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Abstract

The work discussed in Bivand and Brunstad (2003) was an attempt to
throw light on apparent variability in regional convergence in relation to agri-
culture as a sector subject to powerful political measures, in Western Europe,
1989-1999. The present study takes up a number of points made in conclu-
sion in that paper. Since it is possible that the non-stationarity found there is
related to further missing variables, including the inadequacy of the way in
which agricultural subsidies are represented, we attempt to replace the agri-
culture variables with better estimates of producer subsidy equivalents. It is
also sensible to check that agricultural support is not masking or masked by
other variables, for example human capital. The paper is also an account of
the development of software contributed to the R project (R Development Core
Team, 2005) as packages, in particular the spdep package for spatial econo-
metrics. New functions generously contributed by researchers will be pre-
sented and compared. We find that agricultural support does impact regional
economic growth after human capital is taken into consideration, and that we
can show that apparent non-stationarity is alleviated by adding these variables.
We further find that the moderated remaining spatial autocorrelation can best
be represented by a substantive spatial lag model.

JEL classification: C13, C80, C88, Q18, R11
Keywords: regional growth, agricultural policy, spatial econometrics, open
source software, statistical computing.

1 Introduction

A striking feature of the rich and dynamic field of study of growth models and
regional convergence is the wide range of empirical methods used. The range is
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now so wide that the field itself is splitting into clusters, within each of which debate
takes place around separate approaches, even though the underlying hypotheses
may be similar. We will argue here that shared analytical platforms should be of
assistance in enhancing inter-cluster communication, and will exemplify this using
functions written in R (R Development Core Team, 2005).

We concluded our earlier analysis of interactions between agricultural policy
and regional growth in Western Europe (Bivand and Brunstad, 2003) by observing
that, while we found support for the role of agricultural subsidies in accounting for
variations in regional growth, it would be important to try to replace the agricul-
ture variables with better estimates of producer subsidy equivalents. These are now
available, albeit not for the same regions as in the earlier study. Our attention has
also been drawn to the desirability of checking whether the interaction between agri-
cultural transfers and regional growth is not masking or masked by other variables,
such as human capital, and this will also be undertaken here. We will also exam-
ine whether the choice of neighbour representation used, and/or breaks of series in
regional GVA, impact our conclusions.

Our specific concerns in Bivand and Brunstad (2003) were focused on the tech-
nical question of spatial non-stationarity, a question which remains relevant, but
which has been posed in rather sharper form by McMillen (2003). He argues that
spatial econometrics methods are commonly used when in fact the fitted model is
misspecified. We would argue that in order to move ahead in debating such issues,
we need to be able to access shared toolboxes of functions allowing adequate com-
parisons of methods to be made. Implementations of methods can differ in detail,
and when this is the case, only open source solutions can give researchers the insight
needed to understand how different methods perform (or mis-perform) in relation
to data sets of interest.

Rather than work with other available software libraries using Matlab! or Python?,
we have chosen to work using R, not least because of the willingness of colleagues
and authors of methods and/or their implementations to contribute functions to the
R spdep package and other spatial data analysis packages3. Some aspects of the
use of functions in the spdep package are covered in Bivand (2002, 2006), and de-
tails of spatial weights matrix construction are given in Bivand and Portnov (2004).
These papers also cover the dynamics of software development and distribution in
the R environment.

We will first set the scene, introducing the use of spatial econometrics meth-
ods in the study of regional convergence mainly by reference to published reviews.
Next, McMillen’s criticism will be presented, and challenges drawn from this will
be related to regional convergence results. The core of the paper is composed of the
fitting of a sequence of more elaborate models using a variety of methods, includ-
ing least squares, spatial lag and error simultaneous autoregressive models using
maximum likelihood and generalised moments, semi-parametric spatial filtering,
and geographically weighted regression. Weaknesses and strengths of the chosen

'lsuch as James P. LeSage’s Spatial econometrics library, http://www.
spatial-econometrics.com/

2such as PySAL - A Python Library for Spatial Analytical Functions, http://sal.uiuc.edu/
projects_pysal.php

3details of packages are available from the R-Geo website: http://sal.uiuc.edu/csiss/
Rgeo/index.html



methods will be presented and compared, often using standard R functions available
within the chosen computing environment. Where relevant, code snippets will be
presented; this paper is also written as “reproducible statistical research” (Leisch
and Rossini, 2003), with text interspersed with the R code needed to reproduce the
results.

2 Convergenceand spatial econometrics

There is now a broad convergence literature, reviewed elsewhere in this special
number (see, for example, Fingleton and Lopez-Bazo, 2006), in Fingleton (2003),
and in the context of inequality by Rey and Janikas (2005). We will not repeat the
general thrust of arguments about convergence, moving straight to the way in which
[B-convergence is typically operationalised.

In empirical studies following the tradition of Barro and Sala-i-Martin (1992),
[B-convergence is represented in the following way:

1. YT

T Iog(yi,o
where a and 0 are coefficients and y is an independent and identically distributed
disturbance term. Given an estimate of 6, the speed of convergence may be rep-
resented as: B = —log(1+T6)/T, with 100P expressing this speed in percentage
points (Barro and Sala-i-Martin, 1992, p. 230). A positive value of (3 indicates con-
vergence of GVA per capita across territorial units of analysis, whereas a negative
value would indicate divergence. The underlying regularity in this representation
is that the rate of growth y; 1 /yi o of a regional economy i in the period up to T is
related to its initial condition in period O for some measure y; o.

Apart from other issues, the prime focus of spatial econometrics studies has
been related to the disturbance term u;j. In some cases, dynamics have been ex-
amined just in relationship to the rate of change itself, when the growth rates of
regions have been plotted against the average growth rates of sets of neighbours,
and explored without taking account of other variables reflecting differences in ini-
tial conditions. In parentheses, a difference in statistical practice between spatial
econometrics and spatial epidemiology is that while the latter usually fit models us-
ing case or observation weights to capture difference in impact for regions of greatly
differing size (see, for example, Waller and Gotway, 2004), such weights are almost
never used with economic data. Using regional population size weights in the work
presented below does change the results, often boosting residual spatial autocorrela-
tion — very possibly spatial dependence in the values of the weights feeds through
into the fit. Further consideration of the use of case weights will however be left for
elaboration in future research (for another paper taking up the issue of case weights,
see Petrakos, Rodriguez-Pose and Rovolis, 2005).

) = a+6log(yi o) + Ui, (1)

2.1 The McMillen misspecification challenge

McMillen (2003) points up the ease with which we can test simple models of spa-
tial data for spatial autocorrelation, and interpret the rejection of the null hypothesis
of no dependence as meaning that dependence is present rather than some other



misspecification. This is close in sense to the warning bells rung by Fingleton
(1999) about the way in which Moran’s | can respond to a number of misspeci-
fications. McMillen’s paper has not yet been cited often in the Regional Science
literature, but has been lauded by Schabenberger and Gotway (2005, pp. 22-23).
They write: “... the impact of heterogeneous means and variances on the inter-
pretation of Moran’s | is both widely ignored and completely confused throughout
the literature. McMillen (2003) offers perhaps the first correct assessment of the
problem (calling it misspecification)” (page 23).

McMuillen notes that “tests for spatial autocorrelation also detect functional form
misspecification, heteroskedasticity, and the effects of missing variables that are
correlated over space” (our italics, pages 208—209). Consequently, when studying
convergence in the form discussed here, it will be of key importance to see whether
the disturbance term u; not only contains information about possible spatial depen-
dence, but also whether additional variables do not reduce such dependence. This is
relevant in this case, for which no clear behavioural model for information spillover
Is proposed, but where spatial dependence is often attributed to a mismatch between
the functional regions constituting the economy and the administrative boundaries
used for data collection and aggregation. When a behavioural model for informa-
tion spillover is available, that is when the observational units are active polities and
their mutual interaction can be modelled, these concerns are perhaps less pressing
(see, for example, Bivand and Szymanski, 2000).

3 Estimating convergence

In this section, we will present the source of the EU GVA data used, and apply a

number of model fitting methods and specification tests. In the course of examining
the results of fitting the simple growth model, it will become apparent that there
are spatial regimes in the data, that groups of regions appear to behave in different

ways. In the next section, additional variables will be included in the model, and a

wider range of model fitting methods will be used.

3.1 Data sources for EU NUTS 1/2, 1989-1999

The data used for EU NUTS2 gross value added for 1989 and 1999 were extracted
from Cambridge Econometrics’ European Regional Databank, and are measured in
million 1990 ECU and 1000 persons®. The start and finish years were chosen in the
earlier paper (Bivand and Brunstad, 2003) to accommodate available agricultural
data, for which major breaks in series occurred when revisions of the System of
National Accounts, knocked on to EAA 97, the European system of agricultural
accounts. Because the data source we are now using to measure agricultural policy
impacts is also available for Greece, we have extended our regional coverage here,
but still do not include Denmark, Ireland, UK, Berlin and former East Germany,
or overseas dependencies and Atlantic islands. Our agricultural policy data source
also aggregates NUTS2 regions to NUTS1 in Belgium, Netherlands and Germany,
leaving us with 93 units of observation, partly at NUTS1 and partly at NUTS2.

4We would like to thank Cambridge Econometrics and Sasha Thomas for their help.



Fitting the simple growth model in R is done with the 1m() function, which takes
as its first argument a formula object. The left and right hand sides are separated
by a tilde, and the variables used here are growth (% Iog(ﬁ—ggg)), and gva89 (y19s9),
where y is GVA in million EUR divided by population figures for the same year in
thousands, that is GVVA per capita in thousand EUR. The conv.1m object contains
the results of fitting the formula to the data using a least squares linear model with
default arguments not given explicitly; arguments do not need to be named, and can

also be given by position.

> conv.1lm <- 1m(formula = growth ~ log(gva89))

Table 1: Results and specification tests for the simple growth model.

value std. error  p-value

Constant -0.01123  0.00578 0.05498
0 0.00967  0.00238 0.00011
% speed of convergence -0.923

o 0.0114

adjusted R? 0.144

Studentized Breusch-Pagan test 25.0 5.6e-07
RESET test 3.14 0.048
Moran’s | 0.656 <le-08
LM error 78.8 <le-08
LM lag 81.7 <le-08
DLM error 21.6 3.4e-06

Table 1 presents an extract of the results for this simple model. We see that
the O coefficient is significant, and has the opposite sign to that expected, with a
consequent negative percentage convergence rate. Tests for heteroskedasticity and
functional form indicate problems with the specification. In order to test for spatial
dependence, we need a suitable weights matrix, and choose here, as in Bivand and
Brunstad (2003), to use a sphere of influence graph definition of neighbours; row
standardised spatial weights are used throughout. This definition is derived from
work in computational geometry described in Avis and Horton (1985); the points
representing the regions are GISCO NUTS2 or NUTS1 label points projected to
Lambert Azimuthal Equal Area using EU standard parameters. This representation
gives two subgraphs, there being no link between the Greek regions and the others.
The spatial distribution of the standard residuals for this fit are shown in Figure 1,
with a perhaps unexpected marked difference in sign between regions in Greece and
in Spain and Portugal. The results of Moran’s | and the Lagrange Multiplier tests
for spatial dependence are all highly significant.

The final line in Table 1, for the differenced model LM error test, is drawn
from Kosfeld and Lauridsen (2004). It is calculated from the same model after the
variables have been spatially differenced, Ay = AXp + u, where A = (I — W), and
W is a matrix of spatial weights. Kosfeld and Lauridsen (2004, page 714) suggest
that if the LM error test is positive but the differenced model LM error test is zero,
the regression is nonstationary and spurious, if both are positive, we have stationary
spatial autocorrelation, and if the LM error test is zero but the differenced model
LM error test is positive, autocorrelation is absent. If we ignore the other serious



misspecifications — something we should certainly not do — then their test strategy
would suggest that spatial autocorrelation is present.
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Figure 1: Simple model standardised residuals

Table 2: Summary measures for six weights matrices: number of regions, total
number of links, minimum, maximum and mean number of links, and number of
subgraphs, sorted by numbers of links.

n links min max mean subgraphs
MST 93 184 1 3 1978 1
Relative 93 234 1 4 2516 1
Gabriel 93 354 1 6 3.806 1
SOl 93 398 1 8 4.280 2
D350 93 898 1 19 9.656 1
ID350 93 898 1 19 9.656 1

It may be of interest to check whether the choice of definition of neighbours
affects our results. In order to do this, a number of extra spatial weights were
prepared, using the same input coordinates to represent the 93 regions. Table 2
shows summary measures for the six definitions compared, the sphere of influ-
ence neighbours, minimum spanning tree neighbours, Gabriel and relative neigh-
bour graph neighbours, and distance neighbours with a threshold of 350km, all as
row-standardised binary weights. Finally, the distance-based neighbours using in-
verse distance weights were added. The table shows the definitions sorted by their
numbers of links, from the most to least sparse. Only the sphere of influence neigh-
bours do not connect the regions of Greece to the rest of the map.



Table 3 shows the values of Moran’s | using different spatial weights for the
residuals of the simple model sorted by probability value. The value for our cho-
sen representation of neighbours, sphere of influence neighbours, appears to be
very similar to the others calculated using the alternative neighbour definitions and
weights. There are some differences in values and probability values, as would be
expected, but the inference drawn would be the same,

Table 3: Observed values of Moran’s | from the residuals of the simple model for
six different weights matrices (row-standardised), sorted by p-values.

Observed Moran’s | p-value
D350 0.6216 2.086e-40
ID350 0.6512 2.359%-38
SOl 0.6557 1.011e-21
Gabriel 0.6217 7.134e-18
Relative 0.6720 1.165e-13
MST 0.7115 2.986e-12

3.2 Spatial regimes

From our earlier work, we are aware that SW Iberia appears to behave differently
in the simple model. On the basis of a scatter plot of the variables, in which the cur-
rency crises in Greece force down the EUR-denominated GVA per capita in 1999,
and hence the growth rate, it seemed logical to include some special treatment for
Greek regions too. Among others, Boldrin and Canova (2001) note that artefacts
may be introduced into comparative series by deflators for price levels and/or ex-
change rates. The Cambridge Econometrics data for GVVA used here are converted
to ECU/Euro using tables from International Financial Statistics Yearbook pub-
lished by the IMF (Sasha Thomas, personal communication, 2002). So regions in
countries with unusual exchange rate series will appear to perform differently from
regions in countries with typical exchange rate series. The left frame of Figure 2
shows exchange rate series deflated to purchasing power from the data set used by
Boldrin and Canova (2001)°, which show why the negative performance of Greek
regions is an artefact of the conversion of Drachma GVA values to ECU/Euro.

Other issues connected to the very aggregated and manipulated nature of NUTS2
GVA values will be addressed below, but to examine the impact of different ex-
change rate impacts here, a factor fGRSWIBa was constructed with three values:
c("Other", "SW Iberia", "Greece"), and a nested interaction model was esti-
mated. The formula now expands into the main effects for the spatial regime fac-
tor, and then the initial condition variable 1og(gvag9) for each level of the spatial
regime factor, omitting the global constant (Chambers and Hastie, 1992, page 27).
An analysis of variance between the simple model and this nested interaction model
is the Chow test for the simple model for the chosen spatial regimes®.

> convl.lm <- Im(formula = growth ~ fGRSWIBa/(log(gva89)) - 1)

Shttp://www.econ.umn.edu/ mboldrin/Papers/regio-eu.zip
6Thanks to Achim Zeilis for clarifying the use of formula syntax for this case



We can see from the result of the Chow test: 35.9, probability value <1e-08, that
taking account of spatial regimes is clearly justified. In addition, the slope signs are
all negative as expected, with relatively high percentage convergence rates for two
of the distinguished spatial regimes. Frame b) of Figure 2 shows the regression line
fitted for all regions, and for each of the three spatial regimes in turn.
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Figure 2: a) Purchasing power standard exchange rates to ECU/Euro, 1989-1998; b)
Growth model fits with three spatial regimes, SW Iberia, Greece, and other regions.

Carrying nested interactions, implying separate convergence models for each of
the spatial regimes, forward into the next section, in which additional variables will
be considered to help account for variance in growth rates, will be cumbersome, and
a potential simplification seems worth trying. Since we can see from the right frame
of Figure 2 that the slopes of the regression lines for Greek regions and regions in
SW lberia are similar, and we know from Bivand and Brunstad (2003) that added
variables account for growth differences between SW Iberia and the remaining re-
gions, we will here try just using a factor (dummy) for the Greek regions, shifting
the intercept for those regions to take account of the currency crises and shift in the
Drachma/EUR exchange rate during the study period. The model is them:

> convGR.1m <- Im(growth ~ log(gva89) + fGR)

An analysis of variance between the nested interaction model and the simplified
model with just a factor for Greek regions gives an F value of 2.40, which with
the appropriate degrees of freedom has a probability value of 0.074. Since the
simplified spatial regimes model gives only a slightly worse fit, we will proceed
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using a factor for Greek regions in the following section. The full results for this

model are shown in Table 4, and now have a 0 estimate with the expected sign, and

which is clearly significant, and a positive percentage convergence rate. The model
now accounts for roughly two-thirds of the variance in the growth variable, and

the significance of all the presented specification tests has fallen substantially. The
differenced model LM error test is not calculated, because the spatial difference of

the Greek regions factor and its spatial lag is zero, this being caused by the fact that

no Greek region has a neighbour outside Greece in the neighbourhood definition
used here.

Table 4: Results and specification tests for the simplified spatial regimes model.

value std. error  p-value

Constant 0.03862  0.00573 < 1e-08
0 -0.00920  0.00225 9.7e-05
Greece factor -0.03667  0.00321 < 1e-08
% speed of convergence 0.965

o 0.0073

adjusted R? 0.646

Studentized Breusch-Pagan test 3.82 0.15
RESET test 4.32 0.016
Moran’s | 0.227 0.00012
LM error 9.41 0.0022
LM lag 10.3 0.0013

4 Estimating conver gence with additional variables

In Bivand and Brunstad (2003), our immediate concern was to relate agricultural
variables to change, after taking initial GVA per capita into account. Having fur-
ther reviewed the recent literature on regional convergence, we are aware that our
tentative conclusions are not only subject to questioning with regard to the oper-
ationalisation of agricultural policy impacts, but also to the possibility that other
variables with a similar spatial pattern may be at least as important as agricultural
policy support in helping explain regional growth rates. We will take up one such
variable, human capital, first, before going on to revise our operationalisation of
agricultural policy impacts.

In terms of our initial, unconditional, convergence model (equation 1), positive
values of 3 would indicate so-called absolute 3-convergence. Allowing for differ-
ences in steady state across regions, conditional B-convergence can be represented
in the following way (see for example Fingleton and Ldpez-Bazo, 2006, in this
volume, equation 1):

1 A
“log(X:T) = & + Blog(yi o) + 8% + Ui, @)
T Yi.0

where & is a vector of coefficients and % is a vector of variables controlling for
differences across regions. In our case, these variables will include the dummy for
Greek regions (shifting the intercept), a human capital variable, and an agricultural
support variable.



4.1 Human capital 1996

We have operationalised human capital by using Eurostat tables for the percentage

of the active population by NUTS2 region constituting human resources in science

and technology (HRST) in 19967. We are aware that 1996 is very late in our pe-

riod, but earlier data with sufficient regional coverage have not been identified. The
HRST definition is “persons who successfully completed education at the third level
in a S&T field of study, or not formally qualified as above but employed in a S&T
occupation where the above qualifications are normally required’®. We would ex-

pect regions with relatively higher levels of human capital defined in this way to
experience higher rates of growth. The human capital variable hc96 varies consid-

erably between regions; in order to reduce numerical problems, the variable has

been rescaled to thousands of HRST persons per 10,000 active.

4.2 Net agricultural support 1996

Although not ideal, some estimates of producer subsidy equivalents for agricul-
tural policy support have been made available in a report prepared for the European
Commission prior to the completion of the second cohesion report®. Although the
report mentions numerous difficulties in collating a usable data set, including non-
reporting by many countries, and non-reporting at the NUTS2 level by others, which
is why we have been forced to aggregate NUTS2 regions to NUTS1 in Belgium,
Netherlands, and Germany, we have chosen to use the data denoted Finpc1996 in
the report, here nett.pc.1996. These are among the more complete, and give for
1996 a value per capita net transfer value imposed by the Common Agricultural
Policy on the regions. The value is the result of subtracting market transfers from
taxpayers and market transfers from consumers, from market transfers to produc-
ers, which constitutes the gross transfer value. As with the human capital variable,
we are assuming that the 1996 values are highly correlated with the start of period
values we would have preferred to use.

As we argued in our earlier work, we expect the level of agricultural policy
support to be negatively related to regional growth, because higher levels of support
are likely to slow the reallocation of labour and capital to non-agricultural sectors.
We feel that using per capita values is not unreasonable in the present context, but
continue to be aware that changes in CAP during the study period, and the fact that
support levels for Greece, Spain and Portugal ramped up during our chosen period,
may weaken any substantive conclusions we may reach. Our least squares model,
including both human capital and agricultural support, is now:

> convhc2.1lm <- lm(growth ~ log(gva89) + hc96 + nett.pc.1996 +
+ fGR)

"The 1998 value for Portugal has been used for all Portuguese regions for 1996; Italian regions
were matched to their earlier NUTS2 nomenclature.

83cience and technology in Europe Statistical pocketbook, Eurostat, 2005, page 144.

9The report is available from Inforegio: http://europa.eu.int/comm/regional_policy/
sources/docgener/studies/pac_en.htm, and the calculations made are described in Chapter
5, methodology in Section 5.1, and tables in appendices to that chapter. The data coverage, both by
region and by year, is limited
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Table 5: Results and specification tests for the model including human capital and
agricultural policy support variables.

value std. error p-value

Constant 0.043655 0.005839 <1e-08
0 -0.015000 0.002532 6e-08
hc96 0.003156 0.001092 0.0048
nett.pc.1996 -0.001231 0.000655 0.0634
Greece factor -0.036537 0.003028 <1e-08
% speed of convergence 1.63

o} 0.00677

adjusted R? 0.696

Studentized Breusch-Pagan test 3.46 0.48
RESET test 1.36 0.24
Moran’s | 0.108 0.017
LM error 2.15 0.14
LM lag 4.16 0.041

Table 5 demonstrates clearly that adding a factor for Greek regions, and vari-
ables expressing regional differences in human capital and agricultural support, has
alleviated most of the specification problems. The agricultural support variable has
the expected sign, but is not highly significant. Although it is a borderline case, we
feel that it does add extra information to account for differences in regional growth.
Regions with lower net transfers to agriculture experience slightly faster growth
than regions with larger net transfers, even when differences in human capital are
taken into account.

Since we can assume that we have now reached a moderately acceptable model
with regard to variables related to differences between regions, we can return to
the question of the extent to which conclusions drawn may be influenced by breaks
in series and other measurement shifts in the per capita GVA series for NUTS2
regions. If we replace 1999 as year T by the years 1994—-1998, we can see from
Table 6 that there are some changes in coefficient values.

Table 6: Coefficient estimates and convergence estimates for years T from 1994 to
1999

1994 1995 1996 1997 1998 1999
(Intercept) 0.03205 0.03438 0.03644 0.04066 0.04267 0.04366
log(gva89)  -0.01100 -0.01089 -0.01339 -0.01467 -0.01527 -0.01500
hc96 0.00267 0.00229 0.00317 0.00323 0.00351 0.00316
nett.pc.1996 -0.00201 -0.00197 -0.00186 -0.00177 -0.00147 -0.00123
fGRTRUE -0.02928 -0.02726 -0.02361 -0.02159 -0.03290 -0.03654
B 0.01131 0.01127 0.01406 0.01560 0.01643 0.01625
Cl25%p 0.01874 0.01793 0.02095 0.02213 0.02263 0.02235
Cl97.5% 3  0.00414 0.00486 0.00748 0.00940 0.01055 0.01050

If we look at our convergence estimates, both point estimates and similarly
transformed 95% confidence interval estimates for the years 1994-1999 as shown
in Table 6, there are no cases in which the point estimates of 3 fall outside the con-
fidence intervals of the other years. On the other hand, the point estimates do differ,
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with 1994 and 1995 appearing to belong to a different period than the later years.
Tightening the confidence intervals for 1994 and 1995 to 85%, the (3 values for 1998
and 1999 become borderline, but no clear evidence of major impacts of breaks of
series is found.

Table 7: Observed values of Moran’s | from the residuals of the model including
human capital and agricultural policy support variables for six different weights
matrices (row-standardised), sorted by p-values.

Observed Moran’s | p-value
D350 0.1105 0.0004738
ID350 0.1166 0.0007382
Gabriel 0.1459 0.0064393
MST 0.2152 0.0086831
Relative 0.1690 0.0140957
SOl 0.1084 0.0167113

4.3 Convergence with spatial dependence

The values of both Moran’s | and the two Lagrange Multiplier tests shown in Ta-

ble 5 are much less significant than before. If the results from applying alternative
neighbour definitions do not differ from our chosen spatial weights, the remaining
spatial patterning of the disturbance term may be attributed to arbitrary regional

boundaries, or unspecified spillover, and either ignored or removed by using alter-
native spatial model fitting techniques. However, before drawing such a conclu-
sion, we check the values of Moran’s | shown in Table 7. It appears that our cho-

sen neighbour definition is the most conservative, but similar to the relative graph
neighbours. The distance-based neighbour definitions indicate significant residual
autocorrelation, as, to a lesser extent, do the Gabriel graph and minimum spanning

tree definitions. Revisiting the Kosfeld and Lauridsen differenced model test and
using the Gabriel graph neighbour defintion, we find that the LM error test statis-
tic is 3.531 with probability value 0.0602, while the differenced model statistic is

14.97 with probability value 0.000109. This suggests that we could conclude that

the remaining spatial dependence is not very strong.

Fingleton and Lopez-Bazo (2006) discuss in detail how spatial effects may be
understood, and restate the argument, presented above, that a spatial error formu-
lation of spatial effects may be “a manifestation of the omission of one or more
spatially autocorrelated variables” from the vector x; in equation 2. They also point
out that the unconstrained spatial Durbin model nests both the spatial lag and spatial
error specifications of spatial econometrics models (see Anselin, 2002, for further
details and a review of these methods). Rewriting equation 2 in vector form with
Oy = + Iog(i’ji—’;) and reorganising the right hand side as z; = [1,y; o, Xi], we have:

gy =Z{+u (3)

where { = [a, 6, d]. Extending this to the unconstrained spatial Durbin form can be
achieved by adding spatially lagged gy and Z variables to the right hand side:
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gy = PWQy +Z{+WZy+u (4)

In the spatial lag model, y =0, in the spatial error model, the Common Factor
constraint y = —pd is satisfied. As Fingleton and Ldpez-Bazo (2006) point out,
quite often studies of convergence in Europe have ended up with a spatial error
specification, despite the fact that this indicates that spatial externalities are not
substantive phenomena, but rather random shocks diffusing through space. Table 5
suggests that the spatial lag specification may be better suited to our data, but there
are still a number of steps to be taken before we can conclude that we are looking
at substantive spatial externalities, that high growth rates spill over from region to
neighbouring region.

Here we will use three maximum likelihood methods, the unconstrained spatial
Durbin model including the spatially lagged dependent and independent variables,
spatial lag simultaneous autoregression — including the lagged dependent variable
on the right hand side with coefficient p — and spatial error simultaneous autore-
gression — placing the spatial dependence in the disturbance term. Functions for
fitting using these methods have been present in the R spdep package for some time,
lagsarlm() and errorsarlm().

Since the outcome of testing for Moran’s | in the current model was not clear,
and alternative neighbour definitions seemed to give clearer views of the possible
residual autocorrelation, we first estimate spatial lag, spatial Durbin, and spatial
error models for the different weights definitions, and compare the autoregressive
coefficient estimates, the probability values of likelihood ratio tests against the hy-
pothesis that A = 0 or p = 0, and the AIC values of the fits, shown in Table 8.

Table 8: Estimated values of p, likelihood ratio test p-values and AIC values from
the spatial lag model, the spatial Durbin model, and A, likelihood ratio test p-values
and AIC values from the spatial error model for six different weights matrices (row-
standardised).

Lag Durbin Error
p p-value AIC p p-value AIC A p-value AIC
SOl 0.235 0.0527 -660.0 | 0.173 0.2036 -655.4 | 0.206 0.1453 -658.4

Gabriel | 0.293 0.0111 -662.7 | 0.236 0.0762 -655.9 | 0.259 0.0566 -659.9
Relative | 0.240 0.0172 -661.9 | 0.200 0.0754 -655.5 | 0.214 0.0638 -659.7
MST 0.225 0.0164 -662.0 | 0.218 0.0327 -655.5 | 0.222 0.0326 -660.8
D350 0.331 0.0326 -660.8 | 0.368 0.0549 -653.7 | 0.386 0.0395 -660.5
ID350 0.357 0.0192 -661.8 | 0.334 0.0603 -654.2 | 0.368 0.0392 -660.5

All of the spatial lag models estimated with alternative neighbour definitions
perform better, understood as capturing more variance associated with spatial pat-
tern, than the sphere of influence definition, with the Gabriel graph slightly ahead of
the minimum spanning tree. In the spatial Durbin and spatial error model case, again
all the alternative definitions outperform the sphere of influence definition, with the
minimum spanning tree definition just best. On the basis of this comparison, main-
taining the choice of sphere of influence neighbours does not seem justified, and
Gabriel graph neighbours are used for the spatial lag model and minimum spanning
tree neighbours otherwise.
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Insignificant likelihood ratio and Wald tests suggest that the spatial Durbin
model with minimum spanning tree weights does not perform better than the spa-
tial error model with minimum spanning tree weights, and that the Common Factor
constraints cannot be rejected. However, none of the fitted y coefficients (the lagged
intercept is omitted because it is collinear with the intercept for row-standardised
spatial weights) are significantly different from zero, pointing us towards a spatial
lag specification. Comparing the Akaike AIC values shows that fitting coefficients
on lagged Z variables costs more in terms of lost degrees of freedom than it helps
in accounting for variance in the dependent variable.

Because R is naturally extensible, it attracts collaboration between scholars, and
function GMerrorsar () has been contributed by Luc Anselin. It uses the gener-
alised moments approach to fitting the spatial error model proposed by Kelejian and
Prucha (1999), in this version using sparse matrix code from the SparseM package
(Koenker and Ng, 2005) to calculate the log-likelihood of the fitted model for test-
ing against the non-spatial least squares estimates. These functions need additional
arguments, in particular the 1istw argument for the spatial weights.

Since the functions use numerical optimisation, they may need extra tuning in
order to get coefficient estimates closer to the optimum on very flat surfaces. The
ML functions are fit by line search for the spatial coefficient, while GMerrorsar ()
is fit by numerical optimisation on a surface of A and & values. This surface ap-
proaches its minimum very gradually, with quite a large range of values A corre-
sponding to a narrow range of o2. The differences between the ML and GM im-
plementations are very small, but are influenced by the choice of tolerance for the
GM estimator numerical optimiser. One could argue, on the one hand, that users of
such estimators should be shielded from arcane technical issues such as these, but,
on the other hand, they do make a difference in practice, and access to such control
arguments is a feature of mature statistical software.

The two ML functions are also subject to scaling issues in inverting the asymp-
totic variance matrix — the matrix can appear singular to numerical linear algebra
functions when variable scaling is very uneven. Here, the ML functions use weights
matrix eigenvalues in finding the objective function optimum, and full weights ma-
trices for calculating the asymptotic variance matrix of the coefficient estimates;
they can use sparse matrix techniques if desired.

> convhc2.lag <- lagsarlm(growth ~ log(gva89) + hc96 + nett.pc.1996 +

+ fGR, listw = nb2listw(gab_nb))

> convhc2.err <- errorsarlm(growth ~ log(gva89) + hc96 + nett.pc.1996 +
+ fGR, listw = nb2listw(mst_nb), tol.solve = le-16, tol.opt = le-14)
> convhc2.gm <- GMerrorsar(growth ~ log(gva89) + hc96 + nett.pc.1996 +
+ fGR, listw = nb2listw(mst_nb), control = list(reltol = le-14))

Table 9 shows the results of fitting the model including human capital and agri-
cultural policy support variables using three SAR functions (the least squares results
are included in the final column for comparative purposes). The similarity of coef-
ficient estimates is obvious, and largely confirmed by the final line, which reports
likelihood ratio tests been the SAR function results — including an extra spatial co-
efficient — and the least squares results. Akaike’s An Information Criterion repeats
this, with only minor differences between the least squares and error SAR fits. The
largest differences are between the lag SAR results and the least squares fit, and
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Table 9: Results for the model including human capital and agricultural policy sup-
port variables fitted with three SAR functions.

ML Lag SAR (std.err) | ML Error SAR  GM Error SAR OoLS
Constant 0.03275 (0.006673) 0.04116 0.04134  0.04366
0 -0.01159 (0.002604) -0.01376 -0.01385 -0.01500
hc96 0.00248 (0.001033) 0.00295 0.00297  0.00316
nett.pc.1996 -0.00109 (0.000608) -0.00112 -0.00113 -0.00123
Greece factor -0.02692 (0.004659) -0.03565 -0.03572 -0.03654
% convergence 1.232 1.480 1.4905 1.6252
o 0.00629 0.00635 0.00636  0.00677
AlC -662.72 -660.84 -660.82  -658.27
p 0.29286 (0.111)
A 0.22249 0.20981
LR test p-value 0.011 0.033 0.033

as can be seen from the standard errors, the spatial lag model performs quite ade-
quately, being a somewhat better representation than either the spatial error model
or the non-spatial model.

Tiefelsdorf and Griffith (forthcoming) discuss in detail a semi-parametric ap-
proach to handling the misspecification challenge when known and available ex-
planatory variables have been included. They argue that it is possible to include
a set of spatial proxy variables which absorb remaining spatial pattern in the dis-
turbances. Code implementing this approach has been contributed by Yongwan
Chun and Michael Tiefelsdorf, and is included in spdep as function SpatialFil-
tering(). The function solves the eigenproblem of a quadratic form including the
spatial weights matrix and the projection matrix of the regression, and searches over
combinations of eigenvectors to find the smallest set best spatially “whitening” the
disturbances of the original regression if they are added on the right hand side (for
a full exposition please refer to Tiefelsdorf and Griffith, forthcoming). Once these
are found, the search terminates and the spatial proxy variables, here a matrix with
three columns, can be added to the model for estimation by least squares.

> res <- SpatialFiltering(growth ~ log(gva89) + hc96 + nett.pc.1996 +
+ fGR, nb = mst_nb, style = "W")

> SFilt <- res$dataset

> SF <- 1m(growth ~ log(gva89) + hc96 + nett.pc.1996 + fGR + SFilt)

Table 10 reports the output from estimating the model including human capital
and agricultural policy support variables with spatial proxy variables®. Akaike’s
AIC shows improvement on the models without the spatial proxy variables, as does
the analysis of variance between these estimates and those without the proxy vari-
ables, reported as the F test result on the final line of the table. This is clearly
a satisfactory result, sharpening the precision of the coefficient estimates, with all
having signs as expected, and all, including agricultural support, now significant at
conventional levels of significance. None of the specification tests are now signifi-
cant. Perhaps the only element of uncertainty not carried through is that associated
with the choice of the proxies, of course over and above the worry that we could

101t appears to be the case that spatial proxy standard error estimates are equal in general.
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Table 10: Results and specification tests for the model including human capital and
agricultural policy support variables estimated using semi-parametric filtering of
spatial autocorrelation.

value std. error  p-value

Constant 0.043655 0.004910 < 1e-08
0 -0.015000 0.002130 < 1e-08
hc96 0.003156 0.000918 0.00093
nett.pc.1996 -0.001231 0.000551 0.02814
Greece factor -0.036537 0.002546 < 1e-08
SFiltvec5 0.016869 0.005695 0.00401
SFiltvec3 0.015378 0.005695 0.00844
SFiltvec13 -0.013551 0.005695 0.01970
SFiltvec20 -0.013900 0.005695 0.01684
SFiltvec31 0.017912 0.005695 0.00232
SFiltvec? -0.010398 0.005695 0.07158
SFiltvec6 -0.009048 0.005695 0.11603
% speed of convergence 1.63

o 0.0057

adjusted R? 0.785

AlC -684.2

Studentized Breusch-Pagan test 10.3 0.5
RESET test 1.46 0.13
Moran’s | -0.104 0.47
F-test 6.2 7.9e-06

proxy away patterning in the residual that other diagnostic tools ought to have de-
tected (for example outliers). Using semi-parametric filtering on the initial simple
model, with nine eigenvectors selected, yields a significant estimate of the 8 coeffi-
cient with the wrong sign: 0.00967, and a very satisfactory adjusted R?: 0.766.
Finally, partly because we adopted this approach in our earlier work, we estimate
the model including human capital and agricultural policy support variables by ge-
ographically weighted regression, to explore whether any traces of non-stationarity
can be found. The use and development of geographically weighted regression is
fully discussed in Fotheringham, Brunsdon and Charlton (2002), and discussion
with the authors have been very helpful in writing a package for R. In this case,
we use the same region label point coordinates as for constructing the sphere of
influence graph neighbours, and find the adaptive bandwidth (percentage of regions
included in each weighted regression) for a Gaussian kernel, by cross-validation.
The print () method for the object returned by the gwr () function provides a
convenient summary of the results. The adaptive bandwidth includes about half of
the regions in each regression, with weights declining with increasing distance in a
Gaussian kernel. None of the variables displays a change of sign, although there is
some variation in the local regression coefficient estimates. The Akaike AIC values
are given as specified in Fotheringham, Brunsdon and Charlton (2002), with the
reservations expressed there, and in the source code for this part of the function
contributed by Danlin Yul. If we use the corrected form AIcc, the improvement
on the least squares fit for the same model is not large, and suggests that no non-

1see the source package for further details, file R/gwr . R.
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stationarity misspecification remains.

> library(spgwr)
> adapt.gauss.cv <- gwr.sel(growth ~ log(gva89) + hc96 + nett.pc.1996 +

+ fGR, coords = coords, adapt = TRUE, verbose = FALSE)
> gaussl.gwr <- gwr(growth ~ log(gva89) + hc96 + nett.pc.1996 +
+ fGR, coords = coords, adapt = adapt.gauss.cv, hatmatrix = TRUE)

> gaussl.gwr

Call:

gwr(formula = growth ~ log(gva89) + hc96 + nett.pc.1996 + £fGR,
coords = coords, adapt = adapt.gauss.cv, hatmatrix = TRUE)

Kernel function: gwr.gauss

Adaptive quantile: 0.5006546 (about 46 of 93)

Summary of GWR coefficient estimates:

Min. 1st Qu. Median 3rd Qu. Max. Global OLS
X.Intercept. 0.0146000 0.0254300 0.0315700 0.0480500 0.0513900 0.0437
log.gva89. -0.0169300 -0.0160000 -0.0111200 -0.0084310 -0.0035510 -0.0150
hc96 0.0020080 0.0024740 0.0030860 0.0035630 0.0039240 0.0032
nett.pc.1996 -0.0016070 -0.0014160 -0.0010090 -0.0007013 -0.0004114 -0.0012
fGRTRUE -0.0424300 -0.0403700 -0.0333100 -0.0314000 -0.0274500 -0.0365

Number of data points: 93

Effective number of parameters: 11.22109

Effective degrees of freedom: 81.77891

Sigma squared (ML): 3.776752e-05

AICc (GWR p. 61, eq 2.33; p. 96, eq. 4.21): -660.597
AIC (GWR p. 96, eq. 4.22): -674.2285

Residual sum of squares: 0.00351238

Table 11: Correlations between local GWR coefficient estimates.
X.Intercept. log.gva89. hc96 nett.pc.1996 fGRTRUE

X.Intercept. 1.000

log.gva89. -0.987 1.000

hc96 -0.471 0.323 1.000

nett.pc.1996 -0.921 0.911 0.414 1.000

fGRTRUE -0.973 0.970 0.408 0.955 1.000

Table 11 does however reveal a problem with geographically weighted regres-
sion studied in detail by Wheeler and Tiefelsdorf (2005), that strong correlation
can be found between the local coefficient estimates. We can see that there are
strong negative correlations between the constant term and log(gva89), and the
constant term and the Greek regions factor, and strong positive correlation between
log(gva89), the Greek regions factor, and agricultural support. The human capital
variable local coefficient estimates are not highly correlated with the other local es-
timates. These artefacts do, as Wheeler and Tiefelsdorf (2005) suggest, reduce con-
fidence in the use of geographically weighted regression for more than exploratory
purposes until their origins have been resolved satisfactorily.

In substantive terms, we can conclude that, once misspecification issues are
addressed by adding relevant explanatory variables, the modelling of spatial depen-
dence using the spatial lag form can be used to handle remaining spatial patterning.
As we can see, little variation is observed in the coefficient estimates yielded by
the various estimators, and the use of geographically weighted regression does not
reveal any remaining marked non-stationarity. Consequently, the role of human
capital and net support to agriculture can be accepted as providing useful additional
information about rates of regional growth over and above the initial levels of gross
value added.

17



5 Concludingremarks

One of our intentions in the work presented here has been to revisit our conclu-
sions from earlier work, that there are interactions between regional growth and
agricultural support in a conditional B-convergence context, and that higher levels
of support are associated with lower levels of growth. We feel that this is certainly
sustained, even after another explanatory variable operationalising human capital
has been introduced. Beyond this, we feel that the use of a dummy variable for
Greek regions can be justified with reference to the very different exchange rate
conditions to which they were subject in this period. We also feel that the traces
we have found of substantive spatial effects, in the form of a significant spatial lag
model, fit well with the interpretations given by Fingleton and L6pez-Bazo (2006),
and that our change of neighbour representation has sharpened the resulting pic-
ture. We would also like to reiterate a point made in Bivand and Brunstad (2003),
that our treatment of GVA here does not include amenity effects as a component
of agricultural subsidies. Positive external effects such as the amenity value of the
cultural landscape will be an important part of the Green Box, and are not currently
acknowledged in our operationalisation. Taking proper account of amenity effects
is of course of vital importance for the policy implications of a negative relation
between agricultural support and regional growth.

The other intentions are related to the way in which different methods are made
accessible to the research community, especially in the light not only of rapid
progress in the elaboration of techniques used in spatial econometrics, but also in
the face of criticism of some of our typical analytical procedures. In other fields of
scientific enquiry, shared access to code and often data permits the reproduction of
results, partly to check whether choices made by the analyst in terms of methods
and their implementations have impacted conclusions drawn. Many of the functions
needed for spatial econometrics are now available to researchers, and collaborative
software development and distribution is progressing. In order to pay appropriate
attention to critical views, such as those of McMillen (2003), or Wall (2004), it is
very helpful to be able to reproduce their results in an open source environment, al-
lowing in principle every facet of the problems exposed to be examined. The choice
of methods available is also growing, and different research communities have their
own preferences for different kinds of formulations, as for example Banerjee, Carlin
and Gelfand (2004) make clear.

We have, then, attempted by example to show how many alternative implemen-
tations of estimators are being written using R, and are being made available to stu-
dents and researchers. This collaborative process is enhanced by contacts between
different disciplines and fields of study facing similar tasks of estimating models
with data from spatial aggregates, be they in regional science, epidemiology or other
fields. Ideally one would hope that conclusions about observed response variables
were not too heavily conditioned by the procedures of analysis typically chosen in
a given field of study, and that McMillen’s precautionary warning (p. 215) will lead
to greater care in the choice of explanatory variables, and of functional form, so
as to reduce the possibility of misspecification being represented in our results as
spatial autocorrelation.
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