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Summary

It is often assumed that dynamic modelling of investment under uncertainty is too complex to

gain wide acceptance as a valuable tool in mainstream economics. For example, as far as

important research areas like international trade and economic growth are concerned, there is

not an overwhelming literature on irreversibility and dynamic uncertainty. The main

objective with this dissertation is to show that stochastic analysis can be simplified, and

applied more extensively in such fields.

By use of a new approach to irreversible investment, a large number of firm-level and

equilibrium models are developed. The approach is based on analogy to static modelling, and

it simplifies the discussion of several dynamic parameters. In some cases, the analogy to

static modelling is so close that well-known models can be used directly in a dynamic context

by reinterpreting crucial variables. The approach is developed stepwise.

Part I presents the methodology at the firm-level. In Chapter 1, it is argued that there is a

close relationship between the markup pricing rule of a static monopolist facing a downward-

sloping demand curve conditional on fixed marginal costs, and the optimal timing decision for

a firm with the option to invest a fixed amount to obtain a fluctuating benefit. This chapter

has been co-authored with Avinash Dixit and Robert Pindyck, and I have attached two notes

to it. The first one supplements previous examples by deriving the analogy between the static

and dynamic approach in case of linear demand; the second one discusses a "dual" set of

models based on a fixed benefit and a fluctuating cost.

In Chapter 2, the "smooth pasting" condition is derived for the most basic investment

problem. It is well-known that this is a first-order condition for optimum, but nevertheless, it

has remained somewhat mysterious. That is probably because the standard options approach

assumes the smooth pasting condition instead of deriving it. By the new approach, it appears

as any other first-order condition for maximum by setting the derivative of expected profits

equal to zero.
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Part II extends the approach to equilibrium based on homogeneous goods. It is noted,

however, that many of the results obtained in Part II carry over to the more advanced setting

with product differentation, which is discussed later.

Chapter 3 presents the equilibrium framework for a large number of general and specific

assumptions, showing that the analogy to static modelling still holds. Chapter 4 uses this

framework for a discussion on the relationship between irreversible investment and

endogenous growth, emphasizing implications of uncertainty. Several results obtained by

other models are also confirmed. Chapter 5 contains a similar discussion on the relationship

between irreversible investment, trade and agglomeration. This chapter also confirms several

results obtained by more common, and mainly static, models. However, it sheds new light on

the influence of a number of parameters related to irreversibility and dynamic economies of

scale.

Part III extends to product differentati on. The main result is the dynamic interpretation of

the Dixit-Stiglitz model that is presented in Chapter 6. It is noted that all major properties of

the static model, like gains from scale and trade, also apply in the dynamic setting. In

Chapter 7, the analogy is explored in some more detail by a dynamic interpretation of Paul

Krugman's "core-periphery" model. It seems likely that a number of other static Dixit-

Stiglitz models can be interpreted similarly.

Part IV is more suggestive than the rest. The objective is to show how some of the results

can be put together, and to point at issues that need further research. Chapter 8 contains a

discussion on growth and agglomeration by combining the growth results from Chapter 4

with the geography results from Chapter 7. In Chapter 9 it is discussed how intra-industry

trade and gains from scale can arise even with a mixture of homogeneous goods, a large

number of firms, and free entry. Chapter 10 contains a firm-level model that focuses on

geographical entry and exit decisions under uncertainty of demand.

Finally, it should be noted that Chapter 1 and Chapter 2 are self-contained articles, as

opposed to the remaining chapters; notation is also somewhat different. A slightly revised

version of Chapter 1 has been submitted to The Economic Journal, and the editor has

indicated that it is likely to be published. Chapter 2 has been published in Economics Letters.
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Chapter l. A Markup Interpretation qfOptimal Rules (or Irreversible Investment

CHAPTERI

A Markup Interpretation of Optimal
*Rules for Irreversible Investment

Co-authors: Avinash Dixit, Princeton University
Robert S. Pindyck, Massachusetts Institute of Technology

Abstract: We re-examine the basic investment problem of deciding when to incur a sunk cost to

obtain a stochastically fluctuating benefit. The optimal investment rule satisfies a trade-off between a

larger versus a later net benefit; we show that this trade-off is closely analogous to the standard trade-

off for the pricing decision of a firm that faces a downward sloping demand curve. We reinterpret the

optimal investment rule as a markup formula involving an elasticity that has exactly the same form as

the formula for a firm's optimal markup ofprice over marginal cost. This is illustrated with several

examples.

Keywords: Investment, sunk costs, pricing decisions, optimal markups

JEL classification: D92, D81, E22

• Reprint (with minor corrections) of NBER Working Paper 5971, March 1997, with permission fromAvinash

Dixit and Robert S. Pindyck.

3



Chapter 1. A Markup Interpretation o_(Qptimal Rules for Irreversible Investment

1. Introduction

Consider what is probably the most basic irreversible investment problem: a project can be

undertaken that requires a sunk cost C and yields a benefit V. The cost is known and certain,

but the benefit (measured as the present value at the time the cost is incurred) fluctuates as an

autonomous Markov process {VI} with continuous sample paths.' Time is continuous, and at

each point the firm must decide whether to invest or to wait and reconsider later. The firm's

objective is to maximize the expected present value of net benefits, with a discount rate that is

constant and equal to p.

At time t, all of the information about the future evolution of V is summarized in the current

value F, Therefore the optimal decision rule must be of the form: invest now if VI is in a

certain subset of possible values, otherwise wait. Also, because the process is autonomous

and the discount rate is constant, the optimal rule will be independent of time. So long as the

process has positive persistence - i.e., a higher current value VI shifts the distribution of the

random value Vs at any future time s to the right in the sense of first-order stochastic
*dominance - the rule will be of the form: invest now if VI is at or above a critical threshold V ,

otherwise wait. 2 The problem therefore boils down to determining the optimal choice for the
*threshold V .

As first shown by McDonald and Siegel (1986), the optimal V* exceeds C by a "markup", or

premium, that reflects the value of waiting for new information. One can think of the firm as

having an option to invest that is akin to a financial call option, and, like the call option, is

optimally exercised only when "deep in the money", i.e., when the stock price is at a premium

over the exercise price. Thus one can solve the firm's investment problem (and determine the

optimal markup) by finding the value of the firm's option to invest and the optimal exercise

1 V may itself be explained in terms of other more basic economic variables like prices of output and/or inputs;

we work simply with the end result.

2 See Dixit and Pindyck (1996), pp. 104, 128-9.
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rule.' Indeed, identifying and valuing the firm's option to invest has become the standard

approach to solving irreversible investment problems.

. .However, as Baily (1995) has pointed out, an alternative way to find the optimal V IS to

examine the trade-offbetween larger versus later net benefits. Specifically, choosing a larger

value for V* implies that the net benefit, V* - C, will be larger, but will be received at a more

distant (but unknown) time in the future, and thus will be discounted more heavily. The
* *optimal choice of V is that for which the additional net benefit from making V larger just

balances the additional cost of discounting.

In this paper, we take this alternative perspective further by developing an intuitively

appealing analogy with the trade-off involved in the pricing decision of a firm facing a

downward-sloping demand curve - i.e., the trade-off between a higher profit margin and a

lower volume of sales. We show that V can be regarded like a price, (V - C) like a profit

margin or markup, and the discount factor like a demand curve. The optimal V· is then given

by a markup formula involving the elasticity of the discount factor with respect to V, which

has exactly the same form as the formula for a firm' s optimal markup of price over marginal

cost. This suggests extensions of the basic investment problem by analogy with the

corresponding extensions of the monopolist' s pricing problem. Here we develop one, namely

the optimal choice of an ancillary expenditure in advertising or R&D which can speed up the

(stochastic) passage to the threshold. The result is analogous to the formula for a

monopolist's optimal advertising-to-sales ratio.

2. The optimal markup

Suppose the initial level of the benefit is Vo, and consider an arbitrary threshold V> Vo. Thus

the firm will wait until the first time T at which the benefit Vr has reached V, and will then

invest. (In technical terms, T is the first-passage time or hitting time from Vo to v.) This time

T is a random variable, and its distribution can be determined from the known probability law

3 The option is valued assuming it is exercised optimally, so the valuation of the option yields the optimal

exercise rule. See Dixit and Pindyck (1996).
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Chapter 1. A Markup Interpretation of Optimal Rules for Irreversible Investment

of the evolution of V; Taking expectations using this distribution, the net present value of this

policy is

Note that the expectation of the discount factor in this expression depends on both the initial

value Vo and on the threshold value V of our decision rule. We therefore denote this discount

factor as:

*The optimal threshold, V , is the value of Vwhich maximizes

(2) D(Vo ,V)(V - C) .

The first-order condition for the optimal V· is

where D» is the partial derivative of the discount factor D with respect to its second argument,
*namely the threshold value V, and we are evaluating this at V = V. This condition simply

says that if the investment opportunity is to be optimally exercised, the expected marginal

discounted benefit from the investment should just equal the expected marginal discounted

cost.

We can rewrite eqn. (3) in the following equivalent form:

(4)

where SD denotes the elasticity of the discount factor D with respect to V·, i.e., SD == - V·Dv/D.

The form of this expression should be very familiar: it is just like the markup pricing rule that

follows from equating marginal revenue with marginal cost:

p-c
--=1/ Sp ,

P
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Chapter }. A Markup Inæmæiaiian a,fOptimal Rules for Irreversible Investment

where p is the price, c is the marginal cost, and Bp is the magnitude of the price elasticity of

the firm' s demand.

There is indeed a close connection between equation (4) for the investment markup and the

markup pricing rule. To see this, compare the expression for the present value, (2), to that for

the firm's profit in the usual pricing problem when marginal cost is constant, namely

(p - c)q(P). A higher p implies a higher profit margin (p - c), but a lower volume of sales

q(P). The trade-off that determines the optimal price is governed by the rate at which q(P)

declines as p is increased, i.e., by the price elasticity of demand. In our investment problem, a

higher threshold value V· yields a higher margin (V· - C) ofbenefits over costs, but a smaller
•discount factor D( Vo,V ) because the process is expected to take longer to reach the higher

threshold. The investment trade-off depends on the elasticity of the discount factor with

respect to the threshold.

We can put this analogy in graphical terms by considering an arbitrary threshold V, and re-

writing eqn. (3) as

We can think of the first term in this equation, V = V(D,Vo), as the inverse of the discount

factor: it is analogous to the inverse demand, or average revenue function, p(q), for the price-

setting firm. Likewise, the discount factor D(Vo,v) is analogous to quantity for the price-

setting firm, so the left-hand side of eqn. (5) - the marginal benefit from an increase in D - is

analogous to the marginal revenue function." These two functions of the discount factor Dare
•plotted in Figure 1. The optimal threshold V , and the corresponding optimal discount factor

D·(Vo,V\ are found at the point where the marginal benefit D(Vo,V) + D(Vo, V)/Dv(Vo, V) is

4 To see this, obtain the first-order condition for the investment problem by the discounted net payoff (2) with

respect to D instead of V,recognizing that V= V(D,vo):

dV
V+D--C=O.

dD

This can be re-written as eqn. (5) above.
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Chapter l. A Markup Interpretation o(Optimal Rules for Irreversible Investment

•equal to the cost, C. Note that V > C; this is the markup that incorporates the option

premium, or value of waiting. If the firm instead used a simple Net Present Value rule to

decide when to invest, it would invest sooner, when V = C, so its discount factor, denoted by

DN
, would be larger. (Note that in Figure 1, the current value of the benefit, Vo, happens to be

below the cost of the investment, C, so the firm would not invest immediately even if it

followed a simple NPV rule, andDN < 1.)

V

D(Vo,V) == V(D,vo)-:
markup (option premium)

c

D(Vo,v) + DID v :

D D

Figure 1. The Optimal Investment Markup.

It remains to sort out one potential difficulty. It would be unfortunate if the elasticity SD

depended on the initial value Vo, as that would imply that if we reconsidered the choice after

som intermediate value VI had been reached, we would get a different answer for the optimal

V·. To examine this, consider any threevalues Vo < VI < V. Suppose that, along any path of

the process {V/}, starting at Vo the first time the value reaches VI is Tb and starting at VI the
• •first time it reaches V is T2• Then the first time the value reaches V starting at Vo is just

T = T; + 1;. (In the second interval of time T2 we have already supposed that the process does
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not reach V·, and in the first interval of time TI the process could not have reached V· without

hitting VI earlier, which would contradict our definition of TI as the first time to VI.) Now

and because of the Markov property of the process {Vr}, the random variables TI and T2 are

independent. Therefore we can take expectations of the two factors on the right-hand side to

get

D(Va ,V) = D(Va ' VI )D(VI , V) .

Then

o,(Va' V) = D(Va , ~ )Dv (~ ,V)

and

(6)
VDv (Va' V) VDv (V; ,V)=
D(Va, V) D(~ ,V)

A similar argument can be constructed for V2 < Vo, by considering paths where the process
,.

starting at Vo first falls to V2 before rising again and eventually reaching V .

This proves that the elasticity is independent of the starting value. In particular, using eqn. (6)

we can write the elasticity as

(7)

since D(V*, V·) = 1. Hence the optimal markup rule given by eqn. (4) is independent of the

starting value Vo. This can also be seen in Figure 1; although the discount factors D" and DN

. .
depend on Vo, the optimal markup V - C does not.

Finally, note that the elasticity of the discount factor, SD, can be equivalently expressed in

terms of the value of the firm's option to invest. Let F(V) denote the value of the firm's

9



Chapter l. A Markup Interpretation o,(Qptimal Rules (or Irreversible Investment

investment option. At the optimal exercise point, F( V*) must satisfy the value matching

condition

F(V') = V· - C,

and the smooth pasting condition,

Combining these two conditions, we have:

(8)
V· V'P, (V·)~__ v =&

V· -C - F(V') - F'

The right-hand side of(8), denoted by BF, is the elasticity of the value of the investment option

with respect to the value of the underlying project. Since V*I( V* - C) = BD, at an optimum the

elasticity of the discount factor coincides with the elasticity of the value of the investment

option.

3. Examples

To use this approach to finding optimal investment rules, one must find the discount factor D,

given the stochastic process for VI' This can be done as follows.

Suppose that VI follows a general Ito process of the form

(9) dV = f (V)dt + g(V)dz .

We want to find D( V,V*) =E[ e-pT], where T is the hitting time to V*, starting at V < V*. Over a
. *small time interval dt, V will change by a small random amount, dV. Hence (suppressmg V

for simplicity):

D(V) = e -pdt E[ D(V + dV) ] .

Expanding D(V+dV) using Ito's Lemma, noting that e-pdl = I-pdt for small dt, and substituting

eqn. (9) for dV, we obtain the following differential equation for the discount factor:

10



Cbaiuer. 1. A Markup Interpretation o/Optimal Rules for Irreversible Investment

(10) t g2 (V)Dvv + j(V)Dv - pD= O.

This equation must be solved subject to the two boundary conditions: (1) D(V*,V*) = 1, and
.. *(2) D(V,V) ~ O as V - Vbecomes large.

To illustrate, we will obtain solutions using this approach for several different stochastic

processes, and draw further analogies to the profit-maximizing decisions of a price-setting

firm.

Geometric Brownian motion

First, suppose that ~ follows the geometric Brownian motion:

(11) dV=j.lVdt+oYdz,

with J1 < p. [*] Then j{ V)= J1V and g(V)= aV, and it is easily seen that the solution to eqn. (10)

IS

where flI is the positive root (exceeding unity) of the following quadratic equation in fl:

see Dixit and Pindyck (1996, p. 316).

In this case the elasticity of the discount factor is constant and equal to flI' The markup

formula (4) thus implies a constant proportional markup,

or

[.] The original text denotes the drift of the geometric Brownian motion by the letter a. To avoid confusion with

notation in the remaining chapters, I have replaced this with p. A similar change applies to the arithmetic

Brownian motion below.
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Chapter 1. A Markup Interpretation aisanimal Rules for Irreversible Investment

This well-known result is analogous to the price-cost markup rule for a firm facing an

isoelastic demand curve. A geometric Brownian motion for Vt implies an isoelastic discount

factor because the probability distribution for percentage changes in V is independent of V, so

changes in the discount factor resulting from a percentage change in V will also be

independent of V.

Arithmetic Brownian motion

Next, suppose V, follows the arithmetic Brownian motion

(14) dV = udt + adz.

Then the solution to eqn. (10) is

D(Va ,V) = exp[-y l (V - Va)]'

where Yl is the positive root of the quadratic

see Harrison (1985, p. 42). In this case, the elasticity of the discount factor is Yl V. Hence

(V' - C) / V' = I/y IV' , and we get a constant additive markup:

This is analogous to the markup formula for a firm facing an exponential demand curve. (For

the demand curve q(p) = aexp[ -bp], the elasticity of demand is bp, and the profit-maximizing
*price is p = c + lib.)

Mean-reverting process

Finally, suppose that V, follows the mean-reverting process:

(15) dV = 'l(V - V)Vdt + ai/dz .

12



Chapter 1. A Markup Interoretation a/Optimal Rules (or Irreversible Investment

The value, V, might follow such a process if, for example, the firm's output was a durable

good so that its demand was subject to a stock-adjustment process.

Then eqn. (10) for D(V,VI) becomes:

This equation has the following solution (see Dixit and Pindyck, pp. 162-163):

e 21]
D(V,~) = AV H(-2 V,B,b),

a

where A depends on VI' (j is the positive solution to the quadratic equation

and

Here H(x, (j,b) is the confluent hypergeometric function, which has the following senes

representation:

H(x Bb)=I+~x+ B(B+l)x
2

+ B(B+l)(B+2)x
3

+....
, , b b(b + 1)2! b(b + 1)(b+ 2)3!

The first boundary condition is used to determine A, yielding:

Hence the discount factor becomes:

(16)

13



Chapter t. A Markup Interoretation o(Optimal Rules (or Irreversible Investment

From the senes representation, we obtain the following relationship between H and its

derivative with respect to the first argument:

B
H; (x,B,b) = -H(x,B+ 1,b + 1).

b

Using this, we can determine that the elasticity ofthe discount factor is:

(17) {
277V~~V'B+1'b+1)l

li D = 1+ a2b ~ 277V B b) .
2 "a

Thus, CD is equal to a constant B - which represents pure geometric growth - plus a term which

corrects for the mean reversion effect. As the mean reversion speed 77approaches zero, the

second term also goes to zero, and B approaches PI' as in the case of geometric Brownian

motion. As TJ increases, mean reversion dominates.

The implications of mean reversion are easiest to see from some numerical calculations.

Mean reversion implies that V is expected to stay close to fl. Hence when V - fl is small,

the discount factor must be larger for the mean-reverting process than for the corresponding

geometric Brownian motion. Likewise if V - fl is large, it can be expected to decline, so that

the discount factor will be relatively small. Figure 2 illustrates this; it shows the discount

factor as a function of V for a mean-reverting process (TJ = 0.2) and a geometric Brownian

motion (TJ = O). (In both cases, p = 0.05, a = 0.2, fl = 1, and Vo = 1.) This effect of mean

reversion is also reflected in the elasticity of the discount factor, which is increasing in V. For

example, cD(V= 1) = 1.4, and CD(V= 2) = 8.54; while the corresponding constant elasticity for

the geometric Brownian motion (TJ = O) is Pl = 2.16. Figure 3 shows how the elasticity

depends on the speed ofmean reversion, TJ. When V - fl is small (V= 1.0), CDdecreases with

TJ, but when it is large (V = 2.0), it increases with TJ.

14
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V I

I
I
i

2,0 +

I
I
I

!
1 ,0 t -------------------------------------------- I

!

.0,0 +-------~.-------+--------r_------~------~

° 0,2 0,4 0,6 0,8
D

Figure 2. Discount Factor for Mean-Reverting Process and Geometric Brownian Motion

(p= 0.05, a= 0.2, 17 = 1, Vo= I).

V=1,3

V=l,O

° +---------~----------~--------~----------

0,0 0,1 0,2 0,3 1]

Figure 3. Elasticity of Discount Factor as a Function of the Speed of Mean Reversion.
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4. Ancillary investments in advertising or R&D

The close connection between investment decisions and pricing decisions has pedagogical

value, but also provides insight into investment-related decisions more broadly. As an

example, consider a price-setting firm that must also decide how much money, A, to spend on

advertising, given its demand q = q(p,A), with ~ / oA > O. As students are taught in

intermediate microeconomic courses, the profit-maximizing advertising-to-sales ratio is given

by:

(18)

where BA = (A / q)~ /oA is the firm's advertising elasticity of demand, and Bp is the price

elasticity of demand. 5

Now let us return to our investment problem. Suppose that the firm, prior to making the sunk

expenditure C in return for the benefit V, can make an ancillary investment, costing A, in

advertising, marketing, or R&D activities. The exact nature of these activities is unimportant;

what matters is that they lead to more rapid increases in V, and hence to an increase in the

discount factor D(Vo,V). We can then re-state our investment problem as:

(19) max[(V - C)D(Vo,V,A) - A].
V,A

The two first-order conditions for this problem are

(20) D(Vo ,V,A) + (V - C)Dv (Vo,V,A) = O,

and

(21) (V - C)DA (Vo, V,A) -1 = O.

5 Eqn. (18) follows from maximizing profit with respect to p and A, and is sometimes referred to as the

Dorfman-Steiner (1954) theorem.
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Chapter 1. A Markup Interpretation o(Optimal Rules (or Irreversible Investment

Now define the elasticities of the discount factor with respect to V and A, respectively, as

&~ == :""VDv / D and &~ == ADA / D. Then by combining the first-order conditions (20) and

(21), it is easy to see that

(22)

Eqn. (22) is a condition for the optimal ratio of expenditures on advertising (or marketing, or

R&D) to the expected discounted value of the benefit. (Remember that the actual discounted

value of the benefit is unknown because the time until V reaches the threshold V· is stochastic;
. .

D V is the expected discounted value of the threshold V .) It is exactly analogous to condition

(18) for the advertising-to-sales ratio of a price-setting firm.

As an example, suppose that a pharmaceutical firm is deciding whether to invest in a plant to

produce a new drug. Suppose the benefit from this investment, VI' follows the geometric

Brownian motion of eqn. (11), and will grow over time (at the expected rate p) even before

the plant is built as doctors and patients learn about the drug. However, the expected growth

rate p can be increased via expenditure A on advertising and marketing."

To determine the optimal level of A for this example, note that the discount factor is again

given by eqn. (12), with PI again the solution to the quadratic eqn. (13). Hence the elasticity

&~ is again equal to Pl. But now PI is a function of A, since p depends on A. Differentiating

the quadratic eqn. (13) with respect to A and rearranging yields the following expression for

the elasticity &~:

(23) A· (df.J / dA) ·lagD
a.2 /31 + f.J- t 0"2 •

Defining the elasticity c~ == (A / f.J)df.J / dA, the optimal ratio of A to the discounted benefit is

thus given by:

6 We treat A as a lump-sum expenditure. If the advertising and marketing expenses must be spread out over

time, then A is just the present value of those expenses.
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(24)

This ratio will be larger the larger &~ - the more productive is advertising and marketing, the

*more that should be done. But note that this ratio is also larger the larger is the threshold V .

A larger V* implies that the option to invest is more valuable (the expected net payoff (V· - C)

is larger), which increases the expected return from advertising and marketing expenditures.

Hence this ratio is larger if there is greater uncertainty over the evolution of V; an increase in

er increases V*, and (with some algebra) can be shown to reduce the denominator of (24).

Finally, note that A ~ Oas V*/Vo ~ 1; when V* = Vo there is no option premium, and thus no

benefit to increasing fl.

5. Conclusions

Framing the optimal investment decision as a trade-offbetween larger versus later net benefits

has allowed us to interpret the investment rule as a simple markup formula involving an

elasticity. We have seen that the markup is exactly analogous to a firm's optimal markup of

price over marginal cost. For economists, this may be more intuitively appealing than the

standard approach to irreversible investment problems in which one values the firm's option

to invest and finds the optimal exercise rule.

If the benefit, V, follows a geometric Brownian motion - as is typically assumed in

applications - then the markup formula is particularly simple, since the elasticity of the

discount factor is constant and equal to /31' the solution to the fundamental quadratic equation

(13). In this case the discount factor is isoelastic with respect to V, so the investment problem

is analogous to the pricing problem for a firm facing an isoelastic demand curve.

Even if V does not follow a geometric Brownian motion, this markup formulation provides a

rule of thumb that can be of value to practitioners. Compared to equating marginal cost with

marginal revenue, it can be easier for a manager to think about pricing in terms of a markup

based on the elasticity of demand, estimates of which can be based on statistics or on

judgment. Likewise, it can be easier to think about investment hurdles as a markup based on

the elasticity of the discount factor, "estimates" of which can be found analytically or

judgmentally.
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.CHAPTER 1 - Note A

Linear Demand

The analogy between expected discount factors and demand functions raises a question that

may be of some interest: Is there a set of stochastic processes yielding a discount factor which

is analogous to the perhaps most common demand function in economic theory - linear

demand? Yes, indeed, there is, but instead of just presenting the processes, I will also show

how to find them. This will illustrate an approach that may be useful when searching for the

analogous dynamic representation of other static demand functions as well.

Start by considering the deterministic case. Then we must have D(Vo,v) = e-pT , where Tis

the deterministic time from Va to V. To find the process V(l) we can calculate backwards:

From the definition of the elasticity we can determine the discount factor, and from the

discount factor the process is easily found. The initial value Va arises as a constant of

integration. For a linear demand curve, the elasticity is

(1) V
[; =--
D ø-V'

where ø is a positive constant. Using the definition of the elasticity, this can be rewritten as:

(2) dV dD
--=-
V-ø D

By integration, and using the first boundary condition (which says that the discount factor is

unity when its two arguments coincide), we find the following linear discount factor:

(3) ø-VD(Vo,V)=--.
ø-Vo

This discount factor is plotted as a downward sloping demand function in Figure 1.
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vø
v'
c

Å •
~/Optimal markup V - C

Ø/(Ø-Vo) D

Figure 1. A Linear Discount Factor.

The inner curve represents the dynamic analogy of a static marginal revenue function. The

optimal rule is to invest when the marginal revenue equals the marginal cost, with a

corresponding optimal price V· and a markup V· - C. Here C is the constant investment cost,

and

(4) V. = ¢+C.
2

No solution exists unless C < ¢. The process is

which is an increasing function in T that approaches ¢ as long as Vo < ¢. Hence, linear

demand in a static model corresponds to a dynamic model with a process where the value of

the project approaches a constant level asymptotically. The increment is dV = p(¢- V)dt , so

the obvious candidate for a stochastic process is

(6) dV = 11(¢- V)dt + a(¢- V)dz,

where 0-(>0) and Il are constants. Notice the character ofthis process: It has an upper barrier

at V = ¢. Further, the trend and the volatility are proportional to the distance from the barrier.

The geometric Brownian motion has the same properties with respect to a lower barrier at

zero. Thus, the process (6) is simply an inverted geometric Brownian motion. By the same

approach as in Chapter 1, the expected discount factor becomes
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(7) ( Ø-v)1f/D(Va,V)= -- ,
Ø-Va

where If/'is the positive root of the following characteristic equation in x:

The discount factors for various If/'make up a set of curves with fixed endpoints, as shown in

Figure 2. If a = Oand Il = p, the deterministic case with ur= 1 is obtained. However, there is

an infinite number of parameter combinations with a> O(and Il < p) that also have If/'= 1, so a

stochastic process that yields a linear expected discount factor can easily be found from the

characteristic equation.

V

ø

D
D=l

Figure 2. Three Expected Discount Factors.

Furthermore, D is strictly convex if If/'> 1, and strictly concave if If/'< 1. Note also that If/'~ O

as a~ 00. Thus, a vertical demand curve (D = 1) arises in the limit with infinite uncertainty

and a sufficiently large upper barrier. Finally, if Il = O,it can be shown that If/' ~ 00 as er ~ O.

This removes all dynamics that could create value from waiting, and we get a horisontal curve

V= Vo for any finite time (D >O).
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CHAPTER 1 - Note B

Fluctuating Costs

1. Introduction

Chapter 1 focused on the analogy between an irreversible investment based on fluctuating

prices and fixed costs, and a static pricing decision with constant marginal costs and a

downward-sloping demand curve. This note gives a brief introduction to the "dual" case, in

which costs are fluctuating and prices are fixed. (The economic sense of this kind of

investment problem is discussed more broadly in Chapter 3.)

While the investment problem that was studied in Chapter 1 is akin to a financial call option,

the one discussed here is akin to a put option. As we are about to show, there is also a close

symmetry between the two investment problems in several other respects. The symmetry

probably remains for almost any generalization of the approach.

2. The optimal investment rule

Consider the following investment problem: A firm has the option to obtain a revenue V by

investing C, where V is constant while C fluctuates according to a continuous Markov process

{C}. Assume that the current level of the process, Co, is so high that immediate investment is

not optimal. In particular, this is the case if Co exceeds V. By an argument similar to that

applied in Chapter 1, the investment should not take place as soon as C gets lower than V,

because there is value from waiting to see whether it decreases even further. The optimal rule
•is to invest the first time the cost reaches a specific level C < V.

Below, we shall find the optimal cost C· by first assuming that investment takes place when

some arbitrary C < Co is reached for the first time, and then optimizing expected and

discounted profits with respect to C. The discount factor when going from Co to C < Co for

the first time can be defined equivalently as a function of Co and C:
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S(Co,C) is strictly increasing in C (~ Co), since the closer C is to Co, the more quickly will C

be reached. In the limit, we have S(Co' Co) = 1. The expected net present value to be

maximized becomes:

From (2) it is observed that the discount factor S is analogous to a quantity measure; in this

case in the form of a supply function depending on C, since Co is constant. Maximizing (2)

with respect to C gives the following first-order condition for optimum:

(3)
v -C'

=C·
1

where

(4)

is the elasticity of the discount factor with respect to the investment threshold. Further, Se is

the derivative of S with respect to the second argument. Eqn. (3) is analogous to the optimal

decision rule for a monopsonistic firm with an upward sloping supply curve. It is also

recognized as the optimal tariff formula from trade theory. (V is analogous to the home

market price, C· to the foreign price, and &s to the elasticity offoreign supply.)

The condition (3) may be stated alternatively for an arbitrary C as follows:

The left-hand side of eqn. (5) is analogous to a marginal cost function, and optimum is found

where the marginal cost equals the price. This is illustrated in Figure 1.
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s· s

Figure 1. Optimal Investment with Fluctuating Costs.

The optimal discount factor S* is smaller than SV, that would apply by use of a simple net

present value rule. As in Chapter 1, this is due to the option value from waiting. The

relationship to the former approach is so close that a couple of other results do not have to be

spelled out in detail:

First, it can be shown that the elasticity Es is independent of Co; thus the optimal investment

rule is not affected by changes in the initial cost. Second, for a general Ito process

dC = f(C)dt + g(C)dz, a dynamic programming argument will show that the expected

discount factor when going from a general C to a fixed C· < C for the first time, arises from

the following differential equation (leaving out the constant C*):

This is exactly like the equation that determines the discount factor with fluctuating prices.

The first boundary condition is also identical, saying that the discount factor must equal unity

when the two arguments coincide; i.e., S(C· ,C·) = 1. The second one, which is the one that

makes the difference, is that S(C,C·) must approach zero if C-C· becomes large.
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3. Examples

Geometric Brownian motion

If the cost process is geometric Brownian

(7) dC = - /lCdt + aCdz ,

then eqn. (6) is characterized by the following equation in x:

Using the two boundary conditions, we find

(9) S(C"C) =(~r
where a > O is the magnitude of the negative root of eqn (8). The cost at which it is optimal

to invest becomes a fixed fraction of V:

(lO) C· =_!::_V.
a+l

The elasticity of the discount factor is

(11) &s=a,

which means that the discount factor for a downward moving geometric Brownian (cost)

process is analogous to an isoelastic supply function. As shown in Chapter 1, a similar

upward moving (price) process yields a discount factor that is analogous to an isoelastic

demand function. The relationship becomes even clearer noting that a alternatively can be

expressed as the positive root of the following quadratic equation:

Except for a sign shift, this is like eqn. (13) in Chapter 1. However, it is exactly like eqn. (8)

in Chapter 1, Note A, as the process in that case was an inverted geometric Brownian motion.
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Arithmetic Brownian motion

If the cost process is arithmetic Brownian

(13) dC = -j.J.dt + adz,

the discount factor becomes

(14)

where ~ is the positive root of the following quadratic:

Hence, the discount factor with a downward moving arithmetic Brownian cost process is

analogous to an exponential supply function (similar to an exponential demand function for an

upward moving price process).

The linear case

It is not hard to find a combination of parameters in eqn. (12) for which a = 1, and thus a

linear discount factor that takes off from origo. A more general representation follows by

using the process:

(16) dC = -pCC - ¢) + (C - ¢)dz .

This is like the geometric Brownian motion (7), except that the barrier has been placed at an

arbitrary level ¢ « Co). The discount factor becomes

(17)

where a is the positive root of eqn. (12). If a= 1, this is analogous to a linear supply function

intersecting the vertical axis at C = ¢ (see Figure 1), and having the elasticity es = C / CC - ¢) .
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CHAPTER2

A Simplified Exposition of Smooth Pasting *

Abstract: The decision on when to make an irreversible investment is considered as a trade-off

between the instantaneous size of the net benefit and the time at which it is obtained. The benefit can

be larger by waiting longer, but then it will also have to be more discounted. Smooth pasting arises as

a first-order condition for maximum expected profit. The relationship to the standard approach is

illustrated by a geometric Brownian price process.

Keywords: Irreversible investment, optimization, value matching, smooth pasting

JEL classification: D92, D81, C61

1. Introduction

Consider the basic problem when to invest a constant C to obtain (once) a revenue V that is

fluctuating according to a continuous Markov process {VI}' McDonald and Siegel (1986)

looked upon this investment problem as a perpetual call option, involving a right but no

obligation to invest. The optimal rule, which will be constant as long as the discount rate is

constant, and the process is characterized by first-order stochastic dominance in the sense that

a higher current value shifts the distribution to the right, is to invest the first time V reaches a
* *specific V > C. The markup from C to V reflects the value of the opportunity to wait.

The standard approach to solving irreversible investment problems of this kind consists of

calculating option values, determining optimal decisions by the familiar value matching and

Published in Economics Letters, 1998, vol. 58, pp. 217-223.
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smooth pasting conditions. Denoting the option value by F(C,V) and its derivative with

respect to the second argument by Pv (C, V) , the conditions here are

(1) F(C,V') = V· - C,

and

(2) Pv(C,V·)=1.

The value matching condition (1) reflects an intuitive requirement for continuity at the

optimal exercise point V'. Further, it is well-known that the smooth pasting condition (2) is a

first-order condition for optimum, as already proposed by Samuelson (1965). Under weak

conditions it can also be shown to be sufficient; see Brekke and Øksendal (1991). However,

the general theory underlying such results is rigorous and hardly accessible to many

economists. Even simplified results showing the necessity of smooth pasting, as in Dixit and

Pindyck (1994:130-132), are based on rather technical arbitrage arguments considering what

would happen if F (C, V) had a kink at V· , not leaving much room for basic intuition.

The new approach to irreversible investment proposed by Dixit et al. (1997) can be used to

simplify the treatment of smooth pasting. They regard the investment decision as a trade-off

between the size of the net benefit V-C and the effect of discounting. If assuming that the

current value of the process is some low Vo, and that investment takes place when it reaches

an arbitrary V> Vo, the expected and discounted profit becomes:

Here E is the expectations operator, p is the discount rate, and T is the first hitting time from

Vo to V. Since the process is continuous, the expected discount factor will be strictly

increasing in Vo and decreasing in V, so it can be described equivalently as a function

D =D(Vo, V). Thus the expected profit from a decision to invest when the price has increased

to V for the first time, can be stated as

(4) D(Vo,v)(V - C),

which is to be maximized with respect to V. The first order condition for optimum becomes
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where D2 is the derivative of D with respect to the second argument. Alternatively, we have

(6)
V' - C 1

where SD is the elasticity of the discount factor with respect to the investment threshold:

(7)

Eqn. (6) is analogous to the markup pricing rule in a static model with a downward sloping

demand curve D depending on a price V, regarding Vo as a constant. The elasticity of the

discount factor is analogous to a price elasticity of demand, V' to an optimal price, and C to a

constant marginal cost. It can be shown that SD does not depend on Vo. This ensures that the

optimal investment rule is not affected by changes in Vo.

As D is strictly decreasing in V, the inverse function V = V(Vo,D) could alternatively be used

to maximize (4) with respect to D. That would yield the following revised version of eqn. (5)

for an arbitrary V> Vo:

(8) V + D(Vo' V) / D2 (Vo' V) = C .

The left-hand side of eqn. (8) is analogous to a static marginal revenue function. Optimum V

is found by setting the marginal revenue equal to the investment cost.

2. Smooth pasting

Let us reconsider the investment problem above, denoting the net benefit from investing at a

general V> Vo by:

(9) F = V - C.

Since C is constant, the process for the benefit {Ft} will share basic properties with {~}; and

the optimal rule will be to exercise the option when a specific F' > O is reached for the first

time. The expected profit can be expressed as a function
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where Q is the expected discount factor similar to D of the previous section. Thus <1> is the

expected and discounted profit from exercising the option when the benefit has increased to

F> Fo, instead of doing it right away and obtaining Fo. As the benefit F obtained by waiting

arises in the future, it must be discounted by the appropriate factor Q(Fo,F). The first order

condition for maximum can be stated as

(11) &Q=l,

where

(12)

Eqn. (11) establishes the smooth pasting condition for this problem. It simply says that in

optimum, the marginal cost of discounting equals the marginal net benefit from further

waiting. As &Q is independent of Fo, optimum arises at a unique F*. Further, the initial slope

of <1> when evaluated as a function of F, becomes:

Since Q2 < 0, <1>z(Fo,Fo)is larger or smaller than one, depending on whether Fo is smaller or

larger than zero. The reason is that if Fo < 0, the marginal effect ofwaiting will be to discount

a loss, while if Fo > ° it will be to discount a benefit. It is also observed that if Fo ~ 0, the

curve passes through origo. Using this information, Figure 1 plots <1> as a function of F for

four initial values of the benefit, Fo(i) ... Fo(iv).

All curves start from the 45 degree line as <1>( Fa, Fa) = Fo, and they all obtain maximum at the

unique F* > ° at which it is optimal to exercise the option. However, the maximum value is

increasing in Fo, because it takes longer to reach F* the smaller the initial value.
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(ii)

(i)

F o(iii) F o(iv)=F' F

Figure 1. Expected Profit Functions.

Curve (i) starts from a negative benefit Fo(i). Initially, the slope is larger than unity as the

marginal effect of discounting is positive. However, the slope decreases to zero as F

approaches F'. Curve (ii) takes off from origo, as the initial benefit is zero when Fo(ii) = o.
Since the marginal effect of discounting is also zero, the curve is tangential to <l> = F at the

initial point. Curve (iii) assumes a positive starting value smaller than F'. The initial slope

is positive as there is a value from waiting, but less than unity due to discounting. Curve (iv)

assumes an initial value Fo(iv) that is equal to F'. That is right where the marginal value of

waiting is zero, so the initial slope is zero. (The leftmost vertical line in Figure 1 is explained

below.)

The standard forms of value matching and smooth pasting follow by assuming that the option

is optimally exercised. Thus for a general initial F < F* with a corresponding V < V*, the

option value function is given by:

(14) F(C,V) == <l>(F,F·).
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By letting F = F", this gives the standard value matching condition (1) directly, as

Q( F" ,F") = 1 . Using the fact that QI (F" ,F") = -Q2 (F" ,F"), the standard smooth pasting

condition (2) is also easily obtained from eqn. (11).

3. Relationship between the two approaches

The approaches to irreversible investment that have been discussed, are related by two

elasticities that coincide in optimum. To see this, define the elasticity of the option value as

(15)
r .s. (C,V")

li = V
F - F(C,V")

By combining eqns. (1), (2), and (6), we have:

Figure 2 illustrates the relationship. On the left-hand side, F(e,V) is plotted as an increasing

function of V. At the optimal V", the option value function hits the "profit line" V-C

tangentially, according to the value matching and smooth pasting conditions. To the far right,

D(Vo,V) is plotted as a downward sloping demand function. The steep curve closer to origo

represents a part of the marginal revenue function given by the left-hand side of eqn. (8). The

optimal discount factor D" is found where the marginal revenue equals the investment cost,

with a corresponding threshold V". Observe that D" is smaller than DN
, that would apply by

a simple net present value rule.

The profit line ·V-C connects the two approaches. Ifthe investment cost is increased, the line

shifts vertically upwards. On the right-hand side, V" increases via the marginal revenue

function. On the left-hand side, the entire option value function shifts down (i.e. closer to the

vertical axis), hitting the new profit line tangentially for a higher V" .
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v
!

Optimal markup V·-C

DN 1 (-C)
F(C,V) ~------~D(Vo,v)

Figure 2. Optimal Investment Rules.

4. Example - a geometric Brownian price process

Assume a constant investment cost C and a geometric Brownian price

(17) dV = j.1Vdt+ oi/dz ,

where j.1is the trend and a is the volatility. By Ito's lemma, the process for the benefit is

given by

(18) dF = j.1(F+ C)dt+ a(F +C)dz.

Following the approach described by Dixit et al. (1997) to finding expected discount factors,

we have

(19) Q(Fa,F) = (;: ~)jJ,
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where p is the positive root of the following quadratic equation in x:

(20) !a2x(x-I)+,ux-p=0.

The elasticity of the discount factor becomes

(21)

and setting this equal to unity according to eqn. (11), we have:

(22) F· =_£.
p-l

By inserting F* = V* - C, we obtain the familiar expression of the optimal investment rule for

this problem:

(23) V· = _f!__C.
P-l

For convergence, we need P > 1, implying f.1 < p. The option value follows by inserting

optimal values into eqn. (14), yielding:

(24)
_ _ (p-I)P-l P
F(C,V) - pP CP-l V .

Thus the option value is an upward sloping convex function in V starting from origo. As the

identity Q(Fo,F) == D(Vo, V)must hold, we also have:

Hence the geometric Brownian price process corresponds to an isoelastic demand function

with elasticity p. Eqn. (16) is also easily verified. In fact, Figures 1 and 2 correspond to a set

of numbers for this process, although their general shape applies in a wider context as well. In

Figure 1, the leftmost verticalline corresponds to Vo = O, implying Fo = -C. If Fo(iv) were

moved closer to -C, the initial slope would approach infinity, since dV = Oat V= O. For the

same reason, <I> would go to zero at F = F· in that case.
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5. Final remarks

The smooth pasting condition has been derived by optimization, considering an irreversible

investment as a trade-off between the size of the net benefit by investing now, and the effect

of discounting by waiting further. Smooth pasting turned out as the first-order condition that

must hold to ensure maximum expected and discounted profit. Finally, it should be noted that

the interpretation of the expected discount factor as a dynamic measure of quantity can be

generalized beyond the level of a demand function. For example, it is straightforward to

apply a similar approach to the related investment problem in which V is constant and C is

fluctuating. If the cost process has the same properties as those assumed for V in the previous

sections, then the discount factor will be analogous to a supply function.
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CHAPTER3

A Framework for Equilibrium Modelling

1. Introduction

The objective of the current chapter is to extend the approach to irreversible investment that

has been discussed for the firm-level, to the most simple type of equilibrium models. In all

models it is assumed that each firm manufactures a specific product, and that the size of the

firm is fixed. The underlying assumption is that there exists a minimum firm size, but as long

as this minimum is exceeded, the exact size does not matter. However, we require that each

firm is small relative to the size of the market, and that the firms'in the industry are symmetric

by some measures to be defined.

The construction of models will benefit from the analogy from static to dynamic modelling

that was demonstrated in Chapter 1 and used in Chapter 2. The analogy is based on the

following observation: A discount factor in a dynamic model with fixed-sized firms is

sometimes analogous to a quantity measure in a static model with variable firm size.

Consider a firm with the option to obtain a net benefit (P - C) at some future date, which the

firm is free to choose. Here P can be regarded as a unit price (or a compound project value V

as in Chapter 1), and C as an investment cost. The net benefit fluctuates according to a

continuous, autonomous Markov process. If p is a constant discount rate and T is the

(stochastic) delay of the investment, then the firm's expected and discounted profit is

Q. (P - C), where (P - C) is the net benefit at time of investment, and Q is the expected

discount factor:

As long as there is any probability that the net benefit will exceed zero, there are expected

profits from holding this option. The essence of the chapter can be summarized as follows:
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We build a set of equilibrium models in which a large number of firms are acquiring, holding

and exercising such options each period. Equilibrium will follow from a free-entry condition,

where expected profits are zero if an optimal investment policy is followed by all firms.

Each option is acquired by an investment A that is similar to the ancillary investment in one of

the examples in Chapter 1. By investing A, a firm-specific process for the benefit will be

triggered from a fixed initial level, e.g. (P - C), where P is the initial value of a price

process, and C is constant. The "dual" set ofmodels from Chapter 1, Note B, where the price

is fixed while the cost is fluctuating, will also be expanded to equilibrium.

As also discussed in Chapter 1, the first investment (A) may be related to R&D, advertising or

a similar ancillary activity, whereas the second one (C) is normally related to establishment of

a production line, e.g. for a pharmaceutical drug. Our objective is neither to give detailed

characterizations of the two types of investments, nor to explain why this kind of investment

problems are important in a broader context, but a couple of additional examples may be

mentioned just to illustrate the wide range of possible applications.'

Cars, aircraft, computers, and other electronic equipment are all products that require an initial

investment in some technology. Usually there is uncertainty on the income side at the time of

the initial investment, as well as in the intermediate period before a (presumably larger)

investment in production capacity. The demand may depend on what exactly the product is

going to look like, and on how the taste for the product will develop in the future; in

particular, it may be uncertain how the consumers respond to similar products developed by

competitors. The expected demand may also increase over time, e.g. for a software product

based on a hardware technology that improves, or simply as information about the product is

spread. Moreover, the initial investment may be followed by uncertainty with respect to the

cost of production, like if the price of intermediates fluctuate, or if leaming-by-doing is

important, which is often the case in hi-tech industries. With such dynamic effects, there may

be gains from waiting.

1 See Dixit and Pindyck (1994) for a general discussion, and for an equilibrium model in the field (pp. 267-277).
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Extraction and development of a number of natural resources are also characterized by gains

from waiting. The oil industry, where real options theory is extensively applied, is one

example. In this industry, a large exploration cost is usually necessary before an oil field is

developed, and optimal timing depends on oil prices as well as the development of technology

that is of importance to the cost side. Farming and foresting are also industries where an

initial investment and waiting apply before the market is provided with a "mature" product,

and usually there is uncertainty involved. Product prices may fluctuate greatly, and there may

also be firm-specific cost uncertainty, e.g. as a fish farm is exposed to diseases.

In all these cases, timing is an important part of the optimal decision rule. The examples span

over homogeneous as well as differentiated goods, and we shall see that the methodological

approach applies in both cases. Hopefully, the approach can also be applied to some cases

with combined demand and cost uncertainty, but like in Chapter 1, we will restrict to models

where all dynamics appear on just one of the two sides.

Part II, which is initiated by this chapter, is restricted to equilibrium models with

homogeneous goods, but several of the results also carry over to product differentation, which

is studied in Part III.

The formal descriptions will start with a structure of preferences, but due to the similarities

noted in Chapter 1, it need not be described in depth for all cases. The rest of the chapter is

structured as follows: Models with price variation (i.e., fluctuating P and constant C), are

discussed in Section 2. The dual case with cost variation (i.e., constant P and fluctuating C) is

discussed in Section 3, but is not treated as rigorously. This is even more true for the simple

two-sector model that is set up in Section 4. A number of extensions are noted in Section 5,

and conclusions are drawn in Section 6.

2. One-sector models with price variation

The basic setup in a deterministic case

As in the Chapter 1 example with ancillary investments, each firm initially makes an

irreversible investment A that establishes some kind of production right. We denote it the

entry cost or the patent cost. Contrary to Chapter 1, this investment is fixed in the baseline
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version of the model. It triggers a firm-specific demand process that starts from a fixed level

X (yielding an initial price similar to Vo in Chapter 1). However, the product cannot be

consumed before the patent has been activated. This requires a second investment, C, which

is called a cost of activation or production. Due to the demand process the price will

fluctuate, and there will be value from postponing the second investment. As soon as

activation takes place, the good must be consumed. The following example, which is chosen

solely for its (hopefully!) pedagogical value, may serve as an illustration:

Imagine that the only commodity is wine manufactured in fixed-sized barrels. Let one barrel

represent one firm. First, a fixed amount of wine is made and filled into a barrel. This is the

"patent". Second, the barrel must be brought to the consumer. This is "activation". After

activation, the wine must be consumed immediately. All agents discount future costs and

benefits at a constant rate p, which can be thought of as a subjective rate of time preferences.

The consumers prefer old wine, as it matures at a fixed, positive rate J.i « p). However, the

wine is homogenous in the sense that new and old wine substitute perfectly if adjusting for

quality differences.

The symmetry of the problem suggests that all wine that is consumed will be of the same age.

Figure 1 illustrates what this looks like in steady-state. The bullets represent entry (wine is

made) and the squares represent activation (wine is brought to the consumer).

I-T

Figure 1. Steady-State with Firm-Specific, Growing Demand.
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Each period a large number of barrels are filled, and the maturing processes take off. The

utility (in logarithmic scale) that each barrel would yield, depending on how long the process

is allowed to go on for, is depicted by the upward sloping lines. Utility from a new barrel

equals a constant X. Wine made at time (t - T) is consumed at time t. Thus, in equilibrium

all wine that is consumed has age T, and the utility gain is X*. The figure assumes T = 2. The

instantaneous or periodic utility function can be stated in a simplified form as follows:

(2)

This says that the utility equals the number of barrels (Nt) times the state of the demand

process. In this case, a process starting at X equals X(T) = Xef.lT after T periods. One. very

important point must be emphasized here: The utility function measures the gain from those

goods that are being consumed at time t, and only then. To find the actual T we must

optimize, taking into account the time dimension.

To measure utility over an infinite time horizon, let us for a moment take the perspective of a

social planncr' The social utility gain from immediate investment is F, = N, (Ut - c), where

c is the (constant) cost of activation measured in utility terms. Therefore the social planner's

utility over an infinite time horizon starting now becomes:

This is familiar. Each function Fl satisfies all the requirements that applied to the net benefit

F that was discussed in Chapter 2, so the problem reduces to a question of marginal valuation.

Thus, the decision of when to exercise the options will be a trade-off between larger versus

later net benefits. The difference from Chapter 2 is just that this is done for a (somewhat

arbitrary) number of identical projects each period t over an infinite time horizon. For

simplicity, we have also restricted to a deterministic case.

2 This can be done with no loss of generality. As all agents share discount rate and have perfect expectations,

the market outcome will be socially optimal as long as there are no distortions.
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It follows from Chapter 2, eqn. (lO), that the social planner will maximize the function

<l> t = QtF; ; i.e.,

Here T is a first-hitting time from X to some X' > X . Since X = XCT) = XeJ.LT in this

deterministic example, all X > X will be hit just once until the optimallevel X' is reached.

In a market solution, the costs (i.e., the second part of <l> t) are carried by firms, so we can

define a fictitious utility function that arises from the first part. Omitting time subscripts as the

optimization is independent of absolute time, this utility function can be written as follows:

N

(S) u= fXie-PT,di .
o

Here Ti is the delay of activation for each firm i, X, = XeJ.LT,, and N is treated as a continuous

variable for technical reasons.' This utility function can be maximized with respect to the

T/ s, but it is better to use the transformation (1), since the discount factor can embody all the

dynamics. (This approach will prove even more powerful in a stochastic case, as uncertainty

can be embodied as well.) In this deterministic case, the utility function (S) transforms to

N

(6) U = fQi(fJ-1)lfJ ,
o

where Qi = e-PT" fJ= p/j..l (> 1), and utility is scaled by setting X = 1 . This looks like a static

utility function that is strictly concave in each good. It can be illustrated by considering the

effect of delaying the consumption of new wine marginally; i.e., decreasing Qi slightly from

unity. The closer j..l is to p (the closer fJ is to one), the more the delay is compensated by

improved quality, so the utility decreases more slowly than the discount factor. However, the

longer the delay, the more quality improvements will be outdistanced by discounting.

Therefore the utility must approach zero if Ti ~ 00 (i.e., if Qi ~ O).

3 Actually, Nmust be an integer, but this is not important as long as it is large.
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With no maturing process! the standard discounting rules would apply! and the utility loss

would correspond directly to the reduction in the discount factor. Indeed! this happens if

J.1 ~ O!as f3 ~ 00 in that case.

As all agents have rational expectations (and even perfect foresight in this case)! any potential

gains from waiting will be fully exploited. Firms discount the cost of activation at rate p! and

since C is fixed! it follows that the cost function for a firm contemplating entry is:

From eqns. (6) and (7) it is observed that we have reached a model somewhat analogous to the

standard monopolistic competition model with constant elasticities (j3)! fixed costs (A)! and

constant marginal costs (C). The resulting equilibrium conditions might readily be stated! but

we leave this for a slightly more general formulation that includes uncertainty.

Growth of productivity

Up until now! p has been a rate of time preferences. However! in the rest ofthis chapter it is

mostly regarded as a growth rate! so it is appropriate to explain how such an interpretation can

come about. Thus! assume that productivity grows at a constant rate p, and that there are no

longer any subjective time preferences in the traditional sense.

Productivity growth enables a steadily increasing number of fixed-sized firms (barrels), but

growth could also be embodied in the size of each barrel instead of increasing the number. If

labor is the only production factor, we might imagine that a fixed number of workers (A) are

always used to fill up a new barrel, which is as large as possible. Since productivity grows at

rate p, the size of the barrels belonging to successive firms will also grow at this rate. One

convenient implication of this is that we get a stationary equilibrium, with fixed rates of entry

and activation. (In cases of greater economic interest, the natural interpretation is to relate

growth to improved quality as new generations of a product are introduced.)

Obviously! growth implies that more will be consumed, but how will the social planner

respond? We assume that he is continuously updated, in the sense that he always perceives

welfare relative to the current state of productivity (or technology). Hence, he is a "modem"
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consumer, and his utility from consumption of a new good at any time equals a constant X.

Notice the difference from Figure 1. With the previous interpretation of p there was no

growth, and the scale of utility measurement stayed fixed. Now the point of reference slides

upward at rate p. If a patent is not activated, there will be a utility loss; not because the agents

are impatient, but because of depreciation.

Due to this sliding scale, the marginal valuation of the utility gam (Ut) by waiting will

effectively be discounted at rate p. This will also happen to the production cost. If a constant

number ofworkers (C) can bring a new barrel to the customer immediately, only QiC (::; C)

workers are needed if activation is postponed for Ti (~ O) periods. All this is illustrated in

Figure 2.

ln(utility), real scale

luX ~,::::::::::S~==J.lrnax=P (slope: O)

. O<J.l,<P (slope: J.l,-p)

• 'Cost line (slope: -p)

J.l0=0 (slope: -p)

:ln(utility), transformed scale
I
I

: J.lrnax=p(slope:p) O<J.l,<p(slope:J.l,)

lo, l~ Cost line (slope O)

lnX ~ J.lo=O(slope:O)

T=O T

Figure 2. Depreciation in a Model with Updated Preferences.

The upper part shows, for three alternative values of fl, the real perception of uti litYdepending

on the age of a patent. The dotted cost line slopes downward, as productivity growth implies

that the cost of activation decreases at rate p. If the maturing rate is Ilo = O, the same happens

to perceived utility, and there is no value from waiting. If the maturing rate is Jlmax = p, the
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quality improvements compensate fully for growth, and there is no utility loss from waiting.

Last year's barrel of wine is smaller than this year's, but the old wine is so much better that

the consumer is indifferent between the two. In this case, there is no cost of waiting, and the

model diverges. However, for a maturing rate in between these extremes, O< PI < p, old

barrels depreciate at a lower rate than the growth rate by which the cost of activation

decreases. If that is the case, there is a value as well as a cost from waiting, and the model

converges.

The lower part of Figure 2 shows the transformed scale, where all future values are related to

the state-of-the-art at T = O. Since the growth rate is p, the transformed scale appears by

increasing slopes in the upper part by p. As observed, this yields a picture like in Figure 1.

Hence, with the revised interpretation of the model, the social planner will still evaluate a

fluctuating net utility F: = N, (u, - e) marginally when deciding on when to activate a patent.

The utility function (6) appears again, but with a new interpretation of p.

These two interpretations of p, as well as some additional ones that are discussed in Section 5,

are independent, and may therefore also be combined.

The general setup

Preferences

The instantaneous utility function can be stated as

IN,

(8) U, = f fXi,S(t-s).ei.S(t)dids.
-00 O

This is to be interpreted as follows: At some time s in the past, N, firms acquired patents that

triggered a set of independent demand processes J(,s' i = I ..Ns' All previous entry times are

included by the integration in s. A process starting at time s has age t - s at time t, so the level

of process i from period s is J(,s(t-s) at time t. The terms ei,s(t) represent consumption of each

good at time t. Since the utility is linear in each good, they are perfect substitutes in a static

sense.
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The utility function (8) does not consider two requirements in the model: First, the firm size

is fixed, and as we shall let the entire demand be represented by one consumer, we set ci,s == 1

for all i,s. Second, each good is available just once, like a barrel ofwine that is opened and

consumed immediately. Therefore the utility function can be simplified to:

IN,

(9) Ul = I I8;,s(t - s - I;,J. Xi,s(t - s)di ds.
-et) o

Here Ti.s is the age of a patent from period s that is activated in period t. The Dirac functions

(~s) ensure that the contribution to utility is zero except for those patents that are activated at

time t, as consumption only takes place if t = s + Ti s.4 The rate of entry as well as the rate of

activation (and consumption) will be constant in equilibrium from the symmetry and large-

group assumptions. Further, the outer integral vanishes due to the Dirac functions, so the

utility function simplifies to:

N,

(10) Ul = IX; (I;)di .
o

Here N, is the rate of consumption, so the rate of utility is the sum of the demand shocks for

products that are consumed in period t. Note that we have to distinguish between the rate of

entry and the rate of activation because some patents may happen not to be used if there is

uncertainty. Thus, the rate of entry, Ns, may be larger than the rate of activation, Nr 5

By similar arguments as in the deterministic model, aggregate utility over an infinite time

horizon becomes:

et)

(11) IE[ul·e-PI]dt.
o

li

4 The £5.function is characterized by ~x) = ° for all x= 0, and Ic5(x)/(x)dx = 1(0) for all c> 0,
-li

5 The characterisation of equilibrium often simplifies if all patents are actually used (with probability one), We

return to requirements for this in specific cases,
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The main difference from the deterministic example is that we must take expected values

because uncertainty will be allowed, but as in the deterministic case, utility must be optimized

backwards by considering the marginal decision that leads up to maximum utility in each

period. Further, we know from Chapter 2 that the T/s will be first hitting times up to some

fixed level X'. It follows that it suffices to optimize the function

N

(12) U = IXi ·Qidi,
o

where N is the rate of entry (which is independent of time in equilibrium). Note that this is

like (5), except that the discount factor is an expected value. Furthermore, as discussed in

Chapter 1, Qi will be decreasing in an arbitrary Xi > X, since the farther Xi and X are apart,

the longer it will take to reach X; Thus, the discount factor can be defined equivalently as a

function Qi = Qi(Xi), conditional on the particular process and considering the initial value as a

constant. It also follows that the inverse functionXi =Xi(Qi) is well-defined. This is shown in

Figure 3 for the case where the process starts at the fixed initial value X. With no delay,

i
X·iIl

i

IX !-- - - -------------------------

I
i

Figure 3. The Expected Discount Factor.

By inserting forXi in eqn. (12), we get the following fictitious aggregate utility function:

N

(13) U = IU;CQ;)di,
o

where
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Vi is the dynamic analogue of a static utility function, defined in terms of the discount factor

Qi acting as a quantity measure. For this to make sense, Vi must be increasing in Qi' The

economic interpretation of the requirement is simply that, ceteris paribus, the consumer

prefers to have the good soon rather than later. This is an obvious criterion for convergence.

We assume that the parameters in the problem are well-defined so that this holds.6

Prices can be defined in terms of Q;, so let Pi(Q;) be the price of a fixed-sized good depending

on the discount factor that applies. Thus, in equilibrium, P; (1) = P is the price of a new

good. It follows that the consumer will maximize V given by (13) in terms of Qi conditional

on the income constraint Y = r~.Qidi , where Y is total income in each period.

One way to think of this income constraint is to imagine that the consumer makes the

following contract with all firms that make entry in each period: The firm is to provide the

consumer with the good the first time the demand process hits the level ~ that corresponds to

the discount factor Qi(~)' For this contract the consumer pays Pi' In the following we

describe what the price will be, assuming that the firm optimizes expected profit. 7

Firm behaviour

As the patent cost and the production cost are fixed, the expected cost for a firm

contemplating entry is like (7), but Qi is now an expected value. No matter what the exact

price process looks like, the identity Qi(X,X·) = Qi (J5,p.) will hold in equilibrium

(including initial values explicitly in the discount factor function for completeness as in

Chapter 1). It follows that the expected profit function is

6 For example, the model diverges if f.J > P in the wine example, as discounting is not sufficient to suppress the

value of waiting. Then the wine would remain in the wine cellar forever, as the gain by waiting increases

beyond alllimits.

7 As all agents are risk neutral, it makes no difference when contracts are written. The firm may equally well

hold on to its patent until activation, or sell it for the correct price some day between entry and activation. In a

specific model with geometric Brownian demand that follows, we will evaluate the correct price for the patent in

such cases; i.e., the value of the firm at any time ahead of activation.
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(14) Il; = (p; - C)Q;(P;) - A,

where Qi(Pi) follows from maximization of utility as discussed above. As usual, the firm will

maximize expected profit by considering the value of a higher net benefit (Pi - C) in the future

versus the cost of discounting. Then the optimal price p. is given by the markup rule

(IS)
p' -C 1

=
dQ(P') p'where 8 =- .__ .

Q - dP Q(P') ,

leaving out firm indices since all firms are alike. Intuitively, one should get somewhat similar

price processes when starting with a particular set ofunderlying demand processes. However,

most stochastic processes are so complex that it is impossible to obtain analytical expressions

for the utility function (13) from a specific demand process; nor can the price process be

derived from the utility function.

Fortunately, the relationship between the demand process and the price process can be derived

analytically for the processes from Chapter l (except the mean-reverting one). Below we

demonstrate this by setting up the complete equilibrium model if the demand process is

geometric Brownian. In that case we shall see that the price process is also geometric

Brownian. The other processes from Chapter l are discussed in Appendix A. We find that the

demand process and the price process in those cases will be of a common type, but the

parameters will not be exactly the same.

A specific model

Demand

Assume that the demand process for a specific good is geometric Brownian:

The interpretation of symbols is familiar: The drift J.L is the expected growth of utility from

consumption of a specific good by letting the patent mature. If J.L > 0, old products tend to be

appreciated, but if there is uncertainty (a> O), this does not have to be the case. The expected

discount factor for the geometric Brownian motion was shown in Chapter l to be
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(17) .Q,(X,)~(:r
I

where 13 is the positive root of the following quadratic equation in x:

(18) ta2x(x-1)+,ux-p=O.

Inserting the inverse function X;(QJ of (17) into eqn. (13), and choosing units by setting

X = 1, the utility function simplifies to:

N

(19) U = fQ;(P-I)IPdi .
o

The requirement for convergence is that 13 is finite and exceeds one. Notice that eqn. (19) is

like eqn. (6), as the geometric Brownian motion is just an extension of the deterministic

geometric motion from the introductory example.

From eqn. (18) it can be shown that 13 > 1 if f.1 < p. The limiting behaviour towards infinity is

discussed later. Maximization of (19) conditional on the income constraint Y = rp;·Q;di
yields:

Since N is large, each firm will consider P to be constant. It follows that the elasticity of Qi

with respect to Pi will be regarded as constant and equal to 13, just like the elasticity of the

discount factor for the demand process. Thus, a geometric Brownian demand process leaves

us (not surprisingly) with a price process of the same kind.

Analogous to a static model with isoelastic demand, the expected profit is maximized if the

patent is activated when the price exceeds a fixed markup over C. Leaving out firm subscripts

from now on, we have from (15):

(21) p' =Lc.
/3-1
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Equilibrium

Free entry is obtained by the zero profit condition

(22) (p. - C)Q· = A,

where Q. is the optimal discount factor. Using eqn. (21), this gives:

(23) Q. = R(p -1), whereR == A / C .

In equilibrium, a constant number of firms, N·, will pay the entry cost A each period. If p is

interpreted as a growth rate, these firms will activate at expected cost Q.C, which is smaller

than C due to growth of productivity between entry and activation. Thus the steady state

condition is N* ( A +Q*C) = W, where W is the total wage bill (which is a measure of the size

of the economy). Using eqn. (23), this simplifies to:

(24)

•As P> 1, eqn. (24) demonstrates an upper bound for the rate of entry. If P ~ 1, then Q ~ O.

In the limit there are no production costs, and the whole wage bill will be used for patents
. .
(i.e., W =N A).

The steady-state condition will be different and more complex if p is interpreted as a rate of

time preferences instead of a growth rate. In that case, discounting to some extent only

implies a delay of activation; not that aggregate costs of activation go down in steady-state.

The exact relationship depends on the percentage of the patents that are actually activated. If

all patents can be expected to be used, aggregate costs of activation do not go down at all by

waiting; thus the steady-state condition becomes N· (A + C) = W.

In general, however, the demand for some patents may never be high enough for them to be

activated. Thus, if p is a rate of time preferences instead of a growth rate, the steady state

condition becomes N· (A +prob(J5,p.) .C), where prob(J5, p.) is the probability that a
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. . -. *pnce process startmg at P will ever reach P . The following properties can be shown to hold

in this geometric Brownian case:

{

l, if f.1> 1..a2

(25) prob(P,P*)= ( *)(1-2f.1/a2)/fJ. <~ 2
Q .if f.1- Ta

Eqn. (25) can be derived from a result in Dixit (1993).8 In particular, it can be shown that all

values higher than the starting value will be hit with probability one as long as J.1 > +0"2. This

explains the upper part. See also Appendix B, which determines the number of sleeping

patents.

Further, it can be shown that p ~ 1 if a ~ 00, which also implies that probe P, p*) ~ Q* .

Hence, for high uncertainty the steady-state condition will be almost the same for the two

interpretations of p. However, we have probe P, p*) > Q* for any finite a, so more resources

will be used for activation if p is a rate of time preferences than if it is a growth rate. We do

not pursue this point further here, but it will be important for the discussion of endogenous

growth that follows in Chapter 4.

Figure 4 plots how the equilibrium with free entry is reached. Firms choose their price of

activation so that the expected marginal revenue equates the expected marginal cost. If the

entry rate is low, the profit function is OP', and the optimal policy corresponds to the point Z'.

Then the expected profit is positive, and more firms are encouraged to enter. The initial price

shifts down to P and the optimal discount factor to Q*, corresponding to the point Z where

the expected profit is zero.

8 If P is geometric Brownian with drift J.1 and volatility a; as in this case, it can be shown by Ito's lemma that

In P is arithmetic Brownian with drift J.1- t 0"2 and volatility a. For an arithmetic Brownian motion with drift

p <O and volatility O" > o, the probability of reaching P2 when starting from PI < P2 equals e2(P2-P,)'ji/a
2
,

according to Dixit (1993:54). The lower part of (25) follows by setting p = J.1- t0"2, fj = In.? and

P2 = In P * , and using the optimal discount factor Q' = (.? / P * ) fJ.
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Figure 4. Equilibrium with Free Entry.

The results are analogous to those obtained by static models, except for one constraint. In a

static model there is no limit to how much a firm can produce. In this model there is a time
*axis starting at Q = 1 and moving to the left in Figure 4. For convergence, Q cannot exceed

unity, so the following inequality must hold:

(26) R(p-l)::;l.

This requirement does not have any static parallel, but it has a natural interpretation here:

Waiting is not of interest if the patent cost is large relative to the production cost (i.e., if R is

large),' while at the same time f3 is not very small. As we will now discuss, f3 can be

interpreted as a measure of "dynamic differentiation", somewhat similar to a static measure of

product differentiation (despite the fact that the goods are homogeneous in a static sense). In

equilibrium, f3 also shows up as a measure of dynamic economies of scale. Thus, the

requirement of free entry will break down if economies of scale are too large.

Sensitivity

In equilibrium, the utility function (19) yields

(27) U· = N· (Q·)(fJ-1)/fJ,
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where Q* is given by eqn. (23). If P is interpreted as a growth rate, the entry rate N* is given

*by eqn. (24). It can be shown that U is decreasing in A and C, which is intuitive. Note also

that U* is linear in W, which is simply the number of workers if the wage rate is normalized to

unity. This result, which implies that there are no gains from scale, is discussed in more detail

later. The opportunities for maturing are reflected in the fact that U* is decreasing in fl.

It can be shown from eqn. (18) that fl is decreasing in 0", increasing in p, and decreasing in JL.

If O" is large, goods considered to be equal today may be considered to be very different

tomorrow, so these homogeneous products are more different in a dynamic respect the smaller

fl. However, fl is increasing in p, as the future will be less important the larger the discount

rate. Finally, a positive drift will counteract the effect of discounting, so fl is decreasing in JL.

Similar to static models, fl also shows up as an indicator of dynamic economies of scale in

equilibrium, as observed from the markup price (21). In Figure 5, two paths for fl are plotted

as functions of 0", assuming p = 0.04. The limiting results are ofparticular interest.

i

5 +

fl

1'=0,02
2i! --- __ ~=

I

Il ~~~~~~~~~~~~~-~~~~---~~~--~~~~~~~---~-~-~-~
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O"

Figure 5. The Elasticity of the Discount Factor for a Geometric Brownian Motion.

First, fl ~ 1 if O" ~ 00, as this removes all product similarities in the dynamic sense. Second,

ø ~ 00 as O" ~ O if JL is equal to zero (or negative), as this removes the forces that create

differences by waiting, fluctuating prices and value from holding a patent. However, fl is

finite for JL ~ Oas long as 0"> O, since uncertainty always creates a probability ofprice growth.
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This gives rise to value from waiting and markup pricing even if the price is expected to

decline. Finally, fJ = pi Jl if a= Oas long as u> O. Thus, uncertainty is not needed if there is

a positive drift.

Stability

The value of a firm that has just acquired a patent is found by inserting optimal values into the

left-hand side of eqn. (22). This yields:

(28)
( rF(P) = fJ -1 Pp.
fJPCP-1

Here F(P) is the value of the option to activate as a function of the observed price, which

happens to be P for a firm that has just made entry. However, the formula is perfectly

general and shows the value of the firm at any time ahead of activation.

In Figure 6, the value of a patent is plotted as an increasing function (F) of the demand

variable (X) in equilibrium. The value following from the initial shock X is denoted by Jf ,

and the patent is activated the first time X reaches X' > X. Inserting eqn. (21) into eqn. (28),

we have F* = CI(f3 - 1) at that point.

F

x x·

Figure 6. Option Value Functions.
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As long as the requirement (26) holds, the entry cost equals the value of a firm that has just

acquired a patent. Thus in equilibrium, we have F = A as well as F ~ FO .

If, by accident, the rate of entry were to increase slightly, starting from equilibrium, the entire

value function would shift down as each firm would expect a smaller share of total sales. This

is depicted by the dotted line in Figure 6. The initial value of a firm decreases to F', and

since F'< A, the expected profit from entry turns negative. For this reason, there will be a

temporary stop in entry of new firms. Full employment in this period implies that the rate of

activation increases above the equilibrium level. The transition back to equilibrium is

speeded up by this effect, and it will go on until the "surplus" has been eliminated by

activation of sleeping patents.

Similarly, the value function shifts upward if too few firms enter. New firms will bid up

wages slightly to extract expected profits, and we get a transition phase with a higher rate of

entry and a lower rate of activation than in equilibrium.

As this shows, any accidental perturbation away from equilibriumwill be corrected by the rate

at which new firms enter, and the equilibrium is stable.

3. One-sector models with cost variation

Introduction

In this section we discuss equilibrium models that are based on a fixed price and fluctuating

costs. The models need not be spelled out in the same detail as above, since they have the

"dual" character that was observed in Chapter I, Note B. However, before the formal setup is

described, it is convenient to illustrate what we are talking about.

For other reasons than ours, Baldwin and Krugman (1988) discuss the technology of RAM

(Random Access Memory) chips for personal computers. This industry is illustrative for the

methodological approach, as growth is mostly embodied in new product generations in a

fixed-size manner. The technology has improved at an extreme rate since the mid-seventies,

starting with the 4Kb and 16Kb generations. The current state-of-the-art is something like

32Mb.
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By and large, such chips are homogeneous products, since 2x8Mb more or less equallx16Mb

etc. Nevertheless, their production costs fluctuate separately. Learning seems to be very

important in the first stage after a new generation has been introduced. As time goes by, its

market share is reduced, and eventually brought to zero.

Roughly speaking, the 4K chip dominated the market in 1976, the 16K chip in 1980, and the

64K chip in 1983. In the respective years, average prices were $4.35, $4.77, and $3.86,

respectively. Taking these as representative cost figures as well, the numbers suggest growth

rates of 30-40% per year. This can give a rough idea of the development of production costs

relative to the state-of-the-art technology, which is our measurement of scale if p is

interpreted as a growth rate. Thus, in Figure 7, Baldwin and Krugman's nominal prices for

the 4K chip have been scaled up by 30% per year, starting in 1974.

30
$/4K

\
'

I

,

10 ; -x__x_

20 l

O~~--~--~--+---~-+--~--T-~--~
1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984

Figure 7. Growth-Corrected Price per 4K RAM.

This figure, which we shall return to later, shows that the average cost (per Kb) decreases

faster than the growth rate at first, but more slowly after a while. In 1978, the cost of

producing the 4K chip could no longer be reduced fast enough to cope with the next

generation. A similar story applies to the 16K chip a few years later, the 64K chip thereafter,

etc.

One interpretation of this observation is that learning is important, but that it is limited for

each generation of technology. Hence, two opposing forces must be considered: Learning,

which favors mature products, and growth, by which a specific generation depreciates.
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If we neglect competition between firms that produce the same chip, it is reasonable to

interpret the R&D effort by which a new chip is created as a patent. Activation can be

interpreted as production. This is the basis for the first model that is presented below.

However, patents seem to be hard to protect in the computer industry (and several other

industries). Information about innovations rapidly spills over to competitors, so a model

based on exclusive patent rights will obviously lack some important real features. Thus, we

shall also consider an extreme alternative where information is freely available. The latter

will be analogous to a static model with perfect competition. Most real-world situations are

probably somewhere in between these two extremes.

Baldwin and Krugman assume growth to be a result of externalities. Nevertheless, they

model it as an exogenous process, arguing that each firm is so small that it will consider the

growth rate to be fixed. We make a similar assumption.

Preferences

The instantaneous utility function can be stated as

i »,
(29) Ut = f fc;,s(t)dids,

-00 o

where the interpretation of variables follows from (8). By similar arguments as in the

previous model, this simplifies to

(30)
N,

Ut = fl' di,
o

and the aggregate utility function to be maximized becomes:

N

(31) u= fQidi.
o

If P is interpreted as a rate of time preferences, this says that the products are regarded as

identical in all other respects than the time at which they are consumed. Thus they are truly

perfect substitutes both in a dynamic and a static sense. With a growth interpretation of p,
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which is mainly assumed below, the utility function (31) says that new goods are preferred,

but two goods that are so old that the technology (productivity) has doubled since they were

defined, satisfy the consumer equally as well as one new good. The products are

homogeneous like 2x8Mb vs. l x 16Mb RAM. If the rate of income is Y, the preferences (31)

give the following inverse demand functions:

(32)
y

P; =-N--·
fQidi
o

N is supposed to be large, so the influence of a single firm on the price can be neglected.

Therefore we set Pi == P for all i. Then P is the price of a product based on a new patent (the

current level of technology), while Q;P is the expected price conditional on a delay Ti.

If the cost of producing such goods were constant throughout time, we would be left with an

infinite series of identical static models. Then the dynamic approach would yield no insight

that could not be obtained from a static model. However, we now turn to dynamic models

based on these preferences but where costs will change.

A model with patent rights

Firm behaviour

The life cycle of a firm is as usual: It makes entry by an irreversible patent cost A. The patent

triggers a production cost process with the familiar characteristics. As a basic assumption, the

initial cost C is so high that simultaneous entry and activation is not optimal. Then the firm

has only one choice in order to make (or increase) profit: Itmust wait for a lower cost. Since

prices are constant in terms of Q;, the firm maximizes the expected profit function

(33) TIi = (P - C;)Qi - A,

where C; is the state of the cost process at time of activation. By arguments such as in
*Chapter 1, Note B, the optimal decision is to activate when a specific level C < P is reached

for the first time. The discount factor can be described as an increasing function of an

arbitrary Ci < C; i.e., Q; = Q;(C;). By inserting this into eqn. (33) and optimizing with
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respect to C; the optimal decision for each firm follows the markup rule (leaving out firm

subscripts from now on since all firms are alike):

(34)
P-C'
C·

1 where E == dQ(C') C·
S dC' Q(C') .

For comparison with the previous model we concentrate on geometric Brownian costs:

(35) dC = -flCdt + aCdz.

The economic interpretation of (35) is the following: The production cost will not be reduced

by waiting exactly at the same rate as technology grows. There may be a deviating trend as

well as uncertainty. If fl > O, some kind of learning is expected. The opposite (fl < O) is

reasonable if knowledge or other specific resources must be restored as production is

postponed, e.g. because workers leave. For a (downward moving) geometric Brownian

motion, we have shown that the discount factor is

where a is the positive root of eqn. (18) if the minus sign in the parenthesis is changed to a

plus sign. (See Chapter 1, Note B.) Thus ES = a, and the optimal investment cost becomes a

fixed fraction of the price:

(37)
• a

C =--P.
a+l

Equilibrium

Free entry is required, so the expected profit at time of entry must be zero in equilibrium.

Setting TI=Oin (33), and using (36) and (37), the equilibrium discount factor becomes:

(38) Q' =(Rar/(a+l), where R == A/C.

As in the model with geometric Brownian price variation, eqn. (38) leads to a requirement for

convergence. The expected discount factor cannot exceed unity, so

(39) Ra s 1
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must hold for an equilibrium with free entry and zero profit in expectation. If p is interpreted

as a growth rate, the steady-state condition is N* (A +Q*C*) = W, with the same interpretation

of variables as with price variation. This simplifies to

(40) N*= W
A(1 + a)

If a ~ O, aggregate expected production costs approach zero, and the whole wage bill is used

for patents (N*A ~ W) as in the previous model when p ~ 1. Finally, the steady-state

condition is altered if p is interpreted as a rate of time preferences, as opposed to a growth

rate. The arguments are so similar to the previous model that we do not pursue this case.

However, Appendix B argues that all patents are expected to be used if u > -t0-2 •

Sensitivity

In equilibrium, the utility function (31) simply yields

(41) U' = Q'N' ,

which is the expected rate of consumption. If inserting Q* and N* from eqns. (38) and (40),

the same result is obtained as for similar values in the model with price variation; i.e., by

inserting eqns. (23) and (24) into (27). We just have to replace R with R, and p with a + 1.

This also holds for most other equilibrium formulas of interest, so a discussion on sensitivity

can be kept short, focusing the relationship between a and its underlying variables.

It can be shown that dcdda « 0, and that a ~ ° as a ~ 00. Hence, cost uncertainty increases

utility in equilibrium, since cost savings become more likely. Furthermore, a = pip if p > °
and a = 0, while a ~ 00 as a~ ° if j.J ~ O. The latter case shows how the value of waiting

decreases to zero if the possibility for a cost reduction disappears. The limit with infinite a

corresponds to no value from the patent, and a price equal to the cost of activation (P = C').

We also have daldu < 0, as the cost of activation will tend to be low if the expected learning

rate is high. Finally, da/dp > 0, as any stochastic or deterministic property of the process is

discouraged by discounting.

63



Chapter 3. A Framework (or Equilibrium Modelling

Hence, the relationship from a to p, fl and a is very much like the relationship from f3 to its

similar parameters. Therefore a reference to Figure 5 suffices as far as graphics are

concerned. Also, a can be interpreted as a measure of dynamic economies of scale and of

differences - this time with respect to costs (or technology). Notice, however, that f3(p.,a,p)

does not equal a(fl,a,p) if a> O, so the partial derivatives are not identical.

According to eqn. (38), the optimal discount factor will be larger the larger A and the smaller

C. However, it can be shown that Q* is Ll-shaped as a function of a. It follows that the

allocation of resources between patenting and production, as well as the expected age of

products that dominate the market, do not depend uniquely on a. Chapter 5 demonstrates a

quite surprising effect ofthis result in a location model with knowledge spillovers.

Finally, let us add some intuition to the convergence requirement (39) in the deterministic

case (a = O). Then a = pi fl, and the criterion can be stated as:

(42)

The first term on the left-hand side is the ratio of the initial production cost to the patent cost.

It can be regarded as a static measure of the importance of learning. The second term, which

is the ratio of the learning rate to the growth rate, makes up a similar dynamic measure. For

waiting to be a matter of interest, the product of the two must exceed unity. In the RAM

industry, it obviously does. Although the growth rate is extremely high (p = 0.3 - 004) , the

learning rate and the production cost share are large enough to pin it down. It usually takes

several years from the technology of a microchip is available until production becomes so

cheap that the chip dominates the market.

A model with perfect competition

Firm behaviour

A model without patent rights, but a production cost that fluctuates separately for each

generation of technology, can be based on a cost function with two components as above.

However, with no dynamic market power the investments will no longer be separated in time.
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First there is a fixed cost which covers activities that are independent of the specific

technology, and not exposed to learning. Mathematically, it will be somewhat analogous to

the patent cost, so we use the term A for it. Here it may be more appropriate to call it a setup

cost, which could be interpreted as costs related to infrastructure, administrative support etc.

If p is interpreted as a growth rate, it follows that the fixed part of the effective unit cost

equals A/Q (;:::A) for a product whose technology is T periods old, as the effective size of the

good will be smaller than that of a new one.

The second cost component covers activities exposed to learning, and it will be described by a

process with the familiar properties. Let us denote it by C and interpret it as a production

cost. As usual, it is also measured relative to the state-of-the-art technology. Ifthe production

cost is some general C when the product is introduced in the market (by the undertaking of

both investments), it follows that the total unit cost is:

(43) J=A/Q+C.

A large number of products are assumed to be launched each period. Because they substitute

perfectly and do not change by ageing, as viewed by the consumer, the product price will be

constant. Then the expected profit function is simply P - J, where P is fixed. It follows that

expected profit is maximized if(43) is minimized.

When will a product be introduced? Since A is constant, it is clear from (43) that the optimal

policy is to wait until the cost has reached a specific level C* « C) for the first time. (By

waiting until the second time, Q would decrease. However, since A is fixed, J then increases,

and the expected profit decreases.)

As usual, we can set Q = Q(C), where dQ/dC> o. Inserting this into (43) and minimizing

with respect to C give the first-order condition

(44)

where Ss is defined as in eqn. (34). Hence, the ratio of the setup cost (A) to the expected
* *production cost (Q C ) equals the inverse of the elasticity of the discount factor. If waiting is
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to apply, dJ/dQ > Ois required at Q = 1. Assuming that this holds, the general shape of J(Q)

will be as plotted in Figure 8.

J

A+C r .... . .....

Q
Q=l

Figure 8. A Dynamic Cost Function with Learning.

Note that Figure 8 fits in well with the RAM industry studied by Baldwin and Krugman. (In

Figure 7, the time axis goes from left to right while here it goes the other way, and uses a

different scale. However, Figure 7 could easily be transformed to something like Figure 8.)

Equilibrium

I~profits are driven to zero by free entry, we get the condition:

(45) A / Q* + C* = P.

Equilibrium is illustrated in Figure 9. Firms invest when located at the minimum of the cost-

curve; i.e., when the potential for learning has been optimally exploited. With a large number

of firms, this can be approximated by a horizontal supply curve (Jmin). The downward-sloping

demand curve D(P) gives total demand as a function of prices at that particular time, and

partial equilibrium is where demand intersects with supply. As long as no firm dominates the

market, the size of the firm is irrelevant.
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D

Figure 9. Perfect Competition in a Dynamic Model with Learning.

One interesting point to note is that (44) and (45) can be combined to yield the markup rule

(34), and a one-sector equilibrium model follows from a full employment condition. If C is

geometric Brownian, the optimal discount factor is like Q* in eqn. (38), the entry rate like N*

in eqn. (40), etc. This also implies that the allocation of resources between the A-sector and

the C-sector coincides in the two models.

The fact that the optimal investment rule coincides illustrates a more general result from

Leahy (1993): A firm can act myopically when considering when to invest; i.e., it can believe

that it has an exclusive option to the fluctuating benefit. It does not matter for the optimal

decision whether its profit is actually brought to zero by others.

4. A two-sector model

In this section we combine some of the assumptions and results from previous sections. More

precisely, the model with geometric Brownian demand in Section 2 will be combined with the

setup ofpreferences from Section 3. Consider the following instantaneous utility function:
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This utility function has two parts as there are two goods: M ("manufactured goods") and H

("homogenous goods"). Further, ff «1) and k are positive constants which will be explained

below. The interpretation follows from (8) and (29), but notation has been changed slightly

for clarification.

If the manufactured good is wine, it may be reasonable to think of the other good as food (as

our consumer probably prefers a proper meal). Food production is characterized by constant

returns to scale, implying that this is simply a perfectly homogeneous good which can be

produced (and consumed) in any quantity and at any time. Wine, however, is characterized as

in Section 2, with some minimum firm size and two cost elements. Further, there is value

from postponing the last investment. Simplifying as in Section 2, the utility function

becomes:

If the demand processes Xi are continuous and autonomous with the Markov property, it

follows that utility is maximized if the patents to manufactured goods are activated when a

specific threshold X· is reached for the first time. Then the T/s are first hitting times, and we

can form a fictitious utility function

where N is the rate of entry. Assume that the demand processes for manufactured goods are

geometric Brownian with drift f.1 and volatility (J. In that case, X, = XQi-11P, where X is

initial demand and [J is the well-known positive root of eqn. (18). If utility is scaled by setting

X = 1, and k is defined by k = [J/(fJ-1), the utility function can be rewritten as:

(49)

whereM is an aggregate:
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(

N ) 131(13-1)
. (50) M = [0;(13-1)113 di

The preferences (49),(50) resemble a Dixit-Stiglitz model with constant elasticities, but our

model has a different interpretation. Nevertheless, the procedures for maximizing utility

conditional on the income constraint will be the same. By a standard argument it can be

shown that the consumer each period will spend an income share zron wine and 1-1l"on food.

If this had been a static model with small firms, each firm in manufacturing could act as a

monopolist facing a constant price elasticity of demand equal to fl. There would then be a set

of demand functions for single goods

Q. = (P;)-f3 1l"y
I G G'

where G is a perfect price index:

With our interpretation, N is the rate of entry, Pj is the activation price in terms of the discount

factor, Y is the rate of income, and fl is the elasticity of the discount factor with respect to the

price of activation. Thus each small firm will act as a dynamic monopolist that faces an

independent geometric Brownian price process. Since consumption shares are fixed,

equilibrium for manufacturing follows from the model with geometric Brownian prices in

Section 2.

Let us describe the behaviour of the model in some more detail. First, note that the utility

function says that if the consumer cannot get wine with his dinner, then he will not enjoy his

food either. In principle, if the size of the economy did not permit more than one glass of

wine every other period, then nor would the consumer want any food in the other periods. If

the size of the economy doubled, however, he could get half a glass of wine each period, and

he would then also buy (half as much) food each period.
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Since N is large, the consumer in this model will definitely get several meals each period, but

does he gain from increasing the frequency? No, discounting is neglected within each period,

so the frequency is not interesting. For example, ifthe period is a year, the consumer does not

care whether he gets a piece ofbread and a glass ofwine once a day, or a bottle ofwine and a

loaf ofbread once a week.

This argument complies with previous statements on scale effects: There are no gains from

scale in any of the models in this chapter. This also means that there will not be intra-industry

trade at positive trade costs as in static models with monopolistic competition. In Chapter 6

and Chapter 9, however, we shall see how scale effects and gains from trade can arise by

technically small changes in the utility function.

5. Extensions

A new interpretation of the firm

Up to now, a firm has been unit-sized in the sense that a patent enables it to produce one

single unit at one moment in time. The models become more appealing by not letting the firm

disappear as soon as its patent has been activated. Instead, let activation be interpreted as the

establishment of an infinite-lived factory with a fixed capacity of one unit per period. This

extension can be incorporated quite easily.

For simplicity, let us imagine that the consumers buy the consumption rights to all future

production at time of activation. Hence, as soon as the patent has been activated, the

consumer will get one unit of the good each period in all future. Technically, the 8-functions

in the utility functions can be replaced by step functions to reflect this. In the model with

geometric Brownian price variation, the resulting utility function will be like (19) except for a

constant factor 1/(p-f.1). The interpretation of this factor is intuitive: It represents the

multiplicative effect of being able to consume a good perpetually, when discounting at a rate

which is corrected for expected maturing.

Each firm will observe an independent geometric Brownian flow price, and if the price takes

on the value p at some time t, the net present price P (i.e., the discounted expectation of future

values), is given by:
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Thus P is also geometric Brownian, and essentially nothing has changed. We may also add a

Poisson "death" process with a fixed intensity Å for operating factories to avoid an infinite

number offirms in equilibrium. It is a standard result, see Dixit and Pindyck (1994:200), that

this simply changes the proportional factor to l/(p-,u-t-Å).

Alternative interpretations of the discount rate

Two interpretations of p have been applied so far. It has either been a subjective rate of time

preferences or an aggregate growth rate ofproductivity or technology. More options exist.

Up until now, a patent holder has been able to wait forever for its demand to rise to an optimal

level. Such extreme assumptions can be avoided by a Poisson process somewhat similar to

the one discussed above. Hence, we can introduce a fixed probability PA that a sleeping patent

becomes worthless in the next period, e.g. because of a technological breakthrough. The

effective discount rate increases accordingly. In the Section 2 model with geometric

Brownian prices, p will increase. This affects the steady-state condition, but all major forces

in the model remain. (The most reasonable assumption is probably to use the same process

for both extensions, by setting PA= Å.)

Further, P might also embody growth of the factor endowment. Consider the wine example

again, but exclude productivity growth. Normalizing the wage rate to unity and assuming

labor is the only production factor, then A and C can be interpreted as fixed shares of the labor

force. lfthe labor force grows at a fixed rate, a fixed share of the labor force will be able to

make more wine and fill larger barrels as time goes by, even with no growth of productivity.

(As the increased production must be shared by a similar increase in consumers, there are still

no gains from scale.)

Hence, we can set p= Pd + PA + Pg + Pl, where Pd is a subjective rate of time preferences, PA

is the intensity of a Poisson "death" process for sleeping patents, Pe denotes growth of

productivity (or technology), and PI is the growth of the labor force.
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Endogenous patent costs

The patent cost can be endogenized as in Chapter 1, assuming that future revenues can be

raised by increasing A. Now we have Q= Q(P,A), and QA > O. By including the second

argument in the profit function (14) and optimizing with respect to P and A, eqn. (15) still

holds. The following relationship (from Chapter 1) also applies:

(54) where
p'Qp(P',A*)
Q(P' ,A')

* * *Hence, in optimum the ratio of the patent cost (A ) to expected revenue (Q P ) is 'given by the

ratio of the elasticities. This can be extended to equilibrium. Combining eqn. (54) with free

entry, the following condition is derived:

(55) &~ = 1.

Ifthe price processes are geometric Brownian as in Section 2, eqn. (54) simplifies to:

(56)

We still have Q' = (p/P')p, but now f3 is a function of A*, so we ought to put an asterisk on

it. Differentiation yields Q~= Q'fJ~ In(P / P') , and eqn. (55) can be rewritten as

(57) Q• -I/EpA
=e where

The elasticity &~ measures the effectiveness of increasing the ancillary investment. As eqn.

(57) shows, the expected delay goes to zero (Q* ~ 1) as &~ approaches infinity. It goes to

infinity (Q' ~ O) as &~ approaches zero.

There are numerous ways by which f3 could be decreased: by increasing the expected price

growth (Jl) or the probability for such growth (a), by decreasing the effective discount rate

(P), or by a combination. Chapter 1 discussed the first of these cases at the level of a firm.

Appendix C extends all cases to equilibrium, also discussing interpretations in each case.
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6. Final remarks

The fråmework that has been developed, relates a number of dynamic variables to static

modelling. The characterization of costs and preferences, as well as several equilibrium

formulas, coincide with analogous static models. Thus, some static models can possibly be

reinterpreted and their results confirmed in a dynamic context. In addition, a number of

additional questions arising from irreversibility and uncertainty can be addressed. This will

become clearer as the approach is extended and applied in a number of directions in the

chapters that follow. More variables are going to be endogenized, and by technically small

changes in the utility functions, it will also be shown how the analogy to static modelling can

be refined.

The specific models have also brought forward some criteria for waiting to matter in an

industry-wide context. Although the criteria are stylistic as they are based on a particular set

of processes, as well as on extremely symmetric models, they can provide some crude

estimates that may supplement our introductory remarks on the importance of this kind of

models.

For example, according to (23), waiting is not optimal in the model with geometric Brownian

prices if R(J3 - 1) ~ 1. Empirical analyses indicate that firms typically require expected returns

that could be three or four times the cost of capital; see Dixit and Pindyck (1994:7).

Emphasizing that our calculations here are very rough, the investment rule (21) then suggests

p-values that in many cases can be well below three. Then waiting will apply if R does not

exceed one half. In broad terms, R defines a threshold for the ratio of typical ancillary

investments (like R&D) to typical production investments, if waiting is to apply. Thus,

ancillary investments should not represent more than one third of total investments. It seems

reasonable to assume that the true number is often smaller; if this is the case, waiting matters.
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APPENDIX A: Variable elasticities

Introduction

Consider a one-sector economy based on irreversible investments and price variation as in

Section 2. Patent costs and production costs are constant, and preferences are given by an

increasing, strictly concave function (13). As shown by Dixit and Stiglitz (1977) for the

analogous static model, the price elasticity of demand facing a single, small firm is

where the primes denote first and second order derivatives. Krugman (1979) assumed that

dE/dQi < O in the static model, demonstrating two types of gains from trade even with no

differences in preferences or factor endowments: First, there is a gain as economies of scale

can be exploited. Second, the consumers get access to a larger number of products.

If the demand processes in the dynamic setup are geometric Brownian like the process in the

first example in Chapter 1, Ei is constant and equal to the elasticity of the discount factor (/1).

Thus, the demand process and the price process are practically the same. (In the static model,

the only gain from scale in this case is due to variation.)

Below, we discuss the similar relationship ifthe demand processes are like the other processes

from Chapter 1. As a matter of fact, dE/dQi < Ofor all those that can be treated analytically.

At first sight, this may not seem very interesting, as the dynamic model yields no scale

effects. However, it will follow from Chapter 6 that a similar argument also applies in a

modified version with true product differentiation.

Arithmetic Brownian motion

If demand is described by arithmetic Brownian motions

(A.2) d.X, = udt + adz,

it was shown in Chapter 1that the discount factor is
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where r is the positive root of the following quadratic equation:

From (A.4), it follows that dyldf.1< 0, dylda< 0, and dyldp> 0, so ris a measure ofvariation

quite similar to fJ for the geometric Brownian motion. By inverting (A.3) and setting

U;(Q;) = Q; . X;(Q;) as in eqn. (13) in the text, we find:

(
- InQ;)(A.5) U;(Q;) = X --r- Q;.

Further, we have

where

(A.7) &i=rX-1-1nQi'

(As observed, Gi is decreasing in Qi') Since Gi is also the price elasticity of demand, (A.7)

yields

dQ. P -(A.8) -' -' = l-vX +lnQ.
dP Q. r- ", ,

or:

Noting that fli x(c+ lnx)dx = ln(c+ lnx) plus a constant, both sides can be integrated, and we

have:

(A.10) InQi = rX -1 + J('P;.
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Here K is a constant of integration that depends on the initial price. It is determined by the

boundary condition Q (P) = 1. The discount factor simplifies to

_ yX -1
(A.ll) Qi(P;) = e-Y(JH'j, where y = ,--_

p

Referring to (A.3), this corresponds to an arithmetic Brownian price process slightly different

from the demand process. The reason for the difference is that utility is discounted

geometrically, while the demand process is arithmetic. Therefore the price process is affected

by the initial demand X.

As an example, we have r = l/P if X = 2/ r . A free entry condition similar to eqn. (22)

determines P in equilibrium as a function of A and C. By some algebra, it can be shown that

P is given implicitly by the equation A = Pe -Cl p in this case.

The linear case

Let firm-specific demand be characterized by the process

(A.12) ax, =j.J(Ø-Xi)dt+a(Ø-X;)dz,

where ø (> X) is a constant. Then the discount factor is linear

ø 1(A.13) Qi (Xi) = a - bXp where a = --_, b = ---=,ø-X ø-X

as long as the combination of parameters (j..t,a,p) is such that the positive root of the following

quadratic equation equals one:

(A.14) ta2x(x+l)+,ux-p=O.

(See Chapter 1, Note A.) The utility function Uj(QJ =Xj(Q;)-Qj follows directly from (A.13):

and we obtain:
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(A.I6) E;(Q;) = ( )-1.
2 s-.» Q;

ø

Integrating (A.I6) as in the previous example yields the following discount factor:

ø ~ Ø-2X(A.l?) Q;CP;) = a -B», where a = , b = .
2CØ-X) 2PCØ-X)

Hence, the demand process leads to a linear discount factor, and a price process quite similar

to the demand process.

Mean-reversion

Krugman (I9?9) does not give any reason why Ei ought to decrease as a function of Qi in the

static model (but Krugman, 1980, argues for it in a footnote). In the dynamic setting there are

good reasons to expect that this is the case. It is often expected that prices will be mean-

reverting as in some sense they are related to long-run marginal costs. In our context, mean

reversion can be related to stable preferences. Ifthe price for product i is given by the process

(A.I8) dP; = 17CP-p;)p;dt+ap;dz,

where 17and P denote the speed and the mean, it was argued in Chapter 1that the elasticity

of the discount factor is increasing in Pi> because the price will tend to stay close to the mean;

thus the discount factor will be larger in the vicinity of the mean when comparing with the

geometric Brownian motion that appears if 17= o. It will be accordingly smaller than the

discount factor for a geometric Brownian motion if the price is above a certain level. Since Ei

is constant for the geometric Brownian motion, it follows that it will increase in Pi and

therefore decrease in Qi for this mean-reverting process.

Final remarks

The main lesson from these examples is the observation that a particular demand process

seems to lead to a somewhat related price process. This would probably also hold if starting

with a mean-reverting demand process similar to (A.I8). As for most other stochastic

processes, however, an analytical solution is hard to obtain in this case.
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APPENDIX B: The number of sleeping patents

In the models with price variation, the firm will either be waiting for the optimal price level to

be reached from below, or it will already have reached this price and activated the patent. The

question then arises: What is the number of sleeping patents in equilibrium?

In simple cases, the answer can be found by some standard results from stochastic calculus.

We focus on the Section 2 model. If P is a geometric Brownian motion with drift fl and

volatility (J' as in this model, Ito's lemma says that X = In(P) is arithmetic Brownian with drift

'ji=fl-t(J'2 and volatility (J'. For such a process, Dixit (1993:56) finds that the expected

time going from Xo to xl> Xo is

The fact that the expected time is infinite with a non-positive drift reflects a probability that

the upper threshold will never be reached. With a positive drift; i.e., if fl > t (J'2 in the

geometric Brownian process, the expected time does exist, so any value higher than the

starting value will be hit with probability one. In particular, this must hold for P and p' , and

we can be sure that all firms entering at P will become active some day. The rate of

activation will then equal the rate of entry in equilibrium by the law of large numbers. (If it

did not, the number of sleeping patents must either increase or decrease. It cannot decrease,

however, since there is a fixed in-flow of firms and no other sources of exhaust. If, on the

other hand, it were to increase, there would be a positive probability that the threshold would

never be hit, which contradicts the result above.)

By inserting Xo = In(P) and Xl = In(P') into (B.1), and using the optimal discount factor

(p/p')p = R(fJ -1) , the expected time from P to p' becomes:

(B.2)

78



Chapter 3. A Framework (or Equilibrium Modelling

To obtain the number of sleeping patents in steady-state, (B.2) must be multiplied by the entry

rate, which is given by eqn. (24) if P is a growth rate. The number of sleeping patents is zero

if Rep - 1) = 1, since this implies immediate activation. Further, the number goes to infinity if

p approaches t 0'2 from above, as the demand for some patents will never be high enough for

activation in such cases. If f.J:::; t0'2 , the entry rate will be a factor higher than the rate of

activation, corresponding to the probability that p. is never hit. (The difference can be

calculated using eqn. (25) in the text.)

If firms become operating factories that are exposed to a constant death rate A after activation,

the expected life time of an active firm is liA. The ratio of active firms to the total number of

firms follows easily.

Similar arguments can be worked out for the models with cost variation. If the production

cost is geometric Brownian with drift -p and volatility 0', Ito's lemma and a relationship

similar to (B.1) will show that the expected time from C down to c* becomes:

Thus, some patents will never be used if there is not enough uncertainty to pin down an

expected cost increase (p < O). To obtain the number of sleeping patents in equilibrium, (B.3)

must be multiplied by the entry rate, which in this case is given by eqn. (40) if p is a growth

rate. The limiting behaviour follows from the discussion above.
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APPENDIX C: Examples with endogenous patent costs

In this appendix we discuss three ways to endogenize the patent cost A for the model with

geometric Brownian prices in Section 2.

Increasing the expected price growth (Jl)

If some of the investment A is interpreted as an initial advertising campaign or another

ancillary activity (see Chapter 1), it is reasonable to argue that the expected rate ofincrease in

p can be raised by increasing A. Thus, set fl = fleA) and flA > o. Differentiating eqn. (18) in

the text with respect to A and rearranging, we have (as in Chapter 1):

(C.l) A,uA lnQ

(Asterisks on optimal values are left out to save notation.) Setting &~ equal to unity

according to eqn. (55), and using eqn. (23), the equilibrium patent cost A can be found. The

effect of the patent cost on the discount factor becomes particularly simple if uncertainty is

left out (0-= O). Then we get

ileA(C.2) Q=e- ", where A A·,u& = __ A
11- ,u .

Hence, the age of patents that are activated will be lower the larger &~; in other words, the

more effective the advertising efforts.

One objection to this may be that an initial advertising campaign must be continued in order

to sustain expected price growth. Such extensions require operating costs and exit options, or

at least some kind of stepwise investment. This would need a much more complex model, but

the qualitative conclusions may not be very different. (See Dixit, 1989, for a model with

entry and exit, and Chapter 10 for further discussion of the issue.)

Decreasing the effective discount rate (P)

As noted in the text, p can be interpreted as a rate of depreciation for a patent holder if growth

is embodied in new patents. Sometimes a firm that makes an ancillary investment may also

80



Chapter 3. A Framework (or Equilibrium Modelling

have the opportunity to affect its actual rate of depreciation. For example, the firm could

choose a more costly technology which does not payoff by higher prices in the short run, but

which is profitable in the long run as upgrading becomes easier.

As in the previous example, a realistic representation requires operating costs and exit options,

or upgrading could be represented by stepwise investments. For simplicity, assume that such

investments can be neglected or included in A, while the effect is "pasted out" by decreasing

the effective rate of depreciation. Formally, set p = peA) and PA < 0, and differentiate as

before. This yields

(C.3) A APA InQ
GQ = p(a2 p + f.J _ t(2) ,

which determines A when combined with eqns. (55) and (23). Once agam, the result

simplifies if there is no uncertainty (er= O). Then p = pi 11,and we have:

ilEA(C.4) Q=e- P, where A A·pG = A.

P P

As observed, (C.4) is similar to (C.2).

Increasing the volatility (o)

The first example assumed that the firm was able to increase the expected growth rate of the

price process. In fact, less effective efforts might also work. Since the firm keeps the option

not to activate if the price turns low, it could benefit from just raising the upside price

potential by increasing a. This flattens the distribution of future prices without lifting the

expected level. If a= a(A) and (jA > 0, the following formula is obtained:

(C.S)
(p-1)aAa A InQ
a2 p + f.J - ta2

•

As before, the optimal A can be found using eqns. (55) and (23). Simplifying by setting 11= 0,

a discount factor almost like the previous ones is found:
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(C.6) fJ-Ik==.--.
fJ-t

Since fJ> 1 and dfJlda< 0, we have °< k < 1 and dklda< O. The factor k acts like a drag on

the elasticity G~ , and it becomes more important the larger the uncertainty. The drag factor

shows that in terms of the elasticities (G~, G~ and G~ ), increasing the uncertainty is not as

effective as increasing the expected price growth or decreasing the effective rate of

depreciation. The reason is that the probability of low prices also increases if a increases. To

compensate for this inefficiency, the investment A ought to raise both a and u at the same

time.

As a final curiosity, it can be noted that the effect of increasing a and J..l simultaneously

becomes very simple ifthey are linked by the functional relationship f.1 = ta2. Then it can be

shown that eqn. (C.6) holds with k ==. 1.
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CHAPTER4

Endogenous Growth

1. Introduction

In the same way as Paul Krugman and some of his contemporaries broke the monopoly held

by the standard trade theory around 1980, his namesake Paul Romer in 1983 initiated a

process that was going to tum a number of results from neoclassical growth theory upside

down. l In both cases, product differentiation and economies of scale played an important

role. In particular, the Dixit-Stiglitz (1977) framework has been a cornerstone in many new

growth models. However, the Dixit-Stiglitz model is a static model. This often makes it quite

complicated to include a number of typical dynamic features of importance, such as

fluctuating demand, irreversibility and improvements in product qualities?

In this chapter, we attempt to circumvent many difficulties of this kind by endogenizing the

growth rate in the "Dixit-Stiglitz-like" one-sector model with geometric Brownian prices in

Chapter 3. It should be noted that many of the results that are obtained will hold also if the

goods are true differentiated products, as in the Dixit-Stiglitz model. However, to avoid too

many sets of assumptions floating around at the same time, and since product differentiation

has not been discussed yet (see Chapter 6), we stick to homogeneous goods as in Chapter 3.

Before proceeding with the analytical treatment, it is convenient to review some empirical

facts about growth as well as typical results obtained by new growth models.' Here we will

l See Dixit and Norman (1980), Krugman (1979), Krugman (1980) and Romer (1983).

2 See Aghion and Howitt (1992) for a model with quality improvements, and Helprnan (1992) for a survey of

models of this kind.

3 See Grossman and Helpman (1991), and Barro and Sala-i-Martin (1995) for surveys of the field.
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just briefly discuss some major findings. In the introduction to their book, Grossman and

Helpman (1991) refer to a number of empirical studies of interest. Typically, long-run growth

tends to be higher:

- the larger the export share (Michaely, 1977, Feder, 1982)

- the lower the population growth (Baumol et al., 1989)

- the more scientists an industrialized country has (Romer, 1989)

- the larger the economy (Syrquin and Chenery, 1989)

- the larger the manufacturing share (Syrquin and Chenery, 1989)

- the smaller the government share of total consumption (Landau, 1983, Barro, 1989)

- the larger the government investment rates (Landau, 1983, Barro, 1989)

- the smaller the marginal tax rates for a fixed average tax rate (Koester and Kormendi, 1989)

- the more outward orientation or openness to trade (Syrquin and Chenery, 1989).

Some of these findings have been questioned in more recent studies. For example, Jones

(1995a,b) argues that evidence from industrialized countries does not confirm the important

role of scale effects, as the factor productivity growth rates in major OECD countries have not

increased along with the number of scientists during the last decades.4 On the other hand,

Romer (1996) and others continue to emphasize that scale effects are among the main causes

of economic growth.

New growth theory considers accumulation of physical capital to be of minor importance for

economic growth. The main explanation is related to spillovers from aggregate accumulation

ofknowledge, a concept that at least goes back to Arrow (1962). Technical progress arises as

an unintended byproduct of private investment decisions because knowledge cannot be

protected effectively. When firms invest in R&D that bring about a new product, they

contribute to a common pool of knowledge that other innovators can also extract from. The

larger this pool, the better the conditions for long-run growth.

In all new growth models, the thing that really matters is the total amount of knowledge-

accumulating activities. Normally, this can be characterized by some aggregate measure of

4 See also Young (1995).
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investment. With respect to normative issues, new growth concepts and models do not, as a

general rule, predict as unambiguous results as may be indicated by the empirical analyses

that were referred to. For example, the theory does not predict a strictly positive relationship

between growth and openness to trade. If domestic research in sectors where a country has an

international advantage is discouraged by import, its growth rate may go down if the trade

barriers are lowered. Although the general rule in this particular case seems to be that

openness encourages growth.' the example shows a typical feature of new growth models as

well as other models based on imperfect competition: History can be "replicated" by

formulating the model in a specific manner, but the predictive power may be weak.

By using a large number of dynamic models, Grossman and Helpman (1991) find that the

equilibrium growth rate typically is higher the larger the economy, the more productive the

research laboratories, the more patient the households, and the larger the perceived

differentiation of products. It is also a typical result that the related parameters must exceed

specific thresholds in order for innovation and endogenous growth to take place.

With respect to welfare, no clear-cut conclusion exists on whether a market left to itself will

yield too little or too much growth, although the most common outcome seems to be that the

growth rate will be too small. The reason for the general ambiguity is that there can be at

least three effects from knowledge spillovers: Contemporary consumers and future innovators

may gain, and contemporary producers lose.

Finally, if knowledge spillovers are hampered by national borders, it is clear that accidental

events can be very important for growth. A country that happens to get a head start in the

accumulation of knowledge may increase its lead over time.6 However, as shown by e.g.

Scherer (1982), and Bernstein and Nadiri (1988,1989), national borders do not have to be

5 See e.g. Coe and Helpman (1993), and Harrison (1995) for empirical analyses, and Baldwin and Forslid (1996)

for a theoretical discussion. By a new "q-theory" approach, somewhat related to the approach in this

dissertation, Baldwin and Forslid identify a number of links between openness and growth.

6 The importance of history is also typical for new economic geography models, as discussed by Krugman
t

(1991).
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decisive for the flow of information. Thus, country size should not be used uncritically when

trying to measure the size of the knowledge pool. Indeed, when considering the growth

performance in small countries like the Scandinavian or Benelux, it does not seem as if

country size is of any major importance as long as the barriers to trade are small.

2. Non-technical description

The baseline setup that will be used is the one-sector model with geometric Brownian demand

from Chapter 3, and it does not have to be spelled out again. However, the model is extended

in a simple way: We shall let the growth rate of technology (productivity) depend on the

investments in activities that are assumed to create spillovers. It was argued that the growth

rate can be embodied additively in the discount rate p. By letting a part of p be an increasing

function of growth-creating investment, growth becomes endogenous. The approach can be

illustrated by returning to the wine example.

Suppose that there is only one production factor: labor services provided by the workers (who

are also the consumers in the economy). As before, two types of irreversible investments are

necessary before the wine can be consumed. It is the division of labor between these activities

that is important with respect to growth, since the character of the two investments normally is

quite different.

Assume that one of the investments, say harvesting grapes and making the wine ("patenting"),

consists of an activity that increases the physical condition of the worker. In the other activity

(i.e., getting the wine to the consumer, or "activation") he will be more effective the better his

physical shape; however, this does not contribute to further improvements. Then it is obvious

that the equilibrium growth rate ofproductivity, or the rate at which the physical condition of

a representative worker improves, will be higher the more he is involved in the first activity.

Of course, there are decreasing returns in physical activities, so the growth rate will eventually

go to zero in this case. This may not be the case, however, if we talk about knowledge that

tends to spill over to contemporaries and future generations. If knowledge is allowed to

accumulate in this aggregate manner, the growth rate will be higher the more investments in

activities that (mainly) contribute to accumulation.
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To get a more complete picture of this, two questions need to be answered: First, which

investments are related to knowledge accumulation? Second, is it absolute. or relative

investments that matter?

As far as the first question is concerned, we have to consider the conceptual difference

between the two investments. Normally, the patent is an investment in technology, like R&D,

which brings about a drug, a car or a computer. We may denote this by the term product

innovation. It establishes the technology for the specific product, which will also lay the basis

for future generations. In many cases, the production process by which a specific good

becomes available, will be a simpler effort. Therefore it is also reasonable to assume that the

latter activity does not contribute to knowledge accumulation in the same way as the

development of new products. There may be exceptions to this, however, so we also briefly

discuss the alternative case, in which process innovation is assumed to be the major growth-

creating activity.

The second question is related to the previous discussion on empirical and theoretical results

with respect to country size. The size of the economy will be important, since there is more

knowledge to spill over, the greater the aggregate innovation. However, since information

does not flow perfectly within an economy, and normally less perfectly the larger its size,

relative size will also matter. The conditions for spillovers between a fixed number of

innovators are probably better in a small community, where they are more likely to get in

touch by coincidence. Therefore a measure of spillover ought to be strictly concave as a

function of the size of the economy.

As already noted, what is meant by "size", is also important. With international trade,

information may accompany products across borders, and the effective size with respect to

spillovers can be far larger than the size of the country. In any case, our objective is not to

answer questions on how to define an economy or the scope of spillovers in general, so we

will put such issues aside. The model is simple and stylistic, and will be used just to highlight

some points of particular interest.
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3. Endogenous growth

Assume that growth is induced by knowledge accumulation stemming from product

innovation. Such activities are located in the patent sector, where new products are created by

some kind of R&D. What matters for growth, are the total expenditures on patents. In other

words, there exists an increasing function g = g(Atot)' where Atot is the total rate of patent

expenditures in terms oflabor, and

Let us assume for now that the consumer has no time preferences, so Po is simply a constant

exogenous rate ofproductivity growth or labor growth (or a combination). Thus, P is the total

growth rate, also acting as the effective discount rate. Since each firm is small, it will neglect

its own contribution to the growth rate. If follows that the firms will consider g and P to be

fixed, although they are really endogenous variables, so equilibrium will be given by the same

formulas as in Chapter 3.

With full employment, the total wage bill is W = wL, where w is the wage rate and L is the

size of the labor force. The wage rate is normalized to unity in all periods. Then W = L, and

costs are measured directly in terms ofworkers. The patent cost is A, and the production cost

is C, as before. In equilibrium, At:t = N' A, and from eqn. (24) in Chapter 3, we have:

(2) • L
Atot = p* .

Thus the growth rate will be higher the larger the market (L) and the greater the price variation

(the smaller fl\ The asterisk on fl refers to the fact that endogenous growth is embodied in it.

* *As also discussed in Chapter 3, we have dfl ldu < O and dfl Ida < o. Hence, increasing the

*drift or uncertainty of demand at the firm level decreases fl , and increases the share of patents

to total investments. The reason is that the value of a patent will increase if p* decreases, so

the firms will wait longer before activating. This saves production costs due to growth, there

is room for a larger number of firms, and growth is encouraged.

89



Chanter A. Endogenous Growth

It can also be shown that df/fdp > 0, which implies that exogenous growth discourages

endogenous growth.

In general, the relationships that demonstrate these conclusions are complex, as endogenous

growth is embodied in p. More insight can be gained by looking at a simple example.

Assume that the spillovers are characterized as follows:

(3) g(Atot) = rAtot .

Here y (> O) is a measure of knowledge accumulation, or more indirectly: a productivity

parameter in researching. Referring to the wine example once again, suppose that a fixed

number ofworkers learn so much and exchange so much information each year, that the total

amount ofwine that can be produced increases by one percent per year. After two years, they

have learned enough to increase production by approximately two percent. Eqn. (3) says that

the same growth ofproductivity is obtained in one year by doubling the number ofworkers.

In the previous section we argued that spillover effects are probably strictly concave in the

size of the economy. Eqn. (3) breaks this assumption by assuming that they are linear. This

is done partly to make things simple, and partly due to the lack of data that could bring about

a more realistic form of the g-function. In any case, this representation can be considered a

first-order approximation in equilibrium for an appropriate choice of Po and y.

Uncertainty is not important for the qualitative conclusions with respect to other parameters,

so we set a = ° to obtain an analytical solution. (See Appendix A for a discussion of

uncertainty.) We then have p* = p. / Il, where p* is the equilibrium effective discount rate.

From eqns. (1), (2) and (3), the following relationship is obtained:

This growth rate is always positive, but it is smaller than what might be expected. According

to eqn. (3), g increases linearly in Atat and y. However, the equilibrium rate increases only

with the square root of L and y. This is because some of the spillover gains are used to
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increase present consumption. The level of consumption is lifted at the cost of growth of

consumption.

From eqn. (4) it can be shown that dg*/dpo < O. This confirms the statement that the

endogenous growth rate decreases by increasing the exogenous growth rate.

The results can also be related to standard measures of saving and investment: A patent

(investment A) does not contribute to present consumption. It is an investment for the future.

On the other hand, investment C represents production that is directly related to current

consumption, so the ratio of patents to total investments can be regarded as a savings rate. Let

us denote this ratio by s. From Chapter 3, eqn. (23), it is found to be:

(5) A 1
s= =

A+Q*C p*'

Eqn. (5) holds regardless of whether growth is endogenous or exogenous. However, in any

*case, s should be considered an endogenous variable, and we have three interpretations for fl .
At first sight, it is a measure of variation analogous to a static measure of product

differentiation. As in static models, it shows up as an inverse measure of scale economies in

equilibrium. In addition, it is also an inverse measure of saving in this model. With

spillovers, it follows that more growth is obtained the larger the savings rate (the smaller fl\

Finally, if we set L ~ 1, the calculations above also apply to a setting where only relative

investments in growth-creating activities matter.

4. Extensions

General comments

The model in the previous section can be extended along the same lines as in Chapter 3. A

second, homogeneous good with no dynamic properties can be included, and the definition of

a firm can be extended. Instead of assuming a "one-shot game" where the firm disappears

immediately after its patent has been activated, we can interpret C as an investment in

production capacity that makes the firm into an operating factory.
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Chapter 3 also discussed extensions where f3was endogenized via the patent cost A, assuming

that future revenues could be raised by increasing A. The effectiveness was measured by the

elasticity of f3with respect to A. This extension also applies to endogenous growth. Then the

equilibrium p* becomes a result of two opposing forces: By increasing A, p* decreases as

each firm observes that its effective demand increases. (This can happen either as the drift f.1.

or the volatility O" of the firm's demand increases or as its effective discount rate p decreases.)

At the same time, p* increases at an aggregate level, as all firms contribute to increase the

aggregate growth rate (g) by a small amount each.

Process innovation

We have consistently assumed that growth arises from patents, as this is the most easy to

justify. However, it does not always have to be the case. It could be that a patent takes the

form of a simple ancillary investment like advertising, while growth may stem from process

innovation. This can be illustrated by the 'just-in-time" concept that was introduced in the car

industry I 0-15 years ago, where, apparently, there was much learning in production activities

which contributed to aggregate growth of productivity/ New techniques were quickly

adopted by other firms in the industry as well as by other industries. The concept is still being

improved, and innovations are hard to protect. This has not only implied lower production

costs; product quality and failure rates have also improved more generally. (The computer

industry discussed in Chapter 3 may be another example.)

If knowledge accumulation is a result of process innovation of this kind, most results are

reversed. Growth is still encouraged by size, but e.g. demand uncertainty will make firms

more hesitant to investing in production. The share of such investments decreases if the

uncertainty increases, and there will be less accumulation ofknowledge to induce growth.

Alternatively, if growth is a result of accumulation in both types of investments, the relative

importance determines the finaloutcome with respect to growth. If the spillover effects are

equally strong, dynamic parameters will not matter at all, and there is little more to be said.

7 See Abegglen and Stalk (1985, eh, 5).
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When considering the character of the two types of investments, it seems likely that patents

are more important for knowledge accumulation and growth, but in the last resort, this is, of

course, an empirical question.

Cost variation

So far, the analysis has been based on a model with geometric Brownian prices and constant

costs. It is straight-forward to apply a similar approach to models with fluctuating costs and a

fixed price. For example, let wine be replaced by oil (which needs millions of year to mature,

so we make no major mistake by neglecting it). The patent cost A could be interpreted as a

fixed exploration cost by which an oil reservoir is revealed, while C is a development cost that

depends on where it is located; onshore or offshore, shallow water or deep water, etc. The

exact nature is not important. The thing that matters, is that C fluctuates separately for each

firm (or oil field), and that there is a probability of reducing it below the price by waiting.

As in Chapter 3, let us assume geometric Brownian cost processes with drift -u and volatility

(J. By endogenizing the growth rate in the same manner as above, we end up with equilibrium

*conditions that are very similar to the previous ones. We just have to replace the constant f3

(> 1) by a* + 1, where a* (> O) is the positive root of eqn. (12) in Chapter 1, Note B. For

example, the expression analogous to eqn. (2) is:

(6) L
Atat =-.-.a +1

If, as before, the effect of knowledge accumulation is represented by eqn. (3), and uncertainty

is left out by setting (J= 0, the growth rate in equilibrium becomes:

(7) g. = t(~(Jl+ por +4yJLL - Po - Jl).

This is like eqn. (4) except that Po is replaced by Po + u. The qualitative results can be

summarized as follows: The endogeneous growth rate is higher the larger the economy (L),

the learning rate (JL) and the spillover parameter (y), and the smaller the exogeneous growth

rate (Po).
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Time preferences

Up until now, Po in eqn. (1) has been interpreted as a growth parameter, and time preferences

have been excluded. The reason is that all parameters that build up to the effective discount

rate then contribute to decrease the required amount of labor by waiting, and equilibrium

formulas are easily derived due to the simplicity of eqn. (2).

Referring to the discussion in Chapter 3, the algebra gets more messy if Po is a rate of time

preferences, since this affects the division of labor differently. Consider first the case with no

spillovers, and let Po be a rate of subjective time preferences instead of an exogenous growth

rate. Then the required amount of labor for activation does not go down by waiting, so the

steady state condition becomes N(A+C) = L as long as all patents are expected to be used.

The savings rate becomes s = AI(A+C) = RI(R+ 1),where R = AIC. This does not at all depend

on the demand variables (jL and 0") or time preferences (Po).

However, time preferences still playa role for endogenous growth. The more impatience, the

less the required amount of labor for activation will go down for each patent, as firms will

tend to activate earlier. For this reason the savings rate, which is positively related to the

growth rate, ought to be larger the smaller the subjective rate of time preferences. Appendix B

shows this for the deterministic case. If the spillovers are represented by eqns. (1) and (3),
*and Po denotes time preferences, equilibrium growth, g , is given implicitly by the following

equation:

As long as the model converges, it can be shown that g* in this equation increases by R.8

Hence, the initial cost share does not cancel out if the consumers are impatient: the more

8 Note that the right-hand side of eqn. (8) is the optimal discount factor, so there are two requirements for

convergence. First, the expressions on each side of the equation must be strictly positive. This requires that

Po + gO (= pO) is larger than u. Second, the same expressions cannot exceed unity, since this implies profit from

immediate activation.
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research that is needed (the larger R), the greater the spillovers and the larger the growth rate.

*It can also be shown that g is decreasing in Po, so growth is indeed discouraged by

impatience. The growth rate in this case is also increasing in p, L and r, just like when Po is

interpreted as exogenous growth.

The shape of g* as a function of R is plotted in Figure 1 for the two sets of assumptions. The
. .

straight horizontalline corresponds to eqn. (4), where g is independent of R. The lower curve

corresponds to eqn. (8), which assumes that all patents are used. As discussed in Chapter 3,

the latter holds if J.I. > t (j2. However, Chapter 3 also argued that the aggregate division of

labor between patenting and production will be closer by the two interpretations of Po if a

increases (so that J.I. > t(j2 no longer holds). Then the growth rate increases for the time

preference interpretation, as indicated by the arrows in Figure 1. Similarly, we should expect

something in between the two curves if Po were a combination of exogenous growth and time

preferences.

g
g"(exogeneous growth)

(Increasing uncertainty)
A J0 A A

R

Figure 1. Endogenous Growth Rates.

It can be shown that g* from eqn. (8) approaches g* from eqn. (4) if R approaches the limit
•with immediate activation, where Q = 1. In Figure 1, this occurs for R = R . Finally, note

that eqn. (8) collapses as expected to g' = ~lJLr for Po =O,just like eqn. (4).
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5. Final remarks

We started this chapter with a list of "empirical facts" about growth, and some typical results

obtained by new growth models. Considering the simplicity of the model, it has confirmed a

surprisingly large number of previous findings, in addition to shedding light on the

relationship between dynamic uncertainty and growth. Let us sum up the finds:

First, the growth rate will be higher the larger the economy (L). However, we also observed

endogenous effects that tend to decrease the importance of size, as some of the benefit is used

to increase present consumption instead of growth.

Second, the growth rate will be higher the larger the spillover parameter (r). This is

somewhat analogous to the Grossman and Helpman (1991, eh. 4) model with rising product

quality. They measure the step size on a "quality ladder" by a specific parameter, and find

(not surprisingly) that there is more growth the larger its value. In effect, r does the same

thing: it is an exogenous parameter that increases the gap between successive product

generations.

Third, endogenous growth is smaller the larger the exogenous growth rate. This is also a

typical result, and it is particularly interesting as far as developing countries are concerned,

since one interpretation of exogenous growth can be quantitative growth of the labor force.

Fourth, the growth rate is larger the more patient the agents, as in almost every new growth

model. However, in a sense, it can be said that time preferences are not as harmful for

endogenous growth as is exogeneous growth, since time preferences have less influence on

the division of labor between the two types of investment.

Fifth, the model can indirectly be used to argue that the growth rate will be higher the larger

the manufacturing share; i.e., the share of the economy characterized by the kind of

economies of scale that have been studied. To simplify, we did not consider more than one

sector. Ifthe economy is extended to two sectors along the lines of Chapter 3, it is clear that

the growth rate will be higher for a given total size the larger the manufacturing share. From a

statistical point of view, we also argued that the conditions for knowledge accumulation and
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accidental spillover effects are better the larger the share of innovators in the economy. If

such forces are active, the conclusion is strengthened.

Sixth, the growth rate is higher the larger the expected growth or uncertainty of demand at the

firm-level (J..l or 0'). Such parameters give rise to dynamic economies of scale. In a sense, we

obtain similar results as in new growth models with static product differentiation, saying that

growth is caused by differentiation and economies of scale.

From the latter result we can also deduce a result of importance to policy. With demand

uncertainty (O' > O) it is clear that ex post profits will differ highly although expected profits

are zero at time of entry. One matter of interest is what the government will do with firms

that make a lot of profits. If profits are heavily taxed, typically by progressive tax rates, the

firm's value ofwaiting decreases, as an unproportionately large part of the benefit is lost. The

*result in equilibrium will be the same as if fl increases: A larger share of total resources will

be used for production, and the growth rate decreases along with the savings rate. This also

fits in well with the empirical results from the introduction.
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APPENDIX A: Growth with uncertainty

To study how the growth rate in equilibrium is affected by uncertainty, let us start with the

following equations (leaving out asterisks on optimal values):

(A.l) ta2 P(P -1) + J.Lp- P = O

(A.2)

(A.3) p(AIOI) = Po + rAIol·

Eqn. (A.l) is the familiar quadratics; (A.2) and (A.3) follow from the text. By inserting (A.2)

and (A.3) into (A.l), we have:

(A.4) 'I'(p,a) == ta2 p2 (P -1) + J.Lp2- PoP - rL = O.

This third degree equation can be solved analytically, but the algebra gets terrible. Instead,

implicit differentiation gives

and

(A.6) 8-P = p2 a(p -1) .oa

Thus we have

The inequality follows as p > 1. As expected, f3 is decreasing in the uncertainty, and the

growth rate increases if the externalities are located in the patent sector. Due to the

complexity of (A.7), it seems difficult to get any further with the study of uncertainty in this

case without turning to numerical experiments.
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APPENDIX B: Growth with time preferences

If Po is interpreted as a rate of time preferences instead of an exogenous growth rate, the

steady state condition in the deterministic version of the model can be stated as follows:

The first term on the left-hand side is the rate of entry times labor requirement for each patent.

The second term contains the similar requirement for production. Since productivity grows at

rate g*, the labor requirement in case of immediate production (C) is reduced by the

exponential term, as T* is the delay. With full employment, and costs measured in terms of

labor, the two terms sum up to the totallabor force (L). Then total investments in patents can

be written as

(B.2)
RL g*

Alol = ·r· =
R + e-g r

where R = A/C as before, and the last transition follows from eqn. (3) in the text. The

effective discount rate is

(B.3) * *p = Po +g ,

and the equilibrium discount factor follows from Chapter 3, eqn. (23):

By combining (B.2), (B.3) and (B.4), eqn. (8) in the text is obtained.
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CHAPTERS

Agglomeration with True Externalities

1. Introduction

One of the most remarkable characteristics of this century is the development toward

concentration of human activity. For example, roughly five percent of the world's population

lived in cities with a population exceeding 100,000 at the beginning of the century, whereas

today almost fifty percent of us do. Of course, the total world population has also increased,

but that just explains a small part of this dramatic change. Among economists, the

development has brought forward a new, formal approach to the study of agglomeration. The

new theory is often called "new economic geography", although "geographical economics"

seems to be a better name. 1

Agglomeration, which in broad terms can be defined as geographical concentration that

cannot be traced directly to immobile resources, occurs at many levels. It may be

urbanization, which includes a rich variety of activities, or concentration of specific industries.

At the industry level, agglomeration seems to be particularly common for those industries that

are based on new technology, although Krugman (1991a) argues that this dimension tends to

be exaggerated. Industrialized production of textiles used to take place within just a few

regions in Britain and other parts of Europe in its early days; for a long time, most of the car

industry was localized in the Northeastern part of the United States and in Central Europe; and

the computer industry in Silicon Valley has been a popular example among currently

advanced industries.

I "Location and trade" is also a common term for this theory. See Fujita and Thisse (1996), Ottaviano and Puga

(1997), and Fujita, Krugman and Venables (1997) for surveys. A simple, yet thorough, discussion is also given

by Venables (1996).
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However, the main part of the textile production has now moved to Asian regions, the car

industry has spread to newly industrialized countries in Asia as well as to other parts of the

world, and the Silicon Valley is not as important for the computer industry as it used to be.

Nevertheless, industries continue to agglomerate even if production is established in new

locations and larger numbers. Thus, the underlying forces do not vanish.

Irreversibility is obviously important for the rise and decline of agglomerated economies, but

few models in the new economic geography literature address this issue. In particular,

dynamic uncertainty is more or less non-existent. Certainly, the existence of multiple

equilibria and the importance of history are emphasized, but not as a result of dynamic

uncertainty.

The fact that little attention has been paid to uncertainty and irreversibility becomes even

more surprising when looking at simple statistics about the geographical sustainability of

agglomeration. Dicken and Lloydd (1990:165) claim that close to 80 percent of all

manufacturing investments in the advanced nations consist of expanding existing plants.

Thus, there is not only a tendency towards agglomeration; as we all know, there are also

strong forces that tie an agglomerated economy to the particular location where it happened to

be established.

To obtain agglomeration there must be cost or demand linkages. That is, costs must decrease

or demand must increase by extending the number of firms. Such linkages can take many

forms, based on pecuniary (market) externalities or true externalities. This chapter focuses on

true externalities, while pecuniary externalities are discussed in Chapter 7.

The approach will be similar to that of Chapter 4, which had as a starting point the model

with fluctuating demand and fixed costs from Chapter 3. The effective discount rate (P) was

endogenized, assuming that growth of technology was an increasing function of aggregate

patent investments.

In the study of agglomeration that follows, models with fluctuating costs and fixed prices are

at least as interesting. Thus we will initially consider a homogeneous good, like computer

chips, that pays a fixed price per byte, but for which production costs fluctuate separately for

each generation.
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Furthermore, we will introduce externalities via the production cost process, assuming that

expected learning increases with the total level of production in the economy. The

explanation is some kind ofknowledge spillovers, but we are not concerned about the precise

description of these. One possibility is that information is exchanged through workers who

bring along their experience when changing employers'

In addition to the industry that has been mentioned, we envisage a perfectly competitive

industry with no externalities. As in Krugman (1991b) and many similar models, the

consumption shares are fixed, and we adopt the term manufacturing for the industry with

(dynamic) economies of scale, and agriculture for the other industry. Furthermore, the two

goods are produced by specific factors: workers and farmers.

The economy consists of two regions separated by a trade cost barrier that only applies to

manufactured goods. Farming is tied to the land so the farmers do not move, whereas the

workers are attracted to the region that offers the higher real wage. The main role of

agriculture is that the farmers make up a demand for manufactured goods. The objective is to

discuss the stability of an equilibrium with industrial agglomeration; i.e., a "core-periphery"

pattern with all manufacturing in one region.

The outcome will depend on the following opposing forces: If a core-periphery pattern has

been established, consumer prices will be higher in the periphery. This will make it attractive

for a new firm to "defect" by locating there instead of in the core. However, costs will also be

higher for a defecting firm, partly because the workers must be compensated for a higher cost

level in the periphery, and partly because the defecting firm will not gain from knowledge

spillovers to the same extent as firms in the core.

As in many other new economic geography models, we find that agglomeration is most stable

for large manufacturing shares and for intermediate trade costs. The relationship between

agglomeration and parameters like firm-specific uncertainty and aggregate growth is complex,

and it could be ambiguous. However, it is concluded that agglomeration is encouraged by

uncertainty and discouraged by growth for the most realistic assumptions.

2 See Midelfart Knarvik (1995) for a location model with such spillovers.
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The rest of the chapter is structured as follows: First the main equations that characterize

manufacturing are listed (Section 2). The setup will be the same as in the Chapter 3 model

because of the large-group assumption. Since each firm is small, it will consider learning t-o

be fixed in equilibrium although it is, in fact, endogenous. As in the growth model, it follows

that externalities can be characterized separately. Then we introduce trade costs (Section 3),

and a specific representation of externalities (Section 4). This completes the framework that

is required for a discussion of agglomeration (Section 5). After this discussion, some

extensions are noted (Section 6) before conclusions are drawn (Section 7).

2. The model

Agriculture needs no discussion, as it is produced by a specific factor with constant returns to

scale, and can be traded at no cost. Its price will then be the same in both regions, and we just

have to specify consumption shares for later use. As in Chapter 3, let the manufacturing

consumption share be Jr, and the agricultural share be l - Jr.

In the following, assume that all firms in manufacturing are concentrated in a core region.

The basic setup for this industry is the Chapter 3 model with patent rights and firm-specific,

geometric Brownian production costs:

(1) dC = -j.JCdt + aCdz.

The elasticity of the discount factor, which is a measure of cost variation, is then the positive

root (a) of the following quadratic equation in x:

(2) t 0-2 x(x + 1)+ ,LLX - p = O.

The expected profit for a firm contemplating entry is

(3) II = (P- C)Q- A,

where Q = (C / C)a is the expected discount factor, and P is the price in terms of Q. The

optimal cost at which to invest becomes

(4) C=__!!_P,
a+ 1
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and the optimal discount factor

(S) Q=(Rar/(a+l),where R=AIC,

follows from a free entry requirement. For simplicity, p is considered to be a fixed, exogenous

growth rate of technology. Then the equilibrium rate of entry becomes

(6) L
N= ,

A(a+ 1)

where L is the total number ofworkers, and the wage rate has been normalized to unity. For

free entry and no expected profits to apply, we must have:

(7) Ra::;1.

Later we shall also need the equilibrium price, which from previous equations can be shown

to be:

(8) p __ (,,_a_+--,-;l)_A-;-:-
- (Rar/(a+l) .

3. Trade costs

The trade barrier is represented by an ad valorem ("iceberg") trade cost for manufactured

goods. More precisely, let r be a constant between zero and one. If t= 1, there are no trade

costs, and t: = O implies they are infinite. Since prices are measured in terms of Q, we can

imagine that if a quantity (represented by the discount factor) Ql is shipped from the core,

only a fraction Q2 = IQl arrives in the periphery. It follows that the consumer price will be a

factor L'r higher in the periphery than in the core.

Alternatively, t can represent a delay from production to consumption. This is most easily

observed in the deterministic case, where Ql = e-p1j and Q2 = e-P1i• Then Tl is the delay from

patenting to production, with both activities taking place in the core. Similarly, T2 is the delay

from patenting in the core to consumption in the periphery. The difference is

T; - I; = ln(l It') I p ,which is a nonnegative constant that equals zero if t = 1, and that goes to
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infinity as t approaches zero. Hence, a constant t can be interpreted as if it takes a fixed time

to transport the good from the core to the periphery. The effect of the trade barrier is that

consumers in the periphery do not get access to products of the same quality or effective size

as those who live in the core, due to growth that is embodied in new products.

In principle, we can also think of r as a delay if there is uncertainty. This can be seen by use

of a relationship that was derived in Chapter 1 for various discount factors. Let Xo < Xl < X2

(or Xo > Xl > X2) be three states of a stochastic (price or cost) process with the familiar

properties, while Q(Xj, Xj) is the expected discount factor going from X, to J0 for the first

time. Then we have Q(XO'X2) = Q(XO'X1)· Q(XpX2). Hence, by setting Ql = Q(XO'X1),

Q2 = Q(XO'X2), and t = Q(Xp X2), it is observed that a constant r acts like a fixed discount

factor, which in due term corresponds to a fixed delay.

In this model there is no firm-specific process by which the quality of a traded product

changes. Therefore the loss rate by delayed consumption equals the growth rate p. If the

product had been wine, however, the loss might not be that large, as wine matures. Instead of

thinking of the trade cost as if an iceberg shrinks, we might speak of a "drift bottle cost",

imagining that a bottle needs time to cross an ocean but that the wine matures on the way.

4. Externalities

A simple specification of externalities follows by setting

where y(> O) is a constant, and ClOt is the aggregate rate ofproduction in terms oflabor. As N

firms each period produce their specific good at expected cost QC, we have Ctot = NQC in

equilibrium. The zero profit condition yields QC = aA by setting expected profits to zero in

(3) and using (4). Then insert the rate of entry from (6), and the expected rate of learning in

equilibrium becomes:

(10) rLa
11=--·

a+l
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This can be inserted into eqn. (2) and solved for a. For simplicity, set a = O. Then a = pi fl,

and eqn. (10) gives the following solution for fl:

(11) .u=~(Jl+4YL/P-l).

This resembles the growth rate in Chapter 4, eqn. (4). Here the equilibrium rate of learning

grows with the square root of yL although it is linear in the total rate of production. As in the

growth model, the spillovers change the allocation of investments. Because the learning rate

increases, it is optimal to wait for a lower cost before activating. This causes a shift away

from production, and the net effect on learning becomes less than linear. We also find

(12) 2
a--;====-
- Jl+4yL/ p-l'

noting that this is decreasing in yL and increasing in p. In Appendix A it is also shown that a

is decreasing in cost uncertainty (a). These characteristics are used below when discussing

how size, growth and uncertainty affect the stability of an equilibrium with agglomeration.

5. Agglomeration

Since the farmers are immobile, there will always be a demand for manufactured goods in

both regions. Thus, since zero trade costs ensure equal prices for agriculture while there are

positive trade costs in manufacturing, the latter industry will also be spread as long as the

linkages are weak. To study how strong linkages can establish a sufficient force for

agglomeration, assume, as before, that a core-periphery pattern is the initial situation. Further,

assume that a manufacturing firm must place both of its investments in the same region.

Since manufactured goods are homogeneous (like agriculture), a small firm that locates in the

periphery will only sell in its home market. Trade costs imply that those who live in the

periphery must pay a factor (lir) more for manufactured goods than those who live in the

core. Therefore the product price that the defecting firm can obtain is Pd = P / t .

Since manufactured goods represent a share Jr of total consumption, the cost level will be a

factor ilf higher in the periphery than in the core. To attract workers, the defecting firm must
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increase the wage rate accordingly. To acquire a patent, A workers will be needed for one

period, and they must be compensated for having to buy all goods in the periphery during this

period. The wage rate has been normalized to unity in the core, so it follows that the patent

cost in the periphery will be Ad = firA. Similarly, the initial production cost is Cd = r-:rC .

Spillovers are also hampered by the trade barrier, and they ought to be more hampered the

larger the barrier. A simple specification follows by letting the elasticity of the discount

factor that applies to the defecting firm be:

(13) ad = a / t .

With this specification, the defecting firm gets access to spillovers just like firms in the core if

there is no trade cost (T = 1). If the trade cost is infinite (T = O), then ad = 00. This implies no

value from waiting in the periphery, as there are no activities to learn from. Note also that the

specification yields ad = pl( TJl) in the deterministic case, implying that the learning rate in the

periphery is proportional to T, which is actually the inverse of a trade cost.

If all other firms are located in the core and gain no profits in expectation, a new firm would

locate in the periphery if its expected profit were positive. Therefore we must have

for agglomeration to be stable. Here Cd is the cost at which the defecting firm decides to

activate, and Qd is the discount factor that applies. The optimal cost follows by setting P = Pd

and a= ad in eqn. (4); i.e.,

(15) a P
Cd=-_·-·a+r t:

The optimal discount factor is Qd = (Cd / Cd )ad
, which by use of (8) and (15) gives

in equilibrium. Ifwaiting applies (Qd < 1), we find, by inserting (15) and (16) into (14), that

agglomeration is stable if Kl defined by the following expression is less than one:
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(17) ( )

(T+al!r
Kl = ,IZ'-a(l-IZ')IT a + 1 (Rar(I-T)/[T(I+a)) .

a+,

However, there is less value from waiting in the periphery than in the core, so waiting does

not have to be optimal for the defecting firm even if it applies in the core. There are two

reasons for this. First, the cost variation is smaller in the periphery than in the core (ad> a).

Second, the product price is a factor II t higher, while the cost level is only a factor i" higher.

The implied difference in value ofwaiting is reflected in the discount factors (5) and (16), as

Q<Qd'

If waiting is not optimal in the periphery (i.e., if Qd = 1), then Kl must be replaced by

K2 = (Pd - Cd) I Ad , or:

(18) K
2
= ,-(l-Jr)(a+ l)(Raral(a+l) -li R.

The overall stability can be characterized as a function K(7r, "a,R) that equals Kl if Qd < 1,

and K2 otherwise. It can be shown that Kl = , / (R a) = K2 if Qd = 1, so K is continuous, as

expected. The following properties of K are derived:

First, dKld7r < 0, implying that agglomeration becomes more likely or stable the larger the

consumption share. This is due to cost differences. The more that is spent on manufactures,

the larger the difference in cost levels, and the more a defecting firm must pay to attract

workers.

Furthermore, dK / dR > 0, which implies that agglomeration becomes more likely, the larger

the initial share of learning activities in the cost function (i.e., the smaller A relative to C).

This is an effect of dynamic economies of scale: the larger the patent cost, the less

competition.

The K-function is so complex that it is hard to track down its relationship with a. Numerical

analysis shows that it is ambiguous ifwaiting applies in the periphery (i.e., if Kl is to be used).

However, it can be shown that dK21da > 0, and it will be argued below that dKlda > ° can

also be expected in most cases. To see the economic implications, we must consider how a
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depends on its underlying variables. We find that daldp > O from eqn. (12), so agglomeration

becomes less stable, the larger the growth rate for parameter combinations where dK/da> o.

On the other hand, dald(rL) < O, so agglomeration becomes more stable the larger the

economy (L) and the higher the measure of externalities (r). Finally, it follows from Appendix

A that agglomeration also becomes more stable the greater the cost uncertainty, as dcdda « o.

The relationship from t to K is also too complex for analytical treatment. Numerical results

show that it is ambiguous. Notice first that K( t:= 1) = 1. Hence, location is irrelevant with no

trade cost. The ambiguity in a and r is seen from Figure 1, which plots four paths of K( r)

using different a-values. In all cases, Æ = 0.03, and ff = 0.4. The solid curves are most

interesting, as the a-values for the other ones are extremely small (with accordingly extreme

learning).

a=O.05 a=O.01 a=1.5 a=3.0

i'

K
I'
i.

,.
I.
I'

"..
1 .: .

.. ,I.,
".

o~.------------------~----------------~
o "

Figure 1. Stability of Agglomeration.

Agglomeration is never stable if there IS not enough learning (a = 3.0). However,

agglomeration is stable if there is more learning (a = 1.5), and trade costs are below some

specific level (r > rK). In that case agglomeration is most stable for some intermediate trade

*cost further below (z ). Similar If-shaped relationships are found in other models, like

Krugman (1991 b), and Krugman and Venables (1996), which are discussed in more detail in

Chapter 7.
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In the cited references, agglomeration is always stable if scale economies are very large. In

this model agglomeration is never stable if the trade cost is sufficiently high. This can be

observed by inspecting (16) and (18). The right-hand side of (16) approaches infinity as 'f

approaches zero, implying that waiting never applies in the periphery if the trade cost is very

high. However, K2 - which is the proper function to use in that case - also approaches infinity

as r approaches zero, so K is definitely larger than one for t sufficiently small.

Subtle effects arise if a approaches zero, as shown by the curves for a = 0.05 and a = 0.01.

This follows from the fact that the optimal discount factor (5) is U-shaped as a function of a.

The underlying reason is as follows: If a is fairly large, e.g. as the uncertainty or the expected

learning rate is small, the discount factor decreases by decreasing a as it becomes optimal to

wait for a lower cost. However, there is a lower cost barrier at zero. If the uncertainty (or the

expected learning rate) gets extremely high, the expected increase in the speed (which is

increasing in a and f.1) down to the optimal cost dominates over increase in distance. Then the

discount factor rises again. In this model, such effects shift the allocation of investments

towards production, with corresponding implications for externalities and stability of

agglomeration.

If a = 0.05, agglomeration becomes stable for intermediate trade costs, while being unstable

for small trade costs (because the spillovers to the periphery are large enough to cope with the

core). Once again, however, agglomeration is unstable for very large trade costs.

Agglomeration is never stable if a = 0.01, and we are back to the situation as for small cost

variation (a = 3.0). However, the reason is completely different. Now there is so much

learning that firms in both regions are able to produce at very low costs. Thus the initial cost

disadvantage by locating in the periphery is compensated, and the benefit from higher prices

in the periphery dominates for any level of trade costs.

The two latter cases illustrate what may happen if assumptions are brought to the extremes,

and they do not seem to be very realistic. For example, a = 0.01 corresponds to a learning

rate that is a hundred times as large as the growth rate in the deterministic case. If similar

curve shapes did appear for much higher a-values by changing other parameters, this would
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not be a valid argument, but numerical experiments indicate that the result remains, even with

drastic changes in R and Jr.

In any case, Figure 1 supports the main conclusion from many models in the new economic

geography literature: Agglomeration is more likely for intermediate trade costs than for very

large or very small trade costs.

Finally, note that the requirement (7) implicitly defines a set of thresholds for dynamics to

matter.' For example, learning is not important enough for waiting to be optimal, even in the

core, if the economy is not large enough (i.e., if L is so small that Ra> 1). Such cases must

be studied by other tools, but agglomeration does not seem likely. By numerical experiments

it can be shown that there are similar thresholds for Jr and R. If the manufacturing share is

very small or the ratio of the patent cost to the initial production cost is very large,

agglomeration is unstable for all trade cost levels. In broad terms, externalities are not present

in a large enough part of the economy.

6. Extensions

All extensions that were discussed in Chapter 3 and Chapter 4 also seem to apply to this

model: The firm can be interpreted as an infinite-lived factory, a Poisson "death" process for

operating factories might be included, the patent cost and the growth rate can be endogenized

etc. Most of these extensions are more or less straight-forward to develop, so we restrict to a

few that are of particular interest.

Time preferences

As discussed in previous chapters, p can be defined as a subjective rate of time preferences

instead of a growth rate. This changes the steady-stated condition from N(A+QC) = L to

N(A+C) = L as long as all patents are expected to be used. If externalities are characterized by

3 Such minimum levels are also common in new growth models; see e.g. Grossman and Helpman (1991).
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eqn. (9), totallearning-creating investment in steady-state becomes Ctot = yNC. The relations

that leu up to eqn. (11), now yield:

(19) - 'L( a Ju= y.. (Rar/(a+l) + a .

The equilibrium elasticity (a) is found by inserting this into eqn. (2), and it can be shown that

the qualitative relationship between a and its underlying variables is the same as before.

The first term in the denominator of (19) is the discount factor (5), which is less than one if

waiting applies. In the limit with Q = 1, eqn. (19) coincides with eqn. (10), and all

equilibrium formulas will be the same as if p were a growth rate.

Chapter 3 concluded that all patents will be used with probability one as long as

f..l + t a? > O. Thus, if f..l is negative and the uncertainty is not large enough for this to hold,

eqn. (19) is no longer valid. As this case does not seem very interesting, we do not pursue it

any further.

Alternative characterizations of externalities

The behaviour of the model does not depend much on the specific characterization of

externalities. To illustrate this, let (9) be replaced by

(20) (C ) .,clot
f.1 101 = f.1max • ,f' 1 '

{'-'tot +

where J.lmax is the maximum expected learning rate. A similar exercise as in Section 4 ends up

with the following learning rate in the deterministic case:

It can be shown that a also in this case decreases in y and L, and increases in p. It also

decreases in J.lmax' Thus, the qualitative results are not changed by the new specification.
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More surprisingly, neither does the behaviour of the model depend highlyon where the

spillovers are located. If j.1 is a function of aggregate patent investments, like j.1 = yAtol, eqn.

(6) yields

(22) Jf=yL/(a+1)

in equilibrium. As a = piu, this also gives Jf= yL- p, and:

(23) a=---
yLIp-l

It follows that a is decreasing in (yL) and increasing in p. As shown in Appendix B, it is also

decreasing in uncertainty (0-). Hence, as long as a is not extremely small, agglomeration will

be more stable the larger the economy or the manufacturing consumption share, and the

higher the uncertainty. The fact that uncertainty encourages agglomeration in both cases can

be explained as follows:

If learning stems from patenting (A), then the expected production cost (QC) at the firm level

decreases by uncertainty for two reasons (as long as a is not very small): First, a smaller

production cost would be more like ly even with no spillovers. This gives room for a larger

number of firms, and with spillovers we get an additional boost downwards as more patents

increase the learning rate. Total spillovers as well as economies of scale increase, and

agglomeration becomes more stable.

If learning originates from production (C), the forces arising from increased uncertainty are

opposing. A smaller production cost becomes more likely at the firm level, so aggregate

production and therefore also the total amount of spillovers, decrease. However, more

uncertainty also gives more dynamic economies of scale, which encourage agglomeration.

The latter effect dominates for the most realistic a-values.

Price variation

The same approach as above can be applied to the alternative models with geometric

Brownian prices and fixed costs. In this case, spillovers from R&D could be represented by

the expected rate of quality improvements for existing products or patents (also denoted by j.1).
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It seems likely that this kind of spillovers will be hampered by trade barriers somewhat

similar to cost spillovers.

Hence, starting with a core-periphery pattern, one can use exactly the same procedures as

above to describe costs and benefits for a defecting firm. The only difference is that the

representation of spillovers losses (13) ought to be replaced by fld = fl / t . Here fl, which is

the familiar positive root of eqn. (18) in Chapter 3, is the demand elasticity applying to firms

in the core, while fld applies to the defecting firm. Ifwaiting is optimal in the periphery, it can

be shown by similar arguments as in Section 5, that agglomeration is stable if

(24)
( r:K = l-p(l-7r)/r R(l-r)/r _:;fl_-_'....:,___

I ' (p _ 1YP-I)/r

is less than one. Ifwaiting does not apply in the periphery, agglomeration is stable if

is less than one. The final criterion K(7r, "P,R) that arises by joining Kl and K2 correctly,

have most characteristics in common with K(1l', r,a,R), just replacing a + 1 by fl, and R by

R. For example, dK / dst <O and dK / dR <O. Note also that K2 equals K2 if fl = a + 1, so

there is not much of a difference if waiting does not apply in the periphery.

However, Kl and Kl are quite different when evaluated as functions of a and p, respectively.
This is due to the discount factor. As noted above, the optimal discount factor in the model

with cost variation is U-shaped in a. The optimal discount factor in case of price variation is

R(f3 - 1), which is strictly increasing in fl. The reason is that there is no upper price barrier

similar to the cost barrier at zero.

From an analytical point of view, the model with price variation is more appealing than the

model with cost variation because of this difference. It can be shown that Kl (like K2) is

strictly increasing in fl. This also affects the limiting behaviour of K(7r, "fl,R) when p ~ 1.

For example, the overall shape of K as a function of r will be like the rightmost curve in

Figure 1 if fl = 4 , R = 0.03 and 7r = 0.4. (This is comparable with a = 3 in the previous
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model). Similarly, the shape will be like the curve for a = 1.5 if fl is reduced to 2.5. Most

interestingly, however, nothing like the two dotted curves appears by decreasing fl further
down towards unity. The U-shape just get wider and deeper, implying that agglomeration

stabilizes for an increasingly larger trade cost (smaller z).

Thus, if externalities arise from the demand side, agglomeration always becomes more likely

by increasing the uncertainty or expected growth of demand (rr or Jf,). Similarly, it always

becomes less likely the less patient the agents and the larger the growth rate (P).

Intuitively, these results strengthen the conclusion that the dotted curves in Figure 1 depict

exceptional cases. One might say that they reflect the lack of realism in using a geometric

Brownian cost process if the uncertainty (or the expected learning rate) is very large. A

process with mean-reversion seems more realistic to reflect large uncertainty in such cases.

7. Final remarks

This chapter has addressed the question of agglomeration and trade in a setting with

externalities that contribute to learning. The results resemble those of static models, in

particular with respect to trade costs, as we found that agglomeration is more likely with

intermediate trade costs. By and large, agglomeration is also more likely the greater the

economies of scale.

The effect of the dynamic parameters ofinterest was shown to be quite complex. However, if

we disregard some unrealistic parameter combinations in the model with cost variation, the

results are clear: Firm-specific uncertainty makes agglomeration more likely. Agglomeration

is also encouraged by increasing the size of the economy or the manufacturing share, as long

as learning is positively related to size. On the other hand, agglomeration is discouraged by

growth and time preferences.

As in previous chapters, specific combinations of parameters were required for convergence.

If the dynamic effects are not strong, there may not be enough value from waiting for an

equilibrium with free entry and zero profits in expectation. This is an interesting topic for

further research, that seems to need some kind of oligopoly models.
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APPENDIX A: Cost uncertainty and spillovers from production

To determine the elasticity a ifthere is cost uncertainty, and spillovers stem from production,

we must solve the third-degree equation that appears by inserting fl in eqn. (10) into eqn. (2):

The analytical solution is messy, but differentiation gives

and

(A.3)

Thus we have

da gp/Ba
aa4+2aa3+aa2 O

a2a3+(a2+rL)a2+p < ,
da(A.4) ------

since all terms are positive for positive roots of a.

APPENDIX B: Cost uncertainty and spillovers from patenting
A slightly different third-degree equation than in Appendix A appears if learning stems from

patent investments as opposed to production. By inserting eqn. (23) into eqn. (2), we find:

Differentiation yields

(B.2)

and

(B.3)

and thus:

(B.4)
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CHAPTER6

Product Differentiation

1. Introduction

In static modelling there is a close link between economies of scale and product

differentiation. The Dixit-Stiglitz (1977) modell, which describes this relationship in a

general equilibrium framework, has become a standard model in new trade and growth theory

as well as in new economic geography.' While the first models of this kind introduced

differentiation from the demand side, assuming that the consumers have a preference for

variation, Ethier (1982) introduced it from the cost side, assuming that production of a

homogeneous good is based on a set of intermediates produced under economies of scale.

The equilibrium models that have been discussed in previous chapters share many

characteristics with static models based on product differentiation. Various measures, quite

similar to static measures of product differentiation, were also used to describe the fact that

costs or demand for specific goods may change over time. Nevertheless, the goods have been

perfect substitutes in a static sense, so the dissertation so far has really been a story about

homogeneous goods.

The objective of this chapter is to extend the methodology in a way that brings about a true

dynamic interpretation of the Dixit-Stiglitz model with constant elasticities. The most

important equilibrium formulas will coincide with those of the static model.

l See also Spence (1976).

2 See Krugman (1990), Grossman (1991), and Grossman and Helpman (1991) for a number of path-breaking

models in trade and growth theory. Fujita and Thisse (1996), and Ottaviano and Puga (1997) survey the

somewhat related geography literature, which mainly sterns from the 1990's.

123



Chanter 6. Product DifferentiatiQn

The Dixit-Stiglitz model is characterized by its structure of preferences. The preference for

variation in differentiated goods can be expressed in compact form by a utility function

U(q) = Nq(b-l)/b. Here N is the number of categories, q is the quantity in each one, and b (> 1)

is a constant. It follows that the consumer will be better off the larger the number of

categories over which he can spread a fixed total consumption qtOt" Then the amount of each

category is q = qtot IN, and the utility becomes U(N) = NlIbq~-I)/b. This is increasing in N as

long as b is finite.

The constant b is a measure of product differentiation. However, it does not say whether the

differences stem from the demand or the supply side; i.e., whether it is the consumer who has

a fine taste or whether the goods are different as measured by a fixed scale. Of course, this is

not important in the static model. The matter of interest is product differences as they are

perceived by the consumer. The distinction is more interesting in the dynamic setting that is

developed below, where the dynamic elasticity f3 will be a true measure of differentiation.

In Chapter 3, it was argued that f3 arises from a mixture of underlying parameters fl, a and p.

Some of these are technological, whereas some are more naturally related to taste. For

example, we could let fl > O represent the growth process of a pine tree, but as an extreme

alternative, it could also represent the satisfaction by repeated listening to a Beethoven

symphony. Similarly, p is a growth rate by one interpretation, and a rate of time preferences

byanother.

In the dynamic version of the Dixit-Stiglitz model that follows, not all interpretations of fl, a

and p that were discussed in Chapter 3 are applicable. Partly for this reason, and partly to

bring forward the main idea, most of the discussion is based on a very narrow interpretation of

these variables. For simplicity, we also leave the discussion ofuncertainty to the end.

2. A dynamic representation of differentiated goods

For a dynamic approach to be of any interest, something must change with time. The main

thing that changes in this economy is productivity. As before, labor is the only production

factor, there is a fixed endowment of it, and we denote the growth rate of productivity by a
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constant p. There are no subjective time preferences, so p is simply the rate at which a

representative worker improves in his job throughout history.

Scale economies are reflected in a minimum labor requirement for construction of specific

goods. As usual, there are two types of investment, but no maturing process applies. Thus, to

avoid confusion, let us replace the wine industry from Chapter 3 with a cake industry,

emphasizing that this example is also chosen for pedagogical reasons. Let one cake

correspond to one firm. First, all the ingredients must be mixed together. Second, the cake

must be baked and served.

The first activity requires a fixed investment similar to the patent cost in previous chapters. A

minimum number ofworkers must be employed to undertake such an effort. For example, the

details of the process may prevent one person from making more than one cake each period.

Therefore he must stay with this rate, but as his productivity improves, the size of the cake

that he can make will grow at rate p. Thus, the example assumes physical growth, although

increased quality is often a more interesting interpretation, as also noted in Chapter 3.

In the other activity, denoted by activation or production, there is no minimum level as to the

patent. If a fixed number of workers are needed to bake a new cake, productivity growth

implies that the requirement goes down ifthe cake is not put into the oven immediately.

So far, nothing has changed from the wine example, except that a maturing process applied to

the wine. For the moment, assume that cakes which are not yet baked, do not change by

getting older, and that the preferences for specific cakes are fixed.

However, in this model the consumer cares about both the quantity of each good and the

number of categories, since the cakes will not be exactly alike: some may happen to be a little

sweeter than others etc. The consumer enjoys this kind of variation, so he prefers two

different pieces of cake as opposed to one piece twice as large.

How can variation be obtained in a world like this, where the firm size is fixed and all

consumers have the same taste? By time! If the cakes that are baked (and consumed

immediately afterwards) are old and therefore small, baking will not need as many workers.

Then more workers will be involved in making new cakes. Since all investments take place at
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different times, the implications are clear: the stronger the preference for variation, the more

often the consumer will be eating cake, but the piece will be smaller each time.

If the marginal utility when increasing the quantity of a specific cake is decreasing, his

preferences are strictly concave, as required. However, the consumer is "modem" in the sense

that his preferences are updated to the prevailing level of productivity (or technology) at any

time, as discussed in Chapter 3. Thus, assume that the gain from consuming one new cake

always equals one. Figure 1 illustrates such a single-good utility function.

i
U·=1
I l

Qi
Figure l. Single-Good Utility.

In the figure, Qi is the quantity relative to one new cake (i.e., the state-of-the-art) at any time.

It is a product of two factors: The size of the whole cake is measured by the discount factor

Qi = e-PT, (~1), which takes into account the age of the cake, Ti (;:::O). In addition, the

representative consumer will not be the only one, so the share qi (:::;1) of the cake that he

receives also matters. Hence, the correct quantity to insert into the utility function becomes.'

To describe such preferences formally in a two-sector model, we will derive the dynamic

response to the demand functions that arise from a standard Dixit-Stiglitz model.

3 For example, a cake of age Ti = ln2/p yields Qi = t .If the consumer gets half of it, we have qi = t, and
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3. The dynamic Dixit-Stiglitz model

Periodic utility is expressed by a Cobb-Douglas function

(2)

where l[ is constant (O< l[ < 1). Further, H and M are consumption of homogeneous goods

and manufactured (differentiated) goods, respectively. M is aCES-aggregate

where N is the number of goods that are consumed in the particular period, b > 1 is a constant

elasticity of substitution, and Qi is consumption of each good. The utility function is like a

static one, but it expands the static definition as it applies in all periods throughout the history

for a consumer who adjusts his perception of utility to the current level of productivity. This

has been anticipated by the definition (1) that is embodied in (3). As the firm size is fixed, the

relative size, which matters for utility, decreases along with Qj. Hence, the discount factor

(which here might be called a productivity factor) establishes the updating mechanism. There

are no subjective time preferences in the traditional sense, so equilibrium will be determined

by maximizing utility each period conditional on an income constraint.

By a standard argument, the consumers will spend an income share l[ on manufactures, and

l-l[ on the homogeneous good. We get a set of demand functions for manufactured goods

where Pi is the price in terms of Qi' y is the total income rate, and G is a perfect price index:

Since N is assumed to be large, each firm can act as a monopolist facing a constant price

elasticity of demand equal to b. This is plotted in Figure 2.
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Figure 2. Demand Functions in a Dynamic Dixit-Stiglitz Model.

Contrary to a static model, the firm size is fixed, so the firm has no opportunity to scale its

production at a specific time. However, the patent fixes the size of the product, and growth

(at rate p) is embodied in new patents. For this reason, a firm that does not activate

immediately will find itself moving to the left in Figure 2, as its effective (relative) size

shrinks. The effective size of a new firm is one, so the process will start at Qi = 1, as

indicated in the figure.

As long as the properties of the goods do not change with time, we know from previous

chapters how this development will be experienced by a small, waiting firm in equilibrium: It

can act as if it faces a firm-specific price that increases at a constant rate, because this

corresponds to a constant elasticity ofthediscount factor.

Let us show this formally. At entry, we have Qi = 1, but the effective size shrinks by the

process dQi = -pQidt due to growth. The demand function in eqn. (4) can be written as

- - bQi = (P / P;), where P is regarded as constant as N is large. This yields:

dP;/dt=(dP;/dQi)·(dQi/dt)=(-P;/Qib)·(-QiP)=(p/b)p;. Hence, the firm will observe a

price that increases at rate p / b == f.1det , which is smaller than the growth rate as b > 1.

Notice that J.ldet does not describe a "magic" preference for old products. It is simply a

dynamic parameter that arises from fixed, but continuously updated, static preferences for

variation. The underlying force is not like a process that makes homogeneous trees grow.
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To a large extent, the difference between the static and the dynamic model is a matter ofwhen

the goods are consumed. In the static model this must take place instantaneously. Here,

variation is obtained by time, as a number of goods are consumed each period.

This is a quite nice story about growing demand for old products. To put it simply, a veteran

car may be popular not because it is old but because it is different. In such cases, price growth

(.udet > O) does not mean that preferences change; it is a consequence of a preference for

variation. The larger Jidet (i.e., the smaller b), the more the consumer is willing to reduce the

quantity of each good to obtain a larger number of categories. As there are no subjective time

preferences, equilibrium follows by repeating this story each period, and by requiring optimal

investment decisions, free entry, and clearing of the factor market.

The cost function of a representative firm becomes

where w is the wage rate, LA is the fixed number ofworkers required for a patent, and Le is the

similar fixed number of workers that would be needed to activate a patent immediately. Due

to growth, the labor requirement for activation decreases along with the discount factor for

each good. Notice that the firm size is one, so we might have left out the tilda on Qi in eqn.

(6). Nevertheless, we keep it just to emphasize the difference from the models with

homogeneous goods in previous chapters.

Profits are maximized if the firm charges a fixed markup price as discussed several times in

previous chapters. Leaving out firm subscripts and asterisks for optimal values, the optimal

price at which to activate is

(7) flP=-fl wu.,-1

where fl =p/ Jidet.4 Free entry is obtained by the zero profit requirement:

4 The replacement of b by fl is a matter of convention, as we assume that the firm acts according to the observed

dynamic variables, Pde! and p.
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This free entry condition is ex ante, but with no uncertainty (as assumed for the moment), ex

post profit will also be zero for all firms. By combining eqns. (7) and (8), we also find

(9) Q = R(Ø -1), where R == LAlLe.

Similar to the Chapter 3 model, Q::; 1 is required, so there cannot be too much scale

economies. Eqn. (9) shows that the age of each patent that is activated will be higher (the size

of the good relative to a newone will be smaller) the stronger the preference for variation; i.e.,

Q will be smaller the smaller fl (= b). This conforms with the intuitive arguments in the

introduction.

Further, Q in eqn. (9) does not depend on more than fl and the ratio of the two exogeneous

cost elements. In a multi-region setting with "iceberg" trade costs (see below), the allocation

of resources between the two types of investment (patenting and production) will then be

independent of the distribution of firms, so the relative number of firms will be equal to the

relative number ofworkers.

Finally, if the total labor endowment in manufacturing is LM, the steady-state condition is

N(LA + QLc)w = LMw. Using eqn. (9), this simplifies to:

(lO)

If all patents are used (which is true in this deterministic case), N is the constant rate of entry,

activation and consumption in equilibrium. As eqn. (10) shows, the number of categories will

be larger the stronger the preference for variation (i.e., the smaller /3). This also conforms

with the introductory remarks.

4. Relationship between the static and the dynamic approach

There is just one technical difference between this model and the two-sector model m

Chapter 3: The quantity measure ei ( = qi) in the utility from manufactures in the Chapter 3
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model has effectively been replaced by q?-I)lb in eqns. (1),(3). However, in both models the

firm-size is fixed at unity, so unless we have a trade context with different consumer prices,

the models will behave similarly in most respects.

Although the technical change is small, the interpretation of the new model is highly different,

as there is now a true preference for variation. The Chapter 3 model contained no gains from

scale. By increasing the size of the economy, each consumer would get a larger number of

glasses each period, but less wine in each one, so to speak. That did not make him wealthier,

because the wine was homogeneous and the total quantity each period stayed the same. This

model, however, is analogous to the static Dixit-Stiglitz model with respect to individual

welfare. Welfare increases with size because the cakes are different, and the consumers prefer

variation.

The close relationship to the static Dixit-Stiglitz model can be illustrated very simply: If Qi is

fixed at unity, all dynamic effects are removed, and the static model appears by allowing qi to

fluctuate. On the other hand, if qi is fixed at unity for a firm activating its patent, while Qi is

allowed to fluctuate downwards by postponing this investment, we get the dynamic model

with analogous preferences. Demand will be represented by isoelastic demand functions

Qi(P;), and the preference for variation is symmetric in quantity and time.

This symmetry is convenient as it implies that we do not have to be concerned about whether

market power is exploited instantaneously (by splitting a fixed quantity) or dynamically (by

waiting). Therefore the model can be treated as a static model although it is actually dynamic.

To see why, consider the options facing a forward-looking firm with a new patent; i.e., a firm

that finds itself at Qi = 1 (the start of the arrow) in Figure 1. The firm size is fixed at one, but

the firm can choose any relative quantity Qi by deciding on a particular discount factor Qi'

Furthermore, if there is more than one region, the firm can split such a quantity optimally by

selling to each ofthem, and according to the demand function (4).

But these are exactly the same options as for a firm which has paid the fixed cost in the

analogous static model. Thus, we have to get the same equilibrium conditions as well, as long

as the optimal quantity in the dynamic model is less than one; i.e., ifwaiting applies.

131



Chapter 6. Product Difjerentiation

5. Trade costs

One of the most interesting properties of the static Dixit-Stiglitz model is its ability to explain

intra-industry trade. We shall see how this can be incorporated into the dynamic setting with

trade barriers. However, start with the most simple case, assuming no trade costs. Sales are

to be split between two regions (1 and 2) populated by consumers with identical preferences.

Since activation (baking a cake) cannot be split up in time, the firm in region 1 will activate

according to the usual markup rule (7), with a corresponding discount factor QI. (Note that

the subscripts now refer to a region, not to be confused with the firm index i above.) With the

firm size fixed at unity, the total supplied relative quantity is QI = QI , and as the firm decides

on a particular Q]> total sales are split up between region 1 and 2 as follows:

Here ql is the region 1 share, and q2 = 1 - ql is the region 2 share. Thus, QII and QI2 are

relative quantity measures like QI' and the corresponding price in each region is reduced

according to eqn. (4). This gives the following total demand:

(12) Q_ +Q_ =(~I)-fJ.1lJ~+(~2)-fJ1rYz.
II 12 G G G G

I I 2 2

Here PIj is the consumer price of the region 1 good that is sold in region j. For zero trade

costs, the price indices are the same, and GI = G2. By scaling the total rate of income to one

(Yl + Y2 = 1), profits are maximized if PIl = P12, ql = y]> and q2 = Y2. This exploitation of

market power by splitting up sales is exactly as in the static model.

Two alternative ad valorem trade barriers can be introduced: Either an "iceberg" cost as in

many static Dixit-Stiglitz models, or a time cost as in Chapter 5 (where it was called a "drift

bottle cost", but that name does not apply here as there is no maturing). If, is a constant

between zero and one, t= 1 corresponds to no trade barrier, and ,= O to an infinite barrier.

If QI2 is the quantity shipped from region 1, a time barrier can be illustrated by expressing the

quantity arriving in region 2 as rQI2 = (rQl)· q2. Thus the discount factor is smaller, so the

132



Chapter 6. Product Differentiation

importing region gets the good later. Then the relative size, and thereby the effective arrived

quantity, is smaller. Iceberg costs follow by an alternative interpretation of the same

expression: rQ12 = Ql '(Z'Q2)' Then the actual arrived quantity is also smaller, but with no delay.

In any case, the demand for a region 1 good in region 2 is given by rQ12 = (~ / rG2)-/31l'.I; / G2,

where PI is the producer price. That is, only a share r of the shipped quantity arrives, which

also implies a consumer price that is a factor lir higher than the producer price. If Ql1
denotes the demand for a good from region 1 in the domestic market, total demand can be

summarized (assuming a common producer price PI) as

(13)

and similarly for a region 2 good. Thus, the firm faces an isoelastic demand curve in both

regions, so it will want to activate the patent (i.e., select the appropriate markup price)

according to the same investment rule as if only selling in the domestic market.

Notice that the effect of the trade cost is the same for both interpretations of t, although the

good does not "melt" physically by the time barrier interpretation. But how can there be a

real loss in this case? The loss arises because the good must be produced earlier. Hence,

production requires more labor than without the barrier, and there is what we may call a

dynamic productivity loss decreasing the level of welfare. This can be illustrated by thinking

of a core-periphery equilibrium with all manufacturing in one region. The firms will activate

when obtaining a fixed markup price, and at a constant rate in equilibrium. However, the

consumers in the periphery will not get access to any of these goods before later. They will

experience the same growth of real income as the consumers in the core, but lagging behind.

As noted in Chapter 5, the time lag is ln(l/r)lp, which is zero for Z' = 1, and positive for r< 1.

The time barrier interpretation may be convenient for studies of the product cycle. Iceberg

costs seem more natural in most of our applications, although one reason for this may simply

be that they are more familiar from static modelling. In any case, the result is the same by

both interpretations for a large-group equilibrium.
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6. Uncertainty

As long as the specific goods do not change in any respect by getting older, as assumed up

until now, there is a unique relationship between the presented model and the static Dixit-

Stiglitz model with constant elasticities. Below, we show that uncertainty can be included in

the dynamic setting, but that a constraint on the stochastics is necessary. The appropriate set

of firm-specific stochastic processes will be found by the same technique as when studying

linear demand and supply curves in the notes to Chapter 1.

In the deterministic case in previous sections, it was noted that the effective size of each fixed-

sized good shrinks according to the process dQj = - pQjdt. Uncertainty can be introduced by

assuming that the consumer does not perceive it this way; instead, he perceives each good as

ifit starts to contract or expand stochastically. More precisely, let the perceived process be an

independent geometric Brownian motion:

By Ito' s lemma, it follows from the demand function, eqn. (4), that the price process will also

be geometric Brownian, with drift J.L = ji / b + (b + 1)52
/ 2b2

, and volatility (J = 5 / b.

As all agents are risk neutral (and we may imagine that contracts are written when each

process starts; i.e., whenever a patent is acquired), we are looking for a price process that

yields an elasticity of the expected discount factor that equals b. To obtain this symmetry, b

must be the positive solution to the characteristic quadratic, eqn. (18) in Chapter 3. By

inserting for J.L and ø into that equation (and setting x = b), we find that eqn. (14) complies in

expectation with the fixed static preference for variation ifthe following formula holds:

(15) a2 + 71- p=o.

Hence, there are an infinite number of stochastic processes matching a constant static

elasticity. Among them is the deterministic case, where 5 = O, and ji = p.

In order to obtain this result, we had to assume that all consumers were alike. The problem

would be more complex if consumers in different regions could develop different firm-
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specific preferences; i.e., if more than one realization of the price process applied to each

good.

So long as the cost side is not affected, it seems to be a matter of interpretation whether we

consider the stochastics above to be a result ofthings that happen with the good, or whether it

is the consumer who changes his perceptions. As in the static model, the fact that counts is

how a specific good is perceived by the representative consumer, not how somebodyelse

might have looked at it.

Finally, by similar arguments as in Chapter 3, we can conclude that all equilibrium formulas

remain, except that Q becomes an expected value if it is uncertain when the markup price (7)

is reached for the first time. There is still a constant preference for variation in a large-group

sense, as the rate of entry (10) remains. However, with high uncertainty (more precisely, if

t 0'2 > 11), some patents will never be used, and the rate of activation will be lower than the

rate of entry.

7. Final remarks

When restricting to a deterministic model and a fixed growth rate of productivity, it has been

shown that the relationship between the static and the dynamic approach is unique. The taste

parameter (ildet) in the dynamic model arises as a consequence of fixed preferences for

variation, and fixed preferences for specific goods. If departing from the latter assumption, a

requirement must be put onto the stochastics. In one sense this makes the model less

appealing, but the number of alternative interpretations also increases.

It is not fair to regard this dynamic model of monopolistic competition as a generalization of

the static model. Technically, the static Dixit-Stiglitz model is obtained by reinterpreting the

cost variables, and by removing the dynamics as well as the assumption of fixed-sized firms.

Thus, the interpretation is somewhat different. The dynamic model also has more

requirements for convergence, as waiting does not always apply. Such cases, as well as

relaxing the assumption of a fixed firm size, are interesting topics for further research.
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It should be emphasized that we have applied a more narrow interpretation of the variables u,

a and p than in previous chapters. For example, it is not straight-forward to interpret p as a

rate of time preferences instead of a growth rate. A technical trick (or a more creative

interpretation than I have come up with yet) might do the job, but the problem is that the

effective size of a firm does not shrink by ageing in this case. Therefore waiting does not

bring about a larger number of products, and it becomes harder to obtain the required

symmetry between the time and quantity dimensions. On the other hand, it seems possible

that p could be interpreted as a growth rate of the labor force instead of a growth rate of

productivity, as in the Chapter 3 model (section 5). In this case, the underlying assumption

would be that a firm can not be too small relative to the size of the economy, e.g. as the

optimal scale of ancillary activities, like advertising, will be determined by the size of the

economy. If each patent requires a share LA/LM of the labor force in manufacturing, and LM

grows at rate p, then LA must increase at the same rate. Thus, we still get a stationary

equilibrium that is described by the same equations as above.

In cases where the symmetry between the time and quantity dimensions cannot be retained,

one might want to use a utility function with inner terms U, = QiP-1)/Pq}b-l)/b , where b -:/= fl.

Then b could take care of static preferences for variation, and fl take care of the dynamics.

This yields a more general model, but also one that is more difficult to use.

Although this discussion on product differentiation has focused on the isoelastie case, the

interpretation seems to apply more broadly. For example, we could have started with a single-

sector static utility function U = rUidi with variable elasticities as in Chapter 3, Appendix A.

The related demand functions correspond to the same price processes as those derived in that

appendix, but in this case, we should also expect scale effects as discussed by Krugman

(1979) and others for the analogous static model.
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CHAPTER 7

Agglomeration with Pecuniary Externalities

1. Introduction

Chapter 5 initiated a discussion of economic geography by a model with true externalities.

However, this is not the only way that agglomeration forces can appear. The new economic

geography literature may have brought more important contributions in pointing at how

agglomeration can be encouraged by forward and backward linkages arising from pecuniary

externalities. In this chapter we shall see how a pathbreaking static geography model with

pecuniary externalities can be coupled with the dynamic approach to product differentiation

that was discussed in Chapter 6. First, consider the following simple story:

Suppose that a number of workers are employed in an industry, named manufacturing, that

makes up a significant share of the total economy. Manufactured goods have many

characteristics in common, but in some respects they are also different.

Further, the economy consists of several regions separated by trade barriers. Each region may

have a share of the labor force employed in manufacturing, while the rest is occupied by some

spread activity, say farming.

If all manufacturing happened to be concentrated in one region, is it likely that new firms will

also be established there, even if the workers were not tied to the land like the farmers? That

is: will agglomeration be a stable equilibrium? Due to trade costs, the cost level will be lower

in the large market, where manufacturing is concentrated. However, consumer prices will be

higher in other markets. If manufactured goods are fairlyalike and trade costs are high, new

firms will be pulled out to the periphery by these consumer prices. The workers must be

compensated for a higher cost related to living in the periphery, but since manufactured goods

only represent a share of total consumption, the difference in prices will count more than the

cost difference that must be compensated.
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This may be different if the consumers have strong preferences for differentiated

consumption; i.e., if they are willing to pay much for getting access to a larger number of

categories of manufactures. Then there will be a lot of intra-industry trade, implying that a

firm locating in the periphery must base a large share of its sale on exports. There are two

drawbacks by locating in the periphery in such cases: High production costs and a small

domestic market. Possibly, those drawbacks may be more important than the gain from less

competition. If firms enter and leave independently, there seems to be, and there indeed is, a

possibility that manufacturing will remain concentrated for some combinations of parameters.

This is an old story. It was told by Krugman (1991) in the introduction to his "core-

periphery" model, and economic geographers told similar stories even long before. However,

a static modellike Krugman' s cannot say much about how agglomerated economies actually

rise or decline conditional on dynamic variables like growth, preference changes etc. The

presented dynamic interpretation of the Dixit-Stiglitz (1977) model can enrich the

understanding of agglomeration in this respect.

As a matter of fact, we shall be able to construct a dynamic version of Krugman's model that

shares its mathematical form. Most of the discussion will be focused on interpreting results

that can be extracted from the dynamic framework, but for completeness we spell out the

whole model first. Before doing so, it is convenient to summarize how the main assumptions

and results relate to the static model:

1. The dynamic model is based on the same static preferences as Krugman' s model at any

point in time (possibly in an expected sense). However, the model spans over an infinite

time horizon, which includes exogenous growth of productivity. The representative

consumer responds to this growth process by adjusting his perception of utility to the

current level of productivity at any time.

2. Scale economies and market power are obtained by minimum requirements for patent

investments, analogous to the fixed cost that applies in the static model.

3. All the rest of the main requirements in the static core-periphery model apply over the

entire time horizon. This includes assumptions on trade costs, factor endowments, factor

mobility etc.
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4. In broad terms, the dynamic framework brings forward a new interpretation of the core-

periphery model. This can be used to study the two types of equilibria in the model: either

a symmetric equilibrium, or one with agglomeration.

Finally, note that the static core-periphery model has been extended in a number of directions

since the original publication; see e.g. Krugman and Venables (1995), Puga (1996), Baldwin

and Forslid (1997), and Fujita, Krugman and Venables (1998). Hopefully, the analogy that is

developed below also applies to several of these extensions.

2. The model

Non-technical description

The model has two regions (1 and 2), two goods (manufactures and agriculture), and two

specific production factors (workers and farmers). The workers produce manufactured goods,

the farmers produce agricultural goods, and the total endowments of workers and farmers are

fixed. All agents are forward-looking, optimizing decision makers.

Agriculture is a homogenous, perfectly competitive good that can be traded at no cost. Half

of the farmers live in each region, and they are not allowed to move. This implies equal wage

rates in farming, and equal shares of total farmer income to each region. As in Chapter 5, the

main role of the farmers is to make up a demand for manufactured goods.

Manufactures are differentiated goods, produced by firms that undertake irreversible

investments. An infinite number of possible products exist, and a large number are produced

each period. Hence, each firm is small compared to the size of the market. The workers are

mobile, and will move - at no cost and with no delay - to the region that offers the higher real

wage.

Two investments are necessary before a manufactured good can be consumed. First, there is

an entry cost that gives the firm the exclusive right to produce a fixed quantity of the good.

This patent investment is irreversible in the sense that it locks on to a particular technology,

and fixes the size of the firm. However, the firm is free to choose when to activate the patent.

Whenever activation takes place, the good must be consumed immediately.
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The productivity of the workers grows at a fixed, exogenous rate p in both activities. There

are scale economies, as a fixed number of workers always must be hired for one period to

acquire a patent. Thus, growth of productivity is embodied linearly in new patents, since the

effective size of an old patent will be smaller than a new one, as in several previous models.

The formal setup

Preferences are fixed in the sense that the following Cobb-Douglas utility function applies in

all periods:

(1) U = Hl-1rM" .

Here H is consumption of the agricultural good, and M is a CES-aggregate in manufacturing:

(2) (
N r_ -(b-I)/b. - _ _ -pT,M - J Q dl ,where Qi = Qiq i ' and Qi = e .

In eqn. (2), b > 1 is a constant elasticity of substitution, and N is the number of manufactured

goods that are consumed each period. The quantity measure for each one, o: takes into

account the age Ti of each good that is consumed, as the age is embodied in the discount

factor Qj. Further, qj is the share of the good that each consumer gets, so we set qj = 1 when

discussing the entire market. As in Krugman's model, the number of consumers can be scaled

to one.

By letting this utility function apply in all periods, we make an important assumption about

the consumer: He is "modem", as his perception of utility is related to the current state of

productivity at any time. Utility is scaled so that the inner term in eqn. (2) equals one for a

specific product ifit is basedon a new patent (Qj= 1), and the consumer gets all ofit (qj= 1).

No subjective time preferences in the traditional sense apply, so equilibrium follows by

maximizing utility conditional on an income constraint each period, and by requiring optimal

decisions, free entry, and full employment.

By a standard argument, the consumers will spend an income share reon manufactured goods,

and l-re on agriculture each period. The demand function facing each patent holder is
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where G is a perfect price index

and Yis the rate of income, which is scaled to one each period. As in previous chapters, Pi is

the price in terms of a good based on a new patent. Since each firm is small, and since trade

costs will be of the iceberg type, it follows that a small firm can act as a monopolist with

isoelastic demand in both markets.

The firm size is fixed, but as noted above, growth is embodied linearly in new patents as a

fixed number of workers, LA' are needed for one period to acquire a patent at any time.

Similarly, Le workers would be needed for one period to activate such a patent immediately.

Hence, the fixed quantity embodied in the patent i that L A workers were able to make Ti

periods ago, is only Qi (::;;1) times as large as the quantity embodied in a new patent. On the

other hand, due to growing productivity, only Q;Le (::;;Le) workers will be needed to activate

the old patent. Thus, if w is the wage rate in manufacturing, and we define A = wLA and

C = wLo the total cost function for a firm contemplating entry in equilibrium becomes:

As in Chapter 6, we could have left out the tilda on Qi in this equation, but we keep it to

emphasize that this is a model with true product differentiation.

As also discussed in the previous chapter, a firm that does not activate a patent immediately

will observe the demand function (3) as a firm-specific price that increases at a fixed rate

p/b == f-ldet « p). Hence, instead ofbeing able to choose the relative quantity that it can supply

at a specific point in time, the firm can use the option established by the patent, to slide along

the demand curve. Then it is optimal to activate when time has brought the firm a fixed
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markup price over the cost of activation. The unit cost of activation for a small firm in

equilibrium is C from eqn. (5), so the markup price becomes

(6)

leaving out asterisks for optimal values, and following the convention of replacing the static

elasticity b with the dynamic elasticity fl = pi Jldet' as we imagine that the firm makes its

decision conditional on observed dynamic variables. As in all previous chapters, there is a

unique, decreasing relationship between the price and the discount factor, so the optimal

markup price equivalently can be stated in terms of the discount factor. Free entry follows

from the zero profit requirement

(7) (p - C)Q - A = O ,

and by inserting eqn. (6), we also get:

(8)

Finally, the rate of entry follows from the condition N(LA + QLc)w = wLM, where LMis the

total number ofworkers. This simplifies to:

(9)

In this deterministic case,N is the rate of entry, activation and consumption in equilibrium.

3. Two regions, trade costs and factor mobility

Regional demand

While agricultural goods can be freely traded, manufactured goods are exposed to ad valorem

trade costs, characteri~ed by a constant r between zero and one, where r = O implies an

infinite trade cost, and t= I implies zero trade cost. As discussed in Chapter 6, there are two

technically equivalent interpretations of r: One is the standard iceberg cost, by which a fixed
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share of a shipped quantity amves III the importing region immediately afterwards.

Alternatively, t: can reflect that it takes a fixed time to transport the good. l

Ifthe demand in region k for a typical product from region} is denoted by Qjk' and Pj denotes

the producer price, eqn. (3) yields domestic demand Qj; = pj-fJG/-I;rY;. Similarly, for the

export market where only a fraction t of the shipped quantity arrives, we have

rQjk =(Pj /r)-fJGtl1r~,) :;rk. Total demand for a representative product from region 1,

(10) Q~= P-fJGfJ-I V P-fJGfJ-I fJ-I Y-
I I I 1r.l1 + I 2 t n: 2'

Similarly, total demand for a representative region 2 good, Q2 = Q21 + Q22 , becomes:

As eqns. (lO) and (11) show, the price elasticity of demand is the same in both markets,

implying that it is optimal for two firms in different regions to activate according to the same

markup, with a corresponding discount factor. For this reason, the allocation of resources

between the two sectors, patenting and production, will be the same in both regions. It

follows that the total rate of entry and activation is independent of the distribution of firms, so

eqn. (9) also applies in this two-region setting.

Analogous to Krugman (1991), we can use this to describe two types ofequilibria: a short-run

equilibrium with an arbitrary division of the manufacturing labor force, but no labor mobility,

and a long-run equilibrium in which the workers are attracted to the region that offers the

higher real wage. The discussion below focuses on the long-run equilibrium, while the other

equilibrium is described briefly in an appendix.

IThe actual delay is InC1/r)/p; see Chapter 5.
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Stability of agglomeration

Assume that all manufacturing is gathered in a core, which we take as region 1. Below, we

determine whether this is a stable equilibrium. With all firms in region 1, the price of

manufactured goods will be a factor 11t higher in region 2, as sales are split according to one

producer price. Then G2 = G/ r, and eqn. (10) can be rewritten as

since Yl + Y2 = 1. Similarly, eqn. (11) becomes:

If new firms consistently enter in the core but gain no profit, we have (~ - Cl )QI - AI = O in

equilibrium. One of the firms would defect by choosing the periphery instead, if its profit

were positive by doing so. Thus, agglomeration will be stable as long as

The optimal price is a fixed markup over the cost of activation, which is proportional to the

wage rate. Therefore we have P2 = (w2 / WI )PI' and C2 = (w2 / WI )CI• Similarly, if the

patent of the defecting firm also has to be acquired in the periphery, we have

A2 = (w2 / wl)AI. Then it follows from eqn. (14) that agglomeration will be stable as long as

Q2 / QI < 1. Dividing (13) by (12), and inserting for P2/P), this relative demand can be

written as:

Half of the farmers live in the periphery, and the agricultural consumption share equals (1 - Jr).

Therefore ~ = t(1+ n), and Yz = t(1- n). Further, a defecting firm must attract workers to the

periphery for one period by a wage rate that is high enough. The workers qua consumers will

have to purchase all their consumption goods in the periphery during this period, but the

prices of manufactures are a factor 1/t higher in the periphery as long as all other firms are
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located in the core. This must be compensated by a higher wage rate. However, as

manufactured goods only represent a share Jr of total consumption, and the price of agriculture

is the same in both regions, it suffices to pay a wage W2 that is a factor i" higher than WI. In

the limit, this yields W2/WI = i".

Inserting these results into eqn. (15), we find that agglomeration is stable if K defined by the

following expression is less than one:

(16) K trfl{l + Jr fl-l l-Jr -<fl-l)}=r --r +--r .2 2

We always have K( r = 1) = 1; i.e., location is irrelevant with no trade cost. Furthermore, it

can be shown that K is Ll-shaped in t if fJ(1-Jr) > 1. Figure 1 shows how K typically depends

on r in this case. Agglomeration is stable ifthe trade cost is smaller than l. It is most stable

for a trade cost r* further below. (The S-curve is explained later.)

Increasing trade costs

K=l

Figure 1. Stability of Agglomeration.

If fJ( I-rr) < 1, economies of scale and the manufacturing share are so large that agglomeration

is always stable. Then K is strictly increasing in z; and K( r) ~ Oas r ~ O. (This case is not

shown in Figure 1.)
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In the static model there IS no good reason why the two types of costs should be

geographically separated. In the dynamic model, these costs represent quite different

investments. In general, they are also separated in time. Thus, we should also consider the

case where the defecting firm was allowed to acquire the patent in the core, but activated in

the periphery, as this makes defection more attractive. LA workers are needed for one period

to acquire a patent with both sets of assumptions, but if these workers could remain in the

core, they would accept a wage rate which is a factor ifr lower than in the periphery. Then we

have A2 = A1 (as opposed to A2 = ifrA1 in the calculations above), and the new boundary

follows by multiplying K by the factor T -tr , yielding:

(~7) K~ tr(P-I) {l + Jr P-I 1- Jr -(P-I)}=T --T +--T .2 2

Both ofthese alternative criteria for stability, K < 1 and K < 1, are stated by Krugman for the

analogous static model, but he only explains and discusses the first one.

The K -factor has an intuitive interpretation in the dynamic model, by considering the entry

cost in the core as an option investment that yields a return. Then K is the return from the

option to activate in the periphery relative to the return from the option to activate in the core.

Thus, if K> 1, it is optimal to defect. However, ifthe option investment must be increased by

a factor t " for the defecting firm (as entry must also take place in the periphery), but without

changing the value of the option, the relative return becomes accordingly lower, and K

appears.'

The shape of K (T) is quite similar to K( T) as in Figure 1, but the curve shifts upward, which

makes agglomeration less stable. However, there is another, more significant difference, as it

is easy to show that K(T) is always U-shaped like this. Hence, if a defecting firm is allowed

2 The analogous static model can be interpreted similarly, although we do not usually regard a fixed cost as an

option investment in a static model. At least in this case, it actually is: It gives the firm the option to increase

the price above the marginal cost.
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to split its investments, we obtain the same result as in both models in Chapter 5, where

agglomeration was never stable for a sufficiently high trade cost.

More importantly for our discussion below, it can be shown that K (and K) are increasing

functions of fl along the boundary that makes agglomeration stable; i.e., close to K = 1 (or

K = 1). This implies that agglomeration becomes less likely if fl increases. It can also be

shown that K and K are decreasing in Jr, so agglomeration becomes more likely the larger the

manufacturing share.

Stability of a symmetric equilibrium

Krugman and Venables (1995) also find the boundary for stability of the symmetric

equilibrium in the static model; i.e., where an equilibrium with half of the firms in each

region, is replaced by agglomeration. We do not derive this criterion, but it obviously applies

in the dynamic setting as well. It states that the symmetric equilibrium is stable if

(18) S = ,p-t (1+ 1Z')(,8(1 + 1Z')-1)
(l-1Z')(,8(1-1Z') -1)

is smaller than one.:' We have d.Sldn > 0, so a symmetric equilibrium becomes less likely by

increasing the manufacturing share. Furthermore, dS/dr> 0, as also shown in Figure 1. Thus,

the symmetric equilibrium is stable for a trade cost higher than l, so for trade costs between

l and rK, there are three stable equilibria: one symmetric, and two with agglomeration.

Finally, dS/dfl< 0, so spread becomes more likely if flincreases.

Actually, fl is just another symbol for the measure of product differentiation, b, so the results

above are indeed very similar to those obtained by Krugman. In this dynamic setting,

however, the preference for variation will be observed via the growth rate and the

development of prices. Before we discuss how to relate these observed variables to

agglomeration, it is appropriate to extend the model slightly by including uncertainty.

3 Referring to the discussion above, the symmetric equilibrium only applies if P._l-TC) > 1.
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Uncertainty

Uncertainty is not a part of Krugman's model, and the discussion above shows that it is not a

requirement in this model either. However, it is so simple to extend the dynamic model to a

stochastic environment that we briefly describe how it can be done, referring to Chapter 6 for

details.

In broad terms, we can allow the consumer's taste for specific products to fluctuate according

to a set of independent, geometric Brownian motions instead ofstaying fixed. For a particular

set of such taste processes, each firm will face an independent, geometric Brownian price

process where both the drift f-l « f-ldet) and the volatility a (> O) are now to be interpreted as

taste variables. Furthermore, fl (= b) becomes the positive solution to the familiar quadratics:

All equations above still apply, but the discount factor must be interpreted as an expectation.

The utility function still describes a constant preference for variation (as b is constant), but in

a large-group sense, as the taste for specific goods will change.

Iiis required that the same realization of each price process applies to all consumers. This is a

reasonable assumption in the core-periphery model, where labor mobility is a cornerstone. In

general, however, it would be interesting to allow for less than perfect correlation of firm-

specific prices in different regions, preferably with less correlation the larger the trade cost.

Sensitivity

As noted above, we have dS/dØ < 0, dK/dfl> 0, and dK / dØ> O. Thus, agglomeration is

more likely the smaller fl. The relationship to the observed variables p, f-l and a follows from

eqn. (19):

First, increasing p increases fl, so a large growth rate is related to smaller product differences

for fixed f-l and a. On the producer size, the value of holding patents decreases as a result of

rapid depreciation, and agglomeration is less likely. It is misleading, however, to say that
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growth causes spread, as u, 0', and p are functionally linked to the specific preference for

variation, characterized by the constant b. Thus, if p changes, f.l or omight adjust.

Second, increasing f.l decreases 13, as it counteracts the effect of depreciation embodied in p. It

follows that agglomeration is more likely ifthe demand for specific products tends to grow.

Third, increasing O' also decreases 13, as the probability of high prices increases. Thus,

agglomeration is positively related to firm-specific price uncertainty as well.

The limiting behaviour of 13 was discussed in Chapter 3, and does not need to be repeated.

Just note that neither uncertainty (O' > O) nor expected price growth (f.l > O) is required for

product differentiation, scale economies and agglomeration. However, f.l and O' cannot be

zero (or very close to zero) at the same time. In that case the symmetric equilibrium is stable

even for a very small trade cost, and agglomeration cannot be sustained.

The dynamics of changes

The dynamic interpretation of the core-periphery model gives a natural interpretation of

structural changes. Consider a case where the starting point is a symmetric equilibrium, and a

high trade cost. Fifty percent of the investments will then take place in each region. Then

imagine that the trade cost decreases (r increases). When t reaches the level where the

symmetric equilibrium becomes unstable, the one region that happens to get a head start will

suddenly get all the new firms. A rapid shift towards agglomeration follows.

This argument can be expanded by using the (more realistic) extension that was discussed in

Chapter 3: We can interpret a firm as an operating factory which faces a probability A of

sudden death each period. Then the expected lifetime of a firm is 11,1" so the total number of

firms in each region is NI2"A in the symmetric equilibrium. If the equilibrium becomes

unstable, it will now take a long time to reach agglomeration if A is small. Figure 2 plots a

typical pattern for the number of firms during the transition.
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Figure 2. Transition from Symmetric Equilibrium to Agglomeration.

The symmetric equilibrium breaks at time to. Thereafter old firms in both regions exit at the

same rate as new firms make entry, but all entries take place in the core. This gives a

transition towards agglomeration, at a speed which is lower the smaller Å.

It does not seem to be crucial for this argument that the trade cost reductions are unexpected

or very slow (and thus to be considered constant over the lifetime of a firm). In principle, we

can interpret t as an expected and discounted value that takes into account the downward

trend.

4. Conclusions

Alternative interpretations

In the previous sections, each production unit was interpreted as a firm. This suggests that

manufacturing is regarded as one industry consisting of a number of differentiated products.

An objection to this might be that linkages created by massive labor mobility are unrealistic,

since specific industries do not very often represent a large share of total consumption.

However, we can apply a more aggregate interpretation by which a firm represents an

industry. The total number then sums up to manufacturing as a whole, or all industries

characterized by irreversible investment and specific demand.

Moreover, Krugman and Venables (1996) develop a stability criterion exactly like the K-

factor (16), but based on a different interpretation of Jr. Up until now, Jr has been the
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manufacturing consumption share, which indirectly represents the importance of the mobility

of the workers who receive this share as income. In Krugman and Venables' alternative static

model, supply and demand linkages are created by intermediate goods, and ff represents the

share of intermediate goods in production costs. However, as they put it, in both models this

share " ...determines the importance offorward and backward linkages and thus of localized

external economies". It seems likely that an alternative interpretation of ff also exists for the

dynamic model.

Finally, an "alternative interpretation of the alternative model" is possible. That is, each

production unit could be regarded as an industry, with ff representing the overall production

share of intermediate goods from all types of manufacturing.

Final remarks

There are two main conclusions to be drawn: First, we have developed a dynamic model that

sheds light on the relationship between agglomeration and irreversible investment. Second,

the approach shows how to develop a dynamic "twin" of a typical static Dixit-Stiglitz model.

With respect to the first point, the model has brought forward two sets of insight: Some well-

known results from static modelling, like the non-monotonic relationship between trade costs

and stability of agglomeration, were confirmed in a dynamic context. In addition, several

observed dynamic variables have been related to agglomeration. To sum up, the model shows

that agglomeration is more likely if we observe:

- intermediate trade costs ( 1')

- large manufacturing shares (ff)

much firm-specific price uncertainty (0")

- large positive trends in firm-specific prices (jL)

- small growth (P)

Krugman (1991) points out that, although the elasticity of substitution in the static model "...is

a parameter of tastes rather than technology, it can be interpreted as an inverse index of

equilibrium economies of scale". As discussed in previous chapters, j3 similarly acts as an

inverse measure of dynamic economies of scale. This is also reflected in the growth rate (P),
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that tends to decrease product differences in a dynamic respect although it is not a parameter

of taste. On the producer side, it shows up as a parameter that decreases the value of patents.

Uncertainty and expected growth of demand (a and fl) show up as price parameters that

increase the value of patents; i.e., dynamic market power.

The causality in the dynamic model must be emphasized. The fundamental economic force is

the same as in the static model: The preference for variation enables production of goods

based on economies of scale. Thus we should not say that agglomeration forces are created

by firm-specific uncertainty and growth of demand, or that they are diminished by growth of

productivity. However, observed combinations ofthese variables leading to a small pindicate

a preference for variation, and agglomeration becomes more likely.

The approach can be generalized. One response could be to include operating costs, and

consider temporary exit when prices are low. This requires a discussion of the negative root

of eqn. (19). Dynamic location models with exit options are more realistic, but also more

complicated. It is unlikely that an equilibrium model could be analyzed far without turning to

simulations. To come around this, we attempt a simplified approach to entry and exit using a

firm-level model in Chapter 10. Before that, the next chapter discusses agglomeration and

endogenous growth by combining the results above with some of the results from Chapter 4.
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APPENDIX: Equilibrium with no labor mobility

Below, we derive a set of equations that characterize equilibrium if labor mobility In

manufacturing is excluded. The exposition is highly inspired by Krugman (1991).

Choose a measure of scale so that the wage rate in agriculture, as well as total income, equals

one in all periods. Then the rate of total farmer income is (1 - lr)/2 in each region, as noted in

the text. The manufacturing wage rate in region) is wj" Similarly, the number of workers is

Lj, so the total income rate in each region becomes:

(A.l) l-lr
Y. =--+w.L., i= 1,2.
l 2 l l

As also discussed in the text, the relative rate of entry in manufacturing, ~/Nh is equal to the

relative number of workers, L/Lh in equilibrium. This result can be used to find how total

income is spread, by considering the value of sales of a representative firm in each region.

The cost of activation is incurred in labor, so the optimal markup price is proportional to the

wage rate. Further, the consumer price of a typical import good relative to a domestic good is

a factor lir higher than the producer price. Thus, if the region } consumption share of a

typical product from region k is denoted by qjk, the demand functions (3) yield:

i.e., relative consumption is isoelastic in the relative wage. To obtain the expenditure on a

typical domestic good relative to an import good, this must be multiplied by the relative

consumer price, which is :

To obtain the total value of the region} rate of consumption on domestic goods relative to

import goods, we must also multiply by the relative rates of entry:

Denoting the product of the three expressions above by Zj' we find:
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The total rate of worker income in each region equals the total expenditure rate on all

manufactured goods produced there, as trade costs are embodied in the goods; thus:

The six equations in (A.l), (A.2) and (A.3) determine the six variables Wj'~' ~,j = 1,2, and

describe an equilibrium analogous to the short-run equilibrium studied by Krugman in the

static model. By the new interpretation, the transition to a long-run equilibrium with labor

mobility follows directly from the dynamic setup.
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CHAPTER8

Agglomeration and Growth

1. Introduction

This dissertation has been built on one simple observation that has proved to be important:

The analogy between a discount factor and a static quantity measure. Chapter 1 described the

analogy at the firm-level, based on a standard investment problem. The idea has been

explored in a number of directions, and the methodology does not seem to be exhausted by

the presented applications. The objective of the final part, which is initiated by this chapter, is

to indicate some extensions that can form the basis for future research.

In this chapter we discuss how it is possible to combine results by increasing the number of

endogenous variables in one particular case, just noting that a number of similar extensions

seem possible. More precisely, we will extend the core-periphery model in Chapter 7 by

endogenizing the growth rate as in Chapter 4.

It must be emphasized that the arguments in this chapter will not be rigid and formal, but

intuitive and suggestive. No clear-cut conclusions are stated. This is partly because a more

realistic description of the combined effects of agglomeration and growth would have to

consider issues that are difficult to handle. In particular, the fundamental assumption on

rational expectations can create problems. Nevertheless, some educated reasoning about the

relationship between agglomeration and endogenous growth is attempted; partly because it is

interesting in itself, and partlyas it will illustrate the potential of the approach.
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2. Agglomeration and growth

Several sets of assumptions were applied in Chapter 4, but here we shall just need the

conclusions from the setting with geometric Brownian prices, and where p is interpreted as a

growth rate that is positively related to the size of the industry.

In Chapter 4 we were not concerned about whether product differences were just a matter of

dynamics (as in Chapter 3), or whether the goods were true differentiated goods (as in

Chapter 6). However, all equilibrium formulas are the same, and the growth model obviously

applies in both cases. Thus, as long as we restrict the discussion to a uni-location economy,

the only difference relates to individual welfare. With true product differentiation, there are

two gains from increasing the size of the economy: A higher growth rate as well as more

variation for the individual consumer. Ifthe goods are homogeneous as in Chapter 3, the size

of the economy has only growth effects.

Somewhat similarly, the growth rate in the dynamic core-periphery model could be exogenous

as assumed in Chapter 7, but we might also consider it to be endogenous as in the Chapter 4

growth model. The difference is mainly that f3 becomes endogenous if p is endogenous.

However, since firms are small and hold p for fixed in any case, this does not affect their

decisions, and the same equilibrium formulas apply.

Thus, let us interpret p in the core-periphery model as an endogenous growth rate that

depends on the size of manufacturing. Further, assume that the spillovers that make up this

growth rate do not cross the border between the two regions, and that a symmetric equilibrium

has been established. Then the growth rate will be the same in both regions, but as

manufacturing in each region is fairly small, the growth rate will also be small.

If the symmetric equilibrium becomes unstable as trade costs fall, we may see that suddenly

all new firms enter in the one region that happens to get a head start. What can be expected to

happen to the growth rate? It will increase in the core region, as the size of manufacturing

increases, and, similarly, it will drop in the other region. Thus, we should expect a

development as shown in Figure 1.
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Figure 1. Growth Rates in a Transition from Symmetric Equilibrium to Agglomeration.

At time to, the symmetric equilibrium breaks, and the growth "takes off', based on

agglomeration in one of the regions. Most likely, this will happen through a process that lasts

for a long time, since firms are normallyoperating factories that are tied to specific locations

by irreversible investments.1 The rate of knowledge accumulation that follows from

agglomerated production will grow according to the speed towards complete agglomeration.

The transition will take place as firms dying in one region are replaced by new firms in the

other region. The growth rate will increase from the initial level gspn and settle (almost

asymptotically) at a higher level gagg in one of the regions.

Is this the only possible outcome? That may depend on some philosophical considerations on

how the consumers respond to increased growth. In our framework of product differentiation,

the parameters of the price processes are defined conditional on a specific growth rate (P), and

according to a specific taste for variation. If p increases due to an accidental event, a

consumer will get access to a smaller number ofproduct categories each period.' Ifhe prefers

the same number of categories as before, a parameter like Il must be adjusted upwards.

However, the growth rate also increases, so in any case the consumer will experience a

l See Chapter 3, Section 5.

2 See Chapter 7, eqn. (9). As p increases, f3will also increase, so N decreases.

161



Chapter 8. Agglomeration and Growth

different development of welfare. Hence, other parameters might happen not be adjusted

exactly like this.

In fact, if none of the parameters of the demand processes adjust (or if there is a time lag), the

new equilibrium may be undermined even before it gets established. This is most easily

observed if we apply the simple definition of the firm; i.e., a firm that disappears right after

activation. In that case a symmetric equilibrium that breaks ought to be replaced very quickly

by an equilibrium with complete agglomeration. However, in the new equilibrium the growth

rate will be higher, which means that p will also be higher. For various combinations of

parameters, we may then characterize the stability of equilibria by plotting the functions K( z)

and S( r) as in Chapter 7. This is done in Figure 2 for two values of p. The resulting function

pairs are (Kl,Sl) and (K2,S2).3

K1(t) K2(t) Sl(r) S2(r)

Increasing trade costs
I I

"

I I

..............

, I

rK1 rS1 l\rK2 rS2,* r=l

Figure 2. Instable Equilibria with Agglomeration and Growth.

Consider what will happen if the initial point is a symmetric equilibrium that corresponds to

the first parameter set (Kl,SI). This equilibrium will be stable as long as ,< ,Sl. Let the

*trade cost shift down to t e.g. by a technological shock or an unexpected political event.

3 The numbers can be stated for reference: /31 = 2.0, /32 = 2.3, and x= 0.2.
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Then the symmetric equilibrium breaks, and it should be replaced by an equilibrium with

agglomeration. However, with agglomeration the growth rate increases, which implies that fl
increases. That leads Kl and S2 to shift to K2 and S2, respectively. As observed from the

figure, agglomeration is no longer stable, and we may get a transition back to symmetry etc.

etc.

Of course, this is a stylized story. It is highly unrealistic that firms and workers will jump

back and forth in this manner. Nevertheless, the basic argument seems reasonable. The

combination of agglomeration and growth forces may create industrial production patterns

that are consistently changing, and that may be very difficult to predict. In particular, this will

be true if trade costs, consumption shares, and growth rates are changing at the same time.

3. Final remarks

The results obtained by the extended core-periphery in this chapter cannot be taken literally

due to the highly simplified assumptions. However, they indicate that growth may be induced

by agglomeration, while growth at the same time may also discourage agglomeration. Thus,

some counteracting forces seem to appear when combining agglomeration and endogenous

growth.

Like the model with pecuniary externalities that has been discussed here and in Chapter 7, the

Chapter 5 model with true externalities gave the result that agglomeration typically is

discouraged by growth. As a matter of fact, the main conclusions on agglomeration effects

for the two types of externalities seem to coincide in all respects: The higher the firm-specific

uncertainty (O") and growth of demand (J..L), the greater the dynamic economies of scale, and

the more likely is agglomeration. The more growth (P) there is, however, the less likely is

agglomeration. Furthermore, agglomeration becomes more likely in all models the larger the

consumption share on goods characterized by dynamic economies of scale (7l'). Finally, all

models confirm the well-known result that agglomeration is more likely for intermediate trade

costs.

In Chapter 3, the patent cost was endogenized in several ways, e.g. by assuming that J.l could

be increased by increasing A. The main result obtained by these extensions can also be related
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to agglomeration, as the efficiency of such efforts is measured by their effect on p. The more

effective they are, the smaller p and the greater the economies of scale. Hence, agglomeration

and possibly also growth might be encouraged, although the warnings with respect to

consumer response to increased growth apply to this argument as well.

Policy implications have barely been discussed, and this chapter may have contributed to an

explanation: In a setting with agglomeration forces, the optimal policy depends on the

specific assumptions that are made; whether there are spillovers, where they may be located,

whether the economy is close to a border of stability so that available political means have

significant effects, etc.

Nonetheless, one result seems clear in this two-region model, when combining agglomeration

and growth forces: Ifboth regions hold on to manufacturing instead of letting it agglomerate,

they are going to lose. Each region may be satisfied by being just as well off as the other one,

but both regions will suffer from a low growth rate. If one of the regions gets all

manufacturing, it will have higher wages due to trade costs, but this is just a difference in the

level of income. Even the farmers in the periphery will gain from increased growth in the

long run: they will just reach each specific level of real income a bit later than their colleagues

in the core.
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CHAPTER9

Time Differentiation

l. Introduction
The equilibrium model with finn-specific demand and constant costs in Chapter 3 was based

on homogeneous goods, although some of its characteristics are fairly similar to those of static

models with product differentiation and monopolistic competition. However, it was

concluded that intra-industry trade and gains from scale, which are typical feature of models

with monopolistic competition, will not occur. This conclusion was turned around in Chapter

6, where a minor technical change in the utility function brought about a true dynamic

interpretation of the Dixit-Stiglitz model, preserving all scale effects ofthat model.

The two models look so similar that one has to ask: Can the Chapter 3 model be adjusted and

give rise to intra-industry trade without departing from homogeneous goods? This would

yield a quite interesting case, as most trade models break one of the assumptions. There may

be trade in homogeneous goods if there is imperfect competition and entry barriers, e.g. as in

Cournot-oligopoly. There may also be trade in differentiated products with free entry as in

monopolistic competition. However, the combination of intra-industry trade in homogeneous

goods and perfect competition in the sense of free entry and zero profit is not usual.

In fact, this is partly because most trade models are static models. In a dynamic model such

trade is no! mysterious at all, and the objective of the current chapter is to describe how it can

arise. We discuss this in two steps: First, the basic arguments are presented somewhat

simplified. Then we show how the Chapter 3 model with price variation can be adjusted to

obtain the same effects in a formal equilibrium framework. Starting with the Chapter 3

model, some convexities must be introduced, but a strictly concave periodic utility function

will suffice. Since the number of goods is finite, intra-industry trade can arise as the goods

are available at different times. "Time differentiation" seems to be a proper tenn.
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2. A simplified discussion

The easiest way to demonstrate gains from intra-industry trade in homogeneous goods is by

considering a simple two-region, one-sector model with a patent cost and a production cost, as

usual. Suppose that it takes exactly one period before the patent can and must be used, like a

crop that must be harvested. Discounting and all other dynamics are neglected. Furthermore,

imagine that patenting must take place at some minimum scale, and that each region is so

small that it does not permit more than one of the two activities each period. Then patenting

and production will take place every other period in both regions. With n consumers, each

one will get a share lin of the production that period, and nothing in the other period.

If the periodic utility function is strictly concave, it is obvious that the consumers will prefer a

share l/2n every period as opposed to lin every other period. This is exactly what will happen

it trade is allowed: When there is patenting in one region there will be production in the

other, and homogeneous goods will be traded in both directions, but at different times.

With no trade cost and full symmetry between the regions, half of the production will be

traded no matter how concave the utility function. The amount of trade ought to be smaller

the larger the trade cost, and the less concave the utility function.

Uncertainty can also create gains from trade in this respect. Consider a consumer with a

periodic utility function u(x) = xu, where x is the quantity of a specific product, and a is a

positive constant less than one. Furthermore, let it be uncertain when production can take

place after the patent has been acquired. However, the goods are perfect substitutes in a static

sense; i.e., when they are consumed. Flowers may serve as an example: Two gardens with

the same type offlower may flourish at different times even ifthe bulbs have the same age.

To simplify, consider a world with just three periods, and neglect discounting. All patents are

acquired in period one, and each good matures according to an independent stochastic

process. This process is very simple: the good must be produced in one of the two remaining

periods with equal probability. Then it follows from the concave utility function (and

Jensen's inequality) that a risk-neutral consumer will prefer to make contracts with several

manufacturers of such goods if the unit price were the same.
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For example, if two firms plan to produce a quantity x each, the two lots will be available in

the same period or in different periods with equal probability. The expected utility from a

consumption right to the entire production of one firm becomes

(1) E[] la la a
I U =-x +-x =x ,

2 2

while the expected utility from a consumption right to half of the production of both firms is:

E2 is larger than E) provided a < 1. Similar formulas can be developed showing that the

consumer is even better off by spreading a fixed total volume over more contracts. The

marginal value of an extra contract decreases with the number of contracts, since the variance

in the distribution of consumption between the two periods is smaller the more contracts. I

These examples illustrate the qualitative character of the argument for gains from scale and

intra-industry trade in homogeneous goods. Below, we frame the idea in an equilibrium

context with free entry and large-group assumptions as in the Chapter 3 model with geometric

Brownian price variation.

3. A formal description

Let periodic utility be as follows:

I The gain from increasing the number of contracts can be illustrated by the function U(N) == E[u(x/N)lr-I' This

can be calculated for various Nusing the binomial distribution. Eqn. (1) yields U(I) = 1, and U(2) follows from

eqn. (2). For example, if a = 0.5, we get U(2) = 1.21, U(3) = 1.30 and U(4) = 1.34. Thus, U(N) is increasing

and concave as expected.
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Most symbols in (3) are defined as in Chapter 3, but let us go through the whole list as there

are some new ones as well: A large number of patents from previous entry times s may be

activated, and we have to integrate (ds) throughout history up to the current time t to include

all patents. As before, the rate of entry is Ns, but now it is assumed that each period (a year,

say) is divided into a large number of shorter intervals (like 365 days). We keep track not

only of the long period t at which a specific patent i from the long period s is activated, but

also the short period rni.s within t at which this occurs. There are M short periods for each

long period. For each short period, m, consumption is.integrated over the total number Ym of

goods that are consumed. As usual, we neglect discounting within each long period, and, of

course, also within each short period.

No good contributes to utility in other short periods than the one in which the patent is

activated. Therefore the Dirac functions {\s (m - mi,s) are included to ensure that the function

ofintegration is zero unless m = rni,s' As in Chapter 3, we also need functions 0i.s(t -s- 7;,s)

to remove similar gains if the long period of activation does not coincide with the current one.

The consumption of each good is Ci.s' Furthermore, a firm-specific demand process Zi,s

applies to each firm. In the following, this is described by a transformed process

Xi,s = Zi~~-l)/b for notational convenience? The argument (t - s) corresponds to the age of the

process at time t. Finally, b > 1 is a constant. This makes the utility concave in each short

period, implying a preference for spreading consumption over many such periods.

Now we make a little trick: Assume that M is very large compared with N. Then the

probability of two goods being activated in the same short period can be neglected. It follows

that Ym will be either zero or one.'

2 If Zis is geometric Brownian, as assumed further below, it can be shown by Ito's lemma that Xis is also, ,

geometric Brownian, but with a different drift and volatility.

3 Technically, this is not a strong assumption. With stochastic, firm-specific demand processes X; so no firms will

activate simultaneously even if the patents were acquired at the same time. Then the assumption causes no

trouble. Nor will there be problems if Xi,s grows at a deterministic rate. Then the firms will benefit from

acquiring patents at different times. For this reason they will also activate their patents at different times.
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Due to the c5-functions, since M is large, and since N is constant in equilibrium, the utility

function simplifies to

(4)
Nt

U = fdb-J)/b Xidi ,
/ I I

o

where X; is the state of the demand process for those patents that are activated in period t. The

major difference from the Chapter 3 model is the utility measure in terms of quantity, as c,

has been replaced by C?-I)/b. It may seem as ifthe utility is strictly concave in each good, as

with product differentiation in Chapter 6, but this is not the case. The concave utility in each

short period is just reflected in one good, since no more than one good will be consumed.

If X; is geometric Brownian and the cost of activation is constant, a fictitious aggregate utility

function can be found by similar arguments as in Chapter 3, yielding:

N

(5) U = fc?-J)/bQi(P-J)/Pdi .
o

In principle, it is possible to proceed from here by optimizing utility in two dimensions

(quantity and time). It would be nice if we could be sure that f3 = b, but can we though? As

in Chapter 6, this seems to depend on the interpretation. If p is interpreted as a growth rate

and preferences are continuously adjusted, then it is hard to see why a parameter Jldet = p/b

could not arise in just about the same manner as for differentiated products. Actually, Jldet

would not be a taste parameter for specific goods, but it would be perceived as this because no

more than one good would be available in each short period. This gives value from waiting

and markup pricing, and firm-specific uncertainty could also be included as in Chapter 6.

As observed, this model also simplifies to something similar to monopolistic competition.

However, the reason that dynamic market power is observed is new: There is no preference

for different product categories; just for smooth consumption of homogeneous goods.

The relationship between the various models can be expressed more clearly as follows: The

preferences for variation in the static model can be stated in compact form by a utility

function V(q) = Nq(b-l)/b, where b (> 1) reflects a preference for consumption of different
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products at the same time. In the Chapter 6 model, such preferences are fulfilled through

time, but the consumer has no time preferences except that his perception of utility is always

related to the current state ofproductivity. In the model that has been sketched here, the same

utility function applies, but b reflects a preference for consumption of the same product at

different times. Thus, the basic mathematical description coincides in all these models, so the

difference becomes mainly a matter of interpretation.

To conclude, we may see gains from scale and intra-industry trade even in an industry where a

large number of firms are producing homogeneous goods, simply as trade can make

consumption more smooth. In principle, agglomeration forces might also arise.

4. Final remarks

Is this a realistic model? At first sight, it does not seem quite as interesting as the previous

ones. At least I have trouble finding good empirical examples to prove that it could be

important for the understanding of phenomena like agglomeration.

However, many of its general characteristics are of interest. For example, dynamic

uncertainty is obviously important for a lot of trade in homogeneous goods. At the

international level, grain may be transported in either direction between two countries

depending on the harvest in different years. At the nationallevel in Norway, there may be

two-way trade in hydroelectric power, depending on the development of magazined water,

stochastic regional demand, time of the day etc. At the local level, those who love fresh crabs

may have to call on the fisherman who got some in his pot recently, even though there may be

a more local one, but who has no crabs to sell at the moment; thus trade costs apply.

The examples show how an initial investment (in sowing, power plants, fish pots etc.)

followed by time and uncertainty can create gains from intra-industry trade in homogeneous

goods. Essentially, they contain no news, as similar examples can be found in any standard

textbook in insurance theory. The main contribution of this chapter has been to show how

they can be modelled in an equilibrium context by use of a new approach.
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CHAPTERIO

Geographical Entry-Exit

1. Introduction

Most location decisions are at least partly irreversible. If the analysis of such decisions is to

be realistic, it must include issues like dynamic price or cost uncertainty that may affect

decisions on whether or where to invest. For location to be a relevant matter, there must also

be trade costs. In addition, some kind of scale economies are needed for activities that are not

completely tied to immobile production factors.

The equilibrium models in Chapter 3 were based on homogeneous goods, and they did not

embody economic forces that make location a matter of interest. However, later chapters have

demonstrated several extensions by which this picture changes. In Chapter 7 it was also

noted that effects from dynamic uncertainty and irreversibility should not be limited to entry

decisions. Usually there are operating costs, and firms often have other options than just

waiting or investing in one region. In particular, they may be able to produce in more than

one region, and establish or shut down plants depending on the development of dynamic

variables.

Equilibrium analysis of such issues is hard, and will not be attempted here. Instead, we shall

develop a simple firm-level model that hopefully may give some ideas for future research.

Equilibrium effects will just be addressed informally in the final section.

Furthermore, the analysis is not based on the new methodological approach that has been the

cornerstone of the thesis. It might be possible to do so, but here we stick to the standard

smooth pasting approach.

The setting is as follows: We consider a firm that is a monopolist in a static as well as a

dynamic respect, with' the exclusive right to produce and sell a specific product in any

quantity. The demand fluctuates randomly, but identically in two regions. (A symmetric

extension to an arbitrary number of regions will also be discussed.)
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An irreversible entry cost and a fixed operating cost are needed for each plant, while there

may also be a constant marginal operating cost. Thus the firm's total production costs are

minimized if it produces in just one region. However, trade barriers will also make split

production a matter of interest.

All trade barriers are lumped into a net ad valorem cost t between zero and one. If P is the

net value of sales in the domestic region (i.e., revenue less marginal operating costs), only rP

(:S; P) will be obtained from export sale. Since there is a fixed operating cost, spread

production will then be profitable if the demand for the product is very high, as in that case

the effective trade cost will be correspondingly high.

The following example shows how uncertainty of demand may transfer to fluctuating values

of sales in this respect: Assume that inverse demand is given by p =X(a-bq), where a and b

are positive constants, q is the quantity,p is the unit price, andX is the state of a firm-specific

demand process. Let marginal operating costs be zero, and exclude all kinds of stocking. The

firm will choose a scale of production for which the marginal revenue is zero; i.e., q = a/2b.

Then it obtains a net value of sales P == pq =X(i/4b), and the flow of optimum sales values

will follow from the demand process (except for the constant terms). Thus, uncertainty of

demand can be described via P, which for simplicity is denoted as a price.

If the initial situation is high demand and production in one or both regions, the firm can shut

down plants in the case of a decline. If demand rises again, it is possible to re-invest. The

objective is to study how decisions on when to establish or close production plants are

affected by various cost elements and uncertainty of demand.

The approach is highly inspired by two models from Dixit (1988,1989) - the "entry-exit"

model and the "entry-exit-scrapping" model. Following the terminology of Mossin (1968),

Dixit studies when a ship should be operated, laid-up or scrapped conditional on stochastic

operating profits and irreversible transition costs. My model has three states somewhat

parallel to those of the entry-exit-scrapping model. They correspond to the number of active

plants, as the number of plants will be either zero, one or two ifthere are two regions.

However, the system of equations will be slightly different, but easier to analyse than in

Dixit's model. The reason is that production never starts via the intermediate state in the

entry-exit-scrapping model, while it always does so in the model below. In the entry-exit-
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scrapping model, a new ship is never built unless operating profits are positive. Thus,

disregarding the time it takes to build the ship, it is always optimal to enter the market

immediately.

My modellooks more like a ladder on which the firm chooses a higher step the larger the

demand; it will not produce if demand is very low, it will produce in one region at an

intermediate level, and in both regions if demand is high. Starting from below, production

will always be initiated from one plant (i.e., the intermediate state). It turns out that the

optimal decisions can be described by two sets of solutions to the simpler entry-exit model.

This also simplifies the extension to an arbitrary number of regions.

2. The model

The economy consists of two identical regions, and the firm can establish or close production

in each of them separately. A number of cost elements are associated with each plant: First,

an entry cost A is incurred at time of construction. Second, an exit cost B is necessary to close

the plant. Both are fixed irreversible investments. Actually, we might have B < ° as the plant

can have a scrap value, but A + B > ° is required to obtain some irreversibility. There is also a

fixed operating cost c.' In addition, we might envisage a marginal operating cost. However,

we simplify as described in the introduction by assuming that the latter cost is embodied in

the net value ofsales, P, for an optimal scale ofproduction.

Ifthe firm is not producing, no costs are incurred and no revenue obtained. Nonetheless, the

firm still has a value due to the option to invest, as production can be profitable in the future.

If the firm is producing in one region, the operating cost per period is C. The similar cost is

2e iftwo plants are active; one in each region.

The firm can switch between the three alternative states of production (indexed by 0, 1 and 2)

depending on trade costs, costs of switching, and the current price P. The price is geometric

Brownian

(1) dP = JLPdt + aPdz ,

IAs in Dixit's model, we might have two operating costs - one (C) that applies when the plant is active, and a

smaller one (Co) when it is not. It can be shown that only the difference matters, so we set Co = o.
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with the familiar interpretation of variables. By a standard dynamic programming argument,

the following differential equations can be shown to hold:

(2)

(3)

(4) 1.(}2 p2V "+ "DV '-pV +2(P - C) - O2 2""'22 -.

Here Vi= V;(P) is the value of a firm in state i, and p is the discount rate. Eqn. (2) holds with

no production, eqn. (3) with production in one region, and eqn. (4) with production in two

regions. The three leftmost terms represent the homogenous part of any such equation for the

value function with geometric Brownian prices. The other terms describe the flow of profits

in each state: In state 0, there is no profit. In state 1, the profit is the net value of sales from

two regions taking into account trade costs, and less operating costs for one plant. In state 2,

there are two plants, each producing for the local market; thus there are no trade costs, but

operating costs are twice as large as with concentrated production.' The equations have the

following solutions:

Here a and f3 follow from the common homogeneous part. As in previous chapters, a is the

magnitude of the negative root, and f3 is the positive root (exceeding unity) of the

characteristic equation

(8) t(}2x(x-l)+,ux-p=O.

2 In general, optimal production and sale in each region may depend on whether production is concentrated or

spread, and the assumption that trade costs can be represented as a percentage reduction in P may be violated.

We disregard such complexities (which do not arise ifthe interpretation of P is as simple as in the introduction).
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The constants a» a2' bo and b, will be determined by value matching and smooth pasting

conditions. Two other constants, aD and b2, have been set to zero by limiting arguments

considering the value of the firm when P approaches zero in state Oand infinity in state 2.

Note the interpretation of eqns. (S-7). In eqn. (6), the first term represents the value of the

option to invest A, and get better access to the export market (if the price gets high). The

second term represents the similar value of the option to exit the market (ifthe price gets low).

The third term is the expected net value of sales by continuing concentrated production

forever, and the final term is the cost of doing so. Eqns. (S) and (7) have similar

interpretations. The value matching and smooth pasting condition are:

Between state O and state l

(9) Vo(R) = ~ (R) - A

(10) Vo'(R) = V)'(R)

(11) ~(L) = Vo(L)-B

(12) ~ ,(L) ) = Vo' (L) )

Between state l and state 2

(13) ~ (R2 ) = V2(R2 ) - A

(14) V)'(R2) = V2'(R2)

(IS) V2(L2)=~(L2)-B

(16) V2'(L2) = ~ '(Lz).

Here Ri and Li are the thresholds at which one should enter (up to) or exit (down from) state i.

This gives eight equations to determine the constants al, a2' bo, b., L» L2, R» and R2:

(17) fl -a 1+ t: R C A O-bR) +a)R) +-- )--- =
P-j.J P
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(19)

(20)

(21)

(22)

(23)

(24)

b RTfJ-l aL-a-l 1+ t: - O
- P.Ll -al l +---

P-Jl

b RDfJ-l aR-a-l 1- t: - O
- lpL\.2 -a 2 + ---

P-Jl

-b RTfJ-l _ aL-a-l 1- r - O
lp.L2 a 2 + -.

P-Jl

Here a = a2 - al> and b = bo - bl' This set of equations consists of two separate, but almost

equivalent groups. The first four equations determine b, al' LI and RI' The rest determine bl,

a, L2 and R2• Also, the two sets are identical to those of the entry-exit model, see Dixit

(1988), except for one point: The entry-exit model yields terms with l/(P-Jl) whenever the

first group has (1+r)/(p-Jl), and whenever the last group has (l-r)/(p-Jl). The transformation

brings the first system (17-20) back to the standard entry-exit model with new coefficients:

A similar transformation can be made to eliminate the (1- z) terms in the last system, and we

get the following general solutions depending on trade costs:

(25)

(26)

L (r) __ L_
l - (1 + r)'

R(r)-_R_
l - (1+ r)

L (r) __ L_
2 - (1- r) ,

R (r)=_R_
2 (1- r)
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Here L and R are solutions to the entry-exit model. As for that model, it can be verified that

the expressions for entry and exit also hold for Marshallian assumptions, which appear in the

limit as er ~ O.

3. Sensitivity

The relationship between the thresholds (L,R) and the exogenous parameters can be studied by

some numerical experiments. Figure 1 plots how the thresholds depend on T if other values

are as in Dixit (1988): f.l = O,P = 0.05, er= 0.05, A = 288, B = O,C = 20.

75

100

p

50

25 RI

LI I
O

O I
1'0 1'=1

T

Figure 1.Entry and Exit in a Two-Region Monopoly Model with Trade Costs.

The figure also indicates how many production plants that can occur for specific combinations

of price and trade costs. As expected, concentration is more likely the smaller the trade cost,

but a unique structure of production only comes out if the price is very low or very high, or if

the trade cost is small.

The intersection between L2 and RI may be of some interest. It represents the highest trade

cost (TO) for which concentration could be unique. From (24) and (25) the following

expression for To is found:

(27)
(RI L)-1

TO = (RI L)+I'
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Thus, TO is constant for proportional parameter shifts in R and L, while it is an increasing

function of RIL.

How does Ri and Li (and TO) depend on exogenous parameters? Higher uncertainty increases

Ri and decreases Li' thereby encouraging status quo and discouraging concentration as a

unique solution. Figure 2 shows how the curves shift if er is increased from 0.05 to 0.20. To

avoid too many curves, only RI and L2 are plotted. (R2 and LI shift similarly.)
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Figure 2. Effect ofIncreased Uncertainty (0'= 0.05,0" = 0.20).

As the figure shows, higher uncertainty gives more hysteresis. The next figures plot similar

curve shifts ifthe drift (Jl) is changed from zero to 0.04 and -0.04, respectively.
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Figure 3. Effects of Expected Price Growth (J.1=0,J.1'=0.04).
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Figure 4. Effects of Expected Price Reductions (fl. = O, fl.' = -0.04).

Figures 3 and 4 indicate that TO is U-shaped in fl., and it can be shown that To(j1) reaches a

minimum value for fl. slightly smaller than zero. (The importance ofthis result is not clear.)

For the entry-exit model, Dixit (1988) derives the following approximation, which holds if (J"

and (A +B) are small:

(28) 1 (R) -(12 2 A+B )113nI. - a ·2C+P(A-B)

This can be regarded as a measure of hysteresis. The formula shows that the level of

hysteresis is increasing in (J" and B, and decreasing in C and p (as long as A > B, which is

reasonable). The relationship to A is ambiguous.' Referring to eqn. (27), the same results

apply to To, as the In-function is strictly increasing.

3 More precisely, hysteresis effects increase with A if B < Clp, and decrease with A if B > Clp.
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4. Many regions

The model can be extended quite easily to a multi-region setting if the trade cost (z) is the

same between each pair of regions. The pattern will be clear by studying the case with three

regions, where the characterizing equations are:

(29)

(30)

(31)

(32) 1.0-2 p2V "+ "PV '-pV + 3(P - C) - O2 3fU3 3 -.

Value matching and smooth pasting give the following equations to determine entry and exit:

(33)

(34)

(35)

(36)

(37)

(38)

(39)

(40)

_br.mP-I_ aR-a-1 1+2'_0
jJfil al I + -

P-Il

_bRTP-I _ aL-a-1 1+ 2, - O
jJ1JI al I + -

P-Il

- P -a 1-, C-bR2 +aR2 +--R2 ---A =0
P-Il P

- 1-, C
-bIfi. + aL;a + -- L2 - - +B = O

P-Il P
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. (41)

(42) -b RDP-I - -aR-a-1 ~ - O
2fÆ'3 a 3 + -

P-j.i

(43) P - -a 1- r C _-b2 L3 + aL3 + -- L3 - - +B - O
P-j.i P

(44) -b RrP-1 _ -aL-a-1 1- r - O
2jJL3 a 3 + -.

P-j.i

Here b = bo - bl , b = bl - b2 , a = a2 - al , and a = a3 - a2• The last two sets of equations have the

same form. They are also like eqns. (21-24), so it is immediately observed that R2 = R3, and

L2 = L3. The first group is also similar to the former system, except that terms with l-T in

eqns. (17-20) are replaced by 1-2T. With n+1 regions, we get the following general solution:

(45) L R
LI(r)=--, RI(r)=--

l+nr l+nr

(46)
L R

i = 2, Il. , n.Li(T)=-, Ri(T)=-,
1-T 1- T

A graphical illustration is like Figure l, except that RI( T) and LI( r) decrease more rapidly with

T the larger n. If n is sufficiently large, these curves can be left out and we get a picture as in

Figure 5.

p

o+-----------------------------------------~
r=I

Figure 5. Entry and Exit in a Multi-Region Monopoly Model with Trade Costs.
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Inside the hysteresis interval there could be any number of plants, but the most likely result is

either complete spread or complete concentration; i.e., either n plants or just a single one.

Other numbers will be sustained just until one of the barriers is hit. Hence, if the initial price

exceeds L/(1-I') and trade costs are decreasing continuously, then one day there will be an

abrupt transition to concentration.

To some extent, the obtained results are intuitive: With equal trade costs, it is hard to see why

production in all regions is not optimal if it is optimal to produce in more than one, and that

concentration is optimal if the trade cost is low. It is less intuitive that the thresholds that

determine whether to concentrate or spread are independent of the number of regions.

Including more regions does not change the thresholds, it just shifts the option value

coefficients (al' a2 etc.) by equal amounts. Dixit (1988) found a similar result for the entry-

exit -scrapping model.

5. Leapfrogging

The model can be used to argue how production may jump from one region to another. To

see this, assume that the initial point is concentration. If demand increases enough,

production may spread to other regions, but a reversal may cause concentration again. Which

production centre is going to survive in such cases? This will be a matter of accident. With

two regions, production will remain where it started with probability 0.5. For a larger number

of regions, the probability will be accordingly smaller.

This can be pushed even further. In principle, it can be argued that the firm in many cases

would be better off by shifting centre of production after a period with high demand and

spread production. For example, if old factories are more likely to break down by accident

than new ones, or if growth of technology is favouring new plants in other ways, the optimal

decision is to get rid of old plants first whenever spread production is no longer optimal. Thus

we may see that production jumps from one region to another due to temporary changes in

dynamic variables.

Although the idea is simple, it seems difficult to model a setting with growth of this type

correctly. The main reason is that the value functions, Vi' will depend on a number of time
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parameters. This leads to partial differential equations that can only be solved numerically."

We would have to keep track of the age of each plant separately, and there would also be

more decisions to consider. For example, under some circumstances it may be profitable to

replace old plants just because they are no longer cost-effective.

Nevertheless, ifthe disadvantage ofbeing old is significant, yet fairly small, we should expect

solutions that are close to the ones in the previous sections except for one point: Whenever the

firm shifts from spread to concentration, it will select a different region than last time.

6. Final remarks

As usual with irreversible investment, history is important also in this model. One

implication of this is that monopolistic firms with similar cost and demand characteristics may

develop highly different structures of production. Old firms stemming from periods with

large trade costs could be based on more spread production patterns than newer ones.

(Obviously, the opposite could also be the case, e.g. due to technology improvements

decreasing economies of scale, but that is a different story.)

The model predicts abrupt and more or less shockwise structural changes. Is this reasonable if

the number of regions is large? No, the approach is stylistic, and we should not expect as

extreme shifts in reality. Further, the result depends on the simplifying assumption that trade

costs are the same between every pair of regions.

It might be worth asking what the consequences could be if our firm were not a true

monopolist, but a small firm in a monopolistic competitive industry. If one such firm

concentrates production in one region, others would normally be better off by selecting a

different one. Then the industry will spread. However, ifthere are strong linkages, e.g. due to

a large intermediate sector, and especially if trade costs are fairly small, it seems likely that

agglomeration could arise as in Chapter 5 and Chapter 8, even if each firm was allowed to

split production. In that case, the decision maker in this entry-exit model could represent a

cluster.

4 See Dixit and Pindyck (1994:205-206).
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If the latter interpretation could be justified by a formal equilibrium model, it would tell a

likely story about leapfrogging: In periods with low demand, the total economy may not be

large enough for more than one cluster. If demand increases - temporarily, but probably over

several years - there could be room for a second one. Then, if the boom stops and demand

turns low again, one of the two will break down. As discussed at the firm-level, the cluster

most recently established may perfectly well have a better chance of surviving.

Hopefully, the future will prove that this and the other stories in this thesis make sense!
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