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Abstract

There is a gap between the recommendations of the theory of second

degree price discrimination and the practices of firms that target consumer

segments with varying willingness to pay with two or more distinct tar-

iffs. We present a model where consumers’ private information is single

dimensional and the allocation rule is two-dimensional. In contrast to the

established result in nonlinear pricing, we find that the per-unit price may

be non-monotonic: low-demand consumers face a two-part tariff with a

per-unit price possibly below marginal cost, and even zero, whereas high-

demand consumers face tariffs with per-unit charges above marginal cost.

On the other hand, all consumers but the one on the top of the distri-

bution, are faced with a quality restriction, quality being monotonically

increasing in type. Finally, we show that this practice increases welfare

due to increased consumption efficiency.
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1 Introduction

There is a wide gap between the recommendations one can draw from theoretical

models on second degree price discrimination and the actual practices of firms

that aim to target consumer segments with different willingness to pay with

two or more distinct tariffs. Attempting to bridge this gap, we present a model

where consumers’ private information is single dimensional and the allocation

rule is two-dimensional. Hence, we explore an extension of a simple two-part

pricing arrangement by assuming that the firm can observe a customer’s usage

of its service along more than one dimension.1 The firm offers a menu of two

part tariffs, where each tariff is characterized by a fixed fee, a uniform per

unit charge, and some quality restriction (a usage restriction, e.g., line speed or

calling circle).2 The quality restriction is intended to separate consumers with

different willingness to pay for the firm’s service, similar to the standard model

in Mussa and Rosen (1978) and Deneckere and McAfee (1996). However, rather

than assuming inelastic demand, it is assumed that consumers have elastic

demand, as in Maskin and Riley (1984) and Oi (1971).

To illustrate the general idea, consider the strategy used in broadband

pricing. Users of broadband services have very diverse needs when it comes

to Internet surfing, e-mailing, music and video downloads, and high-quality

video and audio streaming, and this reflects their demand for speed and their

intensity of usage with respect to download/upload. While surfing the Internet

is slightly faster on a high-speed connection, high-quality video streaming will

perform badly on a low-speed connection. If low demand types are served with

a higher line speed this is valuable first of all because it frees up time to explore

further content on the Internet, and to some extent consume new high speed

services. However, the propensity to use free time to explore further content

is diminishing and increased line speed will eventually be of no use. For high

demand consumers a higher line speed is valuable primarily because it gives

access to a new series of services and contents that the consumer values highly.

Hence, consumers’ willingness to pay for access speed depends partly on which

1Matthews and Moore (1987) generalize one extension of the bench-mark model by assum-

ing that consumers’ private information is single dimensional, while the firm offers contracts

with two or more attributes (quality and warranty) in addition to the monetary payment from

consumer to the firm. Garćıa (2005) extends the results in Matthews and Moore (1987).
2Two part tariffs where each tariff consists of only a fixed fee and a per usage charge have

been studied in Oi (1971); Faulhaber and Panzar (1977); Goldman, Leland and Sibley (1984);

Sharkey and Sibley (1993), and Wilson (1993, chapter 6). Mirman and Sibley (1980) study

the problem in Goldman et al. (1984) in a multiproduct firm.
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services they use and partly on their usage intensity.

Table 1 shows an example. The broadband company Tiscali charges high-

demand consumers £24.99 for broadband at 512 kbps, while low-demand con-

sumers pay £10 less for the same speed, but on different terms, since they must

stay online less than 50 hours, or download less than 1 GB, per month. Another

example that is consistent with the framework in this paper is the widespread

practice of various kinds of calling circle tariffs, for instance “Friends and Fam-

ily” tariffs.3 Table 2 lists some additional examples from telecommunications.

Table 1: Pricing of broadband, Tiscali (UK, June 2004)

Product Downstream speed Cost per month (Pounds)

Broadbandx3 150 kbps 15.99, Free usage

Broadbandx5 256 kbps 19.99, Free usage

Broadbandx10 50 Hours 512 kbps 19.99, After 50 hours 2p per minute

Broadbandx10 1 GB 512 kbps 19.99, After 1 GB 2p per Mb

Broadbandx10 Unlimited 512 kbps 24.99, Free usage

The firm’s task is to design a menu of two part tariffs with appropriate fixed

fees, per unit charges, and usage restriction, in such a way that all consumers

find it individual rational to select the tariff that is in fact intended for his/her

type, given that consumers have private information about a one dimensional

characteristic. This is another way of saying that the solution to the problem

must obey the incentive compatibility constraint and the participation con-

straint. In the early days when ISDN was the sole access technology, price per

dial-up online minute was the sole instrument in addition to the fixed fee in the

firm’s pricing decision.4 The optimization problem was simplified by imposing

the “downward adjacent” incentive compatibility constraint, together with the

participation constraint for the lowest consumer type buying the product. The

simplified problem is the solution to the full problem under the condition that

the per unit charge is decreasing over the type space (monotonicity condition).

3Subscribers are billed according to aggregate minutes of calling to a restricted set of

network subscribers. Firms’ use of calling circle tariffs has received some attention in other

areas of economics literature as well. Wang and Wen (1998) consider a duopoly model with

demand side heterogeneity, where such pricing behavior enables a new firm to enter the market

despite the presence of consumer switching costs. Laffont, Rey and Tirole (1998) examine the

effects of discriminatory pricing on the negotiated interconnection agreements between rival

network operators. In a recent publication written independently of this study, Shi (2003)

study the use of calling circle tariffs from a social network theory perspective.
4This is not the full story since many telecom firms offered internet surfing (dialling the

ISP) at different rates contingent on the consumers choice of “Internet calling plans”, i.e.,

calling plans with a single number.
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Table 2: Examples of telecommunications services pricing (June 2004)

Company/Product Service restriction Pricing arrangement

Vodafone (UK)

Perfect Fit

Lower rates anytime

Lower rates daytime

Lower rates evening/weekend

Two-part tariffs

with inclusive minutes

Orange (UK)

Your Plan

Lower rates any network anytime

Lower rates Orange-Orange anytime

Lower rates Orange-Orange off-peak

Two-part tariffs

with inclusive minutes

O2 (UK) Lower rates anytime

Lower rates daytime/evening time

Two-part tariffs

with inclusive minutes

BT (UK)

Together 1,2,3

Low rate evening/weekend

Free calls evening/weekend

Free calls anytime

Two-part tariffs

Telenor (Norway)

Friends & Family

Lower rates on calls to mobile

Lower rates on national calls

Lower rates on international calls

Two-part tariffs

Tiscali (UK)

Dial-up internet access

Unlimited surfing anytime

Unlimited surfing daytime, weekdays

Unlimited surfing daytime all week

Flat rate

Per minute

outside hours

BT Broadband

512 kbps

Less than 15 GB monthly download

Upgrade to free download

Flat rate

BT Broadband

1Mb

Less than 30 GB monthly download

Upgrade to free download

Flat rate

In our model, the firm faces a slightly different problem. While holding

on to the assumption that the private information is single dimensional (for

instance, willingness to pay for viewing content on the internet), and that the

outside option for the consumer is type-independent, we assume that consumers’

willingness to pay is correlated, not only with one, but with two variables that

are observed by the firm.5 One is a quantity variable, and the other one is

some variable related to the quality of the service (e.g., line speed). We show

that introducing an additional instrument might change the incentive constraint

5Models where the firm aims to screen consumers according to multiple dimensions of un-

certainty soon become difficult to solve, partly because the incentive compatibility conditions

are frequently not only binding between adjacent types. Discrete models with fewer incen-

tive compatibility constraints can be tractable, Jensen (2001) model a discrete version of the

present model. Rochet and Stole (2003) gives a comprehensive survey of the literature related

to multidimensional screening. Rochet and Stole (2002) and Armstrong and Vickers (2001)

relax the assumption that the reservation utility is perfectly known by the firm and introduce

stochastic participation. The principal must induce both truthful information revelation and

voluntary participation. Both find that efficient two part tariffs may emerge as an equilib-

rium. Other extensions of the bench-mark models are to introduce more than one instrument

or more than one observable variable (see Matthews and Moore (1987); Sappington (1983);

Caillaud, Guesnerie, Rey and Tirole (1988); Garćıa (2005)).
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and that we have to be more careful in using the simplified approach to profit

maximization. If consumers have a systematic incentive to understate their

private information, informational rent increases over the type space, and the

firm only has to be concerned about participation at the very lowest end of the

type space. While we show that the need to secure incentive compatibility does

not conflict with the need to ensure participation and that complete separation

between consumer types is reached, we show that the firm’s allocation rule may

not be monotonic along both dimensions. However, the allocation has to satisfy

a “weighed monotonicity constraint”. Especially, and in sharp contrast to the

existing literature, we show that the per unit charge may be below marginal cost

in the lower end of the type space, and that it may increase in some subinterval.

In this respect, our paper is close to Matthews and Moore (1987), which also

shows that the optimal contracts need not be monotonic in type. However, the

allocation in their model depend on consumers’ attitude towards risk. Garćıa

(2005) extend the non-monotonicity properties in Matthews and Moore (1987)

to a setup with quasi-linear preferences.

If we change the interpretation a little, the model can be used to analyze

nonlinear pricing and bundling in a multiproduct monopoly setting. Assum-

ing that the firm sells a very large number of products, the firm can bundle a

subset of the products and charge units within this product bundle according

to a distinct two-part tariff. In a model with unit demand, Bakos and Bryn-

jolfsson (1999) study the strategy of bundling a large number of information

goods (goods with zero or very low marginal costs of production) and selling

them for a fixed price. One of their findings is that the firm should offer a

menu of different bundles aimed at each market segment and practice price

discrimination when consumers’ tastes are positively correlated.6 Armstrong

(1999) studies optimal multiproduct nonlinear pricing when the firm offers a

very large number of products, applicable to telecommunications.7 When con-

sumers’ tastes are correlated across products, he find that a menu of two part

tariffs, each of which have prices proportional to marginal costs, can extract

6Since the literature on bundling to a large extent deals with a setting with only two

products and linear pricing, most is not relevant to our model.
7Multiproduct nonlinear pricing is also studied elsewhere. Mirman and Sibley (1980) con-

sider a multiproduct monopoly facing consumers who are differentiated by a single characteris-

tic, where the firm offers a menu of commodity bundles together with the price for the bundle.

Hence, Mirman and Sibley (1980) has similarities with our paper. Sibley and Srinagesh (1997)

explore the difference between screening the different dimensions of consumer types indepen-

dently by means of two-part tariffs and the alternative of bundling all taste parameters to

design a single two-part tariff. Miravete (2001) studies multidimensional screening where

different type components distinguish quality dimensions of products that can be aggregated.
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almost all available profits. However, Armstrong (1999) covers only the case

where all products are sold in all segments.

Section 2 presents the framework with usage pattern heterogeneity used in

this paper. Section 3 presents the results we obtain within this setting. Section

4 offers some concluding remarks.

2 A model with usage pattern heterogeneity

The market is served by a monopoly, and resale opportunities are absent.8 The

cost function is assumed to be linear, and the fixed cost is excluded from the

profit measure. There is a continuum of consumers on the demand side, having

heterogeneous and unobserved willingness to pay for the service in question.

Consumers also have heterogeneous usage patterns, and this can be observed by

the firm. Section 2.1 describes the details of the demand side of the model. If the

firm, say, for some exogenously given reason chooses not to restrict consumers’

mode of usage, the qualitative results are that the per unit price is set above

marginal cost for every consumer but the one with the highest willingness to

pay. The fixed fee increases and the per unit price decreases over the type space.

Hence, if the heterogeneity is very large the model can result in a situation where

some consumer segments face a high price cost margin, while other segments

are excluded from purchasing.

As the introduction suggests, demand side heterogeneity may come about

because different consumers use the service very differently. While some broad-

band subscribers only surf the Internet and read e-mails, services that perform

well on low line speed, others may use the connection to watch live video, which

requires high line speed to perform reasonably well. Just as call minutes to one

network node (your boyfriend, for example) is a bad substitute for call minutes

to a different network node (say, your mother), a low speed connection is a bad

substitute for a high speed connection if one wants to watch live video. If the

firm offers a tariff with a restricted line speed it restricts the consumers’ mode

of usage since they will not have access to all available content on the internet.9

8Although telecommunications is subject to competition almost all over the world, we do

not add imperfect competition to the framework. The reason for this is simply that it adds

too much complexity (see Rochet and Stole (2003) and Stole (2005)).
9Vodafone has recently introduced a tariff option under the name “At Home”. On this

tariff the usage charge is lower when the consumer make calls from the home zone (some radio

coverage area around the home or the office). Hence, consumers’ mode of usage is restricted

since full mobility is possible otherwise.
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In our framework then, consumers’ willingness to pay for the service depends

partly on their usage patterns and partly on their usage intensity.

We assume that consumers’ usage pattern is captured by a conditional dis-

tribution function H(s|θ) over a continuous variable s ∈ [0, 1], with a unimodal

probability density function h(s|θ). The usage pattern then is defined as each

consumer type’s intensity over the various modes of usage s (e.g. line speed).10

Consumers’ usage intensity depends on a single dimensional and unobserved

demand parameter θ. The conditional distribution function is derived from a

cumulative bivariate distribution H(s, θ) on s ∈ [0, 1] and θ ∈ [1, 2], with a mar-

ginal cumulative distribution F (θ). Both distributions are prior knowledge for

the firm. The assumption that high demand types have a more dispersed usage

pattern implies the further assumption that the distribution H(s|θ′) first-order

stochastically dominates the distribution H(s|θ′′) if θ′′ > θ′. That is, consumers

with higher quantity preferences do also have higher preferences for “quality”,

and usage mode is an intrinsic part of consumers’ preferences. One implica-

tion of this assumption is that a price increase will not change the cumulative

distribution across usage modes, even though a price increase will change in-

dividual consumption levels across all usage modes. This implication may be

questioned. However, there is no obvious alternative assumption – i.e., that the

usage pattern will be more concentrated or more dispersed when the per unit

charge increases.11 Appendix C describes the family of distribution function

that our conclusions are derived from.

2.1 Utility

The subutility of a consumer of type θ from consuming q units of the service at

some given usage mode s is given by the following subutility function

u(q, θ; s) = θq −
1

2h(s|θ)
q2, (1)

10For instance, a telecom firm keeps records of each subscriber’s dispersion of calls in the

network, i.e., number of call minutes to all available network nodes, and a mobile company

can observe the location a call is made from (mobile stations). The firm could also learn about

consumers’ usage patterns from market research and market surveys. A rationale behind the

difference in information held by the firm can also be that regulations prohibit the firm from

giving exclusive offers so that consumers must self select tariffs. However, it can still be a

legal pricing strategy to offer tariffs with restrictions on the mode of usage. Accordingly, we

assume that the usage pattern is specific to each individual consumer type θ, and that there

is a correlation between θ and the usage pattern.
11The same assumption is made in Bousquet and Ivaldi (1997).
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where h(s|θ) is the conditional probability distribution function of s on [0, 1]

given θ, with a conditional cumulative distribution function H(s|θ), h′
s(s|θ) ≤ 0

and H ′
θ(s|θ) ≤ 0.12 The subutility function takes into account that modes of

usage with higher usage intensity contributes more to aggregate utility than

modes of usage with lower usage intensity, and that different consumers have

different usage patterns.

Each consumer is billed according to a two part tariff T = {E, p, s}, where

E ≥ 0 is a fixed entry fee, p ≥ 0 is a charge per unit of usage, and s ∈ [0, 1]

is a restriction on the mode of usage on this particular tariff. The case with

no restriction on the mode of usage is normalized to s = 1. Hence if s = 1,

the mode of usage is not restricted at all , and if s = 0 the consumer is de

facto prevented from using the service. If 0 < s < 1 the consumer can enjoy

consumption on every mode of usage up to s. If a consumer of type θ finds it

individual rational to pay the fixed fee E, the price is the same across all usage

modes and equal to p per unit of usage. The volume at each mode of usage

maximizes the quasilinear subutility function u(q, s, θ) − pq. Hence, expected

quantity demand at some given s is

q(p, s, θ) = (θ − p)h(s|t) ≡ x(p, θ)h(s|θ). (2)

Aggregate consumption on all usage modes up to s is given by

Q(p, s, θ) =

∫ s

0
(θ − p)h(z|θ)dz = x(p, θ)H(s|θ), (3)

q(·) and Q(·) are both nonincreasing in p, while Q(·) is also nondecreasing in

s. The signs of the other derivatives of q(·) and Q(·) depends on the sched-

ule {p(θ), s(θ)}. When each subutility function is quasilinear, the aggregate

demand function appears to maximize aggregate consumer surplus, and a con-

sumer’s gross surplus measured in monetary terms is represented by the area

under the demand function.13 We can write the indirect utility for a consumer

12We simplify the notation in the following manner: If we have a function, say, f(x, z) we

use the notation fx for the derivative of f(x, z) with respect to x. If there is no ambiguity

about the arguments of a function, these will be omitted.
13We abstract from the fact that some consumers may have positive utility even in the case

when consumption is zero. In the case of broadband usage, this is not at all problematic. In

the case of fixed or mobile telephony, the case is different since a consumer may want a network

connection in order to receive calls only, or to be able to make emergency calls. Oren, Smith

and Wilson (1982) and Bousquet and Ivaldi (1997) study nonlinear pricing under the presence

of demand externalities, for instance when the benefit a consumer receives in a communication

network depends on his or her access to communication partners and increases with the size

of the network.
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type that is charged according to two part tariff {E, p, s} as

V (E, p, s, θ) =

∫ θ

p

x(z, θ)H(s|θ)dz − E (4)

≡ ω(p, θ)H(s|θ) − E ≡ v(p, s, θ) − E.

By Roy’s identity we have

Vp(·) = vp(p, s, θ) = ωp(p, θ)H(s|θ) = −x(p, θ)H(s|θ).

Consumers will buy if there exists a tariff {E, p, s} such that V (E, p, s, θ) ≥

0. If not, they are better off not buying. Furthermore, we will assume that

the outside option is the same for all consumers and normalize this to zero.

The individual rationality constraint (participation constraint) is given by the

constraint

∫ θ

p

x(z, θ)H(s|θ)dz − E ≥ 0. (5)

Figure 1 illustrates the individual rationality constraint for two different

types θ1 and θ2. A reduction in s has an adverse effect on consumers’ participa-

tion constraint, and the effect is more severe for high demand types compared

to low demand types.

The indirect utility is convex in (E, p) and the marginal rate of substitution

between the per unit price and the fixed fee, MRSpE , is given by

dE

dp
= −xH ≤ 0. (6)

Hence, the slope of V (E, p, s, θ) is negative and the consumer is willing to pay

a higher fixed fee against a reduction in the per unit charge.

The marginal rate of substitution varies with s and θ.

d2E

dpds
= −xh ≤ 0, and

d2E

dpdθ
= −

(
xθH + xHθ

)
≷ 0.

The slope of a consumer type’s indifference curve is steeper the higher is

s and a restriction on s causes a negative shift in V (E, p, s, θ). Since Hθ(·) is

negative, we cannot be certain that the marginal rate of substitution increases

with θ for any profile s(θ).
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IR1

IR2

p

E

Figure 1: Participation constraints with (dashed lines) and without (solid lines)

a usage restriction for two different consumer types (IR1 for type θ1 and IR2

for θ2).

2.2 Welfare maximization

With constant returns to scale technology the first best solution to the problem

is obtained by maximizing social welfare as the sum of consumer and produce

surplus with respect to p and s for each θ.

max
p(θ)≥0 s(θ)∈[0,1]

∫ θ

p(θ)
x(z, θ)H(s(θ)|θ)dz + (p(θ) − c)x(p(θ), θ)H(s(θ)|θ),

which yields first order conditions
(
p(θ)−c

)
xpH(s(θ)|θ) = 0 and

(
ω(p(θ), θ)+(p(θ)−c)x(p(θ), θ)

)
h(s(θ)|θ) = 0.

The two above conditions can only hold simultaneously if s(θ) = 1 and p(θ) = c.

2.3 Profit maximization

The firm maximizes profit under two constraints. The individual rationality

constraint states that consumers must receive at least the utility they can obtain

from spending their money on other goods or services, hence

V (θ) = V (E(θ), p(θ), s(θ), θ) ≥ 0. (7)
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The other constraint on the firm’s maximization problem is the incentive com-

patibility constraint

V (E(θ), p(θ), s(θ), θ) ≥ V (E(θ), p(θ′), s(θ′), θ), (8)

V (θ, θ) ≥ V (θ, θ′).

For continuous profiles p(θ) and s(θ), the incentive compatibility constraint is

found by solving

θ ∈ arg max
θ′

(
ω(p(θ′), θ)H(s(θ′)|θ) − E(θ′)

)
.

Hence, the firm may increase the fixed fee if the per unit price p(θ) is reduced,

or if the allowance s(θ) is increased.

−x(p, θ)H(s|θ)p′(θ) + ω(p, θ)h(s|θ)s′(θ) = E′(θ). (9)

The second order condition for incentive compatibility requires the following

condition (differentiating condition (9))

d2V

(dθ′)2
(θ, θ) ≤ 0 ⇒

d2V

dθ′dθ
(θ, θ) ≥ 0. (10)

The last condition in (10) can be stated as (dropping all functions arguments)14

−
{

xθH + xHθ

}dp

dθ
+

{
ωθh + ωhθ

}ds

dθ
≥ 0, (11)

which can also be written as

( Vθp

Vθp + Vθs

)dp

dθ
+

( Vθs

Vθp + Vθs

)ds

dθ
≥ 0.

In this case, incentive compatibility does not longer require that p(θ)

is monotonically decreasing. Instead the second order condition requires a

weighted monotonicity constraint to hold (see Garćıa (2005)). However, one of

the allocations must be monotonically decreasing (p) or increasing (s) in type.

If Vθp > 0 and Vθs > 0, sufficient conditions for global incentive compatibility

are that p(θ) is monotonically nonincreasing in θ, and s(θ) is monotonically

nondecreasing in θ. However, we can allow other profiles for p(θ) and s(θ) as

long as the positive term outweighs the negative. A consumer will not choose

14If the per unit price is the single instrument with tariffs {E(θ), p(θ)}, global incentive

compatibility can be replaced by the local downward incentive compatibility constraint given

that p(θ) is nonincreasing together with the single crossing condition ωpθ ≤ 0.
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a tariff with a lower per unit price if the restriction in the mode of usage is

sufficiently severe. Since Hθ and hθ can both be negative it is neither sufficient

nor necessary that p(θ) being nonincreasing and s(θ) being nondecreasing in θ.

If we ignore the second order condition for global incentive compatibility

(11) for the moment, letting local incentive compatibility be the only binding

constraint, we can apply the envelope theorem and write

∂V (θ)

∂θ
= vθ(p(θ), s(θ), θ).

Hence, the informational rent can be expressed as

V (θ) =

∫ θ

θ

vθ(p(u), s(u), u)du. (12)

If the informational rent in (12) is increasing we know that consumers

always obtain positive consumer surplus if they choose a contract that gives

nonnegative surplus for some lower type. Therefore, the only binding individual

rationality constraint will be for the lowest type. Otherwise, the firm sacrifices

profit if it leaves consumers with higher utility than necessary. Hence, if V ′(θ) >

0,∀θ the firm maximizes profit subject to (12) and the individual rationality

constraint for the very lowest type

V (θ) = V (E(θ), p(θ), s(θ), θ) = 0. (13)

On the other hand, since Hθ(·) is negative, the informational rent is not

unambiguously increasing in θ, and we cannot rule out the possibility of coun-

tervailing incentives. Under countervailing incentives the individual rationality

constraint can bind for other types than θ.15 In our case, V ′(θ) is given by

Vθ = ωθH + ωHθ ≷ 0.

The first term is the marginal valuation for consumption up to s, which

is increasing in θ. The second part takes into account that higher types have

higher probability weight on higher s (the assumption about first-order stochas-

tic dominance).

The monopoly maximizes the sum of fixed fees and variable profits, subject

to individual rationality and incentive compatibility. With respect to incentive

15Countervailing incentives can arise if the individual rationality constraint is type depen-

dent, or if the sign of the informational rent is ambiguous. See Lewis and Sappington (1989);

Maggi and Rodriguez-Clare (1995); Jullien (2000)
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compatibility, we will assume that the solution satisfies V ′(θ) > 0, and that the

second order condition (11) is satisfied. Hence, we maximize the profit subject

to (12) and (13). After we have obtained a solution it is necessary to check

that the second order condition for global incentive compatibility as well as the

assumption V ′(θ) > 0 are in fact satisfied.

The firm’s profit is given by

max
E(θ),p(θ),s(θ)

∫ θ̄

θ

{
E(θ) + (p(θ) − c)x(p(θ), θ)H(s(θ)|θ)

}
f(θ)dθ (14)

s.t.

V (θ) = 0 and V (θ) =

∫ θ

θ

vθ(p(u), s(u), u)du

E(θ) ∈ [0,∞), p(θ) ∈ [0,∞), s(θ) ∈ [0, 1].

Substituting for E(θ) from the participation constraint, and integrating by

part gives the profit as (see Appendix A)

max
p(θ)≥0,s(θ)∈[0,1]

∫ θ̄

θ

{
ω
(
p(θ), θ

)
H(s(θ)|θ) +

(
p(θ) − c

)
x(p(θ), θ)H(s(θ)|θ)

−
(1 − F (θ))

f(θ)

(
ωθ(p(θ), θ)H(s(θ)|θ)+ (15)

ω(p(θ), θ)Hθ(s(θ)|θ)
)}

f(θ)dθ.

The maximization of profit with respect to p(·) and s(·) requires that the

integral in (15) is maximized with respect to p(θ) and s(θ) for all θ, subject to

the constraints p(θ) > 0 and s(θ) ∈ [0, 1]. The optimality conditions for this

Kuhn-Tucker problem are in the Appendix B.16

3 Optimal pricing policy

Marginal profit at θ with respect to price is given by

(p − c)xpH − (1 − F )
(
ωθpH + ωpHθ

)
= ∂W

∂p
− (1 − F ) d

dp
V ′(θ).

Social surplus increases in p as long as p > c. However, due to private infor-

mation the monopolist is not able to appropriate the entire surplus, but has to

16Since the constraints are linear it is sufficient that Π(p, s; θ, c) is concave in (p, s) for an

interior solution to solve the problem. However, the profit expression is not in general concave

and we have to check that the solution to the first order conditions is indeed a maximum.
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leave consumers with an information rent. If (1 − F ) d
dp

V ′(θ) < 0 the marginal

information rent decreases with p and the monopolist will increase the per unit

charge above the first best level p = c for all types but the very highest one (θ̄).

The opposite will be true if (1 − F ) d
dp

V ′(θ) > 0, and the marginal information

rent increases as p is increased. If d
dp

V ′(θ) > 0 it can even be the case that

p = 0 is optimal in some parts of the type space.

Marginal profit with respect to p can also be expressed as
{
− (p − c) + (1 − F ) + (1 − F )xHθ

H

}
H.

Since ∂Π
∂p

∣∣
s=1

= −(p − c) + (1 − F ) it is clear that the price will always be

below the monopoly price with p as the single instrument. The isolated welfare

effect from a usage restriction on the firm’s per unit price is positive.

Marginal profit at θ with respect to the usage restriction s is given by

(p − c)xh + wh − (1 − F ) (ωθh + ωhθ) = ∂W
∂s

− (1 − F ) d
ds

V ′(θ).

Again, the sum of the first two terms evaluates the effect on social surplus

at θ from an increase in s. In addition, setting s below the first best level will

increase or decrease the monopolist’s ability to appropriate social surplus at a

given p because it affects the marginal information rent. Notice that marginal

profit is zero at s = 0 and s = 1. If d
ds

V ′(θ) < 0 ∀ θ, p, the marginal information

rent increases as s is decreased and s = 1 is certainly optimal. In the opposite

case, when d
ds

V ′(θ) > 0 ∀ θ, p it will be optimal to restrict s for all types but

the very highest one.

If an interior solution with p(θ) > 0 and 0 < s(θ) < 1, p(θ) exists, this

must satisfy

p − c = (1 − F )
(
1 + xHθ

H

)
. (16)

According to (16) the per unit price can be above or below marginal cost

depending on the sign of the term (1 + xHθ

H
), but the price-cost margin will

never exceed 1−F for those consumer types being served. In the case with p as

the only instrument, the price-cost margin is given by the term 1 − F . Hence,

introduction of a second instrument reduces the price-cost distortion for those

consumer types being served. The following propositions are derived under the

assumption that the conditional probability function H(s|θ) is derived from a

bivariate Beta distribution with a joint probability function g(s, θ). The shape

of h(s|θ) depends on the demand parameter θ, the lower is θ the larger is the

mass for low s. The distribution is defined in the Appendix C.
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Proposition 1 (Efficiency at the top) The consumer type with the very

highest willingness to pay (θ = θ̄) is offered a two-part tariff with p = c to-

gether with s = 1. Every other consumer type is offered a two part tariff with a

price-cost distortion together with a mode of usage restriction.

Proposition (1) is proved in Appendix D.1. We recognize the “no distortion

at the top” result not only with respect to the usage charge, but also with

respect to the mode of usage restriction. Also, if consumers with lower demand

do not have a significantly different usage pattern, the firm will sort consumers

via the usage charge rather than restricting consumers’ mode of usage, and we

will have pooling along s. Notice that the combination of s = 1 and p − c =

(1 − F ) will only happen at the very highest end of the distribution of θ.

Every other consumer will face a distortion, either via the usage charge, via a

restriction on usage, or both.

Proposition 2 (Free usage) If the demand side heterogeneity is sufficiently

large, together with c ≤ min
{eθ

2 , 2 − θ̃
}
, consumers in the interval [1 + c

2 , θ̃]

will be offered a tariff with a mode of usage restriction (s < 1) together with

a zero usage charge (p = 0). The larger is the heterogeneity in consumers’

mode of usage, the larger is θ̃. The larger is the marginal cost, the smaller is

θ̃. However, the tariff is incentive compatible only if c ≤ θ
2 . Further, it satisfies

the participation constraint only if c ≤ 2 − θ.

Proposition 2 is proved in the Appendix D.2. This result shows that it

might be an optimal strategy to sort consumers solely via the usage restriction,

and we will have pooling along p in the lower end of the type space. If the

heterogeneity in consumers’ mode of usage is large, the cost of restricting low

demand types mode of usage (in terms of the effect on their willingness to pay)

is low compared with the gain that can be achieved by the reduction in the

information rent paid to higher types. Therefore, it might even be profitable

to offer tariffs with free usage in low demand segments, and restore incentive

compatibility via higher usage restrictions instead.

Proposition 3 (Market coverage) Every consumer with demand parameter

θ > 1+ c
2 will consume a strictly positive quantity. The entire market is covered

if c = 0.

(i) In the case that p > 0, the marginal consumer that finds it just individual

rational to pay the fixed fee is given by θ = 1 + c
2 .
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(ii) In the case that p = 0, the firm achieves nonnegative profit by serving

consumer types θ ≥ 1 + c
2

Proposition (3) is proved in the Appendix D.3. If the per unit price is

the only available instrument it is easy to verify that the firm will serve con-

sumer types in [1 + c
2 , θ̄]. It may seem a little surprising that the monopolist

is not inclined to serve more consumers when it gets control over an additional

instrument. Restricting s enables the firm to reveal information about θ, but

revealing this information has a cost side. For a given per unit charge a low

s restricts low demand types’ willingness to pay. Because the firm can com-

pensate low demand types for this restriction by reducing the per unit price,

the firm finds it profitable to reduce s. In designing the optimal use of the two

instruments, the firm finds it unprofitable to increase market coverage.

Proposition 4 (Interior solution) Consumers with demand parameter θ ∈

[θ̃, θ̄〉 is confronted with a per unit price p = c + (1 − F )
(
1 + xHθ

H

)
< 1 − F ,

together with a usage restriction 0 < s < 1.

Proposition (4) is proved in the Appendix D.4, except for θ̃ which is defined

in Proposition 2. In the case with p as the only instrument the price-cost margin

is given by the term 1−F . Hence, introduction of a second instrument reduces

the price-cost distortion.

Finally, turning attention to welfare considerations, it is clear that the

monopoly solution departs from the full information solution, except for the

very highest type θ̄, and that the monopolist serves too few consumers relative

to the full information solution. However, the relevant standard of comparison

is not welfare maximization under full information, but a second best solu-

tion where welfare is maximized subject to informational asymmetry. Another

standard of comparison is the bench-mark solution where a monopoly does not

restrict usage via s at all, but only via the usage charge p. There are two po-

tential sources of welfare gains due to quality degradation in this framework.

First, consumers gain if overall efficiency in consumption increases. Second, if

introducing quality degradation induces the firm to serve consumers it would

otherwise exclude, these consumers’ surpluses will increase. Proposition 5 and

6 below summarizes the welfare effects of the firm’s use of mode of usage re-

strictions by comparing the outcome under profit maximization to the outcome

in a second-best welfare optimum.

The maximum second-best welfare in our context is found by maximizing
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the unweighed social welfare under asymmetric information subject to a break-

even constraint Π ≥ 0. This gives the Lagrangian (dependent on θ)

L = (1 + λ)
[
ω
(
p, θ

)
H(s|θ) +

(
p − c

)
x(p, θ)H(s|θ)

]

− λ (1 − F )
[
ωθ(p, θ)H(s|θ) + ω(p, θ)Hθ(s|θ)

]
. (17)

The first order conditions remains the same as with profit maximization

as the objective, except that (1 − F ) is replaced with λ
1+λ

(1 − F ), λ being the

shadow price for public funding. First we state the second-best allocation in

Proposition 5.

Proposition 5 (Second best allocation) The following properties charac-

terize a second best allocation where a social planner maximizes the sum of

consumer surplus and profit, under the restriction that the firm breaks even:

(i) No distortion at the top: p(θ̄) = c and s(θ̄) = 1

(ii) Free usage is optimal only if λ is very large, given that the heterogeneity

in consumers mode of usage is large as well. Then p = 0 is optimal for

θ < θ̃W where θ̃W ≪ θ̃.

(iii) Market coverage: Consumers with demand parameter θ ∈ [1 + c
2 −

2−c
2(2λ+1) , 2] consume a strictly positive quantity. If c < 1

2 it is optimal

to cover the entire market. If c = 2
3 it is optimal to cover the entire

market given that λ ≤ 1
2 .

(iv) Consumers with demand parameter θ ∈ [θ̃W , 2〉 is confronted with a per

unit price p = c + λ
1+λ

(1 − F )
(
1 + xHθ

H

)
< 1 − F , together with a usage

restriction s < 1.

See the Appendix D.5 for a proof. From Proposition 5 it is clear that

two part tariffs with mode of usage restrictions welfare dominates two part

tariffs that sort consumers solely via the usage charge. It is also evident that

the monopoly serves too few consumers relative to the second best allocation.

Further, if restrictions in consumers’ mode of usage is an effective means for

rent extraction, the monopoly sets s and p too low relative to the second best.

Since market coverage remains unchanged, welfare gains arise only if overall

consumption efficiency increases. Each consumer’s aggregate consumption level

increases in s and p, hence, welfare increases if the net effect on aggregate

consumption is positive.
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Proposition 6 (Welfare gains) Introducing mode of usage restriction in a

monopoly with two part tariffs increases the welfare of every consumer being

served. That is Q(p(θ), s(θ), θ) > Q(c + 2 − θ, 1, θ) ∀ θ ∈ [1 + c
2 , 2). Since the

market coverage is [1 + c
2 , 2] in any case, increased consumption efficiency is

the only source of welfare gains.

The Appendix D.5 provide a sketch for the proofs of Propositions 5 and

6. The Propositions show that although the monopoly will exaggerate the

magnitude of the distortions, the direction of the distortions is in line with

the second best. Especially, a pricing policy with mode of usage restriction

and below cost pricing is preferable. By degrading quality the firm becomes

better informed about consumers’ privately known demand parameter θ. This

enables the firm to capture a larger fraction of the social surplus and leads to

a reduction in the price-cost margin for all consumers. The other side of this

is that consumers are served with insufficient quality, and will therefore reduce

their consumption. However, by further reductions in the price-cost margin

the firm can to some extent compensate low demand types for this. If quality

degradation is sufficiently effective in this respect, the price-cost margin might

even be negative in the lower end of the type space. As to the second source

of welfare gains, Proposition 3 shows that market coverage might increase, and

that market coverage never decreases. Figure 2 show the welfare and profit

maximizing choice s(θ) for c = 0.2, λ = 0.3 and b = {4, 5.5, 7}.

4 Conclusion

This paper examines a firm’s incentive to degrade it’s service along a vertical

quality dimension when the firm offers a continuum of two part tariffs, and

shows how the two forms of usage restrictions interact in the screening analy-

sis. Hence, we combine the insights from Mussa and Rosen (1978) and Maskin

and Riley (1984). We show that the “no distortion at the top” result is pre-

served in both instruments. Since the intention behind a distortion in per-unit

charges and quality levels is to restrict the informational rent to higher types,

by restricting the number of units the can claim informational rent on, the main

insights are not new. However, the results contradict one of the most established

insights in nonlinear pricing, that the per-unit charge should be monotonically

decreasing over the type space. We find that allocation of quality is monotonic

in type, while per usage charge might be non-monotonic. What happens is that

mode of usage restrictions are used to separate consumers, partly in combina-
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Figure 2: The profit and welfare maximizing choice of s(θ) given three different

assumptions about the demand side heterogeneity with respect to mode of usage

(c = 0.2, λ = 0.3).

tion with distortions in per unit charges. However, if imposing the mode of

usage restriction is a very efficient instrument, the monopoly might prefer to

use only this instrument heavily in some segments, and rather compensate low

demand types for large restrictions by offering tariffs with free usage. In the

case that both instruments are used in combination to achieve sorting, they are

both monotonic. If the firm relies on mode of usage restriction alone, per unit

charges are typically non-monotonic, while the usage restriction is monotoni-

cally increasing in type.

In comparison, a social planner maximizing second best welfare, defined as

maximizing the unweighed social welfare under asymmetric information subject

to a break-even constraint, will indeed find it optimal to distort both allocation

rules, but not to the same extent as the profit maximizing monopoly. The

monopoly is likely to use mode of usage restriction alone, and to an excessive

degree, and to balance this by setting lower per usage charges in low demand

segments. The two instruments aim at the same objective, which is to restrict

the consumption level in low demand segments below the efficient level. As

in all screening models, this is done, not really to restrict consumption in low

demand segments, but to hurt high demand consumers if they choose a tariff

with a low price.
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Appendix

A Derivation of the profit expression

The firm’s profit is given by

max
E(θ),p(θ),s(θ)

∫ θ̄

θ

{
E(θ) + (p(θ) − c)x(p(θ), θ)H(s(θ)|θ)

}
f(θ)dθ

s.t.

V (θ) = 0 and V (θ) =

∫ θ

θ

vθ(p(u), s(u), u)du

E(θ) ∈ [0,∞), p(θ) ∈ [0,∞), s(θ) ∈ [0, 1]

Substituting for E(θ) from the participation constraint gives

max
p(θ)≥0,s(θ)∈[0,1]

∫ θ̄

θ

{
ω(p(θ), θ)H(s(θ)|θ) −

∫ θ

θ

vθ(p(u), s(u), u)du

+ (p(θ) − c)x(p(θ), θ)H(s(θ)|θ)
}
f(θ)dθ

Next, after integrating by parts we obtain the firm’s profit as

max
p(θ)≥0,s(θ)∈[0,1]

∫ θ̄

θ

{
ω(p(θ), θ)H(s(θ)|θ) − (1 − F (θ))(vθ(p(θ), s(θ), θ))

+ (p(θ) − c)x(p(θ), θ)H(s(θ)|θ)
}
f(θ)dθ

and we can now write

max
p(θ)≥0,s(θ)∈[0,1]

∫ θ̄

θ

{
ω
(
p(θ), θ

)
H(s(θ)|θ) +

(
p(θ) − c

)
x(p(θ), θ)H(s(θ)|θ)

− (1−F (θ))
f(θ)

(
ωθ(p(θ), θ)H(s(θ)|θ)+ (A.1)

ω(p(θ), θ)Hθ(s(θ)|θ)
)}

f(θ)dθ

B Optimality conditions

Maximizing the term under the integral in Π(p, s; θ, c) in (A.1) subject to the

conditions on p(θ) and s(θ) yields the following complementary slackness con-

ditions for the Kuhn-Tucker problem

∂Π

∂p
≤ 0, p ≥ 0, p

∂Π

∂p
= 0, (B.1)

∂Π

∂s
− µ ≤ 0, s ≥ 0, s(

∂Π

∂s
− µ) = 0, (B.2)

s ≤ 1, µ ≥ 0, µ(1 − s) = 0, (B.3)
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where

∂Π

∂p
= −(p − c)ωppH − (1 − F )(ωθpH + ωpHθ), (B.4)

∂Π

∂s
= (p − c)xh − (1 − F )(ωθh + ωhθ) + ωh. (B.5)

and µ is the multiplier for the constraint s ≤ 1.

If an interior solution exists this is given by a pricing policy with 0 < p∗ <

1 − F together with 0 < s∗ < 1, and ∂Π
∂p

(p∗, s∗; c) = ∂Π
∂s

(p∗, s∗; c) = 0. Notice

that ∂Π
∂s

= 0 if s = 0 or s = 1, independent of p.

• Second order conditions

The signs of the second order derivatives of the profit function cannot be

determined in general. Hence, sufficient conditions for profit maximization must

be evaluated in each case.

C Bivariate distribution

Let a bivariate distribution be defined by the standard Beta distribution with

parameters α and β on the support [0, 1]. Let α = 2 and β(θ) ≥ 2. The

bivariate probability function is then

g(s, θ) =





s(1−s)(β(θ)−1)

B(2,β(θ)) if 0 ≤ s ≤ 1,

0 otherwise,

and the bivariate cumulative density function is

G(s, θ) =





R s

0 t(1−t)(β(θ)−1)dt

B(2,β(θ)) if 0 ≤ s ≤ 1,

0 otherwise.

assuming β′(θ) < 0, β′′(θ) ≤ 0, B(α, β) is the Beta function. β(θ) determines

the shape of the distribution, the higher is β(θ) (lower is θ) the larger is the

mass for low s. For w = 2 the distribution is symmetric around the expectation

s = 1
2 . Otherwise, the distribution is skewed with expectation s < 1

2 .

The marginal pdf over θ is

f(θ) =

∫ 1

0
g(s, θ)ds = 1.
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Hence, the conditional probability distribution is given by

h(s|θ) =
g(s, θ)

f(θ)
= g(s, θ)

Consumers’ taste parameter θ is uniform on a unit interval [1, 2]. As to the

shape of the conditional probability function we assume that this is given by

β(θ) = 2+ b(2− θ), thus β(2) = 2, and β(1) = 2+ b. The greater is b the larger

is the difference in consumers’ usage patterns.

The conditional cdf H(s|θ) is continuous, and the conditional pdf h(s|θ) is

unimodal, positive and integrable on the support [0, 1], h(s|θ), lims→0 h(s|θ) =

lims→1 h(s|θ) = 0.

The conditional pdf and the conditional cdf will also satisfy the following

Hθ = ∂H(s|θ)
∂θ

< 0, ∂
∂θ

(
Hθ

H

)
≤ 0, ∂

∂θ

(
hθ

h

)
≤ 0,

Hs = h(s|θ) > 0, ∂
∂s

(
Hθ

H

)
≥ 0, ∂

∂s

(
hθ

h

)
≥ 0.

1
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0,40,20
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Figure 3: Conditional probability distributions for θ = 1, 1.5, 2.

D Proof of Propositions 1–4

D.1 Proof of Proposition 1

• First order conditions for θ = θ̄

The first order condition with respect to p is given by −(p − c)H = 0. Hence,

we must have p = c at θ = θ̄. The first order condition with respect to s reduces
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to wh. This is positive whenever s ∈ (0, 1). Hence, s = 1 is the only possible

choice that satisfies the first order conditions at θ̄.

• When will the constraint s = 1 be binding?

If s = 1 is binding we must have that ∂Π
∂s

≥ 0 evaluated at p− c = 1−F = 2−θ

and s = 1. In addition it must also be the case that ∂2Π
∂s2 ≤ 0 for p − c = 2 − θ

and s = 1. However, since both ∂Π
∂s

= ∂2Π
∂s2 = 0 we do not know whether s = 1 is

a local maximum or a local minimum. Evaluating marginal profit with respect

to s at p − c = 2 − θ gives

∂Π

∂s
= 1

2x2h
(
1 − (2 − θ)hθ

h

)
.

Here, it is the case that hθ

h
is negative as s approaches zero, and infinitely

positive as s approaches 1. For s = 0 and s = 1 we have ∂Π
∂s

= 0. For θ 6= 2,
∂Π
∂s

= 0 for some 0 < s < 1. Since Π(0, c+2−θ) = 0 and Π(1, c+2−θ) > 0, s = 1

is optimal for θ = 2. For every other θ there exists a stationary point s 6= 0, 1.

If profit is concave at this point (say ŝ(θ)) we know that Π(ŝ, c + 2 − θ) >

Π(1, c + 2 − θ), and s = 1 is not optimal. The second order derivative is given

by

∂2Π

∂s2
= 1

2x2hs

(
1 − (2 − θ)hθ

h

)
− 1

2x2h(2 − θ)
[

hθ

h

]′
s
.

Since the last term is positive, it is easy to confirm that profit is concave at

least close to ŝ(θ).

The second order condition for global incentive compatibility is given by

xθ

dp

dθ
≥ 0,

which is satisfied. Since x > 0 we also know that V ′(θ) > 0. This completes

the proof of Proposition 1.�

D.2 Proof of Proposition 2

• When will the constraint p = 0 be binding

For p = 0 to be a binding constraint it must be the case that ∂Π
∂p

< 0. Marginal

profit with respect to p evaluated at p = 0 is given by

∂Π

∂p

∣∣∣∣
p=0

= cH + (1 − F )(H + θHθ).

By inspection, it is clear that the constraint cannot be binding for s = 1 and

θ = 2.
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We know that s is determined according to (B.5), say that this defines

a function s′(θ), which is increasing in θ. Hence, if both the condition that
∂Π
∂p

(s′(θ), p) is negative when p approaches 0, and that ∂Π
∂s

(s, 0) is negative for

s > s′(θ), setting p = 0 is indeed optimal. Otherwise, the monopolist will

increase s and it is less likely p = 0 is optimal. The two conditions states

−Hθ

H
≥

1

θ

(
1 +

c

2 − θ

)
(D.1)

−hθ

h
≤

1

θ

(
2 −

θ − 2c

2 − θ

)
=

1

θ

(
1 +

c

2 − θ
−

2θ − 2 − c

2 − θ

)
(D.2)

Let (D.1) when it is binding define a function s1(θ) and (D.2) define a function

s2(θ). If s1(θ) ≥ s2(θ), then p = 0 is the optimal choice.

The left hand sides in (D.1) and (D.2) are identical, positive and finite,

as s approaches zero.17 Further,
[
−Hθ

H

]
and

[
−hθ

h

]
are both lower for lower

demand side heterogeneity with respect to mode of usage, and are also from our

assumptions decreasing in θ. Hence, if demand side heterogeneity in consumers’

mode of usage is sufficiently large, we expect that both conditions are satisfied

at least in some interval in the lower end of the type space, and that s1 > s2

in this interval. On the other hand, if θ is close to 2 the right hand side

in (D.1) approaches ∞, while the right hand side in (D.2) approaches −∞.

Since lims→1

[
−Hθ

H

]
= 0, while lims→1

[
−hθ

h

]
= −∞, we can conclude that

limθ→2 s1(θ) < 1 and limθ→2 s2(θ) = 1 and that p = 0 cannot bind at θ̄.

Since both d
ds

[
−Hθ

H

]
≤ 0 and d

ds

[
−hθ

h

]
≤ 0, while the right hand sides are

are unchanged, if a solution to (D.1) and (D.2) exists s1(θ) and s2(θ) are unique.

However, if c is sufficiently large, a nonnegative solution to (D.2) might fail to

exist for low values of θ. The firm will serve these consumers with s = 0 (de

facto exclusion). If a nonnegative solution to (D.1) fail to exist, the constraint

cannot be binding at all.

The slopes of s1 and s2 are given by

ds1

dθ
=

[
Hθ

H

]′
θ
− 1

θ2

[
1 − 2c(θ−1)

(2−θ)2

]

−
[

Hθ

H

]′
s

, (D.3)

ds2

dθ
=

[
hθ

h

]′
θ
− 1

θ2

[
2

(
1 − 2c(θ−1)

(2−θ)2

)
+ θ2

(2−θ)2

]

−
[

hθ

h

]′
s

. (D.4)

17Using L’Hôptal’s rule we get lims→0

�
−Hθ

H

�
= lims→0

�
−hθ

h

�
= lims→0

�
−hθs

hs

�
> 0.
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While ds2
dθ

is undoubtedly positive, ds1
dθ

might be negative for large c and

large θ. We know that s1(2) < s2(2) = 1. If lims→0

[
hθs

hs

]
> 2

2−c
we know that

s1(1) > s2(1). Thus, if s1(θ) and s2(θ) crosses this is at most once and the

constraint p = 0 is binding in the interval θ ∈ [1, θ̃], where θ̃ is the solution to

s1(θ) = s2(θ). θ̃ increases as the heterogeneity in mode of usage increases, and

θ̃ decreases with c.

Profit is concave in s given that

θ2

2
(2 − θ)hs

[−hθ

h
−

1

θ

(
2 −

θ − 2c

2 − θ

)]
−

θ2

2
(2 − θ)h

[hθ

h

]′
s
. ≤ 0

The last term is positive, hence profit is concave for s close to s2(θ). Since

the only other points satisfying ∂Π
∂s

= 0 is s = 0 and s = 1, s2(θ) constitutes a

maximum for profit.

At the same time, since p < c it is necessary to check that the firm obtains

positive profit on each type that it serves. Profit evaluated at p = 0 must be

nonnegative

1
2θ2H − cxH − (2 − θ)(θH + 1

2θ2Hθ) ≥ 0.

Rewriting this, and combining it with condition (D.2) when this is binding

enable us to formulate the following implicit condition on (s, θ)

[−Hθ

H

]
−

[−hθ

h

]
≥ 0.

Since we know that (D.1) is met while (D.2) is binding, the difference above is

given by

[−Hθ

H

]
−

[−hθ

h

]
≥

1

θ

( θ − c

2 − θ
− 1

)
≥ 0.

Hence, a sufficient condition for some type θ to be served is that

1

θ

( θ − c

2 − θ
− 1

)
≥ 0 ⇒ θ ≥ 1 +

c

2
.

Finally, we need to show that V ′(θ) > 0 and that the solution is incentive

compatible. Knowing that s is increasing in θ, the second order condition for

global incentive compatibility is given by

θh + 1
2θ2hθ ≥ 0 ⇒

−hθ

h
≤

2

θ
.

Since we know that condition (D.2) is met this reduces to the condition that

2c − θ ≤ 0. If c ≤ 2
3 the tariff is implementable.
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The marginal information rent is positive under the condition that

−Hθ

H
≤

2

θ
.

Since (D.2) is binding we can subtract each side in the inequality above

and rewrite the condition as
[−Hθ

H

]
−

[−hθ

h

]
≤

1

θ

[θ − 2c

2 − θ

]
. (D.5)

Again, using the fact that (D.1) is met, while (D.2) is binding, we know

that V ′(θ) ≥ 0 if 1
θ

[
θ−c
2−θ

− 1
]
≤ 1

θ

[
θ−2c
2−θ

]
. The condition reduces to 2 − c ≥ θ.

Altogether then, we must have that c ≤ min
{

θ
2 , 2 − θ

}
. Or, if we assume

that c ≤ 2
3 we have V ′(θ) > 0 with global incentive compatibility satisfied if

θ ≥ 1 + c
2 .

This completes the proof of Proposition 2.�

Figure 4 illustrates the conditions for the same θ with high (dashed lines)

and low (solid lines) heterogeneity in consumers’ mode of usage. With low

heterogeneity ∂Π(s, p)/∂p|p=0 is decreasing for s ∈ (0, s1) ((D.1) is satisfied).

However, ∂Π(s, p)/∂s|p=0 is increasing for s ∈ (0, s2) ((D.2) is satisfied). Thus,

with low heterogeneity, both constraints cannot be satisfied simultaneously.

With increased heterogeneity the figure shows that p = 0 is optimal for θ = 1.2.

D.3 Proof of Proposition 3

• Market coverage with p > 0.

The firm will serve a given consumer type θ if it is possible to satisfy the first

order condition for p ≤ θ. A necessary condition is that

lim
p→θ

[
(p − c)xpH − (2 − θ)(ωθpH + ωpHθ)

]
≤ 0 ⇒ θ ≥ 1 + c

2 .

Notice that this is independent of the level of s.

• Can the constraint s = 0 be binding with p > 0?

If profit increases for s close to zero when p approaches 1+ c
2 , setting s = 0 can

never be an optimal choice.

lim
p→1+

c
2

[∂Π

∂s

]
= h

(
θ − 1 − c

2

)2
(

3
2 − 1

2(2 − θ)hθ

h

)
.

Because hθ ≤ 0 for low values of s, the limit value is positive for s close to 0.

Hence, the constraint s = 0 will not bind if the per unit charge is positive.
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Figure 4: The constraints in (D.1) and (D.2) given that c = 0 and θ = 1.2,

with high (H̃) and low (H) heterogeneity in consumers’ usage patterns.

This proves part (i).

• Market coverage with p = 0?

An alternative strategy to exclude consumers in the low demand segment can

be to set s = 0 in the case that the constraint p = 0 is binding (i.e., s = 0 is

binding together with p = 0). This defines market coverage in the case that

p = 0. If s = 0 together with p = 0 conditions (D.1) and (D.2) are both satisfied

as s approaches zero, and we must have that

1

θ

(
1 +

c

2 − θ

)
≤ lim

s→0

[−hθ

h

]
≤

1

θ

(
2 −

θ − 2c

2 − θ

)
. (D.6)

The largest possible θ must satisfy

1 +
c

2 − θ
≤ 2 −

θ − 2c

2 − θ
⇒ θ ≤ 1 +

c

2
. (D.7)

We have already proved that profit is nonnegative given that θ > 1+ c
2 if p = 0

is the optimal per unit charge. Hence, we can conclude that market coverage

in this case is also given by θ ≥ 1 + c
2 .

This proves part (ii), and the proof of Proposition 3 is compete.�
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D.4 Proof of Proposition 4

• Interior solution

If the per unit charge is determined by ∂Π
∂p

= 0, this is given by

p − c = (1 − F )
(
1 +

xHθ

H

)
. (D.8)

For x > 0 and s > 0 the left hand side will belong to the interval [0, 1 − F ]

(the term
(
1+ xHθ

H

)
can never exceed 1 under the assumption about first order

stochastic dominance). Hence, p−c ≤ 1−F , which is the distortion a monopoly

would apply if s = 1.

In an interior solution, for θ ∈ (θ̃, θ′), the per unit charge p∗ and the usage

restriction s∗ is determined according to the two conditions

−Hθ

H
=

1

θ − p

(
1 −

p − c

2 − θ

)
, (D.9)

−hθ

h
=

1

θ − p

(
2 −

θ + p − 2c

2 − θ

)
=

1

θ − p

(
1 −

p − c

2 − θ
−

2θ − 2 − c

2 − θ

)
.

(D.10)

Let (D.9) define a function s1(p; θ) and (D.10) define a function s2(p; θ). Holding

θ fixed, we can determine ds/dp along the two conditions by differentiating (D.9)

and (D.10) with respect to p and s. We find

ds1

dp
=

1
[

Hθ

H

]′
s

[
2θ − 2 − c

(2 − θ)(θ − p)2

]
≥ 0,

ds2

dp
=

1
[

hθ

h

]′
s

[
2(2θ − 2 − c)

(2 − θ)(θ − p)2

]
≥ 0.

Next, for θ ≥ θ̃ we have that s2 ≥ s1 as p approaches zero. On the other

hand, if s approaches 1 condition (D.9) are satisfied if p = c + 2 − θ, whereas

(D.10) only can be satisfied if p is infinitively positive. Given the slopes above

s1(θ) and s2(θ) crosses exactly once for p ∈ [0, c + 2 − θ].

Since it is clear that we only have one stationary point it is sufficient

to check that the second order conditions for profit maximization is satisfied

close to the optimum. Under the assumption that we can cancel all first order

conditions, we can write the second order conditions as

∂2Π

∂p2
= −H

(
1 + (2 − θ)

Hθ

H

)
≤ 0,

∂2Π

∂s2
= −1

2x2h(2 − θ)
[hθ

h

]′
s
≤ 0.
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Given (D.9), a sufficient condition for profit to be concave in p is that

1/(2 − θ) ≥ 1/(θ − p)[1 − (p − c)/(2 − θ)]. This is met whenever θ ≥ 1 + c/2.

Profit is concave in s everywhere since all terms are nonnegative. The last

condition is that

∂2Π

∂p2

∂2Π

∂s2
−

( ∂2Π

∂s∂p

)2

= 1
2x2h

{
H(2 − θ)

(
1 + (2 − θ)Hθ

H

)[
hθ

h

]′
s
− 1

2h
(
1 + (2 − θ)hθ

h

)2}
≥ 0.

Given (D.9) and (D.10) this can be simplified further

1
2h2(θ − p)(2θ − 2 − c)

(
H
h

(2 − θ)
[

hθ

h

]′
s
− 2

(2θ − 2 − c

θ − p

))
≥ 0.

By inspection, it is easy to confirm that this is positive as long as s is

above some threshold s̄(θ), where s̄(θ) is increasing in θ.18 s̄ approaches 1

when θ approaches 2, and s(1) > 0. Note that both terms inside the bracket

parenthesis are nonnegative for 1 + c
2 < θ < 2, and 0 < s < 1, it is 0 for s = 0

and ∞ for s = 1. The first term is increasing in s, while the second term is

constant. The sign of the determinant of the Hessian cannot be determined

in general. However, we have not been able to construct a numerical example

where it is not positive at (p∗, s∗).

Next, in order to rule out countervailing incentives, the information rent

must be increasing in θ. V ′
θ ≥ 0 if xH

(
1 + 1

2xHθ

H

)
≥ 0. This implies that

−Hθ

H
≤ 2

θ−p
. When (D.9) is binding it is sufficient that 2

θ−p
≥ 1

θ−p

(
1 − p−c

2−θ

)
.

This is satisfied if p ≥ c − (2 − θ). When p is determined by (D.9) this is true

for θ ∈ [1 + c
2 , 2].19

Finally, the second order conditions for global incentive compatibility must

be satisfied. Differentiating (D.9) and (D.10) yields

ds∗

dθ
=

[
hθ

h

]′
θ
− 2

[
Hθ

H

]′
θ
− 1

(2−θ)2

2
[

Hθ

H

]′
s
−

[
hθ

h

]′
s

≥ 0,

18By differentiating the condition 1
2
h2(θ − p)(2θ − 2− c)

�
H

h
(2− θ)

�
hθ

h

�′
s
− 2

�
2θ−2−c

θ−p

��
= 0

we find that ds/dθ > 0.

19Solving the first order condition for p we find that p =
c+(2−θ)

�
1+θ

Hθ

H

�
1+

�
2−θ

�
Hθ

H

.
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dp∗

dθ
=

1(
2
[

Hθ

H

]′
s
−

[
hθ

h

]′
s

)
(2 − θ)(2θ − 2 − c)

×

{(
2
[

Hθ

H

]′
s
−

[
hθ

h

]′
s

)(
(p − 2θ + 2)(p − c) − (2 − θ)2

)

− (2 − θ)2(θ − p)2
([

Hθ

H

]′
θ

[
hθ

h

]′
s
−

[
Hθ

H

]′
s

[
hθ

h

]′
θ

)
−

[
Hθ

H

]′
s
(θ − p)2

}
R 0.

To prove that the first sign above is correct, let us differentiate the first

order conditions in (D.9) and (D.10), holding s fixed. This gives

dp1

dθ
=

[Hθ

H

]′
θ

[
(2 − θ)(θ − p)2

2θ − 2 − c

]
≤ 0,

dp2

dθ
=

[hθ

h

]′
θ

[
(2 − θ)(θ − p)2

2(2θ − 2 − c)

]
≤ 0.

For a solution to exist it must be the case that s1(p) crosses s2(p) from

below, and that p1(θ) crosses p2(θ) from below. Hence ds1
dp

≥ ds2
dp

and dp1

dθ
≥ dp2

dθ
.

These two conditions are met if

2
[Hθ

H

]′
s
−

[hθ

h

]′
s
≤ 0,

[hθ

h

]′
θ
− 2

[Hθ

H

]′
θ
≤ 0.

This proves that s∗ is increasing in θ. The term Vθs is positive if p > 2c−θ,

which is always the case when c < 2
3 . Hence, the second term in the sufficient

condition for global incentive compatibility is positive.

If the first term is positive as well, the tariffs are implementable. The term

Vθp > 0 if p > c (Vθp < 0 if p < c). If p is close to c the term is close to zero

and can be ignored. Because p can be both above and below c and because the

sign of p′(θ) cannot be determined in general, it is more ambiguous whether the

first term is positive. However, as θ increases above θ̃, the derivative can change

sign at most once, and then from positive to negative, p′(θ) < 0 for θ very close

to 2. If p < c it must be the case that p(θ) is increasing, and the first term is

positive. On the other hand, since Vθs
ds∗

dθ
is strictly positive, a solution where

Vθp
dp∗

dθ
< 0 can be implementable. We have not been able to solve a numerical

example with the given distributions where the second order condition is not

satisfied.

This completes the proof of Proposition 4.�

D.5 Proof of Proposition 5 and 6

Proposition 5 can be verified by going through the proofs for Propositions 1

to 4, replacing the first order conditions for the monopoly problem with the
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appropriate first order conditions for welfare maximization. The proofs are

omitted here. For convenience we state the conditions that must be met in the

case that p = 0 is binding, and the first order conditions in an interior solution.

For p = 0 to be a binding condition we must have that

−Hθ

H
≥

1

θ

(
1 +

(1 + λ

λ

) c

2 − θ

)
, (D.11)

−hθ

h
≤

1

θ

(
2 −

(1 + λ

λ

)θ − 2c

2 − θ

)
. (D.12)

For λ > 0 the left hand side in (D.11) is shifted upwards relative to equation

(D.1), while the left hand side in (D.12) is shifted downwards relative to equa-

tion (D.2). It is easy to confirm that both constraints above cannot be satisfied

for θ = θ̃ (as defined in Proposition 2), except for when λ → ∞. Hence, pw > 0

for θ = θ̃. Let θ̃W be defined the same way as θ̃. Then it is easy to confirm that

θ̃W ≪ θ̃, and that θ̃W → θ̃ when λ → ∞. In fact, λ must be large for p = 0 to

bind in any interval at all, so that θ̃W < 1 in all relevant cases.

In an interior solution, we must have that

−Hθ

H
=

1

θ − p

(
1 −

(1 + λ

λ

)p − c

2 − θ

)
, (D.13)

−hθ

h
=

1

θ − p

(
2 −

(1 + λ

λ

)θ + p − 2c

2 − θ

)
. (D.14)

It is easy to confirm that both conditions cannot be satisfied at (p∗, s∗) solv-

ing profit maximization. Consumption efficiency increases if Q(p(θ), s(θ), θ) >

Q(c + 2 − θ, 1, θ). A necessary condition for this is that

H(s(θ)|θ) >
2θ − c − 2

θ − p(θ)
.

If θ is close to 1 + c
2 it is sufficient that s(θ) > 0. The condition will also hold

if s is close to 1 since p < c + 2− θ. In the case that p = 0 binds, the condition

defines a lower bound for s(θ), θ ∈ [1 + c
2 , θ̃〉. Otherwise, the condition states

a restriction on (p(θ), s(θ)) for θ ∈ [θ̃, 2〉. Numerical simulation confirms that

the condition is satisfied everywhere.
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