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Abstract

This paper provides a new simple and computationally tractable method for
determining an identified set that can account for a broad set of economic models
when economic variables are discrete. Using this method it is shown on a simple
example how can imperfect instruments affect the size of the identified set when
strict exogeneity is relaxed. It could be of great interest to know to what extent are
the results driven by the exogeneity assumption which is often a subject of contro-
versy. Moreover, flexibility gained from the new proposed method suggests that
the determination of the identified set need not be application-specific anymore.
This paper presents a unifying framework that approaches identification in an
algorithmic way.

JEL: C10, C21, C26, C61.

Introduction and Motivation

Identification plays a central role in economic research. In most economic models
latent variables such as unobserved heterogeneity, ability or preference shocks are
introduced in order to explain relations of interest such that the model mimics reality.
Given data that reveals the distribution of observable variables we would like to learn
as much as possible about the relations or features of the economic model. This
information is often embedded in an unknown parameter. Since latent variables are
not directly observable, certain assumptions have to be made about them in order
to use data to say something about an unknown parameter or about a feature of
interest. Depending on the strength of these assumptions knowledge of the true data
generating process of observed variables can have either (1) no identifying power,
(2) may shrink the set of potential parameter candidates, in which case the model is
said to be partially identified, (3) these assumptions are sufficient to pin down one
potentially true parameter which is the point identified case or (4) the assumptions
are too strict and the model can be refuted.
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for helpful comments. All errors are my own.
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Identification in Models with Discrete Variables

In practice, often strong assumptions that guarantee point identification are made.
However such assumptions might include knowledge of the family of probability dis-
tributions of unobserved variables which rarely can be justified on economic grounds.
The only reason is to make inference tractable. It is interesting to ask what would
happen had these restrictions not been imposed and try to develop an inferential
procedure that is robust to assumptions that are controversial or made for technical
convenience. The first necessary step is to know what is the set of models (or param-
eters) that are compatible with the set of assumptions made and compatible with the
data in case we have perfect information on the probability distribution of observable
variables in other words if we have a data sample of infinite length. This is the ques-
tion of identification. Once this is resolved one can proceed to inference and find out
how to use an imperfect data to build confidence regions or hypothesis tests.

The contribution of this paper is threefold. First, a new simple identification
method is presented. Second, it is shown how can the method nest several exist-
ing results from the literature. Third, we show how can this method approach the
identification in cases when strict exogeneity of instruments is relaxed. Advantages
compared to the previous literature are that an economic model is not restricted to be
linear and at the same time the degree of violation of the exogeneity assumption can
be controlled for.

This paper presents a new method that is an extension of an existing framework
by Galichon and Henry (2011, 2009) and Ekeland, Galichon, and Henry (2010) (hence-
forth GH framework) that traces identified set in a richer set of economic problems
when observed variables are discrete. As a motivating example we study the impact
of violation of the strict exogeneity assumption in single equation endogenous binary
response model. Complementing existing results on imperfect instruments (Nevo and
Rosen, 2012), (Conley et al., 2012) this method can control the departure from the strict
exogeneity of the instrument and allows us to study non-linear models.

The proposed method can reproduce some other results in the partial identifica-
tion literature that were obtained by different approaches. These include the single
equation endogenous binary response model of Chesher (2009) and Chesher (2010),
triangular system of equations with binary dependent variables of Shaikh and Vyt-
lacil (2011), treatment effects in studies with imperfect compliance of Balke and Pearl
(1997), and binary choice models with zero median restriction of Komarova (2009). In
the first and the fourth example the original GH framework1 applies but the extension
help us to formulate the problem such that it is possible to relax the strict exogeneity
of instruments in a simple way as is done in section 3. In the other examples, the
extension is essential as some of the assumptions that are made can not be formu-
lated within the original GH framework. The extension therefore enriches the set of
problems that can be addressed.

The major advantage of the new method is its algorithmic structure: identifying
restrictions enter the setup in a straightforward manner and effective algorithms to
determine the identified set are employed. Instead of using distinct strategies for dif-
ferent applications, this method provides a unifying framework which is conceptually

1After a mild modification.
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simple. The presented framework is not application specific it applies to a wide range
of problems with discrete variables when identification is only partial.

There are several limitations of the method that is presented in this paper. The
method describes how identified set can be found given perfect information on the
data generating process of observed variables, yet inference is not studied here. Ob-
servable variables in the model are restricted to be discrete. Models with continuous
observable variables can be discretized, but this discretization will always bring some
degree of arbitrariness to the problem and the impact of this is not studied here.
Unobservable variables are not restricted to be discrete, a continuous unobservable
variable can be transformed into a discrete one and it is shown that this will not affect
the identified set.

The study of partial identification was initiated by Manski (1990), however these
ideas were not fully appreciated at the beginning. Monographs include Manski (1995)
and Manski (2003) and recent comprehensive survey papers are Manski (2008) and
Tamer (2010). Among many interesting applications prominent ones are e.g. Returns
to schooling (Manski and Pepper, 2000), Demand for fish (Chernozhukov et al., 2009)
or Discrete choice with social interactions (Brock and Durlauf, 2001). Determination
of identified set is studied in Galichon and Henry (2011, 2009) by means of optimal
transportation formulation, in Beresteanu and Molinari (2008), Beresteanu et al. (2012,
2011) and Chesher, Rosen, and Smolinski (2011) using random set theory, and in
Chesher (2010) structural quantile functions are used. Reader interested in inference
in the partially identified setting might refer to Galichon and Henry (2011, 2009),
Chernozhukov, Hong, and Tamer (2007), Imbens and Manski (2004), Beresteanu and
Molinari (2008), Beresteanu et al. (2012, 2011), Chernozhukov, Lee, and Rosen (2012),
Andrews and Shi (2012), Romano and Shaikh (2010),Bugni (2010) and Rosen (2008).

Section 1 describes the identification strategy of Galichon and Henry with the pro-
posed extension. In section 2 examples are given on how the extended framework
can nest different identification approaches. Section 3 explains how one of the exam-
ples can be modified in order to study the impact of imperfect instruments. Section
4 concludes and an Appendix consists of proofs (Appendix A), technical details on
presented examples (Appendix B), and implementation issues (Appendix C).

1 Methods

This section first explains the basic elements of the partial identification framework of
Galichon and Henry, later on my extension is motivated and presented.

1.1 Galichon and Henry’s framework

Here basic ingredients of GH identification setup are presented. Let

• Y ∈ Y be a random vector of observable variables with probability density
function or probability mass function (pdf or pmf) p,
• U ∈ U be a random vector of unobservable variables with pdf or pmf ν,
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Figure 1: Illustration of the correspondence G that carries the information about the eco-
nomic model. The joint distribution of (Y, U) is restricted to have support in grey area with
probability one.

• G : U 7→ Y be a measurable correspondence2 that restricts the co-occurrence
of pairs (Y,U) to those that are compatible with an economic model at hand,
formally Y ∈ G(U). This is how economic restrictions are modeled within the
GH setup.

The fact that G is a many-to-many correspondence enables us to work with cen-
sored data (for a given Y we contemplate different values of U) or multiple equilibria
(for a given U we consider different values of Y). Figure 1 illustrates many-to-many
mapping G. Note that point-identification is typically achieved if both Y and U are
continuous and an inverse of the many-to-many mapping G−1 is a function. In this
case a knowledge of probability behavior of observed variables tells us exactly the
probability of the unobserved component.

First a concept of a Structure which groups all available restrictions is defined.

Definition 1. A Structure S is defined as a triplet S = (G, ν, p).

Another important notion to be defined is an internal consistency of a structure.
The structure is internally consistent if there exists a joint distribution which poten-
tially could have generated the probability of observed variables p and latent variables
ν and satisfies economic restriction defined by G almost surely. If there is no such joint
distribution the structure can clearly be refuted.

Definition 2. Structure S is said to be internally consistent if and only if there exists a joint
probability distribution π of (Y, U) on Y ×U with marginal distributions p and ν respectively
such that Prπ({Y ∈ G(U)}) = 1.3

In practice, most models are parametrized so let us now consider the situation
when ν = νθ and G = Gθ are parametrized with a vector of parameters θ ∈ Θ, where
Θ ⊆ Rd.4 Finally, our object of interest, an Identified set, is defined. It is a collection
of all parameters θ that guarantee internal consistency of the structure.

2Therefore for all open subsets A of Y , G−1(A) := {U ∈ U : G(U) ∩ A 6= ∅} is well defined.
3Definition 1 in Galichon and Henry (2009)
4The parameter θ may consist of two parts, θ = [θ1, θ2], so we can have Gθ1 and νθ2 .
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Definition 3. An identified set for θ, ΘI(p), is defined as
ΘI(p) := {θ ∈ Θ : (Gθ, νθ, p) is internally consistent}.5

Note that all members of the identified set correspond to structures that could
have generated the probability of observed variables p, so in this sense they are obser-
vationally equivalent, and no amount of data would ever help us to distinguish between
them. The identified set

• could be empty: ΘI(p) = {∅}, hence the structure (Gθ, νθ, p) is refuted for all
θ ∈ Θ,

• may consist of a single point: ΘI(p) = {θ}, in this case θ is point-identified,
• can be a subset of Θ: ΘI(p) = {I ⊂ Θ} and θ is partially identified,
• may not shrink Θ at all: ΘI(p) = Θ, so the structure (Gθ, νθ, p) places no identi-

fying restrictions on θ.

For a fixed parameter θ, if all variables in the model are discrete the problem of
finding a joint distribution of (Y, U) compatible with the economic model described
by Gθ with appropriate marginals can be formulated as a linear program, and it will
be shown how. Note that in most economic applications the latent component U is
continuous. If the observed variables are discrete it is however possible to discretize
U in a way that leaves the identified set unchanged as was proved in Galichon and
Henry (2011). Suppose Y = {y1, ..., yi, ..., yn} with corresponding probabilities pi,
U = {u1, ..., uj, ..., um} with probabilities νj. Economic model enters the problem as a
set of restrictions on the support of (Y, U). Let us define a zero-one penalty on the
support of all joint probabilities on Y ×U,

cij = 1(yi /∈ Gθ(uj)) =

{
0, if yi ∈ Gθ(uj),
1, otherwise,

so penalty is put on those pairs (Y, U) that are incompatible with the economic model.
The n× m matrix of the zero-one penalties {cij} carries the same information as the
mapping Gθ(.) and we denote the nm vector of this stacked matrix as c.

Now a question of an existence of a joint probability distribution which assures
internal consistency can be answered by means of the following linear program:6

min(π) ∑i,j πijcij

s.t.

∑j πij = pi, ∀i (1)

∑i πij = νj, ∀j (2)
πij ≥ 0, ∀i, j. (3)

where the minimum is taken across the all joint probability distributions π (nm vector
of the stacked n×m matrix with elements {πij}). A structure is internally consistent
if and only if the optimized value of the objective function is equal to 0. If this is

5Definition 2 in Galichon and Henry (2009), the dependence of the identified set ΘI(p) on the
distribution of observable variables p is made explicit.

6The dependence of cij and νj on parameter θ is omitted for the sake of brevity.
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the case, it means that we have found a proper joint distribution π that is compatible
with with the data (1) and the assumptions made on latent variables (2), and that the
probability of an event not compatible with the economic model is zero.

The necessary and sufficient condition for the inclusion of the parameter θ in the
identified set is

0 = max
A⊂Y

(Pr(A)− νθ(G−1
θ (A))), (4)

where the maximum is taken across all possible subsets of Y . A similar result was first
proven by Artstein (1983) and is based on an extension of the marriage lemma. Alter-
native proofs of (4) were given in Galichon and Henry (2009) which relied on optimal
transportation theory, and in Henry et al. (2011) based on combinatorial optimization
methods. Equation (4) can then also be used for hypothesis testing or building confi-
dence regions for θ as proposed in Galichon and Henry (2009) and Henry et al. (2011).
The latter allows for efficient confidence regions construction using a combinatorial
bootstrap.

The properties of the approach:

• Flexible way how to access many problems when partial identification occurs.
• For discrete cases linear program nature makes is computationally convenient.
• If only U is continuous, problem can be transformed into the discrete one.
• Economic model is described by restriction on the support of observables and

unobservables.

1.2 The extension of the Galichon and Henry framework

I aim to extend the GH method to entertain additional distribution restrictions. Even
though the GH setup can address many problems, certain type of problems cannot
be formulated within the GH framework. There are two ways how can our prior
information enter the structure: the marginal distribution of unobservables ν and the
support of (Y, U) via the correspondence G (or equivalently c). Not all distributional
assumptions we might believe can enter the structure. In many economic models
some notion of independency is assumed.7

Because the problem is accessed at the lowest level, by constructing a joint distribu-
tion compatible with all the information researcher may have, it is possible to restrict
this joint distribution to satisfy any type of distributional assumptions one may wish
to make. If the distributional assumption can be written as a linear function of the
joint probability π, the problem remains computationally attractive. Modeling the
joint distribution gives us full control on utilizing the information at hand. This flexi-
bility delivers a solution to cases where the GH setup is too restrictive, and this is the
main contribution of this paper.

For illustrative purposes: suppose that in addition to information about G, it is
known that E(φθ(Y, U)) = 0 and |cov(Y, U)| ≤ 0.1. Such assumptions simply cannot

7One may also be willing to make some assumption about a distribution of variable in form of
moment equality or moment inequality. It is important to note here that GH setup can handle moment
inequalities E(φ(Y)) ≤ 0 if E(m(U)) = 0 is assumed (Ekeland et al. (2010) and Mourifié and Henry
(2012)). In this case correspondence G is restricted to take specific form. However within the GH
framework it is not possible to consider moment inequality and further information given by G.
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be formulated as the restriction on the support of (Y, U), so there is no way how these
assumptions can be embedded into the framework via G or ν. In this sense the original
GH framework is too restrictive. The way to incorporate these assumptions is simply
to restrict the set of joint distributions (all π-s) to only those that are compatible with
this piece of information.

A question whether the extended set of restrictions is compatible with the ob-
served data reduces to checking whether the optimized value is equal to zero in the
following linear program:

min(π) ∑i,j πijcij

s.t.

∑j πij = pi, ∀i

∑i πij = νj, ∀j

∑i,j πijφθ(yi, uj) = 0, (5)

∑i,j πijyiuj −∑i piyi ∑j νjuj ≤ 0.1, (6)
−∑i,j πijyiuj + ∑i piyi ∑j νjuj ≤ 0.1, (7)

πij ≥ 0, ∀i, j.

Equation (5) restricts the joint distribution π to satisfy E(φθ(Y, U)) = 0, whereas
inequalities (6) and (7) ensure that |cov(Y, U)| ≤ 0.1 is satisfied.

As another example suppose that we have two observed variables Y = (X, Z)
with probabilities pij and unobserved variable U and instead of assuming the full
knowledge of its distribution, we assume that it has zero mean, its 75% quantile is 0.8
and it is independent of Z. Now the problem would be formulated as follows

min(π) ∑i,j,k πijkcijk

s.t.

∑k πijk = pij, ∀i, j

∑i,j,k πijkuk = 0,

∑i,j,k πijk1(uk ≤ 0.8) = 0.75,

∑i πijk −∑i pij ∑i,j πijk = 0, ∀j, k
πijk ≥ 0, ∀i, j, k.

These examples are somewhat artificial but explain the main point. Economically
interesting examples follow in section 2. It is important to note that if the additional
constraints are such that the problem is within the linear programming framework, it
remains computationally feasible.

The crucial step is to prove that discretization of unobserved variables is possible
even when additional distributional restrictions are entertained. This is done for a
certain class of distributional restrictions, and is discussed in detail in subsection 1.3
with a proof given in Appendix A.

We now state the proposed extension formally. We recall that Y and U are supports
of discrete observable variable and continuous or discrete unobservable variables re-
spectively. The set of all probabability distributions on Y ×U is denoted by Π(Y , U)
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and ψθ(Y , U, p, ν) is the set of all π ∈ Π(Y , U) satisfying additional restrictions im-
posed. If information about the probability distribution ν of unobserved variables is
not available, we have ψθ(Y , U, p), A set of all restrictions imposed is compatible with
the data if and only if the optimal solution of the following optimization procedure is
zero:

min(π) π{1(Y /∈ Gθ(U))}
s.t.

π{1(Y = yi)} = pi, ∀i
π ∈ ψθ(Y , U, p, ν).

Note that if U is discrete and the set ψθ consists of restrictions that are linear in π,
linear programming routines may be used.

The additional restrictions for the two examples given above are:

ψθ(Y , U, p, ν) =

π ∈ Π(Y , U) :
∀u ∈ U : π{1(U = u)} = ν(u),
Eπφθ(Y, U) = 0,∣∣∣EπYU −∑i piyi ∑j νjuj

∣∣∣ ≤ 0.1.

 (8)

and

ψ(X × Z, U, p) =

π ∈ Π(X × Z, U) :

EπU = 0,
Eπ1(U ≤ 0.8) = 0.75,
∀z ∈ Z, u ∈ U : π{1(Z = z, U = u)} =

= ∑i pijπ{1(U = u) }.

 (9)

where in the second example Y = X × Z and ψ does not depend on θ.
The notion of structure and identified set now have to be redefined. To enrich

the concept of the original structure we denote a triplet (G, ψ, p) as a Generalized
Structure which groups all the restrictions placed on π.

Definition 4. A Generalized Structure S is defined as a triplet S = (G, ψ, p).

Internal consistency and identified set are then defined similarly as in definitions
2 and 3.

Definition 5. Generalized Structure S is said to be internally consistent if and only if there
exists a joint probability distribution π of (Y, U) on Y × U in ψ(Y , U, p) with Y-marginal
distributions p such that π({Y ∈ G(U)}) = 1.

Definition 6. An identified set for θ, ΘI(p), is defined as
ΘI(p) := {θ ∈ Θ : (Gθ, ψθ, p) is internally consistent}.

We will refer to this formulation as the extended Galichon and Henry framework. If
the latent variable U is discrete and the set ψ can be written as linear restrictions in
π, effective algorithms can be employed to solve this linear program.
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1.3 Discretization of Unobserved Variables

In most economic problems the unobserved component is continuous, hence in order
to make the search in the space of joint probability functions tractable it may be conve-
nient to discretize the unobserved component and then show that this discretization
leaves the identified set unaffected. This is not true in general. We will show that if
distributional restrictions ψ take specific forms, that nest all examples presented in
this paper, discretization of the unobserved variable is possible and harmless. These
sets of restrictions for the problems with continuous unobservables are

ψ1(Y , U, p, ν) =

π ∈ Π(Y , U) :
∀u ∈ U : π{1(U = u)} = ν(u),
∀I ∈ I; ∀u ∈ U :
|∑i∈I π(yi, u)−∑i∈I piν(u)| ≤ α ∑i∈I piν(u),


(R1)

and

ψ2(Y , U, p, ·) =

π ∈ Π(Y , U) :
Eπφ(U) = 0,
∀I ∈ I; ∀u ∈ U : |∑i∈I π(yi, u)−
−∑i∈I piπ{1(U = u)}| ≤ α ∑i∈I piπ{1(U = u)},


(R2)

where φ : U 7→ M has a finite range M and I is a fixed set of indices.8

The the first restriction (R1) requires π to be compatible with assumed distribution
of unobserved variables and hence nests original GH framework and the second will
help us to restrict part of the observed component to be independent or "close to being
independent"9 of the unobserved component and the first line in (R2) will allow us to
work with quantiles of U.

Let us denote a question of internal consistency of a generalized structure (G, ψ, p)
with continuous unobserved variable as P1:

Y discrete with support Y = {y1, ..., yn} and with probability p = {p1, ..., pn},
U continuous with support U (and with positive probability density ν for (R1)),
G : U 7→ Y .

The aim is to find a function π1 : Y ×U 7→ [0, 1] that satisfies

n

∑
i=1

∫
u∈U

π1(yi, u)1(yi ∈ G(u))du = 1, (1.1)

∀i = 1, ..., n :
∫

u∈U
π1(yi, u)du = pi, (1.2)

π1 ∈ ψ(Y , U, p, ·). (1.3)

8If observed variable is multidimensional we can stack it into one vector. Summing across some
sets of indices allows us formulate a restriction for one dimension only. As an example suppose that
observed variables are (Y, X, Z), then we can place a restriction on X only, so that X is independent of
U.

9The way how the independency restriction is relaxed will be discussed in section 3.
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Problem P1 is computationally unfeasible because of its continuous component U. We
can however transform the problem P1 with continuous U to the problem P2 with
discrete U, such that it will not affect the identified set.

We will partition U into subsets that deliver the same G(U) for the set of restric-
tions (R1) and into those that deliver the same G(U) and φ(U) for (R2). It is then easy
to show that if we group all Us in these subsets into atoms and proceed as if U were
discrete, the identified set stays unchanged.

Formally, the partitioning of the U space is the following

G ≡ {∆∗ ⊂ U : ∀gI ∈ ∆∗, ∀gNI ∈ ∆∗C : G(gI) 6= G(gNI)} (PartU1)

for (R1) and

S ≡ {∆∗ ⊂ U : ∀sI ∈ ∆∗, ∀sNI ∈ ∆∗C : G(sI) 6= G(sNI), φ(sI) 6= φ(sNI)}. (PartU2)

for (R2).
The assumption of a finite range of φ is crucial as it implies a finite S . Let m

denotes the cardinality of either G or S depending on which one is in use. Then a new
random variable U∗ is defined. For every j ∈ {1, ..., m}, we choose a point of support
u∗j to be any u ∈ ∆∗j , a representative of the set ∆∗j

U∗ ∈ ∆∗1 × · · · × ∆∗m. (U)

To obtain a probability distribution ν∗ of U∗, needed for restrictions (R1), we inte-
grate ν(u) across the corresponding regions ∆∗j of U:

∀j = 1, ..., m : ν∗j ≡
∫
∆∗j

ν(u)du. (P)

The discretized problem P2 is the following:
Y with support Y = {y1, ..., yn} with probability p = {p1, ..., pn}
U∗ with support U∗ = {u∗1 , ..., u∗m} (with probability ν∗ = {ν∗1 , ...ν∗m} for (R1))
G : U∗ 7→ Y

The question is whether there exists a function π2 : Y ×U∗ 7→ [0, 1] such that

n

∑
i=1

m

∑
j=1

π2(yi, u∗j )1(yi ∈ G(u∗j ))du = 1, (2.1)

∀i = 1, ..., n :
m

∑
j=1

π2(yi, u∗j ) = pi, (2.2)

π2 ∈ ψ(Y , U∗, p, ·), (2.3)

Lemma 1. If (R1),(P) and (PartU1) hold then a generalized structure (G, ψ(Y , U, p, ν), p) is
internally consistent if and only if a generalized structure (G, ψ(Y , U∗, p, ν∗), p) is internally
consistent.
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Lemma 2. If (R2) and (PartU2) hold then a generalized structure (G, ψ(Y , U, p, ·), p) is
internally consistent if and only if a generalized structure (G, ψ(Y , U∗, p, ·), p) is internally
consistent.

Proofs are given in Appendix A. Lemmata 1 and 2 say that for the internal consis-
tency of a generalized structure, proposed discretization is innocuous.

It immediately follows that if G and ψ were parametrized by some θ ∈ Θ, problem
P1 and problem P2 would lead to the same identified set for θ for both (R1) and (R2).

2 Motivating Examples

The present section introduces some examples for how the extended GH framework
applies to problems in partial identification literature. The replication of existing re-
sults illustrates that the proposed extension indeed works. There is no computational
gain from employing the presented method compared to other frameworks that derive
analytical solutions. The greatest advantage of this method is its generality. Instead of
deriving the identified set and proving that it is sharp from case to case, we propose
one unifying framework that will trace the identified set regardless of the application.
It is sufficient to formulate the economic model with restrictions in the extended GH
setup and let the computer do the work. Also, if extra information becomes available,
it is straightforward to incorporate it into the setup. Unlike the existing application-
specific approaches, where incorporating further restrictions or changing the existing
restriction, may cause significant difficulties for tracing the identified set, adding extra
assumptions or changing the existing ones in the extended GH framework is trivial.
Moreover, if the distributional restrictions are linear in the joint probability π, linear
programming routines can be used. This is particularly interesting as linear program-
ming is well understood, and ready-to-use computer codes are widely available.

The four examples presented in this section not only demonstrate that the method
nests a few existing identification strategies and can replicate their results but they
also illustrate how to formulate the economic problem at hand into the extended GH
framework.

The four considered examples include single equation endogenous binary re-
sponse model of Chesher (2009, 2010), bounds on treatment effects in triangular mod-
els with binary dependent variables (Shaikh and Vytlacil, 2011) and in studies with
imperfect compliance of Balke and Pearl (1997) and binary choice models with zero
median restriction of Komarova (2009).

For each example, first the problem and the notation is introduced, second dis-
cretization of unobserved variables is presented, third the problem is formulated
within the extended GH framework, and fourth the results are compared. The orig-
inal identification strategy is briefly outlined in Appendix B together with technical
details on the examples.

Example 1: Single Equation Endogenous Binary Response Model

Illustrative example of a single equation endogenous binary response model is taken
from Chesher (2010). Consider a probit model where discrete explanatory variable X

11



Identification in Models with Discrete Variables

is possibly correlated with an unobserved U and an instrument Z which is indepen-
dent of U is available.10 Such model is in general not point-identified.

Suppose that the set of assumptions that define our model is the following:

• Y = 1(U > t(X)) (10)
• U ⊥⊥ Z - the unobserved U is independent of the instrument Z
• U ∼ Uni f (0, 1) - U is uniformly distributed on [0, 1] interval
• t(X) = Φ(−θ0 − θ1X) - the threshold-crossing function is assumed to take a

particular form, where Φ(.) is a cumulative distribution function of the standard
normal distribution.11

An interesting question one may want to ask is: Given that we have perfect in-
formation on the distribution of observables, the question is what can we say about
the function t(X) or equivalently about the coefficient θ = (θ0, θ1) from our economic
model and from our assumptions.

Discretization of Unobservables

The discretization as explained in section 1.3 in this case boils down to the discretiza-
tion employed by Galichon and Henry (2011) in the original GH setup. This is because
the additional assumption E(φ(U)) = 0 is not present. It is demonstrated for illustra-
tive purposes.

Suppose that θ1 > 0 then the only subsets of (Y, X) that are compatible with (10)
are {(0, 0), (0, 1)} for U ≤ t(1), {(0, 0), (1, 1)} for t(1) < U ≤ t(0) and {(1, 0), (1, 1)}
for U < t(0). We assign to these three sets of Us three points (u∗1 , u∗2 , u∗3) with proba-
bilities (t(1), t(0)− t(1), 1− t(0)). A similar procedure applies for θ1 < 0. On figure 2
we can see the case for θ1 > 0 on the left and for θ1 < 0 on the right side. Upper panes
show the original support restriction Gθ and lower panes their discrete counterparts.

Formulation in the Extended GH framework

The distribution of observables (Y, X, Z) is assumed to be known and is denoted as
pijk and U is assumed to be uniformly distributed on [0, 1].12 For a given (θ0, θ1),
the aim is to find joint probability πijkl of (Y, X, Z, U) that is compatible with the
support restrictions and the distributional restrictions - marginals of πijkl are pijk and
νl respectively and Z and U are independent.

The support restrictions are defined as follows

cijkl = 1(yi 6= 1(ul > t(xj))) =

{
0, yi = 1(ul > t(xj)),
1, otherwise.

(11)

10In case when X is continuous, the parameter is point identified and could be obtained by e.g.
STATA’s ivprobit.

11It is possible to determine lower and upper bound of the threshold-crossing function t(X) without
making this parametric assumption as it was done in Chesher (2009) and assume monotonicity of t(X)
instead. For the sake of simplicity the parametric example is presented.

12We could also assume that we observe the probability of Y, X given Z, for the sake of exposition
probability of (Y, X, Z) is known.
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Figure 2: Discretization of unobservables in example 2. Left pane is for θ1 > 0, right one for
θ1 < 0. Under the original continuous formulation of Gθ is its discretized counterpart.

so basically (Y, X, Z, U)s are restricted to those that satisfy (10).
We now turn into the formulation of the problem in the extended GH framework:

min(π) ∑i,j,k,l πijklcijkl (12)
s.t.

∑l πijkl = pijk, ∀i, j, k

∑i,j,k πijkl = νl, ∀l

∑i,j πijkl = ∑i,j pijkνl, ∀k, l
πijkl ≥ 0, ∀i, j, k, l.

If for a given (θ0, θ1) the optimum is achieved at 0, this (θ0, θ1) is added into the
identified set.13 14
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Figure 3: Identified set obtained by Chesher’s approach (Chesher, 2010) is compared with our
solution.

Results (binary X)

Identified set is expressed in terms of threshold-crossing function at 0 and 1, t(0) and
t(1), rather than in the parameter space.15 Figure 3 documents that extended GH
setup does work for instruments in the case with binary endogenous variable.

Results (continuous X discretized)

−1 −0.5 0 0.5 1
−2

−1.5

−1

−0.5

0

0.5

1

1.5

θ
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θ 1

Figure 4: Chesher’s result Chesher (2009) (Figure 8, p.37) for problem (10) with parameters
given by (23) compared with the result obtained by extended GH approach.

Figure 4 compares the results obtained by Chesher (2009) and extended GH frame-
work. Note that even though the shapes of the identified sets are similar, they are
different. Methods of discrete approximations of continuous observed variables have
to be developed in order to get reliable results.

13In this case parameter θ affects the support restrictions (10) only.
14Note that even though π is four dimensional the problem still lies within the linear programming

framework since elements of π can be stacked to make a vector of size nY · nX · nZ · nU .
15In order to avoid confusion with probabilities pijk of observed variables, the threshold-crossing

function is denoted as t(.) unlike in Chesher (2009) who set it as p(.).
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Figure 5: Dark blue - with independency restriction, light blue - without assuming indepen-
dency.

Identifying power of the independency restriction

The identifying strength of the independency condition itself can now be studied.
Figure 5 shows the strength of the independency restriction.16 It is clear that this

extra information shrinks the identified region. It is also worth to notice that even if
the instruments are entirely endogenous, some parameter values are excluded from
the identified set. For these, no joint probability πijkl of observables and unobserv-
ables that is compatible with the data generating process pijk and with νl exists.

Objective function

On figures 6 and 7 the minimized objective function and its contours are shown.
Zeros of this function correspond to the identified set, however the values outside

the identified set have interesting interpretation too": they stand for the minimal
probability of a event incompatible with the economic model. If for instance, for
a certain parameter value the minimized value of the objective function is 0.2 then
it means that for any data-generating process at least 20% of the pairs of observed

16That means with the second last restriction omitted: ∑i,j πijkl = ∑i,j pijkνl ∀k, l.
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Figure 7: Contours of the minimized objective function.
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and unobserved variables violate the support restrictions.17 This may serve as an
appealing measure of misspecification with respect to the support restrictions.

Example 2: Triangular System of Equations with Binary Dependent
Variables

Following Shaikh and Vytlacil (2011) the object of interest is an Average Treatment
Effect (ATE) in triangular system of equations.

The collection of assumptions is as follows:

• Y = 1(αD + βX− ε1 ≥ 0), (13)
• D = 1(δZ− ε2 ≥ 0), (14)
• (X, Z) ⊥⊥ (ε1, ε2),

where Y is a binary outcome variable, D is a treatment identificator, X is an exogenous
covariate and Z is an instrument. Note that no parametric distributional assumptions
on (ε1, ε2) are made.

Formulation in the Extended GH framework

We have four observed variables (Y, X, D, Z) with probabilities pijkl and two unob-
served variables (ε1, ε2). Let us denote πijklmn = Pr(Y = yi, X = xj, D = dk, Z =

zl, ε1 = u1
m, ε2 = u2

m). The penalty on the points of support not compatible with the
economic restrictions G is given by

cijklmn =

{
0, (yi, xj, dk, zl, u1

m, u2
n) : yi = 1(αdk − u1

m ≥ 0) and dk = 1(δzl − u2
n ≥ 0),

1, otherwise.

A particular value of ATE = θ is compatible with the list of assumptions and with
data (pijkl) if and only if zero is the optimal solution of the following optimization
problem:

min(π) ∑i,j,k,l,m,n πijklmncijklmn

s.t.

∑m,n πijklmn = pijkl, ∀i, j, k, l

∑i,k πijklmn = ∑i,k pijkl ∑i,j,k,l πijklmn, ∀k, l, m, n

∑m
[
1(α ≥ u1

m)− 1(0 ≥ u1
m)
]

∑i,j,k,l,n πijklmn = θ,
πijklmn ≥ 0, ∀i, j, k, l, m, n.

Results

Figures 8 and 9 compare the results of Shaikh and Vytlacil (2011) with the extended
GH framework.

17From Lemma 2 we can observe that this interpretation is not affected by the discretization of the
unobserved variables.
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Figure 8: Bounds on ATE are compared using Shaikh and Vytlacil (2011) approach (left) and
Extended GH framework (right), with X fixed (X = 0) and α fixed (α = 0.25, upper pane) or
δ fixed (δ = 0.25, lower pane).
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Figure 9: Bounds on ATE are compared using Shaikh and Vytlacil (2011) approach (left)
and Extended GH framework (right), with variation in X (supp(X) = {−2,−1, 0, 1, 2}) and
α = β = 0.25 fixed.
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Example 3: Bounds on Treatment Effects with Imperfect Compliance

The following subsection presents how the extended GH framework can determine
sharp bounds on average causal effect when imperfect compliance is present. This was
done in celebrated works of Balke and Pearl (1997, 1994) and this section replicates
their results.

Consider three type of observed variables: Y ∈ {y0, y1} is an outcome variable
where y0 stands for positive observed response, D ∈ {d0, d1} indicates whether treat-
ment was received (d1) or not (d0), and Z ∈ {z0, z1} indicates whether a treatment
was offered (z1) or was not (z0). An existence of unobserved U that captures individ-
ual characteristics that affects receiving of the treatment and outcome variable is also
assumed. The quantity of interest is average causal effect of D on Y denoted as

ACE(D → Y) = Pr(Y = y1|D = d1)− Pr(Y = y1|D = d0). (15)

Restrictions that are imposed

• Z ⊥⊥ Y|{D, U}, Treatment assignment only affects the outcome variable through
actual treatment D.
• Z ⊥⊥ U, Z and U are independent, randomization of the treatment assignments

Z may deliver this property.
• no interactions between individuals or Stable Unit Treatment Value Assumption

(known as SUTVA Assumption (Rubin, 1974)).

Formulation in the Extended GH framework

Following the notation of Balke and Pearl (1994), decompose the unobserved type
U of an individual into two response function variables RD ∈ {0, 1, 2, 3} and RY ∈
{0, 1, 2, 3}. Pair (RY, RD) is now the unobserved type (U) of the individual. Treatment
D is a deterministic function of Z and RD,

D = fD(Z, RD)

, where

fD(z, 0) = d0 , fD(z, 1) =

{
d0, if z = z0,

d1, if z = z1,

fD(z, 2) = d1 , fD(z, 3) =

{
d1, if z = z0,

d0, if z = z1.

Similarly, the outcome Y is a deterministic function of D and RY:

D = fY(D, rY)

, where

fY(d, 0) = y0 , fY(d, 1) =

{
y0, if d = d0,

y1, if d = d1,

fY(d, 2) = y1 , fY(d, 3) =

{
y1, if d = d0,

y0, if d = d1.
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This is basically a discretization of the unobserved component U into the discrete
(RY, RD).

The quantity of interest is the Average Causal Effect θ = ACE(D → Y) = Pr(RY =
1)− Pr(RY = 3), we would like to find sharp bounds on θ given Pr(Y, D, Z), let also
denote the probability of observed variables pijk = Pr(Y = yi, D = dj, Z = zj).18 There
are 5 variables in the model: observed Y, D, Z and unobserved RY, RD. The mapping
G between unobserved variables and observed variables is defined as

G(RY, RD) = {(Y, D, Z) : fD(Z, RD) = D, fY(D, RY) = Y}.

Now we denote the joint probability distribution of observed and unobserved vari-
ables as πijklm = Pr(Y = yi, D = dj, Z = zk, RY = l, RD = m).

Penalty on the points of support not compatible with G is given by

cijklm =

{
0, (yi, dj, zk) ∈ G(l, m),
1, otherwise.

Finally, parameter θ is included in the identified set if and only if the optimized
value of the following problem is equal to zero:

min(π) ∑ijklm πijklmcijklm

s.t.

∑lm πijklm = pijk, ∀i, j, k
πijklm ∑ik πijklm = ∑i πijklm ∑k πijklm, ∀i, j, k, l, m

∑ij πijklm = ∑ij pijk ∑ijk πijklm, ∀i, j, k,

∑ijkm πijk1m −∑ijkm πijk3m = θ,
πijklm ≥ 0, ∀i, j.

The first restriction says that the πijklm has to be compatible with pijk, which is ob-
served from the data. The second equality states that when fixing D, RY, RD (equiv-
alent to fixing D, U) Z is independent of Y.19 The third equation ensures that Z is
marginally independent of (RY, RD), whereas the forth restricts the space of joint
distributions to those that have ACE(D → Y) equal to θ.

Note that the second restriction is quadratic so the whole problem is not a linear
program. Quadratic restrictions might give rise to the use of semidefinite program-
ming routines.

Although the nonlinear constraint causes significant computational difficulties, re-
sults in Balke and Pearl (1997) can be replicated to a reasonable precision (10−4).

Example 4: Binary Choice Model with Zero Median Restriction

This subsection aims to capture the identification setup of binary choice model with
discrete explanatory variables within the extended GH framework. Identification for

18 ACE(D → Y) = Pr(Y = y1|D = d1)− Pr(Y = y1|D = d0) = Pr(RY = 1)+ Pr(RY = 2)− (Pr(RY =
2) + Pr(RY = 3)) = Pr(RY = 1)− Pr(RY = 3)

19Instrument Z only affects Y via D: Pr(Y|D, Z, RY, RD) = Pr(Y|D, RY, RD) and this equation can be
reformulated as Pr(Y, D, Z, rY, rD)Pr(D, RY, RD) = Pr(Y, D, rY, rD)Pr(D, Z, RY, RD).
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Figure 10: Left figure shows support restrictions and the figure on the right is a result of the
naive discretization.

this type of problem was extensively studied in the recent work of Komarova (2009). It
is well known that if all explanatory variables in binary choice model are discrete, pa-
rameters of the model are in general set rather than point identified. An identification
strategy was outlined earlier (Manski and Thompson, 1986), in Komarova (2009) com-
putationally attractive recursive procedure is outlined that determines sharp bounds
on the identified set.

The problem that is studied takes the following form

• Y = 1(Xβ + U ≥ 0) (16)
• Pr(U ≤ 0|X = x) = 0.5 ∀x ∈ X (17)

where Y is the outcome variable, X is k-dimensional random variable with discrete
support X , β is k-dimensional parameter of interest and U is unobservable scalar
vector variable. The only distributional assumption about U that is made is that
median of U is zero conditional on X.

Discretization of Unobservables

Observed variables X is exogenous in this setup, so the analysis can be done condi-
tional on a particular x. The identified set for β will therefore be an intersection of
bounds created by conditioning on all values of X that have non-zero probability.20

The only restriction put on the unobservable variable U is the zero median restriction,
which has to be taken into account when finding a suitable discretization of U. Naive
discretization is presented on figure 10 and does not allow the unobservables to meet
the conditional zero median condition. When the discretization is done by virtue of
Lemma 2, so the further distributional restrictions are taken into account as shown
on figure 11, the discretization is rich enough to allow us to formulate the conditional
zero median condition. Note that Lemma 2 proves that this discretization leaves the
identified set unaffected.

20As with exogenous instruments, the marginal distribution of X does not have an identifying power.
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Figure 11: The two panes on the left (right) side stand for suitable discretization when Xβ < 0
(Xβ ≥ 0), this discretization was obtained using Lemma 1.

Formulation in the Extended GH framework

Let X = x be fixed and pi = Pr(Y = yi|X = x), where y1 = 0 and y2 = 1. A penalty
cij,

cij =

{
0, if yi = 1(xβ + uj ≥ 0),
1, otherwise,

carries the information on support restrictions.
The problem can now be formulated as

min(π) ∑i,j πijcij

s.t.

∑j πij = pi, ∀i

∑i πi1 = ∑i πi2 + ∑i πi3,
πij ≥ 0, ∀i, j.

whenever Xβ < 0 and

min(π) ∑i,j πijcij

s.t.

∑j πij = pi, ∀i

∑i πi1 + ∑i πi2 = ∑i πi3,
πij ≥ 0, ∀i, j.
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when Xβ ≥ 0. The first set of equalities says that the joint distribution π is com-
patible with observed data pi, the second equality restricts U to have zero median.21

As in previous examples, parameter β is included in the identified set if the optimized
value of the problem is equal to 0.

To simplify notation, all probabilities are implicitly conditioned on X = x. If Xβ <
0 one can immediately see that Pr(U = u3) = Pr(Y = 1) = p2 and Pr(U = u1) +
Pr(U = u2) = Pr(Y = 0) = p1. So Pr(U = u1) = Pr(U = u2) + Pr(U = u3) = 0.5
implies that a proper distribution on U exists if and only if Pr(U = u3) = Pr(Y = 1) <
0.5. On the other hand if Xβ ≥ 0 then Pr(U = u2) + Pr(U = u3) = Pr(Y = 1) = p2
and Pr(U = u1) = Pr(Y = 0) = p1 together with Pr(U = u1) + Pr(U = u2) =
Pr(U = u3) = 0.5 imply that Pr(U = u3) = Pr(Y = 1) < 0.5, so we got precisely the
same result as (25).

This example is simple, but shows how identification can be easily approached in
a systematic manner.

3 Imperfect Instruments in Single Equation Endogenous
Binary Response Model

As opposed to the previous section, this section shows how the extended GH frame-
work works in a problem that has not been studied before. It is shown on the example
with imperfect instruments how can the flexibility of adding extra distributional con-
straints help to access this problem. The extension plays a crucial role and the original
GH framework can not be applied.

Identification based on instrumental variables has become a workhorse in applied
research. The exogeneity of instruments cannot be tested in the just-identified case. It
is of great interest to know the identifying power of this assumption. This information
can serve as a sensitivity analysis, when relaxing this assumption one can see how
the identified set grows. If the identified set is substantially larger if exogeneity is
only slightly relaxed, more attention should be focused on the discussion about this
assumption. One may then need to defend the assumption of exogeneity very well
for the results to be credible. If on the other hand exogeneity of instruments is shown
not to have large identifying power, the analysis could be said to be robust to some
departures from the exogeneity.

In the literature different approaches have been employed to address the issue of
imperfect instruments. Conley, Hansen, and Rossi (2012) parametrize the amount of
instrument endogeneity and derive the identified set in the linear regression model.
Hahn and Hausman (2005), rather than deriving the identified set, compare properties
of OLS and TSLS estimators. Manski and Pepper (2000) made use of monotonicity of
instrumental variables instead of an exogeneity assumption. Nevo and Rosen (2012)
derive sharp bound on parameters under the assumption that the correlation between
the instrument and an error term has the same sign as the correlation between the

21If Xβ < 0 equation (17) is equivalent to Pr(U = u1|X = x) = Pr(U = u2|X = x) + Pr(U = u3|X =
x) and if Xβ ≥ 0 equation (17) can be rewritten as Pr(U = u1|X = x) + Pr(U = u2|X = x) = Pr(U =
u3|X = x). Note that this restriction can be rewritten as ∑i,j πij(1(U ≤ 0)− 0.5) = 0.
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endogenous regressor and the error term, and the instrument is assumed to be less
correlated with the error term than the endogenous regressor.

The example of the single equation endogenous binary response model from sec-
tion 2 demonstrates how the extended Galichon and Henry setup can be used to
trace the identified set if the strict exogeneity condition is relaxed. The way how
this assumption is relaxed is the following: under the strict exogeneity restriction,
Pr(Z) · Pr(U) = Pr(Z ∩U) for all pairs (Z, U). The distribution Pr(Z) · Pr(U) can be
represented as a point in the nZ × nU-dimensional unit simplex. Instead of restricting
Pr(Z ∩ U) to be exactly equal to Pr(Z) · Pr(U) we will assume that the difference
Pr(Z ∩U) − Pr(Z) · Pr(U) has to be less or equal αPr(Z) · Pr(U) in absolute value
for some fixed α > 0 and all (Z, U). The parameter α hence controls the amount of
endogeneity of instruments. There are many ways how we may model the departure
from exogeneity, however this somewhat ad hoc way of relaxing strict exogeneity is
chosen so that the problem is still within linear programming framework and so that
the discretization is possible.

The model under the study is (10) with support restrictions (11). In addition,
instruments are not assumed to be strictly exogenous. The problem can be formulated
within the extended GH framework in a following way:

min(π) ∑i,j,k,l πijklcijkl (18)
s.t.

∑l πijkl = pijk, ∀i, j, k

∑i,j,k πijkl = νl, ∀l

∑i,j πijkl −∑i,j pijkνl ≤ α ∑i,j pijkνl, ∀k, l
−∑i,j πijkl + ∑i,j pijkνl ≤ α ∑i,j pijkνl, ∀k, l

πijkl ≥ 0, ∀i, j, k, l.

As in (2), probabilities of observed variables were generated according to (21), with Z
having support on {−0.75, 0, 0.75} with probabilities

(
1
3 , 1

3 , 1
3

)
.

Results

Results of the illustration are presented on figures 12 and 13. We can see how the
identified set gets larger as the departure from strict exogeneity increases.

4 Conclusion

A new method to obtain identified set as a simple extension of Galichon and Henry
identification strategy was proposed so that a broader class of problems can be solved.
A considerable advantage of the new method is its algorithmic structure, sharp bounds
of the identified set need not be derived from case to case, but efficient algorithms can
be employed to trace the identified set independently of the structure of the problem.
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Figure 12: Identified sets corresponding to different values of parameter α, the case with a
strong instrument. Darker areas stands for stronger exogenenity. Note that observed prob-
abilities together with the assumption of uniform U and support restrictions given by the
economic model do have some identifying power even if the instrument is completely en-
dogenous.
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Figure 13: Identified sets corresponding to different values of parameter α, case with weak
instrument. Darker areas stands for stronger exogenenity.
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Some existing identification results were replicated in a fairly straightforward
manner. Moreover, the new method allowed us to study the impact of relaxing the
strict exogeneity in non-linear model with discrete variables.

The main message is that if observed variables are discrete identification can be
attacked at the lowest level: by searching in the space of joint distribution functions
of observed and unobserved variables. This delivers great flexibility in studying the
identifying power of different sets of assumptions.

The proposed method also allows us to access local identification if weaker lo-
cal restrictions are made. The approach is no different than in the study of global
identification.

How to make this method operational in a continuous case, e.g. an analog of
condition (4) and how to do statistical inference, remain open questions. The iterative
subsampling scheme of Romano and Shaikh (2010) appears to be helpful. Further
research is warranted.
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A Proofs

A.1 Proof of Lemma 1

Proof. We have to show that there exists π1 : Y ×U 7→ [0, 1] satisfying

n

∑
i=1

∫
u∈U

π1(yi, u)1(yi ∈ G(u))du = 1, (C1)

∀i = 1, ..., n :
∫

u∈U
π1(yi, u)du = pi, (C2)

∀u ∈ U :
n

∑
i=1

π1(yi, u) = ν(u), (C3)

∀I ∈ I; ∀u ∈ U :

∣∣∣∣∣∑i∈I
π1(yi, u)−∑

i∈I
piν(u)

∣∣∣∣∣ ≤ α ∑
i∈I

piν(u). (C4)

∀i = 1, ..., n; ∀u ∈ U : π1(yi, u) ≥ 0 (C5)

if and only if there exists π2 : Y ×U∗ 7→ [0, 1] satisfying

n

∑
i=1

m

∑
j=1

π2(yi, u∗j )1(yi ∈ G(u∗j ))du = 1, (D1)

∀i = 1, ..., n :
m

∑
j=1

π2(yi, u∗j ) = pi, (D2)

∀j = 1, ..., m :
n

∑
i=1

π2(yi, u∗j ) = ν∗(u∗j ), (D3)

∀I ∈ I; ∀j = 1, ..., m :

∣∣∣∣∣∑i∈I
π2(yi, u∗j )−∑

i∈I
piν
∗(u∗j )

∣∣∣∣∣ ≤ α ∑
i∈I

piν
∗(u∗j ). (D4)

∀i = 1, ..., n; ∀j = 1, ..., m : π2(yi, u∗j ) ≥ 0 (D5)

"(⇒)" - Given π1, we will construct π2 according to

∀i = 1, ..., n; ∀j = 1, ..., m : π2(yi, u∗j ) =
∫
∆j

π1(yi, u)du, (Π2)

and this will ensure that {(C1),(C2),(C3M),(C4M),(C5)} implies {(D1),(D2),(D3M),(D4M),(D5)}
as shown below:
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n

∑
i=1

m

∑
j=1

π2(yi, u∗j )1(yi ∈ G(u∗j ))
(Π2)
=

n

∑
i=1

m

∑
j=1

∫
∆j

π1(yi, u)du1(yi ∈ G(u∗j ))
(PartU1)
=

(PartU1)
=

n

∑
i=1

m

∑
j=1

∫
∆j

π1(yi, u)1(yi ∈ G(u))du =
n

∑
i=1

∫
u∈U

π1(yi, u)1(yi ∈ G(u))du
(C1)
= 1,

∀i :
m

∑
j=1

π2(yi, u∗j )
(Π2)
=

m

∑
j=1

∫
∆j

π1(yi, u)du =
∫

u∈U

π1(yi, u)du
(C2)
= pi,

∀j :
n

∑
i=1

π2(yi, u∗j )
(Π2)
=

n

∑
i=1

∫
∆j

π1(yi, u)du =
∫
∆j

n

∑
i=1

π1(yi, u)du
(C3)
=
∫
∆j

ν(u)du
(P)
= ν∗(u∗j ),

∀j, ∀I :

∣∣∣∣∣∑i∈I
π2(yi, u∗j )−∑

i∈I
piν
∗(u∗j )

∣∣∣∣∣ (Π2),(P)
=

∣∣∣∣∣∣∣∑i∈I

∫
∆j

π1(yi, u)du−∑
i∈I

pi

∫
∆j

ν(u)du

∣∣∣∣∣∣∣ =
=

∣∣∣∣∣∣∣
∫
∆j

(
∑
i∈I

π1(yi, u)−∑
i∈I

piν(u)

)
du

∣∣∣∣∣∣∣
(C4)
≤

∣∣∣∣∣∣∣
∫
∆j

α ∑
i∈I

piν(u)du

∣∣∣∣∣∣∣ = α ∑
i∈I

piν
∗(u∗j ).

∀i, ∀j : π2(yi, u∗j )
(Π2)
=

∫
∆j

π1(yi, u)du
(C5)
≥
∫
∆j

0du = 0,

"(⇐)" - If we know π2 we obtain π1 using

∀i = 1, ..., n; ∀j = 1, ..., m; ∀u ∈ ∆j : π1(yi, u) = π2(yi, u∗j )
ν(u)

ν∗(u∗j )
, (Π1)

(note that (Π1) implies (Π2)) and we now show that {(D1),(D2),(D3M),(D4M),(D5)}
implies {(C1),(C2),(C3M),(C4M),(C5)}:
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n

∑
i=1

∫
u∈U

π1(yi, u)1(yi ∈ G(u))du =
n

∑
i=1

m

∑
j=1

∫
∆j

π1(yi, u)1(yi ∈ G(u))du
(PartU1)
=

(PartU1)
=

n

∑
i=1

m

∑
j=1

∫
∆j

π1(yi, u)du1(yi ∈ G(u∗j ))
(Π1)
=

n

∑
i=1

m

∑
j=1

π2(yi, u∗j )1(yi ∈ G(u∗j ))
(D1)
= 1,

∀i :
∫

u∈U

π1(yi, u)du =
m

∑
j=1

∫
∆j

π1(yi, u)du
(Π1)
=

m

∑
j=1

π2(yi, u∗j )
(D2)
= pi,

∀j, ∀u ∈ ∆j :
n

∑
i=1

π1(yi, u)
(Π1)
=

n

∑
i=1

π2(yi, u∗j )
ν(u)

ν∗(u∗j )
(D3)
= ν(u),

∀j, ∀I, ∀u ∈ ∆j :

∣∣∣∣∣∑i∈I
π1(yi, u)−∑

i∈I
piν(u)

∣∣∣∣∣ (Π1)
=

∣∣∣∣∣∑i∈I
π2(yi, u∗j )

ν(u)
ν∗(u∗j )

−∑
i∈I

pi
ν(u)

ν∗(u∗j )
ν∗(u∗j )

∣∣∣∣∣ =
=

∣∣∣∣∣ ν(u)
ν∗(u∗j )

(
∑
i∈I

π2(yi, u∗j )−∑
i∈I

piν
∗
j

)∣∣∣∣∣ (D4)
≤
∣∣∣∣∣α ∑

i∈I
piν(u)

∣∣∣∣∣ = α ∑
i∈I

piν(u),

∀i, ∀j, ∀u ∈ ∆j : π1(yi, uj)
(Π1)
= π2(yi, u∗j )

ν(u)
ν∗(u∗j )

(D5)
≥ 0,

A.2 Proof of Lemma 2

Proof. Similarly to the proof of Lemma 1, we have to show that there exists π1 :
Y ×U 7→ [0, 1] satisfying (C1),(C2),(C5) and

n

∑
i=1

∫
u∈U

π1(yi, u)φ(u)du = 0, (C3M)

∀I ∈ I; ∀u ∈ U :

∣∣∣∣∣∑i∈I
π1(yi, u)−∑

i∈I
pi

n

∑
i=1

π1(yi, u)

∣∣∣∣∣ ≤ α ∑
i∈I

pi

n

∑
i=1

π1(yi, u). (C4M)

if and only if there exists π2 : Y ×U∗ 7→ [0, 1] satisfying (D1),(D2),(D5) and

n

∑
i=1

m

∑
j=1

π2(yi, u∗j )φ(u
∗
j )du = 0, (D3M)

∀I ∈ I; ∀j = 1, ..., m :

∣∣∣∣∣∑i∈I
π2(yi, u∗j )−∑

i∈I
pi

n

∑
i=1

π2(yi, u∗j )

∣∣∣∣∣ ≤
≤ α ∑

i∈I
pi

n

∑
i=1

π2(yi, u∗j ). (D4M)
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"(⇒)" - Given π1, will construct π2 according to

∀i = 1, ..., n; ∀j = 1, ..., m : π2(yi, u∗j ) =
∫
∆j

π1(yi, u)du, (Π2)

and this will ensure that {(C1),(C2),(C3M),(C4M),(C5)} imply {(D1),(D2),(D3M),(D4M),(D5)}.
Because the partitioning of the U space using (PartU2) is finer than the one of (PartU1)
we get that {(C1),(C2),(C5)} imply {(D1),(D2),(D5)} immediately using the proof of
Lemma 1. It is therefore sufficient to show that {(C3M),(C4M)} imply {(D3M),(D4M)}:

n

∑
i=1

m

∑
j=1

π2(yi, u∗j )φ(u
∗
j )

(Π2)
=

n

∑
i=1

m

∑
j=1

∫
∆j

π1(yi, u)du φ(u∗j ) =

=
n

∑
i=1

m

∑
j=1

∫
∆j

π1(yi, u)φ(u∗)du
(PartU2)
=

n

∑
i=1

m

∑
j=1

∫
∆j

π1(yi, u)φ(u)du =

=
n

∑
i=1

∫
u∈U

π1(yi, u)φ(u)du
(C3M)
= 0,

∀I ∈ I; ∀j = 1, ..., m :

∣∣∣∣∣∑i∈I
π2(yi, u∗j )−∑

i∈I
pi

n

∑
i=1

π2(yi, u∗j )

∣∣∣∣∣ (Π2)
=

(Π2)
=

∣∣∣∣∣∣∣∑i∈I

∫
∆j

π1(yi, u)du−∑
i∈I

pi

n

∑
i=1

∫
∆j

π1(yi, u)du

∣∣∣∣∣∣∣ =
=

∣∣∣∣∣∣∣
∫
∆j

(
∑
i∈I

π1(yi, u)−∑
i∈I

pi

n

∑
i=1

π1(yi, u)

)
du

∣∣∣∣∣∣∣
(C4M),(Π2)
≤

(C4M),(Π2)
≤

∣∣∣∣∣α ∑
i∈I

pi

n

∑
i=1

π2(yi, u∗j )

∣∣∣∣∣ = α ∑
i∈I

pi

n

∑
i=1

π2(yi, u∗j ).

"(⇐)" - Knowing π2 we obtain π1 using

∀i = 1, ..., n; ∀j = 1, ..., m; ∀u ∈ ∆j : π1(yi, u) = π2(yi, u∗j )
γ(u)∫

u∈∆j

γ(u)du
, (Π1)

where γ is an arbitrary strictly positive probability density function. It is now suf-
ficient to show that {(D3M),(D4M) (D5)} imply {(C3M),(C4M),(C5)} because the proof
of Lemma 1 reveals that {(C1),(C2)} imply {(D1),(D2)} and (PartU2) provides a finer
discretization of U than (PartU1) does:
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n

∑
i=1

∫
u∈U

π1(yi, u)φ(u)du =
n

∑
i=1

m

∑
j=1

∫
∆j

π1(yi, u)φ(u)du
(PartU2)
=

(PartU2)
=

n

∑
i=1

m

∑
j=1

∫
∆j

π1(yi, u)φ(u∗j )du =
n

∑
i=1

m

∑
j=1

∫
∆j

π1(yi, u)du φ(u∗j )
(Π1)
=

(Π1)
=

n

∑
i=1

m

∑
j=1

π2(yi, u∗j )φ(u
∗
j )

(D3M)
= 0,

∀j, ∀I, ∀u ∈ ∆j :

∣∣∣∣∣∑i∈I
π1(yi, u)−∑

i∈I
pi

n

∑
i=1

π1(yi, u)

∣∣∣∣∣ (Π1)
=

(Π1)
=

∣∣∣∣∣∣∣∣∑i∈I
π2(yi, u∗j )

γ(u)∫
u∈∆j

γ(u)du
−∑

i∈I
pi

n

∑
i=1

π2(yi, u∗j )
γ(u)∫

u∈∆j

γ(u)du

∣∣∣∣∣∣∣∣ =

=

∣∣∣∣∣∣∣∣
γ(u)∫

u∈∆j

γ(u)du

(
∑
i∈I

π2(yi, u∗j )−∑
i∈I

pi

n

∑
i=1

π2(yi, u∗j )

)∣∣∣∣∣∣∣∣
(D4),(Π1)
≤

(D4),(Π1)
≤

∣∣∣∣∣α ∑
i∈I

pi

n

∑
i=1

π1(yi, u)

∣∣∣∣∣ = α ∑
i∈I

pi

n

∑
i=1

π1(yi, u),

∀i, ∀j, ∀u ∈ ∆j : π1(yi, u)
(Π1)
= π2(yi, u∗j )

γ(u)∫
u∈∆j

γ(u)du

(D5)
≥ 0,

B Technical Details on Presented Examples

B.1 Example 1

B.1.1 Chesher’s approach

In order to present the identification result from Chesher (2009), the basic definitions
have to be introduced. The notation that is being used is different to the one of
Galichon and Henry that is employed in this paper.

• A model M is defined as (10) with U ∼ Uni f (0, 1) and U ⊥⊥ Z for all Z ∈ Z.
• A structure S ≡ {t, FUX|Z} is a pair of a threshold-crossing function t and a

cumulative distribution function of the conditional distribution of U and X given
Z.

• A structure S is said to be admitted by a model M if FUX|Z respects the inde-
pendence property, that is FU(u|z) ≡ FUX|Z(u, x̄|z) = u for all u ∈ (0, 1) and all
z ∈ Z, where x̄ is the upper bound of X.
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• A structure S generates the joint distribution of Y and X given Z if FYX|Z(0, x|z) =
FUX|Z(t(x), x|z).

• Two structures S∗ ≡ {t∗, F∗UX|Z} and S0 ≡ {t0, F0
UX|Z} are said to be observa-

tionally equivalent if they generate the same distribution of Y and X given
Z for all z ∈ Z, that is if F∗YX|Z(0, x|z) ≡ F∗UX|Z(t

∗(x), x|z) = F0
YX|Z(0, x|z) ≡

F0
UX|Z(t

0(x), x|z) for all z ∈ Z and for all x ∈ X .

Theorem 1 from Chesher (2009) states that having a structure S0 admitted by the
model M that generates the conditional distribution of Y and X given Z with cumula-
tive distribution function F0

YX|Z and if this threshold-crossing function t is in structure

S admitted by model M observationally equivalent to S0, then t satisfies

c0l(u, z; p) = Pr0[Y = 0∩ t(X) < u|Z = z] < u, ∀u ∈ (0, 1), ∀z ∈ Z (19)
c0u(u, z; p) = 1− Pr0[Y = 1∩ u ≤ t(X)|Z = z] ≥ u, ∀u ∈ (0, 1), ∀z ∈ Z. (20)

where Pr0 states that probabilities were calculated using the measure that was gener-
ated by S0, that is using F0

YX|Z and l and u stand for lower and upper bound respec-
tively.

Under continuity of X the converse is also true, this is equal to say that the set
of all functions p satisfying above set of inequalities is sharply defined identified set. In
Chesher (2010) this theorem is proven even for a more general setup. It is important
to note that the proof is constructive, so that for a given threshold-crossing function
t, suitable distribution function FUX|Z is constructed such that {t, FUX|Z} is admitted
by the model M and generates FYX|Z that is observed in the data. This highlights
the link to GH setup since there the aim is to find the joint probability distribution
that satisfies the independence restriction, has correct marginals and places all the
probability on those combinations of variables that are compatible with the data.

B.1.2 Illustration: Discrete endogenous variable

Construction of true data-generating process

The following example is taken from Chesher (2010), suppose that both Y and X are
binary: Y ≡ 1(Y∗ ≥ 0) and X ≡ 1(X∗ ≥ 0), where Y∗ and X∗ were generated in the
following way:

Y∗ = θ0 + θ1X + W, X∗ = b0 + b1Z + V[
W
V

]
⊥⊥ Z,

[
W
V

]
∼ N

([
0
0

]
,
[

1 r
r 1

])
(21)

with parameters
(θ0, θ1, b0, b1, r) = (0, 0.5, 0, 1,−0.25). (22)

and the instrument Z takes values in Z = {−0.75, 1, 0.75}.
The econometrician however does not know how the data were generated. She

only assumes (10) and U ⊥⊥ Z, U ∼ Uni f (0, 1) and t(X) = Φ(−θ0− θ1X) and observes
the distribution of observable variables pijk.22 Even though it is impossible to recover

22Observed probabilities pijk were obtain using Matlab function mvtnorm.
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the true value of θ = (0, 0.5) exactly, it is possible to at least create informative bounds
on it.

Since X threshold-crossing function t attains only two values t(0) = Φ(−θ0) = 0.5
and t(1) = Φ(−θ0 − θ1) = 0.308.

B.1.3 Illustration: Continuous endogenous variable

Construction of true data-generating process

Suppose that the economic model is described by (10) and the data generating process
by (21) with the following set of parameters

(θ0, θ1, b0, b1, swv, svv) = (0,−1, 0, 0.3, 0.5, 1). (23)

as before with the only difference that X is not binary anymore (X = X∗).
The distribution of observable variables (Y∗, X|Z = z) (Y∗ and X given Z = z) is

given by N(µ(z), Σ), where

µ(z) =
[

θ0 + θ1b0 + θ1b1z
b0 + b1z

]
Σ =

[
1 + 2θ1swv + θ2

1svv swv + θ1svv
s + wv + θ1svv svv

]
Details of the simulations are provided here. Because of the continuity of X the

unobservable U was discretized as equidistant point masses on [0, 1]. The distribution
of observables is given by

pijk = Pr(Y = yi ∩ X = xj ∩ Z = zk) = Pr(Y = yi ∩ X = xj|Z = zk)Pr(Z = zk).

It is known that (Y∗, X|Z) ∼ N(µ(z), Σ) and a suitable discretization of X is needed.
It is easy to show that the density of (Y∗|X = x, Z = z) is

N

µ(z)1 +
Σ21

Σ22
(x− µ(z)2),

1−

√
Σ2

21
Σ11Σ22

Σ11

 .

Integrating corresponding probability density function at (−∞,0) gives us Pr(Y =
0|X = x, Z = z). The distribution of X given Z = z is N(b0 + b1z, svv), but now the
question is how to discretize the support of X which is R. If the number of nods
is nx then one suggestion would be to set the z to its mean value, that is to 0, and
set values of discretized support of X to nx equidistant quantiles.23 Eventhough this
discretization seems natural it brings some degree of arbitrariness to the problem.

Finally, taking together all the pieces yields

pijk = Pr(Y = yi|X = xj, Z = zk)Pr(X = xj|Z = zk)Pr(Z = zk),

where all quantities on the right-hand side are known.

230% and 100% quantiles are excluded.
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B.2 Example 2

B.2.1 Illustration

True data-generating process

For the illustration (ε1, ε2) are assumed to be N(0, I2). This assumption together with
(13) and (14) generate distribution of Y and D given X and Z. Support of Z is assumed
to be {−1, 1} and support of X is either {0} or {−2,−1, 0, 1, 2}, (X, Z) are assumed
to be uniformly distributed.24

B.3 Example 3

B.3.1 Balke and Pearl’s Approach

Balke and Pearl (1997) made use of the fact that these restrictions impose a following
decomposition on the joint distribution of (Y, D, Z, U):

Pr(Y, D, Z, U) = Pr(Y|D, U)Pr(D|Z, U)Pr(Z)Pr(U). (24)

There exist four different functions from Z to D and four different functions from D to
Y hence 16 different types of individuals that we can consider. Hence one can think of
U having a discrete support with 16 points, each point represents a pair of functions
one from Z to D and second from D to Y. For instance one type u may be persons
who always accept treatment and who do not have positive outcome irrespective of
the treatment. Bounds on (15) are found using linear program searching through the
space of distributions of the types (U) subject to the joint distribution to be compatible
with observed data Pr(y, d|z). Full setup with discussions can be found in Balke and
Pearl (1997, 1994).

B.4 Example 4

B.4.1 Komarova’s Approach

Following Manski and Thompson (1986)

Pr(Y = 1|X = x) = 1− Pr(U < −xβ|X = x)

together with zero median restriction (17) implies

Pr(Y = 1|X = x) ≥ 0.5 ⇔ xβ ≥ 0. (25)

Therefore bounds on parameter vector β are obtained as an intersection of linear
half spaces. In Komarova (2009) recursive procedure is proposed that translates this
set of linear inequalities into bounds on parameters.

24As in example 1, the distribution of exogenous variables per se does not have any identifying
power. It is added purely for the simplicity of the exposition.
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C Implementation issues

C.1 Extended GH framework

Following routines were used and compared in order to solve linear program (12).

• linprog25 - Matlab built in function from Optimization Toolbox. Interior point
method was superior to simplex method because of the computational time.
Since the objective value is not minimized to exact zeros, certain threshold had
to be employed. Natural choice is the tolerance level of the optimization routine
(10−8 for nx = nu = 40 was used). Results for the two approaches were identical.
• GNU Linear Programming Kit (GLPK) - Modified simplex method from Matlab

MEX interface for the GLPK library26. Significantly faster than linprog with
similar results.

Linear program is an old and well understood problem however if the discretization
of X and U is large then the matrix that encodes the restrictions for the joint distribu-
tion27 can reach the limits of Matlab’s largest array that can be created. For instance if
the sizes of supports are nx = nu = 40 together with ny = 2 and nz = 10, then the joint
probability πijkl has 32000 elements. So that the matrix that carries the information
about restrictions on πijkl will have 32000 columns.

25http://www.mathworks.com/help/toolbox/optim/ug/linprog.html
26http://glpkmex.sourceforge.net/
27this is a 4-dimensional array πijkl stacked into a vector
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