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Abstract

Computing tasks may be parallelized top-down by splitting into per-node chunks when
the tasks permit this kind of division, and particularly when there is little or no need for
communication between the nodes. Another approach is to parallelize bottom-up, by the
substitution of multi-threaded low-level functions for single-threaded ones in otherwise
unchanged user-level functions. This survey examines the timings of typical spatial data
analysis tasks across a range of data sizes and hardware under different combinations
of these two approaches. Conclusions are drawn concerning choices of alternatives for
parallelization, and attention is drawn to factors conditioning those choices.

Keywords: high performance computing, parallel computing, computer cluster, multi-core
systems, spatial statistics, benchmark, R.

1. Introduction

Innovations in methods of statistical data analysis can be presented and tested using open
source collaborative tools. Rey (2009, p. 197) has highlighted the important position of R
contributed packages in spatial data analysis. When innovations in methods occur, the devel-
opers often only explore the performance of their software on one platform, and are unable
to offer advice on how the implementations may perform on other platforms. While it would
be tempting to conduct this survey across commonly available high performance computing
platforms for a larger subset of techniques discussed in Bivand et al. (2008), attention will be
restricted to functions recently introduced into the spdep and spgwr contributed packages.

Calling the procedures undertaken in this survey “high performance computing” is slightly
impudent, as we will only be concerned with attempts to improve performance on standard
hardware; the comparisons should, however, scale up on specialised hardware provided that
similar conditions are matched. In general, more efficient and careful coding, building on the
output of profiling in R, is capable of providing substantial enhancements to performance,
as described in R Development Core Team (2010c, pp. 53–55). Once these avenues have
been exhausted, it is possible to look to a better exploitation of the available resources on the
platforms at hand. In this survey, we will consider two approaches, and what happens when
they are applied separately and jointly.

Using a range of hardware under different operating systems, running the same version of R,
we will compare run times for a selection of tasks encountered in spatial data analysis for
the chosen approaches. The timings were taken once for each combination of conditions on
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otherwise lightly loaded machines. The results are used as a basis for recommending which
choices may be appropriate under given conditions, for both developers and users.

2. Using R for spatial data analysis

Methods innovations are now often published in geography and GIS journals as formulae,
with no (pseudo) code implementation or example data set with results. Only rarely do
referees ask to see data or code, usually basing their recommendations on the “manuscript”
alone. This leads to substantial barriers to reproducible research, as, not infrequently, no
reference implementation is available. In the examples used below, collaboration with the
researchers developing new methods of analysis has been crucial to establishing that the R
implementations are reasonable representations of those methods.

The first key facility for reproducible research provided by the R project is the full availability
of source code, and of details of changes in the code over time. The second facility is full
journalling and scripting, permitting all operations to be reconstructed (including RNG seeds).
Thirdly, R provides through Sweave (Leisch and Rossini 2003) for the writing of code and
text in the same document, arguably helping to keep results and text synchronised. Finally,
because the R project is a successful collaborative forum, with over 2500 contributed packages
on CRAN and high-traffic mailing lists, there are plenty of critical voices and alternatives —
for insight into the R communities, see Fox (2009).

Spatial data anaysis using R now covers the needs of students, researchers and practitioners
across a range of disciplines; for an overview, see the R contributed packages referenced
and used in Bivand et al. (2008).1 The volume of spatial data is highlighted by some as
a major challenge, and requires care in data representation and management. However, as
the raster package shows effectively (Hijmans and van Etten 2010), one can achieve much
by forethough and careful coding, here using tiling of image data to permit large objects
to be processed chunk by chunk. In fact, challenges come just as much from innovative
computational methods, the focus of attention here. Rossini et al. (2007) use several spatial
data analysis examples in their presentation of the benefits of parallel computing, so going
spatial is not just a choice geographers might make.

3. Using multiple cores: principles

Since most contemporary computing hardware is furnished with one or more multi-core CPU,
it is tempting to try to use more than one computing thread at a time to get work done faster.
Scheduling the allocation of processes and threads to cores is hard, and modern operating
systems typically try to balance an appearance of high responsiveness with throughput. Very
often at least one core will be at least partly occupied with event loops tracking possible input
activity, both from input hardware and from network origins. It is really only on dedicated
clusters that the numerical computation process will be given the full attention of the node.
Elsewhere, competition for resources will take place, and is unavoidable, and probably even
undesirable. Even so, much better use can still be made of the computing resources of standard
hardware than is typically the case at present.

1See also the Spatial task view: http://cran.r-project.org/view=Spatial.

http://cran.r-project.org/view=Spatial
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The R engine itself is single-threaded and vectorised (R Development Core Team 2010a), for a
recent review, see Tierney (2009). Luke Tierney has been central in advancing both of the two
approaches to be considered in this survey. For want of better terminology, we will describe
the approaches as bottom-up and top-down. In bottom-up parallelization, the changes are
made within the functions that the developer would use, so that operations utilize available
resources without the need for a user to start and stop a cluster. Top-down parallelization
on the other hand requires the availability of a cluster, among the nodes of which chunks of
work are distributed.

The distinction between the bottom-up and top-down approaches is different from the es-
tablished definitions of fine-grained, coarse-grained, and embarrassingly parallel applications,
which range from high-frequency communication between tasks on compute nodes, through
low-frequency communication to no communication at all between tasks on nodes apart from
initialization from the administrator node to workers, and from workers to adminstrator on
completion. In spatial data analysis, it is often the case that computing tasks are embarrass-
ingly parallelizable.

In Tierney (2009, pp. 220–222), the question of how to parallelize R functions is raised
— this corresponds to our bottom-up approach. Some may be attacked through the use
of a parallelized BLAS library that will be used on multiple threads instead of the default
single-threaded linear algebra subroutines provided on most platforms. The use of alternative
enhanced BLAS is described in detail in R Development Core Team (2010b, pp. 33–36). Only
R binaries for OSX are built by default for the vecLib enhanced BLAS, which is threaded;
for details see point 12.5 of the R for Mac OSX FAQ.2 In addition to enhanced BLAS, work
is in progress on parallelizing the underlying R mathematical functions library in the pnmath
package, as described by Schmidberger et al. (2009, p. 10).

The top-down approach is represented here by the snow package, discussed by Rossini et al.
(2007) and Tierney et al. (2009), and provides simple mechanisms for parallel computing in R.
A recent comparison by Schmidberger et al. (2009) indicates that the socket communication
mechanism in snow is efficient, even compared to PVM and MPI; it works without extra soft-
ware under Windows. Using additional packages depending on snow, it is possible to offer an
apparently simpler interface and some fault tolerance (Knaus et al. 2009; Schmidberger et al.
2009). For our purposes, however, snow using sockets provides the most general mechanism
for administering a cluster, for splitting tasks between nodes, and for executing the split task
across available nodes. It is crucial in simulation tasks to ensure that the worker nodes do
not use closely correlated streams of random numbers. Using snow, this may be secured by
the use of the rlecuyer package interfacing the random number generator streams described
in L’Ecuyer et al. (2002).

As we have seen, if work can be chunked into independent parts, then it can be profitably
distributed to worker nodes when the splitting/collation overhead is not too large. Typically,
bootstrap and Monte Carlo simulations can be readily chunked up for worker nodes. The
same applies to predictions from the same fitted model for splittable new data, and similar
operations. MCMC computations in chains are time-series dependent, but the chains them-
selves are independent, so can be distributed to worker nodes. The potential usefulness of the
top-down approach will depend on the balance between the extra overhead incurred in the
splitting of tasks, the transfer of objects to nodes, and the collation of results from nodes. In

2http://cran.r-project.org/bin/macosx/RMacOSX-FAQ.html

http://cran.r-project.org/bin/macosx/RMacOSX-FAQ.html
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some cases, the overhead consumes any benefit from parallel execution, in others, the set-up
and collation timings are insignificant, and parallel computation delivers time savings that
are directly proportional to the number of nodes in the cluster.

Returning to the bottom-up approach, very detailed structuring of code within BLAS can
enhance performance. It is important to note that performance may be enhanced, but may
alternatively suffer degradation if the hardware and configuration analysis made by the en-
hanced BLAS no longer match. It is wise to note that: “using a multi-threaded BLAS can
result in taking more CPU time and even more elapsed time (occasionally dramatically so)
than using a similar single-threaded BLAS” (R Development Core Team 2010b, p. 33).

The R installation manual (R Development Core Team 2010b) mentions a number of enhanced
BLAS options. ATLAS BLAS (Whaley et al. 2001; Whaley and Petitet 2005) may be built
from source, and the number of threads to be used is set at compile time. It is also available
as a binary dynamic-link library for 32-bit Windows for a number of processor architectures.3

The Core2Duo build of the ATLAS BLAS DLL does not appear to use more than one core
under Windows, although execution seems to jump from core to core less than with the BLAS
DLL distributed as part of the R Windows binary. As mentioned above, the R OSX binaries
by default use the Apple vecLib BLAS,4 which is also used by many applications, including
the main GUI, to speed up operations. It appears that the number of threads used is the
maximum available.

GotoBLAS2 is built from source following individual download;5 it is a further development
of GotoBLAS. The analyses reported in Goto and van de Geijn (2008b,a) show that even on
cores of equal specification speed, the built GotoBLAS binaries will also differ because they
are optimised to the size of the translation look-aside buffer and L2 cache for each core. This
is because, with different TLB and L2 cache sizes, matrix chunks of different sizes can be
kept close to the CPU registers. The TLB is a local store of recently used pages, avoiding
the need to go out to RAM when a reference can be found. The analysis made at compile
time takes into account the size configuration of the host machine, customizing the choices to
match its architecture as closely as possible. As built, GotoBLAS by default uses the number
of cores visible, but by setting an environment variable GOTO_NUM_THREADS before starting
the application that will load BLAS, the number of threads used can be controlled, albeit not
dynamically.

4. Using multiple cores: practice

We will try out a number of spatial tasks, using data sets of varying size, several different
computers, operating systems, and BLAS versions. Comparative wall-clock timings will be
used to compare runs of the tasks; the timings match manual stopwatch measurements ade-
quately. Because the timings are only taken once for each combination of conditioning factors,
small differences are not to be interpreted as real differences, as they may have arisen from
other processes on the computers.

Four (five) machines were used for trials, an HP DC7900 8GB, 4 core Q9400 2.66GHz computer
(cache 3072 KB per core); an HP DC7800 4GB, 2 core E8500 3.16GHz computer (cache 6144

3http://cran.r-project.org/bin/windows/contrib/ATLAS/.
4http://developer.apple.com/hardwaredrivers/ve/vector_libraries.html.
5http://www.tacc.utexas.edu/tacc-projects/gotoblas2/.

http://cran.r-project.org/bin/windows/contrib/ATLAS/
http://developer.apple.com/hardwaredrivers/ve/vector_libraries.html
http://www.tacc.utexas.edu/tacc-projects/gotoblas2/
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KB per core); a MacBook 4GB, 2 core T8300 2.4GHz computer (cache 3072 KB per core);
and a Lenovo T60 Thinkpad 1GB, 2 core T5600 1.83GHz (cache 2048 KB per core). The
DC7900 and DC7800 computers were running Red Hat Enterprise Linux, kernel 2.6.18, 64
bits, the MacBook was running OSX 10.5.8, 64 bits. The Thinkpad was running Fedora 12,
kernel 2.6.32, 32 bits; it was also running Microsoft Windows XP SP3, 5.1.2600, 32 bits. All
were running R 2.10.1, snow 0.3-3, spdep 0.5-4 and spgwr 0.6-6.

R ships with an unthreaded, non-optimised BLAS, which can serve as a baseline for comparison
with fast BLAS versions. The four fast BLAS variants used in these trials were the vecLib
BLAS provided as standard on the OSX platform, non-threaded ATLAS BLAS for Windows
Core 2, downloadable from CRAN as a binary replacement for Rblas.dll, and two versions of
GotoBLAS built from source on Linux platforms. As discussed above, GotoBLAS interrogates
the host system at build time to customise the built dynamically loadable library (shared
object); the number of threads used can be set by an environment variable ranging from 1
to the number of cores/processors on the host — here we report one, two (all GotoBLAS2
platforms) and four threads (DC7900 only).

Since two source versions of GotoBLAS were avaliable (here termed GotoBLAS (1.26) and
GotoBLAS2 (1.10)), they were both used as they showed differing performance. Results for
GotoBLAS are not reported, as trials failed to complete when the number of snow workers
were equal to the maximum number of BLAS threads. It appears that GotoBLAS2 guards
against such competition for resources. Of course, users should be conscious of the dangers of
trying to parallelize top-down and bottom-up at the same time, but it is useful to establish
how robust parallelization options are to lack of user caution.

4.1. Local Moran’s Ii under the alternative

The first task is to reproduce the local Moran’s Ii exact calculations under the alternative
with no spatial autocorrelation from Bivand et al. (2009); details of the statistic may be found
in that paper, and the function is localmoran.exact.alt in spdep. It is run on the Upper
Austria data set of 445 communities provided as supplementary material to the original paper.
In a footnote on p. 2866, it was noted that the use of a fast threaded BLAS (GotoBLAS)
had speeded up the computation of local Moran’s Ii exact calculations under the alternative.
Exact local Moran’s Ii under the alternative involves the calculation of the eigenvalues of an
N×N matrix for each i, i = 1, . . . , N , in addition to some N×N dense matrix multiplications,
and numerical integration using integrate. The matrix multiplications and solution of the
eigenproblem may benefit from an enhanced BLAS.

Figure 1 shows an ordering the timings of running this task, grouping on whether snow is
used or not, and on the number of workers if used. In the footnote in the paper referred to
above, which provoked Michael Tiefelsdorf to ask for this survey of parallelization for spatial
statistics, snow was not used.6 The computer used in that paper is no longer available, but
is most similar to the Thinkpad under Fedora 12 without snow with GotoBLAS2 using two
threads (131s) and with RBLAS (205s). When snow is not used, the enhanced BLAS using
the maximum number of threads is always dominant.

We can see that increasing the number of snow workers helps, and increasing the number
of threads in GotoBLAS2 then hinders improvements in elapsed time when using snow. On

6(Tiefelsdorf 2002) provides an alternative approach to inference from local Moran’s Ii using a Saddlepoint
approximation
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Figure 1: Local Moran’s Ii under the alternative; timing comparisons.

all machines, enhanced BLAS on one thread with the maximum number of workers wins,
a clear case of an embarrassingly parallel problem. Note that the vecLib BLAS with two
snow workers (95s) is faster than without snow (128s), despite competition for resources;
this suggests that OSX does a reasonable job of moderating between running processes. The
fastest performance was on the DC7900 with four snow workers (39s) with a single threaded
GotoBLAS2, and RBLAS (56s). Very similar execution times on the same machine with
two and four GotoBLAS2 threads (108s) show the degradation caused by competition for
performance, here not moderated by the operating system, and that GotoBLAS2 appears to
limit the degradation if the user has made unfortunate choices.

4.2. Monte Carlo tests by permutation bootstrap

The second task is to run Monte Carlo tests on the approximate profile-likelihood estimator
of spatial autocorrelation in detrended data (APLE, Li et al. 2007), using permutation boot-
strap; the function used is aple.mc in spdep, with the exaggeratedly large number of 5000
simulations. The Mercer and Hall wheat yield data (n = 500) as presented by Cressie (1993)
and used in Li et al. (2007) is provided in spdep, and is used here too. Each simulation in-
volves two multiplication of sparse matrices of size N×N by vectors of size N , using methods
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Figure 2: APLE Monte Carlo tests by permutation bootstrap; timing comparisons.

in the Matrix package, which are equivalent to level 2 BLAS operations, and so less likely to
be speeded by enhanced BLAS for this moderate N .
For some functions in the spdep package, a snow cluster may be set in an option, which by
default is NULL, for ncl the desired number of nodes:

> library(snow)

> cl <- makeCluster(ncl)

> set.ClusterOption(cl)

Functions such as Monte Carlo tests may then test internally to see whether a cluster is
available, and use it if this is the case. The internal set-up code will then make sure that
clusterSetupRNGstream is called, and that the required packages are loaded on the worker
nodes. The number of simulations will be divided between the nodes, and parLapply used to
parallelize the call to boot in the boot package. A final wrapper is used to re-assemble the
output object, so that the shapes of objects with and without cluster use agree. Because of
the different random number streams, the cluster and non-cluster objects are not identical,
although either can be replicated by setting seeds.
Figure 2 shows that Monte Carlo tests by permutation bootstrap are also embarrassingly
parallel, and indeed in all three worker variants, the unoptimised R BLAS comes out fastest.
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The overall fastest execution uses four workers, with degradation setting in when the BLAS
tries to use multiple threads, again because of competition for resources. When snow is not
used, the platforms display flat responses to changes in BLAS, so in this function for this N ,
there is no benefit from using an enhanced BLAS, but also no disadvantage.

4.3. Spatial Durbin impact measures

The third task is to carry out Monte Carlo tests on impact measures for a spatial Durbin
model, using the Lucas County OH house price data set (n = 25357), from the Matlab spatial
econometrics toolbox, and provided as a data set in spdep. Monte Carlo tests based on
simulations of impact measures from fitted spatial lag or spatial Durbin models should be
used instead of interpreting their coefficients. The spatial lag model (LeSage and Pace 2009)
is the most frequently encountered specification in spatial econometrics:

y = ρWy + Xβ + ε,

where y is an (N × 1) vector of observations on a dependent variable taken at each of N
locations, X is an (N ×k) matrix of exogenous variables, β is an (k×1) vector of parameters,
ε is an (N×1) vector of independent and identically distributed disturbances and ρ is a scalar
spatial lag parameter.

In the spatial Durbin model, the spatially lagged exogenous variables are added to the model:

y = ρWy + Xβ + WXγ + ε,

where γ is an ((k − 1)× 1) vector of parameters where W is row-standardised, and a (k × 1)
vector otherwise. It is clear that these two models may be estimated in the same way,
for example by maximum likelihood. The specific problem lies in the fact that the spatial
dependence in the parameter ρ feeds back, obliging analysts to base interpretation not on
the fitted parameters β, and γ where appropriate, but rather on correctly formulated impact
measures (LeSage and Pace 2009, p. 33–42). For the spatial Durbin model, the impact
measures for X variable r is defined using Sr(W) = (I − ρW)−1(βrI + γrW). The direct
impact for variable r is taken as the average of the diagonal elements of Sr(W), the total
impact the average of all elements of Sr(W), and the indirect impact the difference between
these two (LeSage and Pace 2009; Elhorst 2010).

Impact measures for a fitted model may be fitted readily by expressing the intractible (I −
ρW)−1 term as a series of traces of powers of W, which may be approximated by Monte
Carlo methods (LeSage and Pace 2009, p. 114–115). It is more difficult to infer from these
measures, as they are not simple functions of the estimated coefficient standard errors. The
prefered approach is to draw samples from the multivariate distribution described by the
fitted coefficient values and their variance-covariance matrix, and conduct a Monte Carlo test
on the impact measures. In spdep impacts methods, the multivariate samples are drawn in
one operation, rather than in bootstrap fashion or by MCMC-style random walk — this is to
avoid repeated decompositions of the variance-covariance matrix in mvrnorm from the MASS
package (Ripley 1987, p. 98). From then on, it appears that running the sequence of impact
measures calculations by row on the matrix of draws of coefficient values could be susceptible
to parallelization, by splitting the sequence into chunks.
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Figure 3: Monte Carlo tests on impact measures for a spatial Durbin model; timing compar-
isons.

In fact, as Figure 3 shows clearly, the reverse is the case, and snow workers just get in the
way. Examining only the no-worker variants, we see that threaded and optimised BLAS do
not speed up the computation. It appears that the overhead involved in spreading matrix
multiplication across threads for quite small matrices is too high, and is detected as such by
GotoBLAS2. Of course, the initial setup and the collation of results does not involve linear
algebra. It remains possible that these serialization and communication operations between
the administrator node and the worker nodes are unnecessarily burdensome, if the objects
moved become larger than needed through scoping; this will be investigated.

4.4. Spatial filtering

Spatial filtering approaches the accommodation of spatial autocorrelation in regression resid-
uals by including chosen eigenvectors of a doubly-centred spatial weights matrix in the regres-
sion model, to “whiten out” the spatial patterns. The eigenvectors represent a decomposition
of spatial patterns encoded in the spatial weights matrix, and their chosen subset constitutes
a “model” of the autocorrelation. (Tiefelsdorf and Griffith 2007) describe how the eigenvec-
tors for inclusion may be selected from among the N candidates by brute force, reducing the
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Figure 4: Spatial filtering; timing comparisons not using snow.

residual autocorrelation step-by-step. Each step involves many matrix multiplications, but
the brute force search does not appear to offer any opportunities for top-down parallelization.

Consequently, the only source of faster execution are threaded and optimised BLAS, to the
extent that these subroutines are called. Here we see that the best choice is the faster DC7800
with a double-threaded GotoBLAS2 on cores with larger L2 cache, about three times faster
than R BLAS, on the moderately sized Boston hedonic house prices data set N = 506.
Interestingly, the GotoBLAS2 two and four thread timings on the four-core platform with
smaller L2 cache are very similar, despite all four cores being engaged when four threads were
used. Perhaps this reflects extra overhead when moderate sized matrices are being reorganized
for computing on multiple cores for the L2 cache resources available. Trying out different sized
data sets might show when this overhead becomes worthwhile.

4.5. Geographically weighted regression

Geographically weighted regression as introduced by Brunsdon et al. (1998) involves first
choosing a bandwidth (for example by cross-validation) for a two-dimensional kernel placed
on the points at which data was collected for fitting weighted linear models, then using the
kernel with this bandwidth to weight the distances between data points and fit points. These
weights are then used to fit a weighted linear model at each fit point using the same data and
bandwidth, but obviously dfferent weights at each fit point. The intention is to examine any
spatial patterns that may emerge from mapping the local coefficients at the fit points, which
may be the same as the data points (Fotheringham et al. 2002); these patterns may be helful
in identifying missing variables.

Harris et al. (2010) show that both steps may be parallelized on a Grid: in the cross-validation
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Figure 5: Geographically weighted regression bandwidth cross-validation at N data points;
timing comparisons not using snow.

step over the data points, the distances between blocks of data points can be computed
once and recycled if the regressions are distributed across nodes. If the nodes are separate
processing entities, each with plenty of memory, the splitting of the N×N distance matrix by
row makes sense, but on a single multi-core computer, this is not the case. In the computation
of the geographically weighted regressions at the fit points, it is clear that spreading the fit
points across nodes will lead to savings in execution time.

Using the NY leukemia data (N = 281) presented in Waller and Gotway (2004), we first exam-
ine the performance of standard gwr.sel in the spgwr package for cross-validation bandwidth
selection without snow — no parallelization of this step was attempted. Figure 5 shows little
variation in performance between the BLAS variants examined by platform. It is a little
worrying that GotoBLAS2 using a number of threads equal to the number of cores always
comes out slower than single-threaded alternatives. It is possible that the repeated execution
of lm.wfit for this N involves a mixture of matrix operations that misleads the attempts of
GotoBLAS2 to optimize its work across the cores.

Figure 6 shows clearly that splitting the fit points for which geographically weighted regres-
sions are to be estimated is worthwhile for this number of fit points. As we have seen before,
when top-down parallelization is being used, permitting an optimized threaded BLAS to com-
pete for resources leads to serious degradation of performance. The best timings of 4.1s using
the fore-core machine with an unenhanced BLAS and 4.3s with a single-threaded GotoBLAS2
on the same platform can be compared on the same machine with no snow parallelization of
10.9s and 10.5s repectively. When four cores are used by snow, the four core GotoBLAS2
(11.4s) is slower than when snow is not used. The same degree of performance degradation is



12 Exploiting Parallelization in Spatial Statistics

Thinkpad_XP RBLAS 
Thinkpad_XP ATLAS 
Thinkpad_F12 GotoBLAS2 2 threads
Thinkpad_F12 RBLAS 
Thinkpad_F12 GotoBLAS2 1 thread
MacBook RBLAS 
MacBook vecLib 2 threads
DC7900 GotoBLAS2 4 threads
DC7800 GotoBLAS2 2 threads
DC7900 GotoBLAS2 2 threads
DC7900 RBLAS 
DC7900 GotoBLAS2 1 thread
DC7800 RBLAS 
DC7800 GotoBLAS2 1 thread

DC7900 GotoBLAS2 2 threads
DC7900 GotoBLAS2 4 threads
DC7900 GotoBLAS2 1 thread
DC7900 RBLAS 

Thinkpad_XP ATLAS 
Thinkpad_XP RBLAS 
Thinkpad_F12 GotoBLAS2 2 threads
DC7900 GotoBLAS2 4 threads
Thinkpad_F12 RBLAS 
DC7900 GotoBLAS2 2 threads
Thinkpad_F12 GotoBLAS2 1 thread
DC7800 GotoBLAS2 2 threads
MacBook vecLib 2 threads
MacBook RBLAS 
DC7800 RBLAS 
DC7800 GotoBLAS2 1 thread
DC7900 RBLAS 
DC7900 GotoBLAS2 1 thread

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

2 workers

4 workers

no_snow

10 20 30 40

GWR fitting on 20000 points: NY leukemia data

seconds

Figure 6: Geographically weighted regression — fitting at a grid of 20,000 fit points; timing
comparisons.

not observed for vecLib BLAS, which is less aggressively optimized for matrix multiplication
than GotoBLAS2. Using snow for top-down parallelization on the OSX platform reduces
execution times to 7.7s for both BLAS from 12.7s for both BLAS.

5. Conclusions

As we have seen, understanding how the interpreted languages used for coding “view” the
hardware resources is important. Balancing coding effort with flexibility and choice offered
to users is also important, so that users have the tools needed to get their work done in a
customised way. In some cases this means advocating the use of multicore architectures as
top-down clusters, in others as resources for bottom-up threaded and optimised computation,
and in yet others as not directly relevant. In addition, the advice one might give for a given
method might change depending on the size of the data being analysed, both the number of
spatial entities, and the number of variables involved.

Only the R binary for OSX comes with a fast BLAS library enabled by default; its performance
when competing for resources with snow workers is acceptable. On some tasks the vecLib
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BLAS clearly dominates the standard R BLAS (local Moran’s Ii and spatial filtering), on
others they perform similarly, but in none of these cases does the use of the vecLib BLAS
lead to degraded performance. One can conclude that the analyst may rely on the vecLib
BLAS to give reasonable performance on tasks similar in nature and size to those run here,
also when top-down parallelization is used, but subject to the reservations made in the the R
for Mac OSX FAQ.

The Windows R ATLAS BLAS is only available for some processor architectures; building
one’s own is possible under CygWin, but demands considerable skill. Again, in some cases
the ATLAS BLAS used here performed better than the standard R BLAS (local Moran’s
Ii, spatial filtering, GWR bandwidth cross-validation and GWR fitting); again, in no case is
standard BLAS very much better than ATLAS BLAS. If an ATLAS BLAS binary is available
that matches the platform in use, it may lead to better performance in some cases, such as
the spatial filtering example, which involved many matrix and vector operations.

On the same hardware, but running under Fedora 12, the standard R BLAS is sometimes faster
than ATLAS BLAS under Windows, sometimes a little slower than it, but always faster than
the Windows standard R BLAS. Under Fedora 12, GotoBLAS2 offers further opportunities for
enhanced performance. All of the platforms compared here are running other software at the
same time, and a proportion of the “attention” of the operating system, and of the available
capacity of the processors, is absorbed in“housekeeping”, such as running event loops on input
devices, and watching for incoming network traffic. Although extraneous programs were not
executed during these trials, it does appear that different operating systems absorb different
levels of processing resources; naturally, this can be overcome by upgrading the hardware
rather than by switching operating system.

Finally, it is important to recognise that top-down and bottom-up parallelization approaches
do not mix well. Although threaded GotoBLAS2 recognizes resource race situations, its
performance is seriously degraded when being run multi-threaded on multiple cluster nodes
causing resource competition. For tasks for which top-down parallelization is chosen, it is
important to restrict the number of threads in enhanced BLAS such as GotoBLAS to one
only.7

In the context of snow socket clusters, it appears to be possible to start each node using the
appropriate environment variable to ensure that the enhanced BLAS on each node only uses
one thread, reducing possible competition to that between any multi-threaded BLAS on the
administrator node and the R processes on the worker nodes:

> library(snow)

> rscript <- paste("GOTO_NUM_THREADS=1", paste(R.home("bin"), "Rscript",

+ sep = .Platform$file.sep))

> cl <- makeCluster(ncl, type = "SOCK", rscript = rscript)

As we have seen, parallelization may be exploited in spatial statistics. It is much harder to
recommend how it should be exploited, whether by top-down or bottom-up approaches, or a
combination of the two approaches varying with the kinds and sizes of the computational tasks
being undertaken. Indeed, the effort involved in trying to parallelize a task may be better
spent in improving the efficiency of existing code, or resources may rather be channelled

7See Kazushige Goto’s comment “If you use your multi-threaded code which calls BLAS, you should use
single threaded version”, https://lists.tacc.utexas.edu/pipermail/gotoblas/2009-March/000177.html;
the comment applies to compiled and linked applications, but is relevant here.

https://lists.tacc.utexas.edu/pipermail/gotoblas/2009-March/000177.html
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to hardware upgrades. However, when much linear algebra on sufficiently large matrices is
involved, an enhanced BLAS may be a sensible choice, and when a task really is embarrassingly
parallelizable, it probably should be parallelized if the available hardware permits.
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