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Abstract

This paper studies the impact of hospital competition on waiting times. We use

a Salop-type model, with hospitals that differ in (geographical) location and, po-

tentially, waiting time, and two types of patients; high-benefit patients who choose

between neighbouring hospitals (competitive segment), and low-benefit patients who

decide whether or not to demand treatment from the closest hospital (monopoly seg-

ment). Compared with a benchmark case of regulated monopolies, we find that hospi-

tal competition leads to longer waiting times in equilibrium if the competitive segment

is sufficiently large. Given a policy regime of hospital competition, the effect of in-

creased competition depends on the parameter of measurement: Lower travelling costs

increase waiting times, higher hospital density reduces waiting times, while the effect

of a larger competitive segment is ambiguous. We also show that, if the competitive

segment is large, hospital competition is socially preferrable to regulated monopolies

only if the (regulated) treatment price is sufficiently high.
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1 Introduction

Waiting times are a major health policy concern in many OECD countries. Mean waiting

times for non-emergency care are above three months in several countries and maximum

waiting times can stretch into years. Policymakers often argue that more competition

and patient choice can reduce waiting times by encouraging hospitals to compete for

patients and revenues (Siciliani and Hurst, 2005).1 The mechanisms of how this may work

are, however, not very clear. Why would hospitals that operate at full capacity and face

excessive demand have an incentive to compete for even more patients? The main purpose

of this paper is to contribute to the understanding of the relationship between competition

and waiting times in hospital markets.

We develop a model of hospital competition within a Salop framework, where hospitals

differ in terms of (geographical) location and, possibly, waiting times. We assume that

there are two types of patients who differ in expected benefit ("high" and "low") from

hospital treatment. Hospitals compete on the segment of demand with high benefit, while

they are local monopolists on the demand segment with low benefit. By comparing with a

benchmark case of regulated monopolies, we analyse how the introduction of competition

in the hospital market affects waiting time and activity in equilibrium. Given a policy

regime of hospital competition, we also examine the effects of increasing the degree of

competition, based on three different measures: (i) patients’ travelling costs, (ii) the size

of the competitive relative to the monopolistic demand segment, and (iii) hospital density

(the number of hospitals). We also derive the socially optimal waiting time and assess the

welfare implications of hospital competition.

Most of the existing literature assumes that hospitals are local monopolists (Lind-

say and Feigenbaum, 1984; Iversen, 1993, 1997; Smith, 1999; Olivella, 2002; Barros and

1There are many examples. Norway introduced activity-based funding (DRG-pricing) in 1997 and
nation-wide patient choice of hospital in 2001. Both reforms aimed at stimulating competition and reducing
waiting times. In the United Kingdom, the policy Payment by Results has been recently introduced, which
remunerates hospitals according to a fixed tariff per patient treated. One of the objectives of the policy is
to induce hospitals to compete for resources by reducing waiting times. In Denmark patients have had free
choice of treatment in any publicly-funded hospital within the county of residence since 1993. In Sweden
since 2002 all county councils have introduced free choice among public providers within and between
counties.

2



Olivella, 2005; see Cullis, Jones and Propper, 2000, for a review of the literature). Two ex-

ceptions are Xavier (2003) and Siciliani (2005) who model competition within a Hotelling

framework and in a duopoly model with differentiated products, respectively.2 In these

models, competition takes the form of duopoly, with the degree of competition being

measured by the substitutability between treatments at the two hospitals, and both find

that increased competition (or increased patient choice) leads to longer waiting times

in equilibrium. An arguable limitation of both these studies is that the analysis of a

potential competition effect is confined to a single competition measure that leaves con-

siderable room for interpretation. Furthermore, the lack of a welfare analysis leaves the

more fundamental question of whether hospital competition is desirable in the first place,

unanswered.

In the present paper, we complement and extend these studies in several different ways.

First, we isolate a pure competition effect by considering regulated monopolies versus

competition, something which has not been done in the previous literature on hospital

competition and waiting times. Second, the richness of our model allows us to use several

different measures of the degree of hospital competition, something that turns out to have

a crucial impact with respect to both waiting times and activity levels. Third, we include a

welfare analysis where we analyse the question of whether hospital competition is socially

desirable within a context of third-party funding and waiting times. We also deviate from

the above mentioned studies by explicitly modelling semi-altruistic health care providers.

We find that introducing competition, by allowing previously regulated monopolies to

compete for patients (equivalently, to introduce free patient choice), leads to an increase

in equilibrium waiting times (with a corresponding reduction in hospital activity) only if

the competitive demand segment is sufficiently large relative to the monopoly segment,

and vice versa.3 Thus, we obtain the previously derived result in the literature as a special

2Another related paper is Dawson et al. (2007) who analyse the impact of introducing patient choice
on hospital waiting times. They find that the effect of choice on waiting times depends on the demand
elasticities. Their model is, however, very different from ours, as they focus solely on the demand-side,
assuming the supply-side to be completely exogenous. Thus, hospital competition is not an issue in their
paper at all.

3The impact of patient choice on hospital waiting times has received surprisingly little empirical atten-
tion. Two notable exceptions are: Dawson et al. (2007) who analyse the impact of the London Patient
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case: when the competitive segment tends to one then competition always increases waiting

times. Also, given a competition regime, we find that increasing the degree of competition

has ambiguous effects on waiting times, depending on the measure of competition. Lower

travelling costs for patients increase waiting times, which replicates the result derived by

Xavier (2003). In addition, we find that a larger competitive segment has an indeterminate

effect, while higher hospital density reduces waiting times.

Furthermore, the relationship between competition and hospital activity is often counter-

intuitive. For example, lower travelling costs, which — all else equal — increase demand for

hospital treatment, lead in equilibrium to lower hospital activity due to the correspond-

ing increase in waiting time. Similarly, higher hospital density, which — all else equal —

reduces demand per hospital, leads in equilibrium to higher per hospital activity due to

the corresponding reduction in waiting time.

Regarding social welfare, we show that, if the competitive demand segment is relatively

large, hospital competition is socially desirable, compared with regulated monopolies, only

if the (regulated) price per treatment is sufficiently high. For a small competitive demand

segment, the result is reversed; in this case, competition is desirable only if the treatment

price is sufficiently low.

However, the socially optimal waiting time is attainable through optimal price setting,

regardless of market regime. We also characterise the socially optimal treatment price and

show that whether high-powered incentive schemes substitute or complement competition

depends on the measure of competition. Unless the opportunity cost of public funds

or altruism is very high, stronger competition through higher hospital density increases

the optimal treatment price, while increased competition through lower travelling costs

reduces optimal prices.

Finally, we briefly introduce a private treatment option, which is costly (price or pre-

mium) but has no waiting time.4 Assuming that only some (rich) patients can afford

Choice Project, finding that the project led to shorter (and converging) average waiting times in the Lon-
don region; Siciliani and Martin (2007) who provide empirical evidence supporting a negative relationship
between hospital density and waiting times, for a given level of need.

4More extensive contributions on the impact of private care on waiting time for public treatment are
Iversen (1997); Hoel and Sæther (2003); Marchand and Schroyen (2005). See also Ma (2003) for explicit
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private treatment (insurance), we show that waiting time for the remaining (poor) pa-

tients decreases in the presence of a private alternative. However, all results derived in

absence of a private sector still holds. Patients (both poor and rich) are better off with a

private alternative, but the overall welfare effect depends, naturally, on the costs of this

alternative.

The rest of the paper is organised as follows. The model is presented in Section

2, while, in Section 3, we derive and characterise the equilibrium waiting time. The

effects on waiting time and hospital activity of, first, introducing competition, and, second,

increasing the degree of competition, are analysed in Section 4. In Section 5 we derive and

characterise both the socially optimal waiting time and the optimal treatment price, and

we assess the social desirability of introducing competition in a public hospital market. In

Section 6 we introduce a private treatment option. Finally, Section 7 concludes the paper.

2 Model

Consider a market for elective hospital treatment where n hospitals are equidistantly

located on a circle with circumference equal to 1. There are two patient types — L and

H — differing with respect to the gross valuation of treatment. Both types are uniformly

distributed on the circle. A patient demands either one treatment from the most preferred

hospital, or no treatment at all.

The utility of an H-type patient who is located at x and seeking treatment at hospital

public rationing in the presence of a contestable private market; Brekke and Sørgard (2007) for the impact
on public (NHS) provision of physician dual practice (moonlightning); and Besley et al. (1999) for the
impact of waiting times on demand for private insurance.
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i, located at zi, is given by5

UH (x, zi) = V − t |x− zi|− wi, (1)

where wi is the waiting time at hospital i and t is a travelling cost parameter.

Equivalently, the utility of a L-type patient who is located at x and seeking treatment

at hospital i, located at zi, is given by

UL (x, zi) = v − t |x− zi|− wi, (2)

where V > v. We concentrate on cases where the H-segment is always covered, while the

L-segment is only partially covered. That is, some L-patients will not seek treatment in

equilibrium.6 We assume that the H-segment constitutes a share λ of the total number

of patients, which is normalised to 1.

Since the distance between hospitals is equal to 1/n, the H-patient who is indifferent

between seeking treatment at hospital i and hospital j is located at xHi , given by

V − txHi − wi = V − t

µ
1

n
− xHi

¶
− wj ,

yielding

xHi =
1

2t

µ
wj − wi +

t

n

¶
. (3)

5This formulation is consistent with Lindsay and Feigenbaum (1984) and Martin and Smith (1999)
where patients have to afford a fixed cost to obtain health care. For example, a patient may incur a cost
of attending an outpatient department to see a specialist who will agree that they need treatment and
place them on the waiting list. This cost is likely to vary across individuals and in particular vary with the
distance between the patient and the hospital location. Increases in the waiting time reduce the demand
because the present value of the benefit is reduced. Having a positive cost of joining a list incurred before
the health benefits are realised seems plausible when patients are seen by a specialist in order to join the
list. Lindsay and Feigenbaum (1984) show that with fixed costs the demand reduces with waiting times.
Our formulation differs from theirs since we assume a linear discount function rather than an exponential
one. This assumption makes the model more simple without qualitatively affecting the results.

6Empirical studies, see e.g., Martin and Smith (1999) and Martin et al. (2007), show that, controlling
for the supply of private beds, the demand is relatively inelastic, but surely not perfectly inelastic, with
respect to waiting time: an increase in waiting by 1% reduces demand by 0.2%. Therefore, when waiting
times are higher, some patients renounce to the treatment. Also, in light of our model the evidence suggests
that the fraction of high valuation patients — as measured by λ — is quite large.
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Total demand for hospital i from the H-segment is given by XH
i = 2xHi .

L-patients seek treatment only at the nearest hospital, if at all. The L-patient who is

indifferent between treatment at hospital i and no treatment is located at xLi , given by

v − txLi −wi = 0,

yielding

xLi =
v − wi

t
. (4)

Total demand for hospital i from the L-segment is given by XL
i = 2xLi . Total demand

facing hospital i from both segments is thus given by

XD
i = λXH

i + (1− λ)XL
i =

2 (1− λ) v − wi (2− λ) + λwj

t
+

λ

n
, (5)

where λ ∈ (0, 1). Notice that XD
i ∈

¡
λ
n ,

1
n

¢
, while total demand is given by XD :=Pn

i=1X
D
i ∈ (λ, 1). To gain a better understanding of the mechanisms of the model, it is

useful to see how demand reacts to changes in waiting times at the hospital level. From

(5) we see that
∂XD

i

∂wi
= −2− λ

t
< 0. (6)

Notice that lower travelling costs makes it less costly for patients to demand treatment,

or to switch between hospitals; this increases the demand responsiveness to changes in

waiting times. However, since the demand loss due to increased waiting time is larger in

the L-segment, a larger competitive segment (i.e., an increase in λ) will reduce the demand

responsiveness to changes in waiting times.

Hospitals are prospectively financed by a public payer offering a lump-sum transfer T

and a per-treatment price p. The objective function of hospital i is assumed to be given

by

πi = T + pXS
i + αBi (wi, wj)− C

¡
XS
i

¢
− F, (7)

where XS
i is the supply of hospital treatments. Apart from fixed hospital costs, F , the
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cost of supplying hospital treatments is given by an increasing and strictly convex cost

function C (·). The convexity of the cost function captures a presumably important feature

in the context of waiting times, namely that hospitals face come capacity constraints.7 The

function Bi (·) gives the benefit of the patients from receiving treatment at hospital i, while

the parameter α ∈ [0, 1] captures the degree of altruism of the provider.8 More explicitly,

the surplus to patients treated at hospital i is given by

Bi (wi, wj) = 2λ

Z 1
2t(wj−wi+

t
n)

0
(V − wi − tx) dx (8)

+2 (1− λ)

Z v−wi
t

0
(v − wi − tx) dx,

where the first term is the surplus to H-type patients, and the second term is the surplus

to the L-type patients.

Differentiating (8), we obtain

∂Bi (wi, wj)

∂wi
= −XD

i −
λ

t

µ
V − wi + wj

2
− t

2n

¶
< 0. (9)

A marginal reduction in the waiting time of hospital i has two effects. First, it reduces

the waiting time, and thus increases utility, for all existing patients at hospital i. This is

represented by the first term in (9). Second, it increases demand for treatment at hospital

i. At the margin, the increased demand from the L-segment represents a zero utility

contribution. However, in the H-segment, there is an inflow of patients with a strictly

positive net utility of hospital treatment. This is represented by the second term in (9).

Obviously, the magnitude of this second effect depends on the size of the competitive

segment, λ. Notice also that patient surplus at hospital i is a convex function of wi

7A convex variable cost function is also supported by evidence suggesting that economies of scale are
quite rapidly exhausted in the hospital sector (see, e.g., Ferguson et al., 1999, and Folland et al., 2004, for
literature surveys).

8This formulation is consistent with Ellis and McGuire (1986), Chalkley and Malcomson (1998) and
Jack (2005). It is also general. The special case of a profit-maximiser hospital can be obtained by setting
α = 0.
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(implying that the altruistic disutility of waiting (−αBi) is concave in wi).9

3 Equilibrium waiting times

In deriving the equilibrium, we assume, as is commonly done, that waiting time acts as a

re-equilibrating mechanism between demand and supply, i.e., XD (wi, wj) = XS.10 This

implies that it is equivalent whether we maximise the hospital objective function with

respect to supply or waiting time. For analytical purposes, we use the latter approach.

Thus, the hospitals simultaneously and independently choose announced waiting times,

in order to maximise their objective functions. We assume that the hospitals are not

able/allowed to discriminate between different patient types with respect to waiting times.

We also assume that hospitals cannot turn down patients seeking treatment. This latter

assumption implies that we do not allow for explicit rationing.

Substituting (5) into (7) and maximising (7) with respect to waiting time yields the

following first-order condition for hospital i,

∂πi
∂wi

=
£
p−C 0 (Xi (wi, wj))

¤ ∂Xi (wi, wj)

∂wi
+ α

∂Bi (wi, wj)

∂wi
= 0, (10)

which implicitly defines a best response function wi (wj). Notice that we have suppressed

the superscript on the demand function.11

Differentiating (10), we see that waiting times are strategic complements:12

dwi

dwj
= −∂

2πi/∂wj∂wi

∂2πi/∂w2i
=

¡
C 00 (·) 2−λt − α

¢
λ
t + α λ

2t¡
C 00 (·) 2−λt − α

¢
2−λ
t − α λ

2t

> 0 (11)

If, say, firm j increases its waiting time, some (H-type) consumers switch to hospital i,

9From (9) we derive
∂2Bi(wi,wj)

∂w2i
= 4−λ

2t > 0.
10See Lindsay and Feigenbaum (1984), Gravelle, Smith and Xavier (2003), Iversen (1993, 1997), Martin

and Smith (1999) and Siciliani (2005).
11The second-order condition is ∂2πi/∂w2i = −

£¡
C00 (·) 2−λt − α

¢
2−λ
t − α λ

2t

¤
< 0, which is always satis-

fied for sufficiently convex cost function; also, ∂2πi/∂wj∂wi =
¡
C00 (·) 2−λ

t
− α

¢
λ
t
+ α λ

2t
, which is always

positive whenever ∂2πi/∂w2i < 0.
12The denominator is positive by the second-order condition. The numerator is also positive as

C00 (·) 2−λ
t
− α > 0 is required for the second-order condition to be satisfied.
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which now faces a higher demand. To meet this increase in demand, hospital i has to

increase its supply, but this would increase the marginal costs, making the first term in

(10) more positive, implying that ∂πi/∂wi > 0. Since the price is fixed, we see from the

first-order condition that the optimal response for hospital i to a higher wj , is to reduce

demand by increasing its waiting time, wi, until the level where ∂πi/∂wi = 0. Thus,

waiting times are strategic complements for competing hospitals.

In a symmetric equilibrium, wj = wi = w∗. Using (5) and (6), the equilibrium waiting

time is given by

−(2− λ)

t

£
p− C 0 (Xi (w

∗))
¤
= α

∙
Xi (w

∗) +
λ

t

µ
V − w∗ − t

2n

¶¸
, (12)

where

Xi (w
∗) = 2 (1− λ)

µ
v − w∗

t

¶
+

λ

n
, (13)

and w∗ = w∗ (v, t, λ, p, n).13 Since the right-hand side of (12) is positive, the expression in

the square brackets on the left hand side of (12) must be negative in an interior solution.

Thus, the equilibrium waiting time is such that the (regulated) price is lower than the

marginal treatment cost. In other words, the marginal patient is financially unprofitable

to treat for the hospital.

We want to focus on equilibria with strictly positive waiting times. This requires that

the cost of treating the last patient who demands treatment at w = 0 is larger than the

treatment price p. This requirement will be met if the supply cost function is sufficiently

convex. Furthermore, we restrict attention to interior solutions with a partially covered

L-segment in equilibrium, i.e., xLi ∈
¡
0, 12n

¢
.

Proposition 1 Assume that the degree of altruism is sufficiently small. Then there exists

an equilibrium waiting time, implicitly defined by (12), which is positive and involves a
13Uniqueness and stability of the equilibrium is confirmed by the positive sign of the Jacobian:

∆ :=

¯̄̄̄
¯̄ ∂2πi

∂w2i

∂2πi
∂wj∂wi

∂2πj
∂wi∂wj

∂2πj
∂w2j

¯̄̄̄
¯̄ = 4

t

µ
C00 (·) 2− λ

t
− α

¶ ∙µ
C00 (·) 2− λ

t
− α

¶
1− λ

t
− α

λ

2t

¸
> 0,

where the expression in the square brackets is positive whenever the second-order condition is satisfied.
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partially covered L-segment, if p ∈ S :=
¡
p,min {p1, p2}

¢
, where p and p1 are implicitly

defined by

p = C 0
µ
λ

n

¶
− αt

2− λ

∙
λ

n
+

λ

t

µ
V − w∗(p)− t

2n

¶¸
and

p1 = C 0
µ
1

n

¶
− αt

2− λ

∙
1

n
+

λ

t

µ
V − w∗(p1)−

t

2n

¶¸
,

while p2 is given by

p2 = C 0
µ
2 (1− λ)

v

t
+

λ

n

¶
− αt

2− λ

∙
2 (1− λ)

v

t
+

λ

2n
+

λ

t
V

¸
.

The equilibrium waiting time is monotonically decreasing in the treatment price p.

Proof. We start by confirming the last part of the Proposition. By total differentiation

of the first-order conditions, we obtain14

∂w∗

∂p
= − (2− λ)/t

2
h¡
C 00 (·) 2−λt − α

¢ (1−λ)
t − α λ

2t

i < 0
An interior solution with positive equilibrium waiting times requires that the following

conditions are met: w∗ > 0 and xL ∈
¡
0, 12n

¢
. Assume xL = 0, which implies X (w∗) = λ

n .

Inserting this into the first-order condition for hospital i, and rearranging, we get

p = C 0
µ
λ

n

¶
− αt

2− λ

∙
λ

n
+

λ

t

µ
V − w∗(p)− t

2n

¶¸

Denote the price that solves this equation by p. Since ∂w∗/∂p < 0 and ∂xL/∂w < 0 we

know that xL > 0 if p > p. Now assume xL = 1
2n , which implies X (w

∗) = 1
n . Inserting

this into the first-order condition yields

p = C 0
µ
1

n

¶
− αt

2− λ

∙
1

n
+

λ

t

µ
V − w∗(p)− t

2n

¶¸
.

14 ∂w∗

∂p
= −

¯̄̄̄
¯̄ ∂2πi/∂wi∂p ∂2πi/∂wi∂wj

∂2πj/∂wj∂p ∂2πj/∂w
2
j

¯̄̄̄
¯̄

∆
. Notice that ∂2πi/∂wi∂p = ∂2πj/∂wj∂p, so that ∂w∗

∂p
=

− 1
∆

¡
∂2πi/∂wi∂p

¢ £
∂2πj/∂w

2
j − ∂2πi/∂wi∂wj

¤
= − ∂2πi/∂wi∂p

∂2πj/∂w
2
j+∂

2πi/∂wi∂wj
.
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Denote the price that solves this equation by p1. Again, since ∂w
∗/∂p < 0 and ∂xL/∂w < 0

we know that xL < 1
2n if p < p1. Finally, assume w∗ = 0, which implies X (0) =

2 (1− λ) vt +
λ
n . The first-order condition is then given by

p = C 0
µ
2 (1− λ)

v

t
+

λ

n

¶
− αt

2− λ

∙
2 (1− λ)

v

t
+

λ

2n
+

λ

t
V

¸

Denote this price by p2. By a similar argument as above, w∗ > 0 if p < p2. Since

λ
n < min

©
1
n , 2 (1− λ) vt +

λ
n

ª
, it is straightforward to see that p < min {p1, p2}, implying

that S is non-empty, if α is sufficiently small.

The inverse relationship between equilibrium waiting times and the treatment price

is easily explained. A higher price simply means that the marginal patient becomes less

unprofitable to treat, which dampens the incentive to use waiting time as an instrument

to shift demand from unprofitable patients towards neighbouring hospitals.

Notice also that, since positive equilibrium waiting times imply that the marginal

patient is unprofitable for the hospitals to treat, the equilibrium is "undercutting proof",

in the sense that it is never profitable for a hospital to deviate from the equilibrium by

reducing waiting times in order to drive neighbouring hospitals out of the market.

4 The impact of competition on waiting times and activity

We will now use the model to analyse if and how competition in hospital markets affects

waiting times and hospital activity in equilibrium. The analysis is done in two steps.

We start out by considering the effect of introducing competition in a hospital market

characterised by regulated monopolies. Subsequently, we consider the effects of differ-

ent measures to increase the degree of competition in a hospital market where there is

competition to begin with.
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4.1 Introducing competition

Assume that the hospital market described in the previous section consists of regulated

monopolies, where patients are allocated to hospitals purely according to geographical

distance. If a patient decides to visit a hospital to undergo treatment, she has to attend

the nearest hospital. In our model, this means that hospital i ’s demand from the H-

segment is exogenously given by XH
i = 1

n . Total demand for hospital i is thus given

by

XD
i (wi) =

λ

n
+ (1− λ)

2 (v −wi)

t
. (14)

There is now a demand response to waiting time changes only in the L-segment. Differ-

entiating (14) with respect to wi yields

∂XD
i (wi)

∂wi
= −2 (1− λ)

t
< 0. (15)

Comparing (6) and (15), we see that demand responsiveness is lower under regulated

monopolies.

The surplus to patients treated at hospital i is given by

Bi (wi) = λ2

Z 1
2n

0
(V − wi − tx) dx+ (1− λ) 2

Z v−wi
t

0
(v −wi − tx) dx, (16)

where the first term is the surplus to H-type patients, and the second term is the surplus

to the L-type patients. Differentiating (16), we obtain

∂Bi (wi)

∂wi
= −XD

i (wi) . (17)

In the absence of competition, notice how the marginal reduction in patient surplus from

waiting is lower in absolute value (see (9)). The reason is that, under regulated monopolies,

changing the waiting time has only an effect on inframarginal patients.

Inserting (14) into the first-order condition, (10), and applying symmetry, the equilib-
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rium waiting time in a market with regulated monopolies, wm, is given by15

−2 (1− λ)

t

£
p− C 0 (Xi (w

m))
¤
= αXi (w

m) , i = 1, 2, (18)

where

Xi (w
m) = 2 (1− λ)

v − wm

t
+

λ

n
. (19)

Comparing (12) and (18) we see that, for w∗ = wm, both the left-hand side and the

right-hand side of (18) are smaller than the left-hand side and right-hand side of (12).

This means that wm ≶ w∗. A closer scrutiny of the two first-order conditions enables us

to derive the following result:

Proposition 2 Introducing competition in a hospital market with regulated monopolies

leads to longer (shorter) waiting times and lower (higher) activity in equilibrium if the

competitive segment (λ) is sufficiently large (small);

1− λ < (>)
t

2n (V − v)
.

Proof. Subtracting (12) from (18) yields

2

α

£
C 0 (Xi (w

∗))−C 0 (Xi (w
m))

¤
− 2 (wm − w∗) = λ

2 (1− λ)n (V − v)− t

n (1− λ) (2− λ)
.

Let us first confirm that the left-hand side (LHS) of this equation is monotonic in wm

and w∗. Using (5) and (14), we have that ∂ (LHS) /∂w∗ = − 2αC 00 (Xi)
2−λ
t + 2 and

∂ (LHS) /∂wm = 2
αC

00 (Xi)
2(1−λ)

t −2. Applying the second-order conditions, it is straight-

forward to verify that ∂ (LHS) /∂w∗ < 0 and ∂ (LHS) /∂wm > 0. Since LHS = 0 if

w∗ = wm, it follows that w∗ > (<)wm if the right-hand side of the equation is negative

(positive), which is the case if 1− λ < (>) t
2n(V−v) . Since (13) and (19) are identical for a

given waiting time, wm < w∗ implies that Xi (w
m) > Xi (w

∗) and vice versa.

There are two counteracting effects that contribute to this result. First, ∂Xi/∂wi

15The second-order condition is given by ∂2πi/∂w2i = −
³
C00 (·) 2(1−λ)

t
− α

´
2(1−λ)

t
< 0.
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increases in absolute value with the introduction of competition (see (6) and (15)). In

other words, introducing competition means that demand at each hospital becomes more

responsive to changes in the waiting time announced by the hospital, and the magnitude

of this effect is increasing in λ. This is intuitive, since, without competition, only patients

in the L-segment respond to waiting times. So how does the magnitude of |∂Xi/∂wi| affect

equilibrium waiting times? Remember that, with a hospital disutility of positive waiting

times (due to altruism), the marginal patient is unprofitable to treat. In equilibrium, this

financial loss is optimally weighed against the disutility of increasing waiting times. When

hospital demand responds to waiting time changes in the competitive demand segment,

each hospital gets a stronger incentive to increase the waiting time, since this now becomes

an instrument for shifting unprofitable patients to neighbouring hospitals.

However, there is also another effect, related to the altruistic preferences of the hospi-

tals, that works in the opposite direction. Comparing (9) and (17) we see that the utility

gain of reduced waiting times is higher under hospital competition. With free patient

choice, a reduction in waiting times by hospital i attracts patients from neighbouring hos-

pitals who, due to altruism, contribute positively to the hospital objective function. All

else equal, this gives the hospitals incentives to reduce waiting times with the introduction

of competition.

Thus, the introduction of competition has two different implications: on the one hand,

there is competition to avoid treating unprofitable patients, while, on the other hand, there

is "altruistic competition" to treat high-benefit patients. Both of these effects get stronger

when the relative size of the competitive segment increases. However this relationship

is more pronounced for the first effect. The reason is that, since treatment costs are

convex, while the altruistic disutility of waiting (−αBi) is concave in wi, the higher level

of demand associated with a larger competitive segment means that competition to avoid

treating unprofitable patients become a more dominating force as λ increases. Thus,

competition leads to longer waiting times in equilibrium if 1−λ < t
2n(V−v) . Furthermore,

we see that an increase in t and/or a reduction of n increase the parameter space for

15



which competition leads to longer waiting times. The reason is that higher travelling costs

and/or lower hospital density reduce the (altruistic) utility gain of reducing waiting times

under competition, as can be seen from (9).

It should be noted that the ambiguous nature of the competition effect on equilibrium

waiting times is crucially dependent on the way altruism is modelled, where hospitals are

(partly) altruistic only toward their own patients. If instead hospitals cared equally about

all patients in the market, competition would not influence the effect of waiting time

changes on the altruistic component in the hospital objective function.16 In this case,

competition would unambiguously increase waiting times. Thus, the first of the two above

discussed effects — competition to avoid unprofitable patients — is, in some sense, a more

robust effect.17

Finally, it is important to notice that the introduction of competition does not affect

demand per se; thus, changes in equilibrium waiting times are driven solely by strategic

competition effects.

4.2 Increasing the degree of competition

Depending on interpretation, the effect of increased competition (or increased patient

choice) on waiting times and activity can work through three different parameters in the

model: t, λ and n. First, a reduction in travelling costs, t, will intensify competition

between hospitals in the competitive segment of the market. Second, competition will

also naturally increase if a larger share of the total market becomes competitive, i.e.,

if λ increases. One possible (outside-the-model) interpretation is a reduction in fixed

costs of undergoing hospital treatment for some patients, implying that a larger share

of patients find themselves in the competitive demand segment. Finally, the number of

16Under both competition and regulated monopolies, the effect of a waiting time increase on total patient
utility is given by

∂
¡Pn

k=1Bk

¢
∂wi

= −XD
i .

17 It may also be the case that hospital managers care, to some extent, about all patients, but place a larger
altruistic weight on patients at their own hospitals. This intermediate case would weaken the "altruistic
competition" effect, without eliminating it completely, increasing the likelihood that competition leads to
longer waiting times in equilibrium.
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hospitals in the market, n, is a standard measure of the degree of competition. Below we

present the comparative statics results with respect to the different competition measures

on both waiting time and activity levels, obtained by total differentiation of (12), applying

Cramer’s rule.

4.2.1 Lower travelling costs

∂w∗

∂t
=
1

2

¡
2−λ
t C 00 (·)− α

¢
∂X
∂t +

1
t

£
(p− C 0 (·)) 2−λt + αλ

t (V − w∗)
¤¡

C 00 (·) 2−λt − α
¢
1−λ
t − α λ

2t

< 0, (20)

dX (w∗)

dt
=

∂X

∂t
−
+

∂X

∂w
−

∂w∗

∂t
−

(21)

=
− [(2− λ) (p− C 0 (·)) + αλ (V − w∗)] + αλ(v − w∗)¡

C 00 (·) 2−λt − α
¢ 2(1−λ)

t − αλ
t

2 (1− λ)

t3
> 0,

where ∂X
∂t = −

2(1−λ)(v−w)
t2 < 0.18 ,19 Lower travelling costs have two different effects on

the hospitals’ optimal choice of waiting times. First, there is a direct demand effect, as

more patients in the L-segment will seek treatment. Each hospital will meet this demand

increase by increasing waiting times, and the strength of this response depends on the

additional costs of treating more patients relative to the altruistic disutility of longer

waiting times. Notice here that a higher level of demand also implies that the utility loss

of increasing the waiting time is larger, since there are more patients that need to wait for

treatment at hospital i. However, due to the convexity of treatment costs, the net effect

is still positive with respect to waiting time. Second, lower travelling costs imply that

demand facing each hospital becomes more sensitive to changes in waiting times (see (6)),

which means that it becomes more effective to use waiting times as an instrument to shift

unprofitable demand to neighbouring hospitals. Thus, both effects contribute to increase

18Notice that the first-order condition ensures that the expression in the square bracket of the numerator
of ∂w∗/∂t is negative.

19 ∂w∗

∂t = −

¯̄̄̄
¯̄ ∂2πi/∂wi∂t ∂2πi/∂wi∂wj

∂2πj/∂wj∂t ∂2πj/∂w
2
j

¯̄̄̄
¯̄

∆ . Notice that ∂2πi/∂wi∂t = ∂2πj/∂wj∂t, so that ∂w∗

∂t =

− 1
∆

¡
∂2πi/∂wi∂t

¢ £
∂2πj/∂w

2
j − ∂2πi/∂wi∂wj

¤
= − ∂2πi/∂wi∂t

∂2πj/∂w
2
j+∂

2πi/∂wi∂wj
.
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equilibrium waiting times as a result of lower travelling costs.

The effect of lower travelling costs on equilibrium hospital activity is given by the sum

of a direct positive demand effect and an indirect negative effect through the increase in

equilibrium waiting time. We see from (21) that the total effect is negative. It is perhaps

surprising that lower travelling costs lead to reduced activity in equilibrium. This can

be explained in the following way: since treatment costs are strictly convex, while the

disutility of waiting (due to altruism) is concave in wi, it is more costly for hospitals to

meet increased demand by increasing activity, relative to waiting times. Consequently, the

hospitals will meet a demand increase (induced by lower travelling costs) by increasing

waiting times until the level where the demand increase is completely offset. However,

there is a second effect of lower travelling costs, as explained above. The effect on the

responsiveness of demand to waiting times implies that the hospitals have incentives to

increase demand even beoynd the level where the initial demand increase is nulled out.

Thus, a reduction of travelling costs, which initially causes an increase in demand for hos-

pital treatments, will actually lead to lower activity in equilibrium, due to the equilibrium

response in waiting times.

4.2.2 A larger competitive segment

∂w∗

∂λ
=
1

2

¡
2−λ
t C 00 (·)− α

¢
∂X
∂λ +

p−C0(·)
t − α

t

¡
V − w∗ − t

2n

¢¡
C 00 (·) 2−λt − α

¢
1−λ
t − α λ

2t

≷ 0. (22)

dX (w∗)

dλ
=

∂X

∂λ
+

+
∂X

∂w
−

∂w∗

∂λ
−/+

(23)

=
1

2

− (p−C 0 (·)) 2(1−λ)
t2

+ 2α
t2

£
(1− λ)

¡
V −w∗ − t

2n

¢
+ λ(v − w∗ − t

2n)
¤¡

C 00 (·) 2−λt − α
¢
1−λ
t − α λ

2t

,

where ∂X
∂λ = 2(

1
2n −

v−w
t ) > 0 since, in equilibrium, x

H = 1/2n and xL = (v − w)/t, and,

by assumption, xL < xH .20

20 ∂w∗

∂λ
= −

¯̄̄̄
¯̄ ∂2πi/∂wi∂λ ∂2πi/∂wi∂wj

∂2πj/∂wj∂λ ∂2πj/∂w
2
j

¯̄̄̄
¯̄

∆
. Notice that ∂2πi/∂wi∂λ = ∂2πj/∂wj∂λ, so that

∂w∗

∂λ
= − 1

∆

¡
∂2πi/∂wi∂λ

¢ £
∂2πj/∂w

2
j − ∂2πi/∂wi∂wj

¤
= − ∂2πi/∂wi∂λ

∂2πj/∂w
2
j+∂

2πi/∂wi∂wj
.
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The first term in the numerator of ∂w∗/∂λ is positive while the second and the third

are negative. Notice that even for a low degree of altruism, the effect of λ on waiting time

is indeterminate. There are two offsetting effects that contribute to this ambiguity. Since

demand is higher from the competitive segment, a higher λ will increase total demand,

which — all else equal — contributes to longer waiting times. However, a larger H-segment

implies that demand becomes less responsive to changes in waiting times, as seen from

(6). This means that it becomes less effective to use waiting times to shift unprofitable

patients to neighbouring hospitals, which — all else equal — reduces equilibrium waiting

times. The sum of these two effects is indeterminate.

The effect of a larger competitive segment on equilibrium activity is also indeterminate,

although clearly positive for sufficiently low values of λ. The reason is that, for low values

of λ, the magnitude of the indirect effect through changes in equilibrium waiting times

is relatively low, making the direct demand effect the dominant one. The first term in

the numerator of dX (w∗) /dλ is always positive. The second term is given by a weighted

average of the utility of a H-type patient and a L-type patient when receiving treatment

and located at x = 1/2n (by assumption this utility is positive for the H-type and negative

for the L-type). This term is consequently also positive if λ is sufficiently low.

4.2.3 Increased hospital density

∂w∗

∂n
= −1

2

¡
C 00 (·) 2−λt − α

¢
λ
n2 + α λ

2n2¡
C 00 (·) 2−λt − α

¢
1−λ
t − α λ

2t

< 0 (24)

dX (w∗)

dn
=

∂X

∂n
−
+

∂X

∂w
−

∂w∗

∂n
−

=
1

2n2t

αλ¡
C 00 (·) 2−λt − α

¢
1−λ
t − α λ

2t

> 0 (25)

d [nX (w∗)]

dn
= X + n

dX

dn
> 0. (26)

Notice that the signs of (24) and (25) are determined by applying the second-order con-

dition.21

21 ∂w∗

∂n
= −

¯̄̄̄
¯̄ ∂2πi/∂wi∂n ∂2πi/∂wi∂wj

∂2πj/∂wj∂n ∂2πj/∂w
2
j

¯̄̄̄
¯̄

∆
. Notice that ∂2πi/∂wi∂n = ∂2πj/∂wj∂n, so that ∂w∗

∂n
=

− 1
∆

¡
∂2πi/∂wi∂n

¢ £
∂2πj/∂w

2
j − ∂2πi/∂wi∂wj

¤
= − ∂2πi/∂wi∂n

∂2πj/∂w
2
j+∂

2πi/∂wi∂wj
.
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Increased hospital density unambiguously reduces waiting times in equilibrium. The

intuition is quite simple. An increase in n means that — all else equal — each hospital

faces a lower demand from the competitive segment. This means, due to the convexity of

treatment costs, that the marginal treatment cost (for the last patient) is lower at each

hospital. Consequently, the marginal patient becomes less unprofitable to treat and the

hospitals will respond by reducing waiting times. Note that increased capacity, in itself, is

not enough to reduce waiting times, since the effect on waiting times comes only through

the competitive segment, where increased capacity means lower demand for each hospital.

This can easily be confirmed by observing that ∂w∗/∂n = 0 if λ = 0.

There are two effects — one direct and one indirect — of an increase in n on the equi-

librium activity at the hospital level. Increased hospital density in the market means that

the number of patients treated per hospital from the competitive segment goes down.

However, there is an indirect "spillover" effect from the competitive to the monopoly de-

mand segment. Due to the demand effect in the competitive segment, resulting in shorter

waiting times, demand increases from the hospitals’ monopoly segments. Equation (25)

shows that the net effect on demand is positive. In this case, the reduction in waiting

times fully compensates for the initial drop in demand. Total activity clearly increases

with hospital density, given that activity per hospital increases.

The effects of increased hospital competition on waiting times and activity can be

summarised as follows:

Proposition 3 (i) Lower travelling costs increase waiting times and decrease hospital

activity.

(ii) A larger competitive market segment has an indeterminate effect on waiting times

and hospital activity. In general, the effect on activity is positive if the competitive segment

is sufficiently small.

(iii) Increased hospital density reduces waiting times and increases activity per hospital,

as well as total activity in the market.
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5 Hospital competition and welfare

Having derived and characterised the equilibrium waiting time, we want to explore the

issue of whether competition leads to excessive or suboptimal levels of waiting time from

a social welfare perspective. To answer this question, we first need to specify the welfare

function. We use the conventional measure of welfare as an unweighted sum of consumers’

and producers’ surplus. The welfare analysis is conducted at the hospital level; for total

welfare just multiply by n.

Since the model is symmetric, the socially optimal waiting time must be uniform across

hospitals. Setting wi = wj = w, the surplus to patients treated at a particular hospital is

then given by

B (w) = λ2

Z 1
2n

0
(V − w − tx) dx+ (1− λ) 2

Z v−w
t

0
(v − w − tx) dx, (27)

where the first term is the surplus to H-type patients, and the second term is the surplus

to the L-type patients. Notice that we are assuming, as we did for the hospitals, that the

regulator cannot discriminate between patient types in terms of waiting time. The patient

surplus function can be written as

B (w) =
λ

n

µ
V − w − t

4n

¶
+
(1− λ)

t
(v − w)2 . (28)

Not very surprisingly, we see that the consumer surplus is always maximised at zero waiting

time.

Writing the social welfare function as the sum of consumers’ and producers’ surplus

net of third-party payments, welfare at the hospital level is given by

W (w) = B (w) + T + pX (w)−C (X (w))− F − (1 + γ) [pX (w) + T ] , (29)

where γ > 0 is a positive constant denoting the opportunity cost of public funds.22 Since

22The altruistic component αB is not included in the welfare function as this would lead to double-
counting. As argued by Chalkley and Malcomson (1998), "There is a strong case for excluding this
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it is costly for the regulator to fund hospital care, we assume that the lump-sum transfer

T is set such that the hospital’s participation constraint is binding. Adding the (realistic)

assumption that the provider also has a limited liability constraint, the transfer is set so

that pX + T = C (X) + F . The social welfare function then simplifies to

W (w) = B (w)− (1 + γ) [C (X) + F ] . (30)

5.1 The socially optimal waiting time

The socially optimal waiting time is obtained by maximising welfare with respect to waiting

time, yielding the following first-order condition23

∂W

∂w
=

∂B (w)

∂w
− (1 + γ)C 0 (·) ∂X (w)

∂w
= 0, (31)

which states that waiting time is socially optimised at a level where the utility loss to

patients from a marginal increase in waiting time is equal to the corresponding reduction

of treatment costs.

Using (13) and (28), and rearranging (31), we can write the expression for the socially

optimal waiting time, denoted by ws, as follows:

(1 + γ)C 0 (X (ws)) =
−X (ws)
∂X(ws)
∂w

, (32)

benevolent component from social welfare on the grounds that benevolence represents a desire to do what
is in the social interest and, as such, should have no role in determining what the social interest is." See
also Hammond (1987) for further discussion. Notably, our results will not be qualitatively affected by this
in any case.
23The second-order condition is given by

∂2W

∂w2
= −2 (1− λ)

t
(1 + γ)

∙
C00 (·) 2 (1− λ)

t
− 1

1 + γ

¸
< 0.

Thus, the supply cost function must be sufficiently convex for the condition to be fulfilled, i.e.,

C00 (·) > t

2 (1− λ) (1 + γ)
.
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where

X (ws) = 2 (1− λ)

µ
v − ws

t

¶
+

λ

n
, (33)

∂X (ws)

∂w
= −2 (1− λ)

t
. (34)

and ws = ws (v, t, λ, n).

Equation (32) defines an interior solution for the socially optimal waiting time with a

partially covered L -segment, i.e., ws > 0 and xL ∈
¡
0, 12n

¢
. Proposition 4 below provides

the exact conditions needed to support this equilibrium:

Proposition 4 There exists a socially optimal waiting time, ws, implicitly defined by

(32), which is strictly positive and involves a partially covered L-segment, if

C 0
µ
λ

n

¶
<

tλ

2n (1− λ) (1 + γ)
, and

C 0
µ
2 (1− λ)

v

t
+

λ

n

¶
>

v

1 + γ
+

tλ

2n (1− λ) (1 + γ)
.

Proof. First, xL = 0 implies X (ws) = λ
n . It follows from (32) that C 0

¡
λ
n

¢
<

tλ
2n(1−λ)(1+γ) for x

L > 0. Second, xL = 1
2n implies X (w

s) = 1
n . We see from (32) that

C 0
¡
1
n

¢
> t

2n(1−λ)(1+γ) for x
L < 1

2n . Third, w
s = 0 implies X (0) = 2 (1− λ) vt +

λ
n . From

(32) it is evident that ws > 0 requires C 0
¡
2 (1− λ) vt +

λ
n

¢
> v

1+γ +
tλ

2n(1−λ)(1+γ) . Finally,

observe that since, by definition, 2 (1− λ) vt +
λ
n ≤

1
n , it follows that w

s > 0 implies

xL < 1
2n , making the condition for x

L < 1
2n redundant.

We see that a positive socially optimal waiting time with a partially covered L-segment

requires that the cost function C is sufficiently convex.
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5.2 The socially optimal treatment price

The socially optimal waiting time can always be implemented by an appropriate choice of

p.24 This price, denoted by p∗, is such that:

p∗ = X (w∗)
t [λ+ 2(1− λ) (1− α)]

2 (1− λ) (2− λ)
− γC 0 (X (w∗))− αλ

2− λ

µ
V −w∗ − t

2n

¶
. (35)

Intuitively, the optimal price is higher when the marginal benefit from a reduction in

waiting time is higher (−∂B
∂w = X), and it is lower when the degree of altruism α or the

opportunity cost of public funds γ is higher. The last term in the above equation takes

into account the fact that the marginal benefit from a reduction in waiting time in a

competitive setting (−∂B(wi,wj)
∂wi

) is higher from the provider’s perspective than from the

social one (−∂B(w∗)
∂w∗i

): the higher the difference between the two, the lower is the optimal

price. The following proposition illustrates the effect of our different competition measures

on the optimal price.

Proposition 5 If the degree of altruism or the opportunity cost of public funds is suffi-

ciently low, then a higher hospital density increases the optimal price while lower travelling

costs decrease the optimal price. A higher competitive segment has an indeterminate effect

on the optimal price:

∂p∗

∂n
=

µ
t [λ+ 2(1− λ) (1− α)]

2 (1− λ) (2− λ)
− γC 00 (·)

¶
dX (w∗)

dn
+

αλ

2− λ
(
dw∗

dn
− t

2n2
)

∂p∗

∂t
=

µ
t [λ+ 2(1− λ) (1− α)]

2 (1− λ) (2− λ)
− γC 00 (·)

¶
dX (w∗)

dt

+
λ+ 2(1− λ) (1− α)

2 (1− λ) (2− λ)
X (w∗) +

αλ

2− λ
(
dw∗

dt
+
1

2n
)

24The optimal price p∗ maximises (30) so that: [∂B (w∗) /∂w∗ − (1 + γ)C0 (·) ∗ ∂X (w) /∂w] ∂w∗/∂p =
0, where ∂B (w∗) /∂w∗ = −X(w∗) and ∂X (w∗) /∂w∗ = −2(1− λ)/t. Comparing the above with Eq.(10),
the result is obtained.
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∂p∗

∂λ
=

µ
t [λ+ 2(1− λ) (1− α)]

2 (1− λ) (2− λ)
− γC 00 (·)

¶
dX (w∗)

dλ

+2t
λ2 (1− 2α) + (α− 1) 4λ+ 2 (2− α)

(2 (1− λ) (2− λ))2
X (w∗)

+α

µ
λ

2− λ

dw∗

dλ
− 1

2− λ
(V − w∗ − t

2n
)

¶
.

Since dX (w∗) /dn > 0, a higher hospital density increases activity and increases the so-

cial marginal benefit from a reduction in waiting times and therefore increases the optimal

price. However a higher activity also increases the marginal cost, which induces a lower

price. Furthermore, a higher hospital density reduces waiting times and travelling costs

increasing the marginal benefit from a reduction in waiting time for the semi-altruistic

provider, which induces a lower price. Whenever the opportunity cost of public funds or

the degree of altruism is sufficiently low the first effect dominates and the optimal price

increases.

Since dX (w∗) /dt > 0, lower travelling costs reduce activity and reduce the marginal

social benefit from a reduction in waiting times and therefore reduces the optimal price.

However a lower activity also reduces the marginal cost, which induces a higher price.

Furthermore, lower travelling costs imply a more responsive demand, which increases the

marginal revenue for the hospital from a reduction in waiting times, inducing a lower

optimal price. Finally, lower travelling costs increase waiting times but increase the utility

of the patients, so that the marginal benefit from a reduction in waiting time for the semi-

altruistic provider can be higher or lower (last term). Whenever the opportunity cost of

public funds or the degree of altruism is sufficiently low the optimal price reduces when

travelling costs are smaller.

The effect of variations in the competitive segment λ on optimal prices is generally

indeterminate. Overall, the analysis in this section suggests that whether higher-powered

incentive schemes complements or substitute competition depends on the type of com-

petition. Given that α or γ are not too high, while more competition through a higher

hospitals density makes higher-powered incentive schemes more desirable, more competi-

tion through lower travelling costs makes higher-powered incentive scheme less desirable.
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5.3 Does competition improve social welfare?

Consider the policy choice of regulated monopolies versus competition in the hospital

market. Since, for a given waiting time, the patient surplus B (w) is unaffected by this

choice of market regime, it is straightforward to see that competition is welfare neutral

if the treatment price is set at the level which maximises social welfare, i.e., p = p∗. In

this case, the effect of competition on equilibrium waiting times will be neutralised by an

appropriate adjustment of p, keeping w∗ = ws. However, in the general case, where p

is not necessarily set at the optimal level,25 the welfare effect of hospital competition is

characterised as follows:

Proposition 6 Let p∗ and pm be the prices that yield w∗ = ws and wm = ws, respectively.

(i) Assume that the competitive demand segment is large; 1 − λ < t
2n(V−v) , imply-

ing w∗ > wm and p∗ > pm. Then there exists a price ep ∈ (pm, p∗) such that hospital
competition is welfare superior (inferior) if p > (<) ep.

(ii) Assume that the competitive demand segment is small; 1 − λ > t
2n(V−v) , imply-

ing w∗ < wm and p∗ < pm. Then there exists a price eep ∈ (p∗, pm) such that hospital
competition is welfare superior (inferior) if p < (>)eep.

Proof. We know (Proposition 1) that ∂w∗/∂p < 0, and it is straightforward to show

that this also holds under regulated monopolies, i.e., ∂wm/∂p < 0.

(i) From Proposition 2 we know that, if 1− λ < t
2n(V−v) , w

∗ > wm for all p, implying

that pm < p∗. This means that, from a social welfare perspective, waiting time is too long

in both regimes if p < pm and too short in both regimes if p > p∗. Since w∗ > wm for all

p, it follows that competition is always welfare superior if p > p∗, while a market regime

with regulated monopolies is always welfare superior if p < pm. For p ∈ (pm, p∗), replacing

regulated monopolies with competition means going from a regime with too short waiting

to a regime with too long waiting times in equilibrium. Since W is single-peaked in p,

25 Indeed, the most frequently used hospital payment system is DRG-pricing, which is close to average
cost pricing for specific treatments, and clearly not in line with the optimal pricing rule considered in this
section.
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Figure 1: Welfare effects of competition with a large competitive segment

there exists a unique price ep ∈ (pm, p∗) such that competition is welfare superior (inferior)
if p > (<) ep.

(ii) By the inverse argument we can define an equivalent price eep for the case of 1−λ >

t
2n(V−v) .

Whether or not hospital competition improves social welfare depends here on the

characteristics of the reimbursement system (more specifically, the level of prices p) and

the relative size of the competitive demand segment (λ). An increase in the treatment price

always induces hospitals to increase supply and shorten waiting times. An illustration of

the case of 1− λ < t
2n(V−v) is given in Figure 1. The following discussion summarises the

different cases:

High price. When the price is sufficiently high, waiting times in the regulated monopo-

lies equilibrium are shorter than the socially optimal level and activity is excessively high

(i.e., the marginal benefit from treating an extra patient is below the marginal cost).

a) If, in addition, the competitive segment λ is sufficiently large so that w∗ > wm,

then hospital competition increases waiting times towards the optimal level ws, reducing

activity and increasing welfare (see Figure 1 for p > p∗).
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b) In contrast, if the competitive segment λ is sufficiently small so that w∗ < wm,

then hospital competition reduces waiting times even further from the optimal level ws,

increasing activity and reducing welfare.

Low price. The opposite analysis holds if the price is sufficiently low. Then waiting

times in the regulated monopolies equilibrium are longer than the socially optimal level

and activity is excessively low (i.e., the marginal benefit from treating an extra patient is

above the marginal cost).

a) If, in addition, the competitive segment λ is sufficiently large so that w∗ > wm, then

hospital competition increases waiting times further from the optimal level ws, reducing

activity and reducing welfare (see Figure 1 for p < pm).

b) In contrast, if the competitive segment λ is sufficiently small so that w∗ < wm,

then hospital competition reduces waiting times towards the optimal level ws, increasing

activity and increasing welfare.

Suppose that we start by a situation where waiting times are excessively high and

prices too low. For example, until a few years ago in the UK hospitals were paid with

fixed budgets (p = 0). Similarly, in Norway in 1997 only 30% of the revenues were based

on tariffs. In both countries waiting times are considered a major policy concern and are at

least perceived as too high. Our analysis suggests that policies that encourage competition

will have the expected effect only if the competitive demand segment is sufficiently low.

It is only in this case that competition will reduce waiting times, increase activity and

increase welfare.

6 Private (out-of-plan) option

Let us briefly discuss how the presence of private (out-of-plan) hospital care might influence

our results. To keep things simple, we assume that alongside each public (in-plan) hospital

there is a co-located private hospital offering an identical treatment. The only difference

is that private treatment is provided instantaneously (no waiting time), but charged a

monetary cost (price or premium) s > 0.
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We assume that patients differ in incomem, where a fraction δ are poor and the residual

fraction (1− δ) are rich. The income for the rich is mR and the income for the poor is

mP with mR > mP . We also assume that both rich and poor patients are distributed

uniformly on the unit line segment, independently of patient types.

We assume that if patients opt for the public sector, the utility of a k-type patient

attending public hospital i for treatment is

Uk (x, zi, wi) =

⎧⎪⎨⎪⎩ V − t |x− zi|−wi + u(m) if k = H

v − t |x− zi|− wi + u(m) if k = L
,

with u0 > 0 and u00 < 0, while if this patient opt for the co-located private hospital, her

utility is

Uk (x, zi, wi) =

⎧⎪⎨⎪⎩ V − t |x− zi|+ u(m− s) if k = H

v − t |x− zi|+ u(m− s) if k = L
.

Therefore, patients (regardless of type) opt for the public treatment if u(m)−u(m−s) > wi.

Since public and private hospital care are perfect substitutes, patients base their deci-

sion solely on relative prices — i.e., the price for private treatment (s) relative to the "price"

for public treatment, given by the utility loss of waiting measured in monetary terms (wi).

Since by assumption, the marginal utility from income is decreasing, patients opt for the

private treatment if their income is sufficiently high. Notice that if the price for private

treatment is sufficiently low, then both rich and poor opt for the private sector. In contrast,

if the price is sufficiently high, they both opt for the public treatment. In the following we

focus on the more realistic case: u(mP )− u(mP − s) > wi and u(mR)− u(mR − s) < wi,

i.e. the poor prefer the public treatment and the rich prefer the private treatment.

Demand for treatment at public hospital i is then simplyΘi (·) = δXi (·), whereXi (·) is

given by (5) under competition (free choice of in-plan hospitals) and (14) under monopoly

(referral to the closest in-plan hospital). The corresponding surplus to poor patients

receiving treatment from public hospital i is then Φi (·) = δBi (·), with Bi (·) being given

by (8) under competition and (16) under monopoly. We can now write the payoff function
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to hospital i as follows:

Πi = pΘi − C (Θi) + αΦi = δ [pXi + αBi]− C (δXi) . (36)

Following the procedure in Section 3, we obtain the following equilibrium waiting times

with a private (out-of-plan) option under monopoly and competition:26

−2 (1− λ)

t

£
p− C 0 (δXi (w

m))
¤
= αXi (w

m) , (37)

−2− λ

t

£
p− C0 (δXi (w

∗))
¤
= α

∙
Xi (w

∗) +
λ

t

µ
V − w∗ − t

2n

¶¸
, (38)

respectively, where

Xi (w) = 2 (1− λ)

µ
v −w

t

¶
+

λ

n

for w ∈ {wm, w∗} .

A first observation is that our main result in Proposition 2 still holds. The presence

of a private out-of-plan option does not qualitatively change the impact of introducing

competition in a regulated hospital market on waiting times and activity. This follows

straightforwardly by inspection.

The next question is how equilibrium waiting time is affected by the private out-of-plan

option. Total differentiation of (38), applying the Cramer’s rule, yields the following:

∂w∗

∂δ
=

C 00 (·)
¡
2−λ
t

¢ £
λ
n + 2 (1− λ)

¡
v−w∗

t

¢¤
2
£¡
δC 00 (·) 2−λt − α

¢
1−λ
t − α λ

2t

¤ > 0, (39)

where the positive sign is confirmed by the second-order condition. Thus, equilibrium

waiting time for public treatment becomes lower as a larger fraction of (rich) patients

demand instant, private treatment. In other words, the presence of a private option

reduces public sector waiting times.

This is a highly intuitive result and the explanation is also reasonably straightforward.

26The restrictions on the equilibrium conditions can be derived as in Section 3, but are skipped here to
save space. They can be obtained from the authors upon request.
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The private alternative yields lower demand for public treatment, which in turn reduces

revenues, altruistic benefit and costs. Since the impact on each argument is proportional,

the residual effect is simply a lower marginal cost due to lower activity. As a consequence,

the marginal patient becomes less financially unprofitable and public hospitals are induced

to reduce waiting times.

In terms of welfare, aggregate patient surplus is unambiguously improved by the private

option: poor patients benefit because waiting time for public treatment is lower; rich

patients benefit because the price of private treatment is lower than the utility loss of

waiting for public care; and finally, both rich and poor benefit because more patients are

treated in equilibrium. On the other hand, there are of course fixed costs associated with

private hospital entry, which may well exceed the benefit to patients. The basic welfare

question is whether it is more favourable to increase the public in-plan capacity rather

than allowing for a private out-of-plan alternative. This issue is clearly beyond the scope

of the current paper. A full welfare analysis of public and private care provision should

also take into account any potential strategic effects on the supply-side, which is something

we leave for future research.

7 Conclusions and policy implications

This study has analysed the impact of hospital competition on waiting times, using a

Salop-type model. Our main result is that, compared with a benchmark case of regulated

monopolies, hospital competition reduces waiting times only if the competitive demand

segment is sufficiently small. Otherwise, if free choice is relevant for a sufficiently large

share of the total patient mass (i.e., if the competitive segment is sufficiently large), then

competition increases waiting times. Therefore we suggest that policies that encourage

choice and competition in health care markets may not be as successful as policymakers

might expect. The intuition for this ambiguous result is that, on the one hand, free patient

choice induces hospitals to "compete" to avoid treating unprofitable patients, while, on

the other hand, free patient choice also induces semi-altruistic providers to compete to
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attract high-benefit patients. The first effect dominates when the competitive segment is

sufficiently large.

We also find that policies aimed at reducing travelling costs (like reimbursing travel

expenses for patients choosing to receive treatment in hospitals outside their catchment

area) may surprisingly increase waiting times and reduce overall activity. Intuitively,

reducing travelling costs makes the demand for treatment more elastic, making waiting

times a more effective rationing tool.

According to our analysis, policies aimed at increasing hospital density will have the

expected effect of reducing waiting times and increasing activity. For example, in countries

like Denmark, the UK and Spain, governments have decided to contract out patients to

existing private hospitals. This policy can be seen as effectively increasing the density of

hospitals by opening the patients from the public waiting list to private providers. Since

demand in each hospital is lower and the marginal cost less steep, providers will respond

by increasing activity and reducing waiting times.

Many countries increasingly remunerate hospitals according to activity-based funding

rules (like DRG pricing in Norway and other European countries or HRG pricing in the

UK) where hospitals receive a price for each patient treated. Our analysis suggests that

for countries where waiting times are excessively low and prices are too high, hospital

competition is socially preferable to regulated monopolies if the competitive demand seg-

ment is sufficiently large. In this case, competition will increase waiting time towards the

optimal level, reducing activity and increasing welfare.

In contrast, for countries (like perhaps the UK, Finland or Norway) where waiting times

are excessively high and prices too low, competition will reduce waiting times, increase

activity and increase welfare only if the competitive demand segment is sufficiently small.

Finally, we show that whether higher-powered incentive schemes complements or sub-

stitute competition depends on the type of competition. While more competition through

a higher hospitals density makes higher-powered incentive schemes more desirable, more

competition through lower travelling costs makes higher-powered incentive scheme less
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desirable.
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