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Abstract

Elhorst (2010) shows how the recent publication of LeSage and Pace (2009)
in his expression “raises the bar” for our fitting of spatial econometrics mod-
els. By extending the family of models that deserve attention, Elhorst reveals
the need to explore how they might be fitted, and discusses some alternatives.
This paper attempts to take up this challenge with respect toimplementation in
theR spdeppackage for the maximum likelihood case, using a smaller data set
to see whether earlier conclusions would be changed when newer techniques
are used, and two larger data sets to examine model fitting issues.

1 Background

In an interesting review, Elhorst (2010) “raises the bar” toplace the general spatial
autoregressive model and the Spatial Durbin model in a shared context, such as
that of the model proposed by Manski (1993). Fitting these models by maximum
likelihood makes it possible to start trying to investigatewhich augmented forms of
commonly used spatial econometric models may be of use in empirical work.

It is not intended to make reference here to the burgeoning spatial econometrics
literature on the properties of estimators, including maximum likelihood estima-
tors. We will also focus exclusively on maximum likelihood estimators, although
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extensions to Bayesian estimators are clearly of interest (LeSage and Pace, 2009).
Similarly, we will not consider GM estimators, but acknowledge that the sets of
instruments that may be used in fitting the general two parameter spatial autore-
gressive model are not limited to low-order spatial lags of the explanatory variables
(Kelejian and Prucha, 1999; Drukker et al., 2011, and references therein).

This analysis extends work presented in Bivand (2010a), which included com-
parisons of model fitting for spatial error, spatial lag between implementations in
R, OpenGeoDa running under Wine, and these and spatial Durbinmodels with the
Spatial Econometrics toolbox running under Octave.

In Bivand (2010a), two data sets distributed with theR spdeppackage are used
(R Development Core Team, 2011); both originated from the Spatial Econometrics
toolbox, and are provided inspdepwith pre-built lists of spatial neighbours. Here, a
third, smaller data set is used for convenience first, permitting comparison with spa-
tial econometrics functions insppack in StataTM 11.2 on a smaller system running
Windows XP with 1GB RAM. Its use also permits us to examine whether legacy
results require revision when confronted with newer estimation techniques. A broad
survey of the analysis of spatial data in theR environment is given by Bivand (2006)
and Bivand et al. (2008).

1.1 Garbage in — garbage out?

The smaller data set is used to revisit conclusions drawn in Bivand and Szymanski
(2000), and concerns a study of the impact of introducing compulsory competitive
tendering in garbage colletion in England at the district level. The larger data sets
could not be fitted with Stata on the platform available, as Stata uses dense matrix
techniques for maximum likelihood fitting.

The underlying research question in Bivand and Szymanski (2000) was firstly
whether the change in policy regime had affected the net realcosts of garbage col-
lection in local government districts, and secondly whether the fit of models in-
cluding standard explanatory variables had changed with respect to those variables.
The net real cost of garbage collection varies with the number of collection points
(units), the proportion of dwelling house units, the density of units by district sur-
face area, dummies for London and other metropolitan areas,and the real wage
level in the region to which the district belongs. The introduction of compulsory
competitive tendering would be expected not only to lower net real costs, but also
to sharpen the impact of cost-shaping variables, such as density and wages. The
data for 324 out of 366 districts was split into two sets, one with the values of real
net cost and real wages for each district in the pre-CCT year,and a second in the
post-CCT year, with the actual year of adoption dropped.

After hearing a presentation of some preliminary results ofhis aspatial study
(Szymanski, 1996), I asked Stefan Szymanski whether he had tested the residu-
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als for spatial autocorrelation as a standard specificationcheck. He asked me to
collaborate in carrying this out, and we found that the residuals were significantly
spatially autocorrelated. The results of the robust Lagrange Multiplier tests seemed
to indicate that a spatial error model is preferable to a spatial lag model in both
cases.

We spent some time discussing why the spatial autocorrelation was observed,
and reached a working hypothesis that before the introduction of CCT, the district
principals might “mimic” the costings of their near neighbours because they had
few other sources of information about the costs of garbage collection, and that this
“mimicking” should abate following the introduction of CCT. This principal-agent
model and a first cut at a spatial analysis are reported in Bivand and Szymanski
(1997), fitting a spatial error model.

The principal-agent model would have been better suited by aspatial lag model,
with the observed cost levels of proximate neighbours influencing the principals’
decisions directly, but the model diagnostics seemed to suggest otherwise. Con-
tinuing to work on this contradiction, we noticed that the kinds of yardstick com-
parisons that might be occurring should probably be politically “coloured”, and
decided to include party political control in districts in the analysis, as described in
Bivand and Szymanski (2000). The neighbours used here are those from the origi-
nal paper, defined as a graph on all 366 districts, and subsetted to remove missing
districts.

1.2 US 1980 election turnout data set

The US county data set with 3107 observations includes a 1980Presidential elec-
tion turnout variable with a single county (Hinsdale County, CO) with a value over
unity — most likely from cross-border voting in this remote rural area. We define
a formula relating this variable to income ($1000) per inhabitant over age 19, the
number with college degrees as a proportion of all over age 19, and homeowner-
ship as a proportion of all over age 19. The right hand side variables are taken as
logarithms, as in the filedata/elect.txt in the Spatial Econometrics toolbox.

The data set provided inspdepincludes a number ofnb objects listing the neigh-
bours of the counties in the data set using different definitions. Here we will use
a Queen contiguity scheme constructed using a shapefile fromthe USGS National
Atlas site, file: co1980p020.tar.gz. This object contains four counties with no
neighbours, and because of this, an option is set to permit computations under the
assumption that the lagged value of a variable for a county with no neighbours may
be set to zero (Bivand and Portnov, 2004).
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1.3 Lucas County, OH, housing data set

The Lucas County, Ohio, housing data set has 25,357 observations of single family
homes sold 1993–1998, and is fully described in the filedata/house.txt in the
Spatial Econometrics toolbox. It is used here to supplementconclusions drawn
for the 1980 US election turnout data set, which is of a size that permits dense
matrix methods, since only sparse or approximate methods are feasible for larger
N. The dependent variable is the logarithm of the selling price. The right hand
side variables include the age, squared age, and cubed age ofthe house, sale year
dummies, the logarirms of lot size and total living area, andnumbers of rooms
and bedrooms. No contextual variables about the neighbourhood of the houses
are available, so one would expect a strong spatial autocorrelation reflecting this
misspecification.

The list of neighbours provided with the data set inspdep is a sphere of influ-
ence graph constructed from a triangulation of the point coordinates of the houses
after projection to the Ohio North NAD83 (HARN) Lambert Conformal Conical
specification (EPSG:2834). It is relatively sparse, with less than three neighbours
per observation on average.

2 Candidate models

The spatial lag model (Cliff and Ord, 1973; Ord, 1975; Bivand, 1984; Anselin,
1988; LeSage and Pace, 2009) is the most frequently encountered specification in
spatial econometrics:

y = ρWy +Xβ+ ε,

wherey is an(N ×1) vector of observations on a dependent variable taken at each
of N locations,X is an(N×k) matrix of exogenous variables,β is an(k×1) vector
of parameters,ε is an (N × 1) vector of independent and identically distributed
disturbances andρ is a scalar spatial lag parameter.

In the spatial Durbin model, the spatially lagged exogenousvariables are added
to the model:

y = ρWy +Xβ+WXγ+ ε,

whereγ is an((k−1)×1) vector of parameters whereW is row-standardised, and a
(k×1) vector otherwise. It is clear that these two models are estimated in the same
way.

The spatial error model may be written as (Cliff and Ord, 1973; Ord, 1975;
Ripley, 1981; Anselin, 1988; LeSage and Pace, 2009):
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y = Xβ+u, u = λWu + ε,

whereλ is a scalar spatial error parameter, andu is a spatially autocorrelated dis-
turbance vector with constant variance and covariance terms specified by a fixed
spatial weights matrix and a single coefficientλ:

u ∼ N(0,σ2(I −λW)−1(I −λW′)−1)

When the Common Factor condition is met:β = −ργ, the spatial Durbin and
spatial error models are equivalent. Note that here we use the notation of Anselin
(1988); LeSage and Pace (2009), withρ the spatial autoregressive coefficient of the
dependent variable, andλ the spatial autoregressive coefficient of the disturbance;
the usage is reversed in other parts of the spatial econometrics literature.

The general two parameter spatial Durbin autoregessive model, includes the
spatially lagged dependent variable, spatially lagged explanatory variables, and a
spatially autoregressive disturbance. It has been variously termed as the Manski,
SARAR Durbin or SAC Durbin, with the latter two terms extending the SARAR de-
scription used by Kelejian and Prucha (1999, and subsequentpapers), and the SAC
term used as a function name by LeSage and Pace (2009). The SARAR and SAC
terms refer to the general model described by Anselin (1988,pp. 64–65, 182–183),
with two spatial process parameters, but no spatially lagged explanatory variables.
Here we will use the term SAC Durbin; the model may be written (assuming the
use of the same weight matrixW in all spatial processes):

y = ρWy +Xβ+WXγ+u, u = λWu + ε,

This representation forks to the general model (SARAR/SAC)by settingγ = 0,
to the spatial Durbin by settingλ = 0, and to the error Durbin model by settingρ = 0
(the error Durbin model includes the spatially lagged explanatory variables and a
spatial autoregressive error process). In the general model case, when the weights
matrices in both processes are the same, the identification of ρ andλ depends on
β 6= 0.

Elhorst (2010) suggests that it may be appropriate to fit a general, inclusive
model first, here the SAC Durbin model, and to test restrictions on that model.
Some tests are available for simpler comparisons between models using ordinary
least squares residuals, but so far none are defined for the more complex models.
Consequently, after fitting the pairs of models to be compared by maximum likeli-
hood, it is possible to use likelihood ratio tests, and this approach will be followed
here. If one wished to accommodate situations in which the assumptions required
for use of maximum likelihood were not met, Bayesian model comparison would
be a possible alternative. It is not yet clear whether a J-test approach could be used
for GMM-fitted models (Kelejian, 2008; Kelejian and Piras, 2011).
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3 Maximum likelihood estimation

The log-likelihood function for the spatial lag model is:

ℓ(β,ρ,σ2) = −
N
2

ln2π−
N
2

lnσ2+ ln |I −ρW|

−
1

2σ2

[

((I −ρW)y−Xβ)′((I −ρW)y−Xβ)
]

and by extension the same framework is used for the spatial Durbin model when
[X(WX)] are grouped together. Sinceβ can be expressed as(X′X)−1X′(I −ρW)y,
all of the cross-product terms can be pre-computed as cross-products of the residuals
of two ancilliary regressions:y = Xβ1 andWy = Xβ2, and the sum of squares term
can be calculated much faster than the log determinant (Jacobian) term of theN×N
sparse matrixI −ρW; see LeSage and Pace (2009) for details.

The log-likelihood function for the spatial error model is:

ℓ(β,λ,σ2) = −
N
2

ln2π−
N
2

lnσ2+ ln |I −λW|

−
1

2σ2

[

(y−Xβ)′(I −λW)′(I −λW)(y−Xβ)
]

β may be concentrated out of the sum of squared errors term, forexample as:

ℓ(λ,σ2) = −
N
2

ln2π−
N
2

lnσ2 + ln |I −λW|

−
1

2σ2

[

y′(I −λW)′(I −QλQ′
λ)(I −λW)y

]

whereQλ is obtained by decomposing(X −λWX) = QλRλ.
The relationship between the log determinant term and the sum of squares term

in the log likelihood function in the spatial error model is analogous to that in the
spatial lag model, but the sum of squares term involves more computation in the
case of the spatial error model. In all cases, a simple line search may be used to find
ρ or λ, and other coefficients may be calculated using an ancilliary regression once
this has been done.

The general model is more demanding, and requires thatρ andλ be found by
constrained numerical optimization in two dimensions by searching for the maxi-
mum on the surface of the log likelihood function, which is like that of the spatial
error model with additional terms inI −ρW:
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ℓ(ρ,λ,σ2) = −
N
2

ln2π−
N
2

lnσ2+ ln |I −ρW|+ ln |I −λW|

−
1

2σ2

[

y′(I −ρW)′(I −λW)′(I −QλQ′
λ)(I −λW)(I −ρW)y

]

This suggests that the tuning of the constrained numerical optimization func-
tion, including the provision of starting values, reasonable stopping criteria, and
also the choice of algorithm may all affect the results achieved. The Stata imple-
mentation uses a grid search for initial values of(ρ,λ) (Drukker et al., 2011), the
Spatial Econometrics toolbox uses the generalized spatialtwo-stage least squares
estimates, with the option of the user providing initial values, and thespdepimple-
mentation for row-standardised spatial weights matrices,uses either four candidate
pairs of initial values at(−0.8,0.8), (0,0), (0.8,0.8) and(0.8,−0.8), a full grid of
nine points at the same settings, or user provided initial values (which permits the
use of weights matrices that are not row standardised); optimizers may be chosen
by the user.

Detailed reviews of methods for computing the Jacobian may be found in LeSage and Pace
(2009); Smirnov and Anselin (2009); Bivand (2010b), and interested readers are
refered to these. The methods used for computing the Jacobian in spdepare pre-
sented in full in Bivand (2010b); here we use the dense matrixeigenvalue method
eigen (Ord, 1975, p. 121) for the English garbage data set, and the updating
Cholesky decomposition methodMatrix, using sparse matrix functions in theR
Matrix package (Bates and Maechler, 2011), and based on Pace and Barry (1997),
for the two larger data sets.

When sparse matrix methods or approximations are used, motivated by the size
of N, no analytical asymptotic standard errors for the coefficients in spatial lag,
Durbin or general SARAR models will be available, nor will the standard error of
λ be available in the spatial error case. This may be addressedby computing a
numerical Hessian for an augmented function fitting bothρ and/orλ andβ starting
at the maximum likelihood optimum. The covariance matrix ofcoefficient estimates
is required for the Monte Carlo testing of measures of the impacts of explanatory
variables, as we will see below.

With some data sets, models, and variable scaling — fortunately not those
used in these examples, one meets difficulties in inverting the numerical Hessian
returned from finite difference computation. This unfortunate problem may be
worked around by replacing most of the matrix with analytical values, termed the
analytical-numerical mixed Hessian by LeSage and Pace (2009, pp. 54–60). The
awkward trace term for the interaction betweenλ andσ2 — tr(W(I − λ̃W)−1) —
may be approximated by a series of traces of the powered weights matrix, either
computed using sparse matrix or Monte Carlo techniques. Theanalytical-numerical
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mixed Hessian is available inspdep for the spatial lag, Durbin, and error models,
but not yet for the SAC Durbin model.

4 Fitting models using maximum likelihood for the
English data set

The sacsarlm function has been added tospdep to permit the fitting of the SAC
model, and it takes atype= argument to add the spatially lagged right hand side
variables to make a SAC Durbin specification. We fit both of these model forms
to the augmented pre-CCT and post-CCT models, which take political control into
account. Table 1 does not report the coefficient values, because we should more
properly report the impacts (emanating effects) of the right hand variables

Table 1: Summary of SAC and SAC Durbin model output (asymptotic standard
errors in parentheses).

pre-CCT pre-CCT post-CCT post-CCT
Model SAC SAC Durbin SAC SAC Durbin
ρ 0.1006 0.4866 0.05381 0.3634

(0.05271) (0.1314) (0.05521) (0.2075)
λ 0.1672 -0.4418 0.1524 -0.2728

(0.0931) (0.187) (0.09458) (0.2639)
Log likelihood 22.78 41.06 37.62 52.45
σ2 0.05044 0.04116 0.04615 0.04043
AIC -21.57 -42.12 -51.24 -64.9

As we can see, the SAC Durbin model outperforms the SAC model in both
cases, suggesting that the inclusion of the spatially lagged right hand side vari-
ables was justified. Before testing against other alternatives, let us examine the
log-likelihood function surfaces shown in Figure 1. The values of the spatial coeffi-
cients and the optimal log likelihood function values fittedusingsacsarlm in spdep
and usingspreg ml in Stata were identical: pre-CCT SACρ = 0.1006,λ = 0.1672,
pre-CCT SAC Durbinρ = 0.4866,λ = −0.4418, post-CCT SACρ = 0.0538,λ =
0.1524, post-CCT SAC Durbinρ = 0.3634,λ = −0.2728. Since both use eigen-
values to compute the Jacobian, this is as expected; there are small differences in
coefficient standard errors.

The surfaces shown in Figure 1 thus represent the optimization as computed
usingR and Stata. We see that while the SAC surfaces, shown in grey, are quite
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Figure 1: Log-likelihood function surfaces for the pre-CCTand post-CCT models,
for SAC and SAC Durbin specifications.

amenable to numerical optimization, the SAC Durbin surfaces, shown with con-
tours, both show a “banana” ridge running from lowρ, high λ, through moder-
ate/highρ, moderate/highλ, to highρ, low λ. This appears to be the visual expres-
sion of the difficulty of indentifiction between the two coefficients noted by Elhorst
(2010) among others. Moving on to test fitted model specifications, we also fit the
spatial Durbin, spatial lag, spatial error Durbin, and spatial error models.

Table 2 shows that the results of the likelihood ratio tests between the SAC
Durbin models against the SAC models for both the pre-CCT andpost-CCT clearly
favour of the model including the spatially lagged right hand side variables. We
also find that the LR tests between the SAC Durbin and spatial Durbin, and the
SAC Durbin and error Durbin variants are marginally significant for the pre-CCT
data, but not significant for the post-CCT data. Consequently, we choose to proceed
with the pre-CCT SAC Durbin model and the post-CCT Durbin model. Testing
the spatial Durbin against the spatial lag model, we see thatthe inclusion of the
spatially lagged right hand side variables appears justified in both pre-CCT and
post-CCT cases; the likelihood ratio test against the spatial error model rejects the
Common Factor hypothesis again in both cases.

Table 3 reports on the values ofρ for the pre-CCT and post-CCT spatial Durbin
and lag models, together with their log likelihood values and σ2. It also reports
the Lagrange Multiplier test for residual spatial autocorrelation p-values; the pre-
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Table 2: Likelihood ratio test results.
Model 1 Model 2 Likelihood ratio p-value
Pre-CCT SAC Durbin Pre-CCT SAC 36.56 1.387e-05
Pre-CCT SAC Durbin Pre-CCT Durbin 4.067 0.04374
Pre-CCT SAC Durbin Pre-CCT error Durbin 6.302 0.01206
Pre-CCT Durbin Pre-CCT lag 34.88 2.816e-05
Pre-CCT Durbin Pre-CCT error 35.64 2.045e-05
Post-CCT SAC Durbin Post-CCT SAC 29.66 0.0002424
Post-CCT SAC Durbin Post-CCT Durbin 1.057 0.3039
Post-CCT SAC Durbin Post-CCT error Durbin 2.147 0.1428
Post-CCT Durbin Post-CCT lag 30.82 0.0001511
Post-CCT Durbin Post-CCT error 29.53 0.0002559

Table 3: Summary of spatial Durbin and lag model output (asymptotic standard
errors in parentheses).

pre-CCT Durbin pre-CCT lag post-CCT Durbin post-CCT lag
ρ 0.1701 0.1495 0.1477 0.09712

(0.07608) (0.04233) (0.07733) (0.04432)
Log likelihood 39.03 21.59 51.92 36.51
σ2 0.04572 0.05099 0.04229 0.04664
AIC -40.06 -21.18 -65.84 -51.02
LM p-value 0.007471 0.1704 0.1283 0.1572

CCT spatial Durbin appears to induce residual spatial autocorrelation through the
included spatially lagged right hand side variables, but this is alleviated post-CCT.
The residual spatial autocorrelation detected in the pre-CCT spatial Durbin esti-
mates corresponds to the significantλ coefficient estimate for the pre-CCT SAC
Durbin model reported in Table 1.

Using the spatial Durbin specification, the significances ofthe pre-CCT and
post-CCT estimates ofρ are: pre-CCT: 0.0254, post-CCT: 0.05617. Compared
to the tabulations in Bivand and Szymanski (2000, p. 215), using only the spatial
lag specification (computed using SpaceStat, and which agree with the output for
the lag models calculated here), we see that the significanceof the lag pre-CCT
ρ is 0.0004138, and of the post-CCTρ is 0.02844. The change inρ remains that
hypothesised in the earlier paper, but is much smaller in size. However, as we
can see from Table 1, the aggregate spatial “signal” is strongly reduced from the
pre-CCT SAC Durbin to the post-CCT spatial Durbin estimates; the two spatial
coefficients in th pre-CCT SAC Durbin model are both significant.

It is now necessary to revisit the interpretation of the coefficients on the cost-
sharpening variables of log density of units and log real wages, as this should now
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be done through impact measures.In fitting spatial lag and spatial Durbin models, it
has emerged over time that, unlike the spatial error model, the spatial dependence in
the parameterρ feeds back, obliging analysts to base interpretation not onthe fitted
parametersβ, andγ where appropriate, but rather on correctly formulated impact
measures (LeSage and Pace, 2009).

This feedback comes from the fact that the elements of the variance-covariance
matrix of the coefficients for the maximum likelihood spatial error model linkingλ
andβ are zero,∂2ℓ/(∂β∂λ) = 0, while in the spatial lag model (and by extension
in the spatial Durbin model):∂2ℓ/(∂β∂ρ) 6= 0. In the spatial error model, for right
hand side variabler, ∂yi/∂xir = βr and ∂yi/∂x jr = 0 for i 6= j; in the spatial lag
model,∂yi/∂x jr = ((I − ρW)−1Iβr)i j, whereI is the N ×N identity matrix, and
(I −ρW)−1 is known to be dense (LeSage and Pace, 2009, p. 33–42).

The variance-covariance matrix of the coefficients and the series of traces of the
powered weights matrix are the key ingredients needed to compute impact measures
for spatial lag and spatial Durbin models; both of these are based on the represen-
tation of weights matrices as sparse matrices. We can also compute the measures
analytically for smaller data sets; here we will contrast the 1980 US election and
Lucas (OH) data sets, where the former is small enough to permit all the output
values to be compared.

An estimate of the coefficient variance-covariance matrix is needed for Monte
Carlo simulation of the impact measures, although the measures themselves may be
computed without an estimate of this matrix. LeSage and Pace(2009, pp. 33–42,
114–115) and LeSage and Fischer (2008) provide the background and implementa-
tion details for impact measures.

The awkwardSr(W) = ((I −ρW)−1Iβr) matrix term needed to calculate impact
measures for the lag model, andSr(W) = ((I −ρW)−1(Iβr −Wγr)) for the spatial
Durbin model, may be approximated using traces of powers of the spatial weights
matrix as well as analytically. The average direct impacts are represented by the sum
of the diagonal elements of the matrix divided byN for each exogenous variable,
the average total impacts are the sum of all matrix elements divided byN for each
exogenous variable, while the average indirect impacts arethe differences between
these two impact vectors.

In spdep, impacts methods are available for ML spatial lag, spatial Durbin,
SAC and SAC Durbin fitted model objects. The methods use truncated series of
traces using different ways of computing the traces, here powering a sparse matrix,
which goes dense, to get exact traces.

Figure 2 shows that the conclusions in Bivand and Szymanski (2000) with re-
spect to the sharpening of the impact of the cost shaping log real wage variable
are sustained when the interpretation is recast in the form of direct and total im-
pact measures. The distributions of the Monte Carlo simulations move away from
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Figure 2: Direct and total impacts for log real wages, pre-CCT SAC Durbin and
post-CCT Durbin estimates, Monte Carlo tests with 2000 simulations each.

zero, with a direct post-CCT spatial Durbin p-value of 0.0351 and a total post-CCT
spatial Durbin p-value of 0.0318.

This does not, however, hold for the sharpening on another cost shaping vari-
able, the log density of units, which is expected to be significant and negative after
the introduction of CCT, as we see in Figure 3. While the direct post-CCT spa-
tial Durbin p-value is highly significant and the sign correct (5.55e-06), the indirect
impact has a different sign, and so the total impact has a disappointing p-value of
0.869. If we only fit a spatial lag model, the impacts mirror the interpretation in
the original paper, and the total impacts of both cost-shaping variables have the
expected signs and are both significant.

The conclusions drawn in Bivand and Szymanski (2000) need tobe revised in
the light of developments in spatial econometrics. “Raising the bar” changes those
results in two respects, first in enriching the spatial lag models used for both pre-
CCT and post-CCT data sets to pre-CCT SAC Durbin, and to post-CCT spatial
Durbin specifications. The inclusion of the spatially lagged explanatory variables
induced spatial error autocorrelation in the pre-CCT spatial Durbin model, indi-
cating that the spatial process is not being fully captured by the spatial lag of the
dependent variable when the spatially lagged explanatory variables are included.
The pre-CCT spatial Durbin model fits the data better than thepre-CCT spatial lag
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Figure 3: Direct and total impacts for log density of units, pre-CCT SAC Durbin
and post-CCT Durbin estimates, Monte Carlo tests with 2000 simulations each.

model, but marginally worse than the pre-CCT SAC Durbin model, which has two
significant spatial coefficients. If we consider the strength of the spatial processes
between the pre-CCT SAC Durbin model and the post-CCT spatial Durbin model,
we can comfortably sustain our former conclusion that the introduction of compul-
sory competitive tendering reduces spatial relationshipsbetween local authorities in
garbage collection costs.

The second change is that when we move from attempting to interpret the re-
gression coefficients of the explanatory variables to a proper analysis of variable
impacts (emanating effects), using the pre-CCT SAC Durbin and post-CCT spatial
Durbin models, we find that the total impact of the collectionunit density variable
is not significant. The impacts shift in the correct direction (higher density should
lead to lower costs), and the direct impacts are significant,but the total impacts
are not. This is perhaps to be expected, given the geography of the local autori-
ties, where authorities with higher and lower densities areadjacent in some parts
of the country. The conclusion with respect to the other cost-shaping variable, real
wages, is unchanged, and shows that its significance increased markedly following
the introduction of compulsory competitive tendering.
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5 Larger data sets

Returning to the two larger data sets used in Bivand (2010a),we will be more
concerned with the implications of fitting spatial autoregressive models where the
model is very possibly misspecified with respect to omitted explanatory variables.
Neither of these data sets have clearly motivated or complete modelling contexts.
Presidential election turnout is influenced by other explanatory variables, some of
which may be related to cultural background for broader regions than the observed
counties, than those included. House selling prices are typically closely related to
neighbourhood qualities, which here are unobserved. Theseomissions may lead
to a bundle of spatial signals that are approximated by the included autoregressive
term or terms.

We will fit the SAC and SAC Durbin models for the two data sets, followed
by the spatial Durbin and error Durbin variants, and test using the likelihood ratio.
Because of the large number of observations, the fast updating sparse Cholesky
method is used for computing the Jacobian in optimising the log likelihood function,
and in the gridded profiling calculations reported in Figure4.

Table 4: Summary of large data set model output (numerical Hessian standard errors
in parentheses).

Election Election Lucas County Lucas County
Model SAC SAC Durbin SAC SAC Durbin
ρ -0.3933 -0.5113 0.6898 0.805

(0.03626) (0.04729) (0.005414) (0.003315)
λ 0.8703 0.8901 -0.3871 -0.581

(0.01231) (0.01323) (0.01274) (0.008077)
Log likelihood 4099 4115 -7336 -6184
σ2 0.003312 0.003171 0.07731 0.05701
AIC -8184 -8210 14704 12425

Table 4 shows summary results for the two data sets for SAC andSAC Durbin
fitted models. In both cases, the values ofρ andλ take more extreme values in the
SAC Durbin case, with negativeρ and positiveλ in the Election data case, and with
signs reversed in the Lucas County housing data case. In thistable, and in Table
5, we see that the SAC model is rejected in favour of the SAC Durbin model in
both cases. In addition, as Table 5 shows, likelihood ratio tests comparing the SAC
Durbin model with the spatial Durbin and error Durbin modelsfor both data sets all
point to the better fit of the SAC Durbin specification.

It is very possible that both large data set models are wrongly specified. The
election data set only includes three variables, and in addition may be strongly af-
fected by inhomogeneous observational units, because the counties used differ very
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greatly in population size. The Lucas County house price data set is certainly af-
fected by the omission of contextual variables reflecting neighbourhood qualities,
and this must engender a range of spatial processes, which are not fully captured by
the spatially lagged dependent variable. It may also be the case that the very sparse
spatial weights used are insufficiently dense to mop up the autocorrelation present.

Table 5: Likelihood ratio test results for large data sets.

Model 1 Model 2 Likelihood ratio p-value
Election SAC Durbin Election SAC 32.23 4.686e-07
Election SAC Durbin Election Durbin 141.9 < 2.2e-16
Election SAC Durbin Election error Durbin 54.67 1.424e-13
Lucas County SAC Durbin Lucas County SAC 2303 < 2.2e-16
Lucas County SAC Durbin Lucas County Durbin 2246 < 2.2e-16
Lucas County SAC Durbin Lucas County error Durbin 2944 < 2.2e-16

Figure 4, like the results for the English garbage data reported in Figure 1, shows
again the hallmark “banana” ridge shape of the surface of thelog-likelihood func-
tion for SAC, and especially SAC Durbin models. It is a matterof concern that in
the Lucas County case, the SAC Durbin surface has (at least) one local optimum
at the lowρ, high λ end of the banana, and the global optimum at the lowλ, high
ρ end. Use of a finer grid may show whether there are more than twooptima, but
demonstrating more than one is already worrying.

6 Conclusions

In examining some of the practical consequences of “raisingthe bar”, it has been
shown that the conclusions of work published earlier have required modification.
Had the earlier study used a spatial Durbin model, rather than a spatial lag model,
it is possible that the need for revision would have been seen, but in practice the
interpretation of the impacts (emanating effects) of explanatory variables has only
been undertaken since 2008. It is the introduction of the interpretation of impact
measures that changes the inference in this case, rather than the insertion of an
additional spatially autocorrelated error.

In the English garbage case, the model is adequately specified, with a model of
the suggested causes of the pre-CCT spatial dependence, anda hypothesis that the
dependence will be attenuated following the introduction of compulsory competi-
tive tendering. This hypothesis is also sustained using newer methods.

In the two larger data sets, we have no behavioural model for observed spatial
autocorrelation, and in addition we have reason to believe that the models suffer
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Figure 4: Log-likelihood function surfaces for the US election turnout and Lucas
county house price models, for SAC and SAC Durbin specifications.

from omitted variables. Finally, the election turnout dataset is observed for coun-
ties, which are very heterogeneous aggregations of voter turnout, and additionally
the dependent variable arguably should be bounded between 0and 1 (with the ex-
eptional observation exceeding a 100% turnout).

Consequently, we are in a potentially difficult situation anyway, a situation that
perhaps leads to the observed significant spatial autoregressive coefficients with op-
posed signs. They appear to be “picking up” spatial signals that are coming from
the omitted explanatory variables, rather than to be expressing behavioural depen-
dencies in space. The fitted models with two spatial parameters do, however, fit
better than single parameter models, especially when the spatially lagged explana-
tory variables are included, but this arguably does not suggest that they are in any
sense capturing “real” spatial relationships.

Since the debate on “raising the bar” is only now beginning, it seems sensible
to conclude with questions rather than assertions. The following seem to be among
the salient open issues. Given the numerical issues involved in fitting the SAC
Durbin model, how should one interpret the output? Is it reasonable to feel that the
underlying problem is thatρ andλ are insufficiently identified, and how might one
test this possibility? Is this a situation in which other sources of misspecifiaction, for
example heteroskedasticity, are feeding through into an apparent second, negative
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spatial autoregressive process? Is this related to the insights given in Griffith (2006)
with repect to hidden negative spatial autocorrelation? Clearly, there is substantial
need for further research in order to be able to provide practitioners with adequate
guidelines for model fitting.
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