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Abstract

We use Bayesian Model Averaging (BMA) to evaluate the robustness of determi-
nants of economic growth in a new dataset of 255 European regions in the 1995-2005
period. We use three different specifications based on (1) the cross-section of regions,
(2) the cross-section of regions with country fixed effects and (3) the cross-section of
regions with a spatial autoregressive (SAR) structure. We investigate the existence of
parameter heterogeneity by allowing for interactions of potential explanatory variables
with geographical dummies as extra regressors. We find remarkable differences between
the determinants of economic growth implied by differences between regions and those
within regions of a given country. In the cross-section of regions, we find evidence
for conditional convergence with speed around two percent. The convergence process
between countries is dominated by the catching up process of regions in Central and
Eastern Europe (CEE), whereas convergence within countries is mostly a characteristic
of regions in old EU member states. We also find robust evidence of positive growth of
capital cities, a highly educated workforce and a negative effect of population density.
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1 Introduction

This paper investigates the determinants of economic growth in European regions in the
1995-2005 period. There is a very large literature on determinants of economic growth
across countries and regions.1 Barro and Sala-i-Martin (1991) test for convergence of in-
come per capita among European regions between 1950 and 1985 and find that the speed of
convergence near 2% is relatively constant both over time and also across countries. In this
paper, we revisit this question using a new and larger set of 255 EU regions at the NUTS
(Nomenclature of Territorial Units) level 2 of disaggregation, including regions in recent EU
member countries in Central and Eastern Europe (CEE).

Beyond the question of convergence, the empirical growth literature has investigated a wider
set of potential growth determinants. Following Barro (1991), several studies have included
a large number of explanatory variables in so-called “kitchen sink” regressions. A problem
with this approach is that theories of economic growth are often not mutually exclusive and
the validity of one theory does not necessarily imply that another theory is false. Brock
and Durlauf (2001) refer to this problem as “open-endedness” of growth theories. Empirical
models of economic growth are therefore plagued by problems of model uncertainty concern-
ing the choice of explanatory variables and model specification. The robustness of growth
determinants was questioned by Levine and Renelt (1992) by employing a version of extreme
bounds analysis (EBA) developed by Leamer (1983). Levine and Renelt concluded that al-
most no variable survives the EBA test of having a two standard deviation interval around
the coefficient of the same sign across different models. Sala-i-Martin (1997) criticizes the
EBA test as being too strict and proposes to analyze the entire distribution of coefficients of
interest. Not surprisingly, Sala-i-Martin (1997) finds evidence for the importance of a wider
set of growth determinants.

A recent and quickly growing literature has applied model averaging to address the issue of
model uncertainty in the empirical growth literature.2 Fernández et al. (2001b) use Bayesian
Model Averaging (BMA) to investigate the robustness of the growth determinants collected
by Sala-i-Martin (1997). Following Leamer (1978), Sala-i-Martin et al. (2004) use Bayesian
Averaging of Classical Estimates (BACE) which uses least-squares (classical) estimates and
sample-dominated model weights that are proportional to the Bayesian Information Crite-
rion (BIC) developed by Schwarz (1978). Raftery (1995) also proposes to combine BIC model
weights and maximum likelihood estimates for model selection, with a method which differs
from Sala-i-Martin et al. (2004) in the specification of prior probabilities over the model
space and sampling method. Fernández et al. (2001a) propose a set of benchmark priors
on the parameters of the linear model for implementing BMA, which has been revisited re-
cently by Ley and Steel (2008). Following Brown et al. (1998), Ley and Steel (2008) propose
a hierarchical prior over the model size. In this paper, we use benchmark prior structures on
the parameter space based on Fernández et al. (2001a) coupled with the hierarchical prior
distribution over the model size used by Ley and Steel (2008). We also improve on past

1Barro (1991) and Sala-i-Martin et al. (2004) give an excellent overview of empirical analysis for regional
data (chapter 11) and cross-sections of countries (chapter 12).

2See Hoeting et al. (1999) for an excellent tutorial introduction to BMA and the survey by Doppelhofer
(2009) that discusses both Bayesian and frequentist techniques.
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attempts to assess parameter heterogeneity3 by using a particular sampling procedure for
interaction terms that fulfills the strong heredity principle put forward by Chipman (1996)
when designing priors over the model space for related variables.

Determinants of regional growth and convergence patterns have also been investigated by a
number of recent studies. Boldrin and Canova (2001) investigate convergence in EU regions
and its relationship to regional policies, concluding with a critical assessment of regional
economic policies. Canova (2004) test for convergence clubs in European regions and finds
evidence for convergence poles characterized by different economic conditions. Corrado et al.
(2005) use an alternative technique to identify clusters of convergence in European regions
and sectors. A very recent literature has developed Bayesian tools in the analysis of spa-
tially correlated data. LeSage and Parent (2007) give an excellent introduction to BMA for
spatial econometric models. LeSage and Fischer (2007) apply BMA to investigate determi-
nants of income in EU regions, with particular emphasis on sectoral factors. LeSage and
Parent (2008) investigate knowledge spillovers from patent activity between EU regions. In
our model specifications we will explicitly model spatial effects using spatial autoregressive
(SAR) structures (see Anselin (1988), for a textbook discussion).

This paper contributes to the literature as follows: First, we investigate a set of 67 poten-
tial growth determinants in 255 NUTS 2 regions of the EU, a much larger dataset than in
the available empirical literature (see Data Appendix for list of variables and data sources).
Second, we use BMA to investigate the robustness of determinants of regional growth with
emphasis on spatial modeling using SAR and different prior assumptions. Third, we allow
for heterogeneity between countries by allowing for different elasticities of economic growth
to some selected determinants in recent accession countries in Central and Eastern Europe
(CEE), as well as periphery countries in Southern Europe (Greece, Portugal and Spain). Fur-
thermore, we use a new methodology to assess parameter heterogeneity based on the strong
heredity principle when sampling interaction terms in the Markov Chain Monte Carlo pro-
cedure. Fourth, we allow for uncertainty over spatial weights by conducting a sensitivity
analysis with respect to alternative spatial distance measures. While most studies using
spatial models stick to a single spatial structure, we confirm the robustness of our results to
the use of different spatial matrices.

The main findings of the paper are as follows:

1. Conditional income convergence appears as the most robust driving force of income
growth across European regions. In the cross-section of regions, we find evidence for
conditional convergence with speed of around two percent. However, the precision of
the estimated speed of convergence is strongly affected by the growth experience of
Central and Eastern European countries. The convergence process between regions
is dominated by the catching up process of regions in Central and Eastern European
(CEE), whereas convergence within countries is mostly a characteristic of regions in
old EU member states.

2. On average, the growth rate of income per capita in regions with capital cities is over

3See Crespo-Cuaresma and Doppelhofer (2007) and Doppelhofer and Weeks (2008) for recent contribu-
tions to parameter heterogeneity in the framework of BMA.
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one percentage point higher than in non-capital city regions, after controlling for all
other factors. On the other hand, densely populated regions in Western Europe tended
to present a weaker growth performance.

3. Human capital, measured as population share of highly educated workers, has a ro-
bust positive association with regional economic growth. The estimates imply that an
increase of 10 percent in the share of high educated in working age population increase
GDP per capita growth on average by 0.6 percent. The positive effect of human capital
remains a robust determinant of regional growth within countries, but the parameter
is not as well estimated as in the case without fixed country effects.

4. Allowing for spatial autocorrelation a priori, we find evidence for positive spatial
spillovers or growth clusters in EU regions. Allowing for a spatial autoregressive term
diminishes the evidence for parameter heterogeneity between old and new EU member
states.

5. Infrastructure plays an important role as a determinant of growth, in particular infras-
tructure related to air transport. The effect of infrastructure is weaker if we allow for
heterogenous effects in regions in CEE countries.

6. Statistical and economic inference are not very sensitive to alternative spatial weights.

The paper is structured as follows. Section 2 presents the setting of the BMA exercise
carried out in the paper. Section 3 presents the empirical results concerning the robustness
of growth determinants in the EU at the regional level. Section 4 checks for the robustness
of the results to variations in the spatial weighting matrix and in the nature of the potential
parameter heterogeneity. Section 5 concludes.

2 The econometric model: Specification and prior struc-

tures

To investigate the robustness of potential determinants of regional economic growth, we
propose using models which can be nested within a general spatial autoregressive model of
the form:

y = αιN + ρWy + Xk
~βk + ε, (1)

where y is an N -dimensional column vector of stacked growth rates of income per capita
for N regions, α is the intercept term, ιN is an N -dimensional column vector of ones,
Xk = (x1 . . .xk) is a matrix whose columns are stacked data for k explanatory variables,
~βk = (β1 . . . βk)

′ is the k-dimensional parameter vector corresponding to the variables in
Xk, W specifies the spatial dependence structure among y observations, ρ is a scalar in-
dicating the degree of spatial autocorrelation and ε is an error term which may contain
country-specific fixed effects.4 For the moment, let us assume ε to be an N -dimensional

4The generalization of the BMA strategy here to other error structures with fixed effects is straightforward
after application of the Frisch-Waugh-Lovell theorem. In a panel setting, the estimation of fixed effect models
can be carried out by estimating the model proposed above using within-transformed data.
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shock process with zero mean and diagonal variance-covariance matrix Σ = σIN .

A typical element of W is given by [W]ii = 0 and [W]ij = d−1
ij for i 6= j , where dij is the

distance5 between observation i and observation j. The number and identity of the variables
in Xk is assumed unknown, so that the columns in Xk are taken to be k variables from a
larger set of (K) potential explanatory variables, grouped in XK , with K ≥ k. A model in
our setting, Mk ∈M is defined by the choice of a group of variables (and thus, the size of the
model), so card(M)=2K . Notice that XK may also contain spatially-weighted explanatory
variables of the form Wxk.

Inference on the parameters attached to the variables in Xk which explicitly takes into
account model uncertainty can be thus based on weighted-averaged parameter estimates of
individual models,

p(βj|Y) =
2K∑
k=1

p(βj|Y,Mk)p(Mk|Y), (2)

with Y denoting the data. Posterior model probabilities p(Mk|Y) are given by

p(Mj|Y) =
p(Y|Mj)p(Mj)∑2K

k=1 p(Y|Mk)p(Mk)
. (3)

In the empirical application we are interested in the following statistics of interest for a
variable xk. The posterior inclusion probability (PIP) is given by the sum of probabilities of
models including variable xk. Hence it reflects the variable’s relative importance in explaining
the phenomenon - in our case the growth process - under study. The posterior mean of the
distribution of βk (PM) is the sum of model-weighted means of the model specific posterior
distributions of the parameter:

E(βk|Y) =
2K∑
l=1

p(Ml|Y)E(βk|Y,Ml).

The posterior variance of βk is the model-weighted sum of conditional variances plus an
additional term capturing the uncertainty of the (estimated) posterior mean across models,

var(βk|Y) =
2K∑
l=1

p(Ml|Y)var(βk|Y,Ml) +

+
2k∑
l=1

p(Ml|Y)(E(βk|Y,Ml)− E(βk|Y))2.

We define the posterior standard deviation accordingly as PSD=
√

var(βx|Y).

5For the estimation we use airline distances between i and j measured in kilometers.
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Model weights can thus be obtained using the marginal likelihood of each individual model
after eliciting a prior over the model space. The marginal likelihood of model Mj is in turn
given by

p(Y|Mj) =

∫ ∞
0

∫ ∞
−∞

∫ ∞
−∞

∫ ∞
−∞

p(Y|α, ~βk, ρ, σ,Mj)p(α, ~βk, ρ, σ|Mj) dα d~βk dρ dσ. (4)

Given a model (say Mj, which corresponds to size k), we can rely on the results in Fernández
et al. (2001a) and use a noninformative improper prior on α and σ in (1) and a g-prior (Zellner
(1986)) on the β-coefficients, which implies that

p(~βk|α, ρ, σ,Mj) ∼ N(βk, σ
2(gX′kXk)

−1),

with g = 1/max{N,K2}. This benchmark prior over g implies that the relative size of the
sample as compared to the number of covariates will determine whether models are com-
pared based on BIC (Bayesian Information Criterion, Schwarz (1978)) or RIC (Risk Inflation
Criterion, Foster and George (1994)). We follow LeSage and Parent (2007)’s proposal and
use a beta prior distribution for ρ.

Several approaches to the elicitation of prior information on model size have been proposed
by the modern literature on BMA. Many studies rely on a diffuse prior setting which assigns
equal probability to all possible models, thereby imposing a mean prior model size of K/2.
In contrast, some authors give more prior weight to relatively pragmatic models by assuming
Bernoulli distributions with fixed parameter π on the inclusion probability for each variable
and using the expected model size, πK, to elicit the prior (see Sala-i-Martin et al. (2004)).
Following Brown et al. (1998), Ley and Steel (2008) propose the use of a Binominal-Beta
prior distribution, where a Beta distribution is assumed as a hyperprior on π, the parameter
of the Bernoulli distribution for the inclusion of each regressor. The flexibility of the Beta
distribution allows for very different prior structures on model size using the Binomial-Beta
distribution (see examples in Ley and Steel (2008)).

The posterior distributions of the β-parameters for the SAR specification are calculated as
the β that maximizes the likelihood calculated over a grid of ρ values6. The posterior dis-
tributions of interest over the model space can be then obtained using Markov Chain Monte
Carlo Model Composite (MC3) methods in a straightforward manner (see LeSage and Parent
(2007)). In particular, we use a random-walk step in every replication of the MC3 procedure,
constructing an alternative model to the active one in each step of the chain by adding or
subtracting a regressor from the active model. The chain then moves to the alternative
model with probability given the product of Bayes factor and prior odds resulting from the
Beta-Binomial prior distribution. The posterior inference is based on the models visited
by the Markov chain instead of on the complete (potentially untractable) model space (see
Fernández et al. (2001a) for a more detailed description of this strategy).

For the evaluation of potential nonlinear effects by inclusion of interaction terms, we adapt
the MC3 method as follows to ensure that Chipman’s (1996) strong heredity principle is

6For more details see the technical appendix.
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fulfilled. We only assign positive prior inclusion probability to models which include no
interaction terms or models with interaction terms, but interacted variables also appearing
linearly. In practice, we just implement an MC3 sampler which adds the individual interacted
variables linearly to those models in which the interaction is included, so as to ensure that
only the independent effect of the interaction is evaluated. If we interpret this approach as
imposing a particular prior distribution over the model space, our design implies that we
are removing the prior probability mass from all the models where interactions are present
but the corresponding linear terms are not part of the model and redistributing this prior
probability mass correspondingly to the models where the interaction appears together with
the interacted variables and can thus be interpreted. Crespo-Cuaresma (2008) presents
evidence that this type of interaction sampling method has better properties than standard
MC3 in the sense that the latter may spuriously detect interaction effects which are not
present in the data.7

3 The empirical setting: variables and interactions

The Data Appendix lists the full set of regions and available variables, together with a brief
definition and the source for each one of them. The dataset covers information on 255 Eu-
ropean regions, and each income growth observation refers to the average annual growth
rate in the period 1995-2005. The set of variables can be roughly divided into variables
approximating factor accumulation and convergence (the usual economic growth determi-
nants implied by the original Solow growth model), human capital variables, technological
innovation variables, variables measuring sectoral structure and employment, infrastructure
and socio-geographical variables.

In order to assess the potential differences between determinants of economic growth differ-
ences across regions in different countries and between regions within a country, the BMA
exercise is carried out both using a single intercept term in the specification and country-
specific intercepts, that is, country fixed effects. In the same manner, we use sets of explana-
tory variables both including and excluding spatially lagged regressors (in addition to the
spatially lagged dependent variable). As a benchmark comparison, we also report results
based on specifications without spatial autoregressive lags.

The evaluation of nonlinearities in the regional growth processes is assessed using interac-
tions of pairs of variables as extra explanatory variables. Model averaging in a model space
which includes specifications with interacted variables takes place using the interaction MC3

sampler described above.

3.1 BMA results: models without spatial autocorrelation

Table 1 presents the BMA results for models without spatial autoregressive lags. In each
column we report the posterior inclusion probabilities of each regressor, together with the

7See the Technical Appendix for more details on the BMA procedure and the MC3 sampling method
implemented in the empirical analysis.
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mean and standard deviation of the posterior distribution for the associated parameter. The
results were obtained from 3,000,000 draws of the MC3 sampler, after a burn-in phase of
2,000,000 iterations. In all cases we use a Binomial-Beta prior for model size with expected
size equal to seven regressors.8 The first set of columns in Table 1 presents the results of
the model averaging procedure for the cross-section of regions without country fixed effects.
The second set of results relate to the same specification but adding to the set of potential
regressors also a group of spatially lagged regressors. In particular, we include spatial lags
of the three Solow model variables (initial income per capita, capital formation and popu-
lation growth), an infrastructure variable (road density), a technology innovation variable
(human resources in science and technology) and three variables measuring production po-
larization (output, population and employment density). We assess the issue of parameter
heterogeneity between Eastern and Western European regions in the third set of columns.
In this case, we include a dummy variable for regions belonging to CEE countries (Bul-
garia, Czech Republic, Estonia, Hungary, Latvia, Lithuania, Poland, Romania, Slovenia and
Slovak Republic), as well as the interaction of this variable with initial income per capita,
capital formation, population growth, road density, output density, population density and
employment density. We repeat the same exercise using a specification including country-
specific fixed effects, and thus concentrating on the determinants of economic growth within
countries for European regions. The results are presented in Table 2, which has the same
structure as Table 1.

There are remarkable differences between the determinants of economic growth implied by
the differences between regions and those of regions within a given country. For the case of
models without country fixed effects, conditional income convergence appears as the most
robust driving force of income across European regions, with a model-averaged estimate of
the speed of convergence9 around 2% for the setting without spatially-lagged variables and
1.8% if spatially-lagged variables are included in the group of potential explanatory vari-
ables. The conditional β-convergence parameter associated with the initial income variable
(GDPCAP0) is also very precisely estimated. Note that this estimate contains information of
the convergence process of European income per capita both within and between countries.
Furthermore, the precision of the estimate is strongly affected by the growth experience of
Central and Eastern European countries. Figure 1 contrasts the unconditional posterior dis-
tribution of the coefficient associated with initial income. The top panel of Figure 1 shows
the effect when including spatial lags of a number of variables as explained above. The
bottom panel of Figure 1 shows the posterior distribution when allowing a dummy variable
for Eastern European countries as potential additional regressor.10 In this case, the poste-
rior inclusion probability associated with initial income drops from 1.000 to 0.257 (shown
as red bar above the distribution), and the mean and median of the posterior distribution

8Because we use the hierarchical prior over the model size, our results are not sensitive to the choice of
this hyperparameter. The expected mean model size of seven regressors selected from a set of 67 candidate
explanatory variables, implies a prior inclusion probability of 7/67 = 0, 105. In Tables 1 to 4 variables with
posterior inclusion probability (PIP) exceeding the prior of 10% are highlighted in bold font.

9Log-linearizing a standard neoclassical (Solow) growth model around a steady state implies a coefficient
β = −(1− e−γT )/T for the logarithm of initial income (see Barro and Sala-i-Martin (1991)). The speed of
convergence γ is therefore given by ln(1 + βT )/T where the number of years T is 10 in this paper.

10In this setting, the dummy achieves a posterior inclusion probability, mean and standard deviation which
are very close to those for CEE dummy in the third set of estimates in Table 1.
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are much closer to zero, indicating that there is considerably less evidence for the existence
of conditional β-convergence between European regions. This implies that the evidence for
income convergence found in the setting without country fixed effects under the assumption
of homogeneity in the growth process between new and old member states seems to be driven
by the recent growth experience of Central and Eastern European economies.

The differential growth dynamics of regions where the capital city of the country is located
also appears as a relevant characteristic of the dataset. On average, after controlling for
all other variables and explicitly taking into account model uncertainty, the growth rate of
income per capita in regions with capital cities is over one percentage point higher than
in non-capital city regions. The estimate is precise and appears robust to the inclusion of
spatially lagged explanatory variables in the model and to the relaxation of the assumption
of parameter homogeneity between old and new EU member countries. Similarly, the posi-
tive effect of human capital on economic growth is reflected in a robust positive parameter
estimate attached to the variable quantifying the share of high educated in working age
population. The size of the model averaged estimate in the model with interactions implies
that on average a ten percent increase of the share of highly educated in working age pop-
ulation is associated with a 0.6 percent higher growth rate of GDP per capita. Compared
to the sample average growth rate of 2.2 percent for all regions in the sample, the effect is
quantitatively substantial.

The inclusion of spatially lagged variables in the set of regressors gives robust evidence of the
existence of convergence poles in Europe. On average, regions which are geographically close
to lower income geographical zones experience a higher convergence speed. The estimate is
however not very precise, and a plot of the posterior distribution of the corresponding param-
eter presents a bimodal shape (see Figure 2) with a heavy mass around zero. The parameter
heterogeneity observed in Figure 2 appears to be driven by convergence poles in Eastern
Europe, since after allowing for a different global trend in GDP per capita growth in CEE
countries the evidence for geographical agglomeration of converging regions disappears (see
inclusion probabilities in the third set of BMA estimates of Table 1).

As explained above and reported in Table 1, when parameter heterogeneity between old and
new member states is allowed for, the evidence concerning robust convergence decreases, as
well as the mean in the posterior distribution of the parameter associated to initial income.
The results of the most general specification setting therefore confirm the importance of
human capital formation as an engine of economic growth among European regions and the
over-proportional growth performance of regions containing the capital city. On the other
hand, the strong growth performance of emerging economies in Central Eastern Europe ap-
pears as the main responsible for the existence of robust income convergence across regions
in Europe and for the evidence of convergence poles at the regional level in Europe in the
period 1995-2005.

For the BMA exercise reported in Table 2 we concentrate on regional differences within
countries in order to assess the robustness of economic growth determinants. The specifi-
cations we consider contain thus country fixed effects that account for unobserved country
specific characteristics which affect the process of economic growth and are assumed to be
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time-invariant. It should be noticed that the dynamics of convergence in this specification
are to be interpreted as taking place in regions within a country towards a country-specific
steady state. The results in Table 2 indicate that, while CEE regions contributed mostly
to the regional income convergence process between countries, income convergence within
countries is mostly a characteristic of old EU member states, as can be inferred from the
results of the specifications with interaction effects. Human capital remains a robust deter-
minant of growth in this setting, although the parameter is not as well estimated as in the
case without fixed country effects. This result is not surprising, given that a large part of
the variation of educational outcomes is driven by cross-country differences (as opposed to
cross-region differences within countries).

The finding of heterogeneous dynamics of convergence is also illustrated in Figures 3 (top
panel) which show the spatial distribution of the quantitative effect of initial income on
economic growth within European regions. Figure 3 shows the posterior mean estimates
for models with interactions terms for the CEE dummy, as well as country fixed effects.11

Figure 3 clearly shows that regions within CEE countries are strongly catching up. Most
regions in Eastern Germany, Greece, Italy, Portugal and Spain with low initial income are
growing relatively more rapidly, but the convergence patterns are more heterogeneous across
regions. Figure 3 (bottom panel) shows the regional distribution of mean estimates of the
effect of the share of highly educated workers (ShSH) within countries. The strongest effects
on economic growth are located in the central regions in Germany and Benelux countries as
well as Southern regions in the UK. Figure 4 shows that the effect associated with the share
of firms with own website (INTF) is strongest for regions within Germany, the Netherlands,
England and Sweden.

3.2 BMA results: models with spatial autocorrelation

The model with country fixed effects presented above assesses the issue of spatial correlation
of income growth by assuming a country-specific intercept, common to all regions within a
nation, in the economic growth process. To the extent that country borders are not a large
obstacle in the growth process of EU regions, using institutional membership of regions in
countries may not be the best way of modeling spatial relationships in our dataset. Alter-
natively, we use actual geographical distance in the framework of SAR models such as those
presented above to relate the growth process of different regions.

In Table 3 the results of the BMA exercise for the SAR model including spatial regressors
(first set of columns) and spatial regressors and interactions with the CEE dummy (second
set of columns) are presented. The number of robust variables when spatial autocorrelation
is explicitly modeled is higher than in any other setting, with a posterior mean of model
size over 11. Figure 7 presents the prior and posterior model size distribution. The prior
distribution corresponds to a Beta-Binomial distribution with expected value equal to 7 (see
Ley and Steel (2008), for examples of prior model size distributions based on Beta-Binomial

11To help reading the maps we have scaled regressors as follows. The top panels of Figures 3 and 5 are
plotting the partial effect of the levels (not log-levels) of initial income. Similarly, the share of highly skilled
workers (ShSH) in the bottom panels of Figures 3 and 5 and the proportion of firms with own website (INTF)
in Figure 4 are scaled by a factor of 100. Population density (POPDENS0) is scaled by a factor of 10,000.
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distributions), while the mass of the posterior distribution is very concentrated on model
sizes between 6 and 18. The model averaged estimate of the spatial autocorrelation parame-
ter ρ reveals positive spatial autocorrelation in income growth across European regions. The
results obtained in the specifications without spatial autocorrelation are still present in the
estimates from the SAR specification: regions with capital cities, regions with lower income
and regions with a relatively educated labor force tend to present higher growth rates of
income. On top of this result, there is also evidence of the importance of technology poles
(as measured by the spatially lagged variable measuring resources in science and technology)
as determinants of long-run growth, although the estimated elasticity is not too precise. Re-
gions also profit in terms of economic growth from growing populations in nearby regions.
For the first time, infrastructure variables appear strongly related to growth. In particular,
regions which possess infrastructure related to air transport present higher growth rates of
income. Interestingly, once that spatial autocorrelation is taken into account, there is no ro-
bust parameter heterogeneity in the speed of income convergence, although the CEE region
dummy does appear robustly related to growth (albeit with a more uncertain parameter
estimate).

Figure 5 shows the spatial distribution of effects associated with initial income and human
capital with the spatial autoregressive specification and interaction effects for CEE countries.
The effects are mostly similar to the fixed effects results in Figure 3: regions in Central and
Eastern Europe and Portugal are strongly catching up with other EU regions and the share
of highly skilled workers has the largest effect on growth in core EU regions, England and
Nordic countries (Denmark, Sweden and Finland). Figure 6 shows the distribution of the
effect of population density on economic growth. Notice that the posterior mean coefficient of
population density is negative (-0.0098) and marginally significant. The most lightly colored
regions (in Germany, the Netherlands and Southern UK) indicate the strongest negative
impacts associated with high population density.

4 Robustness checks

In this section we allow for different settings in the specifications which are averaged upon,
so as to ensure that the results presented above are robust to different decay parameters in
the distance matrix and that the parameter heterogeneity evidence we find is exclusive to
CEE countries and not present in older peripheral member states.

Economic theory does not offer any guidance concerning a particular choice of spatial weight-
ing matrix W. While the inverse distance matrix used hitherto is a recurrent choice in spatial
econometric applications, it can be thought of as a special case of a more general weighting
matrix W(φ) with a characteristic element

[W]ij = [dij]
−φ, (5)

where dij is the distance between regions i and j and the parameter φ embodies the sensitiv-
ity of weights to distance, and thus the decay of the weighting scheme. The benchmark value
(φ = 1) implies that weights are an inverse function of distance, while higher values of φ lead
to a stronger decay of weights with distance. To test the sensitivity of our results, we repeat
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the BMA exercise for parameter values φ = 2, 3, 4, which imply faster decays of weights with
distance. We also show results obtained from imposing contiguity weights using a first-order
queen contiguity matrix with positive (equal) weights assigned only to bordering regions.12

Such a spatial structure implies that growth developments in a given region are affected by
the growth process in all (first-order) contiguous regions.

Figures 8 summarizes the results of the robustness exercise by plotting the PIP and stan-
dardized coefficients (PM/PSD) corresponding to each variable for the cases φ = 1, 2, 3, 4
and for the queen contiguity matrix. Posterior inclusion probabilities of the regressors in
our analysis are surprisingly insensitive to alternative weighting matrices. Statistical and
economic inference, measured by standardized coefficients, does not change qualitatively if
the weighting design is varied within decaying weighting schemes.13 The results including
a contiguity matrix result in general in lower PIP and —PM/PSD— values, although the
relative importance of growth determinants is left practically unaffected.

We also check for the sensitivity of results concerning the CEE dummy and its interaction
terms. In principle, it could be argued that the effects found in the analysis may not be
particular of CEE economies, but also be present in the subset of old member states with
lower income levels. We do so by obtaining BMA estimates from the SAR specification
allowing for parameter heterogeneity between periphery EU member states in Southern
Europe (Greece, Portugal and Spain). The results are shown in Table 4 and indicate that all
interaction terms have negligible posterior inclusion probabilities and thus old EU periphery
countries do not feature significantly different growth determinants or elasticities compared
to other European regions. Our results imply thus that the difference in the determinants of
growth dynamics between old and new member states is exclusive to this subsample division,
and no evidence of such heterogeneity in coefficients appears in peripherial Southern EU
member states.

5 Conclusions

We analyze the nature of robust determinants of economic growth in EU regions in the
presence of model uncertainty using model averaging techniques. Our paper contains some
important novelties compared to previous studies in the topic. On the one hand, we use
the most comprehensive dataset existing (to the knowledge of the authors) on potential
determinants of economic growth in European regions. On the other hand, we apply the
most recent Bayesian Model Averaging techniques to assess the issue of robustness of growth
determinants. In particular, we use spatial autoregressive structures, hyperpriors on model
size to robustify the prior choice on the model space and introduce a new methodology to
treat the issue of subsample parameter heterogeneity.

Our results imply that conditional income convergence appears as the most robust driving

12For a discussion of various weighting schemes see Anselin (1988).
13Brock and Durlauf (2001) discuss a decision-theoretic foundation for using such standardized coefficients.

In Masanjala and Papageorgiou (2008), for instance, explanatory variables with values of —PM/PSD— above
1.3 are dubbed “effective”.

12



force of income across European regions and has been fueled by the growth experience in
Eastern Europe. Convergence within countries, on the other hand, is concentrated in Western
European economies. Regions with capital cities present a systematic better performance
than other regions, although densely populated regions in Western Europe tend to present a
weaker growth performance. The importance of education as a growth engine appears also
clearly in the data, which show that a higher share of educated workers in the labor force
is positively associated with regional economic growth. We also find evidence for positive
spatial spillovers leading to growth clusters in EU regions. Once this feature of the data
is properly modeled, new insights on the regional growth process are gained: infrastructure
plays an important role as a determinant of growth and regions tend to profit from population
growth in neighboring regions. All results appear robust to alternative definitions of the
spatial weight matrix.
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Technical Appendix

MCMC sampler

This section briefly discusses the MCMC sampler we are using throughout the paper. Ex-
ploring the model space can be done via a range of search algorithms, here we use Markov
Chain Monte Carlo methods, which have been shown to have good properties in the frame-
work of BMA. The markov chain is designed to wander efficiently through the model space,
where it draws attention solely to models with non-negligible posterior mass. We use a a
birth/death MC3 search algorithm to explore the model space. In each iteration step a can-
didate regressor is drawn from kc ∼ U(1, K). We add (birth step) the candidate regressor
to the current model Mj if that model did not already include kc. On the other hand, the
candidate regressor is dropped if it is already contained in Mj (death step). In this sense,
the new model is always drawn from a neighborhood of the current one and differs from it
only by a single regressor.14 To compare the sampled candidate model to the current one
we calculate the posterior odds ratio resulting into the following acceptance probability,

p̃ij = min

[
1,
p(Mi)p(Y|Mi)

p(Mj)p(Y|Mj)

]
. (6)

MCMC and interaction terms

We have modified the birth/death MCMC sampler assigning positive prior model proba-
bilities solely to models that include all “relevant” regressors. That is, in case we have
(multiplicative) interaction terms all variables that belong to the interaction variable are
forced to enter the regression equation. Suppose we have a linear regression model with
covariate matrix X, which contains some element(s) from the set {A, B, C, AB} and we
draw the interaction term AB. The following cases arise:

Xcurrent = {C} ⇒ Xcandidate={A,B,C,AB} (birth step)
Xcurrent = {A,C} ⇒ Xcandidate={A,B,C,AB} (birth step)
Xcurrent = {A,B,C} ⇒ Xcandidate={A,B,C,AB} (birth step)
Xcurrent = {A,B,AB} ⇒ Xcandidate={A,B} (death step)
Xcurrent = {A,B,C,AB} ⇒ Xcandidate={A,B,C} (death step)

Now suppose we draw a single regressor A. If the current model is Xcurrent = { A, B, AB, C },
we would drop variables A and AB. Hence we do not allow for models including interaction
terms without their “parents” variables. This sampling method fulfills Chipman’s (1996)
strong heredity property, a possible guiding principle for model choice and model averaging
with related variables.

14See Eklund and Karlsson (2007) for a comparison of various sampling schemes with respect to compu-
tational time and convergence properties.
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Priors on the parameters and the log-marginal posterior for the
SAR model

We elicit a beta prior for ρ, Zellner’s g-prior for the coefficient vector ~β (see text), and a
gamma prior for the variance σ2,

p(σ2) ∼ (s̄2ν/2)(ν/2)

Γ(ν/2)
σ2(− ν+2

2
) exp

(
−νs̄

2

2σ2

)
p(ρ) ∼ Beta(a1, a2)

where we set a1 = a2 = 1.01 for the beta prior and ν = 1, σ2 = 1 for the variance corre-
sponding to diffuse prior settings.

The log integrated likelihood (equation 4) is given by15

p(ρ|Y,W) = K2

(
g

1 + g

)k/2
|IN − ρW|[νs̄2 + S(ρ) +Q(ρ)]−

N+ν−1
2 p(ρ) (7)

with

K2 =
Γ
(
N+ν−1

2

)
Γ(ν/2)

(νs̄2)ν/2π−
N−1

2

S(ρ) =
1

1 + g

[(
(IN − ρW)y −Xβ̂(ρ)− α̂ιN

)′ (
(IN − ρW)y −Xβ̂(ρ)− α̂ιN

)]
Q(ρ) =

g

1 + g

[
((IN − ρW)y − α̂ιN)′ ((IN − ρW)y − α̂ιN)

]
In contrast to standard linear regression analysis, where analytical expressions for all neces-
sary quantities exist (see e.g. Koop (2003)), the integrated likelihood for the SAR model still
depends on the spatial parameter ρ. Following LeSage and Parent (2007) we use numerical
integration over a fine grid of ρ ∈ [−1, 1]. The numerical integration part, and especially the
calculation of the matrix determinant, results in additional computational burden for doing
BMA in a SAR framework. It will become handy to write the SAR estimator (Pace and
Barry (1998)) as the difference of two estimators,

β̂SAR = β̂OLS − ρβ̂d (8)

βd = (X′X)−1X′Wy. (9)

Equation 9 illustrates that the ordinary least squares estimator is nested in the SAR speci-
fication. Since OLS estimates are misleading if ρ 6= 0 and the SAR model collapses to OLS
if observations are not spatially correlated (ρ = 0) we hold the spatial lag term Wy fixed
across SAR models. Thus the null model (without covariates) for the SAR specification is a
first order spatial autoregressive model including an intercept term.

15See LeSage and Parent (2007) for the exact derivation.
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Data Appendix

Country Region
Austria Burgenland Salzburg

Kärnten Steiermark
Niederösterreich Tirol
Oberösterreich Vorarlberg
Wien

Belgium Prov. Antwerpen Prov. Luxembourg (B)
Prov. Brabant Wallon Prov. Namur
Prov. Hainaut Prov. Oost-Vlaanderen
Prov. Liège Prov. Vlaams Brabant
Prov. Limburg (B) Prov. West-Vlaanderen
Région de Bruxelles-Capitale

Bulgaria Severen tsentralen Yugoiztochen
Severoiztochen Yugozapaden
Severozapaden Yuzhen tsentralen

Cyprus Cyprus Severovýchod
Czech Republic Jihovýchod Severozápad

Jihozápad Stredńı Cechy
Moravskoslezsko Stredn Morava
Praha

Denmark Denmark
Estonia Estonia
Finland land Länsi-Suomi

Etelä-Suomi Pohjois-Suomi
Itä-Suomi

France Alsace Île de France
Aquitaine Languedoc-Roussillon
Auvergne Limousin
Basse-Normandie Lorraine
Bourgogne Midi-Pyrénées
Bretagne Nord - Pas-de-Calais
Centre Pays de la Loire
Champagne-Ardenne Picardie
Corse Poitou-Charentes
Franche-Comté Provence-Alpes-Côte d’Azur
Haute-Normandie Rhône-Alpes

Germany Arnsberg Lüneburg
Berlin Mecklenburg-Vorpommern
Brandenburg - Nordost Mittelfranken
Brandenburg - Südwest Münster
Braunschweig Niederbayern
Bremen Oberbayern
Chemnitz Oberfranken
Darmstadt Oberpfalz
Detmold Rheinhessen-Pfalz
Dresden Saarland
Düsseldorf Saarland
Freiburg Schleswig-Holstein
Giessen Schwaben
Hamburg Stuttgart
Hannover Thüringen
Karlsruhe Trier
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Kassel Tübingen
Koblenz Unterfranken
Köln Weser-Ems
Leipzig

Greece Anatoliki Makedonia, Thraki Kriti
Attiki Notio Aigaio
Dytiki Ellada Peloponnisos
Dytiki Makedonia Sterea Ellada
Ionia Nisia Thessalia
Ipeiros Voreio Aigaio
Kentriki Makedonia

Hungary Dél-Alföld Közép-Dunántúl
Dél-Dunántúl Közép-Magyarország
Észak-Alföld Nyugat-Dunántúl
Észak-Magyarország

Ireland Border, Midlands and Western
Southern and Eastern

Italy Abruzzo Molise
Basilicata Piemonte
Calabria Bolzano-Bozen
Campania Trento
Emilia-Romagna Puglia
Friuli-Venezia Giulia Sardegna
Lazio Sicilia
Liguria Toscana
Lithuania Umbria
Lombardia Valle d’Aosta
Marche Veneto

Latvia Latvia
Lithuania Lithuania
Luxembourg Luxembourg (Grand-Duch)
Malta Malta
Netherlands Drenthe Noord-Brabant

Flevoland Noord-Holland
Friesland Overijssel
Gelderland Utrecht
Groningen Zeeland
Limburg (NL) Zuid-Holland

Poland Dolnoslaskie Podkarpackie
Kujawsko-Pomorskie Podlaskie
Ldzkie Pomorskie
Lubelskie Slaskie
Lubuskie Swietokrzyskie
Malopolskie Warminsko-Mazurskie
Mazowieckie Wielkopolskie
Opolskie Zachodniopomorskie

Portugal Alentejo Lisboa
Algarve Norte
Centro (PT)

Romania Bucuresti - Ilfov Sud - Muntenia
Centru Sud-Est
Nord-Est Sud-Vest Oltenia
Nord-Vest Vest

Slovak Republic Bratislavský kraj Východné Slovensko
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Stredné Slovensko Západné Slovensko
Slovenia Slovenia
Spain Andalucia Extremadura

Aragón Galicia
Cantabria Illes Balears
Castilla y León La Rioja
Castilla-la Mancha Pais Vasco
Cataluña Principado de Asturias
Comunidad de Madrid Región de Murcia
Comunidad Foral de Navarra Comunidad Valenciana

Sweden Mellersta Norrland Sm
◦
aland med öarna

Norra Mellansverige Stockholm
Östra Mellansverige Sydsverige
Övre Norrland Västsverige

United Kingdom Bedfordshire, Hertfordshire Kent
Berkshire, Bucks and Oxfordshire Lancashire
Cheshire Leicestershire, Rutland and Northants
Cornwall and Isles of Scilly Lincolnshire
Cumbria Merseyside
Derbyshire and Nottinghamshire North Yorkshire
Devon Northern Ireland
Dorset and Somerset Northumberland, Tyne and Wear
East Anglia Outer London
East Riding and North Lincolnshire Shropshire and Staffordshire
East Wales South Western Scotland
Eastern Scotland South Yorkshire
Essex Surrey, East and West Sussex
Gloucestershire, Wiltshire and Tees Valley and Durham
North Somerset
Greater Manchester West Midlands
Hampshire and Isle of Wight West Wales and The Valleys
Herefordshire, Worcestershire and Warks West Yorkshire
Inner London

Table A.1: European regions in the sample
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Variable name Description Source

Dependent variable
gGDPCAP Growth rate of real GDP per capita Eurostat

Factor accumulation/convergence
GDPCAP0 Initial real GDP per capita (in logs) Eurostat
gPOP Growth rate of population Eurostat
shGFCF Share of GFCF in GVA Cambridge Econometrics

Infrastructure
INTF Proportion of firms with own ESPON

website regression
TELH A typology of levels of household ESPON

telecommunications uptake
TELF A typology of estimated levels of ESPON

business telecommunications access and uptake
Seaports Regions with seaports ESPON
AirportDens Airport density ESPON
RoadDens Road density ESPON
RailDens Rail density ESPON
ConnectAir Connectivity to commercial airports by car ESPON
ConnectSea Connectivity to commercial seaports by car ESPON
AccessAir Potential accessibility air ESPON
AccessRail Potential accessibility rail ESPON
AccessRoad Potential accessibility road ESPON
AccessMulti Potential accessibility multimodal ESPON

Socio-geographical variables
Settl Settlement structure ESPON
OUTDENS0 Initial output density
EMPDENS0 Initial employment density
POPDENS0 Initial population density
RegCoast Coast ESPON
RegBorder Border ESPON
RegPent27 Pentagon EU 27 plus 2 ESPON
RegObj1 Objective 1 regions ESPON
Capital Capital city
Airports Number of airports ESPON
Temp Extreme temperatures ESPON
Hazard Sum of all weighted hazard values ESPON
Distde71 Distance to Frankfurt
DistCap Distance to capital city

Technological innovation
PatentT Number of patents total Eurostat
PatentHT Number of patents in high technology Eurostat
PatentICT Number of patents in ICT Eurostat
PatentBIO Number of patents in biotechnology Eurostat
PatentShHT Share of patents in high technology Eurostat
PatentShICT Share of patents in ICT Eurostat
PatentShBIO Share of patents in biotechnology Eurostat
HRSTcore Human resources in science and technology (core) Eurostat LFS
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Human capital
ShSH Share of high educated in working age population Eurostat LFS
ShSM Share of medium educated in working age population Eurostat LFS
ShSL Share of low educated in working age population Eurostat LFS
ShLLL Life long learning Eurostat LFS

Sectoral structure/employment
ShAB0 Initial share of NACE A and B Eurostat

(Agriculture)
ShCE0 Initial share of NACE C to E Eurostat

(Mining, Manufacturing and Energy)
ShJK0 Initial share of NACE J to K Eurostat

(Business services)
EREH0 Employment rate - high Eurostat LFS
EREM0 Employment rate - medium Eurostat LFS
EREL0 Employment rate - low Eurostat LFS
ERET0 Employment rate - total Eurostat LFS
URH0 Unemployment rate - high Eurostat LFS
URM0 Unemployment rate - medium Eurostat LFS
URL0 Unemployment rate - low Eurostat LFS
URT0 Unemployment rate - total Eurostat LFS
ARH0 Activity rate high Eurostat LFS
ARM0 Activity rate medium Eurostat LFS
ARL0 Activity rate low Eurostat LFS
ART0 Activity rate total Eurostat LFS

Table A.2: Variables, description and sources
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Spatial lags and
Periphery dummy inter.

Variable PIP PM PSD
AccessAir 0.924 0.0125 0.0053
AccessRoad 0.552 -0.0038 0.0041
AirportDens 0.884 6.0723 2.7937
Airports 0.037 0.0000 0.0001
ARH0 0.024 0.0004 0.0043
ARL0 0.021 -0.0003 0.0034
ART0 0.017 -0.0001 0.0030
Capital 1.000 0.0177 0.0022
ConnectAir 0.041 -0.0001 0.0006
ConnectSea 0.017 0.0000 0.0001
Distde71 0.031 0.0000 0.0000
DistCap 0.019 0.0000 0.0000
EMPDENS0 0.876 0.0137 0.0061
EREH0 0.020 0.0000 0.0027
EREL0 0.022 -0.0001 0.0018
ERET0 0.022 0.0004 0.0055
GDPCAP0 1.000 -0.0159 0.0031
gPOP 0.443 -0.0713 0.1147
Hazard 0.074 0.0000 0.0000
HRSTcore 0.019 0.0000 0.0014
INTF 0.018 0.0001 0.0018
OUTDENS0 0.060 0.0000 0.0001
PatentBIO 0.021 0.0013 0.0188
PatentHT 0.059 0.0024 0.0133
PatentICT 0.061 0.0018 0.0093
PatentShBIO 0.023 0.0003 0.0026
PatentShHT 0.016 0.0000 0.0010
PatentShICT 0.016 0.0000 0.0008
PatentT 0.039 0.0004 0.0027
POPDENS0 0.920 -0.0129 0.0047
RailDens 0.018 0.0000 0.0023
RegBoarder 0.036 0.0001 0.0004
RegCoast 0.111 -0.0005 0.0017
RegObj1 0.052 0.0001 0.0008
RegPent27 0.074 0.0003 0.0013
RoadDens 0.048 0.0004 0.0023
Seaports 0.049 0.0002 0.0012
Settl 0.016 0.0000 0.0002
ShAB0 0.022 0.0004 0.0040
ShCE0 0.135 0.0035 0.0101
shGFCF 0.069 0.0011 0.0049
ShLLL 0.141 -0.0048 0.0134
ShSH 0.064 0.0016 0.0076
ShSL 0.979 -0.0269 0.0080
TELF 0.329 -0.0007 0.0011
TELH 0.030 0.0000 0.0002
Temp 0.257 0.0009 0.0017
URH0 0.045 0.0014 0.0084
URL0 0.022 -0.0002 0.0020
URT0 0.027 -0.0005 0.0053
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W×EMPDENS0 0.059 -0.0011 0.0105
W×GDPCAP0 0.622 -0.0352 0.0310
W×gPOP 0.934 5.1590 2.1749
W×HRSTcore 0.520 0.1276 0.1390
W×OUTDENS0 0.032 0.0000 0.0002
W×POPDENS0 0.093 -0.0017 0.0071
W×RoadDens 0.072 -0.0050 0.0222
W×shGFCF 0.023 0.0000 0.0100
Periphery Dummy 0.033 0.0001 0.0025
Periphery Dummy×EMPDENS0 0.001 0.0000 0.0012
Periphery Dummy×GDPCAP0 0.001 0.0000 0.0003
Periphery Dummy×gPOP 0.000 0.0000 0.0029
Periphery Dummy×HRSTcore 0.000 0.0000 0.0000
Periphery Dummy×OUTDENS0 0.000 0.0000 0.0000
Periphery Dummy×POPDENS0 0.001 0.0000 0.0006
Periphery Dummy×RoadDens 0.000 0.0000 0.0002
Periphery Dummy×shGFCF 0.000 0.0000 0.0005
Model size (post. Mean) 12.18
Countries/Obs. 27/255
ρ estimate 0.4413

PIP stands for “Posterior inclusion probability”, PM stands for “Posterior mean” and PSD stands for “Pos-
terior standard deviation”. All calculations based on MC3 sampling with 1,000,000 replications. PIPs over
10% in bold.

Table 4: BMA results, cross-section of regions, spatial autoregressive specification with
Periphery Dummy
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Figure 1: Unconditional posterior distribution (based on 100 best models), conditional con-
vergence parameter: cross section without (top) and with (bottom) Central and Eastern
European dummy as a covariate
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Figure 2: Posterior distribution, W×GDPCAP0 parameter
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Figure 3: Spatial Distribution / No SAR but Interaction + country fixed effects

33



Figure 4: Spatial Distribution / No SAR but Interaction + country fixed effects
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Figure 5: Spatial Distribution / SAR + Interaction but no country fixed effects
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Figure 6: Spatial Distribution / SAR + Interaction but no country fixed effects
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Figure 7: Prior (red-dotted) and Posterior (blue) Distribution of Model Size: Cross-section
of regions, spatial autoregressive Specification with CEEDummy Interaction (Table 3, right
panel)
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Figure 8: Posterior inclusion probabilities and standarized coefficients for different W ma-
trices based on the estimation set up from Table 2 (Cross-section of regions, and CEE
interaction). We have used four distance (φ = 1, . . . , 4) and one contiguity (first order queen
contiguity, see Anselin (1988)) weighting schemes.
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