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Abstract 
 
Public social security systems may provide diversification of risks to individuals’ life-time 

income. Capturing that a pay-as-you-go program (paygo) may be considered as a “quasi-

asset”, we study the optimal size of the social security program as well as the optimal split 

between a funded part and a paygo part by means of a theoretical portfolio choice approach. 

A low-yielding paygo system can benefit individuals if it contributes to hedge other risks to 

their lifetime resources. Moreover, a funded part of the social security system can be justified 

by potential imperfections to the individuals’ free access to the stock market. Numerical 

calculations for Sweden, Norway, the US and the UK demonstrate that the optimal size of 

paygo-part of the pension program varies considerably in response to differences in projected 

growth rates and the correlation between stock returns and growth. Our calculations suggest 

that a paygo program has an important role in the three former countries – but not in the U.K.  
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1.  Introduction 

 

Public social security systems may be justified by paternalism, preferences for redistribution 

of income and various types of market failures. This paper considers one of the presumably 

most important types of the latter justification, namely imperfect insurance markets. What we 

have in mind is the nonmarketability of human capital and also potential limitations in many 

individuals’ access to the stock market. We analyze how such imperfections influence the 

optimal design of a social security system. Capturing that a pay-as-you-go (paygo) system 

may be interpreted as a new “quasi-asset” (Persson, 2000), we derive the optimal size of the 

paygo program as well as the optimal split between funded and unfunded systems by means 

of a portfolio choice approach. 

 The main bulk of the recent large literature on social security reforms takes as its 

point of departure that aging populations weaken the financial viability of social security 

systems, which mainly are financed on a paygo basis.1 It is well known that the implicit return 

of the paygo system is given by the natural rate of economic growth, i.e. the joint effect of 

productivity growth and growth in the labor supply. Since this implicit return is lower than 

the real interest rate in a dynamically efficient economy, deterministic models predict that a 

funded program is always superior to a paygo program in steady-state. The policy challenge 

is, consequently, to derive a politically feasible and maybe even pareto-optimal transition 

from a paygo program to a funded program.2  

 The conclusion that the funded program is always superior to a paygo program in 

steady state is not valid, however, when we take into account that returns on both paygo and 

funded systems are stochastic. In a stochastic framework, a lower expected rate of return on 

the paygo system does not necessarily imply that it is an inferior alternative. From the basic 

theory of portfolio choice, we know that whether an asset should be included in an investor’s 

portfolio depends on the covariance with the return on the rest of the portfolio. Thus, a low-

yielding paygo system can benefit individuals if it contributes to hedge other risks to their 

lifetime resources.  

This paper considers three sources of risk to net individual income: i) Technology 

shocks, which determine the wage rate, ii) fluctuations in the size of the population, which 

influence the aggregate labor supply, and iii) a stochastic return on stock market investments. 

Employing a simple theoretical overlapping generations model, we characterize the optimal 

social security system under various assumptions about individuals’ participation in the stock 

                                                 
1 See for example Feldstein (1996), Kotlikoff (1996) and Fehr (2000). 
2 A pareto optimal transition from a paygo program to a funded program is only possible if the reform 
also lowers the excess burdens of the tax-transfer program, see Homburg (1990), Sinn (1999) and 
Miles (2000).  
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market. We also present some numerical evidence. The paper focuses exclusively on risk 

sharing issues in an overlapping generations framework with one representative individual 

within each generation. We disregard intragenerational redistribution and assume that labor 

supply is exogenous.3   

It turns out that the design of optimal pension schemes depends crucially on the 

relevant risk concept. Referring to a two-period life cycle framework, we consider at the 

outset an individual who – in the first period of life – participates in the labor market and 

knows his wage income with certainty. In this case our analysis focuses on the social security 

system’s impact on the sharing of net income risk in the second period of life. We will refer to 

this as traditional risk sharing. In addition to this concept we will also consider the case 

where no components of the representative individual’s net income have been realized yet, 

i.e. the income risk in the first period of life has not yet been revealed. Following Ball and 

Mankiw (2001), this can be given a Rawlsian interpretation in the sense that we imagine that 

all generations are present behind a “veil of ignorance”.  Clearly, ignorance in this setting 

refers to uncertainty about whether a given individual is born into a lucky or unlucky 

generation. We will refer to this concept as Rawlsian risk sharing.4 

This paper adds to the fairly small literature on the design of social security systems 

under uncertainty. The idea that a paygo system can be considered as an asset, has recently 

been explicitly highlighted by Persson (2000) and Dutta et al. (2000). Persson provides a brief 

and verbal discussion of this idea and presents a simple numerical illustration based on 

Swedish data, which indicates that the paygo system may indeed hedge parts of the risk on a 

portfolio of stocks and/or bonds. Persson does not offer any formal analysis, however. Dutta 

et al., on the other hand, do indeed present a formalized analysis based on a portfolio choice 

approach. Their analysis is based on a static mean-variance set-up, which does not capture 

several important aspects of public social security systems. For example, there is no explicit 

modeling of how the paygo system transfers resources between generations. Neither do they 

capture how the individual’s private portfolio decisions are influenced by the public decisions 

on the design of the social security program. We also note that Dutta et al. do not consider 

different risk sharing concepts (i.e. their analysis focuses exclusively on what we have 

defined as traditional risk sharing). Finally, we argue below that mean-variance preferences 

                                                 
3 Many papers on social security reforms seem to assume that the tax-benefit link is very weak in a 
paygo system and fully actuarial (at least marginally) in a funded system. It is  quite possible, however, 
to imagine a tax-benefit link which is close to actuarial in a paygo system and rather weak in a system 
which is funded in an aggregate sense, see Miles (2000) and Thøgersen (2001). Thus, even if we 
recognize that the labor supply responses to social security reforms are very important, we will argue 
that it may be benefical to separate the analysis of this issue from the risk sharing aspects of different 
social security systems, which are highlighted in the current paper. 
4 Our definitions of respectively traditional and Rawlsian risk sharing have similarities with the 
distinction between “true-” and “ex-ante risk sharing” made by Hassler and Lindbeck (1997). 
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combined with a proper dynamic overlapping generations setting imply that the derived 

optimal social security program is time-inconsistent. 

The general insight that a mixed paygo and funded system may be optimal due to 

diversification dates back to Merton (1983). Merton studies various tax-transfer programs 

within a theoretical general equilibrium model, and his analysis captures the same stochastic 

variables as in our paper. He does not address the distinction between various risk concepts, 

which turns out to be important in the analysis of the current paper. Neither does Merton 

present any numerical calculations. 

Two recent papers, which are fairly closely related to our analysis, are Miles (2000) 

and Shiller (1999). Using a numerical model, Miles considers the optimal split between 

funded and paygo programs. Contrary to our paper, he focuses on intragenerational 

redistribution of various individual risks and disregards risks to aggregate labor income and 

population growth. Shiller discusses inter- and intragenerational risk sharing as well as 

international risk sharing by means of social security and alternative institutions. He does not 

focus on the split between funded and paygo program, however.  

Obviously, this paper is also related to studies of how a paygo program may 

contribute to intergenerational sharing of income-risk; see for example Gordon and Varian 

(1988), Enders and Lapan (1982, 1993), Thøgersen (1998) and Wagener (2001a, 2001b). 

With an exception of Wagener’s contributions, these papers assume only one source of risk 

and they do not consider a split between funded and paygo programs. We will argue below 

that the main insight from these papers, namely that a paygo program leads to increased 

intergenerational income-risk sharing, hinges on specific stochastic properties of the income 

(or output) path over time. Wagener does capture both stochastic wage growth and stochastic 

interest rates. Analyzing different versions of paygo systems along similar lines as Thøgersen 

(1998), his focus is quite different from this paper, however. 

 The next section presents our theoretical model framework. Section 3 and section 4 

study the optimal design of social security systems in the cases of respectively traditional and 

Rawlsian risk sharing as defined above. We derive the optimal size of the public social 

security program as well as the optimal split between the funded part of the program and the 

paygo part. Intuitively, a low or negative correlation between the stock market returns and the 

natural rate of growth increases the size of the optimal paygo program. Moreover, a funded 

program must be rationalized by imperfections in the individual’s access to the stock market. 

We demonstrate that the case of traditional risk sharing implies a larger paygo program than 

in the case of Rawlsian risk sharing if the coefficient of relative risk aversion exceeds one. 

This reflects that the paygo system contributes to increased wage-income risk as long as the 

trend wage growth is stochastic – and the exposure to wage risk is higher at the outset in the 

Rawlsian case. 



4 

 Section 5 provides some numerical illustrations for Sweden, Norway, the US and the 

UK. Our calculations suggest a role for paygo-systems in the three former countries – but not 

in the UK. Taking limited stock market participation into account, a mixed paygo/funded 

system is optimal for Sweden, Norway and the US, while a fully funded system is optimal in 

the UK case. Finally, we offer some concluding remarks in section 6. 

 

 

2. A simple overlapping generations model 

 

Set-up 

Our model framework combines a stylized overlapping generations set-up with the lognormal 

approach to portfolio choice problems, which recently has been developed by Campbell and 

Viceira (2001). There are two generations present in any period. The young generation 

participates in a competitive labor market, while the old generation is retired. We define Xt+1 

as the size of the young generation in period t+1 (i.e. generation t+1).  Population growth 

from any period t to period t+1 is stochastic and given by Nt+1, and we have 

ttt XNX )1( 11 ++ += . The representative young individual in any period supplies inelastically 

one unit of labor and receives a gross wage, which is given by Wt+1. The wage growth is 

stochastic due, presumably, to productivity shocks. We define Λt+1 as the wage growth rate, 

i.e. ttt WW )1( 11 ++ Λ+= . It is also useful to define Gt+1 as the growth rate of the aggregate 

wage income, 11111 +++++ Λ+Λ+= ttttt NNG . 

 In the same way as Gordon and Varian (1988) and Ball and Mankiw (2001), we 

assume for simplicity that members of each generation consume only in the second period of 

life. Consequently, the complete net labor income in the first period of life is saved. Savings 

are allocated between two types of financial assets. The first option is a risk-free asset with a 

real rate of return given by Rf. The second option is a risky alternative that yields a stochastic 

real return given by Rt+1. We refer to these assets as bonds and stocks, respectively. 

 The values of three exogenous stochastic variables are revealed in each period: Nt+1, 

Λt+1 and Rt+1. Each of the variables is lognormally, independently and identically distributed 

over time. Because a product of lognormal random variables is lognormal as well, this implies 

that also Gt is lognormal. We define rf ≡ log(1 + Rf), rt+1 ≡ log(1 + Rt+1), nt+1 ≡ log(1 + Nt+1), 

λt+1 ≡ log(1 + Λt+1) and gt+1 ≡ log(1 + Gt+1). It follows that 111 +++ +≡ ttt ng λ . It turns out to be 

useful to write the expected difference between each of the stochastic variables and the risk 

free rate in the following way: [ ] nf
t rnE µ≡−+1 , [ ] λµλ ≡−+

f
t rE 1 , [ ] rf

t rrE µ≡−+1  and 

[ ] gf
t rgE µ≡−+1 . We assume that kr µµ >  (k = g, n, λ) and also note that the possibility of  
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0>nµ  does not necessarily ruins dynamic efficiency in a stochastic economy, see Bertocchi 

and Kehagias (1995) and Blanchard and Weil (1991).5 The variance of a given variable i and 

the covariance between two variables i and j are denoted by respectively 2
iσ  and ijσ , i,j = r, 

n, λ, g; i ≠ j. Clearly, the assumed distributional properties imply that these expectations, 

variances and covariances are constant over time. 

 We assume that the expected utility of the representative individual in any generation 

t is given by  

 (1) 












−
=

−
+

γ
δ

γ

1

1
1t

tt
C

EU , 

where γ is the coefficient of relative risk aversion, which is constant across generations, δ is 

the utility discount factor and Ct+1 is the consumption level of the representative individual in 

generation t in period t+1. This utility function yields constant portfolio weights over time for 

the various assets. It turns out that this characteristic simplifies our analysis since it implies 

that the optimal policy variables are constant over time (see below).  

Consumption is given by 

(2) ( ) 111 )1)(1()1()1( +++ Π++−++−= t
fp

t
p

tt RRWC ωωτ , 

where pω  is the fraction of private net income invested in stocks, τ (0 ≤ τ  ≤ 1) is a social 

security contribution rate and Πt+1 is a social security benefit, which is determined by the 

social security formula described below. It is convenient to rewrite (2) as 

(2’) ( ) 111 )(1)1( +++ Π+−++−= t
f

t
pf

tt RRRWC ωτ  

 The sole objective of the government is to run a social security program, which may 

be split between a funded part and a paygo part. The social security contribution in period t is 

given by τWtXt.  A share β (0 ≤ β ≤ 1) of this amount is allocated to the funded program, and 

the remaining share is allocated to the paygo program. In turn, a share gω  of the amount 

allocated to the funded program is invested in stocks, while the remaining amount is allocated 

to riskfree bonds.  Obviously, the government designs the social security system by means of 

three choice variables: τ, β and gω . Throughout the paper we assume that the individuals 

take these variables as given. It is straightforward to show that the social security benefit is 

given by 

(3) ( ) ( )11111 1)1()(1 +++++ +−+−++=Π tt
f

t
gf

tt GWRRRW τβωβτ , 

                                                 
5 As demonstrated by Bertocchi and Kehagias (1995) and Blanchard and Weil  (1991), the conditions 
for dynamic efficiency in stochastic overlapping generations models are fairly complex. We assume 
throughout this paper that these conditions are satisfied. See Blanchard and Fisher (1989: 326-329) for 
an accessible discussion of the major issues involved. 
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where the first term on the RHS is the proceeds from the funded part of the program (i.e. 

generation t’s own contributions adjusted for returns) and the second term reflects the paygo 

part (resources transferred from the young generation t+1 to the old generation t). 

 Using (2) and (3), we obtain 

(4) )()(),1( 11111
f

t
f

t
fT

t
T
ttt RGbRRaRRRWC −+−+≡+= +++++ , 

where  

(5a) gpa τβωτω +−≡ )1( , 

(5b) )1( βτ −≡b . 

We interpret T
tR 1+  as the effective return on the representative individual’s total portfolio when 

the social security system is taken into account. Moreover, we observe that a and b are the 

effective portfolio shares of gross income, which are invested in stocks and the “paygo-asset”, 

respectively. The share invested in riskfree bonds is of course 1 − a − b. If the social security 

program is a pure paygo program (i.e. the special case of β = 0), τ can be interpreted as the 

representative individual’s forced portfolio share in the paygo-asset. In the following we 

generally assume that all portfolio shares are non-negative (i.e. there are no “short” positions) 

unless otherwise is explicitly stated.  

 

The loglinear approximation 

Even the simple portfolio problem in our model has no exact analytical solution when 

financial markets are not complete. Consequently, we resort to the recently developed 

loglinear approximation method of John Campbell and Luis Viceira (see Campbell and 

Viceira, 2001, and the references therein).   

Because all underlying stochastic variables in our model are lognormal, portfolio 

returns are lognormal. Taking logs in equation (4) yields 

(6) T
ttt rwc 11 ++ += , 

where )1log( 11
t
t

T
t Rr ++ +≡ , tt Cc log1 ≡+  and tt Ww log≡ . The next step is to relate the log 

portfolio return to the log returns on the individual assets, see (4). Following Campbell and 

Viceira (2001), a Taylor approximation of (4) yields 

(7) ( ) ( )rggrgr
f

t
f

t
fT

t abbabargbrrarr σσσσσ 2
2
1

2
1

)()( 222222
111 +++++−+−=− +++ . 

Campbell and Viceira discuss the accuracy of this approximation in more detail. Based on 

work by Barberis (2000) they conclude that the quality of the approximation is good even for 

long-term portfolio problems provided that returns are i.i.d. This is crucial for our analysis 

because the portfolio problems related to the design of social security systems are obviously 

long term. 
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3.  Traditional risk sharing 

 

Focusing on traditional risk sharing (as defined in the introduction) in this section, we must 

adopt the perspective of a representative individual whose wage in the first period of life has 

been realized. Because it turns out that the specified power utility function, see (1), yields 

constant optimal portfolio shares independent on the level of the realized wage, we derive the 

optimal social security system by the maximization of the utility of the representative young 

individual in a given generation t. The optimal system for this generation is also optimal for 

succeeding generations.6  

At this stage it is useful for a moment to imagine an alternative mean-variance 

specification of preferences. Generally, this is not very attractive due to the well-known fact 

that it implies increasing absolute and relative risk aversion. In turn this implies that we 

obtain optimal portfolio weights in risky assets as declining functions of initial income. In the 

current setting this means that the optimal portfolio weights in stocks and the paygo-asset for 

generation t are not optimal for succeeding generations because wage-income fluctuates, i.e. 

the optimal social security system is time-inconsistent. As mentioned in the introduction, this 

problem will occur if we combine the mean-variance portfolio choice set-up of Dutta et al. 

(2000) with the dynamic overlapping generations framework of this paper. Thus, it seems 

necessary to consider a power utility function with constant relative risk aversion in this type 

of social security analyses based on a portfolio approach.  

 As noted by Campbell and Viceira (2001), maximizing of (1) is equivalent to 

maximizing the log of the expression in (1). Omitting the scale factor δ/(1−γ) and using that 

Ct+1 is lognormally distributed, we write the objective function in the following way:7 

(8) 22
1

1
1 )1(

2
1

)1(log ctttt cECE σγγγ −+−= +
−
+ , 

where 11 log ++ ≡ tt Cc  and 2
cσ  is the variance of 1+tc . Dividing by (1−γ), using (6) and 

recalling that wt is known and rf constant, we may finally write the expected utility function of 

the representative individual in generation t as, 

(9) ( ) 2
1 )1(

2
1

)( T
fT

tttt rrEuE σγ−+−= +  

                                                 
6 It follows that our analysis does not capture an optimal transition from a potential initial paygo system 
to a new and re-designed pension system. An explicit modelling of such a transition combined with the 
portfolio set-up in the present paper calls for additional research.  
7 We use the following general result for a lognormal stochastic variable Z: 

11
2

2
1

11 log,log ++++ ≡+= ttztttt ZzzEZE σ , see Campbell and Viceira (2001), p. 20. 
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where 2
Tσ  is the variance of T

tr 1+ . 

As a point of departure, we find it useful to consider the benchmark case of no social 

security system at all, i.e. τ = 0. It follows from (5a), (5b) and (7) that  

 (10) 2
11 )1(

2
1

)( r
ppf

t
pfT

t rrrr σωωω −+−=− ++ . 

This immediately implies that ( ) 2
2
1

1 )1( r
pprpfT

tt rrE σωωµω −+=−+  and 222 )( r
p

T σωσ = . 

Substituting these expressions into (9), we obtain a straightforward unconstrained 

optimization problem in the decision variable pω . We obtain the solution 

(11) 
2

2

2
1

r

r
r

p

γσ

σµ
ω

+
= . 

Intuitively, the optimal individual portfolio weight in stocks is increasing in rµ and 

decreasing in respectively γ and 2
rσ . Moreover, we note that the numerator in (11) is equal to 

( ))1/()1(log 1
f

tt RRE ++ + .8  

 

Optimal social security when capital markets are perfect 

Let us first assume that both the government and the representative individual have perfect 

access to the financial markets for bonds as well as stocks. There are no information 

asymmetries or transaction costs. Consequently, there is no need for the government to make 

financial investments on the behalf of the representative individual. We also note that the 

representative individual may offset any financial position he is exposed to due to the funded 

part of the social security system provided that “short” positions are allowed. It follows that 

the optimal social security system in this case may be implemented as a pure paygo system, 

i.e. we have β  = 0 at the outset. It then follows from (5a), (5b) and (7) that 

(12) 
[ ]rg

p
gr

p

g
f

tr
f

t
pfT

t rgrrrr

σττωστστω

στστω

)1(2)1()(
2
1

2
1

)(
2
1

)()1(

22222

2
1

2
11

−++−−





 +−+



 +−−=− +++

 . 

In turn this implies that 

(13)  
[ ]

[ ]rg
p

gr
p

g
g

r
rpfT

tt rrE

σττωστστω

σµτσµτω

)1(2)1()(
2
1

2
1

2
1

)1(

22222

22
1

−++−−





 ++



 +−=−+

 , 

and 

                                                 
8 This follows from the general result given in footnote 7. 
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(14) rg
p

gr
p

T τστωστστωσ )1(2)1()( 222222 −++−= . 

 Substituting (13) and (14) into the utility function (9), we derive the following 

optimal individual portfolio weight in stocks 

(15) 
22

2

*

1)1(
2
1

)(
r

rg

r

r
r

p

σ

σ

τ
τ

γστ

σµ
ω

−
−

−

+
= , 

where an asterisk is used in order to denote an optimal value in this “unconstrained case”. In 

order to interpret (15) we assume for a moment that the covariance between the stock market 

returns and the implicit return on the paygo system is zero, 0=rgσ . Then we observe from 

the first term on the RHS of (15) that a larger paygo system (a higher τ) increases the 

individual’s portfolio weight in stocks. In the general case of 0≠rgσ , this effect is 

accompanied by the effect of hedging demand, i.e. the last term on the RHS of (15). Because 

the paygo system introduces a non-tradeable risk caused by stochastic aggregate wage income 

growth, the individual uses the stock market to hedge this risk. Thus, 0<rgσ  contributes to a 

higher *)( pω , while 0>rgσ  contributes to a lower *)( pω . It follows that the paygo system 

increases *)( pω  if 0<rgσ  or if rgσ > 0 and its magnitude sufficiently small. 

 The government may derive the optimal size of the paygo system by the 

maximization of (9) subject to (13), (14) and (15). Solving this problem yields 

(16) [ ])1(

2
1

2
1

22

2
22

*

rgg

r

rg
r

r
g

g

ρσγ
σ

σ
σµσµ

τ
−






 +−





 +

= , 

where rgρ  is the coefficient of correlation between stock market returns and returns on the 

paygo system. The term in the brackets in the denominator of (16) is the unhedgeable, or 

systematic, risk of the paygo system. As long as 1<rgρ , this term is positive. Looking at the 

numerator of (16), we first note that ( ))1/()1(log 1
2

2
1 f

ttg
g RGE ++=+ +σµ . Thus, the 

optimal size of the paygo system is not surprisingly an increasing function of the expected 

excess return of the paygo system compared to the risk free return. The sign and magnitude of 

the second term on the RHS depends on rgσ . If 02
2

12
2

1 >+>+ g
g

r
r σµσµ , 0<rgσ  will 
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contribute to a larger paygo system.9 Moreover, the existence of a paygo system (i.e. τ > 0) 

can still be justified if 0>rgσ – but that hinges on a not too large magnitude of  2
r

rg

σ
σ . 

 Using (5a), (5b), (15) and (16), we may calculate the representative individual’s 

effective portfolio shares of gross income. In the case of no funded part in the public social 

security system (β = 0) – due to perfect access to the capital market for everybody – the 

effective share in the paygo system is *τ=b , see (5b).  The effective share invested in stocks, 

a, may increase or decrease in response to the paygo system. It follows from (5a) and (15) 

that 
τσ

σ

τ −
−=

1
2

2
r

rg

d
da . Thus, 0<rgσ  implies that the paygo system increases a and leads to a 

lower portfolio share in the riskfree asset (1 − a − b). The case of 0>rgσ  leads to a lower a, 

while the effect on the portfolio share in the riskfree asset is ambiguous. 

 

Imperfect access to the stock market 

The analysis above assumed that individuals have perfect access to the stock market. Is this 

really a realistic assumption? In reality most individuals in the OECD area still have only a 

tiny or zero part of their wealth allocated to the stock market. This is true even in the U.S. 

According to Poterba (2000), a majority of 80 per cent of U.S. households own only 4.1 per 

cent of total household stock market wealth including pension claims in 1998. Consequently, 

it is tempting to assume that most households have limited access to the stock market due to 

various formal as well as informal transaction costs and information problems.10 

If we accept the view that the representative individual does not have perfect access 

to the stock market, it follows that there is indeed a scope for a funded part of the public 

social security program. In our model context we simply assume in this subsection that the 

representative individual does not participate in the stock market due to some type of costs or 

imperfections, i.e. we assume that 0=pω  due to these types of exogenous reasons. In this 

case it follows that the optimal social security system should be designed in order to replicate 

the same effective portfolio weigths as derived in the unconstrained case above. We still 

assume that the government and the representative individual have similar access to risk free 

                                                 
9 The condition 02

2
12

2
1 >+>+ g

g
r

r σµσµ  is equivalent to 

( ) ( ) 01/()1(log)1/()1(log 11 >++>++ ++
f

tt
f

tt RGERRE . 
10 In different contexts Abel (2001) assumes that households face fixed cost of participating in the stock 
market, while both Abel and Constantinides et al. (1998) assume that young individuals invest “too 
little” in the stock market due to credit rationing. 
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lending. Consequently, we consider only stock market investments in the funded part of the 

social security system, i.e. 0 < β  ≤ 1 and 1=gω .11 

 We observe from (5a) and (5b) that the case of 1=gω  and 0=pω  implies that the 

effective portfolio weigths are respectively τβ=a  and )1( βτ −=b . Using that these weights 

were )1()( ** τω −= pa  and *τ=b  in the unconstrained case, we easiliy derive the following 

values of τ and gω , which replicate the optimal effective portfolio weights: 

(17a) *** ))(1( pωτττ −+= , 

(17b)  
)1()(

)1()(
***

**

τωτ
τω

β
−+

−
= p

p

. 

In the case of no individual access to the stock market we may therefore calculate the optimal 

size of the social security system and the optimal split between the paygo part and the funded 

part (in stocks) directly from *τ  and *)( pω , see (15) and (16). Intuitively, we see from (17a) 

that the increase in the social security contribution rate - compared to the unconstrained case - 

is exactly sufficient to restore the effective exposure to the stock market and at the same time 

maintain the size of the paygo system.  

 

 

4. Rawlsian risk sharing 

 

Turning to the Rawlsian risk sharing concept, we imagine that all the representative 

individuals of the different generations are present behind “a veil of ignorance” in the sense 

that they do not know which future generation they will be born into. Thus, at the time of 

enactment of the social security program, the representative individuals of any future 

generation do not know the wage income in the first period of life, nor the wage growth and 

stock market return that determine the net income in the second period of life.  

Clearly, we may in principle consider all sorts of sophisticated risk sharing schemes 

between “all” generations in this Rawlsian case. In, for example, the model of Gordon and 

Varian (1988) it turns out that a risk sharing scheme, which distributes any income shock 

between all future generations, is optimal. Such a scheme is obviously hard to implement, 

however, because it requires a combination of very activistic debt policy and exact knowledge 

of the stochastic income variable ’s underlying trend value in each period. Consequently, we 

will restrict ourself to the design of a straightforward social security program along similar 

lines as in the previous section. This – in combination with the constant portfolio weights 

                                                 
11 An alternative but less interesting way to replicate the optimal effective portfolio weights is to set τ = 
1 and then allocate the resources in the same way as in the unconstrained case. 
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property of the power utility function – implies that we may derive the optimal Rawlsian 

program by the maximization of the period t –1 expected utility of the representative 

individual in a given generation t. 

  In the case of Rawlsian risk sharing we rewrite equation (4) as 

(4’) )()(),1)(1( 111111
f

t
f

t
fT

t
T
tttt RGbRRaRRRWC −+−+≡+Λ+= ++++−+ , 

(where 1−tW  is known with certainty). In turn the loglinearized version of this equation, 

equation (6), can be rewritten 

(6’) T
tttt rwc 111 +−+ ++= λ , 

where T
tr 1+  is still given by the Taylor approximation in equation (7). We assume for 

simplicity that population growth is deterministic and given by NN t =+1  for all t. This 

implies that 11 ++ += tt ng λ  where )1log( Nn +≡ . It follows that 22
λσσ =g  and λσσ rrg =  in 

(7). We still assume as a benchmark case that the individuals have perfect access to the stock 

market, i.e. the optimal social security program can be implemented as a pure paygo program 

(β = 0). Consequently, )1( τω −= Pa  and τ=b  in (7). 

 Using that 1−tw  is known at the time of maximization and fr  is constant, we may 

write the utility function (8) as 

(18) { } 2
111 )1(

2
1

)()( c
fT

ttttt rrEuE σγλ −+−+= +−− , 

where 2
cσ  is the variance of 1+tc . It follows from (7) that 

(19) 
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Using the definition [ ] λµλ ≡− f
t rE  and noting that ng += λµµ , this implies that 

(20)  
[ ]

[ ]λλ

λ
λ

σττωστστω

σµτσµτωµλ

r
p

r
p

g
r

rpffT
ttt rrrE

)1(2)1()(
2
1

2
1

2
1

)1()(

22222

22
1

−++−−





 ++



 +−++=−+ +

 , 

and 

(21) λλλ σττωστστωσσ r
p

r
p

c )1)(1(2)1()( 2222222 +−++−+= . 

We assume that the representative individuals still make their optimal portfolio 

decisions after the magnitude of their wage income has been realized. This implies that the 

optimal individual portfolio weight in stocks is still given by (15) when we recall that 
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λσσ rrg =  in the current case. The government may therefore derive the optimal τ by the 

maximization of (18) subject to (15), (20) and (21). This yields 

(22) [ ])1(

)(
)1(

2
1

2
1

22
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2

2
22
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Comparing (22) to (16), when 22
λσσ =g , λσσ rrg =  and λρρ rrg =  in the latter case, we 

immediately observe that the difference between the optimal size of the paygo system in the 

case of Rawlsian risk sharing versus the case of traditional risk sharing is given only by the 

last term in the numerator in (22). In order to interpret this difference we first note that the 

case of Rawlsian risk sharing captures an additional source of risk facing a given generation 

t+1, namely tλ . We also note from the utility function (18) that a partial increase in 2
cσ  

actually increases utility. This may seem strange at first sight. We recall, however, that 2
cσ  is 

the variance of log consumption and, using the mathematical result given in footnote 6, this 

implies that the utility function (18) can be rewritten as 

(23) { } 1
2

1111 2
1

)1)(1(log)( −−+−− −−−+Λ+= t
f

ct
T
ttttt wrWREuE γσ . 

According to (23) the representative individual trades off the log of the expected arithmetic 

consumption level versus the variance of the log of consumption. It follows from (18) and 

(23) that an increase in 2
cσ  leads to a higher value of { }111 )1)(1(log −+− +Λ+ t

T
ttt WRE  for a 

given value of )( 111
T
tttt rwE +−− ++ λ  in the case of 1<γ . 

We are now able to give the intuition for the difference between Rawlsian and 

traditional risk sharing. Rawlsian risk sharing considers an additional source of risk, which 

implies that the ex-ante risk related to a given amount invested in the paygo-asset increases 

(compared to traditional risk sharing). In the case of 1>γ , this leads to a smaller paygo 

program in the Rawlsian case. In the following empirical part of this paper we will indeeed 

argue that this is the most likely case. The interpretation is simply that the government on 

behalf of the representative individual offsets parts of this increased exposure to wage risk by 

means of a smaller investment in the paygo-asset. The opposite respons follows from 1<γ . 

In this case a higher exposure to wage risk contributes to an increase in 

{ }111 )1)(1(log −+− +Λ+ t
T
ttt WRE , which dominates the effects of a higher 2

cσ , see (23). Clearly, 

1=γ  yields a boundary case characterized by similar portfolio weigths as in the case of 

traditional risk sharing for the the paygo-asset as well as for the other assets. 

Looking at other papers on the risk sharing implications of paygo program, a 

common conclusion is that a paygo program contributes to increased intergenerational 
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income-risk sharing in the cases where the risk sharing concept is analogous to what we have 

called Rawlsian risk sharing, see Gordon and Varian (1988), Enders and Lapan (1982, 1993) 

and Thøgersen (1998). In our analysis the paygo program contributes to a higher exposure to 

wage income risk, however. The discrepancy is due to different assumptions regarding the 

stochastic properties of income (or output) growth our time. The cited series of papers all 

assume that the trend growth of income (output) is deterministic and even zero. In that case a 

paygo program leads to increased intergenerational risk sharing because each independent 

income shock is shared between the young and the old generation. 12 In the present paper we 

assume that the (trend) income growth rate  is stochastic, however. Then it is impossible for 

the representative individual in a given generation t to avoid the full exposure to the income 

shock in period t by means of a paygo program. The reason is that this individual will receive 

a paygo pension benefit equal to )1)(1()1( 11 NW ttt +Λ+Λ+ +−τ . On the other hand, if trend 

growth was deterministic (and the shocks still independently and identically distributed), the 

pension benefit would only be subject to the income shock in period t+1 and not to the 

income shock in period t. 

 Throughout our analysis of Rawlsian risk sharing we have assumed that the 

representative individuals in all generations have perfect access to the stock market. If the 

representative indivividuals do not participate in the stock market, the government may, 

however, maintain the optimal exposure to the stock market and the paygo-asset by adjusting 

τ and introducing a funded part of the social security system. This can be done in exactly the 

same way as derived in the last part of section 3, i.e. the equations (17a) and (17b) are still 

valid – but the relevant *τ  is of course given by (22) in the case of Rawlsian risk sharing. 

 

 

5. Numerical illustrations   

 

This section attempts to provide numerical estimates of the optimal size of the paygo system 

and the portfolio weights derived above for four countries: The US, the UK, Sweden and 

Norway. The variances and covariances used in the calculations are estimated from historical 

data series. These series are described in more detail in the data-appendix. Stock market 

returns are calculated from total value indices for each individual country. The implicit return 

                                                 
12 In order to see this imagine a representative individual in a given generation t, who works and 
receive a stochastic income wt in the first period of life and is retired and receives only a pension 
benefit in the final second period of life. Let wt=w+et where w is the constant trend income and et is an 
i.i.d. stochastic shock. Let Var(et )=σ2 , let the real interest rate be zero and disregard population 
growth. Then it is straightforward to show that the variance of the net life income of this individual is 
equal to τ2σ2 + (1–τ2)σ2, where τ  is the contribution rate of a paygo system. Clearly, the existence of a 
paygo system (0<τ<1) reduces this variance below unity due to intergenerational risk sharing. 
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of the paygo system, gt , is calculated exactly (based on data for labor force growth and real 

wage growth) in the Norwegian case and approximated by using data for real GDP growth in 

the other countries. We also estimate the mean expected stock market returns from the 

historical data. Recogizing that future growth rates for gt are expected to decline in all the 

countries in our sample due mainly to a stagnation in the labor supply, we use growth 

projections from recent government white papers in order to specify E(gt). As an estimate of 

the riskfree real interest rate, we use fr  = 2 per cent for all countries.  This is in line with the 

real returns on short-term money market instruments reported by Campbell (2001, table 1) for 

several countries.13 Finally, we assume that the coefficient of relative risk aversion is given by 

γ  = 5 for all countries. 

 Table 1 reports the key statistics from our historical data, the projected mean growth 

rates and our assumptions for fr  and γ. We observe from Table 1 that equity returns have 

been high on average and volatile in all countries for our sample periods.  It is also interesting 

to note that the contemporaneous annual correlation between equity returns and economic 

growth (gt) is low for all countries, and even negative for Norway. 

 

Traditional risk sharing 

Adopting the traditional risk sharing concept, we first consider the benchmark case of no 

public pension system. Panel A in Table 2 gives the optimal individual allocation to stocks in 

this case (calculated from equation (11)).  Riskfree savings range from about 60 per cent of 

the representative individual’s portfolio in Sweden to about 85 per cent in Norway (which had 

a rather poor stock market performance in our sample period). 

 Panel B reports the values of the key variables when capital markets are perfect and 

the optimal pension system is a pure paygo system. Given the data and assumptions in Table 

1, the attractiveness of a paygo program varies widely across the four countries. In order to 

explain the differences in the optimal contribution rates (i.e. the effective portfolio share in 

the paygo asset), we first look at Norway and the UK.  In both these countries the expected 

excess return on the paygo asset is negative (µg + ½σg
2 < 0).  Hence, a necessary condition for 

the optimal contribution rate to be strictly positive is that σrg < 0, see equation (16).  This is 

not fulfilled for the UK (table 1), and consequently we obtain τ* = 0 in this case.14  

In Norway the projected value of gµ  (= frgE −)( ) is even lower than for the UK, 

but still the negative correlation between stock market returns and growth implies that the 

contribution rate should be positive (albeit low in this example). Thus, it is the hedging 

                                                 
13 As noted by Campbell (2001), the returns on short -term t-bills are not completely risk-free, but we 
ignore this complication here. 
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Table 1: Baseline values of key variables and parameters 

 
 Norway Sweden UK USA 

Panel A: Values from historical data 

Period 1970-99 1920-98 1919-98 1891-1998 

r  5.07 % 7.07 % 7.41 % 6.93 % 

g

r

gr

σ

σ
ρ

 

3.57 % 

34.85 % 

−0.298 

6.28 % 

18.65 % 

0.055 

3.50 % 

21.69 % 

0.087 

5.77 % 

18.67 % 

0.112 

Panel B: Projected and assumed values 

E[g] 1.69 % 2.20 % 1.88 % 2.96 % 

rf 2.00 % 2.00 % 2.00 % 2.00 % 

γ 5 5 5 5 

 Note: r  denotes the historical mean stock market return. 
 
 

Table 2: Private and public allocation rules under traditional risk sharing 
 

 Norway Sweden UK USA 

Panel A: Optimal allocation to stocks, no pension system (τ = 0) 

a = ω p 15.06 % 39.16 % 32.99 % 38.28 % 

Panel B: Allocation with pure paygo (β = 0), perfect capital markets 

τ 4.94 % 13.56 % 0 54.32 % 

ω  p 16.00 % 45.01 % 32.99 % 79.68 % 

A 15.21 % 38.91 % 32.99 % 36.40 % 

b = τ  4.94 % 13.56 % 0 54.32 % 

Panel C: Allocation with non-participation in stock-markets (ω p= 0) 

τ 20.16 % 52.46 % 32.99 % 90.71 % 

β 75.48 % 74.15 % 100 % 40.12 % 

a 15.21 % 38.91 % 32.99 % 36.40 % 

b 4.94 % 13.56 % 0 54.32 % 

 
 

 

                                                                                                                                            
14 The optimal τ is actually negative for the UK, but we rule out negative contribution rates per 
definition. 
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properties of the paygo asset that is attractive in the Norwegian case. For Sweden and the US, 

on the other hand, the combination of comparatively high growth rates (higher than fr ) and 

low values of the correlation ρrg imply positive contribution rates. In the US case, the 

projected growth rate is so much higher than fr  that the portfolio weight in the paygo-asset 

should be larger than 50 per cent. 

Comparing the second row in panel B to panel A, we see that private individual risk-

taking increases for the countries with positive contribution rates.  For Sweden and the US, 

this occurs despite a negative hedging demand (ρrg > 0).  However, the total effective 

portfolio weight in stocks (given by a = ω(1−τ) in this case, see eq. (5a)) decreases due to this 

positive correlation. For Norway we have ρrg < 0. This induces positive hedging demand, 

which increases total effective risk taking in the stock market. In all countries except the UK, 

the total portfolio weight in risky assets (a + b) is much higher than in the benchmark case of 

no public pension program. 

 In panel C of Table 2 we report the key variables in the case of no individual 

participation in the stock market ( 0=pω ). In Norway, the rather modest stock market 

performance implies that the optimal contribution rate should be increased with 

approximately 15 percentage points. In the other countries, the contribution rate increases 

with approximately 35 percentage points compared to the case with perfect capital markets. 

Moreover, the optimal UK system will now be fully funded (with all contributions invested in 

stocks) and characterized by a contribution rate equal to the portfolio weight in stocks in the 

case of perfect capital markets. In the other three countries the pension system is partially 

funded. It follows that the effective allocation of gross income to the different assets 

replicates that in panel B. 

 A possible objection to our analysis is that the various variances and correlations in 

Table 1 are calculated from annual data, while pension saving typically has much longer 

investment horizons. In particular, one may be concerned that the correlation between stock 

returns and aggregate wage growth may be substantially higher for longer horizons, and that 

the risk sharing properties embedded in a paygo system thus weakens (Jermann, 1999). Figure 

1 plots the correlation coefficient between GDP growth and stock returns (based on 

overlapping growth rates) for Sweden, the UK and the US, varying the horizon between 1 and 

30 years (Norway is excluded due to the short data series for Norwegian stock returns). 

No general pattern emerges from this Figure. While the US correlation between growth and 

stock returns clearly increases for horizons longer than 20 years (as Jermann, 1999, 

demonstrates), the UK data show a low and decreasing correlation for long horizons, and the 

Swedish correlation is remarkably stable. Moreover, the correlation reaches its maximum for 

short horizons (2-3 years) for both Sweden and the UK. Consequently, our data do not in 
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general support the claim that a long investment horizon diminishes the importance of paygo 

systems in retirement savings. 

 

Table 3: Ralwsian vs. traditional risk sharing 
 

 Norway Sweden UK USA 

Panel A: Ralwsian risk sharing, perfect capital markets 

τ 0 13.32 % 0 53.30 % 

ω p 15.06 % 48.56 % 32.99 % 78.02 % 

a 15.06 % 42.10 % 32.99 % 36.43 % 

τ(trad) − τ(R) 4.94 % 0.24 % 0 1.01 % 

Panel B: Ralwsian risk sharing, non-participation in stocks markets 

τ 15.06 % 55.41 % 32.99 % 89.74 % 

β 100 % 75.97 % 100 % 40.60 % 

 
 
 
Figure 1: Correlation between GDP growth and stock returns over different horizons. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Rawlsian risk sharing 

Turning to the Ralwsian risk sharing concept, we recall that we derived the optimal 

contribution rate, given in (22), under the assumption of deterministic population growth. To 

provide a meaningful comparison between the contribution-rates under traditional and 

Rawlsian risk sharing we now assume that all fluctuations in gt is due to fluctuations in 

productivity (and real wage) growth. This is, of course, a very crude approximation, which 
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nevertheless allows us to get a quantitative impression of the significance of the Rawlsian risk 

sharing concept. Referring to equation (22), we assume that σλ = σg and ρrλ = ρrg. 

 Panel B of Table 3 reports the key variables under Ralwsian risk sharing. As we 

know from section 4, the optimal contribution rates are lower under this risk sharing concept 

because we have γ > 1, see (22). The optimal contribution rate is therefore still zero for the 

UK. For Sweden and the US, the difference in contribution rates under the two risk sharing 

concepts turns out to be very small. The reason can easily be seen from the last term in the 

nominator of equation (22). We observe that the difference in contribution rates between the 

two risk sharing regimes is lower the closer ρrλ is to 0. As we saw in Table 1 (recalling that 

ρrλ = ρrg), the absolute value of this correlation coefficient is indeed low in the annual data for 

Sweden and the US. This implies that the term 2
rλσ  in (22) is very small. Even if we imagine 

for a moment that γ = 30, the difference between the contribution rates under the two regimes 

is just 1.23 percentage-points in the US case. For Norway, the absolute value of ρgr is 

approximately 0.3, and this is sufficient to create a substantia l difference between the 

contribution rates under the two risk sharing concepts. In fact, the optimal contribution rate 

falls to 0 when the concept is changed from traditional to Rawlsian in the Norwegian case. 

 Finally, panel B of Table 3 demonstrates that the effect of non-participation in stocks 

markets is analogous to what we saw under traditional risk sharing (compare to the difference 

between the panels B and C of Table 2). 

 

 

6.  Final remarks  

 

During the recent years a large part of the literature on social security systems has dealt with 

comparisons between funded and paygo program as well as the design of potential transitions 

from paygo financing to funded systems. Adopting a portfolio choice approach, this paper has 

provided a different perspective on the design of social security systems. Interpreting the 

paygo system as a “quasi-asset” along the lines of Persson (2000), the analysis has focused on 

the optimal size of the paygo system and the optimal split between the paygo part of pension 

savings and the funded part. Clearly, the funded part of the pension savings can – from a 

representative individual’s point of view – be handled individually if access to the stock 

market is perfect, or by the government if this access is imperfect.  

 The general insight from our analysis is that a low-yielding paygo system can benefit 

the representative individuals if the correlation between the implicit return on the paygo 

program and the stock market returns is low or negative. We have derived analytical formulas 

for the optimal size of the paygo system and the optimal magnitude of the funded pension 
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saving in the stock market. The optimal size of the paygo program depends on the risk 

concept. It turns out that the optimal paygo system is smaller under “Rawlsian risk sharing” 

(which captures all risks to the net lifetime income of the representative individual at birth) 

than under “traditional risk sharing” (which capture only risks which are realized in the 

representative individual’s second period of life). The reason is that the paygo system 

increases the exposure to wage income risk.  

 We provide numerical illustrations for the USA, the UK, Sweden and Norway. It 

turns out that the paygo-asset should play a role in pension savings in all of these countries 

except in the UK. Not surprisingly, the size of the paygo system is rather sensitive to the 

estimated mean implicit return on the paygo system. The Norwegian case illustrates, however, 

that a negative correlation between equity returns and growth may justify a paygo program 

even if the mean expected return on the paygo asset is very low. With limited stock market 

participation, our calculations suggest that a mixed paygo/ funded system is optimal (except 

in the UK case). Finally, we note that the Rawlsian risk sharing concept reduces the scope for 

paygo programs marginally in the US and Sweden, and more significantly in Norway.  

 Looking at the social security reform agenda in many OECD countries, we note that 

attempts are made to introduce funded parts in systems, which have been entirely paygo 

financed at the outset. Assuming that the representative individual does not have perfect 

access to the stock market, our analysis clearly suggests that such developments would 

improve the risk sharing properties of the social security program.  

 

 

Data appendix 

 

Stock market data  

Norway: The Morgan Stanley Capital International Gross Return Index in local currency.  

Year-end quotes from 1969 to 1999. Available at www.msci.com. 

Sweden, UK and US: The annual data from Campbell (1999) updated through 1998. They are 

described in detail in the appendix to Campbell (1999).  

 

GDP / calculation of gt  

Norway: Data on labor force growth are collected from OECD Labor Force Statistics, while 

data on wage growth are collected from the Hourly Earnings Index in IMF’s International 

Financial Statistics, 2000. 

Sweden, UK and US: Real GDP data are collected Maddison (1991) for the period up to and 

including 1989 and then from IFS, 2000 for 1990-1998. 
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Growth projections 

Norway: The latest Government Long Term Program (Government White Paper 

“Stortingsmelding 30, 2001/2002”) assumes mean annual GDP growth rates equal to 1.7 per 

cent over the 1999-2010 period. Thus, E[g] = ln(1.017) = 1.69 per cent. 

Sweden: The latest Government Long Term Program (“Government White Paper SOU 

2000:7”) assumes mean annual GDP growth rates equal to 2.5 per cent over the 1999-2010 

period and 1.8 per cent for the period 2005-2008. We use the average of these numbers (2.22 

per cent), which implies E[g] = ln(1.0222) = 2.20 per cent. 

UK: Long run projections in the “Economic and Financial Strategy Report” of the 

Government Budget for 2001 assume annual growth rates amounting to 2.25 per cent for 

2000-2010 and 1.75 per cent for 2011-2030.  We use E[g] = ln(1.019) = 1.88 per cent. 

USA: The “2001 – Annual Report of the Council of Economic Advisers” assumes annual 

growth rates equal to 3.1 per cent over the 2000-2008 period and 2.9 per cent from 2009 and 

onwards. We use an average of these projections; E[g] = ln(1.03) = 2.96 per cent. 
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