293 -0.003 0.113 0.881 0.892 0.018 0.027 -0.009 -0.285
1991 0.011 0.499 0.276 0.045 0.073 0.904 0.862 0.010 -0.030 0.040 0.517
1992 0.018 0.519 0.243 0.051 0.053 0.884 0.914 0.007 0.031 -0.024 0.034
1993 0.016 0.494 0.317 0.049 0.049 0.925 1.047 0.093 -0.017 0.110 -0.129

Mean Elasticities by Region
Region EL EF E, EK EM RTS TVE Te TepUR TeNON Tev
VA&R 0.037 0.483 0.279 0.033 0.039 0.871 0.690 0.027 0.026 0.002 0.101
H 0.026 0.530 0.274 0.041 0.038 0.908 0.856 0.039 0.035 0.004 0.086
SF 0.035 0.495 0.278 0.040 0.042 0.890 0.676 0.033 0.041 -0.007 0.072
MR 0.041 0.511 0.304 0.041 0.043 0.940 0.769 0.035 0.037 -0.002 0.081
ST 0.022 0.518 0.295 0.055 0.074 0.963 0.605 0.052 0.065 -0.013 0.089
NT 0.049 0.492 0.280 0.034 0.071 0.926 0.473 0.070 0.075 -0.005 0.062
N 0.041 0.498 0.268 0.032 0.057 0.897 0.561 0.039 0.044 -0.005 0.080
T&F 0.046 0.485 0.289 0.051 0.076 0.945 0.538 0.047 0.055 -0.008 0.083

* VA&R =Vest-Agder & Rogaland, H = Hordaland, SF = Sogn og Fjordane, MR =Møre og Romsdal, ST = Sør-

Trøndelag, NT =Nord-Trøndelag, N =Nordland, T&F = Troms & Finnmark.
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Table 9.830. V2 and JP2 with Firm-Specific Region-Heteroskedastic Random Effects Estimated
by FGLS Procedure RA1

Summary Statistics Estimated Elasticities
Elasticity EL EF Er EK EM RTS TVE Te TepUR TeNON Tev
Mean 0.038 0.505 0.283 0.038· 0.051 0.914 0.713 0.042 0.045 -0.004 0.066
St.dev. 0.107 0.144 0.111 0.053 0.062 0.219 0.000 0.093 0.112 0.107 0.310
Min. -0.974 0.002 0.000 -0.179 -0.128 0.185 0.713 -0.383 -0.179 -0.919 -0.240
Max. 1.187 2.763 1.016 0.588 0.614 4.453 0.713 1.698 1.743 0.267 0.574

Mean Elasticities by Year
Year EL EF Er EK EM RTS TVE Te TepUR TeNON Tev
1985 0.228 0.507 0.336 0.030 0.026 1.128 0.713
1986 0.026 0.454 0.391 0.106 0.005 0.981 0.713 -0.001 0.149 -0.150 -0.175
1987 -0.038 0.497 0.280 0.031 0.037 0.808 0.713 0.086 0.210 -0.124 0.025
1988 0.008 0.525 0.248 0.041 0.050 0.873 0.713 0.092 -0.003 0.095 -0.178
1989 0.065 0.601 0.191 0.013 0.041 0.910 0.713 0.021 0.005 0.015 0.574
1990 0.038 0.441 0.294 -0.005 0.111 0.879 0.713 0.018 0.029 -0.012 -0.240
1991 0.014 0.497 0.274 0.044 0.073 0.903 0.713 0.011 -0.031 0.042 0.564
1992 0.019 0.519 0.242 0.050 0.053 0.882 0.713 0.007 0.031 -0.024 0.103
1993 0.017 0.493 0.317 0.048 0.048 0.923 0.713 0.092 -0.016 0.108 -0.115

Mean Elasticities by Region
Region EL EF Er EK EM RTS TVE Te TepUR TeNON Tev
VA&R 0.039 0.482 0.278 0.032 0.039 0.870 0.713 0.027 0.026 0.001 0.093
H 0.028 0.530 0.273 0.039 0.037 0.907 0.713 0.039 0.035 0.004 0.074
SF 0.037 0.495 0.279 0.038 0.041 0.890 0.713 0.034 0.041 -0.007 0.054
MR 0.043 0.510 0.304 0.039 0.042 0.938 0.713 0.035 0.037 -0.002 0.070
ST 0.022 0.519 0.296 0.052 0.072 0.961 0.713 0.052 0.065 -0.013 0.068
NT 0.050 0.494 0.281 0.032 0.068 0.926 0.713 0.069 0.075 -0.006 0.038
N 0.043 0.499 0.269 0.031 0.054 0.897 0.713 0.039 0.044 -0.005 0.056
T&F 0.047 0.485 0.291 0.048 0.073 0.944 0.713 0.047 0.055 -0.008 0.075

* VA&R =Vest-Agder & Rogaland, H =Hordaland, SF = Sogn og Fjordane, MR =Møre og Romsdal, ST = Sør-

Trøndelag, NT =Nord-Trøndelag, N =Nordland, T&F = Troms & Finnmark.
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Table 9.B31. Coefficients of Correlation Between Estimated Elasticities Derived from Different
Model Specifications and Estimators

(a) JP2 Pooled vs. JP2 with Fixed Effects (Both Estimated by OLS)
Elasticity EL

0.90Corr. Coef. 0.93 0.96 0.95 0.84 0.93
RTS Te
0.97

(b) Kl Pooled vs. Kl with Fixed Effects (Both Estimated by OLS)
Elasticity EL EF EI EK EM RTS Te
Corr. Coef. 0.88 0.97 0.95 0.88 0.94 0.78 0.91

Elasticity

(c) Linear Quadratic vs. Translog: JP2 vs.Kl (Both Estimated by OLS)
TeRTS

Pooled Models 0.71 0.55
Models w. Fixed Effects 0.67 0.58

0.69 0.48 0.67
0.71 0.49 0.67

0.24 0.71
0.31 0.67

(d) Time Trend vs Time Dummy Model: JPI with Fixed Effects and JP2 with Fixed
Effects (Both Estimated by FGLS)

TevElasticity RTS
0.02

TVE Te
w. Variance Function VI 0.84
w. Variance Function V2 0.82

0.99
0.00

0.27
0.24 0.18

Elasticity RTS

(e) OLS Estimates vs FGLS Estimates: JP2 with Fixed Effects
TevTVE Te

w. Variance Function VI 0.98
w. Variance Function V2 0.97

N.A.
N.A.

0.92
0.89

N.A.
N.A.

Elasticity RTS

(t) Pooled vs. Fixed Effects Specification: JP2 Estimated by FGLS
TevTVE Te

w. Variance Function VI 0.95
w. Variance Function V2 0.96

0.99
0.00

0.85
0.86

0.50
0.43

Elasticity RTS

(g) FGLS vs. ML Estimates: JP2 with Fixed Effects
Tev

w. Variance Function VI 1.00 0.79
TVE Te

w. Variance Function V2 1.00
0.97
0.00

0.99
0.98 0.72

Elasticity RTS

(h) Different Variance Functions (VI vs. V2): JP2 with Fixed Effects
TCVTVE Te

FGLS Estimates 0.99
ML Estimates 0.99

0.00
0.00

0.97
0.94

0.98
0.84
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9.C. Appendix C: Figures

Figure Description

9.CI Elasticities of Technical Change by Year from Models JP2 and K2 Estimated
by OLS

9.C2 Returns to Scale by Year from Models JP2 and K2 Estimated by OLS
9.C3 Elasticities of Technical Change by Region from Models JP2 and K2 with

Firm-Specific Fixed Effects Estimated by OLS
9.C4. Returns to Scale by Region from Models JP2 and K2 with Firm-Specific Fixed

Effects Estimated by OLS
9.C5. Elasticities of Technical Change by Year from Models JPI and JP2 with Firm-

specific Fixed Effects
9.C6. Returns to Scale by Year from Models JPI and JP2 with Firm-Specific Fixed

Effects
9.C7. Elasticities of Technical Change for Variance Function by Year from Models

JP I and JP2 with Firm-specific Fixed Effects
9.C8. Total Variance Elasticity by Year from Models JPI and IP2 with Firm-specific

Fixed Effects
9.C9 Elasticities of Technical Change by Year from Model JP2 with Firm-specific

Fixed Effects
9.ClO Returns to Scale by Year from Model JP2 with Firm-Specific Fixed Effects
9.CII Elasticities of Technical Change for Variance Function by Year from Model

JP2 with Firm-specific Fixed Effects
9.C12 Total Variance Elasticity by Year from Model JP2 with Firm-specific Fixed

Effects
9.C13 Elasticities of Technical Change by Year from IP2 with/without FE and VI
9.C14 Returns to Scale by Year from JP2 with/without FE and VI
9.C15 Elasticities of Technical Change for Variance Function by Year from JP2

with/without FE and VI
9.C16 Total Variance Elasticity by Year from JP2 with/without FE and VI
9.C17 Elasticities of Technical Change from Pooled, Fixed Effects and Random

Effects Specifications of JP2 and VI
9.C18 Returns to Scale from Pooled, Fixed Effects and Random Effects

Specifications of JP2 and V l
9.C19 Elasticities of Technical Change for Variance Function from Pooled, Fixed

Effects and Random Effects Specifications of JP2 and VI
9.C20 Total Variance Elasticity from Pooled, Fixed Effects and Random Effects

Specifications of JP2 and VI
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9.0. Appendix O: Summary Statistics from the Estimating Sample

Farms observed ... Number of farms Number of obs.

Table 9.01. Structure of the Estimating Unbalanced Panel of Salmon Firms

9 years
8 years
7 years
6 years
5 years
4 years
3 years

27
22
46
64
53
83
77

243
176
322
384
265
332
231

372 1953Sum sample 1
102
81

204
81

2 years
1years

555 2238Sum sample 2

Table 9.02. Overall Summary Non-Normalized Variables Statistics Sample 1 (n=1953 obs.)

Variable Mean St.dev. Min. Max.
Output (y) in kg 355982.3 236220.9 11050 2014140
Materials (M) in real NOK* 998381.0 907280.9 9657 9636125
Feed (F) in kg 340299.1 242741.0 2358 2479452
Capital (K) in real NOK* 2572787.1 2277836.4 4707 37212584
Labor (L) in hours worked 7034.5 3694.1 250 42906
Fish (I) in kg 150379.0 109897.5 50 1015800

* Deflated by Consumer Price Index (CPI)

Table 9.03. Overall Summary Statistics Sample 1 (n=1953 obs.)

Variable Mean St.dev. Min. Max.
Output (y) 1.000 0.664 0.031 5.658
Materials (M) 1.000 0.909 0.010 9.652
Feed(F) 1.000 0.713 0.007 7.286
Capital (K) 1.000 0.885 0.002 14.464
Labor (L) 1.000 0.525 0.036 6.099
Fish (I) 1.000 0.731 0.000 6.755
Time (t) 5.053 2.478 1 9
Year dummy 1985 (Dss) 0.091 0.287 O
Year dummy 1986 (DS6) 0.102 0.303 O 1
Year dummy 1987 (DS7) 0.113 0.317 O 1
Year dummy 1988 (Dss) 0.129 0.335 O 1
Year dummy 1989 (DS9) 0.123 0.328 O 1
Year dummy 1990 (D90) 0.127 0.333 O
Year dummy 1991 (D91) 0.105 0.307 O
Year dummy 1992 (D92) 0.104 0.306 O
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Table 9.04. Sample 1 Means and St.Deviations (in Parenthesis) By Year (n=1953 obs.)

Year 1985 1986 1987 1988 1989 1990 1991 1992 1993
Output (y) 0.443 0.500 0.569 0.849 1.098 1.257 1.282 1.304 1.596

(0.272) (0.277) (0.336) (00406) (0.475) . (0.533) (0.699) (0.775) (0.824)
Materials (M) 00478 0.636 0.695 0.855 1.089 1.296 1.523 1.126 1.197

(0.363) (00432) (0.546) (0.602) (0.682) (0.907) (1.292) (1.159) (1.157)
Feed (F) 00474 0.515 0.580 0.890 1.118 1.206 1.169 1.330 1.618

(0.314) (0.293) (0.380) (0.477) (0.522) (0.576) (0.727) (0.874) (0.986)
Capital (K) 0.742 0.872 0.938 1.057 1.074 1.100 1.090 1.019 1.028

(0.534) (0.614) (0.683) (1.114) (0.740) (0.754) (1.141) (1.012) (1.043)
Labor (L) 0.893 0.941 0.900 1.001 1.037 1.064 0.997 1.025 1.112

(0.482) (0.513) (0.395) (00476) (00490) (0.521 ) (0.518) (0.586) (0.682)
Fish (1) 00430 0.531 0.560 0.719 1.075 1.495 10467 1.306 1.302

(0.351) (0.335) (00412) (00408) (00489) (0.736) (0.865) (0.878) (0.732)
Time (t) 1 2 3 4 5 6 7 8 9
No. of obs. 177 199 221 251 240 248 205 204 208

Table 9.05. Sample 1 Means By Regional Location (n=1953 obs.)*

Region VA&R H SF MR ST NT N T&F
Output (y) 1.035 1.196 1.026 1.087 0.899 0.792 0.911 0.880
Materials (M) 0.832 1.123 0.923 1.054 1.089 0.908 0.997 0.958
Feed(F) 0.970 1.264 0.990 1.101 0.921 0.791 0.897 0.837
Capital (K) 0.757 1.224 0.983 1.069 1.305 0.787 0.843 0.912
Labor(L) 0.807 0.993 0.939 0.989 1.151 1.058 1.042 1.023
Fish (1) 1.074 1.111 1.005 1.156 0.929 0.805 0.910 0.891
Time (t) 5.528 5.179 4.996 5.079 4.894 4.723 4.728 50461
Year dummy 1985 (Dss) 0.056 0.087 0.099 0.111 0.090 0.079 0.109 0.072
Year dummy 1986 (DS6) 0.067 0.095 0.107 0.108 0.101 0.129 0.116 0.084
Year dummy 1987 (DS7) 0.087 0.103 0.112 0.097 0.133 0.134 0.131 0.114
Year dummy 1988 (Dss) 0.133 0.119 0.137 0.104 0.149 0.144 0.141 0.108
Year dummy 1989 (DS9) 0.138 0.127 0.116 0.108 0.122 0.129 0.131 0.108
Year dummy 1990 (D90) 0.138 0.136 0.116 0.133 0.112 0.158 0.109 0.114
Year dummy 1991 (D91) 0.133 0.114 0.090 0.122 0.106 0.079 0.081 0.120
Year dummy 1992 (D9Z) 0.128 0.106 0.116 0.108 0.096 0.074 0.081 0.144
No. of obs. 195 369 233 279 188 202 320 167

* VA&R = Vest-Agder & Rogaland, H = Hordaland, SF = Sogn og Fjordane, MR = Møre og Romsdal, ST =
Sør-Trøndelag, NT = Nord-Trøndelag, N = Nordland, T&F = Troms & Finnmark.
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Table 9.06. Sample 1 Means By Licensed Pen Volume (n=1953 obs.)*

Size group Small Medium Large
Output (y) 0.426 0.731 1.375
Materials (M) 0.459 0.785 1.316
Feed (F) 0.436 0.736 1.368
Capital (K) 0.601 0.910 1.166
Labor (L) 0.748 0.941 1.107
Fish (1) 0.427 0.710 1.395
Time (t) 2.341 3.636 6.969
Year dummy 1985 (D8S) 0.358 0.124 0.006
Year dummy 1986 (D86) 0.256 0.170 0.006
Year dummy 1987 (D87) 0.205 0.202 0.009
Year dummy 1988 (D88) 0.108 0.254 0.010
Year dummy 1989 (D89) 0.034 0.104 0.159
Year dummy 1990 (D90) 0.023 0.059 0.214
Year dummy 1991 (D91) 0.017 0.042 0.184
Year dummy 1992 (Dn) 0.000 0.027 0.200
No. of obs. 176 878 899

* Size groups: Small: <=5000 m3. Medium: >5000 m3 and <=8000 m3. Large: >8000 m3.

Table 9.07. Sample 1 Means By Year of Establishment (n=1953 obs.)

Year group 1* 2* 3*
Output (y) 0.954 0.885 1.310
Materials (M) 1.094 0.836 1.155
Feed (F) 0.966 0.884 1.292
Capital (K) 1.213 0.872 0.869
Labor (L) 1.062 0.955 0.977
Fish (1) 0.971 0.876 1.297
Time (t) 4.629 4.461 6.993
Year dummy 1985 (D85) 0.117 0.113 0.000
Year dummy 1986 (D86) 0.121 0.136 0.000
Year dummy 1987 (D87) 0.141 0.141 0.007
Year dummy 1988 (D88) 0.136 0.146 0.081
Year dummy 1989 (D89) 0.121 0.128 0.118
Year dummy 1990 (D90) 0.111 0.121 0.167
Year dummy 1991 (D91) 0.088 0.081 0.184
Year dummy 1992 (Dn) 0.080 0.068 0.221
No.ofobs. 738 807 408

* Year groups: 1: <1980. 2: >=1980 and <1986.3: >=1986.
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Table 9.08. Overall Summary Non-Normalized Variables Statistics Sample 2 (n=2238 obs.)

Variable Mean St.dev. Min. Max.
Output (y) in kg 360886 243874.8 11050 2028801
Materials (M) in real NOK* 1035541 993135.2 9656.869 11721380
Feed (F) in kg 345561.4 250772.1 2357.997 2479452
Capital (K) in real NOK* 2555590 2294108 4706.767 37212584
Labor (L) in hours worked 7019.342 3744.157 50 42906
Fish (1) in kg 150701 110595.9 50 1015800

* Deflated by Consumer Price Index (CPI)

Table 9.09. Overall Summary Statistics Sample 2 (n=2238 obs.)

Variable Mean St.dev. Min. Max.
Output (y) 1.000 0.676 0.031 5.622
Materials (M) 1.000 0.959 0.009 11.319
Feed (F) 1.000 0.726 0.007 7.175
Capital (K) 1.000 0.898 0.002 14.561
Labor(L) 1.000 0.533 0.007 6.113
Fish (1) 1.000 0.734 0.000 6.741
Time (t) 5.156 2.486 9
Year dummy 1985 (Dss) 0.084 0.277 O
Year dummy 1986 (DS6) 0.100 0.300 O
Year dummy 1987 (DS7) 0.107 0.309 O
Year dummy 1988 (Dss) 0.125 0.330 O
Year dummy 1989 (DS9) 0.130 0.337 O
Year dummy 1990 (D90) 0.124 0.329 O
Year dummy 1991 (D91) 0.102 0.303 O
Year dummy 1992 (D92) 0.111 0.314 O

Table 9.010. Sample 2 Means By Year (n=2238 obs.)

Year 1985 1986 1987 1988 1989 1990 1991 1992 1993
Output (y) 0.445 0.474 0.547 0.821 1.077 1.275 1.281 1.274 1.569
Materials (M) 0.465 0.612 0.665 0.797 1.069 1.285 1.504 1.203 1.226
Feed (F) 0.470 0.493 0.555 0.861 1.095 1.224 1.162 1.318 1.581
Capital (K) 0.743 0.863 0.963 1.047 1.079 1.103 1.069 1.021 1.007
Labor(L) 0.914 0.935 0.893 0.982 1.025 1.068 0.984 1.038 1.112
Fish (1) 0.447 0.510 0.546 0.706 1.075 1.503 1.459 1.262 1.278
Time (t) 2 3 4 5 6 7 8 9
No. of obs. 188 223 240 279 292 277 228 248 263
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Table 9.011. Sample 2 Means By Regional Location (n=2238 obs.)

Region VA&R H SF MR ST NT N T&F
Output (y) 1.023 1.198 1.053 1.097 0.859 0.786 0.946 0.849
Materials (M) 0.862 1.132 0.901 1.104 1.043 0.864 1.004 0.949
Feed(F) 0.968 1.258 1.024 1.121 0.884 0.785 0.930 0.797
Capital (K) 0.781 1.224 1.001 1.076 1.272 0.794 0.849 0.896
Labor (L) 0.817 1.000 0.948 1.001 1.127 1.051 1.042 1.002
Fish (l) 1.045 1.109 1.032 1.163 0.894 0.798 0.944 0.877
Time (t) 5.647 5.333 5.174 5.134 4.842 4.809 4.824 5.533
Year dummy 1985 (Dss) 0.054 0.081 0.093 0.102 0.086 0.073 0.103 0.061
Year dummy 1986 (DS6) 0.068 0.088 0.097 0.102 0.120 0.118 0.117 0.087
Year dummy 1987 (DS7) 0.086 0.098 0.104 0.090 0.124 0.132 0.117 0.118
Year dummy 1988 (D8S) 0.127 0.115 0.135 0.099 0.148 0.145 0.136 0.105
Year dummy 1989 (DS9) 0.127 0.130 0.120 0.137 0.134 0.145 0.146 0.096
Year dummy 1990 (D90) 0.131 0.130 0.108 0.130 0.105 0.155 0.111 0.122
Year dummy 1991 (D91) 0.131 0.108 0.089 0.121 0.096 0.073 0.079 0.122
Year dummy 1992 (D92) 0.131 0.122 0.127 0.112 0.100 0.073 0.084 0.140
No. of obs. 221 409 259 322 209 220 369 229

* VA&R = Vest-Agder & Rogaland, H = Hordaland, SF = Sogn og Fjordane, MR = Møre og Romsdal, ST =

Sør-Trøndelag, NT = Nord-Trøndelag, N =Nordland, T&F = Troms & Finnmark.
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9.E. Appendix E: Estimation Procedures
This appendix presents estimation procedures for Just-Pope and Kumbhakar models.

9.E1. FGLS Estimator RA 1 for Just-Pope Model with Random Effects
The Just-Pope random effects model is given by

Vit=11i+UU' i=I, ...,N, t = 1, ..., Ti,

where xit is a lxk vector oftransformations of input levels (e.g., quadratic terms) and possibly

other variables (e.g., region dummies), a is a kxl vector of parameters, 11i is a firm-specific

effect with variance varfr] i) = o ~, and uit is an observation specific error term with variance

var(ui() = [h(xit; ~) J cr; , where cr; = vans it). for which Harvey's multiplicative
heteroskedasticity is chosen here.

The FGLS estimation procedure for the above Just-Pope model which is presented here
requires that firms are observed at least two periods, since a least squares dummy variable
(LSDV) model is estimated in the first step.

Step 1. Estimate the mean production function with fixed effects by OLS (with fixed effects
implemented as firm dummies):

Step 2. Estimate the variance of the firm-specific effects

~ 2 1" Jr k ..,,)2 }
c fl = n _ 1 ~ ti \11 i - 11 ,

/

where n = 2:i Ti is the total number of observations, and

~ 1 ~A

11=N_l~11i'
/=1

i.e., the sample mean firm-specific effect.

Alternatively, the firm-specific error term can be heteroskedastic of the form varm.) = cr! for

firm i E g, g = 1, ..., G, and var(uit) = c~.The subscript g denotes a firm characteristic, e.g.,

regionallocation. Then, instead of estimating a single variance, one estimates the G variances

of the firm-specific effects

g= 1,..., G,

where
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~g= -I-I 7;,g~i' (i.e., the sample mean firm-specific effect),
ng -1 ieg

ng = I7;,g is the total number of observations belonging to group g,
ieg

and Ti,g is the number of time periods firm i belongs to group g. From the formulation of the
variance we see that Ti,g is used as a weight.

Step 3. Estimate the variance function based on the estimated residuals from the first step
(Harvey, 1976)

A

where the first element in zit is 1. After adding 1,2704 to the estimated intercept ~ 1, because
A

E[WitJ= -1.2704 (Harvey, 1976), parameter estimates ~ are used to provide estimates of the
observation-specific variances

cr 2u,it = exp(zit P), i = 1, ... ,N, t = 1, ... , Ti'

Step 4. Estimate the n total variances

A2 t: A2 A2
cr v.it = i' cr '1 + cr u,it '

Step 5. Estimate the FGLS weight for each observation

A cr u.it •
1:1 jt = 1- -A- .if Ti > 1.

cr v.it

Step 6. Estimate the RE model by the FGLS regression

YiI -eitYi =(l-eit)x.~ +(xit -eilxj)* +v~.

9.E2. FGLS Estimator RA2 for Just-Pope Model with Random Effects

This section presents an alternative FGLS estimator for the Just-Pope model with random
effects. The estimation procedure follows Hsiao (1986, p. 194-6), with a modification for the
estimation of the variance of the observation-specific error term.

Step 1. Estimate the pooled OLS regression

to obtain parameter estimates a. .
Step 2. Estimate the variance function with Harvey's parametrization, based on the estimated

residuals ail = (yjl - YI)- a.(Xii - Xi)' using only observations from firms observed more than

one period
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A

where the first element in zit is 1. After adding 1.2704 to the estimated intercept ~ 1, because
A

E[wit] = -1.2704 (Harvey, 1976), parameter estimates ~ are used to provide estimates of the
observation-specific variances

er 2u it = exp(zit ~ ), i = 1, ... ,N, t = ti> ... , Ti'

Alternatively, if homoskedasticity is assumed for the observation-specific error term, the

variance can be estimated as proposed in Hsiao (p. 196)

where qi is the number of periods firm i is observed, e = (i I qi > 1) is the set of firms observed

more than one period, Jf is the number of firms observed more than one period, Yt is the

mean over all firms observed in period t, and Xi is the vector ofmeans over all qi observations

offirm i.

Step 3. Estimate the variance of the firm-specific effects, using all observations,

Step 4. Estimate the total variance

A 2 'A 2 A 2
cr v.it = qi ·cr Il +cr u.it ,.

Step 5. Estimate the FGLS weights (Hsiao, 1986, p. 195)

~ cJ u.i! •
t1 it = 1- -A- .if q i > 1, or

cr v.it

~ l/i A 2 A 2 'f - 1t1 tr = \jcr Il + cr u.lt , l qi - .

Step 6. Undertake the FGLS transformation

and

and

Step 7. Estimate the RE model by the FGLS regression
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where the intercept associated with a: has been transformed similar to the y's and x's.

9.E.3. FGLS Estimation Procedure for Fixed Effects Specification of
Kumbhakar Model

For the Khumbhakar form estimation procedures which are somewhat different from the above
Just-Pope specifications have to be used.

If the firm- and time-specific effects are treated as fixed, these are estimated together with
lnj(x; a). The estimation procedure for the fixed effects specification consists of the following

steps:

Step 1. Least squares estimation is undertaken for the function

Iny, =lnf(xil;a)+TL +uil

= a o +L a k In x kil +.!_LL a kj In x kil In Xjil + 11i + uit '
k 2 k ..I

where the 11'S are treated as fixed. One can either use dummy variables or a within
transformation in step 1.

Step 2. Using the estimators of a and 11i from the first stage, the residuals uit =

In y - In f( X it ;d )+ ili are calculated, and then the variance function

is estimated by nonlinear least squares (NLS). The error Eit converges in distribution to

E it ,which is distributed as a chi-squared random variable with one degree of freedom under

the assumption that E it is a standard normal distributed variable. The mean and variance of

In E ~t are -1.2704 and 4.9348, respectively (Just & Pope, 1978). In the NLS estimation of the

variance function one must adjust for this.

Step 3. Weighted least squares (WLS) are performed by dividing left- and right-hand variables

by predicted standard deviations

Since the variance of EU, 0'; , is assumed identical across all observations, it will not affect the

relative weight given to each observation in the WLS estimation, and can thus be replaced by

. one in the above expression.
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9.F. Appendix F: Properties of Harvey's Multiplicative
Heteroskedastic Model

9.F.1. Linear Variance Function

First, I examine the marginal risk properties of specification VI of Harvey's formulation,

where var(y) = [hex; J3)]2= exp(J3o+ J31Xl+ J32x2 + ... + J3zxz). The marginal risk of output
with respect to input} is

Since the exponentiated term is always positive, J3iwill determine the sign of the above
expression. The marginal risk is positive (negative) if J3iis positive (negative).

Note also that

i.e., the variance of y is always convex in xi" This means that if marginal risk is positive in xi (J3
i > O), the variance of output will increase at faster and faster rate, and eventually approach

infinity. If marginal risk is negative in Xj (J3j < O) the variance of output will decrease at a
slower and slower rate in xi. For fixed and finite values of the other x's, var(y) will converge

towards zero as xi increases. The fact that the variance of output diverge in xi for positive J3iis
unsatisfactory restriction from an empirical point of view. Of course, the rate at which the

variance diverge depends on the actual value of J3)"Thus, after estimation of the model has
been undertaken, it may be a good idea to carefully investigate the behavior of the variance
function for different levels of the x's.

9.F.2. Log-Linear Variance Function

Next, I will examine the marginal risk properties of specification V2 of Harvey's formulation,

where var(y) = [hex; J3)]2= exp(J3o + J31lnx1+ J321nx2+ ... + J3zlnxz). The marginal risk of
output with respect to input} is
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Since the exponentiated terms are always positive, and l/xj is positive because input levels are

constrained to be positive, ~j will determine the sign of the above expression. The marginal

risk is positive (negative) if~j is positive (negative).

The second derivative of the variance function with respect to Xj is

The first term on the right hand side of the equation sign is always positive. The sign of the

last term depends on the sign of ~j; if ~j < ° (~j > O) then the last term is positive (negative). In
the case when ~j > 0, the sign of the second derivative of the variance function depends on

whether ~j <=> 1. If ~j > 1 then 82var(y)/8xj > 0, i.e., the variance function is convex in Xj; if °
< ~j < 1 then 82var(y)/8xj < 0, i.e., the variance function is concave in x)'

We can summarize the properties of the output variance function for the log-linear Harvey
model specification as follows:

(i) ~j < O:var(y) decreases in Xj' is convex in Xi' and var(y) ~ ° as Xj ~ CX) when other x's are
fixed and finite.

(ii) °< ~j < 1: var(y) increases in Xj' is concave in Xj'

(iii) ~j > 1: var(y) increases in Xj' is convex in Xj' and var(y) ~ CX) as Xj ~ CX) when other x's are

fixed and finite.

A useful transformation of the log-linear variance function is

var(y) = exp(l3o + ~I In XI +...+~ k lnxk)= exp(l3o)exp(l31 In XI ) .... exp(13k lnxk)

= exp(l3o)x~' ·... ·Xfk

We see that the transformed variance function now has the familiar Cobb-Douglas form. If the

input levels x are increased by the same factor a, then the variance of output increases by a

factor of a(~'+~2+.··+~d. The properties of the output variance function with respect to an

increase in input levels x by the same factor a can be summarized as follows:

(i) If ~I +~2+"'+~k < 0, then var(y) will decrease as input levels x are increased by the

same factor a.

(ii) IfO < ~I + ~2+"'+~k < 1, then var(y) will also increase as input levels x are increased by

the same factor a, but at a slower rate.

(iii) If ~I + ~2+"'+~k > 1, then var(y) will increase as input levels x are increased by the same

factor a, but at a faster rate.
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The log-linear form seems to have more desirable marginal risk properties than the linear
form. Contrary to the linear form presented above, it allows the variance of output to be both
increasing and concave in inputs.
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10. SUMMARY AND CONCLUSIONS

This dissertation has provided empirical evidence on the structure of production risk in
Norwegian salmon farming. It is the first study to provide knowledge on the risk effects of

inputs based on a comprehensive panel data set spanning over a nine year and including over

300 farms. The methodological contribution of this study, both through the empirical study
and a simulation study, has been to increase our understanding of the performance of

competing model specifications and estimators which can be used in econometric studies of
production risk. In general, the relative performance of different estimators for econometric
models with firm-specific effects and heteroskedasticity in regressors is largely unknown. It is
our belief that the results from this study using different specifications and estimators for

models of production risk will be useful for future empirical studies in this field of research.

Chapter two was concerned with the theoretical foundations for analysis of the competitive
firm under production risk. The Just-Pope postulates for the stochastic production function

were presented. These postulates can be regarded as an extension of the postulates suggested
for the deterministic production function in the neoclassical production theory. It turns out that
most popular specifications of the production function violate some or all of the Just-Pope
postulates. The exception is the Just-Pope production function y = j{x)+h(X)E. It was
demonstrated that with the introduction of production risk, comparative static analysis became

richer but more ambiguous than in the standard deterministic case. Furthermore, the dual

approach to comparative static analysis is complicated, particularly if output price risk is also
present, because expectation formation and risk preferences generally have to be accounted for

in dual models.

Chapter two also demonstrated that the introduction of production risk has implications for
efficiency analysis. A risk averse producer will be concerned about both mean output and the
variance of output when considering alternative production technologies. This mean-variance
trade-off is represented by the producer's utility function.

An important implication from the theory, given the intractability of the dual approach, is that
estimation of primal models that account for production risk is a natural approach to empirical
analysis of firm behaviour and productivity. In a further step, the restrictions which can be
imposed on the stochastic production technology, can be used to simplify a dual model

approach.

Chapter three provided a discussion of the empirical work on production risk which has been
presented in the literature. Most of the studies are primal approaches, that utilise the Just-Pope
framework. The empirical results from these studies must be judged with care, because of
methodological weaknesses or poor data quality. This is because most of the studies focus on
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the introduction of a particular methodological improvement, and tend to give less attention to

important specification and data issues. Omitted variable bias is probably present in several

studies, due to the very few inputs included in the production function. Although the studies
were undertaken from the late 1970s, they generally employ very restrictive functional forms,
such as the Cobb-Douglas. Furthermore, some employ estimation procedures that are
relatively unexplored, are sensitive to starting values, or imply strong assumptions on the data

generating process.

Chapter three also discussed the performance of two competing estimators, the feasible

generalised least squares (FGLS) and the maximum likelihood (ML) estimator. For the Just-
Pope production function the ML provides more efficient estimates of the variance function

parameters. According to a simulation study of Saha et al. (1997), the ML estimator also
outperforms the FGLS estimator in small samples, even when the distribution of the error term

departs significantly from normality. The simulation results of Saha et al. were, however,
based on a simple Just-Pope technology with Cobb-Douglas parametrization of the mean

function, and no firm-specific effects. It can be questioned to what extent their findings are
valid for more flexible functional forms and heterogeneous firms.

Chapter four discussed issues in econometric panel data estimation which are relevant for this

study. Since firm heterogeneity is believed to be an important characteristic of the salmon

farming industry, an econometric model specification which incorporates firm-specific effects
is clearly warranted. The firm-specific effects can be specified as fixed or random. The random
effects approach, which is popular for longitudinal data sets, relies on assumptions that
probably are violated for the empirical application in this dissertation. It is difficult to know a
priori how sensitive parameter estimates are to violation of the random effects assumptions.
The fixed effects approach, on the other hand, precludes inclusion of time-invariant regressors
such as region-dummy variables. According to Chapter four, the performance of econometric
panel data models under heteroskedasticity, particularly of the Just-Pope form, is relatively

unexplored, since standard panel data models assume homoskedastic error components.

Chapter five presented a simulation study of the small-sample performance of different panel
data estimators for Just-Pope technologies. A linear quadratic functional form was used for the

mean function. Different values were tried for the mean and variance function parameters, and
for the variance of the firm-specific error component. The simulation design was such that it
could be argued to be relevant in the context of the empirical application. We found that all
competing estimators performed similarly with respect to the mean function parameters. This

implies that if one is only concerned about the properties of the mean function, the OLS

estimator with White-adjusted standard errors for the fixed effects model is a good alternative.
Unlike Saha et al. 's simulation study of a simpler Just-Pope technology, our study did not
provide the same overwhelming support for the ML estimator relative to the FGLS estimator,
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although the precision and efficiency of the ML estimates were somewhat higher for the
variance function estimates.

Chapters 6-8 discussed our empirical application, the Norwegian salmon aquaculture industry.

Chapter six provided a description of the production process. Salmon aquaculture is

characterised by a rather long production period from the juvenile salmon, the smolts, are

released into the pens until grown-out salmon are ready to be harvested. Smolts are released
once or twice a year, and depending on sea temperatures and feeding intensity, the salmon are

kept in the pens from one to two years. A farm in a normal mode of operation will thus have at
least two cohorts of salmon in the pens. In terms of cost shares, the most important inputs are
feed (about 40 % of total costs), smolts (15 %), capital (10-15 %) and labour (10 %).

Salmon farms are heterogeneous with respect to the biophysical conditions they operate under.
Sea temperatures, organic recipient capacity, oxygen availability and the frequency of fish

disease outbreaks have been found to vary much between farm locations. Another source of
heterogeneity is differences in the quality of management and workers, and technology. The
entrepreneurs who established salmon farms during the 1970s and 1980s also had very

different skills. Furthermore, there has been a high degree of innovation, and an almost
continuous leaming-by-doing process, since salmon farming is a young industry.

Chapter seven discussed the structure of risk in salmon aquaculture. Salmon farmers face both
production risk and output price risk. In terms of specification and estimation of econometric

models of production, this means that dual model approaches loose much of their

attractiveness compared to a primal approach. It was argued that the level of output risk
increases in feed and fish input, but decreases in labour and pen volume. Furthermore, it was

argued that increasing the scale of operation on a given location, will lead to an increase in the

level of output risk.

Chapter eight provides a discussion of the Norwegian salmon farm data set, an unbalanced
panel for the period 1985-93 with 560 farms and 2280 observations. The farms are identified
by an identification code. Since econometric panel data models assume that firm-specific
effects are time-invariant, we discuss whether the unobservable characteristics associated with
the farm identification code can be assumed to be constant. Due to ownership changes and
relocation, which are not observed, this is not always the case. Chapter eight also presents the
output and input measures used in the empirical analysis. For an important input such as feed,

a proxy measure has to be used, since the quantity of feed input is not directly available.

Chapter nine provides the empirical model specifications and the empirical results. It is
recognised that difficult trade-offs have to be made in the specification of the empirical
models. The chosen model is a Just-Pope production function with linear quadratic
parametrization of the mean function and Harvey's parametrization for the mean function. The
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linear quadratic is found to provide estimates that are similar to translog estimates for returns

to scale (RTS) and the rate oftechnical change (TC) around the sample mean observation.

Empirical results from two competing specifications of technical change, the time trend model
and the time dummy model, suggest that the standard time trend specification is too restrictive.
According to the time dummy model, the rate of technical change exhibits substantial year-to-
year fluctuations. Furthermore, the time trend model provides implausible input elasticity

estimates.

Inclusion of firm-specific effects had profound effects on elasticity estimates. Pooled models

overestimated RTS and underestimated TC, and also provided very different estimates of

variance function elasticities.

The empirical estimates of RTS and TC were relatively invariant to the choice of estimator

around the mean observation. However, variance function estimates were found to be sensitive
to estimator choice. For the fixed effects model the ML and FGLS estimators provided
somewhat different estimates of the magnitudes of marginal output risk in inputs, although the
signs of marginal risk tended to be the same. The most dramatic differences were found when

we compared random effects estimators which relied on the random effects assumptions with

fixed effects estimators. The random effects and fixed effects estimators predicted different

signs for the marginal risks for several inputs. Since we have good a priori reasons to question

the validity of the random effects assumptions, our preferred specification is the fixed effects

model.

According to the preferred models, feed is clearly the most important input in terms of the
output elasticity. The input of fish is the second most important for mean output, while the
other inputs have much smaller output elasticities. For the mean farm in the sample, returns to
scale lies around 0.9. This means that the average farm was ofa sufficient size to exhaust scale

economies.

The mean rate of technical change for the entire data period is around 4 %. From 1985 to
1986, a period with large losses due to fish diseases, the rate of technical change was negative.
The years 1987 and 1988 were characterised by high rates of technical progress. However,

from 1989 to 1992 the rate of technical progress was low. This may be attributed to low
profitability in salmon farms during the period, which precluded investments in new and
improved technologies. In the last year of the data set, 1993, technical progress made an
upswing, as improved economic conditions at the end of the data period allowed farms to

acquire new technologies.

The empirical models provide evidence of significant marginal output risk in inputs in salmon
farming. In other words, output risk is a function of inputs in the industry, and input levels can

thus be used as instruments to control the level of risk. Feed, fish, capital and materials input
were found to increase the level of output risk, while labour input reduces output risk. Feed
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input is important for both mean output and the variance of output. The main role of labour
input seems to be risk reduction. However, according to the empirical results, the technical
change during the data period did not lead to a reduction in the level of output risk. This
implies that the risk preference structure of salmon farmers is such that improvement in mean
productivity is more important than risk reduction, or that salmon farmers have limited
knowledge about the structure of production risk. It may also be the case that government-
sponsored research programmes have focused less on reducing output risk than improving
mean output.

Chapter nine discussed implications of the empirical results for the industry and policy
makers. Given that salmon farmers have little knowledge about the structure of production
risk, since they have to rely mainly on observations from their own farm, the findings here
should be of interest for future production decisions. The results also have implications for site
diversification and horizontal integration decisions, since they suggest that site
decentralisation may be a strategy for reducing the level of risk. Furthermore, the results
suggest that in research programmes aimed at salmon production, one should be concerned
about both mean and risk properties of new technologies.

Chapter nine also proposed directions for future research on risky production technologies,
both methodological and for the salmon industry in particular. Other functional forms for the
mean production function should be tried, with an emphasis on global properties, because
these have influence also on risk parameter estimates. Furthermore, it is desirable to test more
flexible functional forms for the variance function. For the empirical application, the salmon
aquaculture industry, it would be interesting to implement biophysical shocks in the model, in
order to obtain estimates of technical change that are devoid of these. It is obvious that there is
still room for methodological improvements, and certainly a need for more empirical
knowledge in this research area.

Given that output risk is an inherent feature of the production process in many sectors of
biological production, and given the limited empirical evidence we have so far, it is certainly
desirable that more work is done in this field of research, both methodologically and
empirically.
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