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Abstract

Recent advances in spatial econometrics model fitting techniques have
made it more desirable to be able to compare results and timings. Results
should correspond between implementations using different applications, while
timings are more readily compared within a single application. A broad range
of model fitting techniques are provided by the contributedR packages for spa-
tial econometrics. These model fitting techniques are associated with methods
for estimating impacts and some tests, which will also be presented and com-
pared. This review constitutes an up-to-date demonstration of techniques now
available inR, and mentions some that will shortly become more generally
available.

1 Background

Researchers applying spatial econometrics to empirical economic questions now
have a wide range of tools, and a growing literature supporting these tools. Dur-
ing the 1990s, it was typical for researchers to use tools coded in Fortran or other
general programming languages, or to seek to integrate functions into existing sta-
tistical and/or matrix language environments. The use of spatial econometrics tools
was widened by the ease with which methods and examples presented in Anselin
(1988) could be reproduced using SpaceStatTM , written in GaussTM, and shipped as
a built runtime module. It was rapidly complemented by the Spatial Econometrics
toolbox for MatlabTM, provided as source code together with extensive documenta-
tion.1 This toolbox is under active development, and accepts contributed functions,
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thus broadening its appeal. In addition Griffith and Layne (1999) gave code list-
ings for model fitting techniques using SASTM and SPSSTM . A suite of commands
for spatial data analysis for use with StataTM was provided by Maurizio Pisati, and
distributed using the standard contributed command system(Pisati, 2001).

The thrust of SpaceStatTM has largely been taken over by GeoDa (Anselin et al.,
2006), and more recently by OpenGeoDa.2 The same team has just launched the
Python spatial analysis library.3 Since theR language and environment became
available in the later 1990s, collaborative code development has proceeded with
varying speed. Initial attempts to implement spatial econometrics techniques were
checked against SpaceStatTM , and subsequently against Maurizio Pisati’s StataTM

code and GeoDa by comparing results for the same input data and spatial weights
(Bivand and Gebhardt, 2000; Bivand, 2002).

More recently, comparisons on the same hardware under Linuxhave been made
using OpenGeoDa under Wine,4 and using Octave5 instead of MatlabTM with the
Spatial Econometrics toolbox. The source code of theR spdep package is available
from the ComprehensiveR Archive Network (CRAN), and the current development
status is accessible at R-Forge;6 binary packages are also available at CRAN.

In the spirit of Rey (2009), this comparison will attempt to examine some fea-
tures of the implementation of functions for fitting spatialeconometrics models
in spdep with those in the Spatial Econometrics toolbox (release 7, GNU Octave
3.0.5) and in OpenGeoDa (release 0.9.8.14, Wine 1.0.1). In addition, associated
measures will also be compared. Within the Spatial Econometrics toolbox and
spdep, it is possible to choose between technical details in implementation, and
the consequences of such choices will also be considered.

The analysis has been carried out on an Intel Core-2 Duo 64-bit system with
4GB RAM runningR 2.11.1 (R Development Core Team, 2010),Matrix 0.999375-
43, andspdep 0.5-21, under Red Hat Enterprise Linux 5; a threaded GotoBLAS
1.26 library optimised for the hardware was used, with gfortran 4.1.2 for Fortran
compilation. Two data sets distributed withspdep are used; both originated from
the Spatial Econometrics toolbox, and are provided here with pre-build lists of spa-
tial neighbours. A broad survey of the analysis of spatial data in theR environment
is given by Bivand (2006); Bivand et al. (2008).

2http://geodacenter.asu.edu/ogeoda, source code not yet exposed at:
http://code.google.com/p/opengeoda/.

3http://code.google.com/p/pysal/.
4Wine emulates the MicrosoftTM WindowsTM operating environment
5http://www.gnu.org/software/octave.
6https://r-forge.r-project.org/projects/spdep/

2

http://geodacenter.asu.edu/ogeoda
http://code.google.com/p/opengeoda/
http://code.google.com/p/pysal/
http://www.gnu.org/software/octave
https://r-forge.r-project.org/projects/spdep/


1.1 US 1980 election turnout data set

The US county data set with 3107 observations includes a 1980Presidential elec-
tion turnout variable with a single county (Hinsdale County, CO) with a value over
unity — most likely from cross-border voting in this remote rural area. We define
a formula relating this variable to income ($1000) per inhabitant over age 19, the
number with college degrees as a proportion of all over age 19, and homeowner-
ship as a proportion of all over age 19. The right hand side variables are taken as
logarithms, as in the filedata/elect.txt in the Spatial Econometrics toolbox.

> library(spdep)

> data(elect80)

> eform <- formula(pc_turnout ~ log(pc_income) + log(pc_college) +

+ log(pc_homeownership))

A shapefile is written for OpenGeoDa after adding the logarithms of the right hand
side variables to theSpatialPointsDataFrame objectelect80:

> elect80$l_pc_income <- log(elect80$pc_income)

> elect80$l_pc_college <- log(elect80$pc_college)

> elect80$l_pc_homeownership <- log(elect80$pc_homeownership)

> writeSpatialShape(elect80, "elect80")

Similarly, a model matrix is generated using the formula defined above and the
elect80 object, and augmented with the dependent variable for export to be used in
Octave:

> mm0 <- model.matrix(eform, data = elect80)

> mm <- cbind(elect80$pc_turnout, mm0)

> write.table(mm, file = "Elect80.txt", row.names = FALSE,

+ col.names = FALSE)

The data set provided inspdep includes a number ofnb objects listing the neigh-
bours of the counties in the data set using different definitions. Here we will use
a Queen contiguity scheme constructed using a shapefile fromthe USGS National
Atlas site, file: co1980p020.tar.gz. This object contains four counties with no
neighbours:

> e80_queen

Neighbour list object:

Number of regions: 3107

Number of nonzero links: 18126

Percentage nonzero weights: 0.1877671

Average number of links: 5.833923

4 regions with no links:

1183 1189 1832 2945
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Because of this, an option is set to permit computations under the assumption that
the lagged value of a variable for a county with no neighboursmay be set to zero
(Bivand and Portnov, 2004). We write aGAL file to be read into OpenGeoDa, and a
triplet-type sparse matrix text file to read into Octave:

> set.ZeroPolicyOption(TRUE)

> write.nb.gal(e80_queen, file = "e80_queen.gal")

> elw <- nb2listw(e80_queen)

> esn <- listw2sn(elw)

> write.sn2dat(esn, file = "E80_queen_W.txt")

In order to be confident that all three applications,spdep, the Spatial Economet-
rics toolbox and OpenGeoDa, are working on the same data and row-standardised
spatial weights, we fit a linear model using the usualR function lm, and test its
residuals for spatial autocorrelation using functions provided inspdep:

> eout_lm <- lm(eform, data = elect80)

> eout_lm_I <- lm.morantest(eout_lm, elw)

> eout_lm_LM <- lm.LMtests(eout_lm, elw, test = "all")

Table 1: Comparison of US 1980 election turnout OLS results.

R/spdep SE toolbox OpenGeoDa
(Intercept) 1.5021 1.5021 1.5021
log(pc_income) -0.2029 -0.2029 -0.2029
log(pc_college) 0.3297 0.3297 0.3297
log(pc_homeownership) 0.2504 0.2504 0.2504
Moran’s I 0.457 0.457 0.457
LMerr 1789.2 1789.2 1789.2
LMlag 1375.9 1375.9
RLMerr 461.2 461.2
RLMlag 47.9 47.9
SARMA 1837.1 1837.1

As can be seen from Table 1, all three applications provide identical results for
the fitted coefficients, and for the residual spatial autocorrelation statistics provided,
using the Classic choice in OpenGeoDa, and theols, moran andlmerror commands
in the Spatial Econometrics toolbox.

1.2 Lucas County, OH, housing data set

The Lucas County, Ohio, housing data set has 25,357 observations of single family
homes sold 1993–1998, and is fully described in the filedata/house.txt in the
Spatial Econometrics toolbox. It is used here to supplementconclusions drawn for
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the 1980 US election turnout data set, which is of a size that permits dense matrix
methods, since only sparse or approximate methods are feasible for largerN.

> data(house)

> hform <- formula(log(price) ~ age + I(age^2) + I(age^3) +

+ log(lotsize) + rooms + log(TLA) + beds + syear)

> mm0 <- model.matrix(hform, data = house)

> mm <- cbind(log(house$price), mm0)

> write.table(mm, file = "House.txt", row.names = FALSE,

+ col.names = FALSE)

> mmdf <- as.data.frame(mm)

> coordinates(mmdf) <- coordinates(house)

> writeSpatialShape(mmdf, "mm_house")

Once again, we write out the model matrix and dependent variable for reading
into Octave. The dependent variable is the logarithm of the sale price, and the right
hand side variables are powers of the scaled age of the house,the logarithm of the
lotsize in square feet, the number of rooms, the logarithm ofthe total living area in
square feet, the number of bedrooms, and year of sale dummy variables represented
as a factor variable inR. Because of the relative complexity of the model matrix, a
new SpatialPointsDataFrame is constructed from it for output to OpenGeoDa.

The list of neighbours provided with the data set inspdep is a sphere of influ-
ence graph constructed from a triangulation of the point coordinates of the houses
after projection to the Ohio North NAD83 (HARN) Lambert Conformal Conical
specification (EPSG:2834). It is relatively sparse, with less than three neighbours
per observation on average:

> LO_nb

Neighbour list object:

Number of regions: 25357

Number of nonzero links: 74874

Percentage nonzero weights: 0.01164489

Average number of links: 2.952794

Again, the neighbours are output in row-standardised form to be read into Octave
and OpenGeoDa:

> write.nb.gal(LO_nb, "LO_nb.gal")

> hlw <- nb2listw(LO_nb)

> hsn <- listw2sn(hlw)

> write.sn2dat(hsn, file = "House_W.txt")

The ouput (Table 2) from fitting linear models in each of the three applications
shows that the data and the spatial weights used are the same in all three cases.
Having established this, we can be confident that any differences observed below
stem from differences in implementation across and within the applications, rather
than from differences in data.
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> hout_lm <- lm(hform, data = house)

> hout_lm_I <- lm.morantest(hout_lm, hlw)

> hout_lm_LM <- lm.LMtests(hout_lm, hlw, test = "all")

Table 2: Comparison of Lucas county (OH) house price OLS results.

R/spdep SE toolbox OpenGeoDa
(Intercept) 2.900533 2.900533 2.900533
age 1.938229 1.938229 1.938229
I(age∧2) -3.981144 -3.981144 -3.981144
I(age∧3) 1.183394 1.183394 1.183394
log(lotsize) 0.176678 0.176678 0.176678
rooms 0.009485 0.009485 0.009485
log(TLA) 0.900787 0.900787 0.900787
beds -0.016600 -0.016600 -0.016600
syear1994 0.044930 0.044930 0.044930
syear1995 0.087001 0.087001 0.087001
syear1996 0.109115 0.109115 0.109115
syear1997 0.145471 0.145471 0.145471
syear1998 0.201824 0.201824 0.201824
Moran’s I 0.4897 0.4897
LMerr 7511.4 7511.4 7511.4
LMlag 10400.1 10400.1
RLMerr 123.7 123.7
RLMlag 3012.4 3012.4
SARMA 10523.8 10523.8

2 Comparing estimation methods

The spatial lag model (Cliff and Ord, 1973; Ord, 1975; Bivand, 1984; Anselin,
1988; LeSage and Pace, 2009) is the most frequently encountered specification in
spatial econometrics:

y = ρWy+Xβ+ ε,

wherey is an(N ×1) vector of observations on a dependent variable taken at each
of N locations,X is an(N×k) matrix of exogenous variables,β is an(k×1) vector
of parameters,ε is an (N × 1) vector of independent and identically distributed
disturbances andρ is a scalar spatial lag parameter.

In the spatial Durbin model, the spatially lagged exogenousvariables are added
to the model:

y = ρWy+Xβ+WXγ+ ε,
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whereγ is an((k−1)×1) vector of parameters whereW is row-standardised, and a
(k×1) vector otherwise. It is clear that these two models are estimated in the same
way.

The spatial error model may be written as (Cliff and Ord, 1973; Ord, 1975;
Ripley, 1981; Anselin, 1988; LeSage and Pace, 2009):

y = Xβ+u, u = λWu+ ε,

whereλ is a scalar spatial error parameter, andu is a spatially autocorrelated dis-
turbance vector with constant variance and covariance terms specified by a fixed
spatial weights matrix and a single coefficientλ:

u ∼ N(0,σ2(I−λW)−1(I−λW′)−1)

When the Common Factor condition is met:β = −ργ, the spatial Durbin and
spatial error models are equivalent. We will not be considering the general model
with both a spatial lag and a spatial error term here.

These models may be estimated using a number of approaches, among which
maximum likelihood estimation has a strong position, and also forms the basis for
Bayesian estimation (Bayesian estimation is not discussedhere). In addition, spa-
tial two stage least squares and generalized method of moments approaches are
prefered by some analysts (Kelejian and Prucha, 1998, 1999); these may be ex-
tended to provide a heteroskedasticity and autocorrelation consistent (HAC) estima-
tor (Kelejian and Prucha, 2007; Piras, 2010). Finally, matrix exponential methods
may be used to fit spatial regression models (LeSage and Pace,2007).

2.1 Maximum likelihood estimation

The log-likelihood function for the spatial lag model is:

ℓ(β,ρ,σ2) = −
N
2

ln2π−
N
2

lnσ2+ ln |I−ρW|

−
1

2σ2

[

((I−ρW)y−Xβ)′((I−ρW)y−Xβ)
]

and by extension the same framework is used for the spatial Durbin model when
[W(WX)] are grouped together. Sinceβ can be expressed as(X′X)−1X′(I−ρW)y,
all of the cross-product terms can be pre-computed as cross-products of the residuals
of two ancilliary regressions:y = Xβ1 andWy = Xβ2, and the sum of squares term
can be calculated much faster than the log determinant (Jacobian) term of theN×N
sparse matrixI−ρW; see LeSage and Pace (2009) for details.
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The log-likelihood function for the spatial error model is:

ℓ(β,λ,σ2) = −
N
2

ln2π−
N
2

lnσ2+ ln |I−λW|

−
1

2σ2

[

(y−Xβ)′(I−λW)′(I−λW)(y−Xβ)
]

β may be concentrated out of the sum of squared errors term, forexample as:

ℓ(λ,σ2) = −
N
2

ln2π−
N
2

lnσ2 + ln |I−λW|

−
1

2σ2

[

y′(I−λW)′(I−QλQ′
λ)(I−λW)y

]

whereQλ is obtained by decomposing(X−λWX) = QλRλ.
The relationship between the log determinant term and the sum of squares term

in the log likelihood function in the spatial error model is analogous to that in the
spatial lag model, but the sum of squares term involves more computation in the
case of the spatial error model. In all cases, a simple line search may be used to find
ρ or λ, and other coefficients may be calculated using an ancilliary regression once
this has been done.

Detailed reviews of methods for computing the Jacobian may be found in LeSage and Pace
(2009); Smirnov and Anselin (2009); Bivand (2010), and interested readers are ref-
ered to these. The comparisons withinspdep made here use methods for comput-
ing the Jacobian presented in full in Bivand (2010), and include the dense matrix
eigenvalue methodeigen (Ord, 1975, p. 121), the updating Cholesky decompo-
sition methodMatrix using functions in theR Matrix package for sparse matrix
operations, the Monte Carlo methodMC using theR Matrix package introduced
by Barry and Pace (1999), and the Chebyshev method again using theR Matrix
package (Pace and LeSage, 2004).

When sparse matrix methods or approximations are used, motivated by the size
of N, no standard errors for the coefficients in spatial lag and spatial Durbin models
will be available, nor will the standard error ofλ be available in the spatial error
case. This may be addressed by computing a numerical Hessianfor an augmented
function fitting bothρ or λ andβ starting at the line search maximum likelihood
optimum. If there are variables that are nearly collinear, or if variables are poorly
scaled, then inverting the numerical Hessian (inR computed usingfdHess in nlme
or usingoptim) will lead to problems for those variables, with standard errors being
set toNA.

We will fit the basic spatial lag model using two different methods to calculate
the Jacobian:
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> elag_ML_eigen <- lagsarlm(eform, data = elect80, listw = elw,

+ method = "eigen")

> elag_ML_Matrix <- lagsarlm(eform, data = elect80, listw = elw,

+ method = "Matrix")

Table 3: Comparison of US 1980 election turnout ML spatial lag results; forspdep
and OpenGeoDa, z-values in parentheses, for SE toolbox, t-values in parentheses.

R/spdep eigen R/spdep Matrix SE toolbox OpenGeoDa
rho 0.5547 0.5547 0.54800 0.5544

(34.715) (38.09) (30.44) (34.680)
(Intercept) 0.7805 0.7805 0.78918 0.7809

(25.352) (26.514) (25.87) (25.363)
log(pc_income) -0.0895 -0.0895 -0.09087 -0.0896

(-9.698) (-9.677) (-7.34) (-9.705)
log(pc_college) 0.1568 0.1568 0.15887 0.1569

(17.952) (18.057) (31.73) (17.962)
log(pc_homeownership) 0.2142 0.2142 0.21465 0.2142

(25.680) (26.370) (37.81) (25.681)
Log likelihood 3943.8 3943.8 5013.4 3943.7
Sigma squared 0.004333 0.004333 0.0043 0.004334
seconds 29.90 0.254

As we would expect, because the eigenvalue and updating sparse Cholesky
methods are both exact within machine precision, they find the same value forρ
— they are after all using the same line search functionoptimize, with the same
termination criterion. The z-values differ somewhat, because those for the eigen-
value method use dense matrix techniques to find the coefficient standard errors,
while theMatrix method approximates using a numerical Hessian. The big dif-
ference is in the timings, with the calculation of the eigenvalues and operations on
large dense matrices, even using a threaded, optimised linear algebra BLAS library,
taking almost half a minute, as compared with just half a second for theMatrix
method.

The coefficients and z-values returned by OpenGeoDa agree closely with those
from spdep — z-values possibly because of use of an effective algorithm(Smirnov,
2005, no documentation of OpenGeoDa algorithms is available at this time), while
those from the Spatial Econometrics toolbox differ somewhat. The main reason
for the difference is that the Jacobian values are computed using a Monte Carlo
method on a grid, leading to an approximate result forρ, rather than the search
for ρ being continued. This application also returns concentrated log likelihood
values, rather than the full values, which has no influence onthe results. When
N > 500, the variance-covariance matrix of coefficients is computed using a finite
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difference Hessian implementation. The gridded MCρ value leads to the optimum
being marginally offset, and this feeds through into the computation of the variance-
covariance matrix, although inferences would not be affected.

Timings are not given for the non-R applications, because it is not known to
what extent the use of Octave rather than MatlabTM, or of Wine rather than the
application’s native platform, might bias counts. We will return to the spatial Durbin
model below in connection with the calculation of impact measures. We repeat the
comparison for the spatial error specification:

> eerr_ML_eigen <- errorsarlm(eform, data = elect80, listw = elw,

+ method = "eigen")

> eerr_ML_Matrix <- errorsarlm(eform, data = elect80, listw = elw,

+ method = "Matrix")

Table 4: Comparison of US 1980 election turnout ML spatial error results; for
spdep and OpenGeoDa, z-values in parentheses, for SE toolbox, t-values in paren-
theses.

R/spdep eigen R/spdep Matrix SE toolbox OpenGeoDa
lambda 0.7159 0.7159 0.708 0.7152

(45.422) (48.16) (143.715) (45.3062)
(Intercept) 1.2029 1.2029 1.207 1.2033

(36.836) (36.836) (128.254) (36.8561)
log(pc_income) -0.1086 -0.1086 -0.110 -0.1087

(-9.029) (-9.029) (-28.598) (-9.0409)
log(pc_college) 0.1794 0.1794 0.182 0.1796

(14.671) (14.671) ( 21.296) (14.6954)
log(pc_homeownership) 0.2564 0.2564 0.256 0.2564

(30.191) (30.191) ( 31.511) (30.1862)
Log likelihood 4056.8 4056.8 5121.7 4056.5
Sigma squared 0.003812 0.003812 0.0038 0.003813
seconds 30.16 0.563

Again we see from Table 4 that the eigenvalue and sparse matrix methods in
spdep give the same coefficient estimates, and z-values that are the same apart
from that for λ. Since the variance-covariance matrix is block-diagonal,the im-
precision in the estimates for the variance ofλ andσ2 do not affect those forβ.
The OpenGeoDa coefficient and standard error estimates are very close to those
of spdep, possibly for the reasons noted above. The Spatial Econometrics toolbox
estimates again differ because of the use of a gridded MC Jacobian but are close
to the other implementations (t-values are reproduced, butare not from the latest
updated release). The timings for thespdep functions include the computation of
the variance-covariance matrix under the alternative required for the Hausman test
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described in Section 3.2 below. Dense matrices are used for the eigenvalue method,
while sparse powering is used otherwise (LeSage and Pace, 2009, 110–113).

Moving on to the larger data set, we use the updating sparse Cholesky method
and the Monte Carlo method for computing the Jacobian, the latter to compare more
fairly with the Spatial Econometrics toolbox estimates:

> hlag_ML_Matrix <- lagsarlm(hform, data = house, listw = hlw,

+ method = "Matrix")

> set.seed(100831)

> hlag_ML_MC <- lagsarlm(hform, data = house, listw = hlw,

+ method = "MC")

Encouragingly, all three applications reported in Table 5,and both methods for
computing the Jacobian inspdep, yield very similar estimates for fitting the spatial
lag model to the Lucas county housing price data set (N = 25357). The Monte Carlo
approximation used with continuous line search in the second column is very close
to the estimates from the use of the updating sparse Choleskymethod, but takes
only half the time — although neither 5 seconds nor 2.5 seconds can be considered
excessive for fitting a model with largeN and numerous right hand side variables.

Completing this discussion, we examine threespdep Jacobian methods together
with results from the two other applications:

> herr_ML_Matrix <- errorsarlm(hform, data = house, listw = hlw,

+ method = "Matrix", control = list(compiled_sse = TRUE))

> set.seed(100831)

> herr_ML_MC <- errorsarlm(hform, data = house, listw = hlw,

+ method = "MC", control = list(compiled_sse = TRUE))

> herr_ML_Chebyshev <- errorsarlm(hform, data = house,

+ listw = hlw, method = "Chebyshev", control = list(compiled_sse = TRUE))

Table 6 again shows a reassuring level of agreement between the spatial error
estimates from the applications and differentspdep implementations. Thespdep
timings here use compiled code for computing the sum of squares term in the log
likelihood function in both the line search and the computation of the Hessian; it
reduces run time somewhat for largerN. Almost half of the time taken to fit the
spatial error model using the Chebyshev method is in fact spent on preparing the
variance-covariance matrix for the Hausman test describedin Section 3.2 below —
this may be dropped, but the default is to provide it to encourage use of the test.

2.2 The analytical-numerical mixed Hessian

With some data sets, models, and variable scaling — fortunately not those used in
these examples, one meets difficulties in inverting the numerical Hessian returned
from finite difference computation. This unfortunate problem may be worked around
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Table 5: Comparison of Lucas county (OH) house price spatiallag results; for
spdep and OpenGeoDa, z-values in parentheses, for SE toolbox, t-values in paren-
theses.

R/spdep Matrix R/spdep MC SE toolbox OpenGeoDa
rho 0.522814 0.521996 0.51700 0.522754

(139.8) (139.0) (221.3439) (132.4212)
(Intercept) 0.258328 0.262460 0.28771 0.258630

( 4.037) ( 4.0643) ( 12.2487) ( 3.9653)
age 1.308469 1.309454 1.31547 1.308541

( 23.303) ( 23.2933) ( 23.5627) ( 23.1779)
I(age∧2) -2.321326 -2.323922 -2.33978 -2.321516

(-22.693) (-22.7298) (-23.0196) (-22.5843)
I(age∧3) 0.654895 0.655721 0.66077 0.654955

( 11.876) ( 11.9007) ( 11.9974) ( 11.8353)
log(lotsize) 0.072975 0.073138 0.07413 0.072987

( 23.874) ( 23.9084) ( 25.7704) ( 23.5512)
rooms -0.002534 -0.002515 -0.00240 -0.002533

( -1.137) ( -0.9998) ( -0.9948) ( -0.8326)
log(TLA) 0.577833 0.578338 0.58142 0.577870

( 58.240) ( 57.8472) (103.6739) ( 56.7161)
beds 0.015621 0.015571 0.01526 0.015618

( 4.066) ( 3.8116) ( 3.4030) ( 3.4570)
syear1994 0.044475 0.044476 0.04448 0.044475

( 5.999) ( 5.9876) ( 6.0118) ( 6.0197)
syear1995 0.086074 0.086075 0.08608 0.086074

( 11.923) ( 11.8588) ( 11.9127) ( 11.9290)
syear1996 0.105937 0.105942 0.10597 0.105938

( 15.134) ( 15.0689) ( 15.1431) ( 15.1591)
syear1997 0.147347 0.147344 0.14733 0.147347

( 21.226) ( 21.1113) ( 21.2249) ( 21.2555)
syear1998 0.200722 0.200723 0.20073 0.200722

( 28.135) ( 28.0305) ( 28.1265) ( 28.1600)
Log likelihood -7670.4 -7693 961.1 -7670.8
Sigma squared 0.09479 0.09483 0.0951 0.09479
seconds 2.042 1.553
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Table 6: Comparison of Lucas county (OH) house price spatialerror results; for
spdep and OpenGeoDa, z-values in parentheses, for SE toolbox, t-values in paren-
theses.

Matrix MC Chebyshev SE toolbox OpenGeoDa
lambda 0.619403 0.617843 0.619980 0.603000 0.619266

(131.3) (130.8) (131.3) (262.021) (147.677)
(Intercept) 4.676450 4.669978 4.678849 4.609076 4.675881

( 59.812) ( 59.715) ( 59.847) ( 67.513) ( 59.803)
age 1.079835 1.082513 1.078846 1.108437 1.080070

( 13.140) ( 13.174) ( 13.127) ( 18.374) ( 13.143)
I(age∧2) -2.574235 -2.580610 -2.571877 -2.641354 -2.574795

(-18.751) (-18.796) (-18.735) (-25.100) (-18.755)
I(age∧3) 0.952080 0.954363 0.951234 0.975919 0.952280

( 13.840) ( 13.868) ( 13.829) ( 16.927) ( 13.842)
log(lotsize) 0.193845 0.194110 0.193746 0.196492 0.193868

( 40.845) ( 40.921) ( 40.817) (116.472) ( 40.851)
rooms 0.004376 0.004398 0.004369 0.004597 0.004378

( 1.441) ( 1.447) ( 1.439) ( 1.598) ( 1.441)
log(TLA) 0.625435 0.626045 0.625209 0.631914 0.625488

( 57.765) ( 57.782) ( 57.759) ( 59.505) ( 57.766)
beds 0.017266 0.017208 0.017288 0.016644 0.017261

( 3.839) ( 3.822) ( 3.845) ( 3.677) ( 3.837)
syear1994 0.040547 0.040547 0.040546 0.040560 0.040547

( 5.733) ( 5.727) ( 5.734) ( 5.714) ( 5.732)
syear1995 0.083232 0.083227 0.083235 0.083180 0.083232

( 11.984) ( 11.972) ( 11.988) ( 11.941) ( 11.983)
syear1996 0.103309 0.103310 0.103308 0.103323 0.103309

( 15.411) ( 15.397) ( 15.416) ( 15.425) ( 15.410)
syear1997 0.147440 0.147418 0.147448 0.147213 0.147438

( 22.071) ( 22.048) ( 22.080) ( 22.030) ( 22.069)
syear1998 0.195470 0.195460 0.195473 0.195375 0.195469

( 28.694) ( 28.666) ( 28.705) ( 28.617) ( 28.692)
Log likelihood -9180.5 -9209.2 -9178.4 -610.68 -9181.2
Sigma squared 0.1004 0.1005 0.1004 0.1016 0.1004
seconds 3.971 3.453 2.939
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by replacing most of the matrix with analytical values, termed the analytical-numerical
mixed Hessian by LeSage and Pace (2009, pp. 54–60). The awkward trace term
for the interaction betweenλ and σ2 — tr(W(I− λ̃W)−1) — may be approxi-
mated by a series of traces of the powered weights matrix, either computed using
sparse matrix or Monte Carlo techniques. Because sparse matrices become more
and more dense as the power rises, it is also possible to use the technique due to
Smirnov and Anselin (2009) to accumulate in vectors in anN-loop, which can be
split among cores in a cluster. Since the 3107 US counties aresmall enough to allow
us to try these approaches, we can check their equivalence.

> eW <- as(as_dgRMatrix_listw(elw), "CsparseMatrix")

> set.seed(100831)

> etr_MC <- trW(eW, m = 24, type = "MC")

> etr_mult <- trW(eW, m = 24, type = "mult")

> eWs <- spdep:::listw2U_Matrix(spdep:::similar.listw_Matrix(elw))

> etr_mom <- trW(eWs, m = 24, type = "moments")

> library(snow)

> cl <- makeSOCKcluster(2)

> set.ClusterOption(cl)

> etr_mom1 <- trW(eWs, m = 24, type = "moments")

> stopCluster(cl)

> set.ClusterOption(NULL)

> all.equal(etr_mom, etr_mom1, check.attributes = FALSE)

[1] TRUE

> all.equal(etr_mult, etr_mom1, check.attributes = FALSE)

[1] TRUE

As we see, the Smirnov and Anselin (2009) algorithm providestraces of powers
that are equal within machine precision to themult approach, which simply takes
traces of successive powers of the sparse weights matrix. This leads to the matrix
becoming dense after a small number of powers, and so is only feasible up to mod-
erateN. Beyond this, theMC andmoments7 approaches remain. The relative timings
for this N are:MC 0.269s,mult 4.719s, andmoments without parallelization 36.55s,
with parallelization on two cores 21.75s.

If we fit the spatial lag models again, using two types of traces of the powered
weights matrix, we can compare the z-values for the coefficients of these with those
of the exact eigenvalue-based estimates, and from the unadjusted finite difference
Hessian:

7A moments method for computing the Jacobian is under consideration for ML model estima-
tion functions inspdep.
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> elag_ML_Matrix_trmult <- lagsarlm(eform, data = elect80,

+ listw = elw, method = "Matrix", tr = etr_mult)

> elag_ML_Matrix_trMC <- lagsarlm(eform, data = elect80,

+ listw = elw, method = "Matrix", tr = etr_MC)

Table 7: Comparison of US 1980 election turnout ML spatial lag results; z-values
in parentheses.

Eigen Matrix Matrix tr(mult) Matrix tr(MC)
rho 0.5547 0.5547 0.5547 0.5547

(34.715) (38.09) (37.64) (37.63)
(Intercept) 0.7805 0.7805 0.7805 0.7805

(25.352) (26.514) (26.388) (26.386)
log(pc_income) -0.0895 -0.0895 -0.0895 -0.0895

(-9.698) (-9.677) (-9.667) (-9.667)
log(pc_college) 0.1568 0.1568 0.1568 0.1568

(17.952) (18.057) (18.002) (18.001)
log(pc_homeownership) 0.2142 0.2142 0.2142 0.2142

(25.680) (26.370) (26.367) (26.367)
Log likelihood 3943.8 3943.8 3943.8 3943.8
Sigma squared 0.004333 0.004333 0.004333 0.004333
seconds 29.90 0.254 0.252 0.258

Table 7 shows that there is very little difference between the exact truncated
series of traces of the powered weights matrix, and the MonteCarlo truncated series
in the z-values output. The adjusted numerical Hessian z-values usually lie between
the exact values and the unadjusted numerical Hessian values, although closer to the
latter than the former. This suggests that this approach to augmenting the numerical
Hessian should be used in practice when possible, and not only when difficulties
are encountered in inverting the unadjusted numerical Hessian.

> hW <- as(as_dgRMatrix_listw(hlw), "CsparseMatrix")

> set.seed(100831)

> htr_MC <- trW(hW, m = 24, type = "MC")

> hlag_ML_Matrix_trmom <- lagsarlm(hform, data = house,

+ listw = hlw, method = "Matrix", tr = htr_mom)

> hlag_ML_Matrix_trMC <- lagsarlm(hform, data = house,

+ listw = hlw, method = "Matrix", tr = htr_MC)

A similar exercise may be undertaken for the larger data set,with time taken
for MC 2.307s, andmoments without parallelization 513.5s, with parallelization on
two cores 346.9s. The timings indicate that claims in Smirnov and Anselin (2009)
may have been somewhat optimistic with regard to the efficiency of the algorithm,
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although careful coding in a compiled language might speed up computation. The z-
value forρ for the unadjusted numerical Hessian is 139.8, for the adjusted numerical
Hessian withmoments traces 136.0, and withMC traces 136.0. As can be seen, the
difference between the results for the two methods for computing the truncated
series of traces of the powered weights matrix is minimal; the difference between
the standard errors ofρ using these techniques is -1.264e-07.

2.3 Spatial 2SLS and GMM techniques

In addition to maximum likelihood, spatial two stage least squares and generalized
method of moments approaches have been proposed by Kelejianand Prucha (1998,
1999). Thestsls and GMerrorsar functions were contributed tospdep by Luc
Anselin, and have been revised in minor ways by this author and Gianfranco Piras.
In particular,stsls now uses[X,(WX),(WWX)] as instruments, andGMerrorsar
can use a number of different functions for numerical optimization.

> hlag_stsls <- stsls(hform, data = house, listw = hlw)

> herr_GM <- GMerrorsar(hform, data = house, listw = hlw,

+ returnHcov = TRUE)

Thestsls function have been extended to provide a heteroskedasticity and auto-
correlation consistent (HAC) estimator (Kelejian and Prucha, 2007; Piras, 2010) in
thesphet package. An additional, auxiliary spatial weights object is used to account
for heteroskedasticity not otherwise accommodated in the standard specification.

> library(sphet)

> hk10 <- knn2nb(knearneigh(coordinates(house), k = 10))

> hdists <- nbdists(hk10, coordinates(house))

> hlwd <- nb2listw(hk10, glist = hdists, style = "B")

> class(hlwd) <- c("sphet", "distance", "nb", "GWT")

> hlag_stslshac <- stslshac(hform, data = house, listw = hlw,

+ distance = hlwd, type = "Triangular")

From Table 8 we can see that the coefficient values of all threeGM lag esti-
mators agree exactly. The spatial coefficient values are similar to the ML estimate.
The z-values and t-values of the ordinary GM lag estimators also agree exactly,
and lie between the ML z-values and the z-values of the GM HAC lag estimator;
the z-values of the GM HAC lag estimator are sometimes the largest, sometimes
the smallest in absolute value. In this case,ρ is similar between the ML and GM
estimators, but it is worth noting that this model accounts for around 80% of the
variation in the dependent variable. The difference between ML and GMρ in the
smaller data set, in which a little less than 50% of the variation in the dependent
variable is accounted for, is much greater, ML lagρ = 0.555, GM lagρ = 0.268.

16



Table 8: Comparison of Lucas county (OH) house price spatiallag results; for
spdep z-values in parentheses, for SE toolbox, t-values in parentheses.

Matrix lag GM lag GM HAC lag SE toolbox GM lag
rho 0.522814 0.527795 0.527795 0.527795

(139.8) ( 82.8774) ( 60.6645) ( 82.8774)
(Intercept) 0.258328 0.233157 0.233157 0.233157

( 4.037) ( 3.3119) ( 2.6957) ( 3.3119)
age 1.308469 1.302469 1.302469 1.302469

( 23.303) ( 22.9968) ( 11.9207) ( 22.9968)
I(age∧2) -2.321326 -2.305514 -2.305514 -2.305514

(-22.693) (-22.2457) (-11.2922) (-22.2457)
I(age∧3) 0.654895 0.649860 0.649860 0.649860

( 11.876) ( 11.7378) ( 5.6272) ( 11.7378)
log(lotsize) 0.072975 0.071987 0.071987 0.071987

( 23.874) ( 22.3376) ( 16.4858) ( 22.3376)
rooms -0.002534 -0.002649 -0.002649 -0.002649

( -1.137) ( -0.8711) ( -0.7592) ( -0.8711)
log(TLA) 0.577833 0.574756 0.574756 0.574756

( 58.240) ( 54.0755) ( 45.8492) ( 54.0755)
beds 0.015621 0.015928 0.015928 0.015928

( 4.066) ( 3.5177) ( 3.1816) ( 3.5177)
syear1994 0.044475 0.044471 0.044471 0.044471

( 5.999) ( 6.0257) ( 6.8135) ( 6.0257)
syear1995 0.086074 0.086065 0.086065 0.086065

( 11.923) ( 11.9414) ( 13.3389) ( 11.9414)
syear1996 0.105937 0.105907 0.105907 0.105907

( 15.134) ( 15.1728) ( 15.5060) ( 15.1728)
syear1997 0.147347 0.147365 0.147365 0.147365

( 21.226) ( 21.2865) ( 21.9719) ( 21.2865)
syear1998 0.200722 0.200711 0.200711 0.200711

( 28.135) ( 28.1986) ( 30.3074) ( 28.1986)
Sigma squared 0.09479 0.09459 0.09459 0.0945
seconds 2.042 0.233 8.928
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Table 9: Comparison of Lucas county (OH) house price spatialerror results; for
spdep z-values in parentheses, for SE toolbox, t-values in parentheses.

Matrix error GM error SE toolbox GM error
lambda 0.619403 0.445980 0.445981

(131.3) ( 56.820)
(Intercept) 4.676450 4.039891 4.039891

( 59.812) ( 50.318) ( 48.699)
age 1.079835 1.402878 1.402878

( 13.140) ( 17.396) ( 16.836)
I(age∧2) -2.574235 -3.245746 -3.245746

(-18.751) (-23.494) (-22.738)
I(age∧3) 0.952080 1.166465 1.166465

( 13.840) ( 16.430) ( 15.901)
log(lotsize) 0.193845 0.207524 0.207524

( 40.845) ( 46.117) ( 44.633)
rooms 0.004376 0.006591 0.006591

( 1.441) ( 1.971) ( 1.908)
log(TLA) 0.625435 0.699655 0.699655

( 57.765) ( 60.076) ( 58.142)
beds 0.017266 0.009620 0.009620

( 3.839) ( 1.942) ( 1.879)
syear1994 0.040547 0.041296 0.041296

( 5.733) ( 5.256) ( 5.087)
syear1995 0.083232 0.083276 0.083276

( 11.984) ( 10.808) ( 10.460)
syear1996 0.103309 0.103967 0.103967

( 15.411) ( 13.969) ( 13.519)
syear1997 0.147440 0.145675 0.145675

( 22.071) ( 19.662) ( 19.030)
syear1998 0.195470 0.195246 0.195246

( 28.694) ( 25.797) ( 24.967)
Sigma squared 0.1004 0.1157 0.1235
seconds 3.971 1.216
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Table 9 shows again that the two GM error estimators agree in coefficient values.
They do not, however, agree in the z-values/t-values, nor dothey agree with the ML
coefficients or z-values. The difference inλ is noticable, and feeds through into the
estimates of the other coefficients.

2.4 Matrix exponential techniques

Matrix exponential methods may be used to fit spatial regression models (LeSage and Pace,
2007). Code for fitting the spatial lag model was contributedto spdep by Eric
Blankmeyer, and as Table 10 indicates, the two independent implementations give
close results for the coefficients andσ2:

> hlag_mess <- lagmess(hform, data = house, listw = hlw)

Because numerical optimization is used to find the the optimum of a log like-
lihood function, results may differ even when the same parameterq is used, as is
the case here. The standard error ofα is in any case calculated using a numerical
Hessian procedure; in thelagmess function, the remaining standard errors come
from an ancilliary linear regression. For more details, seeLeSage and Pace (2009,
pp. 236–278).

3 Comparing associated measures

In addition to the fitting of spatial econometric models, associated measures are
needed to assist in their interpretation. Here we will discuss two such measures,
one permitting the impact of changes in right hand side variables in spatial lag and
spatial Durbin models to be interpreted, the other to test whether the coefficients of
spatial error models and linear models are significantly different from one another,
expressed as a Hausman test. Our concern here is to provide analysts with the func-
tions and methods needed to apply these recent additions to spatial econometrics,
and to compare reference implementations.

3.1 Implementing impact measures

In fitting spatial lag and spatial Durbin models, it has emerged over time that, un-
like the spatial error model, the spatial dependence in the parameterρ feeds back,
obliging analysts to base interpretation not on the fitted parametersβ, andγ where
appropriate, but rather on correctly formulated impact measures (LeSage and Pace,
2009).

This feedback comes from the fact that the elements of the variance-covariance
matrix of the coefficients for the maximum likelihood spatial error model linkingλ
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Table 10: Comparison of Lucas county (OH) house price matrixexponential spatial
lag results; forspdep z-values in parentheses, for SE toolbox, t-values in parenthe-
ses.

R/spdep lagmess SE toolbox lag MESS
alpha -0.554305 -0.554302

(-107.7) (-288.0654)
(Intercept) 0.646518 0.646529

( 9.4422) ( 16.7893)
age 1.463764 1.463766

( 23.8532) ( 23.9120)
I(age∧2) -2.670442 -2.670448

(-24.0239) ( -24.0140)
I(age∧3) 0.760874 0.760876

( 12.6529) ( 12.6628)
log(lotsize) 0.090868 0.090869

( 28.0265) ( 28.7039)
rooms -0.001293 -0.001293

( -0.3894) ( -0.4674)
log(TLA) 0.651705 0.651706

( 60.3551) ( 431.5221)
beds 0.012442 0.012442

( 2.5221) ( 2.5370)
syear1994 0.047726 0.047726

( 5.9135) ( 5.9147)
syear1995 0.091701 0.091701

( 11.6347) ( 11.6359)
syear1996 0.113129 0.113129

( 14.8210) ( 14.8234)
syear1997 0.156383 0.156383

( 20.6566) ( 20.6580)
syear1998 0.212281 0.212281

( 27.2724) ( 27.2715)
Log likelihood -8343 -100933
Sigma squared 0.1131 0.1131
seconds 5.158
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andβ are zero,∂2ℓ/(∂β∂ρ) = 0, while in the spatial lag model (and by extension
in the spatial Durbin model):∂2ℓ/(∂β∂ρ) 6= 0. In the spatial error model, for right
hand side variabler, ∂yi/∂xir = βr and ∂yi/∂x jr = 0 for i 6= j; in the spatial lag
model,∂yi/∂x jr = ((I− ρW)−1Iβr)i j, whereI is the N ×N identity matrix, and
(I−ρW)−1 is known to be dense (LeSage and Pace, 2009, p. 33–42).

The variance-covariance matrix of the coefficients and the series of traces of the
powered weights matrix are the key ingredients needed to compute impact measures
for spatial lag and spatial Durbin models; both of these are based on the represen-
tation of weights matrices as sparse matrices. We can also compute the measures
analytically for smaller data sets; here we will contrast the 1980 US election and
Lucas (OH) data sets, where the former is small enough to permit all the output
values to be compared.

An estimate of the coefficient variance-covariance matrix is needed for Monte
Carlo simulation of the impact measures, although the measures themselves may be
computed without an estimate of this matrix. LeSage and Pace(2009, pp. 33–42,
114–115) and LeSage and Fischer (2008) provide the background and implementa-
tion details for impact measures.

The awkwardSr(W) = ((I−ρW)−1Iβr) matrix term needed to calculate impact
measures for the lag model, andSr(W) = ((I−ρW)−1(Iβr −Wγr)) for the spatial
Durbin model, may be approximated using traces of powers of the spatial weights
matrix as well as analytically. The average direct impacts are represented by the sum
of the diagonal elements of the matrix divided byN for each exogenous variable,
the average total impacts are the sum of all matrix elements divided byN for each
exogenous variable, while the average indirect impacts arethe differences between
these two impact vectors.

We have seen above in Section 2.2 how to compute the required truncated series
of traces of powered spatial weights matrices. Inspdep, impacts methods are avail-
able for ML spatial lag and spatial Durbin fitted model objects, and for GM spatial
lag objects, since variance-covariance matrices can be calculated using techniques
already discussed. The methods can use either dense matrices or truncated series of
traces, so the impacts for a single model fit may be examined using dense or sparse
procedures, and using different ways of computing the traces:

> set.seed(100831)

> eimp_lag_ML_eigen_lw <- impacts(elag_ML_eigen, listw = elw,

+ R = 1999)

> set.seed(100831)

> eimp_lag_ML_Matrix_trmult2 <- impacts(elag_ML_Matrix_trmult,

+ tr = etr_mult, R = 1999)

> set.seed(100831)

> eimp_lag_ML_Matrix_trMC2 <- impacts(elag_ML_Matrix_trMC,

+ tr = etr_MC, R = 1999)
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We are interested in establishing whether the extra time needed to compute
dense matrix exact coefficient and variance-covariance matrix estimates affect the
Monte Carlo test results. Computing the dense matrix Monte Carlo measures of im-
pacts dispersion is very time-consuming; forR = 1999 draws, it took here 84193s,
that is almost 24 hours. The timings for the updating sparse Cholesky were with ex-
act power trace series used both to adjust the numerical Hessian and for the Monte
Carlo calculations (from powering a sparse matrix): 0.728s, and 0.749s with the
Monte Carlo power trace series used in both steps. For comparison we add the re-
sults taken from the estimation of impact measures using theSpatial Econometrics
toolbox function.

> elag_stsls <- stsls(eform, data = elect80, listw = elw)

> set.seed(100831)

> eimp_lag_stsls_trMC <- impacts(elag_stsls, tr = etr_MC,

+ R = 1999)
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SE_MC

Matrix_tr_MC
Matrix_tr_mult

Eigen

−0.2 0.0 0.2 0.4
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Figure 1: Comparison of the dispersion of impact measures for the three right hand
side variables in the US election data set, impacts marked bydiamond; 98% highest
posterior density range for Monte Carlo impact measure simulations.

In addition we include impacts calculated for the GM lagstsls fit, which in
the smaller data set estimatesρ as 0.2679, rather than 0.5547 in the ML case —
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naturally this difference feeds through into the estimatesof β. The GM lag variance-
covariance matrix estimates are also different, which affects the Monte Carlo draws,
because the multivariate Normal draws are taken using the fitted coefficients and
their variance-covariance matrix.

Figure 1 summarizes the results of the impact measures and their dispersion for
the three right hand side variables in the US election data set. The impact mea-
sures are marked by diamonds, and the dispersion is indicated by horizontal lines
spanning the 1%–99% highest posterior density range for each compared type of
impact and variable. The methods used are: Eigen — spdep dense matrix for model
fit and simulation; Matrix_tr_mult — spdep updating sparse Cholesky with exact
power trace series for Hessian adjustment and simulation; Matrix_tr_MC — spdep
updating sparse Cholesky with Monte Carlo power trace series for Hessian adjust-
ment and simulation; STSLS_tr_MC — spdepstsls with Monte Carlo power trace
series for simulation; and SE_MC — Spatial Econometrics toolbox sar function re-
sults. The SE_MC method usedR = 1000 draws, the remaining methodsR = 1999
draws.

The four sets of results for the maximum likelihood estimators, three inspdep
and one in the Spatial Econometrics toolbox, are very close to each other, both in
point estimate and dispersion of impact measures. We have already seen that there
are small differences between the Spatial Econometrics toolbox, and thespdep
model fitting function in the line search forρ and in the computation of the numer-
ical Hessian, leading to the slight differences seen here. The only large differences
are between the GM lag estimator and the ML estimators. We cansafely conclude
that ML impact measures are not impaired by using Monte Carloapproximations to
the power trace series, so that an effective choice is to fit using a maximum likeli-
hood estimator and a Monte Carlo approximation to the power trace series to adjust
the numerical Hessian-based variance-covariance matrix,and to evaluate the impact
measures using the same Monte Carlo approximation to the power trace series.

Let us turn now to the spatial Durbin model of the Lucas countyhousing data,
for which impact measures are required for satisfactory interpretation:

> hSD_ML_Matrix_trMC <- lagsarlm(hform, data = house, listw = hlw,

+ type = "mixed", method = "Matrix", tr = htr_MC)

> set.seed(100831)

> himp_SD_ML_Matrix_trMC2 <- impacts(hSD_ML_Matrix_trMC,

+ tr = htr_MC, R = 1999)

Once the Monte Carlo approximation to the power trace serieshas been com-
puted, here taking 2.307s, fitting the model for over 25,000 observations and 12
right hand side variables (6.056s), the impact measures canbe output at little extra
cost, taking just 1.315s. The main challenge is to present the voluminous output
for the direct, indirect and total impacts and their measures of dispersion, as we see
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Table 11: Comparison of Lucas county (OH) house price spatial Durbin impacts; forspdep z-values in parentheses, for SE
toolbox, t-values in parentheses.

Matrix MC direct SE direct Matrix MC indirect SE indirect Matrix MC total SE total
age 1.116635 1.116326 0.903016 0.901730 2.019652 2.018056

( 13.9621) ( 13.7515) ( 6.82024) ( 7.01399) ( 13.6664) ( 13.8478)
I(age∧2) -2.090591 -2.091193 -1.391627 -1.388742 -3.482218 -3.479935

(-15.4446) (-15.4222) (-5.74951) (-5.95153) (-12.3207) (-12.6045)
I(age∧3) 0.545785 0.545164 -0.057494 -0.057812 0.488291 0.487352

( 7.8822) ( 7.9677) (-0.44421) (-0.45240) ( 3.0459) ( 3.1315)
log(lotsize) 0.111786 0.111652 0.015387 0.015401 0.127173 0.127053

( 23.2954) ( 23.1832) ( 2.14509) ( 2.19660) ( 17.3521) ( 18.0693)
rooms 0.001723 0.001760 0.002335 0.002142 0.004058 0.003902

( 0.4794) ( 0.5017) ( 0.25726) ( 0.24617) ( 0.3570) ( 0.3496)
log(TLA) 0.695545 0.696486 0.486106 0.485408 1.181651 1.181894

( 60.6295) ( 62.1220) (19.43009) (19.24185) ( 37.6649) ( 37.1994)
beds 0.002605 0.002526 -0.067847 -0.067422 -0.065242 -0.064896

( 0.5002) ( 0.4699) (-5.26156) (-5.21854) ( -3.9857) ( -3.8895)
syear1994 0.039575 0.039852 -0.004850 -0.004455 0.0347260.035397

( 4.3891) ( 4.6116) (-0.20853) (-0.20750) ( 1.2101) ( 1.2744)
syear1995 0.084237 0.084400 0.001933 0.001660 0.086170 0.086060

( 9.7066) ( 9.8766) ( 0.05934) ( 0.08153) ( 3.0738) ( 3.2571)
syear1996 0.103682 0.103901 -0.002139 -0.002002 0.1015430.101899

( 12.4602) ( 12.8060) (-0.13309) (-0.10082) ( 3.8154) ( 3.9965)
syear1997 0.143098 0.143091 -0.025365 -0.025592 0.1177330.117499

( 17.1701) ( 18.0463) (-1.25323) (-1.28779) ( 4.4897) ( 4.5974)
syear1998 0.203306 0.203529 0.020313 0.020286 0.223619 0.223814

( 23.9975) ( 24.3157) ( 0.94477) ( 0.99041) ( 8.1506) ( 8.4462)
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from Table 11. Here dispersion is expressed as a z-value based on the standard
deviation of the simulations in both applications (termed t-values in the Spatial
Econometrics toolbox function). This is an unfortunate abbreviation of the more
appropriate quantile measure, but is perhaps unavoidable when there are many vari-
ables. As can be seen, the two applications give very similarresults for the impact
measures as calculated using the Lucas county data set and the spatial Durbin rep-
resentation.

3.2 Implementing a Hausman test

Pace and LeSage (2008) introduce a spatial Hausman test intended to check whether
the regression coefficients of a spatial error model differ significantly from those of
the underlying linear model assumingλ = 0. If they are not seen as the same, the
model is misspecified (see also LeSage and Pace, 2009, pp. 61–63). The spatial
Hausman test is constructed as:

T = (βo−βs)
′(Ωo−Ωs)

−1(βo−βs),

whereβo are the linear model coefficients,βs are the spatial error model coeffi-
cients, andΩs = σ̃2(X(I− λ̃W)′(I− λ̃W)X)−1 is the estimated variance-covariance
matrix of the spatial error model coefficients. TheΩo term is more complicated,
being not the estimated variance-covariance matrix of the linear model coefficients,
but a variance-covariance matrix adjusted to suit the assumed null of the spatial
error process, using the estimated value ofλ:

Ωo = σ̃2(X′X)−1X′(I− λ̃W)−1(I− λ̃W′)−1X(X′X)−1

If we write A = X(X′X)−1, we can represent half ofΩo as:

(I− λ̃W′)−1A =
∞

∑
j=0

(λ̃ jW′ j)A = A+(λ̃W′)A+ . . .

SinceA is anN×k matrix, withk ≪ N, we can approximate each half ofΩo by
the sum of a truncated power series, not requiring the inversion of N×N matrix (I−
λ̃W′). We truncate the series at the point at which the mean of the next additional
term does not exceed a very small tolerance value. This is implemented in the
powerWeights function, and is used when spatial error models are fitted using sparse
matrix techniques. By default theerrorsarlm function returns a component with
the matrix part ofΩo, which is used in the test. This also means that the spatial
Hausman test may be performed on large data sets, such as the Lucas, Ohio house
price data set withN = 25357.

As the Hausman test is not yet available in the Spatial Econometrics toolbox, we
compare here using a script kindly provided by James LeSage.Because the script
uses dense matrix techniques, we compare using the smaller data set:
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> Hausman.test(eerr_ML_Matrix)

Spatial Hausman test (approximate)

data: pc_turnout ~ log(pc_income) + log(pc_college) +

log(pc_homeownership)

Hausman test = 146.3798, df = 4, p-value < 2.2e-16

When running the provided script with values of the fitted coefficients andσ2

from the function output from the Spatial Econometrics toolbox functions, the test
statistic is 150.22 (see also Table 4 in Section 2.1 above); if the script is given the
fitted coefficients andσ2 from errorsarlm, the result is 146.38, that is identical
with the implementation of the Hausman test inspdep. It thus appears that the
implementation based on the sum of a truncated power series performs adequately,
and that we should be able to depend on test results for other data sets. Applying
the Hausman test to the Lucas county spatial error model, we find:

> Hausman.test(herr_ML_Matrix)

Spatial Hausman test (approximate)

data: log(price) ~ age + I(age^2) + I(age^3) + log(lotsize) + rooms

+

log(TLA) + beds + syear

Hausman test = 3115.981, df = 13, p-value < 2.2e-16

There is no doubt that the estimated coefficients of the righthand side variables
of the linear and spatial error models differ. If we continueto explore the relative fit
of the spatial models using a likelihood ratio test, or by comparing AIC values, we
see that the spatial Durbin model differs clearly from the spatial error model, and
fits the house price data better:

> LR.sarlm(hSD_ML_Matrix_trMC, herr_ML_Matrix)

Likelihood ratio for spatial linear models

data:

Likelihood ratio = 3745.901, df = 12, p-value < 2.2e-16

sample estimates:

Log likelihood of hSD_ML_Matrix_trMC

-7307.507

Log likelihood of herr_ML_Matrix

-9180.458

> AIC(herr_ML_Matrix)

[1] 18390.92

> AIC(hSD_ML_Matrix_trMC)
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[1] 14669.01

In conclusion, we see that the Hausman test may also be applied to the estimated
GM spatial error model:

> Hausman.test(herr_GM)

Spatial Hausman test (approximate)

data: log(price) ~ age + I(age^2) + I(age^3) + log(lotsize) + rooms

+

log(TLA) + beds + syear

Hausman test = 3974.049, df = 13, p-value < 2.2e-16

4 Extensions

Fortunately, comparing functions in theR spdep package with functions in the Spa-
tial Econometrics toolbox is eased by the fact that the code is open source, and so
open to scrutiny. When OpenGeoDa achieves the same status, it will become more
obvious where its strengths lie, and it will be possible for others to contribute imple-
mentations of additional functionality. Since there is as yet no option to fit spatial
Durbin models directly, or to calculate impact measures, comparisons of these tech-
niques have been restricted to the Spatial Econometrics toolbox andspdep.

The publication of thesphet package and the accompanying article by Piras
(2010) signals an interesting extension to a new range of specifications. In addition,
the splm package for spatial panel models is under active development by Gian-
franco Piras and Giovanni Millo on R-forge, and may already be downloaded for
use.8 Collaborative development using platforms of this kind is very beneficial, for
a description see Theussl et al. (2010). Withinspdep itself, provision is being made
through modularization to permit users to choose between different ways of calcu-
lating the Jacobian (Bivand, 2010). It is also intended to provide a function to fit a
general spatial regression model using different fitting techniques, which is needed
to contrast with possibly more appropriate modelling strategies, such as the spatial
Durbin model.

What remains is to encourage researchers who use these and other software
applications to take active part in discussion lists, wheremore experienced users can
offer advice to those starting to discover the attractions of using spatial econometrics
tools to tackle empirical economic questions. Once more real-world examples of the
application of, for instance, impact measures, have been published, the usefulness
of such advances will become more evident. Having multiple implementation in
different application languages provides users with more choice, and, as we have

8https://r-forge.r-project.org/projects/splm/, R Packages menu
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seen, constitutes a “reality check” that gives insight intothe ways that formulae can
be rendered into code.
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