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Abstract

We investigate the effect of competition on quality in regulated markets (e.g., health care,

higher education, public utilities) taking a differential game approach, in which quality is

a stock variable. Using a Hotelling framework, we derive the open-loop solution (providers

commit to an optimal investment plan at the initial period) and the closed-loop solution

(providers move investments in response to the dynamics of the states). If the marginal pro-

vision cost is constant, the open-loop and closed-loop solutions coincide, implying that static

models are robust to a dynamic specification. If the marginal provision cost is increasing,

investment and quality are lower in the closed-loop solution: in fact, quality drops to the

minimum level in steady state, implying that quality competition is effectively eliminated. In

this case, static models tend to exaggerate the positive effect of competition on quality. Our

results can explain the mixed empirical evidence on competition and quality for regulated

markets.
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1 Introduction

Quality is a major concern in many regulated markets, like health care, education and public

utilities. In recent years, many highly regulated sectors have been subject to reforms introducing

competition, at least along some dimensions. For example, in the health care sector, the com-

bination of prospective payment systems and hospital choice aims at giving hospitals incentives

to attract patients (and thus payments) by improving their quality. Similarly, in the (higher)

education sector, school choice combined with payments based on the number of students, is

perceived to give universities and other educational institutions incentives to compete in terms

of (teaching/research) quality in order to attract students and, in turn, revenues.

Most of the existing theoretical literature on quality competition under price regulation re-

ports a positive relationship between competition — measured either as a switch from monopoly

to (imperfect) competition or as an increase in the degree of competition intensity — and quality

(see, e.g., Ma and Burgess, 1993; Wolinsky, 1997; Brekke et al., 2006; Matsumura and Mat-

sushima, 2007). Similar predictions are obtained in the health care literature (see, e.g., Calem

and Rizzo, 1995; Gravelle, 1999; Lyon, 1999; Gravelle and Masiero, 2000; Beitia, 2003; Nuscheler,

2003; Brekke et al., 2007; Karlsson, 2007).

The empirical evidence seems, however, to be more ambiguous. For example, regarding the

effect of competition on quality in the health care sector (with fixed prices), Kessler and McClel-

lan (2000) and Tay (2003) find a positive effect, Gowrisankaran and Town (2003) find a negative

effect, Shen (2003) finds mixed effects, while Shortell and Hughes (1988) and Mukamel et al.

(2001) find no effects.1 ,2 In the present paper we revisit the modelling of quality competition in

order to shed some light on the apparent divergence between theory and evidence.

In most of the theoretical literature an important assumption is that quality can be adjusted

instantaneously and permanently (at some costs). This is obviously a simplifying assumption

that may be restrictive. A provider who wants to increase quality will have to invest in it.

1See Gaynor (2006) for a survey of theoretical and empirical literature on the relationship between hospital
competition and quality. See Lambertini (2006) for theoretical analyses of investment for quality in industrial
organization.

2For empirical studies of competition and quality in the education sector, see, e.g., Dee (1998), Epple and
Romano (1998) and Hoxby (2000).
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For example, in the health care sector a hospital will have to train existing doctor, hire more

qualified doctors, buy new high-tech equipment and so on. Thus, there might be potentially

important implications of the dynamic nature of quality investments that are ignored in a static

analysis.

We extend the above mentioned studies by modelling quality as a stock and by adopting a

dynamic approach. We develop a model of competition within a Hotelling framework, with two

horizontally differentiated providers that potentially differ also with respect to the quality of the

good they provide. We assume that quality is a stock that can be increased only if the investment

in quality is higher than its deterioration rate. Modelling quality as a stock introduces a dynamic

element into the analysis, which turns the problem into a capital accumulation game (Dockner

et al., 2000).

We use a differential-game approach to derive the equilibrium quality, under two different

behaviour rules followed by providers: in the first setting, providers decide their optimal dynamic

plans at the initial period and then stick to it forever (open-loop solution); in the second setting,

providers do not commit to an optimal path and set their controls at any time in response to

the current value of states (feedback closed-loop solution). The first solution concept might be

appropriate when providers can commit to investment plans and stick to it for long periods of

time. The second one is appropriate when providers do not or cannot commit to investment

plans, but rather observe quality in each period and base their investments on this information.

We find that if the marginal cost of provision is constant, the open-loop and closed-loop

solutions coincide: investment and quality are identical under the two solution concepts. This

result holds for a general specification of the cost function (cost of quality is either zero, linear

or quadratic in quality; investment and quality are either substitutes or complements in costs).

We find, as is intuitive, that if the price is above marginal cost, a higher regulated price or

lower travel costs (i.e., more competition) increase investment, and thus quality, in steady state.

Cost complementarity (substitutability) between investment and quality will increase (decrease)

the steady state levels of both. A higher time preference discount rate reduces quality and

investment under weak regularity conditions, while a higher depreciation rate reduces quality
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but has an indeterminate effect on investment.

Similar results are obtained under the open-loop solution when we assume that the marginal

cost of provision is increasing. However, in contrast to the case with constant marginal cost,

investment and quality are lower under the closed-loop solution than under the open-loop solu-

tion. In fact, we show that quality drops to the minimum level under the closed-loop solution.

Therefore, our model predicts that when (i) quality investment is costly, (ii) the marginal cost

is increasing and (iii) providers do not commit to investment plans, then the beneficial effects

from competition in terms of higher quality are lower than expected from existing theoretical

literature. Indeed, under these conditions, quality competition is effectively eliminated in steady

state.

The intuition for this result is related to the fact that, when the marginal cost of provision is

increasing, quality investments are strategic complements. In a static setting, this yields strong

incentives for quality competition. However, in a dynamic setting, if the players use closed-loop

investment rules, lower quality investment by one provider will induce a future reduction in

quality investment by the other provider. Thus, due to these strategic dynamics, the players are

able to obtain a more collusive outcome in steady state, compared with the open-loop solution

or with the solution of a corresponding one-shot game. From the viewpoint of each player, the

instantaneous demand loss due to lower quality investments is weighed against the future gains

due to the strategic response — lower investment — by the competitor. With an infinite time

horizon, as long as the players value future profits, the latter consideration dominates and the

closed-loop solution predicts a minimum level of quality in steady state.

The crucial assumption for the above described dynamics is that the marginal cost of pro-

vision is increasing. If, on the other hand, marginal production costs are constant, there is no

longer any strategic interaction between the players in terms of quality investments, since a fixed

price and constant marginal costs imply that marginal revenue is also constant. This explains

why the open- and closed-loop solutions coincide in this particular case. Even if the players are

able to update their investment plans according to the evolution of quality states, the absence

of strategic interaction implies that the each player’s optimal investment rule does not depend
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on the choices made by the other player.

In sum, it is clear that our results based on a dynamic analysis partly challenge — in some

cases considerably so — the received theoretical literature on competition and quality based on

static models, and we believe that our analysis potentially helps explaining some ambiguous

evidence. It should also be noted that our results are in contrast with the results obtained

within capital accumulation models with a Cournot framework (Dockner, 1992; Dockner et al.,

2000). In these models, the providers compete a la Cournot but face capacity constraints that

can be relaxed by capital accumulation through investment. It turns out that the investment

under the closed-loop solution is in this case higher than under the open-loop one: the more

intense competition under the closed-loop solution generates an additional incentive to invest.

In contrast, within the regulated markets described in our model, the investment in quality

under the closed-loop solution is lower than under the open-loop one.

As previously indicated, our analysis has obvious relevance for health care and education

markets, which are heavily regulated in most countries. In hospital markets that are open to

free patient choice, hospitals often face fixed treatment prices — usually paid by a third-party

payer — and compete for patients in terms of quality of care. With respect to education markets,

in many countries universities are predominantly funded by a third-party payer according to

student numbers. With a limited possibility of using tuition fees — which are either prohibited

or regulated in most European countries — universities have to compete for students in terms of

the educational quality they offer (see Brekke et al., 2006, for further discussion). However, the

model can also be interpreted in the context of non-price competition in public utilities industries

(see Wolinsky, 1997, for examples and discussion). For this particular interpretation, notice that

it does not matter, analytically, whether the price of the good is paid by the consumer or by

a third-party payer, as long as prices are fixed (regulated). Finally, the model might also be

interpreted in the context of pharmaceutical markets. In most countries prices of prescription

drugs are regulated and pharmaceutical companies use a considerable amount of resources on

marketing in order to capture market shares. Although quality competition is not directly

relevant in such markets, drug marketing and quality investments share the same essential
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feature, namely to increase consumers’ willingness-to-pay for the good.3 Thus, it is possible to

reinterpret the quality variable in our model as a marketing variable.

The rest of the paper is organised as follows. The main assumptions of the model are

presented in Section 2. Section 3 derives and characterises the equilibrium quality under the

open-loop solution, while Section 4 derives and characterises the feedback closed-loop solution.

Section 5 concludes the paper.

2 Model

In order to analyse the impact of competition on quality, we use a Hotelling framework (Hotelling,

1929). For the sake of concreteness, we will refer to the different variables and parameters of

the model in terms of a health care market.4

Consider a market for medical treatment with two hospitals located at either end of the

unit line S = [0, 1]. On this line segment there is a uniform distribution of patients, with total

mass normalised to 1. We assume unit demand, where each patient needs — and demands — one

hospital treatment in order to be cured. Assuming full market coverage, the decision patients

make is to choose which provider to demand treatment from. The utility of a patient who is

located at x ∈ S and seeking treatment at hospital i, located at zi, is given by5

U (x, zi) = v + kqi − τ |x− zi| , (1)

where v is the gross valuation of medical treatment, qi ≥ q is the quality at hospital i, k is

a parameter measuring the (marginal) utility of quality, and τ is a travelling cost parameter.6

3 In markets for prescription drugs, marketing activities are also directed towards prescribing physicians in an
attempt to increase their "willingness-to-prescribe" (see, e.g., Brekke and Kuhn, 2006; Königbauer, 2007).

4We could also specify the model for the market of higher education by replacing hospitals with universities
and patients with students. For similar models applied to higher education, see, e.g., Del Rey (2001), De Fraja
and Iossa (2002) and De Fraja and Landeras (2006).

5There is strong empirical evidence showing that distance and quality are main predictors of patients’ choice
of hospital, see, e.g., Kessler and McClellan (2000) and Tay (2003).

6We refer to distance in physical terms. However, one could also interpret the horizontal dimension in a disease
space, where the location of a patient is associated with the disease she suffers from, and the two hospitals are
differentiated with respect to the disease they are best able to cure, reflecting hospital specialisation or "service
mix" (see, e.g., Calem and Rizzo, 1995, and Brekke et al., 2007).
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The lower bound q on hospital quality represents the minimum treatment quality hospitals are

allowed to offer, implying that q < q can be interpreted as malpractice. For simplicity, we set

q = 0. Moreover, we normalise the marginal utility of quality to one, i.e., k = 1, without of loss of

generality. This implies that τ can be interpreted as the marginal disutility of travelling relative

to quality. Thus, a low (high) τ means that quality is of relatively more (less) importance to

the patient than travelling distance.

Since the distance between hospitals is equal to one, the patient who is indifferent between

seeking treatment at hospital i and hospital j is located at xDi , given by

v + τxDi + qi = v − τ
¡
1− xDi

¢
+ qj , (2)

yielding

xDi =
1

2
+

qi − qj
2τ

, (3)

which is also the demand for medical treatment at hospital i, given the assumptions of uniform

patient distribution (with mass 1) and full market coverage. The provider with a higher quality

gets a market share which is more than half. Notice how lower travelling costs make it less

costly for patients to switch between hospitals, increasing the demand responsiveness to changes

in quality.

Most of the literature assumes that quality can be increased instantaneously and permanently

(at some costs). This is, obviously, a simplifying assumption. Quality is a stock which increases

when the investment in quality is larger than the depreciation rate of the quality stock. In

the hospital context, there are many examples of quality-enhancing investments. For instance,

the purchase of MR-machines and CT-scanners improve diagnosing, which in turn will increase

the treatment quality. Hospitals invest also in human capital in order to improve quality: they

spend money on training of their medical staff, they hire highly skilled physicians (specialists)

and nurses, etc. Finally, hospitals invest in facilities to improve, say, the quality of theaters,

rooms, catering, etc.7

7Some investments might not just influence quality but also capacity. For instance, a new MR-machine might
improve treatment quality, but also the number of patients that can be treated. Here, we restrict attention to
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Define I(t) as the investment in quality at time t, and δ as the depreciation rate of the quality

stock. Analytically, the law of motion of quality is given by:

dqi(t)

dt
≡ .
qi(t) = Ii(t)− δqi(t), (4)

where δ is the depreciation rate. Such an accumulation law, à la Solow, is widely used in

industrial organization theoretical models to describe capacity accumulation (see Dockner et al.,

2000, or Cellini and Lambertini, 2003, for literature reviews).

We assume that hospitals maximise profits.8 The instantaneous objective function of hospital

i is assumed to be given by

πi (t) = T + pxDi (qi (t) , qj (t))−C
¡
Ii (t) , x

D
i (qi (t) , qj (t)) , qi (t)

¢
− F, (5)

where p is a regulated price per treatment (patient) and T is a potential lump-sum transfer

received from a third-party payer (insurer).9 ,10

On the cost-side, each hospital i faces a fixed cost F and variable cost C(·) that depends

on the quality investment Ii and supply of xDi treatments at quality qi. We assume that C(·)

is increasing in the investment, CIi > 0, as investment in quality is obviously costly, at an

increasing rate, CIiIi > 0. We also assume that C(·) is weakly increasing in quality, Cqi > 0.

The cost function is also increasing in the number of patients treated, Cxi > 0. Below we

will distinguish the cases when the cost of treatment is linear (Cxixi = 0) and when it is convex

(Cxixi > 0).11 We will show that this assumption has important implications for the results.

pure quality investments. Capacity accumulation has been analysed in detail in several other papers (Dockner et
al, 2000).

8At first glance, this assumption may seem inappropriate for public and non-profit hospitals due to their
constraints on profit distribution. However, hospitals may add to their reserves the financial surplus obtained.
Alternatively, managers may spend the surplus to pursue other objectives: they might increase the physician
staff, the range of services, or even increase managerial perks (see e.g., Dranove and White, 1994, De Fraja, 2000,
Chalkley and Malcomson, 1998ab). Importantly, the empirical evidence shows little support for different behav-
iour of for-profit and not-for-profit hospitals (Sloan, 2000), suggesting that profit maximisation is a reasonable
assumption.

9Alternatively, we could have assumed that the payments are collected directly from the consumers, as for
public utilities. It is, however, straightforward to show that this will not change our results.
10This payment system is also highly relevant for higher education, especially for European universities and

colleges, which receive a fixed payment per student as well as a block grant (see e.g., Kaiser et al., 1992).
11A convex variable cost function is normally supported by the evidence suggesting that economies of scale
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We also make the simplifying assumption that the cost function is separable in the quantity xi,

implying that Cxiqi = CxiIi = 0.
12 ,13

In contrast, we assume that CIiqi ≷ 0. If CIiqi < 0, then quality and investment are comple-

ments and a higher quality reduces the marginal cost of investment. If CIiqi > 0, then quality

and investment are substitutes and a higher quality increases the marginal cost of investment.

Defining ρ as the (constant) preference discount rate, the hospital objective function over

the infinite time horizon is
+∞Z
0

π (t) e−ρtdt. (6)

In reality, providers may not have an infinite-time horizon, but may have reasonably long finite

horizons. If the optimal path does not differ significantly from the solution with a very large but

finite horizon, the convenience of working with an infinite-horizon model may be worth the loss

of realism (see Léonard and van Long, 1992, p. 285). Also, when doctors or managers retire,

they may well be replaced by other doctors and managers with similar utility functions, thus

generating an infinite-time horizon.

In this type of dynamic models with strategic interactions — i.e., differential games — there

are two main solution concepts: a) open-loop solution, where each hospital knows the initial

state of the system and then nothing else, i.e., each hospital knows the initial quality of the

other provider, but not in the following periods; b) closed-loop solution, where each hospital

knows the initial state of the system, but also later knows the state variable values, i.e., each

hospital knows the quality of the other provider, not only in the initial state, but also in all

of the subsequent periods. Within the closed-loop solutions, further distinctions can be made:

if one assumes that players take into account only the initial state and the current state, the

"memoryless" closed-loop solution is obtained; if players take into account the whole history of

states, the "perfect state" closed-loop is obtained; finally, if players in each instant take into

are quite rapidly exhausted in the hospital sector (see, e.g., Ferguson et al., 1999, and Folland et al., 2004, for
literature surveys).
12The assumption of cost separability between quality and quantity is widely used in the related literature

(see, e.g., Economides, 1989, 1993; Calem and Rizzo, 1995; Lyon, 1999; Gravelle and Masiero, 2000; Barros and
Martinez-Giralt, 2002).
13The assumption of separability between investment and quantity is done to focus on quality dynamics rather

than capacity dynamics. As mentioned above, we restrict attention to investments that affect quality only.
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account the current value of states (i.e., the whole past history is summarized by the current

value of states), the feedback rule is obtained. Typically, the feedback closed-loop solution is

obtained based on the Bellman equation.

In order to establish which one is the most appropriate solution concept, it is essential to

evaluate the relevant information set used by players when they take their decisions. In the

cases in which the collection of information over time is difficult, it is reasonable to model the

choice according to the open-loop rule; on the opposite, when players can observe the current

state of the world and they behave accordingly, the closed rules are more appropriate. Clearly,

closed-loop solutions are more appealing, but solving for closed-loop is more difficult. However,

in some cases — and health care markets can be a good example — players might have to commit

to investment plans and stick to them for long periods of time. In this case, the open-loop

solution might be the relevant one. Nevertheless, there is a wide range of problems where the

two solutions coincide.14 Below, we compare the closed-loop and open-loop solutions. Section 3

provides the open-loop solution, while Section 4 provides the closed-loop one, under the specific

rule of feedback behaviour.

3 Open-loop solution

Provider i’s maximisation problem is given by

Maximise

+∞Z
0

πi (t) e
−ρtdt, (7)

subject to
.
qi(t) = Ii(t)− δqi(t), (8)

.
qj(t) = Ij(t)− δqj(t), (9)

qi(0) = qi0 > 0, (10)

qj(0) = qj0 > 0. (11)

14Games where this coincidence arises are presented in Clemhout and Wan (1974); Reinganum (1982);
Mehlmann and Willing (1983); Dockner et al. (1985). See also Mehlmann (1988), Fershtman et al. (1992),
Dockner et al. (2000, ch. 7) for review.
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Let μi(t) and μj(t) be the current value co-state variables associated with the two state equations.

The current-value Hamiltonian is:15

Hi = T + pxDi (qi, qj)− C(Ii, x
D
i (qi, qj) , qi)− F + μi (Ii − δqi) + μj (Ij − δqj) , (12)

The solution is given by (a) ∂Hi/∂Ii = 0 , (b)
.
μi = ρμi − ∂Hi/∂qi, (c) ∂Hi/∂μi = 0, (d)

.
μj = ρμj − ∂Hi/∂qj , or more extensively:

μi = CIi , (13)

.
μi = − 1

2τ
(p− Cxi) + Cqi + μi (δ + ρ) , (14)

.
qi = Ii − δqi, (15)

.
μj =

p

2τ
+ μj (δ + ρ) , (16)

to be considered along with the transversality condition limt→+∞ μi(t)qi(t) = 0. The second

order conditions are satisfied if the Hamiltonian is concave in the control and state variables

(Léonard and Van Long, 1992).16

Totally differentiating the first equation with respect to time we obtain
.
μi = CIiIi

.
Ii+CIiqi

.
qi

or, after substitution,
.
μi = CIiIi

.
Ii +CIiqi (Ii − δqi). Substituting into the second equation (and

using μi = CIi), we obtain:

.
Ii =

− 1
2τ (p− Cxi) + Cqi + (δ + ρ)CIi − CIiqi (Ii − δqi)

CIiIi

, (17)

which, together with
.
qi = Ii − δqi, describe the dynamics of the equilibrium.

Totally differentiating the locus of investment,
·
Ii = 0, and rearranging yields

∂Ii
∂qi
| .
Ii=0

= −
¡
1
2τ

¢2
(Cxixi) + Cqiqi + (2δ + ρ)CIiqi − CIiqiqi (Ii − δqi)

(δ + ρ)CIiIi − CIiIiqi (Ii − δqi)
. (18)

15The indication of time (t) is omitted, to ease notation.
16This is the case since (a) HIiIi = −CIiIi < 0; (b) Hqiqi = −Cqiqi − [1/ (2τ)

2]Cxixi < 0; (c) HIiIiHqiqi >
(HIiqi)

2 or CIiIi Cqiqi + [1/ (2τ)
2]Cxixi > C2

Iiqi
.
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Sufficient but not necessary conditions for the locus of investment,
·
Ii = 0, to be negatively

sloped are CIiqi > 0 and CIiqiqi = CIiIiqi = 0. The second locus is
.
qi = 0, or Ii = δqi, with

∂Ii
∂qi

> 0.

The dynamics of investment and quality can be represented in matrix form as follows:

⎡⎢⎣ ·
I(t)

·
q(t)

⎤⎥⎦ =

⎡⎢⎢⎢⎢⎢⎣
(δ + ρ)− CIiIiqi

CIiIi
(Ii − δqi)

1

⎡⎢⎢⎢⎣
¡
1
2τ

¢2
(Cxixi) + (2δ + ρ)CIiqi

+Cqiqi − CIiqiqi (Ii − δqi)

⎤⎥⎥⎥⎦
CIiIi

−δ

⎤⎥⎥⎥⎥⎥⎦
⎡⎢⎣ I(t)

q(t)

⎤⎥⎦

+

⎡⎢⎣ − (p− c) /(2γτ)

0

⎤⎥⎦ , (19)

where the 2-by-2 matrix is the Jacobian J of the dynamic system. As for the dynamic properties

of the system, suppose that this is evaluated around the steady state, or alternatively that

third-order derivatives of the cost function are set to zero: CIiIiqi = CIiqiqi = 0. Then, it

is immediate to check that the Jacobian matrix J in (19) is such that tr(J) = ρ > 0, and

det(J) = −δ(δ + ρ) − (
1
2τ )

2
(Cxixi)+Cqiqi+(2δ+ρ)CIiqi

CIiIi
< 0, implying that the equilibrium is stable

in the saddle sense. The solution is described in Figure 1.

[Figure 1 about here]

Let qs be the steady state level of quality and suppose we start off equilibrium, at level

q0 < qs. The solution is then characterised by a period of increasing quality and decreasing

investment in quality. Suppose instead that q0 > qs. In this case, we should observe a period of

decreasing quality and increasing investment. Notice how off equilibrium, investment and quality

move over time in opposite directions while in the steady state investment is proportional to

quality (Ii = δqi).

In Figure 1 we have assumed the investment locus,
·
Ii = 0, to be negatively sloped , implying

that the equilibrium is a saddle point. The equilibrium can still be a saddle point also when
·
Ii = 0 is positively sloped, as long as it is not too positively sloped. This case arises, for example,
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when the marginal cost of quality and the marginal cost of provision are constant but quality

and investment are substitutes, which implies CIiqi < 0. The equilibrium is still a saddle point

if det(J) = −δ(δ + ρ)− (2δ+ρ)CIiqi
CIiIi

< 0.17

Figure 2 shows some comparative dynamics. Suppose the system is in an initial steady state.

Figure 2 shows the effect of an unexpected increase in price or reduction in travel costs (more

competition) on investment and quality. The locus
·
Ii = 0 shifts upwards. The shock gener-

ates a positive jump in investment (overshooting), and it is followed by a period of decreasing

investment and increasing quality.

[Figure 2 about here]

In the following, we will consider two special cases: constant and increasing marginal cost

of treatment. Later on, the specification of the treatment cost function will be shown to have

crucial implications with respect to the comparison of the open-loop and closed-loop solutions.

3.1 Constant marginal treatment cost

Suppose that marginal cost of treatment is constant, while it is quadratic in investment and

quality:

C(Ii, x
D
i , qi) = cxDi +

γ

2
I2i +

β

2
q2i + ϕqiIi. (20)

With this specification, the solution of the Hamiltonian system leads to

.
Ii = −

1

2τγ
(p− c) + (δ + ρ) Ii +

1

γ
[β + (2δ + ρ)ϕ] qi. (21)

In the steady state we have
.
qi = 0, implying Ii = δqi, which, substituted into

.
Ii = 0, yields

IsOL =
(p− c) δ

2τ [β + γδ (δ + ρ) + ϕ (2δ + ρ)]
(22)

17 If the determinant is positive, then we have an unstable node.
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and

qsOL =
IsOL
δ

, (23)

where superscript s and subscript OL indicate the steady state levels in the open-loop solution,

respectively.

The results are reasonable. If the price is above the marginal treatment cost, then lower travel

costs (τ) or a higher price (p) increase quality and investment. Similarly, a higher marginal cost

of quality (β) or of investment (γ) reduce quality and investment. If quality and investment

are complements (ϕ > 0), then quality and investment are higher in the steady state; if they

are substitutes, quality and investment are lower in the steady state. A higher time preference

discount rate (ρ) reduces quality and investment whenever γδ + ϕ > 0.18 Notice also how a

higher depreciation rate of quality (δ) is associated with lower steady state quality, while the

effect on investment is indeterminate.19

3.2 Increasing marginal treatment cost

Suppose that marginal cost of treatment is increasing, while it is still quadratic in investment

and quality:

C(Ii, x
D
i , qi) =

c

2

¡
xDi
¢2
+

γ

2
I2i +

β

2
q2i + ϕqiIi. (24)

With this particular specification, the solution of the Hamiltonian system yields

.
Ii = −

1

2τγ

µ
p− c

µ
1

2
+

qi − qj
2τ

¶¶
+

β

γ
qi + (δ + ρ) Ii +

ϕ

γ
qi (2δ + ρ) . (25)

18From (22) we obtain
∂IsOL
∂ρ

= − (p− c) δ (γδ + ϕ)

2τ [β + γδ (δ + ρ) + ϕ (2δ + ρ)]2
.

19From (22) we obtain
∂IsOL
∂δ

=
(p− c) ρϕ+ β − γδ2

2τ [β + ϕ (2δ + ρ) + δγ (δ + ρ)]2
.

The sign of this expression is determined by the sign of ρϕ+ β − γδ2 , which is indeterminate.
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The symmetric steady state equilibrium,
.
Ii = 0 and

.
qi = 0, together with Ii = δqi, yield

IsOL =

¡
p− c

2

¢
δ

2τ [β + (δ + ρ) γδ + ϕ (2δ + ρ)]
(26)

and

qsOL =
IsOL
δ

, (27)

which is similar to the solution with constant marginal cost, and requires no further comments.

4 Closed-loop solution

The open-loop rule is realistic in cases where the players compute their investment plans at the

beginning, and then stick to them forever. In other cases, however, players take their decisions

while observing the evolution of states, and the relevant rule is then of the closed-loop type. In

this section we derive the so-called feedback rule, where the controls set by the players depend on

the current level of states. Open-loop solutions are simpler to compute, but they are only weakly

time consistent. On the opposite, closed-loop solutions — which are more involved to compute

— are strongly time consistent. There is a wide body of literature on the cases of coincidence

between the time path of controls and states under different solution concepts. In the lucky

case in which they coincide, the (more easily computable) open-loop solutions are strongly time

consistent (see Mehlman, 1982).

4.1 Constant marginal treatment cost

Applying the cost specification in (20), the optimal rule for player i in the closed-loop solution

is given by20

Ii(t) = φCLi (qi(t), qj(t)) =
1

γ
[α1 + (α3 − ϕ) qi(t)], (28)

where

α1 =
p− c

τ
h
ρ+

q
4β+ρϕ+2δϕγ + (ρ+ 2δ)2

i > 0 (29)

20See Appendix A for the details of this solution.
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and

α3 − ϕ = γ
³ρ
2
+ δ
´
−
r
γ (β + ρϕ+ 2δϕ) + γ2

³ρ
2
+ δ
´2

< 0. (30)

Using that fact that Ii = δqi in steady state, it is easily shown that the steady state equi-

librium in the closed-loop solution coincides with the previously derived open-loop steady state

equilibrium, given by (22)-(23), i.e., IsCL = IsOL = δqsOL = δqsCL. This constitutes the first main

result of the paper:

Proposition 1 If the marginal treatment cost is constant, the open-loop and closed-loop solu-

tions coincide in steady state.

The coincidence between the two solutions clearly holds also for the special cases when ϕ = 0

(or ϕ = β = 0). We can also show that the same result holds when the cost of quality is linear

rather than convex (i.e., C(Ii, xDi , qi) = cxDi +
γ
2I
2
i + βqi + ϕqiIi; the proof is omitted).

The important contributing factor to this coincidence result is that there is a constant mar-

ginal (instantaneous) revenue gain of quality investments, implying that the optimal dynamic

investment rule for each player, as given by (28), is independent of the quality level provided by

the other player. In other words, the optimal investment path for hospital i does not depend

on the quality stock of hospital j, implying an absence of strategic interaction in this particular

respect. Given that the cost function is separable in quantity, this feature — constant marginal

revenue — is always present when the treatment price is fixed and the marginal treatment cost

is constant. Consequently, our analysis suggests that, if the marginal cost is constant, the solu-

tion within a dynamic approach (regardless of the open- or closed-loop solution) is qualitatively

similar to the ones that would be obtained within a static approach. We can thus conclude that

the static analysis is reasonably robust in this particular case.

4.2 Increasing marginal treatment cost

Suppose instead that the marginal treatment cost is increasing, with the cost function given by

(24). To keep the analysis simple, we assume that quality does not affect the marginal cost of

investment, i.e., ϕ = 0. As we have shown above, this does not affect the coincidence result in

16



Proposition 1. With this specification, the optimal investment rule for player i is given by21

Ii(t) = φCLi (qi(t), qj(t)) =
1

γ
[α1 + α3qi(t) + α5qj(t)], (31)

where

α1 =

¡
p− c

2

¢
(α5 − ργ)

4τ [β + γδ (ρ+ δ)]
> 0, (32)

α3 =
1

2
[γ (ρ+ 2δ)− α5] < 0, (33)

and

α5 =
γ

3

r
1

γ

³ c

τ2
+ 4β

´
+ (ρ+ 2δ)2 > 0. (34)

Applying (31)-(34) to the steady state condition Ii = δqi, and keeping in mind that investments

must be non-negative, the steady state investment and quality in the closed-loop solution are

then given by

IsCL = max

(
0,

Ã
ρ− α5

γ

ρ+ α5
γ

!
IsOL

)
= 0. (35)

and

qsCL =
IsCL
δ
= 0, (36)

where IsOL is the steady state level of investment in the open-loop solution with increasing

marginal treatment costs, as given by (26) with ϕ = 0. Thus, since α5 > ργ, the closed-loop

solution is a corner solution where the steady state levels of investment and quality are at

the minimum level.22 In other words, dynamic strategic competition between providers using

closed-loop investment rules effectively eliminates quality competition in steady state.

Proposition 2 If the marginal treatment cost is increasing, the steady state levels of investment

and quality under the closed-loop solution are at the minimum level.

When marginal treatment costs are non-constant, marginal revenue is no longer independent

of quality levels, since quality changes will affect demand and, in turn, the marginal treatment
21The derivation of the closed-loop solution with increasing marginal costs is presented in Appendix B.
22Notice that concavity of the value functions require that α3 < 0 (see Appendix B). Using the definition of

α5, we see that this always holds if β is sufficiently large, or if c is sufficiently large relative to τ .
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cost facing each hospital. This introduces a strategic interaction in the sense that the optimal

investment rule for player i depends, at each point in time, on the quality stock of player j,

as we can see from (31). This dynamic interaction is reflected in the parameter α5. More

specifically, with increasing marginal costs, quality investments are strategic complements. A

quality increase by hospital i will shift demand away from hospital j, implying that the marginal

cost of hospital j decreases. Since the price is constant, this increases the profit margin of hospital

j, making quality investments more profitable on the margin for this hospital. Conversely, a

quality decrease by hospital i will be strategically followed by a quality decrease by hospital j.

This strategic interaction has important implications for the players’ dynamic competition

incentives. From the perspective of the profit-maximising providers, the business-stealing ef-

fect of quality investments constitutes a form of "destructive competition". This is particularly

pronounced in the case of inelastic total demand, where quality investments have a purely

business-stealing effect. Compared with the outcome of a static game, the open-loop solution in

a dynamic setting does not (qualitatively) produce a less competitive outcome, since it has the

essential characteristics of a one-shot game, where the players make once-and-for-all commit-

ments to their investment plans at the outset of the game. This is also true for the closed-loop

solution in the case of constant marginal costs, due to the aforementioned absence of strategic

interaction.

However, the presence of increasing marginal costs introduces a dynamic strategic interaction

in terms of quality investments, as explained above. When the players revise their investment

plans according to the evolution of quality states, a decrease in quality investment by hospital

i will invoke an investment-reducing response by hospital j. From the viewpoint of hospital i,

the instantaneous loss in market share by reducing the supply of quality is weighed against the

future gain of a quality reduction — a strategic response — by hospital j. As long as the players

value future profits, the dynamic strategic interaction will drive the supply of quality in the

market to the minimum level in steady state, effectively eliminating competition in the market.

To summarise the above analysis, our general message is that, in the presence of convex pro-

duction costs, when dynamic strategic interaction is taken into account, the closed-loop solution
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indicates that the benefits of competition with respect to quality provision are overestimated in

the existing theoretical literature, which is based on static competition models. It is also worth

noticing that our main result has a strong implication with respect to regulation policy. A direct

implication of Proposition 2 is the following:

Corollary 1 If the marginal treatment cost is increasing, and the providers use closed-loop

investment rules, the treatment price p ceases to be an effective policy instrument to stimulate

higher quality of treatment.

In other words, and in contrast to the predictions from static models, it might not be

possible for a regulator to induce a higher supply of quality by increasing the price. According

to our analysis, this will be the case if treatment costs are convex and providers use closed-loop

investment rules. In this case, steady state quality is at the minimum level, regardless of p, and

it is not possible to get out of the corner solution by simple price regulation. The reason for

this negative result is that, although the short-run incentives for quality competition increases,

the long-run gain of avoiding quality competition increases correspondingly, leaving the players’

strategic incentives unaffected in a dynamic setting.

5 Conclusions

We have investigated the effect of competition on quality in regulated markets within a Hotelling

framework. Differently from the existing literature we assume that quality cannot adjust instan-

taneously, but rather is a stock variable which increases when investment in quality is higher than

the depreciation rate of quality. We investigate the optimal open-loop solution (when providers

commit to an optimal plan of investment at the initial period) and the equilibrium closed-loop

solution (under the feedback rule, where the providers move their investment in response to the

dynamics of the states).

We find that if the marginal cost of provision is constant, the open-loop and closed-loop

solution coincide: investment and quality are identical under the two solution concepts. This

result suggests that previous predictions obtain from static models are robust to a dynamic
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specification. For example, if the price is above the marginal cost, a higher regulated price or

lower travel costs (i.e., more competition) increase quality and investment. Moreover, we show

(differently from static analyses) that a higher time preference discount rate reduces quality and

investment under weak regularity conditions. Also, a higher depreciation rate reduces quality

but has an indeterminate effect on investment.

However, if we assume that the marginal cost is increasing, then the open-loop and closed-

loop solution do not coincide, which implies that the main results from closed-loop solutions

departs from the predictions of static models. Investment and quality are lower under the closed-

loop solution than under the open-loop solution: in the closed-loop solution, quality drops to

the minimum level in steady state. Therefore, our model predicts that the beneficial effects

from competition in terms of higher quality are lower than expected from existing theoretical

literature.
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Appendix A. Closed-loop solution with constant marginal cost

We assume that the marginal cost of treatment is constant, while it is quadratic in investment

and quality so that C(Ii, xDi , qi) = cxDi +
γ
2 I
2
i +

β
2 q
2
i+ϕqiIi. The purchaser instantaneous objective

function is

T + (p− c)

µ
1

2
+

qi − qj
2τ

¶
− γ

2
I2i −

β

2
q2i − ϕqiIi, (A1)

which — faced with the linear dynamic constraint — gives rise to a linear-quadratic problem.

Hence, define the value function as

V i(qi, qj) = α0 + α1qi + α2qj + (α3/2)q
2
i + (α4/2)q

2
j + α5qiqj . (A2)

Define Ii = φi(qi, qj) and Ij = φj(qi, qj). The value function has to satisfy the Hamilton-Jacobi-

Bellman (HJB) equation:

ρV i(qi, qj) = max

⎧⎪⎨⎪⎩ T + (p− c)
³
1
2 +

qi−qj
2τ

´
− γ

2I
2
i −

β
2 q
2
i − ϕqiIi

+V i
qi(qi, qj) (Ii − δqi) + V i

qj

¡
φj(qi, qj)− δqj

¢
⎫⎪⎬⎪⎭ . (A3)

Maximisation of the right-hand-side yields V i
qi = γIi + ϕqi, which after substitution gives

Ii = φi(qi, qj) =
α1 + (α3 − ϕ) qi + α5qj

γ
. (A4)

Similarly, we obtain

Ij = φj(qi, qj) =
α1 + (α3 − ϕ) qj + α5qi

γ
. (A5)

Substituting Ii = φi(qi, qj), Ij = φj(qi, qj), V
i
qi(qi, qj) = α1 + α3qi + α5qj , V

j
qj (qi, qj) = α1 +

α3qj + α5qi, V i
qj = α2 + α4qj + α5qi into the (HJB) equation, we obtain

ρV i(qi, qj) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

¡
T + p−c

2

¢
+ p−c

2τ qi − p−c
2τ qj − γ

2

³
α1+(α3−ϕ)qi+α5qj

γ

´2
−β
2 q
2
i − ϕqi

³
α1+(α3−ϕ)qi+α5qj

γ

´
+(α1 + α3qi + α5qj)

³³
α1+(α3−ϕ)qi+α5qj

γ

´
− δqi

´
+(α2 + α4qj + α5qi)

³
α1+(α3−ϕ)qj+α5qi

γ − δqj

´

⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭
, (A6)
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which can be rewritten as

µ
ρα0 − T − p− c

2
− 1

2γ
α21 −

1

γ
α1α2

¶
+qi

µ
α1 (ρ+ δ)− p− c

2τ
− α1α3

γ
− α2α5

γ
− α1α5

γ
+

α1ϕ

γ

¶
+qj

µ
α2 (ρ+ δ) +

p− c

2τ
− α2α3

γ
− α1α4

γ
− α1α5

γ
+

α2ϕ

γ

¶
+q2i

µ
α3

³ρ
2
+ δ
´
− α23
2γ
− α25

γ
+

β

2
+

ϕα3
γ
− ϕ2

2γ

¶
+q2j

µ
α4

³ρ
2
+ δ
´
− α3α4

γ
− α25
2γ
+

ϕα4
γ

¶
+qiqj

µ
α5

µ
(ρ+ 2δ)− 2α3

γ
− α

γ
+
2ϕ

γ

¶¶
= 0. (A7)

For the equality to hold, the terms in brackets in the above equation have to be equal to zero.

From the last line α5 = 0, which also implies α4 = 0 from the second-last line, so that the above

simplifies to

µ
ρα0 − T − p− c

2
− α21
2γ
− α1α2

γ

¶
+qi

µ
α1 (ρ+ δ)− p− c

2τ
− α1α3

γ
+

α1ϕ

γ

¶
+qj

µ
α2 (ρ+ δ) +

p− c

2τ
− α2α3

γ
+

α2ϕ

γ

¶
+q2i

µ
α3

µ
ρ

2
+ δ +

ϕ

γ

¶
− α23
2γ
+

β

2
− ϕ2

2γ

¶
= 0. (A8)

Solving from last equation for α3, we obtain

α3 = ϕ+ γ
³ρ
2
+ δ
´
∓ 1
2

q
4γ (β + ρϕ+ 2δϕ) + γ2 (ρ+ 2δ)2,

We choose the negative root, since V i
qiqi = α3 < 0 needs to be satisfied for the maximisation

problem to be concave. We therefore focus on:

α3 = ϕ+ γ
³ρ
2
+ δ
´
−
r
γ (β + ρϕ+ 2δϕ) + γ2

³ρ
2
+ δ
´2

(A9)
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which substituted in the second equation gives

α1 =
p− c

τ

1

ρ+
q
4β+ρϕ+2δϕγ + (ρ+ 2δ)2

. (A10)

Recall that Ii =
α1+(α3−ϕ)qi+α5qj

γ = α1+(α3−ϕ)qi
γ . Since in the steady state Ii = δqi, we obtain

that

IsCL =
α1
γ

1

(1− (α3−ϕ)
δγ )

, (A11)

which after substituting for α1 and α3 gives

IsCL =
(p− c) δ

2τ [β + γδ (δ + ρ) + ϕ (2δ + ρ)]
(A12)

which coincides with the steady state open-loop solution, as given by (22) in Section 3.
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Appendix B. Closed-loop solution with increasing marginal cost

The purchaser’s instantaneous objective function is:

T + p

µ
1

2
+

qi − qj
2τ

¶
− c

2

µ
1

2
+

qi − qj
2τ

¶2
− γ

2
I2i −

β

2
q2i . (B1)

Define the value function as

V i(qi, qj) = α0 + α1qi + α2qj + (α3/2)q
2
i + (α4/2)q

2
j + α5qiqj . (B2)

The value function has to satisfy the HJB equation:

ρV i(qi, qj) = max

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
¡
T + p

2 −
c
8

¢
+
³
2p−c
4τ

´
qi −

³
2p−c
4τ

´
qj

−
³

c
8τ2

+ β
2

´
q2i − c

8τ2
q2j +

c
4τ2

qiqj − γ
2I
2
i

+V i
qi(qi, qj) (Ii − δqi) + V i

qj

¡
φj(qi, qj)− δqj

¢
⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ . (B3)

Maximisation of the RHS yields

Ii = φi(qi, qj) =
1

γ
V i
qi(qi, qj) =

α1 + α3qi + α5qj
γ

, (B4)

Ij = φj(qi, qj) =
1

γ
V j
qj (qi, qj) =

α1 + α3qj + α5qi
γ

, (B5)

V i
qj = α2 + α4qj + α5qi. (B6)

After substitution, we obtain

ρV i(qi, qj) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

¡
T + p

2 −
c
8

¢
+
³
2p−c
4τ

´
qi −

³
2p−c
4τ

´
qj

−
³

c
8τ2 +

β
2

´
q2i − c

8τ2 q
2
j +

c
4τ2 qiqj −

γ
2 I
2
i

+V i
qi

³
1
γV

i
qi − δqi

´
+V i

qj

¡
φj(qi, qj)− δqj

¢

⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭
, (B7)
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which provides

ρV i(qi, qj) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

¡
T + p

2 −
c
8

¢
+
³
2p−c
4τ

´
qi −

³
2p−c
4τ

´
qj

−
³

c
8τ2

+ β
2

´
q2i − c

8τ2
q2j +

c
4τ2

qiqj

− 1
2γ

¡
V i
qi

¢2
+ 1

γ

¡
V i
qi

¢2 − δqiV
i
qi

+ 1
γV

j
qjV

i
qj − δqjV

i
qj

⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭
(B8)

or

ρV i(qi, qj) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
¡
T + p

2 −
c
8

¢
+
³
2p−c
4τ

´
qi −

³
2p−c
4τ

´
qj

−
³

c
8τ2

+ β
2

´
q2i − c

8τ2
q2j +

c
4τ2

qiqj

+ 1
2γ

¡
V i
qi

¢2 − δqiV
i
qi +

1
γV

j
qjV

i
qj − δqjV

i
qj

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ . (B9)

Recall:

V i
qi(qi, qj) = α1 + α3qi + α5qj , (B10)

V j
qj (qi, qj) = α1 + α3qj + α5qi, (B11)

V i
qj = α2 + α4qj + α5qi. (B12)

Substituting, we obtain

ρV i(qi, qj) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

¡
T + p

2 −
c
8

¢
+
³
2p−c
4τ

´
qi −

³
2p−c
4τ

´
qj

−
³

c
8τ2

+ β
2

´
q2i − c

8τ2
q2j +

c
4τ2

qiqj

+ 1
2γ (α1 + α3qi + α5qj)

2 − δqi (α1 + α3qi + α5qj)

+ 1
γ (α1 + α3qj + α5qi) (α2 + α4qj + α5qi)− δqj (α2 + α4qj + α5qi)

⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭
. (B13)
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For the equality to hold, the following terms in brackets have to be equal to zero:

µ
ρα0 − T +

c

8
− p

2
− α21
2γ
− α1α2

γ

¶
+qi

µ
α1 (ρ+ δ)− 2p− c

4τ
− α1α3

γ
− α2α5

γ
− α1α5

γ

¶
+qj

µ
α2 (ρ+ δ) +

2p− c

4τ
− α2α3

γ
− α1α4

γ
− α1α5

γ

¶
+q2i

µ
α3

³ρ
2
+ δ
´
+

c

8τ2
− α23
2γ
− α25

γ
+

β

2

¶
+q2j

µ
α4

³ρ
2
+ δ
´
+

c

8τ2
− α3α4

γ
− α25
2γ

¶
+qiqj

µ
α5 (2δ + ρ)− 2

γ
α3α5 −

α4α5
γ
− c

4τ2

¶
= 0 (B14)

Solving the last three equations in α3, α4 and α5, we obtain two candidates for solution:

α1 =

¡
p− c

2

¢
(α5 − γρ)

4τ [β + γδ (ρ+ γδ)]
, (B15)

α2 =
(2p− c)

4τ [β + γδ (ρ+ γδ)]

⎡⎣1
2
ργ −

³
c+ 40τ2β + 10τ2γ (ρ+ 2δ)2

´
α5

4
³
c+ 4τ2β + τ2γ (ρ+ 2δ)2

´
⎤⎦ , (B16)

α3 = γ
³ρ
2
+ δ
´
− α5
2
, (B17)

α4 = −

³
5c− 16τ2β − 4τ2γ (ρ+ 2δ)2

´
α5³

4c+ 16τ2β + 4τ2γ (ρ+ 2δ)2
´ , (B18)

and

α5 = −
γ

3

r
1

γ

³ c

τ2
+ 4β

´
+ (ρ+ 2δ)2 < 0 (B19)

or

α5 =
γ

3

r
1

γ

³ c

τ2
+ 4β

´
+ (ρ+ 2δ)2 > 0. (B20)

The choice of the correct root among the two alternatives for α5 — (B19) and (B20) — is made by

noting that the negative root, (B19), implies α3 > 0, which makes the value function convex in

quality. Thus, we disregard this solution and conclude that the positive root, (B20), is the correct
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one. To obtain the steady state values of quality and investment, recall that Ii =
α1+α3qi+α5qj

γ .

In the steady state qi = Ii/δ, which implies IsCL =
α1

γ− 1
δ
(α3+α5)

or, after substitution,

IsCL =

Ã
ρ− α5

γ

ρ+ α5
γ

!
(2p− c) δ

4τ [β + γδ (ρ+ γδ)]
, (B21)

where α5 is given by (B20). Investment is positive if ργ > α5. However, from (B17) we see

that this condition is never fulfilled when α3 < 0. Thus, the steady state equilibrium is a corner

solution with IsCL = 0.
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dq/dt=0

I

q

Figure 1. Equilibrium is a saddle point

dI/dt=0

q(0)

q(0)

dq/dt=0

I

q

Figure 2. Increase in price or reduction in travel costs (more competition)

dI/dt=0

time

I

time

q
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