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Abstract

[Elhorst [2010) shows how the recent publicatioh of LeSageRacel(2009)
in his expression “raises the bar” for our fitting of spatiabrometrics mod-
els. By extending the family of models that deserve attentitihorst reveals
the need to explore how they might be fitted, and discusses sdternatives.
This paper attempts to take up this challenge with respeatpgtementation in
theR spdeppackage for the maximum likelihood case, using a smallex skett
to see whether earlier conclusions would be changed wheemeeshniques
are used, and two larger data sets to examine model fittingsss

1 Background

In an interesting revie\mmw) “raises the barplace the general spatial
autoregressive model and the Spatial Durbin model in a dhesatext, such as

that of the model proposed sﬁb%). Fitting thesel@mby maximum
likelihood makes it possible to start trying to investigateich augmented forms of
commonly used spatial econometric models may be of use inreadwork.

It is not intended to make reference here to the burgeoniaga@conometrics
literature on the properties of estimators, including maxm likelihood estima-
tors. We will also focus exclusively on maximum likelihoostienators, although

“Paper presented at 5th World Conference of the Spatial Eoetrits Association, Toulouse,
France, July 2011, and the International Autumn School iati@pEconometrics, Toledo, Spain,

September, 2011.
TDepartment of Economics, NHH Norwegian School of Economid¢slleveien 30, N-5045

Bergen, Norway; E-maiRoger . Bivand@nhh .ng


mailto:Roger.Bivand@nhh.no

extensions to Bayesian estimators are clearly of intete=$#ge and Pace, 2009).
Similarly, we will not consider GM estimators, but acknoddg that the sets of
instruments that may be used in fitting the general two par@anspatial autore-
gressive model are not limited to low-order spatial lagheféxplanatory variables
(Kelejian and Prucha, 1999; Drukker et al., 2011, and refegs therein).

This analysis extends work presente@mma)chvmcluded com-
parisons of model fitting for spatial error, spatial lag beémn implementations in
R, OpenGeoDa running under Wine, and these and spatial Daorbdels with the
Spatial Econometrics toolbox running under Octave.

In Bivand |201aa) two data sets distributed with hepdeppackage are used
(R_Development Core Team, 2011); both originated from theti@8pEconometrics
toolbox, and are provided spdepwith pre-built lists of spatial neighbours. Here, a
third, smaller data set is used for convenience first, paimgicomparison with spa-
tial econometrics functions isppack in Statd™ 11.2 on a smaller system running
Windows XP with 1GB RAM. Its use also permits us to examine thbelegacy
results require revision when confronted with newer estiometechniques. A broad
survey of the analysis of spatial data in environment is given HfB.i_Ma.l‘l@OG)

and Bivand et al/(2008).

1.1 Garbage in — garbage out?

The smaller data set is used to revisit conclusions drawriviar®gl and Szymanski

), and concerns a study of the impact of introducingmasory competitive
tendering in garbage colletion in England at the distrigele The larger data sets
could not be fitted with Stata on the platform available, ags&Stses dense matrix
techniques for maximum likelihood fitting.

The underlying research questionlin Bivand and Szymanglipwas firstly
whether the change in policy regime had affected the netoestk of garbage col-
lection in local government districts, and secondly whetiwe fit of models in-
cluding standard explanatory variables had changed wsheret to those variables.
The net real cost of garbage collection varies with the numbeollection points
(units), the proportion of dwelling house units, the densit units by district sur-
face area, dummies for London and other metropolitan aas,the real wage
level in the region to which the district belongs. The inwotion of compulsory
competitive tendering would be expected not only to lowdrraal costs, but also
to sharpen the impact of cost-shaping variables, such asitgdeand wages. The
data for 324 out of 366 districts was split into two sets, orh whe values of real
net cost and real wages for each district in the pre-CCT yaat,a second in the
post-CCT year, with the actual year of adoption dropped.

After hearing a presentation of some preliminary resulthisfaspatial study

6), | asked Stefan Szymanski whether he dstdd the residu-
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als for spatial autocorrelation as a standard specificatisatk. He asked me to
collaborate in carrying this out, and we found that the reslsl were significantly
spatially autocorrelated. The results of the robust Lagea¥ultiplier tests seemed
to indicate that a spatial error model is preferable to aiapktg model in both

cases.

We spent some time discussing why the spatial autocomelatas observed,
and reached a working hypothesis that before the introdnaif CCT, the district
principals might “mimic” the costings of their near neighive because they had
few other sources of information about the costs of garbafleation, and that this
“mimicking” should abate following the introduction of CCThis principal-agent
model and a first cut at a spatial analysis are reported_inmivad Szymansdki
(@), fitting a spatial error model.

The principal-agent model would have been better suiteddpatial lag model,
with the observed cost levels of proximate neighbours imitireg the principals’
decisions directly, but the model diagnostics seemed tgestgtherwise. Con-
tinuing to work on this contradiction, we noticed that theds of yardstick com-
parisons that might be occurring should probably be palityc“coloured”, and
decided to include party political control in districts imetanalysis, as described in
BBivand and Szymanski (2000). The neighbours used here ase from the origi-
nal paper, defined as a graph on all 366 districts, and seloiseettremove missing
districts.

1.2 US 1980 election turnout data set

The US county data set with 3107 observations includes a P#8§idential elec-
tion turnout variable with a single county (Hinsdale Coyi@{) with a value over
unity — most likely from cross-border voting in this remoteal area. We define
a formula relating this variable to income ($1000) per inteait over age 19, the
number with college degrees as a proportion of all over ageattd homeowner-
ship as a proportion of all over age 19. The right hand sidealbes are taken as
logarithms, as in the fileata/elect.txt in the Spatial Econometrics toolbox.
The data set provided spdepincludes a number aib objects listing the neigh-
bours of the counties in the data set using different dedingi Here we will use
a Queen contiguity scheme constructed using a shapefiletiretdSGS National
Atlas site, file: co1980p020.tar.gz. This object contains four counties with no
neighbours, and because of this, an option is set to permipatations under the
assumption that the lagged value of a variable for a countty mo neighbours may

be set to zera (Bivand and Portnov, 2004).




1.3 Lucas County, OH, housing data set

The Lucas County, Ohio, housing data set has 25,357 obsmrsatf single family
homes sold 1993-1998, and is fully described in thed#ea/house.txt in the
Spatial Econometrics toolbox. It is used here to supplensentlusions drawn
for the 1980 US election turnout data set, which is of a siz germits dense
matrix methods, since only sparse or approximate methal$eassible for larger
N. The dependent variable is the logarithm of the sellingeorid@he right hand
side variables include the age, squared age, and cubed &lge lbbuse, sale year
dummies, the logarirms of lot size and total living area, aodnbers of rooms
and bedrooms. No contextual variables about the neighlbodriof the houses
are available, so one would expect a strong spatial auteledion reflecting this
misspecification.

The list of neighbours provided with the data sespdepis a sphere of influ-
ence graph constructed from a triangulation of the pointdioates of the houses
after projection to the Ohio North NAD83 (HARN) Lambert Comnfhal Conical
specification (EPSG:2834). It is relatively sparse, witksléhan three neighbours
per observation on average.

2 Candidate models

The spatial lag model_(Cliff and Qrd, 1973; Ord, 1975; Bivani@84;|Anselin,
11988;| L eSage and Pace, 2009) is the most frequently encedrgpecification in

spatial econometrics:

y = pWy +XB+E¢,

wherey is an(N x 1) vector of observations on a dependent variable taken at each
of N locations X is an(N x k) matrix of exogenous variable@,is an(k x 1) vector
of parametersg is an (N x 1) vector of independent and identically distributed
disturbances angdis a scalar spatial lag parameter.

In the spatial Durbin model, the spatially lagged exogenausbles are added
to the model:

y =pWy + XB+WXy+E,

whereyis an((k—1) x 1) vector of parameters wheW is row-standardised, and a
(k x 1) vector otherwise. It is clear that these two models are ed&chin the same
way.

The spatial error model may be written as _(Cliff and|Qrd, 1:9@8d, 11975;
Ripley,[1981| Anselin, 1988; LeSage and Pace, 2009):
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y=XB+u, u=AWu +¢,

whereA is a scalar spatial error parameter, ant a spatially autocorrelated dis-
turbance vector with constant variance and covariancestepecified by a fixed
spatial weights matrix and a single coefficiant

u~ N(0,c2(1 —AW) L1 —aw’)~1)

When the Common Factor condition is m@t:= —py, the spatial Durbin and
spatial error models are equivalent. Note that here we wsadbation of Anselin
(1988); LeSage and Pace (2009), witthe spatial autoregressive coefficient of the
dependent variable, andthe spatial autoregressive coefficient of the disturbance;
the usage is reversed in other parts of the spatial econmséterature.

The general two parameter spatial Durbin autoregessiveemaatludes the
spatially lagged dependent variable, spatially laggedamgtory variables, and a
spatially autoregressive disturbance. It has been vdyidaemed as the Manski,
SARAR Durbin or SAC Durbin, with the latter two terms extenglthe SARAR de-
scription used by Kelejian and Prutha (1999, and subsegagers), and the SAC
term used as a function name lby LeSage and Pacel(2009). ThamsAR] SAC
terms refer to the general model describem 1pB8H4—65, 182—-183),
with two spatial process parameters, but no spatially ldggglanatory variables.
Here we will use the term SAC Durbin; the model may be writtags@iming the
use of the same weight mati¥ in all spatial processes):

y = pWy + XB+WXy+u, u=AWu +¢,

This representation forks to the general model (SARAR/SBE$ettingy = 0,
to the spatial Durbin by setting= 0, and to the error Durbin model by settipg=0
(the error Durbin model includes the spatially lagged emptary variables and a
spatial autoregressive error process). In the general hoage, when the weights
matrices in both processes are the same, the identificatipraod A depends on
B#0.

Elhorsk m) suggests that it may be appropriate to fit agéninclusive
model first, here the SAC Durbin model, and to test restngion that model.
Some tests are available for simpler comparisons betweeteisaising ordinary
least squares residuals, but so far none are defined for tihe complex models.
Consequently, after fitting the pairs of models to be comgphagemaximum likeli-
hood, it is possible to use likelihood ratio tests, and tipisraach will be followed
here. If one wished to accommodate situations in which tearaptions required
for use of maximum likelihood were not met, Bayesian modehparison would
be a possible alternative. It is not yet clear whether a Uaggsroach could be used

for GMM-fitted models|(Kelejiar, 2008; Kelejian and Pira812).
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3  Maximum likelihood estimation

The log-likelihood function for the spatial lag model is:

N N
((B,p,0%) = —EInZH—EInoz-i—InH —pW|

s (1~ W)y ~ XBY(1 — pW)y ~ XB)]

and by extension the same framework is used for the spatiddiDmodel when
[X(WX)] are grouped together. Sinfecan be expressed &¥'X)~1X/(I — pW)y,

all of the cross-product terms can be pre-computed as gnashicts of the residuals
of two ancilliary regressionss = X317 andWy = X3, and the sum of squares term
can be calculated much faster than the log determinanti§dacoterm of theN x N

sparse matrix — pW; see LeSage and Pace (2009) for details.

The log-likelihood function for the spatial error model is:

N N
((B,\,0%) = —§|n2n—§|noz+|nu —AW|
1

— 552 [V = XB) (I =AW)'(1 = AW)(y — XB)]

B may be concentrated out of the sum of squared errors ternexonple as:

(N, 0%) = —ganTr—glnonrln\l —AW|
1
~5g2 Y (I =AW)' (I =Qy Q) (I =AW)y]

whereQ, is obtained by decomposifX — AWX) = Q\R,.

The relationship between the log determinant term and threafisquares term
in the log likelihood function in the spatial error model isadogous to that in the
spatial lag model, but the sum of squares term involves monepeitation in the
case of the spatial error model. In all cases, a simple linechemay be used to find
p or A, and other coefficients may be calculated using an angiltegression once
this has been done.

The general model is more demanding, and requiresglaatd A be found by
constrained numerical optimization in two dimensions bgreking for the maxi-
mum on the surface of the log likelihood function, which iglithat of the spatial
error model with additional terms in— pW:



N N
((p,\,0%) = —EInZTr—EIn02+In|I —pW/|+In|l —AW|

s Y= W) (1 - AW) (1~ QuQ}) (1 —AW) (1~ pW)y]

This suggests that the tuning of the constrained numerigg@hdization func-
tion, including the provision of starting values, reasdeadtopping criteria, and
also the choice of algorithm may all affect the results agkde The Stata imple-
mentation uses a grid search for initial values(pfA) (Drukker et al.| 2011), the
Spatial Econometrics toolbox uses the generalized spat@bktage least squares
estimates, with the option of the user providing initialuwed, and thepdepimple-
mentation for row-standardised spatial weights matriaess either four candidate
pairs of initial values at—0.8,0.8), (0,0), (0.8,0.8) and(0.8,—0.8), a full grid of
nine points at the same settings, or user provided initirlesa(which permits the
use of weights matrices that are not row standardised)mipérs may be chosen
by the user.

Detailed reviews of methods for computing the Jacobian nesfpbnd irl LeSage and Pace
(2009); Smirnov and Anselin (2009); Bivand (2010b), andiiested readers are
refered to these. The methods used for computing the Jatobspdepare pre-
sented in full in_Bivand.(2010b); here we use the dense matg&nvalue method
eigen d@ 11975, p. 121) for the English garbage data set, and pigating
Cholesky decomposition methodtrix, using sparse matrix functions in the
Matrix packagel(Bates and Maechler, 2011), and based on Pace agdE87),
for the two larger data sets.

When sparse matrix methods or approximations are usedyatedi by the size
of N, no analytical asymptotic standard errors for the coeffitsan spatial lag,
Durbin or general SARAR models will be available, nor wiletstandard error of
A be available in the spatial error case. This may be addrdsgemputing a
numerical Hessian for an augmented function fitting lgp#dnd/orA andf3 starting
at the maximum likelihood optimum. The covariance matrig@éfficient estimates
is required for the Monte Carlo testing of measures of theaotp of explanatory
variables, as we will see below.

With some data sets, models, and variable scaling — foréyatot those
used in these examples, one meets difficulties in invertiegnumerical Hessian
returned from finite difference computation. This unforts problem may be
worked around by replacing most of the matrix with anahjticaues, termed the
analytical-numerical mixed Hessian by LeSage and!Faced(26)8 54-60). The
awkward trace term for the interaction betweeando? — tr(W (I —AW)~1) —
may be approximated by a series of traces of the powered wgerghtrix, either
computed using sparse matrix or Monte Carlo techniquesanhgtical-numerical
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mixed Hessian is available spdepfor the spatial lag, Durbin, and error models,
but not yet for the SAC Durbin model.

4 Fitting models using maximum likelihood for the
English data set

The sacsar1lm function has been added spdepto permit the fitting of the SAC
model, and it takes aype= argument to add the spatially lagged right hand side
variables to make a SAC Durbin specification. We fit both osthenodel forms

to the augmented pre-CCT and post-CCT models, which takegablcontrol into
account. Tabl&l1l does not report the coefficient values,Usecwe should more
properly report the impacts (emanating effects) of thetrigdnd variables

Table 1: Summary of SAC and SAC Durbin model output (asymptsteindard
errors in parentheses).

pre-CCT pre-CCT post-CCT post-CCT

Model SAC SAC Durbin SAC SAC Durbin
p 0.1006 0.4866 0.05381 0.3634
(0.05271) (0.1314) (0.05521) (0.2075)
A 0.1672 -0.4418 0.1524 -0.2728
(0.0931) (0.187) (0.09458) (0.2639)
Log likelihood 22.78 41.06 37.62 52.45
0?2 0.05044 0.04116 0.04615 0.04043
AlC -21.57 -42.12 -51.24 -64.9

As we can see, the SAC Durbin model outperforms the SAC madébth
cases, suggesting that the inclusion of the spatially ldggght hand side vari-
ables was justified. Before testing against other alterestilet us examine the
log-likelihood function surfaces shown in Figlile 1. Thewes of the spatial coeffi-
cients and the optimal log likelihood function values fittesingsacsarimin spdep
and usingspreg ml in Stata were identical: pre-CCT SAC= 0.1006 A =0.1672,
pre-CCT SAC Durbimp = 0.4866 A = —0.4418, post-CCT SAQ® = 0.0538 A\ =
0.1524, post-CCT SAC Durbip = 0.3634 A = —0.2728. Since both use eigen-
values to compute the Jacobian, this is as expected; therenaall differences in
coefficient standard errors.

The surfaces shown in Figuké 1 thus represent the optirnizats computed
usingR and Stata. We see that while the SAC surfaces, shown in geyute
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Figure 1: Log-likelihood function surfaces for the pre-C@&id post-CCT models,
for SAC and SAC Durbin specifications.

amenable to numerical optimization, the SAC Durbin sugashown with con-
tours, both show a “banana” ridge running from I@y high A, through moder-
ate/highp, moderate/hig, to highp, low A. This appears to be the visual expres-
sion of the difficulty of indentifiction between the two coeiéints noted b st

) among others. Moving on to test fitted model speciioat we also fit the
spatial Durbin, spatial lag, spatial error Durbin, and spatrror models.

Table[2 shows that the results of the likelihood ratio testsvieen the SAC
Durbin models against the SAC models for both the pre-CCTparst-CCT clearly
favour of the model including the spatially lagged right tiaside variables. We
also find that the LR tests between the SAC Durbin and spatiabiD, and the
SAC Durbin and error Durbin variants are marginally sigrafic for the pre-CCT
data, but not significant for the post-CCT data. Consequemtl choose to proceed
with the pre-CCT SAC Durbin model and the post-CCT Durbin elodTesting
the spatial Durbin against the spatial lag model, we seethtiginclusion of the
spatially lagged right hand side variables appears judtifieboth pre-CCT and
post-CCT cases; the likelihood ratio test against the apatior model rejects the
Common Factor hypothesis again in both cases.

Table[3 reports on the values pfor the pre-CCT and post-CCT spatial Durbin
and lag models, together with their log likelihood valuesl @3. It also reports
the Lagrange Multiplier test for residual spatial autoetation p-values; the pre-



Table 2: Likelihood ratio test results.

Model 1 Model 2 Likelihood ratio p-value

Pre-CCT SAC Durbin  Pre-CCT SAC 36.56 1.387e-05
Pre-CCT SAC Durbin  Pre-CCT Durbin 4.067 0.04374
Pre-CCT SAC Durbin  Pre-CCT error Durbin 6.302 0.01206
Pre-CCT Durbin Pre-CCT lag 34.88 2.816e-05
Pre-CCT Durbin Pre-CCT error 35.64 2.045e-05
Post-CCT SAC Durbin  Post-CCT SAC 29.66 0.0002424
Post-CCT SAC Durbin  Post-CCT Durbin 1.057 0.3039
Post-CCT SAC Durbin  Post-CCT error Durbin 2.147 0.1428
Post-CCT Durbin Post-CCT lag 30.82 0.0001511
Post-CCT Durbin Post-CCT error 29.53 0.0002559

Table 3: Summary of spatial Durbin and lag model output (gstptic standard
errors in parentheses).

pre-CCT Durbin  pre-CCTlag post-CCT Durbin  post-CCT lag

p 0.1701 0.1495 0.1477 0.09712
(0.07608)  (0.04233) (0.07733) (0.04432)
Log likelihood 39.03 21.59 51.92 36.51
o2 0.04572 0.05099 0.04229 0.04664
AlC -40.06 -21.18 -65.84 -51.02
LM p-value 0.007471 0.1704 0.1283 0.1572

CCT spatial Durbin appears to induce residual spatial autetation through the
included spatially lagged right hand side variables, big ihalleviated post-CCT.
The residual spatial autocorrelation detected in the pgd-Gpatial Durbin esti-
mates corresponds to the significantoefficient estimate for the pre-CCT SAC
Durbin model reported in Tabld 1.

Using the spatial Durbin specification, the significanceshef pre-CCT and
post-CCT estimates gb are: pre-CCT: 0.0254, post-CCT: 0.05617. Compared
to the tabulations in Bivand and Szymanski (2000, p. 215pguenly the spatial
lag specification (computed using SpaceStat, and whicleagith the output for
the lag models calculated here), we see that the significahtee lag pre-CCT
p is 0.0004138, and of the post-C@Tis 0.02844. The change mremains that
hypothesised in the earlier paper, but is much smaller ia.si#owever, as we
can see from TablEl 1, the aggregate spatial “signal” is gtyoreduced from the
pre-CCT SAC Durbin to the post-CCT spatial Durbin estimateg two spatial
coefficients in th pre-CCT SAC Durbin model are both significa

It is now necessary to revisit the interpretation of the Gioreints on the cost-
sharpening variables of log density of units and log realega@s this should now
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be done through impact measures.In fitting spatial lag aataDurbin models, it
has emerged over time that, unlike the spatial error mokelspatial dependence in
the parametep feeds back, obliging analysts to base interpretation noheffitted
parameter$, andy where appropriate, but rather on correctly formulated iotpa
measures (LeSage and Pace, 2009).

This feedback comes from the fact that the elements of thanae-covariance
matrix of the coefficients for the maximum likelihood spagaror model linkingh
andp are zerod%¢/(dBAA) = O, while in the spatial lag model (and by extension
in the spatial Durbin modeld?¢/(dBdp) # 0. In the spatial error model, for right
hand side variable, dy; /dx, = Br anddy;/oxjr = O for i # j; in the spatial lag
model, dy; /oxjr = ((I — pW)*llﬁr)ii, wherel is the N x N identity matrix, and
(I —pW)~1is known to be dense (LeSage and Pace, 2009, p. 33-42).

The variance-covariance matrix of the coefficients and énees of traces of the
powered weights matrix are the key ingredients needed tgateimpact measures
for spatial lag and spatial Durbin models; both of these ase on the represen-
tation of weights matrices as sparse matrices. We can alspui@ the measures
analytically for smaller data sets; here we will contragt 980 US election and
Lucas (OH) data sets, where the former is small enough to ipaththe output
values to be compared.

An estimate of the coefficient variance-covariance magireeded for Monte
Carlo simulation of the impact measures, although the nreasbhemselves may be

computed without an estimate of this matrix. LeSage and E20@9, pp. 33-42,
114-115) and LeSage and Fischer (2008) provide the backdrand implementa-

tion details for impact measures.

The awkwards (W) = ((1 —pW)~11B,) matrix term needed to calculate impact
measures for the lag model, aBdW) = ((I — pW) (1B, — Wy;)) for the spatial
Durbin model, may be approximated using traces of powerb@Epatial weights
matrix as well as analytically. The average directimpamsepresented by the sum
of the diagonal elements of the matrix divided dyfor each exogenous variable,
the average total impacts are the sum of all matrix elemeniget! by N for each
exogenous variable, while the average indirect impactsherelifferences between
these two impact vectors.

In spdep impacts methods are available for ML spatial lag, spatial Durbin,
SAC and SAC Durbin fitted model objects. The methods use atancseries of
traces using different ways of computing the traces, heveepiag a sparse matrix,
which goes dense, to get exact traces.

Figure[2 shows that the conclusions_in Bivand and Szyma@§() with re-
spect to the sharpening of the impact of the cost shapingdagwage variable
are sustained when the interpretation is recast in the fdrairect and total im-
pact measures. The distributions of the Monte Carlo sinarilatmove away from
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Figure 2: Direct and total impacts for log real wages, preFCEAC Durbin and
post-CCT Durbin estimates, Monte Carlo tests with 2000 &atians each.

zero, with a direct post-CCT spatial Durbin p-value of 0.03%Hd a total post-CCT
spatial Durbin p-value of 0.0318.

This does not, however, hold for the sharpening on anothgr sfeaping vari-
able, the log density of units, which is expected to be sigaifi and negative after
the introduction of CCT, as we see in Figlle 3. While the dipust-CCT spa-
tial Durbin p-value is highly significant and the sign cotrés.55e-06), the indirect
impact has a different sign, and so the total impact has gpaating p-value of
0.869. If we only fit a spatial lag model, the impacts mirroe ihterpretation in
the original paper, and the total impacts of both cost-stpariables have the
expected signs and are both significant.

The conclusions drawn in_Bivand and Szymanski (2000) nedzbtaevised in
the light of developments in spatial econometrics. “Raghme bar” changes those
results in two respects, first in enriching the spatial laglals used for both pre-
CCT and post-CCT data sets to pre-CCT SAC Durbin, and to @a&st-spatial
Durbin specifications. The inclusion of the spatially laggxplanatory variables
induced spatial error autocorrelation in the pre-CCT spddurbin model, indi-
cating that the spatial process is not being fully captungdhle spatial lag of the
dependent variable when the spatially lagged explanatanabies are included.
The pre-CCT spatial Durbin model fits the data better thampteeCCT spatial lag
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Figure 3: Direct and total impacts for log density of unitsg4€CT SAC Durbin
and post-CCT Durbin estimates, Monte Carlo tests with 20@@iations each.

model, but marginally worse than the pre-CCT SAC Durbin moghich has two
significant spatial coefficients. If we consider the stréngftthe spatial processes
between the pre-CCT SAC Durbin model and the post-CCT dpatiebin model,
we can comfortably sustain our former conclusion that tieguction of compul-
sory competitive tendering reduces spatial relationshgte/een local authorities in
garbage collection costs.

The second change is that when we move from attempting tgometiethe re-
gression coefficients of the explanatory variables to a @r@malysis of variable
impacts (emanating effects), using the pre-CCT SAC Durhoh@ost-CCT spatial
Durbin models, we find that the total impact of the collectiont density variable
is not significant. The impacts shift in the correct direot{digher density should
lead to lower costs), and the direct impacts are significlamt,the total impacts
are not. This is perhaps to be expected, given the geograiptine docal autori-
ties, where authorities with higher and lower densitiesadgcent in some parts
of the country. The conclusion with respect to the other-sbsiping variable, real
wages, is unchanged, and shows that its significance iredeaarkedly following
the introduction of compulsory competitive tendering.
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5 Larger data sets

Returning to the two larger data sets used_in Bivand (201@a)will be more
concerned with the implications of fitting spatial autoeggive models where the
model is very possibly misspecified with respect to omittepl@natory variables.
Neither of these data sets have clearly motivated or completdelling contexts.
Presidential election turnout is influenced by other exalary variables, some of
which may be related to cultural background for broaderargithan the observed
counties, than those included. House selling prices arealp closely related to
neighbourhood qualities, which here are unobserved. Thesssions may lead
to a bundle of spatial signals that are approximated by tbleided autoregressive
term or terms.

We will fit the SAC and SAC Durbin models for the two data setdloived
by the spatial Durbin and error Durbin variants, and tesagishe likelihood ratio.
Because of the large number of observations, the fast ugpaparse Cholesky
method is used for computing the Jacobian in optimisingdgéikelihood function,
and in the gridded profiling calculations reported in Figdre

Table 4: Summary of large data set model output (numericastdae standard errors
in parentheses).

Election Election| Lucas County Lucas County

Model SAC SAC Durbin SAC  SAC Durbin
p -0.3933 -0.5113 0.6898 0.805
(0.03626) (0.04729 (0.005414) (0.003315)

A 0.8703 0.8901 -0.3871 -0.581
(0.01231) (0.01323 (0.01274) (0.008077)

Log likelihood 4099 4115 -7336 -6184
02 0.003312 0.003171 0.07731 0.05701
AIC -8184 -8210 14704 12425

Table[4 shows summary results for the two data sets for SACS&@ Durbin
fitted models. In both cases, the valuep@ndA take more extreme values in the
SAC Durbin case, with negatiyeand positive\ in the Election data case, and with
signs reversed in the Lucas County housing data case. Inathlis, and in Table
B, we see that the SAC model is rejected in favour of the SACbDumodel in
both cases. In addition, as Table 5 shows, likelihood raststcomparing the SAC
Durbin model with the spatial Durbin and error Durbin modelsboth data sets all
point to the better fit of the SAC Durbin specification.

It is very possible that both large data set models are wyosgécified. The
election data set only includes three variables, and intimhdmay be strongly af-
fected by inhomogeneous observational units, becausethrgies used differ very
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greatly in population size. The Lucas County house prica dat is certainly af-
fected by the omission of contextual variables reflectinigmeourhood qualities,
and this must engender a range of spatial processes, wiactoafully captured by
the spatially lagged dependent variable. It may also bedke that the very sparse
spatial weights used are insufficiently dense to mop up thecaurelation present.

Table 5: Likelihood ratio test results for large data sets.

Model 1 Model 2 Likelihood ratio p-value
Election SAC Durbin Election SAC 32.23 4.686e-07
Election SAC Durbin Election Durbin 1419 <2.2e-16
Election SAC Durbin Election error Durbin 54.67 1.424e-13
Lucas County SAC Durbin  Lucas County SAC 2303 <2.2e-16
Lucas County SAC Durbin  Lucas County Durbin 2246 <2.2e-16
Lucas County SAC Durbin  Lucas County error Durbin 2944 < 2Be

Figure3, like the results for the English garbage data itelan Figurdll, shows
again the hallmark “banana” ridge shape of the surface ofagdikelihood func-
tion for SAC, and especially SAC Durbin models. It is a matieconcern that in
the Lucas County case, the SAC Durbin surface has (at leastjazal optimum
at the lowp, high A end of the banana, and the global optimum at the AgWwigh
p end. Use of a finer grid may show whether there are more tharoptima, but
demonstrating more than one is already worrying.

6 Conclusions

In examining some of the practical consequences of “raiiegoar”, it has been
shown that the conclusions of work published earlier haggired modification.

Had the earlier study used a spatial Durbin model, rather ¢ghapatial lag model,
it is possible that the need for revision would have been skenin practice the
interpretation of the impacts (emanating effects) of emptary variables has only
been undertaken since 2008. It is the introduction of therpretation of impact
measures that changes the inference in this case, rathettbansertion of an
additional spatially autocorrelated error.

In the English garbage case, the model is adequately sgkacifith a model of
the suggested causes of the pre-CCT spatial dependence hypdthesis that the
dependence will be attenuated following the introductibea@mpulsory competi-
tive tendering. This hypothesis is also sustained usingenevethods.

In the two larger data sets, we have no behavioural modelldsexwved spatial
autocorrelation, and in addition we have reason to beliga¢ the models suffer
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from omitted variables. Finally, the election turnout ds¢d is observed for coun-
ties, which are very heterogeneous aggregations of voteott, and additionally

the dependent variable arguably should be bounded betweaad Q (with the ex-

eptional observation exceeding a 100% turnout).

Consequently, we are in a potentially difficult situatioryaay, a situation that
perhaps leads to the observed significant spatial aut@sigeecoefficients with op-
posed signs. They appear to be “picking up” spatial sigrieds &are coming from
the omitted explanatory variables, rather than to be esprgdehavioural depen-
dencies in space. The fitted models with two spatial parasmeke, however, fit
better than single parameter models, especially when thigadly lagged explana-
tory variables are included, but this arguably does not sagthat they are in any
sense capturing “real” spatial relationships.

Since the debate on “raising the bar” is only now beginnihgeems sensible
to conclude with questions rather than assertions. Theviaig seem to be among
the salient open issues. Given the numerical issues inddlvditting the SAC
Durbin model, how should one interpret the output? Is itoeable to feel that the
underlying problem is thgh andA are insufficiently identified, and how might one
test this possibility? Is this a situation in which otherszms of misspecifiaction, for
example heteroskedasticity, are feeding through into gam@mt second, negative
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spatial autoregressive process? Is this related to thghtssgiven in_Griffith wG)
with repect to hidden negative spatial autocorrelation®a@y, there is substantial
need for further research in order to be able to provide firacers with adequate
guidelines for model fitting.

References

Anselin, L. (1988). Spatial Econometrics: Methods and Models. Kluwer, Dor-
drecht.

Bates, D. and Maechler, M. (201IMatrix: Sparse and Dense Matrix Classes and
Methods. R package version 1.0-1.

Bivand, R. S. (1984). Regression modeling with spatial ddpace: an application
of some class selection and estimation meth@gsgraphical Analysis, 16:25—
37.

Bivand, R. S. (2006). Implementing spatial data analydisvsme tools in R.Geo-
graphical Analysis, 38(1):23-40.

Bivand, R. S. (2010a). Comparing estimation methods fotiglpaconometrics
techniques using. Discussion paper 2010:26, Department of Economics, Nor-
wegian School of Economics and Business Administration.

Bivand, R. S. (2010b). Computing the Jacobian in spatialetsocan applied sur-
vey. Discussion paper 2010:20, Department of EconomicsyBigian School of
Economics and Business Administration.

Bivand, R. S., Pebesma, E. J., and Gomez-Rubio, V. (208&)lied Spatial Data
Analysiswith R. Springer, New York.

Bivand, R. S. and Portnov, B. A. (2004). Exploring spatidbdanalysis techniques
usingR: the case of observations with no neighbours. In Anselinklorax, R. J.
G. M., and Rey, S. J., editordgdvances in Spatial Econometrics. Methodology,
Tools, Applications, pages 121-142. Springer, Berlin.

Bivand, R. S. and Szymanski, S. (1997). Spatial dependénaegh local yardstick
competition: theory and testingeconomics Letters, 55:257-265.

Bivand, R. S. and Szymanski, S. (2000). Modelling the spatipact of the in-
troduction of compulsory competitive tenderingRegional Science and Urban
Economics, 30:203-219.

17



Cliff, A. D. and Ord, J. K. (1973)Spatial Autocorrelation. Pion, London.

Drukker, D. M., Prucha, I., and Raciborski, R. (2011). Maxmmlikelihood and
generalized spatial two-stage least-squares estimatoassipatial-autoregressive
model with spatial-autoregressive disturbances. Workiager, Department of
Economics, University of Maryland.

Elhorst, J. P. (2010). Applied spatial econometrics: Rashe bar. Spatial Eco-
nomic Analysis, 5:9-28.

Griffith, D. (2006). Hidden negative spatial autocorredatiJournal of Geographi-
cal Systems, 8:335-355.

Kelejian, H. H. (2008). A spatial j-test for model specifioatagainst a single or a
set of non-nested alternativdsetters in Spatial and Resource Sciences, 1:3-11.

Kelejian, H. H. and Piras, G. (2011). An extension of Kel@gal-test for non-
nested spatial modelRegional Sscience and Urban Economics, 41(3):281-292.

Kelejian, H. H. and Prucha, I. R. (1999). A generalized mam&stimator for
the autoregressive parameter in a spatial molahtdr national Economic Review,
40:509-533.

LeSage, J. and Fischer, M. (2008). Spatial growth regrassitmdel specification,
estimation and interpretatioigpatial Economic Analysis, 3:275-304.

LeSage, J. and Pace, R. (200Btroduction to Spatial Econometrics. CRC Press,
Boca Raton, FL.

Manski, C. F. (1993). Identification of endogenous socida$: the reflection
problem. Review of Economic Studies, 60:531-542.

Ord, J. (1975). Estimation methods for models of spati@raxttion.Journal of the
American Statistical Association, 70(349):120-126.

Pace, R. and Barry, R. (1997). Fast CARsurnal of Satistical Computation and
Smulation, 59(2):123-145.

R Development Core Team (201 H: A Language and Environment for Statistical
Computing. R Foundation for Statistical Computing, Vienna, AustriEsBN
3-900051-07-0.

Ripley, B. D. (1981).Spatial Satistics. Wiley, New York.

18



Smirnov, O. and Anselin, L. (2009). An O(N) parallel methddcomputing the
Log-Jacobian of the variable transformation for modelshvgipatial interaction
on a lattice.Computational Statistics & Data Analysis, 53(8):2980 — 2988.

Szymanski, S. (1996). The impact of compulsory competitvrelering on refuse
collection servicesFiscal Sudies, 17:1-19.

19



01/10

02/10

03/10

04/10

05/10

06/10

07/10

08/10

09/10

10/10

11/10

12/10

13/10

Issued in the series Discussion Papers 2010

2010
January, Qystein Foros, Hans Jarle Kind, and Greg Shaffer, “Mergers and
Partial Ownership”

January, Astrid Kunze and Kenneth R. Troske, “Life-cycle patterns in
male/female differences in job search”.

January, Qystein Daljord and Lars Sergard, “Single-Product versus Uniform
SSNIPs”.

January, Alexander W. Cappelen, James Konow, Erik &. Serensen, and Bertil
Tungodden, "Just luck: an experimental study of risk taking and fairness”.

February, Laurence Jacquet, “Optimal labor income taxation under maximin:
an upper bound”.

February, Ingvild Almas, Tarjei Havnes, and Magne Mogstad, “Baby
booming inequality? Demographic change and inequality in Norway, 1967-
2004”.

February, Laurence Jacquet, Etienne Lehmann, and Bruno van der Linden,
“Optimal redistributive taxation with both extensive and intensive responses”.

February, Fred Schroyen, “Income risk aversion with quantity constraints”.

March, Ingvild Almds and Magne Mogstad, “Older or Wealthier? The impact
of age adjustment on cross-sectional inequality measures”.

March, Ari Hyytinen, Frode Steen, and Otto Toivanen, “Cartels Uncovered”.

April, Karl Ove Aarbu, “Demand patterns for treatment insurance in
Norway”.

May, Sandra E. Black, Paul J. Devereux, and Kjell G. Salvanes, “Under
pressure? The effect of peers on outcomes of young adults”.

May, Ola Honningdal Grytten and Arngrim Hunnes, “A chronology of
tinancial crises for Norway”.



14/10 May, Anders Bjorklund and Kjell G. Salvanes, “Education and family
background: Mechanisms and policies”.

15/10 July, Eva Benedicte D. Norman and Victor D. Norman, “Agglomeration, tax
competition and local public goods supply”.

16/10 July, Eva Benedicte D. Norman, “The price of decentralization”.

17/10 July, Eva Benedicte D. Norman, “Public goods production and private sector
productivity”.

18/10 July, Kurt Richard Brekke, Tor Helge Holmds, and Odd Rune Straume,
“Margins and Market Shares: Pharmacy Incentives for Generic Substitution”.

19/10 August, Karl Ove Aarbu, “ Asymmetric information - evidence from the home
insurance market”.

20/10 August. Roger Bivand, “Computing the Jacobian in spatial models: an applied
survey”.

21/10 August, Sturla Furunes Kvamsdal, “An overview of Empirical Analysis of
behavior of fishermen facing new regulations.

22/10 September, Torbjorn Haegeland, Lars Johannessen Kirkebgen, Odbjern
Raaum, and Kjell G. Salvanes, ” Why children of college graduates
outperform their schoolmates: A study of cousins and adoptees”.

23/10 September, Agnar Sandmo, “ Atmospheric Externalities and Environmental
Taxation”.

24/10 October, Kjell G. Salvanes, Katrine Lgken, and Pedro Carneiro, “A flying
start? Long term consequences of maternal time investments in children
during their first year of life”.

25/10 September, Roger Bivand, “Exploiting Parallelization in Spatial Statistics: an
Applied Survey using R”.

26/10 September, Roger Bivand, “Comparing estimation methods for spatial
econometrics techniques using R”.

27/10 October. Lars Mathiesen, Qivind Anti Nilsen, and Lars Sergard, “Merger
simulations with observed diversion ratios.”

28/10 November, Alexander W. Cappelen, Knut Nygaard, Erik &. Sgrensen, and
Bertil Tungodden, “Efficiency, equality and reciprocity in social preferences:
A comparison of students and a representative population”.



29/10 December, Magne Krogstad Asphjell, Wilko Letterie, @ivind A. Nilsen, and
Gerard A. Pfann, ”"Sequentiality versus Simultaneity: Interrelated Factor
Demand”.



01/11

02/11

03/11

04/11

05/11

06/11

07/11

08/11

09/11

10/11

11/11

12/11

13/11

14/11

2011

January, Lars Ivar Oppedal Berge, Kjetil Bjorvatn, and Bertil Tungodden,
“Human and financial capital for microenterprise development: Evidence
from a field and lab experiment.”

February, Kurt R. Brekke, Luigi Siciliani, and Odd Rune Straume, “Quality
competition with profit constraints: do non-profit firms provide higher quality

than for-profit firms?”

February, Gernot Doppelhofer and Melvyn Weeks, “Robust Growth
Determinants”.

February, Manudeep Bhuller, Magne Mogstad, and Kjell G. Salvanes, “Life-
Cycle Bias and the Returns to Schooling in Current and Lifetime Earnings”.

March, Knut Nygaard, "Forced board changes: Evidence from Norway".

March, Sigbjern Birkeland d.y., “Negotiation under possible third party
settlement”.

April, Fred Schroyen, “Attitudes towards income risk in the presence of
quantity constraints”.

April, Craig Brett and Laurence Jacquet, “Workforce or Workfare?”

May, Bjorn Basberg, “A Crisis that Never Came. The Decline of the European
Antarctic Whaling Industry in the 1950s and -60s”.

June, Joseph A. Clougherty, Klaus Gugler, and Lars Sergard, “Cross-Border
Mergers and Domestic Wages: Integrating Positive ‘Spillover” Effects and
Negative ‘Bargaining’ Effects”.

July, Givind A. Nilsen, Arvid Raknerud, and Terje Skjerpen, “Using the
Helmert-transformation to reduce dimensionality in a mixed model:

Application to a wage equation with worker and ...rm heterogeneity”.

July, Karin Monstad, Carol Propper, and Kjell G. Salvanes, “Is teenage
motherhood contagious? Evidence from a Natural Experiment”.

August, Kurt R. Brekke, Rosella Levaggi, Luigi Siciliani, and Odd Rune
Straume, “Patient Mobility, Health Care Quality and Welfare”.

July, Sigbjern Birkeland d.y., “Fairness motivation in bargaining”.



15/11

16/11

17/11

18/11

19/11

20/11

21/11

22/11

September, Sigbjern Birkeland d.y, Alexander Cappelen, Erik O. Serensen,
and Bertil Tungodden, “Immoral criminals? An experimental study of social
preferences among prisoners”.

September, Hans Jarle Kind, Guttorm Schjelderup, and Frank Stdhler,
“Newspaper Differentiation and Investments in Journalism: The Role of Tax
Policy”.

Gregory Corcos, Massimo Del Gatto, Giordano Mion, and Gianmarco I.P.
Ottaviano, “Productivity and Firm Selection: Quantifying the "New" Gains
from Trade”.

Grant R. McDermott and Jivind Anti Nilsen, “Electricity Prices, River
Temperatures and Cooling Water Scarcity”.

Pau Olivella and Fred Schroyen, “Multidimensional screening in a
monopolistic insurance market”.

Liam Brunt, “Property rights and economic growth: evidence from a natural
experiment”.

Pau Olivella and Fred Schroyen, “Multidimensional screening in a
monopolistic insurance market: proofs”.

Roger Bivand, “ After “Raising the Bar”: applied maximum likelihood
estimation of families of models in spatial econometrics”.



NHH

Norges
Handelshgyskole

Norwegian School of Economics

NHH

Helleveien 30
NO-5045 Bergen
Norway

TIf/Tel: +47 55 95 90 00
Faks/Fax: +47 55 95 91 00
nhh.postmottak@nhh.no
www.nhh.no




	22.pdf
	Background
	Garbage in --- garbage out?
	US 1980 election turnout data set
	Lucas County, OH, housing data set

	Candidate models
	Maximum likelihood estimation
	Fitting models using maximum likelihood for the English data set
	Larger data sets
	Conclusions


