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Abstract

In this paper we use stock size, harvest quantity and fishing effort,

respectively, as strategic variables. We model a two agent (nations)

non-cooperative fishery game, where the agents harvest a common

fish stock. The planning horizon is infinite. The model is solved

successively using one instrument at a time as the strategic variable

in the game. The net present values of fishing and the escapement

stock level from the three different models are compared with each

other to show how the choice of variables affects the results. The

choice of strategic variable is not a trivial one, as the results are shown

to be sensitive to the discounting, the stock rate of growth, and the

assumptions about the distribution of the fish in response to being

harvested.
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1 Introduction

In this paper we will look at the implications of choosing different strategic

variables, harvest quantity, stock size, and fishing effort, in non-cooperative

fisheries games. We will model a two agent (nations) game, where the agents

harvest a common fish stock. The planning horizon is infinite. The model

will be solved successively using one instrument at a time as the strategic

variable in the game. The net present values of fishing and the escapement

stock level from the three different models will be compared with each other

to show how the choice of variables affects the results.

The choice of strategic variables, be it fishing effort, harvest rate or stock

level, has rarely been discussed in the literature on fisheries and games. The

choice of variables seems to be rather ad hoc. We have only come across two

papers that address the question of choice of strategic variable and which try

to analyze what this choice might imply.

Thomas L. Vincent (Vincent 1981) pointed out that different control

variables can lead to different game solutions. Vincent (1981) used a prey-

predator model due to May, Beddington, Clark, Holt, and Laws (1979)

to analyze the vulnerability to extinction by comparing the equilibrium

solutions under an effort harvesting and a rate harvesting program. The

analysis demonstrated that solutions from a constant harvest quantity

strategy will in many cases not secure the species against possible extinction,

and an adjustment of the harvest levels may be necessary.

The second paper addressing the choice of strategic variables is by

Hämäläinen and Kaitala (1982), where they analyze a fishery divided between
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two countries. The model is an extension of the harvest game model of

Clark (1980) (Kaitala 1986). Each country manage the fishery as a sole-

owner within their respective exclusive economic zones. They asked how

should the sole-owner fleets choose their policy variables (strategic variables)

in the negotiations? The two countries have three options in their choice of

policy variables: stock level, harvest rate, and fishing effort. Of the possible

steady state Nash equilibria the one where both countries have harvest rate as

their policy variable produces the largest joint revenue flows and the largest

stock levels. But, since perfect cooperation can not be guaranteed, the Nash

solution of the game is that both countries choosing stock level, which has

the lowest revenue flow of all the nine possible equilibria and has the lowest

stock levels as well.

Choosing the harvest quantity as the strategic variable is comparable to

Cournot competition (Tirole 1988). That is to say, each nation, in choosing

its current harvest quantity, takes into account the other nations’ harvest

quantities, as the stock size and growth rate depend on the simultaneous

actions of all nations involved in the fishery. Cournot competition here is

analogous to Cournot oligopoly. A Cournot game is characterized by quantity

constraints; the firms decide on the levels of production simultaneously. Once

the level is decided, a firm cannot change its capacity in the short run. The

solution each period is a Cournot solution to the game, but the fish stock

responds to the quantity harvested by both nations and there may be a

change in the size of the fish stock (Levhari and Mirman 1980). Eventually,

a steady state in which both harvest quantity and the stock size are in an

equilibrium is attained.

3



While the solution of a game with harvest quantity, or fishing effort,

as the control variable is comparable to Cournot competition, choosing the

escapement level, on the other hand, as the control variable is analogous to

Bertrand competition. In a game with Bertrand competition the firms decide

on setting the price rather than production. The production capacity is not

constrained, and enables the firms to produce any quantity they choose; a

price reduction enables them to sell more of their product.

With the escapement1 level as the strategic variable, an underlying

assumption is that the fishing fleet has a large enough capacity to be able

to reduce the stock size from its initial level to the optimal escapement level

in just one period of fishing, i.e. the initial period. In the following periods

the harvest quantity and the escapement level stay constant. The ability to

rapidly reduce the stock size, as implied by choosing escapement as strategic

variable, makes the competition between the nations fiercer than Cournot

competition. Fiercer competition implies that the stock will be depleted

further than in a less competitive environment. The ability for a firm to

change its price in response to its competitors’ price setting makes Bertrand

competition fiercer than Cournot competition (Tirole 1988).

How the players’ strategy spaces are formulated is also an issue that

should be addressed when modelling dynamic games. Two approaches have

been adopted. The open loop solution, which assumes that commitment to

a strategy extends over the entire future horizon, and the feedback solution,

where the assumption is that no commitment at all is possible (Fudenberg

and Tirole 1991). This choice can be crucial, and care should be taken

1Escapement: The stock left behind after fishing.
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to choose a strategy space that is appropriate for the situation in question

(Reinganum and Stokey 1985).

In this paper the strategy space is as an open loop solution game, where

the strategy chosen at the start of the game is maintained throughout the

planning horizon. This is not a very realistic assumption when there is

nothing that guarantees that the initial strategy will be the optimal strategy

if the optimization should be carried out again in the subsequent periods.

However, it has been shown that under certain circumstances the open loop

and the feedback solutions coincide (Dockner and Kaitala 1989), and that

the quantitative difference between the two, in many cases, is not very large

(Eswaran and Lewis 1985).

The situation we have in mind is one where firms may be unable or

unwilling to change their strategic variable (effort or harvest) for some period

of time. How long that period is will vary from case to case. We will not

discuss that further here, but instead look at the stylized case where decisions

are made once and for all.

The actual control variable used by managers of fisheries need not be the

same as the strategic variable used to analyze the problem. Harvest rate

and fishing effort are possible control variables, whereas stock size is not.

However, using the stock size as a strategic variable does not require that

it is the direct control variable (Kaitala 1986). The desired stock size can

be reached by controlling the harvest quantity or fishing effort, i.e. harvest

quantity and fishing effort are flexible from one period to another, as opposed

to when they are fixed once and for all.

The structure of the paper is as follows. In the next section we model a
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fishery divided between two nations and the problem they face when stock

size, harvest quantity, or fishing effort, respectively, is chosen as the strategic

variable. We solve the model numerically, successively for the three strategic

variables, and perform a sensitivity analysis in section 3. Finally, in section

4 we conclude.

2 The Model

Consider a fish stock where the stock growth depends on the stock size left

in the sea after fishing has ceased. That is, the stock size at the beginning

of the fishing season (t) is a function of the stock left to grow at the end of

the previous season (t−1). Ignoring the natural mortality of the fish as long

as the fishing season lasts, the seasonal harvest quantity, ht, will equal the

difference between the stock size at beginning of the season, X(St−1), and

the stock size at the end of it, St. Taking the price of harvest landed, p, as

given, the per period revenue is

Rt = p[X(St−1)− St]. (1)

The instantaneous harvest production function will be specified as ht =

ESb
t , where E stands for fishing effort, and St the stock size. The parameter

b is the harvest elasticity with respect to the stock size, which takes the value

1 if the stock maintains a uniform distribution, and zero if the stock keeps

its density constant when harvested. The total cost becomes C = cE, where

c is a cost parameter. The instantaneous cost per unit harvested is ch = c
Sb

t
.
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Total harvest costs can now be expressed as follows2

Ct =

∫ X(St−1)

St

c

ub
du =


c[log X(St−1)− log St] for b = 1

c
1−b

[X(St−1)
1−b − S1−b

t ] for 0 < b < 1

c[X(St−1)− St] for b = 0

(2)

where the case 0 < b < 1 is for the intermediate values of the harvest

elasticity with respect to the stock size, and log is the natural logarithm,

with the number e as base.

The present value of the profit is

V =
∞∑

t=0

(Rt − Ct)δ
t, (3)

where δ = 1
1+r

is the discount factor, r is the interest rate and X0 is given.

We let the stock dynamics be described by the discrete variant of the

logistic growth function

X(S) = S + aS[1− S], (4)

a is the intrinsic rate of stock growth. The carrying capacity usually

associated with the logistic growth function is set equal to one.

2Since harvest is H = X−S, with X given initially in every period, S ≤ X, S = X−H,
SH < 0 and C(S) = C(S(H)), and H = EX, S = X(1 − E), SE = −X, the properties
of the cost function are CH = CSSH ≥ 0 and CHH = −CSSSH = CSS ≥ 0, and
CE = −CSS ≥ 0 (subscripts denote the derivatives).
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2.1 Stock Size

By substituting Equation 4 into Equation 3, defining the control variables

for nation i and the other nation, respectively, as the escapement level S

and S̄, the harvest quantity hi and h̄, and the fishing effort Ei and Ē, where

the bar above Nation Two’s controls means that Nation One treats these as

constants, we have three objective functions, one for each control variable,

which can be maximized with respect to the respective control variable over

an infinite planning horizon.

Nation i’s problem with respect to the escapement level is

max
S

{
p

2

[
X0 − S̄

]
+ p

[
S̄ − S

]
− 1

2

∫ X0

S̄

c

ub
du−

∫ S̄

S

c

ub
du

+
1

r

{
p

2

[
S + aS[1− S]− S̄

]
+ p

[
S̄ − S

]
− 1

2

∫ S+aS[1−S]

S̄

c

ub
du−

∫ S̄

S

c

ub
du

}}
,

(5)

with X0 given.3

Each fishing season can be divided into two stages: In the first stage, both

nations harvest the stock simultaneously, each catching one half of the total

harvest, X − S̄, sharing the costs. In the second stage, the assumption is

that Nation One’s fishermen continue harvesting while Nation Two’s don’t.

Nation One decreases the stock further down to S, making additional profit

for itself by doing so. The escapement level, S, should be chosen such that

3If the initial stock size is less than the optimal stock size it will be necessary to leave
the stock unfished for one or more periods, until X(St−1) > S∗.
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it maximizes the net present value of profits over all periods.

The stock size which maximizes nation i’s present value of the stock

given the other nation’s harvest can be found by taking the first derivative

of Equation 5 with respect to S. We will show this, and the first order

conditions with respect to harvest quantity, and fishing effort as well, in the

Appendix.

Both nations’ problems are, by the assumption of symmetry, identical.4

Finding the optimal escapement level for one, and substituting it, as S∗ into

the other’s problem, S̄ and S are equal to S∗, and the expression for each

nation’s net present value simplifies to

V i(S∗) =
p

2

[
X0 − S∗

]
− 1

2

∫ X0

S∗

c

ub
du

+
1

r

{
paS∗[1− S∗]

2
− 1

2

∫ S∗+aS∗[1−S∗]

S∗

c

ub
du

}
,

(6)

i = 1, 2.

Both nations take an equal share of the total harvest and make the same

profit. This is, however, not identical to the nations’ objective functions,

which are formulated as a non-cooperative game where each nation continues

harvesting under the assumption that the other one has stopped, and by

unilaterally increasing its catch, making extra profit. Nation Two does the

same, so the final escapement level, S∗, is lower than if the two nations

4Focus of this analysis is the choice of strategic variable, the complicating cases of
asymmetry in the nations costs and time preferences is left out. However, Hannesson
(1997) analyzes the case where one nation has lower cost than the others. This could lead
the low cost nation to exclude the high cost nations from the fishery altogether.
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agreed on sharing the profit equally, which would be equivalent to maximizing

Equation 6.

2.2 Harvest Quantity

The problem when we choose harvest quantity or fishing effort as the strategic

variable follows the same structure as when the escapement level is the

strategic variable, the difference is that we need to define the stock levels X,

S̄ and S as functions of the initial stock size, X0 and the harvest quantities,

hi and h̄ (or the fishing efforts, Ei and Ē). The intermediate stock size, S̄, is

expressed as X − 2h̄. 2h̄ is the total intermediary harvest quantity when

both harvest simultaneously. The escapement level of the initial period

is S0 = X0 − hi
0 − h̄, and the stock size when fishing starts next period

is X1 = S0 + aS0[1 − S0], so the escapement level of this period becomes

S1 = X1 − hi
1 − h̄. This goes on until an escapement level is reached when

the harvest quantity and the stock size are in equilibrium.

The problem of nation i with respect to the harvest quantity is now

max
hi

{
phi − 1

2

∫ X0

X0−2h̄

c

ub
du−

∫ X0−2h̄

S0(hi)

c

ub
du

+
∞∑

t=1

δt

{
phi − 1

2

∫ X(St−1)

X(St−1)−2h̄

c

ub
du

−
∫ X(St−1)−2h̄

St(hi)

c

ub
du

}}
,

(7)

where X0 is given, and i = 1, 2.

S∗ is the equilibrium stock size which in this case maximizes the net
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present value, but before S∗ is reached there are several S’s that maximizes

the present value. The time period when equilibrium is reached is denoted

T .

When the optimal harvest quantity, h∗ = hi = h̄, i = 1, 2, is found and

substituted into, say, Nation One’s problem, an expression of the nation’s

net present value simplifies to

V i(h∗) = ph∗ − 1

2

∫ X0

X0−2h∗

c

ub
du

+ δ

{
ph∗ − 1

2

∫ X1

X1−2h∗

c

ub
du

}
+ δ2

{
ph∗ − 1

2

∫ X2

X2−2h∗

c

ub
du

}
+ ............................

+
δT

1− δ

{
ph∗ − 1

2

∫ X(S∗)

S∗

c

ub
du

}
,

(8)

i = 1, 2.

This is, again, as in the case when the escapement level was the strategic

variable. It is not the nation’s objective function, but a result of the fact

that with the assumption of symmetry, the nations end up choosing the

same harvest quantity in equilibrium. Equation 8 is the resulting net present

value function when the nations have solved the non-cooperative game.
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2.3 Fishing Effort

When using the fishing effort, E,5 as the strategic variable in the game, the

harvest rate is a certain fraction of the stock size at the beginning of the

period, H(E) = EX. The escapement level, S(E) is X[1−E], and the stock

at the beginning of the next season is X(S(E)) = S(E) + aS(E)[1− S(E)].

With two nations competing for the fish the escapement level becomes

S(E) = X[1 − Ei − Ē], i = 1, 2 , where Ei is a single nation’s fishing

effort, which it can control, and Ē is the fishing effort of the other nation

which the first takes as given and treats as a constant in its own objective

function.

Nation i’s problem with respect to fishing effort is

max
Ei

{
pEiX0 −

1

2

∫ X0

X0[1−2Ē]

c

ub
du−

∫ X0[1−2Ē]

S0(Ei)

c

ub
du

+
∞∑

t=1

δt

{
pEiX(St−1)−

1

2

∫ X(St−1)

X(St−1)[1−2Ē]

c

ub
du

−
∫ X(St−1)[1−2Ē]

St(Ei)

c

ub
du

}}
,

(9)

where i = 1, 2, and X0 is given.

We find the optimal fishing effort E∗ by assuming symmetry between the

nations, such that Ei = Ē and substitute this back into Equation 9. Having

found E∗ we can substitute this into the objective function with respect to

5This is not quite what we usually mean by ”fishing effort”. E here is a fraction of
the initial stock size, where S = X[1 − E]. With effort, Z, S = X ∗ exp[−Z], such that
Z = − log [1− E]. The reason for formulating the fishing effort as fixed share of the initial
stock size, rather than as a fixed fraction of a continuously declining stock size during the
fishing season, is that it simplifies the problem.
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fishing effort, and the net present value of the fishery for nation i becomes

V i(E∗) = pX0E
∗ − 1

2

∫ X0

X0[1−2E∗]

c

ub
du

+ δ

{
pX1E

∗ − 1

2

∫ X1

X1[1−2E∗]

c

ub
du

}
+ δ2

{
pX2E

∗ − 1

2

∫ X2

X2[1−2E∗]

c

ub
du

}
+ ............................

+
δT

1− δ

{
pX(S(E∗))E∗ − 1

2

∫ X(S(E∗))

S(E∗)

c

ub
du

}
,

(10)

i = 1, 2.

Having defined the problem with respect to stock size, harvest quantity

and fishing effort, we are able to find numerical solutions to the strategic

variables and compare the resulting stock sizes left after fishing has stopped

and the net present value of the fishery for the three strategic variables in

question.

3 Results

In this section we present the numerical solutions of the problems presented

in the previous section. We start by choosing some values of the parameters;

price, the initial stock size, the intrinsic rate of stock growth, costs and the

discount rate, which we will call the benchmark set. The benchmark set

values are shown in Table 1.

By setting the price, p, equal to one, we measure the value of the fish
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Table 1: The parameters of the model: The benchmark set values

Parameter Price Initial stock Growth rate Discount rate Costs
Symbol p X0 a r c
Value 1 1 1 0.05 0.5

in the same units as the stock size. The initial stock size, X0, equal to one

means that the stock is in pristine condition when the fishery starts in the

initial period. Growth differs from one population to another, and this affects

the harvest. In order to account for this we will perform a sensitivity analysis

where we solve the models for values of the intrinsic growth rate between one

and 0.05. We will also present sensitivity analysis of the interest rate, r, and

the cost parameter, c.6

3.1 Reference Solutions

Table 2 reports the results from the numerical solutions of the models, where

the harvest elasticity with respect to the stock size, b, takes the value 1 and

0.1, respectively, using the benchmark parameter values in Table 1. The

variables S, hi, and Ei are the respective strategic variables of each model.

The NPVs are the net present values found by substituting the respective

optimal, non-cooperative, values of the strategic variables into Equations 6,

8, and 10. The escapement level refers to the size of the stock left in the sea

after the fishing has stopped; harvest quantities and fishing efforts are the

equilibrium harvest quantities and the fraction of the initial stock of each

period fished, respectively.

6The break even stock size, i.e. the stock size at which price equals costs, is [ c
p ]

1
b , which

coincides with the costs, c, when b ≡ 1 and approaches zero as b goes to zero.
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Table 2: The results from the benchmark case.

Variables NPV Escapement Harvest Fishing
level quantity effort

S 0.778 0.592 0.121 0.145
b=1.00 hi 0.831 0.632 0.116 0.135

Ei 0.819 0.619 0.118 0.138
S 0.435 0.065 0.003 0.242

b=0.10 hi 1.263 0.000 > 0.125 -
Ei 1.221 0.344 0.113 0.198

From Table 2, for the case where b = 1, we see that a constant escapement,

S, as the strategic variable in the game, produces the lowest net present

value and the lowest escapement level of the three variables.7 The constant

harvest quantity strategy, h, has the highest economic value, as well as the

highest escapement level. For the constant effort strategy, E, the NPV and

escapement are in between the two others. For the case where b = 0.1, the

order of the net present values is the same as when b = 1. Harvest quantity

has the highest NPV, fishing effort the second highest, and the escapement

strategy has the lowest NPV. However, the NPV for the escapement strategy

is now reduced relative to when b = 1, while for harvest quantity and fishing

effort it is higher. The escapement strategy’s escapement level is very low,

close to zero. The constant harvest quantity strategy, for b = 0.1, is above the

maximum sustainable yield (MSY).8 Continually harvesting more than MSY

will, eventually, lead to the stock’s extinction. The harvest quantity strategy,

reported in the lower panel of Table 2, is only marginally larger than MSY,

7The harvest quantity presented in Table 2 is the individual nation’s half of the total
harvest quantity.

8The MSY is maxS{aS[1−S]}, which is satisfied for SMSY equal to 0.5, giving a MSY
of 0.25 for an intrinsic growth rate, a, equal to one.
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and the associated net present value is only marginally larger than the NPV

produced if the harvest rate was identical to MSY. As the harvest elasticity

approaches zero, both the escapement strategy and the fixed harvest rate

strategy make the stock vulnerable to extinction. However, the constant

fishing effort strategy turns out to be the most conservative strategy when

the harvest elasticity approaches zero; with a relatively high escapement

level and a profitable, sustainable, fishery. This is in accordance with what

Vincent (1981) found; namely that an adjustment of the harvest level may

be necessary in order to prevent extinction.

In Table 3 we present the results from the global optimization, which is

equivalent to maximizing Equation (3) with escapement level, S, harvest

quantity, h, or fishing effort, E, respectively, as the strategic variable.9

However, the NPV, harvest quantity, and fishing effort reported are half

of the total value, harvest, and effort, as if the resource is under a single

management, as the NPV, harvest, and effort has to be shared between the

two nations. This is done to make the comparison between a non-cooperative

management (Table 2) and a cooperative management (Table 3) easier.

If the resource is managed as sole owner property and global, long term

profits are maximized, the fixed escapement strategy is the most profitable

as well as the most conservative strategy with respect to the escapement

level. The constant harvest quantity strategy, on the other hand, is the least

profitable and less conservative than the other strategies. This, which is

true for both b = 1 and b = 0.1, is the opposite of what we got under a

9The global optimization is carried out deciding on a level of the strategic variable and
keeping it fixed over the entire planning horizon. Thus, the results from the optimization
will depend on the choice of strategic variable.
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Table 3: Global optimization: Net present values and escapement levels for
the strategic variables, respectively, stock size, harvest quantity, and fishing
effort, using the benchmark values in Table 1

Variables NPV Escapement Harvest Fishing
level quantity effort

S 0.852 0.683 0.108 0.120
b=1.00 h 0.846 0.677 0.109 0.122

E 0.849 0.679 0.109 0.122
S 1.310 0.498 0.125 0.167

b=0.10 h 1.263 0.000 > 0.125 -
E 1.301 0.485 0.1249 0.170

non-cooperative management.

The relatively low NPV, under non-cooperative management and

escapement level as strategic variable, may seem somewhat surprising;

reaching the steady state after only one period from a pristine stock means

that the profit earned in the initial period is high, while the equilibrium

stock size is reached after 38 periods, for the harvest quantity strategy, and

21 periods, with fishing effort as strategic variable (for b = 1). Harvest rate

and fishing effort as control variables we can think of as putting constraints

on our decision making, locked by a constant harvest or effort. Profits in

every period, except the initial one, are discounted, and even with a high

initial profit the net present value from the game played with stock size as

the strategic variable is the lowest of all three possible strategic variables.

A comparison between the initial profits from choosing either harvest rate

or fishing effort as strategic variable, setting b = 1, and the initial profit from

the game where stock size is the strategic variable, shows that the initial

profit is, respectively 69 and 79 percent of the escapement strategy’s initial
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profit; but from period one onwards the escapement strategy’s profit is more

than halved, relative to its initial profit. For harvest rate and fishing effort,

on the other hand, the reduction in each period’s profits is less pronounced,

and after a few periods the harvest rate strategy has the highest per period

profit. So, even though stock size as a strategic variable gives a high initial

profit, the fierce competition implied when stock size is chosen as the strategic

variable in the game forces the nations to reduce the stock size to such a low

level that the initial gain is offset by the future losses from having to fish the

stock at a low level. As the stock size is reduced, the cost of harvesting goes

up at an increasing rate. If we are free to chose the optimal levels, a fixed

harvest rate or a fixed fishing effort, as opposed to choosing a fixed stock

size, does not necessarily mean that we are worse off.

Table 2 also shows that stock size as the strategic variable has the

lowest escapement level, as well as the highest harvest rate and fishing

effort in equilibrium. Harvest quantity as the strategic variable, on the other

hand, produces the highest escapement level, and has the lowest equilibrium

harvest rate and fishing effort. Fishing effort as the strategic variable has

an intermediate escapement level, and equilibrium harvest rate and fishing

effort, relative to stock size and harvest rate, although not very different

from the results with harvest rate as the strategic variable. These results are

as expected, given our previous discussion on the analogy between Cournot

competition and choosing harvest quantity as the strategic variable, versus

Bertrand competition and having stock size as the strategic variable. In

addition, the results in Table 2 show another analogy between the different

forms of competition known from the literature on industrial organization
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(Tirole 1988) and choice of strategic variable in non-cooperative fishery

games; choosing the stock size as the strategic variable not only reduces

the escapement level relative to harvest quantity and fishing effort, it also

reduces the value of the fishery, in spite of high initial profit.

3.2 Sensitivity Analysis

A value of the intrinsic rate of stock growth, a, equal to one is somewhat high

for most of the economically important fish stock, it is therefore appropriate

to perform a sensitivity analysis where we let the intrinsic growth rate vary

between one and zero (in this case between one and 0.05), and report the

escapement levels and the net present values from using, respectively, stock

size, harvest rate, and fishing effort as the strategic variable. Moreover,

the benchmark values of the discount rate and harvest costs, 0.05 and 0.5,

respectively, must be said to be picked without any justification in the

literature or from empirical evidence and also warrant sensitivity analysis’.

First, we vary the intrinsic growth rate in the non-cooperative solutions.

Figure 1, left panel, shows the resulting optimal escapement levels for each

of the strategic variables for values of the intrinsic growth rate between 0.05

and one, for the case b = 1. The ordering of the escapement levels is shown in

Table 2, with the harvest quantity strategy producing the highest escapement

level, fishing effort the second largest level and stock size has the lowest

escapement level. The ordering is fairly robust to changes in the growth rate.

For the escapement strategy, lowering (increasing) the intrinsic growth rate

lowers (increases) the escapement level. The escapement levels for harvest
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Figure 1: The effects of different values of the intrinsic growth rate, a, on
the escapement levels (left), and the net present values (right)

quantity and fishing effort increase slightly as the growth rate decreases from

one, reaching their maxima at values of the intrinsic growth rate equal to,

respectively, 0.85 for the harvest quantity and 0.95 for the fishing effort

strategy. For growth rates less than the ones producing the ”maximum”

escapement levels, the optimal, non-cooperative escapement levels decline

with decreasing growth rates, giving the escapement level curves for harvest

quantity and fishing effort in Figure 1, left panel, a humped shape. As

the intrinsic growth rate falls below 0.3, the escapement levels for harvest

quantity and fishing effort start to decline more rapidly. At a growth rate

of about 0.28 the escapement levels of harvest quantity and fishing effort

become equal. The escapement levels continue to fall; harvest quantity has

an equal escapement level with stock size when the intrinsic growth rate is
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about 0.25, and fishing effort and stock size have the same escapement level

when a is about 0.15. Both harvest quantity and fishing effort reach the

break even escapement level of 0.5 at a growth rate equal to 0.1. Stock size,

however, seems to be the most conservative strategic variable at low growth

rates, with an escapement level above break even at a growth rate as low as

0.05.

The ”paradox” that the harvest quantity and fishing effort strategies

become more aggressive, (the escapement levels are lower than the

escapement level with stock size as the strategic variable) when a is small,

comes from the fact that when a is small, the stock cannot sustain a

large, constant catch, without being driven to extinction. In order to avoid

extinction, the harvest quantity must be reduced. A smaller harvest quantity

means that it will take longer time to reach the final escapement level. The

discounting makes the present values of catches caught in the future very low,

and to compensate for this a tradeoff is made, setting the harvest quantity

as high as possible, so that the break even level will become the escapement

level in the long run. Otherwise, the harvest quantity would have be set at

a very low level. This is also the case when a constant fishing effort is the

strategic variable and the intrinsic growth rate is low; the stock size cannot

sustain a high fishing effort level without being driven below the break even

level.

Figure 1, right panel, shows how the net present value (NPV) is affected

as the intrinsic growth rate, a, is gradually lowered from 1 to 0.05, holding the

other parameters at the benchmark values in Table 1 and keeping the harvest

elasticity with respect to the stock size equal to one. The net present values
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decline with falling growth rates. The harvest quantity strategy, which has

the highest NPV, and the fishing effort strategy, which is number two when

it comes to profitability, decline evenly as the intrinsic growth rate is lowered.

The difference in NPV between harvest quantity and fishing effort is small

compared to the difference in NPV between the escapement strategy and the

net present values of harvest quantity and fishing effort. To begin with, the

NPV for the escapement strategy declines evenly with falling growth rates,

but at growth rates of about 0.3, or lower, the rate of change is reduced, and

the net present values for stock, and harvest quantity and fishing effort, start

to converge. The net present value for the harvest quantity strategy continues

to decline as the growth rate approaches 0.05, the net present values for the

escapement strategy and the fishing effort strategy level off.

Figure 2, left panel, shows how the escapement levels change in response

to changes in the discount rate, r, between 0.05 and 0.3. At a discount

rate of 0.05, which is our benchmark value the harvest quantity strategy has

the highest escapement level, followed by fishing effort and the escapement

strategy, respectively. The escapement levels fall with increasing discount

rates, but the rate of decline varies for the different strategic variables. The

escapement strategy, which has the lowest escapement level initially, declines

with increasing discount rates at an even rate. So does the escapement for the

fishing effort strategy, but at a higher rate, such that the escapement levels for

stock and fishing effort are equal at a discount rate of about 18 percent. The

escapement level for the harvest quantity strategy declines with increasing

discount rates at a increasing rate, however. At r = 0.15 harvest quantity and

fishing effort have the same escapement level. For discount rates above 20
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Figure 2: The effects of different values of the interest rate, r, on the
escapement levels (left), and the net present values (right)

percent harvest quantity’s escapement level rapidly approaches break even,

while the escapement levels for stock and fishing effort continue to gradually

decline.

Higher discount rates change the tradeoff between profits earned now, or

in the near future, and profits earned further into the future, such that it

becomes more attractive for the nations to increase fishing effort and catch,

even if it means lower catch values in the future. The escapement level

of the fixed harvest quantity strategy is the strategic variables that is most

vulnerable to changes in the discount rate. The two other strategic variables,

fixed escapement level and constant fishing effort, are more robust. For the

escapement strategy this can be explained by the fact that the value of the

large initial harvest increases relative to harvest in later periods due to higher
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discounting.

The comparison of the three strategic variables, escapement level, harvest

quantity, and fishing effort, shows that especially the escapement level seems

to be sensitive to changes in the intrinsic rate of stock growth, a, and the

rate of discount, r. At low values of the intrinsic growth rate, or at high

values of the discount rate, the escapement level when using a fixed harvest

quantity as the strategic variable is driven down to the break even level, while

the escapement level of the fixed escapement level strategy, which had the

lowest escapement level of the strategic variable at higher values of a, lower

values of r, is now the highest of the three, well above the break even level.

Increasing the growth rate means that the productivity of the stock increases

relative to the return on other assets, which is equal to r. On the other hand,

an increase in the discount rate makes investments in the alternative assets

relatively more profitable, and thus the nations would want to increase the

catches and invest the earnings from doing so in the assets with the highest

returns.

Figure 3 shows the result of varying the cost parameter, c, between 0.3

and 0.9, with the escapement levels and the net present values shown in left

and right panel, respectively. Keeping the harvest elasticity with respect to

the stock size equal to one, the cost per unit of effort, c, coincides with the

break even stock size, is at the stock size where the price per unit equals the

cost of catching it. The other parameters are held at their benchmark values.

What Figure 3 shows is that the higher the costs, the less is the difference

between the escapement levels and net present values in models using harvest

quantity, stock size or fishing effort, respectively, as the strategic variable.
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Figure 3: The effects of different cost levels, c, on the escapement levels (left),
and the net present values (right)

In our benchmark case, with cost equal to 0.5, harvest quantity had the

highest escapement level and NPV, followed by fishing effort and stock size

had the lowest escapement level and NPV. This ordering is not changed by

changing the cost, but escapement levels and net present values converge with

increasing costs and diverge with lower costs. Since c is identical to the break

even level, the stock size where price equals costs, when b = 1, this indicates

that the choice of strategic variable is more important when we are dealing

with fish stocks that are less protected from extinction economically. An

example of this is fish species with schooling behaviour, where the increase

in costs of fishing is less than proportional to reduction in the stock level.

Therefore, the break even level becomes [ c
p
]
1
b , where 0 ≤ b < 1 is a measure

of how sensitive the costs are to changes in the stock size.
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4 Conclusions

The choice of strategic variable is not a trivial one, as the results obtained

from using stock size, harvest quantity, and fishing effort, respectively, as

strategic variables are shown to be sensitive to the discounting, and the

stock rate of growth.

In a competitive environment the fixed escapement strategy becomes the

least profitable, and it is the strategy with the lowest escapement level. The

constant harvest quantity, on the other hand, is now the strategy that has the

highest net present value and the highest escapement level. The net present

values and the escapement levels are lower with non-cooperation than with

full cooperation, and the fixed escapement strategy and the constant harvest

quantity strategy management makes the stock vulnerable to extinction at

lower stock elasticities.

The effects of the choice of strategic variable are to some extent sensitive

to the level of the intrinsic growth rate and discounting. At lower growth

rates the fixed escapement strategy becomes the strategy with the highest

escapement level, while the escapement levels of harvest quantity and fishing

effort tend towards the break even level. A high discount rate also increases

the escapement strategy’s escapement level, relative to harvest quantity and

fishing effort.

The ranking with respect to economic value, however, seems to be less

sensitive to changes in the intrinsic growth rate and discount. The strategy

of a fixed harvest quantity has the highest net present value except at very

low levels of the intrinsic growth rate, where the net present values of the
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strategic variables of fixed escapement and fixed fishing effort are higher

than the net present value of the harvest quantity strategy. At higher rates

of discount the differences in economic value are decreasing.

Changing the cost per unit of effort does not affect the ranking with

respect to the escapement levels or the net present values. The escapement

levels are increased, and the net present values are reduced, by higher costs.

However, both the escapement levels and the net present values converge as

the cost rises.

The analogies, suggested in the introduction, between, on the one hand,

the Cournot oligopoly and a fixed harvest quantity strategy, or a fixed fishing

effort, as the strategic variable, and Bertrand competition and constant

escapement as the strategic variable, on the other, are confirmed by the

comparison of escapement levels, and the net present values in this paper.

The fiercer competition when stock size is the strategic variable of the game

leads to a lower escapement level, and a lower net present value, relative to

the escapement levels and net present values for harvest quantity and fishing

effort as the strategic variables.

The assumptions about the distribution of fish in the sea, associated with

its response to being harvested, are crucial. As the tendency to a uniform

distribution is reduced and the harvest elasticity with respect to the stock

size approaches zero the stock becomes more vulnerable to extinction. At

stock elasticities close to zero a fishing effort strategy is the only strategic

variable that sustain a profitable stock size in the long run.
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APPENDIX

This shows the solution of the first order necessary conditions for the

problems in Equations (5), (7), and (9), and gives a description how solutions

for the strategic variables can be found.

The escapement level, S should be chosen such that it maximizes the net

present value of profits over all periods. The first order necessary condition

for this is

− p +
c

S
+

1

r

{
p

2

[
1 + a(1− 2S)

]
− p−

c

[
1 + a(1− 2S)

]
2

[
S + aS(1− S)

] +
c

S

}
= 0. (A1)

Equation (A1) is a function of the parameters of the model and the

escapement level, S, only, and independent of the initial stock size X0 and

the intermediate stock size S̄. Equation (A1) can be solved for the optimal

escapement level S∗.

In order to find the first order necessary condition that solves the problem

when harvest quantity is the strategic variable (Equation (7)) we will have

to take the derivative of the objective function with respect to the harvest

quantity, hi for all periods t = 0, 1, 2, ......., T , where T is the period where

the stock size reaches its optimal level.

The first order necessary condition with respect to the harvest quantity
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p− c

S0

+
T−1∑
t=1

{
p− c

St

}
δt +

{
p− c

ST

} ∞∑
t=T

δt

+
cX ′

1(S0)

2

[
2

S1

− 1

X1

− 1

X1 − 2h̄

]{
dS0

dhi

}
δ

+
cX ′

2(S1)

2

[
2

S2

− 1

X2

− 1

X2 − 2h̄

]{
dS1

dhi

}
δ2

+ ............................ (A2)

+
cX ′

T−1(ST−2)

2

[
2

ST−1

− 1

XT−1

− 1

XT−1 − 2h̄

]{
dST−2

dhi

}
δT−1

+
cX ′

T (ST−1)

2

[
2

ST

− 1

X(ST )
− 1

X(ST )− 2h̄

]{
dST−1

dhi

} ∞∑
t=T

δt = 0,

where i = 1, 2.

The term {p − c
St
}δt is the present value of the instantaneous marginal

benefit obtained by increasing the harvest quantity, hi
t, by one unit. The

other term, cX′(St−1)
2

[ 2
St
− 1

X(St−1)
− 1

X(St−1)−2h̄
]{dSt−1

dhi }δt, is the present value

of the extra future marginal costs incurred by reducing the stock size by one

unit.

From period T onwards, the stock size, ST = ST−1, and the harvest

quantity, hi, is in equilibrium and all the expressions in Equation (A2) can

be treated as constants, for all t ≥ T . The marginal benefits and costs terms

are clearly constant for all t ≥ T , and since dSt−1

dhi , is equal for all t ≥ T , we

can consider dST−1

dhi as a constant as well for all t ≥ T . This leaves us with∑∞
t=T δt, which is an infinite geometric series, and since 0 < δ < 1 this series

converges to δT

1−δ
, which is a constant scalar.

The first order necessary conditions, Equation (A2), is a function of the
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initial stock size, X0, and the others’ harvest quantity, h̄, as well as the

parameters and T , and, thus, we cannot solve for hi analytically. However,

the optimal harvest quantity, h∗, can be solved numerically for a given initial

stock size and making use of the fact that the terms in Equation (A2) are

constant for t ≥ T , and assuming symmetry between the nations.

Find the first order necessary conditions with respect to the fishing

effort, the problem in Equation (9), by taking the derivative of nation one’s

fishing effort at every period t = 0......T . From period T onwards the stock

and fishing effort are in equilibrium, and, thus, the harvest quantity stays

constant.

The first order necessary condition with respect to fishing effort

pX0 −
c

1− Ei − Ē

+
T−1∑
t=1

{
pX(St−1)−

c

1− Ei − Ē

}
δt

+

{
pXT (ST−1)−

c

1− Ei − Ē

}
δT

1− δ

+ pEiX ′
1(S0)

{
dS0

dEi

}
δ (A3)

+ pEiX ′
2(S1)

{
dS1

dEi

}
δ2

+ ............................

+ pEiX ′
T−1(ST−2)

{
dST−2

dEi

}
δT−1

+ pEiX ′
T (ST−1)

{
dST−1

dEi

}
δT

1− δ
= 0,
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i = 1, 2.

The term {pX(St−1)− c
1−Ei−Ē

}δt is the present value of marginal benefit

obtained by increasing the fishing effort Ei by one unit. The other,

pEiX ′
t(St−1){dSt−1

dEi }δt, is the net present value of the change in the marginal

revenue from a one unit change in Ei.

Equation (9) is a function of X0, Ē, T and the parameters of the model,

and is difficult to solve analytically. However, as was the case with the first

order necessary condition for the harvest quantity strategy, the terms for

t ≥ T are constants, which we can exploit to help us find numerical solution

for Ei. The structure of solution method is similar to the one used solving

for the harvest quantity.

31



References

Clark, C. W. (1980): “Restricted Access to Common-Property Fishery

Resources: A Game-Theoretic Analysis,” in Dynamic Optimization and

Mathematical Economics, ed. by P.-T. Liu, chap. 7, pp. 117–132. Plenum

Press, New York, London.

Dockner, E. J., and V. Kaitala (1989): “On Efficient Equilibrium

Solutions in Dynamic Games of Resource Management,” Resources and

Energy, 11, 23–34.

Eswaran, M., and T. Lewis (1985): “Exhaustible Resources and

Alternative Equilibrium Concept,” Canadian Journal of Economics, 18(3),

459–473.

Fudenberg, D., and J. Tirole (1991): Game Theory. The MIT Press,

Cambridge, Massachusetts; London, England.
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