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1 Introduction

We observe nonlinear pricing in many markets, that is, pricing arrangements
where payment is not strictly proportional to the quantity of purchases. In the
literature, implementation of nonlinear pricing is typically studied as a single
two-part tariff or as a menu of two-part tariffs. Further, with a few notable ex-
ceptions, the existing literature applies a setting with a monopoly firm where
nonlinear pricing is implemented by two-part tariffs. However, it is easy to verify
that this does not sufficiently describe the practice of nonlinear pricing. Firstly,
nonlinear pricing is a common practice in duopoly and oligopoly markets as well
as in monopolies. Secondly, we frequently observe that other tariff arrangements
rather than just two-part tariffs are used. The purpose of this paper is to make
a contribution in the second part of the gap between theory and practice within
the field of nonlinear pricing. We examine whether the fact that there is com-
petition between two firms instead of a monopoly significantly changes the tariff
structure. We find that implementation by two-part tariffs may not be a feasible
strategy in a duopoly, but if a firm can use a combination of two-part and three-
part tariffs, a fully nonlinear pricing schedule can be implemented. Three-part
tariffs are used for small quantity purchases while two-part tariffs are used for
large quantity purchases. Furthermore, quantity discounts are given for larger
purchases only. Finally we show that this is in fact what firms actually do in the
telecommunications market, where we observe competition rather than monopoly.

The market perception of what are reasonable tariff structures would vary
according to what kind of market one is studying. However, menus of two-part
and three-part tariffs are frequently used and it seems natural to restrict the
analysis to menus of piecewise linear tariffs. A firm confronts consumers with a
menu of tariffs and consumers make their optimal quantity choice subject to the
tariff chosen and are also billed according to this tariff. Under two-part tariffs
consumers receive larger quantity discounts if they are willing to pay a larger
fixed fee in advance. Three-part tariffs can be implemented in two different
ways; Consumers may commit to a specific minimum usage level and pay a flat
fee until this level is reached. The higher the minimum usage consumers commit
to the higher discount they get. Another way to implement a three-part tariff
is to apply larger discounts when realized usage exceeds some specific threshold
level during a billing period.

1.1 Related literature

In a monopoly context models on optimal nonlinear pricing often assume that
it is sufficient to ensure that the individual rationality constraint is satisfied for
the worst type only. If the worst type finds it weakly rational to participate,
then all types will indeed participate. Under the monotone hazard rate condi-
tion, a menu of two-part tariffs is sufficient to implement a fully nonlinear outlay

1



schedule T (q), with complete separation of types. The underlying assumptions
behind this result are that the agent’s participation decision is deterministic; the
reservation utility is independent of consumer type and the private information
is single-dimensional. There is an increasing amount of literature that explores
how the weakening of the modeling assumptions affects the results. Within the
part of incentive theory where an agent contracts with only one principal, i.e.,
models with only a single principal or models with delegated common agency,
richer models incorporate either multi-dimensional types or type-dependent par-
ticipation constraints. Rochet and Stole (2000) give a review of the literature on
multidimensional screening.

Several papers have incorporated nonlinear pricing into models with imperfect
competition, but few study tariff design and tariff implementation under asym-
metric information about individual quantity-type. The papers by Stole (1995),
Armstrong and Vickers (2001) and Rochet and Stole (1999) model nonlinear pric-
ing in a differentiated oligopoly. In Stole’s paper the qualitative property of the
monopoly model with downward distortion for all types but the highest is kept,
while Rochet and Stole (1999) and Armstrong and Vickers (2001) find conditions
that imply that efficient two-part tariffs emerge as an equilibrium. The diver-
gence between these two results is partly relying on how transportation costs
enter the model. In Stole’s model transportation costs depend on the quantities
consumed (and on taste) whereas the transportation costs are assumed to be
lump-sum costs in the two others. However, Stole (1995) leaves the question of
implementation aside.1 Other papers that study two-part tariffs under compe-
tition often do this in a Cournot or Bertrand game, but with focus on two-part
tariffs versus linear tariffs rather than on how the informational problem affects
the tariff design.2

There is literature that deals with multi-dimensional screening where the in-
formational asymmetry relates directly to the variable being contracted upon
(e.g., consumers’ willingness to pay for different quality attributes, or an agent’s
efficiency type when performing different tasks for a principal). The work by
Armstrong and Rochet (1999), Rochet and Choné (1998) provides an overview of
the literature and represents the status on how far the techniques are developed.3

Another view on multi-dimensionality in mechanism design is taken in Rochet
and Stole (1999), who work on a general model of nonlinear pricing where the
informational asymmetry is present in the consumers’ reservation utility as well

1Valletti (1999) derives similar results in a model with discrete types.
2Examples of such work are Calem and Spulber (1984), Gasmi, Moreaux and Sharkey (2000),

Hayes (1987), Oren, Smith and Wilson (1983). Wilson (1993) provides a comprehensive survey
of the literature and the practice of nonlinear pricing, Michell and Vogelsang (1991) provide a
survey of the pricing of telecommunications in the U.S. during the 70s and 80s. Stole (1995)
also provide a brief overview of the literature.

3Literature includes Laffont, Maskin and Rochet (1987), Matthews and Moore (1987), Wil-
son (1993), Armstrong (1996).
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as in their preferences, i.e., with a more general modelling of the participation
decision. The methodology developed in Rochet and Stole (1999) paper with
randomness in the agents’ outside option fits a situation where consumers’ lo-
cation is not perfectly known. They demonstrate the difficulties of working on
multidimensional problems.

The literature on type-dependent participation constraint includes the work
by Lewis and Sappington (1989), Biglaiser and Mezzetti (1993), Ivaldi and Marti-
mort (1994), Maggi and Rodriguez-Clare (1995), Stole (1995) and Jullien (2000).
Type-dependent participation constraint may arise in a situation with multi-
ple principals (but where an agent contracts exclusively with one of them e.g.,
Biglaiser and Mezzetti (1993), Stole (1995)) or it can arise because of other rea-
sons, i.e., it is for some reasons natural to model a type’s outside option as
a function of the privately known type parameter (e.g., Lewis and Sappington
(1989)).4 Ivaldi and Martimort (1994) provide empirical research that support
that nonlinear pricing prevail under oligopolistic competition (energy distribu-
tion). Equilibrium pricing schemes are concave and depend on unknown private
valuation and on the rivals contract parameters. They restrict the regression of
payments to second-order polynomials on quantities. Hence, we cannot rule out
a hypothesis that the true outlay schedule has convex parts, although the overall
shape is concave.

Insights from these papers show that many of the results achieved earlier in
nonlinear pricing are not robust. In models with multi-dimensional screening it
is shown that the “no distortion at the top” result may appear together with
distortion, no distortion or bunching at the bottom, as opposed to the Mussa
and Rosen (1978) result with downward distortions for all types except the high-
est. The literature on type-dependent participation constraints demonstrates the
possibility of a non-monotonic informational rent, i.e., countervailing incentives
may arise. The incentive constraint can be downward binding for some types and
upward binding for other types.

The model presented in this paper falls into a situation with asymmetric
information along a single (vertical) dimension and with a type-dependent par-
ticipation constraint. The basic model is identical to the model in Stole (1995).
But, while he solves for an equilibrium in fully nonlinear tariffs, the model we
present here searches for an implementable tariff structure. Further, given the
difficulties of involving multidimensional screening, we keep the assumption that
the agent’s participation decision is deterministic. There are no gains from joint
consumption and this eliminates the “competitive externality” in the incentive
constraint and one source of countervailing incentives.5 The informational rent

4Models on common agency can be found in Stole (1992), Martimort (1992), Martimort
(1996), Mezzetti (1997) and Olsen and Osmundsen (1998). These are cases describing a situa-
tion where each principal requires that a task be performed by a common agent. The agent’s
ability or effort in performing the two tasks is unobservable but is privately known by the agent.

5A competitive externality exists when the utility from buying q units from firm 0 is evalu-
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on the other hand has to be evaluated net of an outside option, which is the
maximal utility a consumer gains if he rejects the firm’s contract. Generally, it is
not sufficient to ensure that the individual rationality constraint is satisfied for
the worst type only. A priori, the sign of the marginal information rent can be
positive, zero, negative or even change sign over the type space, creating a sec-
ond source of countervailing incentives.6 Countervailing incentives do not occur
in this model, the participation constraint is binding only in the lower part of the
distribution of types (or maybe only for the very lowest type) and the information
rent is strictly increasing elsewhere.

2 The model

The model is closely related to Stole (1995). However, the focus is distinctly
different from his. The main issue in this paper is implementation of nonlinear
prices, an issue not raised in Stole (1995). While Stole in his paper lets consumers
buy a single unit of a good but with variable quality, the present paper sets up the
alternative quantity framework. However, impose the restriction that a consumer
must choose a single tariff. Hence, we exclude the possibility that consumers buy
from both firms, and we also exclude the possibility that consumers choose more
than one tariff as well.7

The model describes a case where two firms, denoted by firm 0 and firm 1,
offer one product each and the products are spatially differentiated. The firms
are located at the two extremes on a line of length 1, firm 0 at extreme 0 and
firm 1 at the other extreme, 1. Each individual’s preferences over the two firms
are identified according to each individual’s location γ ∈ [0, 1] on the interval,
referred to as brand preference. Total length of the distance between a consumer
and firms 0 and 1 is |0 − γ| and |1 − γ| respectively. Transportation costs are
normalized to unit, hence, the total loss from not being able to buy the ideally
preferred product is γ and (1 − γ). Brand preferences are common knowledge

ated net of the (foregone) utility from not buying the same amount of q from another firm. This
will be similar to the models in Lewis and Sappington (1989) and Maggi and Rodriguez-Clare
(1995).

6This will be similar to the models in Biglaiser and Mezzetti (1993) and Jullien (2000).
7This is a simplification to keep the similarity to Stole’s model. As pointed out by Stole

(1995) it is plausible to restrict a consumer to purchasing from a single firm under the quality
framework with unit demand. In the alternative quantity framework it requires additional
technical restrictions to ensure that a consumer is not better off by buying two times q/2
than one time q. The restriction we impose on consumers’ behavior is for instance plausible
when we think of telephony, or the mobile phone, industry, where consumers subscribe to a
particular tariff option. If they subscribe to more than one option they must also have more
than one phone number, which is by most people regarded as undesirable. If this restriction is
binding, it indicates that the quantity-quality framework are not as intimately related in the
duopoly as in the monopoly framework and that one should be more careful in the modelling
and interpretations.
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and firms practice first-degree price discrimination over the horizontal dimension.
Both firms face constant and identical marginal costs, c0(q) = c1(q) ≡ c.

Consumers’ taste varies over a vertical dimension, which we interpret as a
quantity-preference parameter, referred to as quantity-type (θ) subject to private
knowledge.8 The firms have common prior beliefs about the distribution of types
θ ∈ [

θ, θ
]
described by a cumulative distribution function F (θ). The correspond-

ing density function f(θ) is strictly positive on the support. Thus, F (θ) is the
objective distribution over a population of buyers having identical brand pref-
erences γ.9 We will assume that the distribution satisfies the monotone hazard
rate condition.

The first assumption, i.e. about product differentiation, can be justified by
considering that identical services – with respect to the communication capabili-
ties they provide – are sold or bundled with different ancillary services or quality
levels that consumers value differently. This could for example be differences
in billing features (more detailed billing) and in support services, but it could
also be features perceived as differences in the quality of the service provided.10

The second assumption can be rationalized by taking into account the fact that
consumers have different needs for communication, e.g. residential and business
customers.

Consumers’ preferences are represented by a utility function u (q, θ, γ) and
u (q, θ, 1− γ) when he buys from firm 0 and 1 respectively. If a consumer buys a
quantity q and pays an amount T , his net utility is U = u (q, θ, γ)− T .

Assumption 1 The utility function is at least three times continuously differ-
entiable and strictly concave in q. We make the following assumptions about the
derivatives of the utility functions u (q, θ, γ) and u (q, θ, 1− γ)
(a) u(0, θ, ·) = 0 (e) uqθ (·) > 0
(b) limq→0 uq (q, θ, ·) = ∞ (f) uθθ (·) ≤ 0
(c) limq→∞ uq (q, θ, ·) = 0 (g) uγ (q, θ, γ) < 0
(d) uθ (·) > 0 (h) uγ (q, θ, 1− γ) > 0

To satisfy sufficient conditions, we will also make assumptions about the third
order derivatives, and say that uθqq ≤ 0 and that uθθq ≤ 0. Further, we will make
use of the following definition on consumers’ indirect utility

8Since both θ and γ are taken to be continuous, we drop all subscripts for location and
consumers’ quantity type throughout the paper. However, we use superscript 0 and 1 to denote
the location of the two firms.

9The distribution over quantity-types θ is independent of γ, i.e., for each γ-value the corre-
sponding density function f (θ | γ) ≡ f (θ) for all possible γ ∈ [0, 1].

10Examples on differences in quality may be found in AT&T marketing of “AT&T True
Voice”. Examples on differences in billing features can be many. Telecom companies undertake
large investments to be able to support detailed billing towards business consumers. This can
be to break down the cost of telecommunications to different business departments, and/or to
different services (fixed link communications, mobile communications, 800-services (Premium
Rate Services), etc.
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Definition 1 Let Uk(θ, ·) be the net utility (surplus) for a consumer located at
γ, with quantity type parameter θ when he is faced with a general price schedule
T k (qk) and buys firm k’s product. The surplus he obtains is

(a) U0(θ, γ) ≡ maxq {u(q, θ, γ)− T 0(q)}
(b) U1(θ, 1− γ) ≡ maxq {u(q, θ, 1− γ)− T 1(q)}

where T k (q) is a general price schedule (k = 0, 1).

Assumptions 1(a)-(c) secure the existence of a unique solution in consumers’
choice of consumption qk as long as there exists a continuous and appropriate
outlay schedule T (q).

The necessary single crossing condition together with assumption 1(d), im-
plies that the indifference curves of consumers with different quantity preferences
cross at most once, i.e., assumption 1(e). High-quantity type consumers value a
marginal quantity increase higher than low-quantity types, regardless of brand
preferences. Assumptions 1(g)-(h) follow from the fact that the products are
horizontally differentiated.

In a first-best situation consumers would be confronted with prices equal to
marginal cost, and under our assumptions this yields unique quantity allocations
and consumer surplus.

Definition 2 The first-best quantity level qk (k = 0, 1) is the optimal quantity
purchase when consumers buy at marginal cost and the corresponding utility,
denoted as first best utility, is given by

(a) qk (θ, ·) ≡ argmaxqk
{u(qk, θ, ·)− cqk}, k = 0, 1

(b) U 0(θ, γ) ≡ u(q0(θ, γ), θ, γ)− cq0(θ, γ) > 0
(c) U 1(θ, 1− γ) ≡ u(q1(θ, 1− γ), θ, 1− γ)− cq0(θ, 1− γ) > 0.

It follows from assumptions 1 that the first-best quantity and utility, q̄(θ, ·)
and Uk(θ, ·) are both increasing in θ.

The two firms’ products are perfect substitutes, except that they are of dif-
ferent brands. There are no gains from joint consumption (i.e., utility is not
subadditive), and, for 0 < γ < 1/2, the gains from purchasing good q1 in addi-
tion to q0 will never exceed the surplus from purchasing good q0. The implication
of this is that the quantity purchases of q0 are always largest when q0 are bought
alone. The opposite apply for 1/2 < γ < 1

According to assumption 1(g), if a consumer chooses to purchase the good
from firm 0, utility is decreasing in location, uγ(q0, θ, γ) < 0. Hence, buying from
the closest firm will always give largest first best utility. For all parameter values
θ, γ ∈ [

θ, θ
] × [0, 1/2) we have that U0 (θ, γ) is strictly larger than U1 (θ, 1− γ)

We will also assume that the first-best utility is convex

∂2Uk (θ, ·)
∂θ2 =

[uθq(qk, θ, ·)]2
−uqq(qk, θ, ·)

+ uθθ(qk, θ, ·) > 0, k = 0, 1. (1)
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With such characterizations of consumers’ preferences, the firm located at 0
has a competitive advantage in serving consumers located in the interval [0, 1/2],
whereas the firm located at 1 has a competitive advantage in the interval [1/2, 1].
Also, with symmetric marginal costs, price competition between the two firms will
force the fixed fee down to zero and the marginal price down to marginal cost
toward consumers being indifferent between buying from firms 0 and 1. Also,
it is an equilibrium strategy for firm 1 to offer marginal cost pricing towards
every consumer located in the interval [0, 1/2]. The problem is solved within
a framework where an agent contracts with a single principal, the other firm’s
presence does only affect the individual rationality constraint.

At stage one of the game, each firm offers a fully nonlinear tariff with an
ordered pair of take-it-or-leave-it contracts. At stage two, consumers make a
choice of whether to buy from firm 0 or 1 (or from none) and also a choice of
qk (k = 0, 1). This is equivalent to assuming that the firm announces a menu
of distinct tariffs at stage one, and letting consumers choose a tariff from this
menu at stage two. Then, formally there is a stage three where consumers decide
on individual quantity purchase and are billed according to the tariff choice at
stage two. As long as the tariffs considered in the second type of game truthfully
implement the fully nonlinear tariff in the first game, the two formulations yield
identical equilibria. Formally, the solution to the first game is analyzed in section
3, whereas section 4 characterizes the set of tariffs that truthfully implement this
solution.

In the game, the firms implement their contracts subject to the incentive com-
patibility and individual rationality constraints. The consumers’ choice of firm
and quantity is de facto equivalent to announcing a type, which is in line with
traditional mechanism-design. Further, since marginal-cost pricing is the single
offer from firm 1 inside firm 0’s turf (for γ ∈ [0, 1/2]), it is only necessary to secure
truth-telling mechanisms in a single-dimensional space. That is, we can ignore
the complications of a common agency case, in which an agent might misreport
his type differently to the two principals. Therefore, we can solve the delegated
problem as if it is a single-principal case. Under the single crossing condition,
monotonicity is sufficient for local- and global second-order conditions to be sat-
isfied under quasi-linear preferences (Fudenberg and Tirole (1991), theorem 7.1
and 7.2).

2.1 Individual rationality

As a consequence of the existence of a competing firm, consumers in firm 0’s
turf [0, 1/2] have an outside option. The reservation utility is defined as the
maximum utility obtained by not purchasing, which is normalized to zero, and
the utility from buying the less preferred good. The latter was in the previous
section termed U 1(θ, 1− γ).
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Lemma 1 The individual rationality constraint is given by

U0(θ, γ) ≥ max
{
U1(θ, 1− γ), 0

}
. (2)

The proof of Lemma 1 is standard, see for example Fudenberg and Tirole (1991,
chapter 7).

Thus, given that the other firm practices marginal cost pricing within firm 0’s
turf, the individual rationality constraint is a function of consumer type.

Furthermore, since an outside option is of higher valuation for more distant
consumers (closer to 1/2), the individual rationality constraint will differ accord-
ing to consumers’ preferences over the two firms’ goods. Generally, the value
of the outside option is increasing and convex in θ, since the first-best utility is
increasing and is assumed to be convex in θ. From (2) we also observe that if
γ = 1/2, the only way to fulfill the IR constraint is to offer marginal cost pricing.
Otherwise the firms have some market power in their respective market turfs.

2.2 Incentive compatibility

Consumers choose contracts that maximize their net utility. Under a direct-
revelation mechanism approach, a consumer of type θ maximizes utility with
respect to a type announcement θ′. By definition

U0(θ, θ′, γ) = u(q(θ′, γ), θ, γ)− t(θ′, γ), (3)

U0(θ, θ, γ) ≡ U0(θ, γ). (4)

Global incentive compatibility requires

U0(θ, θ, γ) ≥ U0(θ, θ′, γ), ∀θ′, θ ∈ [θ, θ]. (5)

Hence

U0(θ, γ) = u(q(θ, γ), θ, γ)− t(θ, γ) (6)

= max
θ′

{u(q(θ′, γ), θ, γ)− t(θ′, γ)}.

Lemma 2 Under the condition of Single Crossing, uqθ(·) > 0, necessary and
sufficient conditions for global incentive compatibility are given by

∂U0(θ, γ)

∂θ
= uθ(q0, θ, γ), (7)

q0(θ, γ) nondecreasing. (8)

The proof of Lemma 2 is also standard and is omitted.11

Hence, (2), (7) and (8) are necessary and sufficient conditions for implemen-
tation. As is usual in the literature, we will ignore (8) at the first stage but
subsequently check that it is met.

11When the Single Crossing condition is satisfied, local (adjacent) incentive compatibility is
also sufficient for global incentive compatibility. See for instance Fudenberg and Tirole (1991).
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2.3 Informational rents

Before we proceed it might be convenient to determine the sign on the marginal
informational rent to a type θ consumer that truthfully reveal his type.

Lemma 3 A consumer of type θ that buys exclusively from firm 0, receives an
informational rent

R (θ, γ) = U0 (θ, γ)− U1 (θ, 1− γ) ≥ 0, (9)

∂R (θ, γ)

∂θ
= uθ (q, θ, γ)− uθ (q1 (θ, 1− γ) , θ, 1− γ) ≥ 0. (10)

When the informational rent is unambiguously increasing in type, we can rule
out the presence of countervailing incentives. To see that this is the case consider
the following reasoning. When the IR constraint is binding in a neighborhood of
+theta, we have R (θ, γ) = 0 and R′

θ = 0. Choosing among the possible solutions
in q that meets (10) (if more than one exist) we select the schedule that also
satisfy (6). Hence, (10) determine a quantity schedule q (θ, γ) = q̃ (θ, γ).

Hence, if the IR constraint is not binding, we must follow a quantity schedule
satisfying the condition q (θ, γ) > q̃ (θ, γ). Consequently, since uθq (·) > 0 the
information rent is nondecreasing in θ, and R′

θ ≥ 0. When the derivatives with
respect to θ and the quantity schedule in the equilibrium are continuous, the IR
constraint can only be binding in the left part of the distribution over θ, (or for
θ only), i.e., U0 (θ, γ) = U 1 (θ, 1− γ) and U0

(
θ, γ

)
is free. Note as well that it is

sufficient to check whether q̃ (θ, γ) is nondecreasing.
Without loss of generality we normalize the value of an outside option to

zero for the lowest type, i.e., U 1 (θ, 1− γ) = 0 (in practical terms we subtract
this constant from U1 (θ, 1− γ), which is assumed to be positive). We make the
following redefinition of the outside option

U 1 (θ, 1− γ) ≡ u (q1, θ, 1− γ)− cq1 − U 1 (θ, 1− γ) ≥ 0 (11)

The justification behind doing so is that the individual rationality constraint is
binding for the lowest type. Secondly, in this setting we can also compare the
strategies of implementing in the duopoly solution and the monopoly solution
respectively. In the latter, the value of an outside option is normalized to zero
for the lowest type, and for every other type as well.12 If the reservation utility
profile is implementable, i.e., if q is nondecreasing when consumers receive their
reservation utility, it might be the case that the individual rationality constraint
binds for several types at the low end of the type space.

12See also Jullien (2000). If all types are served, the global level of the reservation utility does
not really matters, what matter is the slope of reservation utility. If U1∗ (θ, γ) is the solution to
the problem when the reservation utility is U0, then U1∗ (θ, γ)+c is the solution to the problem
when the reservation utility is U0 + c for any constant c.
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3 Optimal allocations

Firm 0’s objective is to maximize profit subject to the individual rationality
constraint and the (downward binding) incentive constraint. Profit maximization
is a separate problem for each γ ∈ [0, 1/2]. The objective is

Max

∫ θ

θ

[t (θ, γ)− cq (θ, γ)] f (θ) dθ (12)

s.t. IR and IC

We use optimal control to solve the problem, imposing only the first order con-
dition for incentive compatibility at the first stage (8). When we know the sign
of the information rent, we are able to state the initial and terminal values of the
state variable U0. From now and onwards, we drop the subscript on q, since the
only q we are talking about is q0 except when we denote the quantity level in the
outside option q1 = q. The objective is

max
q≥0

∫ θ

θ

[
u (q, θ, γ)− U0 − c q

]
f(θ)dθ (13)

subject to

∂U0/∂θ = uθ (q, θ, γ) (a.e.),

U0 (θ, γ) = 0, U0
(
θ, γ

)
free,

U0 (θ, γ) ≥ U 1 (θ, 1− γ) ,

∀θ ∈ [
θ, θ

]
.

q is the control variable and U0 is the state variable. This is a control problem
with a pure state constraint.13

The Lagrangian or generalized Hamiltonian L is

L =
[
u (q, θ, γ)− U0 − cq

]
f (θ) (14)

+ λ (θ) uθ (q, θ, γ) + µ (θ)
[
U0 − U 1

]
,

where L = L (θ, q, U0, λ, µ) = H (θ, q, γ, U0, λ) + µ
[
U0 − U 1

]
. The costate

variable is λ(θ) and µ(θ) is the multiplier of the state constraint. The Hamiltonian
H (θ, q, U0∗ (θ, γ) , λ (θ)) is strictly concave in q and the maximized Hamiltonian,

Ĥ (θ, U0, λ (θ)) = maxq≥0 H (θ, q, U0, λ (θ)) is concave in U0 (θ, γ). In addition
the state constraint is quasiconcave in U0.14

13See Seierstad and Sydsæter (1977) and Seierstad and Sydsæter (1987) for a treatment on
optimal control theory with mixed and pure state constraint.

14Although γ is certainly an argument in the H and L functions, the parameter is omitted
in the writing of these functions as well as the λ and µ functions in order to make the notation
easier. As long as 0 ≤ γ ≤ 1/2, the value of γ has only the effect of shifting the level of the
outcome whereas the characterization of the outcome remains the same regardless of γ.
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Let (q∗ (θ, γ) , U0∗ (θ, γ)) be an admissible pair in the problem (13). Further,
we assume that there exists a continuous function λ (θ) (≤ 0), with a piecewise
continuous derivative λ′ (θ), and a piecewise continuous function µ (θ) ≥ 0 in
the interval

[
θ, θ

)
Then, we can use the Arrow sufficiency theorem to state the

following additional conditions for a solution to the problem15

(uq − c) f (θ) + λ (θ)uθq (q, θ, γ) = 0, (15)

∂λ(θ)/∂θ = − ∂L

∂U0
= f (θ)− µ (θ) , (16)

λ
(
θ
)
= 0 (17)

∂U0(θ, γ)/∂θ = uθ (q, θ, γ) , (18)

µ (θ)
[
U0 − U 1

]
= 0, µ (θ) ≥ 0,

[
U0 − U 1

] ≥ 0, (19)

A configuration (U0(θ, γ), q(θ, γ), λ(θ), µ(θ)) that satisfies (15) – (19),
U0(θ, γ), q(θ, γ) and λ(θ) being continuous and piecewise differentiable, µ(θ)
piecewise continuous, is also an optimum. In addition we have to allow for op-
timal configurations in which λ(θ) is only piecewise continuous and has a finite
number of jumps in the domain over θ. Under such circumstances we must apply
the additional condition

λ
(
θ−i

) − λ
(
θ+

i

)
= β( ∂

∂U0

(
U0 − U 1

)
) = β, (20)

β ≥ 0 (= 0 if U0 > U 1) (21)

where θ < θ1 < · · · < θk ≤ θ are the discontinuity points of λ (θ), and β is a
positive number. Since the jump must be from above (λ

(
θ−

) − λ
(
θ+

) ≥ 0) we

can rule out the case that there is a jump at θ = θ, measured by λ
(
θ−

)−λ
(
θ
)
=

λ
(
θ−

) ≥ 0. If we allow λ
(
θ−

)
to be positive it implies that firm 0 sells its’

product at a price below marginal cost, since λ (θ) = − [(uq − c) f (θ)] /uθq. But
under the assumption that the firms are symmetric with respect to marginal cost
the individual rationality constraint can never impose such a strategy. If the IR
constraint stops binding for some θ < θ, conditions (20)-(21) apply (Seierstad
and Sydsæter (1987, theorem 8, p. 380 )). Because R′

θ ≥ 0 this leaves only
one possible discontinuity point, the point where the state constraint stops being
binding. If we find a solution with a continuous λ (θ) we focus on this and do not
elaborate further on solutions where λ (θ) is not continuous.

First, from the optimality condition (15) the distortion is proportional to
λ (θ), which is necessarily negative since setting a price below marginal cost can
never be a part of the equilibrium strategy.

15See Seierstad and Sydsæter (1977, theorem 7 p. 377) and Seierstad and Sydsæter (1987,
chapter 5)
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By differentiating the optimality condition with respect to θ we obtain the
following condition for the monotonicity constraint to be met

dq

dθ
= −uqθ(f(θ) + λ′) + (uq − c)f ′(θ) + λuqθθ

uqqf(θ) + λuqqθ
≥ 0. (22)

The denominator is negative under the assumption that the Hamiltonian
H(θ, q, U0∗(θ, γ), λ(θ)) is strictly concave in q. The likelihood of dq/dθ being
positive increases as the slope of λ(θ) increases. When λ′(θ) is negative, there
is a chance that the numerator becomes negative. Note that if we assume that
third derivatives are indeed small, the slope of λ (θ) rather than λ (θ) itself will
be important in the monotonicity constraint. Generally, we need

f(θ) + λ′ (θ) ≥ −
[
(uq − c)

uqθ
f ′(θ) + λ

uqθθ

uqθ

]
. (23)

When third derivatives are zero and θ is uniformly distributed so f ′ (θ) = 0,
the condition can be reduced to

λ′ (θ) ≥ −f (θ) (24)

If the IR constraint does not bind, the costate equation states that λ′(θ) is equal
to f(θ) and the monotonicity condition is met when µ (θ) = 0. On the other
hand, if the IR constraint is binding we have λ′ (θ) = f (θ)−µ (θ), µ (θ) ≥ 0, and
therefore f (θ) ≥ λ′ (θ). Hence a necessary condition for monotonicity is

f (θ) ≥ λ′ (θ) ≥ −
[
f (θ) +

{
(uq − c)

uqθ

f ′(θ) + λ (θ)
uqθθ

uqθ

}]
(25)

Although we will check whether the candidate for a quantity schedule meets
the monotonicity constraint, we can tell by now that there is a fairly good chance
that it does. The expression in the bracket parenthesis is zero or positive so the
condition expresses that the marginal distortions when the IR constraint bind
can be more than opposite the marginal distortions when the constraint is not
binding.

3.1 The IR constraint is not binding

Since λ is continuous at θ we can integrate up the costate equation (16), which
gives us λ̂ (θ) = − (1− F (θ)) = λ as a candidate for λ (θ).

A candidate solution for q̂ = q (θ, γ) determined by (15) is given by

uq(q̂, θ, γ) = c+
1− F (θ)

f(θ)
uθq(q̂, θ, γ). (26)

This is the schedule we know from a monopoly nonlinear pricing problem.
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Onwards the notation is simplified by writing the accent (e.g. bar, hat, or
tilde) on the symbol for the function to denote that the function is to be evaluated
at a point where q (θ, γ) has the relevant accent. Henceforth, û = u (q̂, θ, γ) , u =
u (q, θ, γ) , and ũ = u (q̃, θ, γ). We can then write the slope of the quantity
schedule as

∂q̂

∂θ
=

(ûq − c)H′ − ûθθq +H ûqθ

−[H ûqq − ûθqq]
≥ 0, (27)

H =
f (θ)

1− F (θ)
.

Together with assumptions 1, when the hazard rate H is increasing in θ, the
Hamiltonian H(θ, q, U0∗(θ, γ), λ(θ)) is strictly concave in q, ∂q̂/ ∂θ must be pos-
itive since our assumptions guarantee that both the numerator and the denomi-
nator is positive.

3.2 The IR constraint binds

Since the nonnegativity constraint is binding, we have ∂U0/∂θ = ∂U 1/∂θ, which
implies that a candidate for q (θ, γ) is given by

uθ (q̃, θ, γ) = uθ (q̄1, θ, 1− γ) . (28)

Let (28) determine q̃ (θ, γ), and let (15) define a solution to λ̃ (θ). The solution
in µ (θ) is determined by the costate equation.

Differentiating (28) yields a solution to ∂q̃/∂θ

uθq (q̄1, θ, 1− γ)
∂q̄1

∂θ
+ uθθ (q̄1, θ, 1− γ) = uθq (q̃, θ, γ)

∂q̃

∂θ
+ uθθ (q̃, θ, γ) ,

and by Definition 2(a)

∂q̄1

∂θ
= −uqθ

uqq
≥ 0, (29)

so

∂q̃

∂θ
=

(uqθ)
2

−uqq
− [ũθθ − uθθ]

ũθq
. (30)

For q̃ (θ) to be an increasing function it is necessary that[
(uqθ)

2

−uqq
+ uθθ

]
− ũθθ ≥ 0. (31)
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Because the expression in the bracket is in fact ∂2U 1/∂θ2 and U 1 is convex, the
condition is certainly met when ũθθ ≤ 0.

Last, the IR constraint binds in the interval [θ, θ1] where θ1 is the solution in
θ to the equation q̂ (θ, γ) = q̃ (θ, γ) (or equivalently λ̂ (θ) = λ̃ (θ)), or θ1 = θ if
a solution in θ to q̂ (θ, γ) = q̃ (θ, γ) fails to exist (we can determine θ1 this way
only because we have assumed that λ (θ) is continuous).16

The optimal allocation can now be characterized. Quantity-outlay allocations
are described by the following characteristics (Stole, 1995)

q∗ (θ, γ) =
{

q̃ (θ, γ) if θ ∈ [θ, θ1]

q̂ (θ, γ) if θ ∈ [
θ1, θ

] , (32)

θ1 = {θ : q̃ (θ, γ) = q̂ (θ, γ)} (33)

and finally

t∗ (θ, γ) = u (q (θ, γ) , θ, γ)− U0∗ (θ, γ) , (34)

U0∗ (θ, γ) = U1 (θ, γ) +

∫ θ

θ

uθ (q (s, γ) , s, γ) ds,

=

∫ θ

θ

uθ (q (s, γ) , s, γ) ds. (35)

This is proved in Stole (1995).

4 Implementation

The outlay function is the upper envelope of a family of indifference curves
u (q, θ, γ)− t = U0 (θ, γ). Since q∗ (θ, γ) is strictly increasing in θ, there exists an
inverse function θ∗ (q, γ).17

Using (34) we can define the outlay schedule T (q∗, γ) by

T (q∗ (θ, γ) , θ, γ) ≡ t∗ (θ∗, γ) = u (q, θ∗, γ)− U0 (θ∗, γ) , (36)

and the slope of the outlay schedule T (q∗, γ) is given by

dT

dq
= uq + (uθ − U0

θ )
∂θ∗

∂q
= uq (q, θ

∗, γ) ≥ 0, (37)

16Using the fact that λ′
θ = f (θ) − µ (θ) , µ ≥ 0 could lead us to the same conclusion. For

θ = θ, λ̃(θ)− λ̂(θ) < 0 since we cannot have a jump at the right end of the distribution. Since
µ is positive if IR binds, we must have f (θ) ≥ λ′

θ. Thus, if the IR constraint is binding in any
subinterval, this is always in the lower part, for some interval [θ, θ1] – either λ̃ (θ) crosses λ̂ (θ)
once or not at all.

17An early paper on implementation is Laffont and Tirole (1986)
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which is positive ((uθ = U0
θ ) by the envelope theorem).

The curvature of T (q∗, γ) is given by

d2T

dq2
= uqq (q, θ

∗ (q, γ) , γ) + uqθ (q, θ
∗ (q, γ) , γ)

1

∂q∗/∂θ
. (38)

uqq(·) is negative and the last term is positive, and T (q∗, γ) is concave if

∂q∗

∂θ
≥ uqθ (q, θ

∗ (q, γ) , γ)
−uqq (q, θ

∗ (q, γ) , γ)
≥ 0. (39)

Hence, concavity of the outlay schedule imply a stronger restriction than
monotonicity with respect to q∗(θ, γ).

When the participation constraint is not binding, substituting ∂q̂/∂θ into
(39), reorganizing and evaluating the condition for q∗(θ, γ) = q̂(θ, γ) yields

(−ûqq)(ûq − c)H ′ + ûθqqûqq − ûqθûθqq

(ûqq −H ûθqq)ûqq
≥ 0, (40)

and the outlay schedule is certainly concave for q ∈ [
q∗(θ1, γ), q

∗(θ, γ)
]
.

When the participation constraint binds we have to evaluate the condition for
∂q̃/∂θ. Rewriting condition (39) for q∗(θ, γ) = q̃(θ, γ) yields

[uqθ(q̄1, θ, 1− γ)]2

−uqq(q̄1, θ, 1− γ)
+ uθθ(q̄1, θ, 1− γ) ≥ [uqθ(q̃, θ, γ)]

2

−uqq(q̃, θ, γ)
+ uθθ(q̃, θ, γ) (41)

The left-hand side in (41) is the second order derivative of the outside option
(the first best utility) with respect to θ. This is assumed to be positive. The right-
hand side is to be evaluated under a quantity distortion, i.e., q̃(θ, γ) ≤ q̄(θ, γ),
but at a more favorable location, i.e., γ ≤ (1 − γ), (for γ ≤ 1/2). Hence, it
is ambiguous whether the condition is met or not. At γ = 1/2, the left-hand
side equals the right-hand side. If we are able to show that the right-hand side
increases when γ decreases, we can conclude that (41) imply a contradiction.
Thus, we differentiate the right-hand side at γ = 1/2 and evaluate the sign of
this (the negative of the sign since dγ < 0)

− ∂

∂γ

{
[uqθ(q̃(θ, γ), θ, γ)]

2

−uqq(q̃(θ, γ), θ, γ)
+ uθθ(q̃(θ, γ), θ, γ)

}
. (42)

Hence, if (42) is positive the outlay schedule T (q∗, γ) is convex, i.e., if{
2uqθ

�
uqqθ

�
− dq̃

dγ

�
+uqθγ

�

uqq
−

(
uqqq

(
− dq̃

dγ

)
+ uqqγ

)(
uqθ

uqq

)2
}

−
{
uθθq

(
− dq̃

dγ

)
+ uθθγ

}
≥ 0.

(43)

We can now formulate the following
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Proposition 1 If (43) is met, the outlay schedule T (q∗, γ) defined by (36) is
strictly convex for any θ in the interval [θ, θ1) and consequently for any q in the
interval [q∗ (θ, γ) , q∗ (θ1, γ)) and strictly concave elsewhere, for q(θ, γ) > q(θ1, γ).
Otherwise, T (q∗, γ) is concave everywhere.

Proposition 1 is proved by the preceding discussion. The sign of the expression
in (43) is hard to evaluate using a general utility function. In the case with
quadratic utility, u = θ(1 − γ)q − 1

2
q2, (43) reduces to 2(1 − γ) > 0. With a

logarithmic utility function, u = θ(1 − γ) ln q, (43) reduces to 1/θ > 0. Hence,
for this two important cases, the outlay schedule is convex in the lower part.

Next, we turn to the problem of how to implement the outlay schedule. In-
stead of announcing the complete set of take-it-or-leave-it contracts, or announc-
ing the fully nonlinear tariff T (q∗, γ), the firm try to implement it via a menu of
optional tariffs. These are described by the following Lemma

Lemma 4 If the outlay schedule T (q∗, γ) is to be implemented by a menu of
tariffs defined by TΛ (q, θ, γ), these tariffs must meet the following conditions

(i) TΛ (q (θ, γ) , θ, γ) = T (q∗, γ) = t∗ (θ, γ) ,
(ii) TΛ (q, θ, γ) ≥ T (q∗, γ) ,
(iii) TΛ (q, θ, γ) ≥ 0, ∀q ≥ 0.

(44)

The conditions in Lemma 4 follow from the individual rationality constraint and
the incentive compatibility constraints. With these characteristics, the outlay
function is the lower envelope of the family of tariffs TΛ (q, θ, γ). Implementation
requires that type θ (with brand preference γ) finds it optimal to consume an
amount q∗ (θ, γ), and that he pays an amount t∗ (θ, γ) for this consumption.
When a consumer of type θ announces a type parameter θ′, it is equivalent to
selecting a tariff TΛ (q, θ′, γ) and purchasing a quantity q (θ′, γ). Expected utility
is u (q (θ′, γ) , θ, γ) − t (θ′, γ), and by construction of t (θ, γ) this is maximized
when θ′ = θ.

If T (q∗, γ) is everywhere concave, we know that it can be represented by the
lower envelope of its tangents. Hence, a menu of two-part tariffs will meet the
incentive compatibility constraint and, of course, by construction, the individual
rationality constraint. The following definition characterizes a menu of two-part
tariffs.

Definition 3 A menu of two-part tariffs (subscript 2P) is described by

T2P (q, θ, γ) = u (q, θ∗, γ)− U0 (θ∗, γ) + uq (q, θ
∗, γ) (q − q∗ (θ, γ)),

= t∗ (θ, γ) + uq (q
∗, θ, γ) [q − q∗ (θ, γ)].

(45)

If T (q∗, γ) is concave the menu of two-part given by definition 3 meet the
requirements in Lemma 4. However, if T (q∗, γ) is convex, or has convex parts, a
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two-part tariff that is the tangent to T (q∗, γ) at a point (q∗ (θ, γ) , t (θ, γ)) would
intersect T (q∗, γ) at one or more points and, hence, it would violate part (ii) of
Lemma 4. Alternatives to pooling tariffs, i.e., tariffs such that different quantity
types are confronted with the same tariff, have to involve a more complicated
scheme. The following definition characterizes a menu of three-part tariffs.18

Definition 4 A menu of three-part tariffs (subscript 3P) is described by

T3P (q, θ, γ) =


t∗ (θ, γ) if q ≤ q∗ (θ, γ)
t∗ (θ, γ)
+uq (q̂ (θ, γ) , θ, γ) [q − q∗] otherwise

. (46)

Although T3P (q, θ, γ) is not differentiable at q = q∗, it is continuous and both the
right side and left side limits are unique and equal to t∗ (θ, γ). The menu described
by 4 meets the requirements in Lemma 4 given that uq(q̂, θ, γ) is sufficiently large
to satisfy part (ii) in Lemma 4. If not, we can substitute any schedule of marginal
prices in the menu three-part tariffs that is decreasing in type.

A three-part includes in the fixed payment t∗(θ, γ) some “free” consumption
allowance q∗(θ, γ), subsequent purchases are charged according to a unit price
uq(q̂, θ, γ).

Finally, the following Proposition characterizes the solution in a (possibly)
mixed tariff regime.

Proposition 2 (i) If the outlay schedule has a convex part in the lower quantity
end, it can be implemented by a mixed tariff regime with a menu of three-parts and
two-part tariffs. A mixed tariff regime is characterized by the following solution

T ∗ (q, θ, γ) =
{

T3P (q, θ, γ) if θ ∈ [θ, θ2]

T2P (q, θ, γ) if θ ∈ (
θ2, θ

] , (47)

θ2 is the minimal solution to {θ : T2P (q, θ, γ) = t∗ (θ, γ)}, which is given by
{θ : T2P (q

∗ (θ, γ) , θ, γ) = t∗ (θ, γ)}. (ii) Otherwise, the outlay schedule is concave
everywhere and can be implemented by a menu of two-part tariffs, T ∗(q, θ, γ) =
T2P (q, θ, γ), ∀θ.
Proposition 2 is proved by the preceding discussion and by applying Lemma 4.

18A three-part tariff can be considered as a moderated version of a “knife-edge” mechanism.
In the absence of any uncertainty in demand, the allocation can always be implemented by a
“knife-edge” mechanism, where a consumer pays t (θ, γ) if he announces θ and consumes q (θ, γ),
otherwise he has to pay ∞. But, with even very small demand disturbances present such a
mechanism is not implementable. Picard (1987) shows that a menu of quadratic tariffs might
implement the optimal solution in a situation where a menu of linear tariffs cannot. See also
Laffont and Tirole (1993) pp. 107-109 for a reference to Picard in the case of quadratic transfer
schemes in a regulation model. However, quadratic tariffs seem difficult to commercialize, and
will therefore be of little interest in this context. Three-part tariffs on the other hand are a
fairly good approximation to quadratic tariffs and are sufficiently simple to be understood by
the market as well.
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5 A numerical example with quadratic utility

Let us consider a numerical example with linear transportation costs and
quadratic demand. For reasons of comparison, the assumptions are identical
to those used in Stole (1995). The quantity parameter θ is distributed uniformly
on the interval [1, 2]. Each firm’s marginal cost is equal to zero. Utility is speci-
fied by the function u(q, θ, γ) = θ(1− γ)q − 1

2
q2. The value of an outside option

is U 1(θ, 1 − γ) = 1
2
θ2γ2, when we normalize this to be zero for the very lowest

type we get U 1(θ, 1− γ) = 1
2
γ2

(
θ2 − 1

)
. The utility function is linear in quantity

type and localization and the reservation utility is convex in θ and γ.
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Figure 1: The quantity schedule is implementable but not with two-part tariffs

Figure 1 represents the solution with respect to q, p, λ and µ. The quantity
schedule (the bold upper envelope) in figure 1 is the solution to the problem
with direct revelation mechanisms. This is continuous and nondecreasing, and
therefore truthfully implementable. In a monopoly context, the dual problem is
to implement the allocation by offering the consumers to choose a tariff from a
menu of two-part tariffs. But as we see in figure 1, this is not implementable
since the outlay schedule is not everywhere a concave function.

The graphics in figure 2 illustrate the allocation in the (t, q) space and
what implementation of T (q∗, γ) looks like in the numerical example described
above, for γ = .4. The fully nonlinear bold line represents T (q∗, .4), the solid
lines are some selected three-part and two-part tariffs, the dotted lines are con-
sumers’ indifference curves in the (t, q) space. The three-part tariff T3P (q, θ, γ)
will truthfully implement q (θ, γ), hence it is tangent to the indifference curve
U (θ, γ) = t − u (q, θ, γ) at the point q = q (θ, γ). Similarly, a two-part tar-
iff T2P (q, θ2, γ) will truthfully implement q (θ2, γ) because it is tangent to the
indifference curve U (θ2, γ) = t− u (q, θ2, γ) at q = q (θ2, γ).

Empirical observations do support the theoretical results. The examples
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Figure 2: Utility, outlay, three-part and two-part tariffs, γ = .4

drawn in figure 3 seem to represent a trend for tariff arrangements in competitive
markets.19 The first graphic shows examples on tariffs in the US long distance
fixed telephony market, represented by some of AT&T’s tariff offerings in the
residential market, AT&T Basic and AT&T Savings.20 The latter graphic shows
examples on tariffs effective in the Norwegian cellular market, represented by the
tariffs of Telenor Mobil.

The idea of using a combination of three-part and two-part tariffs seems more
appealing when the outlay schedule is convex for low quantities. Three-part tariffs
are communicated to the market as discounts conditional on a minimum usage
level and such an idea would be hard to introduce towards high quantity users.

19The figures are based on assumptions about daytime-, evening-time and weekend-time
usage, as well as usage patterns with respect to distance bands, and are illustrations rather
than precise tariff computations.

20See also Michell and Vogelsang (1991) and Wilson (1993) for a survey of the practice on
telecommunications pricing during the seventies and eighties.
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Figure 3: Pricing of telecom services, AT&T and Telenor Mobil

6 Concluding remarks

Linear contracts, as two-part tariffs, are attractive because under many conditions
they implement the optimal contracts in an easy way. However, the paper shows
that the problem is not as straightforward in a duopoly as it is in a monopoly
setting. In a monopoly model, the monotone hazard rate condition is sufficient
for the payment function to be concave, and hence for a menu of two-part tariffs
to implement the outlay function. Although the monotone hazard rate condition
is still a necessary condition in our duopoly model, it is shown that under rea-
sonable assumptions two-part tariffs are outruled for low quantity purchases. In
a monopoly the firm will balance the magnitude of downward quantity distor-
tions below the first best level in order to reduce the information rent to better
types (and all consumer surplus net of the transfer to the firm is informational
rent). In the duopoly, however, the existence of an outside option places a re-
striction on consumers’ net surplus. This will in turn change the magnitude of
downward quantity distortions. This produces a convexity in the outlay schedule
when the individual rationality constraint is binding and prevent the firm from
using two-part tariffs for small purchases.

By analyzing the pricing strategies of the firms, one could draw conclusions
about the competitiveness in the market. If the firms to a large extent are using
three-part tariffs, this indicates that the market is more competitive. Although
one should be careful in making comparisons of different markets, the US long
distance market seems to be more competitive than the Norwegian cellular mar-
ket.
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