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Abstract

Recent advances in spatial econometrics model fitting tquka have
made it more desirable to be able to compare results andgsnifResults
should correspond between implementations using diffegeplications, while
timings are more readily compared within a single applaratiA broad range
of model fitting techniques are provided by the contribilRguhckages for spa-
tial econometrics. These model fitting techniques are @ssacwith methods
for estimating impacts and some tests, which will also begmeed and com-
pared. This review constitutes an up-to-date demonstratidgechniques now
available inR, and mentions some that will shortly become more generally
available.

1 Background

Researchers applying spatial econometrics to empiricah@unic questions now
have a wide range of tools, and a growing literature suppgiese tools. Dur-
ing the 1990s, it was typical for researchers to use tooledad Fortran or other
general programming languages, or to seek to integratdiunginto existing sta-
tistical and/or matrix language environments. The use afiapeconometrics tools
was widened by the ease with which methods and examplesnpeesie

(1988) could be reproduced using SpaceStawritten in GausE™, and shipped as

a built runtime module. It was rapidly complemented by thatih Econometrics
toolbox for Matlad™, provided as source code together with extensive documenta
tionl This toolbox is under active development, and accepts ibotéd functions,
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thus broadening its appeal. In addition Griffith and | ayn@9d) gave code list-
ings for model fitting techniques using SASand SPS8. A suite of commands
for spatial data analysis for use with Stefawas provided by Maurizio Pisati, and
distributed using the standard contributed command sy i[2001).

The thrust of SpaceStaf has largely been taken over by Geomt al.,
M), and more recently by OpenGe(ﬂ)a.he same team has just launched the
Python spatial analysis IibraE/.Since theR language and environment became
available in the later 1990s, collaborative code develapnh@s proceeded with
varying speed. Initial attempts to implement spatial ecoaics techniques were
checked against SpaceStat and subsequently against Maurizio Pisati’s Stata
code and GeoDa by comparing results for the same input datagatial weights
(Bivand and Gebhardt, 2000; Bivand, 2002).

More recently, comparisons on the same hardware under lliaug been made
using OpenGeoDa under Wileand using Octakinstead of MatlaB" with the
Spatial Econometrics toolbox. The source code oRlIspdep package is available
from the Comprehensivg Archive Network (CRAN), and the current development
status is accessible at R-Fo@binary packages are also available at CRAN.

In the spirit oﬂ_R_eL/mg), this comparison will attempt taaeine some fea-
tures of the implementation of functions for fitting spate&donometrics models
in spdep with those in the Spatial Econometrics toolbox (release NUUGDctave
3.0.5) and in OpenGeoDa (release 0.9.8.14, Wine 1.0.1).dditian, associated
measures will also be compared. Within the Spatial Econvesetoolbox and
spdep, it is possible to choose between technical details in impletation, and
the consequences of such choices will also be considered.

The analysis has been carried out on an Intel Core-2 Duo tgybtem with
4GB RAM runningR 2.11.1 (R Development Core Tedm, 201)gtrix 0.999375-
43, andspdep 0.5-21, under Red Hat Enterprise Linux 5; a threaded GotaBLA
1.26 library optimised for the hardware was used, with géort4.1.2 for Fortran
compilation. Two data sets distributed wipdep are used; both originated from
the Spatial Econometrics toolbox, and are provided here pri¢-build lists of spa-
tial neighbours. A broad survey of the analysis of spatighdatheR environment

is given by Bivand|(2006); Bivand etlal. (2008).

%http://geodacenter.asu.edu/ogeoda, source code not yet exposed at:
http://code.google.com/p/opengeoda/.

3http://code.google.com/p/pysal/.

4Wine emulates the Microsdftt Windows™ operating environment

Shttp://www.gnu.org/software/octave.

®https://r-forge.r-project.org/projects/spdep/
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1.1 US 1980 election turnout data set

The US county data set with 3107 observations includes a Pe&8idential elec-
tion turnout variable with a single county (Hinsdale Coyi@{) with a value over
unity — most likely from cross-border voting in this remotgal area. We define
a formula relating this variable to income ($1000) per intedt over age 19, the
number with college degrees as a proportion of all over ageattd homeowner-
ship as a proportion of all over age 19. The right hand sideles are taken as
logarithms, as in the fileata/elect.txt in the Spatial Econometrics toolbox.

> library(spdep)

> data(elect80)

> eform <- formula(pc_turnout ~ log(pc_income) + log(pc_college) +
+ log(pc_homeownership))

A shapefile is written for OpenGeoDa after adding the logami of the right hand
side variables to thepatialPointsDataFrame ObjeCtelect80:

elect80$1_pc_income <- log(elect80%$pc_income)
elect80$1_pc_college <- log(elect80$pc_college)
elect80$1_pc_homeownership <- log(elect80$pc_homeownership)
writeSpatialShape(elect80, "elect80")

vV Vv Vv Vv

Similarly, a model matrix is generated using the formula riedi above and the
elect80 Object, and augmented with the dependent variable for éxpbe used in
Octave:

> mm0 <- model.matrix(eform, data = elect80)

> mm <- cbind(elect80$pc_turnout, mm0)

> write.table(mm, file = "Elect80.txt", row.names = FALSE,
+ col.names = FALSE)

The data set provided spdep includes a number afb objects listing the neigh-
bours of the counties in the data set using different defingi Here we will use
a Queen contiguity scheme constructed using a shapefiletirerdSGS National
Atlas site, file: co1980p020.tar.gz. This object contains four counties with no
neighbours:

> e80_queen

Neighbour list object:

Number of regions: 3107

Number of nonzero links: 18126
Percentage nonzero weights: 0.1877671
Average number of links: 5.833923

4 regions with no links:

1183 1189 1832 2945



Because of this, an option is set to permit computations wimgeassumption that
the lagged value of a variable for a county with no neighbooay be set to zero

(Bivand and Portnov, 2004). We writesaL file to be read into OpenGeoDa, and a

triplet-type sparse matrix text file to read into Octave:

set.ZeroPolicyOption (TRUE)
write.nb.gal(e80_queen, file = "e80_queen.gal")
elw <- nb2listw(e80_queen)

esn <- listw2sn(elw)

write.sn2dat (esn, file = "E80_queen_W.txt")

vV V. Vv Vv Vv

In order to be confident that all three applicatiospgjep, the Spatial Economet-
rics toolbox and OpenGeoDa, are working on the same datacamdtandardised
spatial weights, we fit a linear model using the uskRdunction 1m, and test its
residuals for spatial autocorrelation using functionsvpted inspdep:

> eout_Ilm <- lm(eform, data = elect80)
> eout_Ilm_I <- Im.morantest(eout_lm, elw)
> eout_lm_LM <- 1m.LMtests(eout_lm, elw, test = "all")

Table 1: Comparison of US 1980 election turnout OLS results.
R/spdep SEtoolbox OpenGeoDa

(Intercept) 1.5021 1.5021 1.5021
log(pc_income) -0.2029 -0.2029 -0.2029
log(pc_college) 0.3297 0.3297 0.3297
log(pc_homeownership)  0.2504 0.2504 0.2504
Moran’s | 0.457 0.457 0.457
LMerr 1789.2 1789.2 1789.2
LMlag 1375.9 1375.9
RLMerr 461.2 461.2
RLMlag 47.9 47.9
SARMA 1837.1 1837.1

As can be seen from Tadl¢ 1, all three applications providatidal results for
the fitted coefficients, and for the residual spatial autatation statistics provided,
using the Classic choice in OpenGeoDa, ancthigmoran andlmerror commands
in the Spatial Econometrics toolbox.

1.2 LucasCounty, OH, housing data set

The Lucas County, Ohio, housing data set has 25,357 obsmrsaif single family
homes sold 1993-1998, and is fully described in thed#ea/house.txt in the
Spatial Econometrics toolbox. It is used here to suppleroentlusions drawn for
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the 1980 US election turnout data set, which is of a size thahjis dense matrix
methods, since only sparse or approximate methods ardledsi largerN.

data(house)

hform <- formula(log(price) ~ age + I(age”2) + I(age~3) +
log(lotsize) + rooms + log(TLA) + beds + syear)

mm0 <- model.matrix(hform, data = house)

mm <- cbind(log(house$price), mmO)

write.table(mm, file = "House.txt", row.names = FALSE,
col.names = FALSE)

mmdf <- as.data.frame (mm)

coordinates (mmdf) <- coordinates (house)

writeSpatialShape (mmdf, "mm_house")

VVV +V VYV + VYV

Once again, we write out the model matrix and dependentblariar reading
into Octave. The dependent variable is the logarithm of #he grice, and the right
hand side variables are powers of the scaled age of the hileskgarithm of the
lotsize in square feet, the number of rooms, the logariththeftotal living area in
square feet, the number of bedrooms, and year of sale dummaypies represented
as a factor variable iR. Because of the relative complexity of the model matrix, a
new SpatialPointsDataFrame is constructed from it for outp OpenGeoDa.

The list of neighbours provided with the data sesep is a sphere of influ-
ence graph constructed from a triangulation of the pointdioates of the houses
after projection to the Ohio North NAD83 (HARN) Lambert Comninal Conical
specification (EPSG:2834). It is relatively sparse, witksléhan three neighbours
per observation on average:

> LO_nb

Neighbour list object:

Number of regions: 25357

Number of nonzero links: 74874
Percentage nonzero weights: 0.01164489
Average number of links: 2.952794

Again, the neighbours are output in row-standardised farrod read into Octave
and OpenGeoDa:

> write.nb.gal(LO_nb, "LO_nb.gal")

> hlw <- nb2listw(LO_nb)

> hsn <- listw2sn(hlw)
> write.sn2dat (hsn, file = "House_W.txt")

The ouput (Tabl&l2) from fitting linear models in each of theeéhapplications
shows that the data and the spatial weights used are the saalletiiree cases.
Having established this, we can be confident that any diffe¥e observed below
stem from differences in implementation across and withedpplications, rather
than from differences in data.



> hout_Im <- 1lm(hform, data = house)
> hout_Ilm_I <- Im.morantest (hout_1lm, hlw)
> hout_Ilm_LM <- Im.LMtests(hout_Ilm, hlw, test = "all")

Table 2: Comparison of Lucas county (OH) house price OLSlt®su

R/spdep SEtoolbox OpenGeoDa
(Intercept) 2.900533 2.900533 2.900533
age 1.938229 1.938229 1.938229
I(agen2) -3.981144  -3.981144 -3.981144
I(agen3) 1.183394 1.183394 1.183394
log(lotsize) 0.176678 0.176678 0.176678
rooms 0.009485 0.009485 0.009485
log(TLA) 0.900787 0.900787 0.900787
beds -0.016600 -0.016600 -0.016600
syear1994 0.044930 0.044930 0.044930
syear1995 0.087001 0.087001 0.087001
syearl1996 0.109115 0.109115 0.109115
syearl997 0.145471 0.145471 0.145471
syear1998 0.201824 0.201824 0.201824
Moran’s | 0.4897 0.4897
LMerr 7511.4 7511.4 7511.4
LMlag 10400.1 10400.1
RLMerr 123.7 123.7
RLMlag 3012.4 3012.4
SARMA 10523.8 10523.8

2 Comparing estimation methods

The spatial lag model (Cliff and Qrd, 1973; Oid, 1975; Bivan@84;|Anselin,
11988;| LeSage and Pace, 2009) is the most frequently encedrgpecification in

spatial econometrics:

y = pWy +XB +E¢,

wherey is an(N x 1) vector of observations on a dependent variable taken at each
of N locations X is an(N x k) matrix of exogenous variable@,is an(k x 1) vector

of parametersg is an (N x 1) vector of independent and identically distributed
disturbances angdis a scalar spatial lag parameter.

In the spatial Durbin model, the spatially lagged exogen@umbles are added
to the model:
y =pWy+ XB+WXy+E¢,
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whereyis an((k— 1) x 1) vector of parameters wheW¥ is row-standardised, and a
(k x 1) vector otherwise. It is clear that these two models are ed&chin the same
way.

The spatial error model may be written as_(Cliff and|Qrd, 1:9@8d, [1975;
Ripley,[1980| Anselin, 1988; L eSage and Pace, 2009):

y=XB+u, u=AWu-+g,

whereA is a scalar spatial error parameter, ant a spatially autocorrelated dis-
turbance vector with constant variance and covariancestepecified by a fixed
spatial weights matrix and a single coefficiant

u~ N(0,0%(1 —AW) X1 —aw’)~1

When the Common Factor condition is m@t:= —py, the spatial Durbin and
spatial error models are equivalent. We will not be consiigethe general model
with both a spatial lag and a spatial error term here.

These models may be estimated using a number of approachesgavhich
maximum likelihood estimation has a strong position, arst &rms the basis for
Bayesian estimation (Bayesian estimation is not discuseeg). In addition, spa-
tial two stage least squares and generalized method of nismapproaches are

prefered by some analysts_(Kelejian and Prucha, 11998, 1986%e may be ex-

tended to provide a heteroskedasticity and autocorrelaoosistent (HAC) estima-

or (Kelejian and Prucha, 2007; Piras, 2010). Finally, imakponential methods

may be used to fit spatial regression models (LeSage anHl[FGEH).

2.1 Maximum likelihood estimation

The log-likelihood function for the spatial lag model is:

N N
((B,p,0%) = —> In2m— EIn02+In|I —pW|

_2%2 [((1 —pW)y — XB)/((1 — pW)y — XB)]

and by extension the same framework is used for the spatiddiDmodel when
[W(WX)] are grouped together. Sinfecan be expressed &§'X)~1X'(1 —pW)y,

all of the cross-product terms can be pre-computed as gnashicts of the residuals
of two ancilliary regressionsgs = X[31 andWy = X[32, and the sum of squares term
can be calculated much faster than the log determinantiiEcterm of theN x N

sparse matrix — pW; see LeSage and Pace (2009) for details.




The log-likelihood function for the spatial error model is:

N N
€$Jﬁ%:—EMNe§m&+WLJW|

1

502 (Y = XB) (I =AW)'(1 =AW)(y —XB)]

B may be concentrated out of the sum of squared errors ternexomple as:

(N, 0%) = —gInZTr—glnchrln\l —AW|
1
~ 552 Y (I =AW)' (I =Qy Q) (I =AW)y]

whereQ, is obtained by decomposifX —AWX) = Q\R,.

The relationship between the log determinant term and threafisquares term
in the log likelihood function in the spatial error model isadogous to that in the
spatial lag model, but the sum of squares term involves monepeitation in the
case of the spatial error model. In all cases, a simple linechkemay be used to find
p or A, and other coefficients may be calculated using an angiltegression once
this has been done.

Detailed reviews of methods for computing the Jacobian nesfgnd irl LeSage and Pace
(2009){ Smirnov and Anselin (2009); Biva 10), andries¢ed readers are ref-
ered to these. The comparisons witkpdep made here use methods for comput-
ing the Jacobian presented in full MON), andudelthe dense matrix
eigenvalue methodigen (@@ p. 121), the updating Cholesky decompo-
sition methodvatrix using functions in th&k Matrix package for sparse matrix
operations, the Monte Carlo methad using theR Matrix package introduced

by IBarry and Pace (1999), and the Chebyshev method agaig tisR Matrix
packagel(Pace and LeSage, 2004).

When sparse matrix methods or approximations are usedyatedi by the size
of N, no standard errors for the coefficients in spatial lag aradiapDurbin models
will be available, nor will the standard error afbe available in the spatial error
case. This may be addressed by computing a numerical Hdssian augmented
function fitting bothp or A andf3 starting at the line search maximum likelihood
optimum. If there are variables that are nearly collineaif variables are poorly
scaled, then inverting the numerical HessianRioomputed usingdHess in nlme
or usingoptim) will lead to problems for those variables, with standamesr being
set toNA.

We will fit the basic spatial lag model using two different imeds to calculate
the Jacobian:




> elag_ML_eigen <- lagsarlm(eform, data = elect80, listw = elw,
+ method = "eigen")

> elag_ML_Matrix <- lagsarlm(eform, data = elect80, listw = elw,
+ method = "Matrix")

Table 3: Comparison of US 1980 election turnout ML spatiglresults; forspdep
and OpenGeoDa, z-values in parentheses, for SE toolb@ués in parentheses.

R/spdep eigen R/spdep Matrix SE toolbox OpenGeoDa

rho 0.5547 0.5547 0.54800 0.5544
(34.715) (38.09) (30.44) (34.680)
(Intercept) 0.7805 0.7805 0.78918 0.7809
(25.352) (26.514) (25.87) (25.363)
log(pc_income) -0.0895 -0.0895 -0.09087 -0.0896
(-9.698) (-9.677) (-7.34) (-9.705)
log(pc_college) 0.1568 0.1568 0.15887 0.1569
(17.952) (18.057) (31.73) (17.962)
log(pc_homeownership) 0.2142 0.2142 0.21465 0.2142
(25.680) (26.370) (37.81) (25.681)
Log likelihood 3943.8 3943.8 5013.4 3943.7
Sigma squared 0.004333 0.004333 0.0043 0.004334
seconds 29.90 0.254

As we would expect, because the eigenvalue and updatingesj@rolesky
methods are both exact within machine precision, they firdséime value fop
— they are after all using the same line search functiptimize, with the same
termination criterion. The z-values differ somewhat, hessathose for the eigen-
value method use dense matrix techniques to find the coeifistandard errors,
while theMatrix method approximates using a numerical Hessian. The big dif-
ference is in the timings, with the calculation of the eiggoes and operations on
large dense matrices, even using a threaded, optimisext lhgebra BLAS library,
taking almost half a minute, as compared with just half a sddor theMatrix
method.

The coefficients and z-values returned by OpenGeoDa agoselglwith those
from spdep — z-values possibly because of use of an effective algorm,

, ho documentation of OpenGeoDa algorithms is availabthis time), while
those from the Spatial Econometrics toolbox differ somewhighe main reason
for the difference is that the Jacobian values are compusatyla Monte Carlo
method on a grid, leading to an approximate resultdprather than the search
for p being continued. This application also returns conceadradg likelihood
values, rather than the full values, which has no influencéhenresults. When
N > 500, the variance-covariance matrix of coefficients is cotaeg using a finite
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difference Hessian implementation. The gridded plGalue leads to the optimum
being marginally offset, and this feeds through into the potation of the variance-
covariance matrix, although inferences would not be adfe.ct
Timings are not given for the noR-applications, because it is not known to

what extent the use of Octave rather than Matthbor of Wine rather than the
application’s native platform, might bias counts. We weéllurn to the spatial Durbin
model below in connection with the calculation of impact sweas. We repeat the
comparison for the spatial error specification:

> eerr_ML_eigen <- errorsarlm(eform, data = elect80, listw = elw,
+ method = "eigen")

> eerr_ML_Matrix <- errorsarlm(eform, data = elect80, listw = elw,
+ method = "Matrix")

Table 4: Comparison of US 1980 election turnout ML spatiaberesults; for
spdep and OpenGeoDa, z-values in parentheses, for SE toolb@uées in paren-
theses.

R/spdep eigen R/spdep Matrix SE toolbox OpenGeoDa

lambda 0.7159 0.7159 0.708 0.7152
(45.422) (48.16)  (143.715) (45.3062)
(Intercept) 1.2029 1.2029 1.207 1.2033
(36.836) (36.836)  (128.254) (36.8561)
log(pc_income) -0.1086 -0.1086 -0.110 -0.1087
(-9.029) (-9.029) (-28.598) (-9.0409)
log(pc_college) 0.1794 0.1794 0.182 0.1796
(14.671) (14.671) (21.296) (14.6954)
log(pc_homeownership) 0.2564 0.2564 0.256 0.2564
(30.191) (30.191) (31.511) (30.1862)
Log likelihood 4056.8 4056.8 5121.7 4056.5
Sigma squared 0.003812 0.003812 0.0038 0.003813
seconds 30.16 0.563

Again we see from Tablgl 4 that the eigenvalue and sparsexmagihods in
spdep give the same coefficient estimates, and z-values that arsame apart
from that forA. Since the variance-covariance matrix is block-diagotied, im-
precision in the estimates for the variancehofind 6 do not affect those fop.
The OpenGeoDa coefficient and standard error estimateseayeclose to those
of spdep, possibly for the reasons noted above. The Spatial Ecommsi&bolbox
estimates again differ because of the use of a gridded MCbiatdut are close
to the other implementations (t-values are reproducedalminot from the latest
updated release). The timings for tgmdep functions include the computation of
the variance-covariance matrix under the alternativeirequor the Hausman test
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described in Sectidn 3.2 below. Dense matrices are uselddaienvalue method,
while sparse powering is used otherwise (LeSage and Pa@#, 200-113).

Moving on to the larger data set, we use the updating spareke€ky method
and the Monte Carlo method for computing the Jacobian, they km compare more
fairly with the Spatial Econometrics toolbox estimates:

hlag ML_Matrix <- lagsarlm(hform, data = house, listw = hlw,
method = "Matrix")

set.seed(100831)

hlag ML_MC <- lagsarlm(hform, data = house, listw = hlw,
method = "MC")

+ VvV Vv + V

Encouragingly, all three applications reported in TdBlard both methods for
computing the Jacobian spdep, yield very similar estimates for fitting the spatial
lag model to the Lucas county housing price dataNet 25357). The Monte Carlo
approximation used with continuous line search in the seomumn is very close
to the estimates from the use of the updating sparse Cholesklyod, but takes
only half the time — although neither 5 seconds nor 2.5 sescad be considered
excessive for fitting a model with lardé and numerous right hand side variables.

Completing this discussion, we examine thspdep Jacobian methods together
with results from the two other applications:

> herr_ML_Matrix <- errorsarlm(hform, data = house, listw = hlw,

+ method = "Matrix", control = list(compiled_sse = TRUE))

> set.seed(100831)

> herr_ML_MC <- errorsarlm(hform, data = house, listw = hlw,

+ method = "MC", control = list(compiled_sse = TRUE))

> herr_ML_Chebyshev <- errorsarlm(hform, data = house,

+ listw = hlw, method = "Chebyshev", control = list(compiled_sse = TRUE))

Table[® again shows a reassuring level of agreement betweespatial error
estimates from the applications and differgptiep implementations. Thepdep
timings here use compiled code for computing the sum of sguTrm in the log
likelihood function in both the line search and the compatabf the Hessian; it
reduces run time somewhat for larger Almost half of the time taken to fit the
spatial error model using the Chebyshev method is in facttspe preparing the
variance-covariance matrix for the Hausman test desciib&ectior3.R below —
this may be dropped, but the default is to provide it to enagaruse of the test.

2.2 Theanalytical-numerical mixed Hessian

With some data sets, models, and variable scaling — forélyabt those used in
these examples, one meets difficulties in inverting the migalkeHessian returned
from finite difference computation. This unfortunate perbimay be worked around
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Table 5: Comparison of Lucas county (OH) house price spé@lresults; for
spdep and OpenGeoDa, z-values in parentheses, for SE toolb@yées in paren-

theses.
R/spdep Matrix R/spdep MC SE toolbox OpenGeoDa
rho 0.522814 0.521996 0.51700 0.522754
(139.8) (139.0) (221.3439) (132.4212)
(Intercept) 0.258328 0.262460 0.28771 0.258630
(4.037) (4.0643) (12.2487) (3.9653)
age 1.308469 1.309454 1.31547 1.308541
(23.303) (23.2933) (23.5627) (23.1779)
I(agen2) -2.321326 -2.323922 -2.33978 -2.321516
(-22.693) (-22.7298) (-23.0196) (-22.5843)
I(agen3) 0.654895 0.655721 0.66077 0.654955
(11.876) (11.9007) (11.9974) (11.8353)
log(lotsize) 0.072975 0.073138 0.07413 0.072987
(23.874) (23.9084) (25.7704) (23.5512)
rooms -0.002534 -0.002515 -0.00240 -0.002533
(-1.137) (-0.9998) (-0.9948) (-0.8326)
log(TLA) 0.577833 0.578338 0.58142 0.577870
(58.240) (57.8472) (103.6739) (56.7161)
beds 0.015621 0.015571 0.01526 0.015618
(4.066) (3.8116) (13.4030) (3.4570)
syear1994 0.044475 0.044476 0.04448 0.044475
(5.999) (5.9876) (6.0118) (6.0197)
syear1995 0.086074 0.086075 0.08608 0.086074
(11.923) (11.8588) (11.9127) (11.9290)
syear1996 0.105937 0.105942 0.10597 0.105938
(15.134) (15.0689) (15.1431) (15.1591)
syear1997 0.147347 0.147344 0.14733 0.147347
(21.226) (21.1113) (21.2249) (21.2555)
syear1998 0.200722 0.200723 0.20073 0.200722
(28.135) (28.0305) (28.1265) (28.1600)
Log likelihood -7670.4 -7693 961.1 -7670.8
Sigma squared 0.09479 0.09483 0.0951 0.09479
seconds 2.042 1.553
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Table 6: Comparison of Lucas county (OH) house price spatiar results; for

spdep and OpenGeoDa, z-values in parentheses, for SE toolb@yées in paren-
theses.

Matrix MC Chebyshev SE toolbox OpenGeoDa
lambda 0.619403 0.617843  0.619980  0.603000 0.619266
(131.3) (130.8) (131.3) (262.021) (147.677)
(Intercept) 4.676450 4.669978  4.678849 4.609076 4.675881
(59.812) (59.715) (59.847) (67.513) (59.803)
age 1.079835 1.082513  1.078846 1.108437 1.080070
(13.140) (13.174)  (13.127) (18.374) (13.143)
I(agen2) -2.574235 -2.580610 -2.571877 -2.641354 -2.574795
(-18.751) (-18.796)  (-18.735) (-25.100) (-18.755)
I(agen3) 0.952080 0.954363  0.951234  0.975919 0.952280
(13.840) (13.868) (13.829) (16.927) (13.842)
log(lotsize) 0.193845 0.194110  0.193746 0.196492 0.18386
(40.845) (40.921) (40.817) (116.472) (40.851)
rooms 0.004376 0.004398  0.004369 0.004597 0.004378
(1.441) (1.447) (1.439) (1.598) (1.441)
log(TLA) 0.625435 0.626045  0.625209  0.631914 0.625488
(57.765) (57.782) (57.759) (59.505) (57.766)
beds 0.017266 0.017208 0.017288  0.016644 0.017261
(3.839) (3.822) (3.845) (3.677) (3.837)
syear1994 0.040547 0.040547  0.040546  0.040560 0.040547
(5.733)  (5.727) (5.734) (5.714) (5.732)
syear1995 0.083232 0.083227  0.083235  0.083180 0.083232
(11.984) (11.972)  (11.988)  (11.941) (11.983)
syear1996 0.103309 0.103310 0.103308  0.103323 0.103309
(15.411) (15.397) (15.416) (15.425) (15.410)
syear1997 0.147440 0.147418  0.147448  0.147213 0.147438
(22.071) (22.048) (22.080) (22.030) (22.069)
syear1998 0.195470 0.195460  0.195473  0.195375 0.195469
(28.694) (28.666) (28.705) (28.617) (28.692)
Log likelihood -9180.5 -9209.2 -9178.4 -610.68 -9181.2
Sigma squared 0.1004 0.1005 0.1004 0.1016 0.1004
seconds 3.971 3.453 2.939
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by replacing most of the matrix with analytical values, teththe analytical-numerical
mixed Hessian by LeSage and Pace (2009, pp. 54-60). The awkwae term
for the interaction betweeh and g — tr(W (I —AW)~1) — may be approxi-
mated by a series of traces of the powered weights matrilxgeledomputed using
sparse matrix or Monte Carlo techniques. Because sparseesabecome more
and more dense as the power rises, it is also possible to agedhnique due to
'Smirnov and Anselln (2009) to accumulate in vectors irNatoop, which can be
splitamong cores in a cluster. Since the 3107 US countiesmaad enough to allow
us to try these approaches, we can check their equivalence.

el <- as(as_dgRMatrix_listw(elw), "CsparseMatrix")
set.seed(100831)

etr_MC <- trW(eW, m = 24, type = "MC")

etr_mult <- trW(eW, m = 24, type = "mult")

vV V. Vv Vv

ells <- spdep:::1istw2U_Matrix(spdep:::similar.listw_Matrix(elw))
etr_mom <- trW(eWs, m = 24, type = "moments")

library (snow)

cl <- makeSOCKcluster(2)

set.ClusterOption(cl)

etr_moml <- trW(eWs, m = 24, type = "moments")

stopCluster(cl)

set.ClusterOption(NULL)

V VVVVVVYV

> all.equal(etr_mom, etr_moml, check.attributes = FALSE)
[1] TRUE
> all.equal(etr_mult, etr_moml, check.attributes = FALSE)

[1] TRUE

As we see, the Smirnov and Anselin (2009) algorithm providases of powers
that are equal within machine precision to that approach, which simply takes
traces of successive powers of the sparse weights matris. |&dds to the matrix
becoming dense after a small number of powers, and so is ea$ytfle up to mod-
erateN. Beyond this, theic andmoments] approaches remain. The relative timings
for thisN are:MC 0.269smult 4.719s, anehoments Without parallelization 36.55s,
with parallelization on two cores 21.75s.

If we fit the spatial lag models again, using two types of tsagkthe powered
weights matrix, we can compare the z-values for the coeffisief these with those
of the exact eigenvalue-based estimates, and from the ustadifinite difference
Hessian:

’A moments method for computing the Jacobian is under consideratioMfomodel estima-
tion functions inspdep.
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> elag_ML_Matrix_trmult <- lagsarim(eform, data = elect80,

+ listw = elw, method = "Matrix", tr = etr_mult)
> elag ML_Matrix_trMC <- lagsarlm(eform, data = elect80,
+ listw = elw, method = "Matrix", tr = etr_MC)

Table 7: Comparison of US 1980 election turnout ML spatigldesults; z-values
in parentheses.

Eigen Matrix ~ Matrix tr(mult)  Matrix tr(MC)

rho 0.5547 0.5547 0.5547 0.5547
(34.715) (38.09) (37.64) (37.63)
(Intercept) 0.7805 0.7805 0.7805 0.7805
(25.352) (26.514) (26.388) (26.386)
log(pc_income) -0.0895 -0.0895 -0.0895 -0.0895
(-9.698)  (-9.677) (-9.667) (-9.667)
log(pc_college) 0.1568 0.1568 0.1568 0.1568
(17.952) (18.057) (18.002) (18.001)
log(pc_homeownership) 0.2142 0.2142 0.2142 0.2142
(25.680) (26.370) (26.367) (26.367)
Log likelihood 3943.8 3943.8 3943.8 3943.8
Sigma squared 0.004333 0.004333 0.004333 0.004333
seconds 29.90 0.254 0.252 0.258

Table[T shows that there is very little difference betweean ékact truncated
series of traces of the powered weights matrix, and the MGaté truncated series
in the z-values output. The adjusted numerical Hessianuesaisually lie between
the exact values and the unadjusted numerical Hessiarsvaliieough closer to the
latter than the former. This suggests that this approachgo&nting the numerical
Hessian should be used in practice when possible, and ngtwirén difficulties
are encountered in inverting the unadjusted numerical idiess

> hW <- as(as_dgRMatrix_listw(hlw), "CsparseMatrix")
set.seed(100831)
htr_MC <- trW(hW, m = 24, type = "MC")

vV Vv

hlag ML_Matrix_trmom <- lagsarlm(hform, data = house,
listw = hlw, method = "Matrix", tr = htr_mom)

hlag ML_Matrix_trMC <- lagsarlm(hform, data = house,
listw = hlw, method = "Matrix", tr = htr_MC)

+ VvV + Vv

A similar exercise may be undertaken for the larger datavsih time taken
for MCc 2.307s, andhoments Without parallelization 513.5s, with parallelization on
two cores 346.9s. The timings indicate that claims_in Smimmad Anselin [(2009)

may have been somewhat optimistic with regard to the effigieri the algorithm,
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although careful coding in a compiled language might sp@ezbmputation. The z-
value forp for the unadjusted numerical Hessian is 139.8, for the #eljLisumerical
Hessian withnoments traces 136.0, and withc traces 136.0. As can be seen, the
difference between the results for the two methods for cdimguhe truncated
series of traces of the powered weights matrix is minimag; difference between
the standard errors @f using these techniques is -1.264e-07.

2.3 Spatial 2SL. Sand GMM techniques

In addition to maximum likelihood, spatial two stage leapiaes and generalized
method of moments approaches have been proposed by KedejisRrucha (1998,
@). Thestsls andGMerrorsar functions were contributed tepdep by Luc
Anselin, and have been revised in minor ways by this authdr@anfranco Piras.
In particular,stsls now usegX, (WX), (WWX)] as instruments, aneMerrorsar
can use a number of different functions for numerical optetion.

> hlag_stsls <- stsls(hform, data = house, listw = hlw)
> herr_GM <- GMerrorsar (hform, data = house, listw = hlw,
+ returnHcov = TRUE)

Thestsls function have been extended to provide a heteroskedasdinit auto-
correlation consistent (HAC) estimator (Kelejian and Peyt2007} Piras, 2010) in
thesphet package. An additional, auxiliary spatial weights objsaised to account
for heteroskedasticity not otherwise accommodated intdnedsird specification.

> library(sphet)

> hk10 <- knn2nb(knearneigh(coordinates(house), k = 10))

> hdists <- nbdists(hk10, coordinates (house))

> hlwd <- nb2listw(hk10, glist = hdists, style = "B")

> class(hlwd) <- c("sphet", "distance", "nb", "GWT")

> hlag_stslshac <- stslshac(hform, data = house, listw = hlw,
+ distance = hlwd, type = "Triangular")

From Table[B we can see that the coefficient values of all t®klag esti-
mators agree exactly. The spatial coefficient values aréasito the ML estimate.
The z-values and t-values of the ordinary GM lag estimattss agree exactly,
and lie between the ML z-values and the z-values of the GM H#&g dstimator;
the z-values of the GM HAC lag estimator are sometimes tlgelr sometimes
the smallest in absolute value. In this cases similar between the ML and GM
estimators, but it is worth noting that this model accouwntsaround 80% of the
variation in the dependent variable. The difference betwdé& and GMp in the
smaller data set, in which a little less than 50% of the vemmin the dependent
variable is accounted for, is much greater, ML [ag 0.555, GM lagp = 0.268.
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Table 8: Comparison of Lucas county (OH) house price spé@lresults; for
spdep z-values in parentheses, for SE toolbox, t-values in phe=@s.

Matrix lag GMlag GMHACIlag SE toolbox GM lag
rho 0.522814  0.527795 0.527795 0.527795
(139.8) (82.8774) (60.6645) (82.8774)
(Intercept) 0.258328  0.233157 0.233157 0.233157
(4.037) (3.3119) (2.6957) (3.3119)
age 1.308469  1.302469 1.302469 1.302469
(23.303) (22.9968) (11.9207) (22.9968)
I(agen2) -2.321326  -2.305514 -2.305514 -2.305514
(-22.693) (-22.2457) (-11.2922) (-22.2457)
I(agen3) 0.654895  0.649860 0.649860 0.649860
(11.876) (11.7378) (5.6272) (11.7378)
log(lotsize) 0.072975  0.071987 0.071987 0.071987
(23.874) (22.3376) (16.4858) (22.3376)
rooms -0.002534 -0.002649 -0.002649 -0.002649
(-1.137) (-0.8711) (-0.7592) (-0.8711)
log(TLA) 0.577833  0.574756 0.574756 0.574756
(58.240) (54.0755) (45.8492) (54.0755)
beds 0.015621  0.015928 0.015928 0.015928
(4.066) (3.5177) (3.1816) (3.5177)
syear1994 0.044475  0.044471 0.044471 0.044471
(5.999) (6.0257) (6.8135) (6.0257)
syear1995 0.086074  0.086065 0.086065 0.086065
(11.923) (11.9414) (13.3389) (11.9414)
syear1996 0.105937  0.105907 0.105907 0.105907
(15.134) (15.1728) (15.5060) (15.1728)
syearl997 0.147347 0.147365 0.147365 0.147365
(21.226) (21.2865) (21.9719) (21.2865)
syear1998 0.200722  0.200711 0.200711 0.200711
(28.135) (28.1986) (30.3074) (28.1986)
Sigma squared 0.09479 0.09459 0.09459 0.0945
seconds 2.042 0.233 8.928
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Table 9: Comparison of Lucas county (OH) house price spatiar results; for

spdep z-values in parentheses, for SE toolbox, t-values in phe=@s.

Matrix error  GM error  SE toolbox GM error
lambda 0.619403 0.445980 0.445981
(131.3) (56.820)
(Intercept) 4.676450 4.039891 4.039891
(59.812) (50.318) (48.699)
age 1.079835 1.402878 1.402878
(13.140) (17.396) (16.836)
I(agen2) -2.574235 -3.245746 -3.245746
(-18.751)  (-23.494) (-22.738)
I(agen3d) 0.952080 1.166465 1.166465
(13.840) (16.430) (15.901)
log(lotsize) 0.193845 0.207524 0.207524
(40.845) (46.117) (44.633)
rooms 0.004376  0.006591 0.006591
(1.441) (1.971) (1.908)
log(TLA) 0.625435 0.699655 0.699655
(57.765) (60.076) (58.142)
beds 0.017266 0.009620 0.009620
(3.839) (1.942) (1.879)
syear1994 0.040547 0.041296 0.041296
(5.733) (5.256) (5.087)
syear1995 0.083232 0.083276 0.083276
(11.984) (10.808) (10.460)
syear1996 0.103309 0.103967 0.103967
(15.411) (13.969) (13.519)
syearl997 0.147440 0.145675 0.145675
(22.071) (19.662) (119.030)
syearl998 0.195470 0.195246 0.195246
(28.694) (25.797) (24.967)
Sigma squared 0.1004 0.1157 0.1235
seconds 3.971 1.216
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Table[® shows again that the two GM error estimators agreesdfficient values.
They do not, however, agree in the z-values/t-values, ntinejpagree with the ML
coefficients or z-values. The differencelns noticable, and feeds through into the
estimates of the other coefficients.

24 Matrix exponential techniques

Matrix exponential methods may be used to fit spatial regpasaodelsl(LeSage and Pace,
@). Code for fitting the spatial lag model was contributedpdep by Eric
Blankmeyer, and as Tal[e]10 indicates, the two independgsiementations give

close results for the coefficients aaé:

> hlag_mess <- lagmess(hform, data = house, listw = hlw)

Because numerical optimization is used to find the the optimiia log like-
lihood function, results may differ even when the same patany is used, as is
the case here. The standard erroiaf in any case calculated using a numerical
Hessian procedure; in thagmess function, the remaining standard errors come

from an ancilliary linear regression. For more details, lseBage and Pace (2009,

pp. 236-278).

3 Comparing associated measures

In addition to the fitting of spatial econometric models,assted measures are
needed to assist in their interpretation. Here we will dssctwo such measures,
one permitting the impact of changes in right hand side Wéemin spatial lag and
spatial Durbin models to be interpreted, the other to testihwr the coefficients of
spatial error models and linear models are significantliedzht from one another,
expressed as a Hausman test. Our concern here is to prodlstswith the func-
tions and methods needed to apply these recent additioqmt@mlseconometrics,
and to compare reference implementations.

3.1 Implementing impact measures

In fitting spatial lag and spatial Durbin models, it has eredrgver time that, un-
like the spatial error model, the spatial dependence in #rarpeteip feeds back,
obliging analysts to base interpretation not on the fittedupeters3, andy where
appropriate, but rather on correctly formulated impact sueesl(LeSage and Pace,
).
This feedback comes from the fact that the elements of than@e-covariance
matrix of the coefficients for the maximum likelihood spageror model linkingA
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Table 10: Comparison of Lucas county (OH) house price mattponential spatial
lag results; forspdep z-values in parentheses, for SE toolbox, t-values in paeent

Ses.

R/spdep lagmess

SE toolbox lag MESS

alpha
(Intercept)
age
I(agen2)
I(agen3)
log(lotsize)
rooms
log(TLA)
beds
syear1994
syear1995
syear1996
syear1997
syear1998
Log likelihood

Sigma squared
seconds

-0.554305
(-107.7)
0.646518
(9.4422)
1.463764
(23.8532)
-2.670442
(-24.0239)
0.760874
(12.6529)
0.090868
(28.0265)
-0.001293
(-0.3894)
0.651705
(60.3551)
0.012442
(2.5221)
0.047726
(5.9135)
0.091701
(11.6347)
0.113129
(14.8210)
0.156383
(20.6566)
0.212281
(27.2724)
-8343
0.1131
5.158

-0.554302
(-288.0654)
0.646529
(16.7893)
1.463766
(23.9120)
-2.670448
(-24.0140)
0.760876
(12.6628)
0.090869
(28.7039)
-0.001293
(-0.4674)
0.651706
(431.5221)
0.012442
(2.5370)
0.047726
(5.9147)
0.091701
(11.6359)
0.113129
(14.8234)
0.156383
(20.6580)
0.212281
(27.2715)
-100933
0.1131
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andp are zerod%¢/(0Bdp) = O, while in the spatial lag model (and by extension
in the spatial Durbin model)d?¢/(dBdp) # 0. In the spatial error model, for right
hand side variable, dy;/dx = Br anddy;/0xjr = 0 for i # j; in the spatial lag
model, dy; /oxjr = ((I — pW)*llﬁr)ii, wherel is the N x N identity matrix, and

(I —pW)~1is known to be dense (LeSage and Pace, 2009, p. 33-42).

The variance-covariance matrix of the coefficients and énees of traces of the
powered weights matrix are the key ingredients needed tgateimpact measures
for spatial lag and spatial Durbin models; both of these asel on the represen-
tation of weights matrices as sparse matrices. We can alspui@ the measures
analytically for smaller data sets; here we will contras 880 US election and
Lucas (OH) data sets, where the former is small enough to ipaththe output
values to be compared.

An estimate of the coefficient variance-covariance masireeded for Monte
Carlo simulation of the impact measures, although the nteagshemselves may be

computed without an estimate of this matrix. L eSage and 2009, pp. 33-42,
114-115) and LeSage and Fischer (2008) provide the backdrand implementa-

tion details for impact measures.

The awkwards (W) = ((1 —pW)~11B,) matrix term needed to calculate impact
measures for the lag model, aBdW) = ((I — pW) (1B, — Wy;)) for the spatial
Durbin model, may be approximated using traces of powerb@Epatial weights
matrix as well as analytically. The average direct impamsepresented by the sum
of the diagonal elements of the matrix divided dyfor each exogenous variable,
the average total impacts are the sum of all matrix elemeniged! by N for each
exogenous variable, while the average indirect impactsherelifferences between
these two impact vectors.

We have seen above in Sectlonl2.2 how to compute the requineckted series
of traces of powered spatial weights matricessgdep, impacts methods are avail-
able for ML spatial lag and spatial Durbin fitted model obgeend for GM spatial
lag objects, since variance-covariance matrices can loelleééd using techniques
already discussed. The methods can use either dense maitricencated series of
traces, so the impacts for a single model fit may be examined dense or sparse
procedures, and using different ways of computing the srace

> set.seed(100831)
> eimp_lag ML_eigen_lw <- impacts(elag ML_eigen, listw = elw,
R = 1999)

+

set.seed(100831)

eimp_lag ML_Matrix_trmult2 <- impacts(elag_ML_Matrix_trmult,
tr = etr_mult, R = 1999)

set.seed(100831)

eimp_lag_ML_Matrix_trMC2 <- impacts(elag_ML_Matrix_trMC,
tr = etr_MC, R = 1999)

+ V.V + VvV
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We are interested in establishing whether the extra timelegtéo compute
dense matrix exact coefficient and variance-covarianceixnegtimates affect the
Monte Carlo test results. Computing the dense matrix MomigoGneasures of im-
pacts dispersion is very time-consuming; R 1999 draws, it took here 84193s,
that is almost 24 hours. The timings for the updating spalsd&3ky were with ex-
act power trace series used both to adjust the numericaidteasd for the Monte
Carlo calculations (from powering a sparse matrix): 0.728w%1 0.749s with the
Monte Carlo power trace series used in both steps. For cosgpewe add the re-

sults taken from the estimation of impact measures usin@gatial Econometrics
toolbox function.

> elag_stsls <- stsls(eform, data = elect80, listw = elw)
> set.seed(100831)

> eimp_lag_stsls_trMC <- impacts(elag_stsls, tr = etr_MC,

+ R = 1999)
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Figure 1: Comparison of the dispersion of impact measuneth&three right hand
side variables in the US election data set, impacts markelidmgond; 98% highest
posterior density range for Monte Carlo impact measure kitians.

In addition we include impacts calculated for the GM kag1s fit, which in
the smaller data set estimatesas 0.2679, rather than 0.5547 in the ML case —
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naturally this difference feeds through into the estimafg¢s The GM lag variance-
covariance matrix estimates are also different, whichcasfehe Monte Carlo draws,
because the multivariate Normal draws are taken using ttesl fdoefficients and
their variance-covariance matrix.

Figurel summarizes the results of the impact measures airditbpersion for
the three right hand side variables in the US election data Bee impact mea-
sures are marked by diamonds, and the dispersion is inditgtéorizontal lines
spanning the 1%—-99% highest posterior density range fdr eampared type of
impact and variable. The methods used are: Eigen — spdep deatsix for model
fit and simulation; Matrix_tr_mult — spdep updating spardelésky with exact
power trace series for Hessian adjustment and simulatia@tri’ tr MC — spdep
updating sparse Cholesky with Monte Carlo power trace séoeHessian adjust-
ment and simulation; STSLS_tr MC — spdejz1s with Monte Carlo power trace
series for simulation; and SE_MC — Spatial Econometrictomosar function re-
sults. The SE_MC method us&d= 1000 draws, the remaining methdds= 1999
draws.

The four sets of results for the maximum likelihood estimgtohree inspdep
and one in the Spatial Econometrics toolbox, are very clossath other, both in
point estimate and dispersion of impact measures. We haxadyl seen that there
are small differences between the Spatial Econometrickhasp and thespdep
model fitting function in the line search fprand in the computation of the numer-
ical Hessian, leading to the slight differences seen hehne.ohly large differences
are between the GM lag estimator and the ML estimators. Wesately conclude
that ML impact measures are not impaired by using Monte Gafwoximations to
the power trace series, so that an effective choice is to ifigus maximum likeli-
hood estimator and a Monte Carlo approximation to the poraeetseries to adjust
the numerical Hessian-based variance-covariance matr{o evaluate the impact
measures using the same Monte Carlo approximation to themioace series.

Let us turn now to the spatial Durbin model of the Lucas coumtysing data,
for which impact measures are required for satisfactorgrjpretation:

hSD_ML_Matrix_trMC <- lagsarlm(hform, data = house, listw = hlw,
type = "mixed", method = "Matrix", tr = htr_MC)
set.seed(100831)
himp_SD_ML_Matrix_trMC2 <- impacts(hSD_ML_Matrix_trMC,
tr = htr_MC, R = 1999)

+ VvV Vv + Vv

Once the Monte Carlo approximation to the power trace sérssbeen com-
puted, here taking 2.307s, fitting the model for over 25,008eovations and 12
right hand side variables (6.056s), the impact measurebeantput at little extra
cost, taking just 1.315s. The main challenge is to presenvttuminous output
for the direct, indirect and total impacts and their measwfalispersion, as we see
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Table 11: Comparison of Lucas county (OH) house price sigatiebin impacts; forspdep z-values in parentheses, for SE

toolbox, t-values in parentheses.

Matrix MC direct SE direct Matrix MC indirect SE indirect Mat MC total SE total
age 1.116635 1.116326 0.903016 0.901730 2.019652 2.018056
(13.9621) (13.7515) (6.82024) (7.01399) (13.6664) (1334
I(agen2) -2.090591 -2.091193 -1.391627 -1.388742 -3.482218 79®35
(-15.4446) (-15.4222) (-5.74951) (-5.95153) (-12.3207)12(6045)
I(agen3) 0.545785 0.545164 -0.057494  -0.057812 0.488291 0.4B735
(7.8822) (7.9677) (-0.44421) (-0.45240) (3.0459) (3.1315
log(lotsize) 0.111786  0.111652 0.015387 0.015401 0.127170.127053
(23.2954) (23.1832) (2.14509) (2.19660) (17.3521) (1836
rooms 0.001723 0.001760 0.002335 0.002142 0.004058 002039
(0.4794) (0.5017) (0.25726) (0.24617) (0.3570) (0.3496)
log(TLA) 0.695545 0.696486 0.486106 0.485408 1.181651 81894
(60.6295) (62.1220) (19.43009) (19.24185) (37.6649) 1394)
beds 0.002605 0.002526 -0.067847 -0.067422 -0.065242 6489B
(0.5002) (0.4699) (-5.26156) (-5.21854) (-3.9857) (-3B8
syear1994 0.039575 0.039852 -0.004850 -0.004455 0.034726035397
(4.3891) (4.6116) (-0.20853) (-0.20750) (1.2101) (1.2744
syear1995 0.084237  0.084400 0.001933 0.001660 0.08617M86@s0
(9.7066) (9.8766) (0.05934) (0.08153) (3.0738) (3.2571)
syear1996 0.103682  0.103901 -0.002139 -0.002002 0.101543101899
(12.4602) (12.8060) (-0.13309) (-0.10082) (3.8154) (8H)9
syear1997 0.143098 0.143091 -0.025365 -0.025592 0.117783117499
(17.1701) (18.0463) (-1.25323) (-1.28779) (4.4897) (289
syear1998 0.203306  0.203529 0.020313 0.020286 0.22361223814
(23.9975) (24.3157) (0.94477) (0.99041) (8.1506)  (8.3462




from Table[dI1. Here dispersion is expressed as a z-valuadl@se¢he standard
deviation of the simulations in both applications (termedalues in the Spatial
Econometrics toolbox function). This is an unfortunate ralation of the more
appropriate quantile measure, but is perhaps unavoiddi®e where are many vari-
ables. As can be seen, the two applications give very simakarlts for the impact
measures as calculated using the Lucas county data setesgdatal Durbin rep-
resentation.

3.2 Implementing a Hausman test

IPace and | eSage (2008) introduce a spatial Hausman tesdétéo check whether
the regression coefficients of a spatial error model diffgnigicantly from those of
the underlying linear model assuming= 0. If they are not seen as the same, the

model is misspecified (see also LeSage and Pace| 2009, pj63)61Fhe spatial

Hausman test is constructed as:

T = (Bo—Bs)' (Qo— Qs) 1(Bo — Bs),

wheref3, are the linear model coefficientss are the spatial error model coeffi-
cients, ands= 62(X (I —AW)’(1 —AW)X)~Lis the estimated variance-covariance
matrix of the spatial error model coefficients. Tfg term is more complicated,
being not the estimated variance-covariance matrix ofitteatl model coefficients,
but a variance-covariance matrix adjusted to suit the asdunull of the spatial
error process, using the estimated valu@ of

Qo = GA(X'X) "X (1 = AW) L1 = AW/) " IX (X'X) L

If we write A = X (X’X)~1, we can represent half ¢, as:
(I =AW 1A = Z)(SJW”’)A —A+AW)A+ ...
=

SinceA is anN x k matrix, withk << N, we can approximate each half@g by
the sum of a truncated power series, not requiring the inwexsf N x N matrix (I —
AW’). We truncate the series at the point at which the mean of ékeadditional
term does not exceed a very small tolerance value. This iseimgnted in the
powerWeights function, and is used when spatial error models are fittetusparse
matrix techniques. By default therrorsarim function returns a component with
the matrix part ofQ,, which is used in the test. This also means that the spatial
Hausman test may be performed on large data sets, such aschs, [Ohio house
price data set witiN = 25357.

As the Hausman test is not yet available in the Spatial Ecehars toolbox, we
compare here using a script kindly provided by James LeSBgeause the script
uses dense matrix techniques, we compare using the smalteset:
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> Hausman.test (eerr_ML_Matrix)

Spatial Hausman test (approximate)

data: pc_turnout ~ log(pc_income) + log(pc_college) +
log(pc_homeownership)
Hausman test = 146.3798, df = 4, p-value < 2.2e-16

When running the provided script with values of the fittedffiokents ando?
from the function output from the Spatial Econometrics bax functions, the test
statistic is 150.22 (see also Table 4 in Seclioh 2.1 abok#&)eiscript is given the
fitted coefficients an@? from errorsarlm, the result is 146.38, that is identical
with the implementation of the Hausman testspdep. It thus appears that the
implementation based on the sum of a truncated power seziésrms adequately,
and that we should be able to depend on test results for o#tarsgts. Applying
the Hausman test to the Lucas county spatial error model,nae fi

> Hausman.test (herr_ML_Matrix)

Spatial Hausman test (approximate)

data: log(price) ~ age + I(age”2) + I(age”3) + log(lotsize) + rooms
+
log(TLA) + beds + syear
Hausman test = 3115.981, df = 13, p-value < 2.2e-16

There is no doubt that the estimated coefficients of the hight side variables
of the linear and spatial error models differ. If we contina@xplore the relative fit
of the spatial models using a likelihood ratio test, or by panng AIC values, we
see that the spatial Durbin model differs clearly from thatss error model, and
fits the house price data better:

> LR.sarlm(hSD_ML_Matrix_trMC, herr_ML_Matrix)

Likelihood ratio for spatial linear models

data:
Likelihood ratio = 3745.901, df = 12, p-value < 2.2e-16
sample estimates:
Log likelihood of hSD_ML_Matrix_trMC
-7307.507
Log likelihood of herr_ML_Matrix
-9180.458

> AIC(herr_ML_Matrix)
[1] 18390.92

> AIC(hSD_ML_Matrix_trMC)
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[1] 14669.01

In conclusion, we see that the Hausman test may also be dpplilee estimated
GM spatial error model:

> Hausman.test (herr_GM)

Spatial Hausman test (approximate)

data: log(price) ~ age + I(age”2) + I(age~3) + log(lotsize) + rooms
+

log(TLA) + beds + syear
Hausman test = 3974.049, df = 13, p-value < 2.2e-16

4 Extensions

Fortunately, comparing functions in tiRespdep package with functions in the Spa-
tial Econometrics toolbox is eased by the fact that the cedgen source, and so
open to scrutiny. When OpenGeoDa achieves the same staiiil pecome more
obvious where its strengths lie, and it will be possible fibraws to contribute imple-
mentations of additional functionality. Since there is asyo option to fit spatial
Durbin models directly, or to calculate impact measuresygarisons of these tech-
niques have been restricted to the Spatial Econometritisdr@andspdep.

The publication of thesphet package and the accompanying article@iras

) signals an interesting extension to a new range aifsgaions. In addition,
the splm package for spatial panel models is under active developimeian-
franco Piras and Giovanni Millo on R-forge, and may alreadydownloaded for
usell Collaborative development using platforms of this kindesywbeneficial, for
a description see Theussl er al. (2010). Witkpdep itself, provision is being made
through modularization to permit users to choose betweterent ways of calcu-
lating the Jacobiam 10). Itis also intended twjate a function to fit a
general spatial regression model using different fittirghteques, which is needed
to contrast with possibly more appropriate modelling sméts, such as the spatial
Durbin model.

What remains is to encourage researchers who use these lagrdsoftware
applications to take active part in discussion lists, wineoee experienced users can
offer advice to those starting to discover the attractidnsong spatial econometrics
tools to tackle empirical economic questions. Once morewead examples of the
application of, for instance, impact measures, have bebhghed, the usefulness
of such advances will become more evident. Having multipiplementation in
different application languages provides users with mém@ce, and, as we have

8https://r-forge.r-project.org/projects/spim/, R Packages menu
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https://r-forge.r-project.org/projects/splm/

seen, constitutes a “reality check” that gives insight thmways that formulae can
be rendered into code.
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