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1 Introduction

This technical paper contains the proofs of all lemmata, propositions and
other statements made in the paper Multidimensional screening in a monop-
olistic insurance market.! For convenience, we reproduce in the next section
some of the main definitions, assumptions and notational conventions used
in that paper, and restate the main problem. In section 3, we present the
proofs of the no-distortion-at-the-top/no-rent-at-the-bottom result (Theorem
1) and the proofs of the optimal contract menu when insurance takers only
differ in risk type (Theorem 2), in risk aversion (Theorem 3), and when risk
type and risk aversion are perfectly positively correlated (Theorem 4). Sec-
tion 4 deals with the two-dimensional heterogeneity case: after a reminder
of some definitions and assumptions (Section 4.1), we reformulate the main
proposition of the paper (Section 4.2), and explain our strategy to prove
it (Section 4.3). This strategy consists of four steps; these are dealt with
in Sections 5, 6, 7 and 8, respectively. Section 8 concludes with Theorem
11 which is proven in Appendix A. Appendix B proves the three theorems
stated in Section 6.

The results depend on the relationships between a series of critical values
for the measure of similarity in risk aversion (defined as z, x = 1 correspond-
ing to identical risk aversion). The orderings of these critical values depend
on the value for p, a measure of correlation between risk type (u) and risk
aversion (v). Appendix C shows the dependency of these orderings on p. In
particular, it shows that (almost) all orderings are independent of the exact
value of p as long as this value is non-positive. The exception is given in
Lemma C.10.

In the margin of his copy of Diophantus’ Arithmetica, Pierre de Fermat
wrote: "To divide a cube into two other cubes, a fourth power or in general
any power whatever into two powers of the same denomination above the
second is impossible, and I have assuredly found an admirable proof of this,
but the margin is too narrow to contain it." We have assuredly found a proof
of the main proposition of our paper. We doubt that it deserves the label
admirable. But that a margin is too narrow to contain it is beyond dispute!

LOlivella, P and F Schroyen (2011) "Multidimensional screening in a monopolistic
insurance market" (NHH DP 19/2011, CORE DP 21/56)
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Main notations and assumptions

C' = (¢, P), a linear insurance contract with coinsurance rate ¢ and
premium P

w € {pr, pmt,where pp < pg: the expected loss

def
Ap = pg —pr >0

v % 62 the product of the coefficient of absolute risk aversion and

the variance of the loss

v € {vr,vg}, v < vg: the degree of absolute risk aversion (% nor-

malised to 1)

def
Av = vg — g,

Type ij: a person with characteristics (y;,v;)

a;;: the share of ij people in the population (¢, j = H, L, Zi,jaij =1)
ay.: the fraction of people with expected loss py (g = awr + argy)
a.i: the fraction of people with perceived variance v (v = app+ag)

R;j(c, P): the certainty equivalent rent that the agent enjoys from con-
tract (c, P);

def

Rij(c, P) = U"(c, P) = U"(1,0) = —P + (1 — c)p; + 1(1 — Ay, (1)

2

R;; o R;i(cij, Pij) (i,j = L, H): the rent when truthful

d(+): an auxiliary function to write the rent when mimicking;
8lert, i — s vy — 1) = (1= ) (s — ) + %(1 — ) —w). (2)
R;j(cki, Pr): the rent when pretending to be of type ki;
R;j(crr, Prr) o Ryi(cri, Pu) + 0(crrs i — e V5 — 1) (3)

monotonicity conditions:



— for incentive compatibility between contracts Hj and Lj (j =

H, L):
cHj < ciy (4)
— for incentive compatibility between contracts iH and iL (i =
H, L):
cin < Cir, (5)
Ap

¢ = 3E: the locus of tangency points between H L’s and LH’s indiffer-

Av
ence curves in the (¢, P)-space

e DY f—L“ € (0,00): a dimensionless measure of the heterogeneity in p

def . . .. . .
ez = ke (0,1]: a dimensionless measure of the similarity in v

7 (c, P): the principal’s expected profit when an agent of type ij has
accepted contract (¢, P);

7 (c, P) = P — (1 — ¢)p;. (6)

Total (or expected) profits are

S {_ ) yj—R@-j]. (")

The main problem of the principal /insurance company

1
max Z Qg |:5[1 — C?j]l/j — le:| s s.t.

{Cij,Rij}i THI
RLH—Q—(S CLH,O AI/) RLL+5(CLL,0,AV)
Rpr > Ryr + 6(curn, —Ap, 0) Rpg > Rup +0(car, —Ap, Av)
RHH+5 CHH, A,u, AV) RHH+5(CHH,—AM,O)
Rrp +0(cpr, Ap,0) Rrr +6(crr, Ap, Av)
Rur > § Rpg +6(com, Ap, —Av) Ryn > Ripw +6(com, Ap,0)
RHH+(5(CHH,0,—AV) RHL—F(;(CHL,O, AV)

The next section provides the solution to this problem.



3 Preliminary results
This section gives the proofs of Theorems 1-4 in the main text.
Theorem 1 At the optimum solution, (i) cyy = 0 and (ii) Ry = 0.

Proof. Part (i). Assume, by contradiction, that ¢}, > 0. Then let
¢y = iy — € for some sufficiently small ¢ > 0. This still preserves non-
negativity of cyy. It also lowers the rents that HL, LH, and LL obtain
when mimicking H H, so that none of the IC constraints get more binding.
Finally, notice that the objective function decreases in cppy.

Part (ii). Observe first that R;; > Ry for all ij. To see this, note
that R;; (ij = HL,LH,HH) > Ry whenever ¢, < 1. Assume then
by contradiction that Rj; > 0. Then the previous observation tells us that
Rj; > 0 (ij = HL,LH,HH). Then the alternative rent vector (R}, —
e, Ry —e, Ry — e, Ry — ) does not upset IC and increases the objective
function. =

Theorem 2 When all agents have the same risk aversion, the optimal menu

has cy. =0 and cp. = min{ Dy 1},

Proof. Since Ry = d(cr., Ap,0) and Ry, = 0, the Lagrange function is

L= ozH{%(l — 5w —6(ep., Ap,0)} + aL{%(l -3 )}

The first and second order derivatives are:

0 ap.cH.V > ag.rv <0
= —Oyg.CHV, —5 = —Qf.
aCH. 80%,
0 0?
— =agAu—apcLv, — = —apv <0
ocr. H-EH L1 dc2. L
Hence, cj;. = 0 and ¢}, is given by min{le‘g}{_ ,1}. ¢}, becomes 1 when
ap. > HLD(< 1) |

Theorem 3 When all agents face the same expected loss, the optimal menu
0ifx > a.g

has CH = 07 and C-L = 1 otherwise.



Proof. With identical risk size but different risk aversion, Ry = d(c, 0, Av)
and Ry = 0. The Lagrange function is then

1 1
L= a.H{§(1 — C?H)I/H —d(cr,0,Av)} + aAL{é(l — c?L)yL}.

The first and second order derivatives are:

0 0
—— = —a.gyC.gVy, —— = —a.gvg <0
6c.H aC.H
0 0?
—— =a.gcAv — e = cpvglag — x), 25 = vglog —

Hence, cj; = 0 and

cp. =0ifayg —x <0,

=1lifayg—x>0.

Theorem 4 With perfect positive correlation (agr = arg = 0), the optimal
min{D%, 1} fo > OgH

menu has cgg = 0 and crr, = { L rwise

Proof. Since Ryy = §(cpr, Ap, Av) and Ry, = 0, the Lagrange function
is 1 1
L= CVHH{§(1 — v — 6(con, Ap, Av)} + &LL{§(1 — i)}

The first and second order derivatives are:

2
0 0
= —QHHCHAVH, 55 = —QgaVp <0
8CHH aCH.
0 0?

= OéHHAV — aLLVy,

= agy(Ap+ cppAv) — apreppvr,

2

. 2 .
Hence, ¢};;; = 0. Since af? =aggAv —arppvr = vg(agg — x), and ¢}, is
. . J— : .
given by mm{Dm, 1} if x > agy,and by lif 2 < agy. =



4 Two-dimensional heterogeneity

4.1 Notation

e Bivariate probability distribution of types:

KL arr  arg | Of.
HH | ®HL COHH | OH.
a.r, a.g 1

e Correlation between risk (u) and risk aversion (v) plays an important
role in the analysis;

dof B(pp— Ep)(v— Ev)  agporp —apgapr
corr(ju, v) = = :
L0y \/aL.ozH.\/a.La.H

def . £ . .
® p = agpgarr, — argayr: the numerator of the correlation expression.

e We parameterise the distribution by means of the triplet (ag., agm, p),
and have the remaining fractions determined by

gy = Oog. — Oogg, (8)
1-— )
g — OgH OH — P 5 and (9)
. .
1—agy.
arp = (g — agm) 7y & (10)

. OéH..

° def app(l —ay.) and p dof —agr(1 — agy.): upper and lower bounds
on p to guarantee oy and ayy, positive

e Ajy: the feasible set of distribution parameters;
def _
Ao = {(ag.,agm, p) €[0,1]*> x R | agy < ay. and p<p<p}.

e 7;: set of admissible values for the parameters x and D;

To € {(D,x) € Ry x (0,1)}.



Aj: feasible set of distribution parameters when non-positive correla-
tion of characteristics;

Ay dof {(aH.,aHH,p) € Ay and p < 0}

a) d_ef l—ay. .
= o
there is no heterogeneity in risk aversion

upper bound on D to avoid exclusion of LL types when

7T;: set of admissible values for the parameters = and D avoid exclusion

of LL types when there is no heterogeneity in risk aversion

7. Y {(D,z) €Ty | D< D}.

Two possible orderings of coinsurance rates:

Order 1: 0 =cypy < cpyr < crg <cpp <1, (11)
Order 2: 0 =cyy < cryg <cyr <crp < 1. (12)

Lemma 1 If order 1 applies with cyy < cpy, it s optimal to pool H L with
HH if x > ‘ZH—HH Otherwise, it is optimal to pool HL with LH .

Proof. With order 1, the only type that may envy the contract for H L
is HH. Thus, the choice of cyy, is only governed by weighing the profits
from these two types. Since they have the same risk size, we may apply
Theorem 3 on this sub group. Since the fraction of high risk averse people
in this group is ‘y’—:, the result follows. m

4.2 The main result of the paper

Main proposition Suppose that (ay.,agm,p) € Ay and (D,x) € 1.
Define the following five menus:

A _ A _ A _ A _ .
A cgp=cpp=0,cpp =cpp = le—g{%'
M ¥y =0,¢¥ =1, and
Q. T 3 (63
CM — DaHA(l—;I)+OcLH$ lf x> oZI{ITI7 (M]')
LH D—ome__ if g < oan (M2)
apgrL+arLH Q.
Mo { 0 if z > —O;fj{H, (M1)
HL — ag.T 3 QHH
Dot if p < S (M2)



B cfy =0,cfy =2D:% — ¢/, and

1 (BpX),
2a ag.(1—z
cfp = DA (BipD),
2D (Bf),
s 0 if 2 > 222 (Bf,B1pI,B1PX),
CHLT\ 2D% —1 ifa < oun (B2pX).

c _ . _.C _
C chy=chy,=cri, =0, and

CC — D% (CI)$
LL 1 (CX).

E - _ E _ pouazw
E ¢y =0,c0y = D=, and

D-=enL (EI),
CgL = ch = { xla.H (EX)

When p < plag.,agy), the solution to the main problem is as depicted in
Figure 3, where the functions xpy (D), TPP(D) and xpc(D) are defined in
Table 3 below and plag., agy) is specified in Theorem 11.  Otherwise, the
upper bound for the region corresponding to menus EI and EX will lie in the
region corresponding to menus Bf and BpX (i.e., menus CI and CX cease
to be optimal for any (D, x)).

—~Figure 3 here—

Remark 1. The suffixes to the menu names have the following rationale:
"1"("2") stands for HL pooled with HH (LH), in case of order 1; "I"("X")
stands for inclusion (exclusion) of LL; and "p"("f") stands for partial(full)
insurance of LH in case of menu B.

Remark 2. Figure 3 shows that no part of 7 is left unaddressed. The
ordering of the critical values on the two axes is valid for any (ay., agy, p) €
Ai. Hence, the above proposition provides a full characterisation.

Remark 3. The condition on p says that this parameter should be
sufficiently negative. However, in Theorem 11 we show that p < —0.089.
is a sufficient condition for p < p(ay.,agy), all (ag.,agy). Hence, Figure
3 is the solution for almost all distributions of ; and v with non-positive
correlation.

In the next subsection, we explain the strategy to prove the main propo-
sition.



4.3 Proof strategy

At a very abstract level, the main problem can be formulated as:

max F(M), (13)

where m is a contract menu (Cy g, Cyp,Cry,Crr) and M* is the set of fea-
sible menus satisfying the self-selection and participation constraints. Both
F(-) and M* depend on (ay., agm, p, D, x) € Ay X771, but we suppress this in
the notation. Problem (13) is complex both due to the number of inequality
constraints that define the feasible set, and because this set is beset by non-
convexities. To identify the solution for each (ay., apm,p, D,x) € Ay X Ty,
we proceed as follows.

First, we delineate the set of incentive compatible menus as much as
possible by deriving a list of properties that any optimal incentive compatible
menu should satisfy. This allows us to restrict the feasible set to a reduced
set M C M*, such that

arg mef\r/llﬁ(}i),w) F(M;D,x) = arg me%%g,z) F(M;D,z).

This is the subject of Section 5.

Second, we identify three subsets M; C M (i = 1,2, 3), with U;M; = M
but not necessarily with empty intersections, which allows us to define three
sub-problems of the type m; = arg max,,ea, F'(M) (Section 6). Because the
three subsets unite to M, it follows that

arg max F(m)=arg max  F(m). (14)
me

me{mi,ma,ms3}

Third, we solve each of the three sub-problems (Section 7).  Finally, we
perform a comparison to distinguish the global solution from the local ones
(Section 8). For this comparison, we make use of the following principle:

Revealed preference principle Let m; = arg max,cn, F'(m) (i = 1,2,3).

If mi e M; (j#1), then F(m;) < F(m;).

5 Step 1: reduction of the feasible menus set

from M* to M

We first derive a set of properties that an incentive compatible contract menu
(ICM) should satisfy. Next, we derive a set of properties that an optimal

9



contract menu should satisfy. Both sets of properties allow us to divide the
main problem into three sub-problems.
We use the following notation:

e ij — kl stands for "type 77 has an incentive to mimic type kl", i.e.,
Rij = Ry + 0(c, i — e, Vi — 11);

e ij —» kl stands for "type ¢j has no incentive to mimic type kl", i.e.,
Rij > Ry + 0(cpi, pti — o, vj — 11).

Recall from Section 2 that the monotonicity conditions are necessary for
incentive compatibility of the contracts: cy; < ¢p; (j = H,L) and ¢;p <
¢ (i=H,L).

Lemma 2 At an ICM, if HH — LL, then HH — HL and HH — LH.
Proof. Suppose HH — LL but HH -+ HL, i.e.,

Ryyg = Rr, + 5<CLL; Ap, AV) (1)
Ryy > Ry, + 5(CHL; 0, AI/) (ii)

Since Ry, > R + 6(cpn, Aw,0), (i) and (ii) give

RLL + 5(CLL7 A,u, AV) > RLL + 5(CLL; A,u, 0) + (S(CHL, O, AV)
<~ 6<CLL70; AV) > (5<CHL,O,AV>
< CHgIL > CLL

contradicting monotonicity. Likewise, suppose HH — LL but HH - LH,
i.e.,
Ryy > Rrpg + 5(CLH> A[L, 0) (111)

Since Rpg > Rpp + 0(crr,0,Av), (i) and (iii) give

Rpp +d(crr, Ap, Av) > Rpp + (e, 0, Av) + 6(cpm, Ap, 0)
= (S(CLL, Au, 0) > (5<CLH, Au, O)
<< Cryg > CLL

contradicting monotonicity. =

Lemma 3 At an ICM, if HH — LH(HL), then ¢,y < (>)cnr.

10



Proof. Incentive compatibility requires

(i) Ry > Ry + 0(cyr, 0, Av)
(ii) Run > Rew + 0(com, Ap,0)
(iii) Ryr > Rryg + 6(cpm, Ap, —Av)
(iv) Rpg > Ryr + 6(cur, —Ap, Av)

(i) and (iii) lead to Ry > Rrg + 0(cpm, A, —Av) +6(chr, 0, Av). There-
fore, if (ii) holds with equality we obtain that

Rrg + (5<CLH, Ap, O) > Ry + 5(CLH7 Ap, —AI/) + 5(CHL; 0, AI/)
<~ (S(CLH,O,AV) > (S(CHL,O,AV)

and therefore that ¢,y < cyp. Similarly, combining (ii) and (iv), and (i)
with equality leads to cyr, < crgy. m

Corollary 1 At an ICM, if HH — LH and HH — HL, then cpy = cHp,
and therefore LH — HL and HL — LH hold trivially.

Corollary 2 At an ICM, if HH — LL, then c,g = cyr, = crr.-

Proof. By Lemma 2, HH — LH and HH — HL and by 1 ¢y, = crp-
cgr, = ¢y > cpr is ruled out by monotonicity. Suppose now that cyp =
cry < crp. Since HH — LL and HH — LH,

Ry + 6(com, Ap,0) = R + d(err, Ap, Av)
U
Rry = Rrp + 6(err, 0, Av) + 6(err, Ap, 0) — d(crm, Ap, 0)
= Rrr 4+ (crr, 0, Av) + (coy — cpn) Ap

Similarly, HH — LL and HH — LH imply that
1
Ryr = R+ 6(cpr, Ap, 0) + i(cfgL —c3,)Av

Then by monotonicity, both LH and HL will strictly envy LL’s contract,
contradicting incentive compatibility. m

Lemma 4 At an ICM, if HH — LH(HL) and HH - HL(LH), then
cry < (>)cgr and HL and LH cannot be pooled.

11



Proof. Consider the case where H H has an incentive to mimic LH but
not HL: RHH = RLH + 5<CLH,A,M,O) and RHH > RHL + 5(CHL,0,AV).
Using Ryr > Rrpm + 0(cpm, Ap, —Av) results in Rpy + d(cpm, Ap,0) >
Ry + (e, Ap, —Av) + §(cur, 0, Av) giving ¢y > cpy. m

Lemma 5 At an ICM, either (i) {LH — LL and LH - HL}, or (i)
{HH — LH and HH - HL} but not both.

Proof. (i) says Rpr, + d(crr,0,Av) > Ryr, + d(cyr, —Ap, Av). Adding
this to Ryy > Rpp + d(cpn, Ap,0) gives

derrn, —Ap, Av) > d(cgu, —Ap, Av)

1
<= (cor — cur)Ap > §<C%L — i) Av

By monotonicity, this implies that c;r, + cyp < 2%.
On the other hand, adding Ry > Rry + 6(com, Ap, —Av) to the second
part of (i), Rpg > Ryr + 0(cyr, —Ap, Av), results in

emr, A, —Av) > 6(cpy, Ap, —Av)

1
< (cLg — curn)Ap > 5(0%1{ - CIZLIL>AV

By (ii) and Lemma 4, this inequality implies that ¢,y +cgp > 2%. Whence,
crLy > crr, contradicting monotonicity. m

Lemma 6 I[f HL — LH and LH — HL, then either cy;, = cpy or {cyr #

A
cra and cpg + cyp = 235}

Proof. Adding Ry = Rpyr + (5<CHL,—A/L, AI/) to Rgr, = Rpg +
d(crm, Ap, —Av) yields
denr, Ap, —Av) = §(cpy, Ap, —Av)
1
<~ (CLH — CHL)A,U = §(C%H — CJ%IL)AV

Lemma 7 Consider an ICM. Suppose (i) HL — LH and LH — HL,
(i) HH — LH or HH — HL but not both, (iii) LH — LL. Then (iv)
HL — LL.

12



Proof. (ii) and Lemma 4 imply that ¢,y # cyr. By (i) and lemma 6,
this means that crg + cgyr = 2%. Now suppose that (iv) is false. Then

Ryr > Rpp + 0(cpr, Ap, 0)
= RLH — 5(CLL7 0, AV) + (S(CLL, A/L, 0)
- RHL + 6(CHLa _AH’7 AV) - 5(CLL7 Oa Al/) + 5(CLL7 Aluﬂ O)

where the first equality sign follows from (iii). Therefore

(5<CLL, —AILL, AV) > 5(CHL, —Au, AV)
Ap
<<= CLI > CHL and crr + ey < 2——

Av

But as crg + ¢y = 2%, we get ¢, < ¢y, contradicting monotonicity. m

Next, we further delineate the set of incentive compatible contract by
eliminating those IC contract that can be improved upon.

Lemma 8 At an optimal solution, either HH — HL or HH — LH or both.

Proof. Suppose not, i.e. HH -» HL and HH - LH. Then by lemma
2, HH - LL. But this means it is possible to reduce Ryy without upsetting
incentive compatibility, contradicting optimality. m

Lemma 9 At an optimal solution either HL — LH or HL — LL or both.

Proof. Suppose not, i.e., HL - LH and HL - LL. We distinguish
between two case: (i) HL — HH and (ii) HL » HH.
Case (ii). Then none of the IC constraints for HL are binding and we can
decrease Ry by a small amount without violating incentive compatibility,
contradicting optimality.
Case (i). Then Ry, = Ryy + 6(cgu,0,—Av). By assumption HL -+ LH,
i.e., Ryr, > Rpy + 6(com, Ap,—Av).  Substituting into previous equal-
ity gives Ryy > Rpy + d(com, Ap, —Av) + §(cym,0,Av). By definition
of 0, we can rewrite this as Ryg > Rpy + 0(cpy, Au,0) — 0(cpy, 0, Av) +
0(crm,0,Av) = Rpy + 6(com, Ap,0) + 2 (3 — &) Av. The last term
is non-negative, since 0 = %, < ¢, by monotonicity. Hence we can
write Ryg > Rpg + 6(com, Ap,0), meaning that HH - LH. Using this
strict inequality with the constraint Ry > Ry +d(crr,0.Av) gives Ryy >
Rrr+9d(crr, 0, Av)+0(cpm, Ap,0) = Rpp +6(cppn, Ap, Av) —6(crr, Ap, 0) +

13



(5<CLH,A,U,,O) = RLL -+ 5(CLL7A/~L; AV) -+ A/J(CLL — CLH)- By monotonic-
ity ¢, > cpg so last term is non-negative. Hence we can write Ryy >
Rrr +d(crr, Ap, Av), meaning that HH -+ LL To sum up, we have that.

HL - LH, HL - LL, HH — LH, HH - LL:
HL — HH,ie. Ryr= Ryng+ 5<CHH;O> —AI/); and
Ruypg > Rur + 6(cur, 0, Av)

Consider therefore lowering both Ryy and Ry, by the same small amount.
Then, by inspection, none of the above constraints is violated, and profit has
increased. This contradicts optimality. m

Lemma 10 At an optimal solution either LH — HL or LH — LL or both.

Proof. The proof goes along exactly the same lines as the proof for
Lemma 9, mutatis mutandis. m

Lemma 11 At an optimal solution, either HL — LL or LH — LL, or both.

Proof. From lemma 2, ift HL. - LL and LH - LL, then also HH —-»
LL. But then it is possible to increase the profit on LL by lowering ¢, and
without upsetting incentive compatibility, contradicting optimality. m

Lemma 12 Suppose HH — HL, HH -» LH, HL — LL, and LH — HL.
Then profit can be increased by lowering cpy down to cyy without upsetting
incentive compatibility.

Proof. By lemma 4, cyy, < cpg. Adding Ryp, > Rpg+0(cpg, Ap, —Av)
to Rry = Ry + 0(cur, —Ap, Av) gives (cop — cur)Ap > 5(c3y — i) Av.
Since cyy;, < crg, this implies that cr g + cyp < 2%. Whence, cy; <
crg < 2%% — cpr. (A requirement is therefore that cy < %ﬁ.). Since
HL — LL, myy is determined by cgr,crr, and Rpp. Since HH — HL,
Ty is determined by cyy,cyr,crp and Rpp. Since LH — HL, 7y is
determined by crg,cyr,cpr, and Rpp. Therefore a marginal reduction in
cr.g will not upset incentive compatibility and will increase the profit from
LH without reducing any other profit. m

Lemma 13 Suppose HH — HL, HH - LH, HL — LL, LH — LL,
LH -+ HL, and HL —-» LH. Then profit can be increased by a marginal
reduction in cpg without upsetting incentive compatibility.

14



Proof. From Ry, > Ry +0(cpy, Au, —Av), Ry, = Rr+6(cor, A, 0)
and Ry = Ry +6(cpr, 0, Av) we obtain that ¢y > 2% —c¢rr. And from
Rrp > Ry + 6(chr, —Ap, Av) and the same two equalities we obtain that
cyr < 2%%—CLL. Whence,cy < 2%’5—CLL <crg. Since HL — LL, gy is
determined by cyy,cpr, and Rpy. Since HH — HL, myy is determined by
caH,cur,crr, and Rypp. Since LH — LL, mpp is determined by cr g, ¢, and
Rpr. A marginal reduction in ¢y will then not upset incentive compatibility
and will increase the profit from LH without reducing any other profit. =

Lemma 14 Suppose HH — LH, HH - HL, LH — HL, and HL —
LH. Then profit can be increased by lowering cyr, without upsetting incentive
compatibility.

Proof. By lemma 4, ¢,y < cyr. And by Lemma 6, c g + cyr =
2%. Since HH — LH, gy is determined by cyy,crg and Rypy. HL can
therefore be pooled with LH. This does not upset incentive compatibility.
It increases the profit from HL and does not affect the profit from either
HH, LH or LL. See figure 2. m

—Figure 2 here—
Lemma 15 (suboptimality of full separation under Order 2) Suppose that
HH — LH, HH -» HL, LH — HL, LH - LL, HL — LL. Then

profit can be increased by pooling HL with LL or with LH. (This lemma was
labelled Lemma 2 in the main text.)

Proof. The situation is depicted in figure 3.
—~Figure 3 here—

First note that ¢y, must exceed % for otherwise LH and H L could not
have been separated.
The profits from the different types are as follows:

1 1
THE = 5(1 — v — (1= com)Ap+ (1 — cup)Ap — 5(1 — i) Av — (1 —cpp)Ap
T = 5(1 - cirp)ve — (1 —cop)Ap

1 1
TLH = 5(1 — i g)ve + (1 —cpp)Ap — 5(1 — Cirp)Av — (1 —cpp)Ap

1

TLL = 5(1 — CiL)”L
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Weighing with the respective population proportions, gives the following first

derivatives:
OTtot . O tot . A
= —QHgHCHHVH, 77— = OgHAW — &LHVHCLH
8cHH 8CLH
87Tm A A a7rtot A
= —Q.gAU+ QHCHLAV — AgLCHLVL, 7 = (1 - OéLL) K — aprCrnly,
c%HL aCLL

The solution for ¢z, is cr,r, = min{ﬁ—f%, 1}. The condition that ¢y > %
translates into x < 1 — ar. If this is satisfied, there is room to separate

LH from HL. Since

87Ttot

5 = —a.gAp+ [ag(l —2) — agrxlvgenrs
CHL

total profit is strictly concave in cyy iff © > ﬁTHLL In that case, the optimal

solution for cgy, is
Ap o.gT

cyr = min{ — 1t
HL vy ag(l —2) — agpz’ }

By monotonicity, the only chance of full separation is where ¢y, = ﬁ—g m

1. It remains then to check whether cy; < c¢rr.  Suppose first that
crrL = ﬁ—f—l;ﬁL < 1

A O.HT Apl—app

cgr < Crp, <= e < a7

vy, OéH(l - .I) — agL¥ vy, arr,
OZH(l —O./LL)

a.gap, + (1 —app)?

— T <

Ag —cnlzars) B this condition contradicts with the assumption
a.garr+(l—-arr) l-arp

that x > 13&1;' Suppose next that ¢, = 1.

A o.gx o.g
cHL<cLL<:>—M <l<=z< )
vy, @.H(l—ﬂf)—OKHLl' 1—OéLL+DOé.H

Again, this contradicts with the assumption that x > 1?&’2 - Hence, cyp, =
crr, meaning that H L is pooled with LL.

On the other hand, if total profit is strictly convex in cgy, it pays to
move cgy, either down to ¢y or up to c¢r . Hence, full separation is never
optimal. m

By Lemmas 8, 9 and 10, at least one adjacent IC constraint should be
binding for each of the three upper types. This gives 27 possible configu-
rations. But using Lemmas 5, 7, 11, 12, 13, 14, 15 and corollary 1, we can
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rule out all but six candidates for an optimal contract menu, as shown in
the table below. In the next section, we show that these candidates are the
solution to three sub-problems.

Table 1. At most 6 configurations of binding and non-binding IC constraints
are possible at an optimal solution.

o | 75 /7 B B v
fg:gﬁ subopt (Lemma 11) | subopt (Lemma 14) | subopt (Lemma 15)
02 ;gif}; fg:{;[]i not IC (Lemma 7) | subopt (Lemma 14) | Sub-problem 3
fg:;}]z not IC (Lemma 5) | not IC (Lemma 5) not IC (Lemma 5)
fg:fli subopt (Lemma 11) | Sub-problem 2 | not IC (Corollary 1)
gﬁ:% fﬁ:;}]z Sub-problem 1 Sub-problem 1 | not IC (Corollary 1)
o1 fg:éﬁ not IC (Corollary 1) | not IC (Corollary 1) | not IC (Corollary 1)
fﬁ:’gi subopt (Lemma 11) | subopt (Lemma 12) | subopt (Lemma 12)
ZZ:’Z; fg:glz not IC (Lemma 7) | subopt (Lemma 12) | subopt (Lemma 12)
fﬁ:ﬁlLL Sub-problem 1 Sub-problem 1 | subopt (Lemma 13)
6 Step 2: identification of the three sub-problems

By eliminating configurations of binding/non-binding IC constraints, there
are three sub-problems that emerge. The first, sub-problem 1, covers four
cells in Table 1. Sub-problems 2 and 3 each corresponds to one cell. Both
of these cells have open feasible sets because one of the downward adjacent
IC constraints is strictly slack. We close the feasible set by allowing the
relevant IC constraint to be binding as well. The constraints for the three
sub-problems are given in Table 2. In the rest of this section, we will
demonstrate why the main problem can be decomposed into these three sub-

problems.

Table 2. The constraints of the three sub-problems.

P1 P2 P3
1 0<chL 0<cnr 0<crm
2 cup <crm (N CHL = CLH cor < cur (A1)
3 com <28E —cpp (1)) enm >2%E —cnn (No) com > 2%E —cpp (M)
4 crp <crr (p2) crr <con (A1) CHL = CLL
5 crp <1 (4h) crr <1 (A3) cr <1 (p)
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We now define each of the three sub-problems.?

Sub-problem 1 (P1) Common for four cells in Table 1 is that HH
has an incentive to mimic H L, HL has an incentive to mimic LH and LH
has an incentive to mimic LL. The last two statements mean that Ry =
Rrmy + 6(cpm, Ap, —Av) and Ry = R + 6(crr, 0, Av). Since HL may or
may not envy LL, Ry, > Rpp + 0(cpp, Ap,0). It then follows that

Riy + (e, Ap, —Av) = Rpp + (e, 0, Av) 4+ 6(cpy, Ap, —Av) > Rpp + 0(epr, Ap, 0)
<~ 5(CLH7 A,u, —AI/) > 6<CLL7 A/JJ, —AU)

—_

< (coL —com)Ap > §(CiL — 1) Ay
By the monotonicity condition that c;y > ¢y, we either have ¢y = ¢,
or crg > crr, and e +eng < 2%. The feasible set in the coinsurance rate
space is thus open and non-convex: it consists of the entire 45 line and of
the shaded triangle in figure 4.

—Figure 4 here—

We close and convexify it by restricting the feasible set to the shaded
area, 1.e.,.
A
cruy > crr and cpp + e < QA—M-
v

In doing so, we forego the possibility to pool LH and LL at a coinsurance

rate that exceeds %. However, below we show that this does not matter

for the global analysis.
Since LH may or may not envy H L, we have that

Rig > Rur + 0(curn, —Ap, Av) = Rpy + 0(com, Ap, —Av) + 0(cur, —Ap, Av)
<~ d(cpm, —Ap, Av) > §(cyr, —Ap, Av)

1
< (cpg — cur)Ap > 5(0%1{ — ) Av

Because Order 1 applies, this inequality may hold in two ways. Either
CLH = CHL, Or crg > cyr and cpy + cyr, < 2%. We can now claim that

2 Alternatively, we could have merged sub-problems P1 and P2 into a single problem
by writing the second and third constraints as ¢y, < cpg and (cLg —cHr) - (2% —crr —
cru) > 0, respectively.
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it is sufficient to impose the constraint cyp < cpy. Indeed, by restricting
ourselves to the shaded are in figure 4, we know that c g < %. Since
car < crm, it follows that cyy < % and therefore that crg + cgr, < 2%.

By foregoing the possibility of pooling LH and LL at a coinsurance rate

above %, there are two menus that are excluded. The first is where all
the three lower types are pooled at a rate above %. This menu may be

optimal when there are a lot of HH people around of which a large rent can
be extracted. However, this menu will be feasible under sub-problem 2 and
will therefore be included in the global analysis. The second possibility that
is excluded is sketched in Figure 5. This is a menu where H L is separated
from LH and LL. It is clear that such a menu can never constitute a
global optimum: moving LH from the right hand crossing to the left hand
crossing preserves incentive compatibility but raises profits from LH. In
sum, nothing is lost by excluding in this part of the analysis pooling of LH
and LL at a rate above %.

—~Figure 5 here—

Using the binding rent equations, and the fact that Ry, = 0, the profits
from the four types are as follows

mi = om — 2L~ )+ 21— Gl Ay — (L= epr) A — S[1 — ] Av

THL = %[1 — chrlve + %[1 —cilAv — (1= com)Ap — %[1 — cr]Av

TLH = %[1 - C%H]VH - %[1 - C%L]AV

TLL = %[1 —c v

and total profit is

bl = %IJL — apg. Ap+ ag.ecpgAp + 5(1 —app)ci Av + %(O‘HHAV — amLVL)Ciy
- %(O‘LHVH +ag Av)el y — %O‘LLC%LVL'

The problem is thus to maximise 71! s.t. the constraints listed in the first

column of Table 2.
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Sub-problem 2 (P2) In this sub-problem, HH has an incentive to
mimic both HL and LH so that cyp = ¢y (Lemma 1). Let us call this
common coinsurance rate ¢;. Because HL has an incentive to mimic both
LH and LL we have Ry + 0(c;, Au, —Av) = R, + d(crr, Ap,0).  Since
LH does not envy LL at all, Rpy > Ry +0(cpr,0, Av). From the previous
expression we then get that

denn, A, —Av) > 6(cr, Ap, —Av)
1

> (cpp —cn)Ap < i(C%L — 9 Av.
Because of the monotonicity condition that ¢; < ¢y, the previous inequality
can only be satisfied when ¢; < ¢rr, and ¢; +cpp > 2%’5, or 2%5 —cpn < cr <
crr- The feasible set for c; is thus open, but for the purpose of describing the
optimal coinsurance rates we close it by including the boundaries. Note that
this sub-problem allows for pooling of the three lower types at a coinsurance

Ap

rate larger than 17, which was excluded from Sub-Problem 1.

The profits from the four types are then

THH = %UH - %[1 —cAAv — (1 —cpp)Ap

THL = %[1 —Avp — (1 —crp)Ap

Ty = %[1 — vy — %[1 — A Av+ (1 —¢)Apu — (1 —cpp)Ap
TLL = %[1 —c3,lv

and total profit is

1 1
Wﬁf = §I/L —ag. Ap+ 5[04HH - (1- aLL)x]cil/H + (1 — arpp)erAp
1
— OCLHC]AIM — §OZLLC%LVL- (15)

The problem is thus to maximise 7.2 s.t. constraints 1,3,4 and 5 listed
in column P2 in Table 2, (constraint 2 being taken care of by having set

CHL = CLH = CI)-

Sub-problem 3 (P3) Now, HH has only an incentive to mimic LH
and HL has only an incentive to mimic LL. Since LH has an incentive
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to mimic both HL and LL we have Rpy; + d(cyr, —Ap,Av) = Ry, +
d(crr,0,Av), and because Ry, = Rpp + 0(cpr, Au,0), we obtain that

denr, —Ap, Av) = §(cpn, —Ap, Av)
1
= (e = em)Ap = (e = Ci) 5 AV
— { CHL=CLL, Or au (16)

cur<crr and cyr+ecr =235

On the other hand, because HH envies LH but not HL, cpg < cyr.
Finally, as HL envies LL but not LH, Ry + 6(cpr,0,Av) > Rpyg +
d(cpm, Ap, —Av). Using the fact that Ry = Rrr + 0(crr, 0, Av) this gives

(5<CLL, A/JJ, —AV) > 5(CLH, A/JJ, —AV)
1
< (cpr — cop)Ap < §<C%L — 5 ) Av.

By monotonicity c gy < cyr < cpr, so that the only way the previous
inequality can hold is when

Ap
2——. 1
crr +crg > Au (17)

Since the second line in (16) and (17) would result in ¢ g > cgr, we can
conclude that only the first combination in (16), ¢y = crp, is feasible. We
therefore call this common coinsurance rate for the risk tolerant types c.p.
We then have: 0 < cry < ¢ and cg > 2% —c.r, Or max{O,Q% —cpt <
cry < c.p. Clearly, a necessary condition is c.j > %. The feasible set for
cry is open. For the calculus analysis of the optimal menu, we close the
feasible set for ¢y as max{0, 2% —cpy<crg <cp.
The profit equations are given by :

1 1
THH = §VH — (1 —crp)Ap — 5(1 — C?L)Al/
1
THL = 5[1 — v — (1 —cp)Ap
1 2 1 2
TLH = 5[1 —ciylve — 5[1 — 5 ]|Av
1
TLL = 5[1 — C.QL]I/L

Hence, total profit is

1 1
Ty = QVL agAp+ (agpern + aprern)Ap — @LH§C%HVH
1
+ §(CYHH +arg — SC)C.QLVH (18)
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The problem is then to maximise 7.2 s.t. constraints 1,2,3, and 5 listed
in column P3 of Table 2 (the second constraint is taken care of by setting

CHL = CLL = C~L>-

7 Step 3: solutions to the three sub-problems

Before presenting the solution to the three sub-problems, we introduce five
auxiliary menus.

Menu PI: this menu pools HL, LH and LL at the common coinsurance
rate larger than D;*— but less than 1:

PI PI _ p_tOH

r —CagH
Menu PX: this menu pools HL, LH and LL at a common coinsurance

of 1 (exclusion):
PX

CHH_O cHL = CLH _CLL =1
Menu P%: this menu pools HL, LH and LL at a common coinsurance
of %(: D).

1—x

Au A,u, AM PA;J, P% T
N v o __
ey’ =0,cgy’ =0,cxr” =cpfg” =cp” =D

1—=x

Menu B2pl: this menu pools HL and LH at the left hand crossing of
the indifference curves of HL and LH, and positions LL at the right hand
crossing:

Bl _ Bl _ Bl _ o Dz

Cyn = 0,¢y, = cCLp 11—, Gl
Bl _ Dz 2(app + ayr) — ap.(1 —x)
o, —

l1—=x T — QHH

Menu SUBI: this menu is one that L H positions at the left hand crossing
of the indifference curves of LH and HL, while HL and LL are positioned
at the right hand crossing:

SUBI _ 0 (SUBL _ (SUBI _ Dz (anp —apn)(l —2) + 2a1m
HH LL 11— T — ann
SUBI _ 9 Dz _ _SUBI
‘L = 47T T CLrL
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Menu SUBX: this menu is similar to SUBI, except that the coinsurance

rate at which HL and LL are pooled now equals 1 (i.e., these two types are
excluded):

SUBX __ O,CSUBX _ CSUBX -1

CoH HL —CLL =
—9 Dz SUBX
CLH = —Crr

Both menu SUBI and SUBX are globally sub-optimal menu since profits
can be unambiguously increased by pooling H L with LH rather than LL (cf
Lemma 14).

Table 3. List of employed functions and symbols:

def.

symbol definition description on (%)

. page

D 1oy, overall upper boundon D p 6 P1.1

) (1—ag.)arr
Dy OCLH"E(]-_OCHJ(l;aLL) lower ‘t;our;d or;?f(])gr 1\/)[(1 p 36 P1.3
agr(org+anr upper bound on or Blp

QMQ agg(arg+apr) { lower bound on D for M2 p 40 P1.7

) arg upper bound on D for Blpl

DBP 1+arg—arr {upper bound on D for B2plI p 38 P1.5

E arr, upper bound on D for CI 50 P2.1

c l-arr lower bboun(hon D for gi( X p :

upper bound on z for Blp

xBleMl(D) lower root of fP1'3 (ZL‘, D) { lowcrbbougd on rfforBl\éllx p 36 P1.3
upper bound on z for B2p

xBQPXM2(D) upper root of fPl'll(x’ D) { lower bound on z for M2 p 43 P1.11

zpm (D) max {51 a1 (D)s T oy are (D)} p 26

— 1—ay.—(1+apg—arp)D upper bound on z for B1pI

:EBP(D) 1—ay.(14D) lower bound on z for B1pX p 38 P1.5

== upper bound on z for B2pI

mgP2'3 (D) upper root of gP2‘3(x’ D) {lower botl)md ?111 T forf B2 IX p 53 P23

= upper bound on z for

fo&l upper root of fPS'l(x’ D) lower bound on x for SUBI p 67 P3.1

zop(D) boundary between C and E  p 33

— upper bound on x for SUBI

Tfps s (D) upper root of fP3.5(*Ta D) lower bokl)md 311 T forf SI]:T:];)(X p 74 P3.5

— upper bound on z for

Tfps(D) upper root) of frsa(z, D) v bound onz for SUBx P69 P32

CHH\U=QH. )"CHLOH - QHH critical p-value for the

PE 1+aq. { description of E p 67 P3.1

1 bound for CI
OHHAXLL ower bound on x 10r
sz'l(D) (1—apr)?D2—20pyoy.Dtarpy upper bound on z for PX p 50 P2.1

(*) Sub-problem and configuration in Appendix B.

We can now provide the solutions the the three sub-problems.

Theorem 5 The solution to sub-problem P1 is as follows:
menu A if 1l — o <z <1, and 0 < D < D;

23



menu M1 if max{xpi,xn1 (D), O;HTH} <x<1—ay and D,;; < D < D;
menu M2 if vpopxa(D) < x < O‘LHH and D, < D < D;
menu B1pl if ﬁ <z <min{l —ay,Tp,} and 0 < D < Dpy;

menu B1pX if max{i—55, Tnp, ) < x < wpipxmi(D) and Dy < D <
min{QM%E};

menu B2pX if 1+12D < x < min{%£E xBQPXMg( )} and %ngLIL{ < D < D;
and
menu Bf if 0 < x < mln{iix;jﬁ, 1+2D} and 0 < D < D.

Proof. See appendix B. m

Remark: menus M2 and B2pX (which have pooling of HL with LH at

a strictly positive coinsurance rate) will disappear if D, > D or %% > D,

respectively.

Figure 6 sketches the solution to sub-problem P1 and shows that the list
in Theorem 5 is exhaustive.

~Figure 6 here—

Theorem 6 The solution to sub-problem P2 is as follows:

menuP zfmln{mf’% 1}<x<1+D,and0<D<%,

menu BQpI szo‘LH—O‘LL < T < Tygp,, and 0 < D < Dgy;

l+arptarr
ALL—CHL—XLH
menu B2pX if max{Ty,,,, 1755} < T < and max{0, Sf—CHL=CLIL } <

D<D

l-app targ—ary .
menu Bf if 1= <x<m1n{l+aLH+aLL,l+2D} and 0 < D < D¢;
aHH(l arr)? l aLL OéHH
<zr< cmd 0<D< D
menu CI if ¢ (-owt)*=aq.oe =" r ©
fp21<£E'< Ll cmd —— D0<D<DC

<
andDC <D< { e aLnyauIL}f{ ALH

min{D, " . }if aHH<aLH

1+D

I

menu CXz'fl_aLaH—H <z < 1+2D

L+t2argD
and

menu PI if 2HL- < < O‘HH(I_QLQLP and 0 < D < {#21 Dc,

(1—arp)?—afarr

QU H - QA H
meO<D<1 2-Do

fran if 775 De < D < D¢

OHH
T—az,+2a.5D if Do <D <D and ayy < apy

aHH QHH—QLH £ ) mn
max{ o, 2 if Do <D <D and agy > ary

1-

menu PX if 0 < x <
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Proof. See appendix B. =

Remark: sub-problem P2 is only defined when z < 5.
Figure 7 sketches the solution to Sub-problem 2 and shows that the list

in Theorem 6 is exhaustive.

—~Figure 7 here—

Theorem 7 The solution to sub-problem P8 is as follows:

Ap s ag.tagg 2apgtogp 1 QLL—OHL—QLH.
menu PZE if max{ it 1+CYHL*04HH} <z < p, and0 < D < SLCLECLIL,

menu SUBI if Ty, | < v < min{22utenr 7z, (D)}, 0< D < Tfpg  —OH

taHLeHH] QHLTfpg 4
and p < pg;
menu SUBX if max{T,,,(D), T, (D)} <z < 1J:D} 15332}12:51{ <D<
D and p < pg;
menu EIif —%p < < min{Ty,, |, 0.p+2422L ) and 0 < D < min{Z£3=% D}
—ontD e CHH OHLTfpgy )

menu EX if 0 < z < min{—22— 7, .} and 0 < D < D;
T—agrD’ U fpPs.2 i
menu PI if . + SHLOLH < g < QHE0HE gnd () < D < D and p > pg;

OHH ap.+1

Proof. See appendix B. m

Figure 8.a (8.b) sketches the solution to sub-problem P3 when p > pg
(p < pr) and shows that the list in Theorem 7 is exhaustive.

—~Figures 8a and b here—

We have now a full characterisation of the solution for each of the three
sub-problems. In the next section, we identify the solution to the main
problem.

8 Step 4: identification of the global opti-
mum

For each tuple (D, z) € 7; we first ask which menu is optimal under Order
1. There are two sub-problems under Order 1, and we can elicit the opti-

mal menu by applying the revealed preference principle stated at the end of
Section 4.
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Theorem 8 Under Order 1, the auziliary menus P%’If and B2pl are always

: ofl-app 1
dominated. Moreover, when x < min Ta s, 173D

by sub-problem P1 is strictly dominated by that of sub-problem P2.

}, the solution prescribed

Proof. 1. In sub-problem P2, menu P%’f is a menu that pools the three
lower types at D+*—. This menu is feasible as long as D% < 1,i.e., x < HLD,

and selected when min{22Latans 11 < o < 1 and 0 < D < 2LL_CHL-OLH
1—ay. ’ 1+D>? 2 g+amr

Butif z < 14+D7 this menu is also feasible under sub-problem P1. Since it is

not selected there, we can conclude that menu P% will be strictly dominated
by the solution to sub-Problem P1.

2. In sub-problem P2, menu B2pl is chosen when 1teLu—cLL

o I+apa+arr
and 0 < D < Dp,. This menu is also feasible under sub-problem P1. Since
it is not selected there, this menu is strictly dominated by the solution to
sub-Problem P1. (Because p < 0, we have HZEZ T ik > L (cf Lemma C.6
in Appendix C). Hence it is optimal to pool H L with H H rather than with
LH (cf Lemma 1)).

3. When z < min{ ;zii, T +12 5}, the solution to sub-problem P1 is given by
menu Bf. This menu is also available in sub-problem P2, but not chosen

there. Hence, for that region, menu Bf is strictly dominated by the menu

<< xgpzs

chosen under sub-problem P2. =

Define
ef
rpm(D) = max{zp1pxm1(D), Tpapxma2(D)}. (19)

Then we can join menus M1 and M2 and define menu M as ¢t =1, ¢, =

0, and

CM — DaH.(lfg).%»aLHr if z > ofj:“ (Ml)
LH D—ome if v < 22 (M2)
agrt+arg .
o 0 if 7 > 28 (M1)
HL Dt if g < 2 (M2)
QHL+TOLH ag.

Then sub-problem P1 prescribes the use of menu M when zpy (D) < z <
1—azpand Dy, < D < D.

Likewise, we can join menus B1pX and B2pX as menu BpX defined as
define cpPX =0, ¢PPX = 2D+ — X ePPX =1 and

ML T 2Dy 1 ifa < 2in (B2pX).
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Then sub-problem P1 prescribes the use of menu BpX when max{ﬁ, Tppt <
x < xpy(D) and D, < D < D.
Together with Theorems 5, 6, and 8, this leads to

Theorem 9 If restricted to Order 1, the optimal use of menus is as follows:
menu A ifl —ap, <z <1, and0< D < D;

menu M if xpp (D) <2 <1—agp, and Dy, < D < D;

menu Bpl if TTOLECLL < g < min{] — arnL,Tppr and 0 < D < EB,,;

l+arg+arr —
menu BpX if max{ 55, Tp,} <z < xpy(D) and Dy < D < D;
menu Bf if 0 < & < min{ {FoL0lL o) and 0 < D < D.

apn(l-ory)? 1 ocLL OLHH
menu CI zf{ (I—apn)?—afarr <T< and 0<D< DC ;

fp21<.%'<1 aLL and aHH D0<D<DC

D if agp<arng
andDC<D<{ i 71 arr— aHH}ZfOé <a
D=2, gaH<OLH’

-~ 2
menu PI if {2215 <o < crn(=0r)”  and 0 < D < T DC; and

(1_0‘LL)2_O‘HAOCLL

menu CXz'fl_aLaH—H <x<

L+2(XLHD 1+2D

menu PX otherwise.

Under Order 2, and if z < 5 + ol the optimal menu is described by the
solution to sub-problem P3. If x > the solution to sub-problem P3 is

empty.

1+D’

We are now in a position to compare for z < the optimal solution

1+D
under Order 1 and Order 2. We start by relying once more on the revealed

preference principle:

Theorem 10 The auxiliary menus P%, PI, PX, SUBI and SUBX are
always dominated.

Proof. 1. In sub-problem P3, menu PA’; is a menu that pools the
three lower types at Dy=. This menu is feasible as long as D1 < 1, i.e.,

1 ag.toagy 2apg+agr
r < 15, and Selected When max{ = i ’1+aHL—aHH} <z < 1+D, and
0 < D <« &rL=enr=arg Byt if x < this menu is also feasible under
2arg+agr 1+D’

sub-problem P1. Since it is not selected there, we can conclude that P%

will be weakly dominated by the solution to sub-problem P1.

2. The menus PI and PX are chosen under sub-problem P2 when
app(l-arr)? ifo< D < aHH DC

(1—arn)?—a3.arL

fraa 1f oLn bc<D<DC
H;r%lch<D<DandaHH<aLH

CHH OHH—QXLH
max{ o, S }if Do <D< D and agy > ary
(20)

O<z<
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These pooling menus with pooling at a coinsurance rate above %’f are also
available under sub-problem P3. PX is not chosen under sub-problem
P3. Hence it is dominated. PI is chosen under sub-problem P3 only
if oy 4 HLOLE < g < cHtorn and 0 < D < D and p > pp. But

O H ap.+1

(lfgfL(;QfLLifu < a.g + “H2L - and the upper bound in (20) is smaller

apg(l—apr)?
or equal to (—ar)—al, ars”

Thus in this range, PI is suboptimal. Vice

versa, PI is chosen under sub-problem P3 if a.y + % <x < %
and 0 < D < D and p > pg; for this range, it is also available under sub-
problem P2, but not chosen. Thus, we can conclude that also PI will never
constitute a global maximum.

3. The menus SUBI and SUBX in sub-problem P3 are chosen when

200,y + amr 1
l+ay,—ayg 1+ D

max{ffpa‘l (D)’ffPB.S (D)} <z < min{

2

and 0 < D < D. Though for this range, the same menus are not available
under sub-problem P1 (since that sub-problem has to respect Order 1), these
menus are dominated by menus where H L is pooled with L H at the left-hand
crossing (cf Lemma 14). Such menus are available under sub-problem P1.
Hence, SUBI and SUBX can be dismissed. =

We can now conclude that the optimal solution under Order 1 will be
strictly dominated by that for Order 2 (sub-problem P3) when (20) holds,
and that the optimal solution under Order 2 (sub-problem P3) will be strictly
dominated by that for Order 1 if

gLy _ _
—"I‘fP3417‘C[’.fP342(D)}' (21)

x> min{a.g +

Therefore, for every value for D, there must be a value for z above the
right-hand side of (20) and below the right-hand side of (21) where the opti-
mal solutions under Order 1 and 2 yield the same maximum profit. The final
step is to identify the critical value for x at which the optimal menu under
Order 1 and menu E (EI and EX, Order 2) yield the same maximum profit
level. The following theorem shows when this critical z-value will be located

below min{ i;gii, —55 ) the upper bound for menu C (CI and CX):

Theorem 11 For every pair (ay., agp) there exists a p(ag., agy) € (p(any., apm), 0]

such that for p < p, there ezists a function xop(D; ay., ey, p), non-increasing

in D and with a value below min{ ;zii, 1+12D}, the graph of which in the
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(D, z)-space constitutes a borderline between menus CI and CX on the one
hand, and menus EI and EX on the other. Above this line, menus CI and
CX dominate menus EI and EX, and vice versa. A sufficient condition for
this to be the case is that p < —0.089.

Proof. See appendix A. m

Proof of the main proposition

This follows immediately from Theorems 7, 9, 10, and 11. If p >
plag., apy), then menus EI and EX will completely dominate menus CI
and CX. In that case, there will exists for every D a critical value for z,
xpe(D), say, such that menu B and menu E gives the same maximal profit
at (D,zpg(D)). However, the set of feasible triples (apy., agm, p) for which
plag.,agg) < p <0 is very small.ll
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Appendix

A Proof of theorem 11

We start the proof of this theorem by guessing that when Order 1 and Order
2 yield the same profit level, the optimal menu under Order 1 is CI (for low
D) and CX for high D. We will now show when this guess is correct.

In appendix B, it is shown that the four menus referred to in the theo-
rem have the following maximal profit functions (cf (B.11), (B.12), (B.24),
(B.25)):

1 1 1-— 2
Wg{:VL{§_aH-D+§D2%} (A].)
1 1
7th(;§< :I/L{§—|-04LHD—§&LL} (AQ)
EI 1 1, (ddy a%y
Tt = VL = — oD+ -Dx + (A.3)
2 2 aLH Tr—Oa.g

1D2370412L1H+104HH+04LH—$ (A.4)
2 oL 2 T '

1
Wzt]ii(:UL{E—OéHHD—F—

Let T¢" and 79X denote the combinations of (D, ) € 7; where CI and
CX are optimal under Order 1, i.e.,

1 azp)? 1 - —
T = {(D,z) € Tj] S _ O‘LQ) cr< M and0o< D < 2T B
(1 —arp)?— a3 oL 1+arr —arr
1—-arr OHH — —=
or fpg_l <z < and Dec <D < De
1+arp l—arr
OHH 1
T = {(D,z) € T <rz< d
(D) e Bl T 5 <" <{7op ™
Y 5if04HH§04LH .
DC <D< {min{ﬁ 170¢LL¢} if aHH<o¢LH}’

2 g—2ar g

(cf Theorem 6). Likewise, denote by T#! and T*X the combinations of

(D, z) € T; where EI and EX are optimal under Order 2, i.e.,
OéLHOéHL} and

o g . —_
TEI — {(D,J?) € /]1‘ m <z < mln{:vfps_l,ole + o

0<D< min{w7b}}; and
QHLL fp3 4

TEX = {(D,2) € T;] 0 < # < min{— 2 — 7, Yand 0< D < D}.
1—OéHLD ’
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(cf Theorem 7).

1. Denote by zcorer(am., amm,p) the solution in z to 7%l(z, D) =
mEl(x, D); it is the lower root to a quadratic equation in z. Note that
this solution is independent on D). For this to be a valid solution, it must

be true that (D, xcig) € T NTFL,

Since for menu CI the upper bound for z is +—9LL

1tarr
each value for p (< 0) a region A(p) in the (ap.,apy)-space such that

l-app.
rerpr(Qm., Qmm, p) 2 raik:

. we can define for

1—-aLL@U% aHH'p>
A == ) S 071 2 : ) ) > 7 7
(p) {(OéH OCHH) [ ] $01E1<04H OHH p) =14 (%LL(@H~,CYHH>IO>

We can also define a region R(p) such that the minimum feasible value
for p, p(ag., aprr)—cf definition (C.2)-does not exceed p:

R(p) = {(an.,ann) € (0,1 : —(an. — agn)(1 — an) < p}

(in other words, R(p) is a ’slice’ out of the three dimensional set of feasible
distribution parameters A;). It can be shown that A(p) C R(p) for all p <0,
and that there exists a critical p, p < 0, such that for all p < p, A(p) = @.
Figures A.la-d show R(p) and A(p) for p =0, —g5, —% and —15. In the last
case, A(p) = @. Our calculations show that p ~ —0.089.

—Figures A.la,b,c,d here—

Thus we can state that (vcrpr, D) € T if (ag., ann) € R(p)\A(p) and
D < D¢. A sufficient condition is that p < —0.089.

When does (zcrpr, D) € TEI? 'We need to distinguish between two cases.

a. pp < p <0, in which case we need —*1L— < xorpr < Q. + SLLYIL

l—agrD — QHH
and D < TCIEBI —®.H
— amLrcIer’ o . L
The equation xcrpr = a.g + SLIEAL s a 3th degree polynomial in p. The

roots for p are: p; = p(> 0) and two nontrivial roots pa(ap., gy ), ps(an., apm)
that—if real-are both strictly positive for any feasible pair (., agy). Since
o+ % > zoypr for any pair (ay., agy) when p = 0, this will also be

the case for any p < 0.

The inequality oy < z¢rpy is always satisfied for a triple (agy, ay., p) €
A;. This claim is based on an 3-dimensional implicitplot in [0, 1] x [0, 1] x
[—}1,0] in Maple of zcrpr(agm, an., p) = apg + arp(apgy, ag.,p) and p =
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3 o g
plagm, ).’ Since Calp is monotonically increasing in D, we can con-

clude that (D, zcrgr) € TEL for all 0 <D< %
b. p < min{0, pg}, in which case we need ;

< Torer < Tfps_l and

D Tfp3a "XH
CHLTfpg,
The first inequality was shown in a. to be always satisfied. The second

inequality is always satisfied for a triple (ayg, ay.,p) € Al This claim
is based on an 3-dimensional implicitplot [0,1] x [0,1] x [—7,0] in Maple
of xerpr(mm, ., p) = Tppy (g, am.,p) and p = plagm,ay.). Thus,
(D ZCC]E[) e TFLif D < Lpgy —XH
QHLTfpg 4

2. Denote by zorpx(am., agm, p, D) the solution in x to 75 (x, D) =
7EX (2, D); it is the lower root to a quadratic equation in z. For this to be
a valid solution, it must be true that (D, zcrpx) € T N TEX,

It can be shown that xcrpx(ap., agm, p, D) has the following properties:

(2.1) zorex(am., aHH p,0) = .. This follows straightforwardly from
solving 7¢1(x, D) = w£X(z, D) for x when D = 0;

Y - CcI _ dzcrex(oan.amm,p,D) _
(2.ii) implicit differentiation of 7%! (x, D) = X (z, D) gives o) |p=o =
(=aip)
20y > apapgn = — 585 |p—o;

(2 111) xCIEX(O[H.’aHH’p’ D) % — z'HLD ~— D § xCIEI*Oz.H; and

z o QHLTCIEI
CIEI & H —
2.v) zorpx(am., apm, p, T2 = vopp(an., apm, p)

Ozcrex(an. ,omH,p,D) TOTRT—C.H
2. V) 2D <0if D > P ——

apg(l—apr)?
2.vi) zorpx(om., agw, p, Do) > Tars? ol

—ag.arr’

) Tfp3a —XH
CHLTfp3 1 1
not matter as upper bound.

(
(
(
(2. <Ll for all (ap., apn, p) € Ar.. Hence: xp,,, does

Properties (2.iv) and (2.v) show that zcrepx(an., agm, p, D) is smaller
than the upper bound defined by T°! under the same conditions than ¢z x (g, agm, p)
is. (2.v) and (2.vi) show that zcrepx(am., apm, p, D) exceeds the lower bound
defined by T¢!. (2.iii) and (2.vii) show that zcrrx (am., amw, p, D) is smaller
than the upper bound defined by T5%. 1t follows that (D, zcrex (am., apm, p, D)) €
T NTEX for all D € [feer=n )],

XHLTCIEI

3. Denote by zoxgx(am., agm, p, D) the solution in z to 75X (z, D) =
7EX (2, D); it is the lower root to a quadratic equation in z. For this to be
a valid solution, it must be true that (D, zcxpx) € T¢X NTEX,

3Since plagn,an.) = —(an. —agp)(l — apy.), the lowest possible value that p may

. 1 _ o 1
take is —7 (when ay. = agy = 3).
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Properties of zoxpx(an., agm, p, D) are:

34) zoxex (o, agm, p, De) = zorex (., g, p, Do)

3.if) Zrerextenonnnl) ) for all D

(

( o
(3111) SIZCXEx(()éH.,CkHH,,O,D) > fPQ.Q(O[H.,OfHH7IO7 D) for D € {Dc,D}
(

(

31V) CUCXEX(O(HwOéHH,p, D) < fpg_g(()éH.7aHH7p,D) for D € {Ec,ﬁ}

3.V) 155 = Toxex(au., agm, p, D) all D

Properties (3.ii) and (3.iii), together with the fact that 8fp2‘2(a%baHH’p’D) <
0 shows that zoxgx(an., agn, p, D) is larger than the lower bound defined by
TCX. (3.i), (3.ii) and (3.v) show that xcxpx (., amm, p, D) is smaller than

the upper bound defined by T9X. (3.i), (3.ii) and (3.iv), together with the
fact that afp3‘2(°”gl’)aHH’p’D) < 0 shows that zoxpx(ay., agy, p, D) is smaller
than the upper bound defined by T*¥ in case p < pg. (3.i), (2.iii) and (2.iv)
shows that xoxpx(amg., apm, p, D) is smaller than the upper bound defined
by TEX in case p > pp. It follows that (D,zcoxex(am., anm,p, D)) €

TCX NTEX for all D € [D¢, D).

We can now summarise as follows. Let the locus of (z, D)-values that
for which menus C and E yield the same profit be defined by z = zcg(D).
Then zcg(+) is defined as:

; TCIEI—O.H
dof l'CIEI(OéH., OHH, /0) ' zlcf[g—j HaHLxCIEI _
a:CE(D) = ZL‘CIEx(O[H.,OéHH,p,D) if m <D iDC (A5)
ICXEX(aH~7aHH7p7D> if De<D< D

with 25 (D) < 0since both xorpx (D, ag., oy, p) and xexpx (D, ag., agm, p)
are strictly decreasing in D.

xop(D) is depicted in Figure A.2 for ay. = .6,ayy = .2 and p = 0. Tt
consists of the full horizontal line (xcrpr(ay., agm, p)) until this crosses the
upward sloping bold line ({—¢-7), the dashed line (zcrpx(an., ann, p. D))
until this crosses the vertical bold line (D = D¢), and continues as the

dotted-dashed line (mCXEX<OéH~7 oagH, P, D))

—Figure A.2—

This completes the proof of theorem 11.
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B Solving the sub-problems

B.1 Solution to sub-problem 1
The Lagrangian function associated to this sub-problem is

Dx
1=z CLH — CLL}‘*‘M? {I—cpr}.

£p1 = 7'('50)}/—1-)\ {CLH — CHL}‘*’/JQ {CLL — CLH}—F,U/? {2

The K-T conditions are therefore:

oL A oL
86;; = lapn(l —2) — apra]enr — on =0 acH]iCHL =0,cur >0 (B.1)
8£ /\ a
PL— fan(1—2) + apulern +ap Do+ — - 2o (o)
dern Vg Vg Vg
oL a b
Plz(l_aLL_$)CLL_ﬂ_ﬂ+&:0 (B.3)
derr Vg Vg Vg

P1.1. A=0,u =0, =0, =0. Then (B.3) becomes

(1 — oLy — JI)CLL = 0

So either 7 is increasing in ¢z, contradicting that u¢ = pb = 0, or decreasing
in ¢p;, contradicting that s = 0.

P1.2. A =0,u¢ =0,u4 =0, > 0. Then (B.1) implies that

OHH

T oap.

The reason is that if x < 72, then 7M. would be increasing and convex in
cHL, contradicting that A = 0.

p2 > 0 means that ¢ ;, = c g and we denote this common coinsurance
rate by cr.. (B.3) then gives

_ 2

1— - .=
( arr lE)CL Un

so that py > 0 requires that
r>1—ap.
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Combining (B.2) and (B.3) gives

.

=D .
cr 1—OéH.

1§ = 0 then requires that c;. < % or
T > ag..
which is made redundant by the stronger condition that x > 1 — ay .

pb = 0 requires that
1l—« H-

D < =D.

.
Since p < 0 is sufficient for O;HTH <1—ayr (cf Lemma C.5 in Appendix
C), the condition = > /L is redundant.
This menu was defined as menu A in the main proposition. We sum-
marise it as

.
A A A H
CHL_OchH_CLL_Dl_aH

Y

1—aLL<a:,
D <D.

P1.3. A=0,u¢ = 0,1} > 0,40 = 0. Then (B.1) implies that

OHH
>

e
pb > 0 means that cy;, = 1. (B.3) then gives

b
I
(1 — oLy — l’) = s
vy

so that p > 0 requires that
r<1l-—apr.

From (B.2) we obtain that

ap.x
OéH(l — l‘) + OéLH'

CLH:D
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1§ = 0 requires that 23—’; —crg > 1or

fp1_3(l’) d:ef OéH(l +D)IE2 — [QO[H + L H + D(O[H + 2OZLH)] x + (1 — OZLL) S 0

Since fp13(z) is a convex parabola with fp13(0) > 0 > fp13(1), the
condition is that x exceeds the lower root:

T2 Lfpis (D)
For this condition to be compatible with x < 1 — ar;, we need that

(1 — OéH‘) arr,

def
D>D,, = .
MU gy + (I1—ap)(1—aL)

pe = 0 requires that ¢y < ¢y, = 1. Using the earlier derived expression
for cpy, this is equivalent with

1_aLL

r< ————.

Since D < D, this condition is weaker than < 1 — ay. Hence 1 — oy is
the proper upper bound on z.

This menu was defined as menu M1 in the main proposition. We sum-
marise it as:

M1 M1
cyrp = 0,0 =1,
ML _ D @H-T
LH ag.(1—2z)+apge
aOgH
max{z;, ,(D),—} <z <1l-ary
ag.
D,y <D<D

In the main text, we relabelled z;, (D) as zpipxai(D).

P1.4. A=0,p8=0,u8 > 0,42 > 0. Since A =0, (B.1) implies that

OHH
>

.

pe > 0 implies that ¢, = ¢ y. We call this common coinsurance rate
cr.. p3 > 0 then means that c;. = 1.
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Since p{ = 0, it is required that 1 < 113—‘2, or

1
x 2

From (B.2), we get that

—lag.(1 —x) + arg] + ag.Dr =

so that py > 0 requires that

1—OéLL

1+ D’

H2
vy

1

T >

From (B.3), we get that

1—OéLL—£U:

vy

on( =D 15D

_ K2
VH'

Using the earlier derived expression for ,’j—;, this can also be written as

l—ap,—z—[ag.(1—2)+ary| + ag.Dx =

or

—x[l—apg.(1+ D)=

pb > 0 then requires that

D > D,

b
Hi
Vy

T

vy

contradicting the restriction that (D, x) € 7;.

P1.5. A =0,p¢> 0,18 =0, uy = 0.

OHH
>

Since A = 0, (B.1) implies that

oo

(1§ > 0 means that ¢, = 225 — ¢y

From (B.3),

r<1—arr and crr > 0.

Combining (B.2) with (B.3) and solving for ¢,y yields

1 —+ a1 g + OéLL)l‘ — (1 + arg — OéLL)

CLHID<

(1 —2)(1 - an)
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This means that
2apgr + ag.(1 — )

(1—2)1—ag)

u’{ = 0 means that ¢, <1, or

> 0.

CLL:D

" SEBP (1:(3f 1 — ag. — (1+04LH_04LL)D

)

1-— afg. — OéH.D

where the denominator is positive since D < D.
A = 0 means that ¢z > 0, or

> 1+aLH—aLL
o 1+OéLH+OéLL'

For this to be compatible with z < ZTp,, it is required that

- def arp
D < Dp, = < D).
- 1+04LH—04LL( )

to = 0 requires that c g < cpp or cpg < 3—“;. Using the earlier derived
expression for ¢y g, this is equivalent with

r<1l+arg—oarL.
Clearly, this condition is ensured by the stronger © < 1 — ayy.

Note that ﬂz“{—gii <1— o (all a;j—cf Lemma C.11 in Appendix C)

ar;d that p < 0 is sufficient for O‘HH < }igi;g? (cf Lemma C.6 in Appendix
C).

This menu was defined as menu Bpl in the main proposition. We sum-
marise it as

Blpl _ o Bipl _ D(l +oarg +opp)r — (L4+arg —apr)

‘oL =Vl = (1—2)(1—ag.)
Bl _ DQOéLHx +ap.(1— o)
b (1—2)(1—au)

l—i—aLH — 7,
1+05LH+05LL
D < Dp,

<zx< mln{l — OéLL,TBp}
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P1.6. A=0,u% >0, =0, >0. Since A =0, (B.1) implies that

OHH
> —.
.

Since o > 0, cpg = cpr; we call this common coinsurance rate cy...

Since puf >0, cr. = 1D_—”;. Because u’{ =0,c,. <1,0r
T < L .
~1+D
(B.2) and (B.3) now become
—lag.(1—2) + OéLH]llz—:Bx +ay.Dr = % + 5—;

D a
(1—0&LL—.’L’> ZL’ :ﬂ—&
l—2 vy vy

a
Solving for £2 and L gives
vy vy

pe_ 1o\ D

Ve N (OCH. x) 1—2z

e 1 Dz
2 (r—ay —2

oy~ 2\ T e = 2007

so that py > 0 requires that © > apy. + 2ary, while u$ > 0 requires that

r < ag., a contradiction.

P1.7. A=0,p% > 0,18 > 0,42 = 0. Since A =0, (B.1) implies that

OHgH

ag.

1y > 0 means that cr;, = 2112—"’; — ¢y, while /ﬂ{ > 0 means that c;;, = 1.

Therefore crg = 21[1—3; — 1. Since py =0, cpg < cpr, requiring that

1
< .
"=14D
(B.2) and (B.3) now become
D a
—lag.(1 —2) 4+ ary] <2 T 1) +ayg.Dr = i
1—2x Vi
a b
(1—0&1111—37):ﬂ+ﬂ
Vg Vg
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The second expresion means that
r<1l—apr.

b
Solving for £L gives
v

[1—(1+D)ag])2®—[1 —ay — (ag. +2ary)D]x = =+

so that % > 0 requires that
x > pr.

For this condition to be compatible with x < 1 — «ay, we need that
D> D;;.

Using (B.4), it can be shown that u{ > 0 is equivalent with fp; 3(z) > 0,
or
T < ngLs(aH" arg, D)

Compatibility with > g, requires again that D > D,;;. It can also
be shown that z, (am.,ary, D) 21— ary iff D < D,,. Compatibility of
T < Zjg, , With z > Og’—HH requires that

e +
D < QMQ d:f OéHL(OéLH OéHL)
apg 2apy + apr)

Finally, ¢y > 0 requires

1

> .
T=179D

This menu was defined as menu B1pX in the main proposition. We
summarise it as

BlpX __ BlpX __ Dx BlpX __
¢ =0,crpy _21—1’ -l =1

ogg _ 1
maX{a_H.’pr’ m} <w<zg, ,(@n, avm, D).
Dy <D <Dy
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P1.8. A=0,uf > O,uI{ > 0,9 > 0. Since puy > 0, cpg = cpp—we call
this common coinsurance rate cy...

Since pf >0, ¢p. = 1D_—";. And since p° >0, ¢;. = 1, or

1
r=-—7x.
1+D

We can therefore consider this as an unimportant knife-edge case.

P1.9. A>0,uf = O,MI{ =0,u2 =0. X > 0 means that cy;, = cpg—we
call this common coinsurance rate c;.

a. Suppose that ¢; = 0. Then (B.1) and (B.2) become

LR
Vg
A

ag.Dx + e 0,
H

a contradiction.

b. Suppose that ¢; > 0. Then (B.1) and (B.2) become

A
[O[HH(l — fL‘) — O[HLZL‘] Cf — — = 0,
Vr
A
—lam.(1 — )+ arpler + ag.Dz + = 0.
H
Solving for ¢; yields
Trag.
ci=D—F—F—.
agr +org

On the other hand, (B.3) becomes
(1 —ary —x)epr =0.

If x > 1—ayy, then profit is strictly decreasing and concave in ¢y, , which is
incompatible with pus = 0. If x < 1 — oy, then profit is strictly increasing
and convex in crz, , which is incompatible with u§ = 0, 4 = 0.
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P1.10. A >0, u$ =0, =0,0 > 0. Both A\ > 0 and up > 0 means
that ¢y = ¢y = crr—we call this common coinsurance rate cp. The FOCs

then become

A oL
lapn(1—2) — agrz]ep — — <0, —2ep =0,cp >0
Ve Ocur
A
—lag. (1 —2) + arplep + ag.Dr + — — 2 g
Vg Vg
(1_04LL_33)CP+&:0
Ve

Since 9 > 0, the last expression requires that
cp>0and x> 1— arr.

Then the first FOC tells that
A

[OéHH(l — IE) —QgLr|Cp = —.
Vg

cp > 0 and A > 0 then requires that

agH
r<< ——

ag.

By assumption, p < 0. This makes © < O;HTH incompatible with x >
1 — ayy (cf Lemma C.5 in Appendix C).

P1.11. A > 0,uf = O,ul{ >0,u2=0. A > 0 means that cy;, = cry
(called ¢r). pb > 0 means that cz;, = 1. The FOCs then become
A 0L py

1—2)— - = <0,
[CYHH( ZE) CYHLZL'] Cr Un ~ aCHL

C[ZO,C[ZO

A
—[OéH.(l — l’) + OéLH]C[ + ag.Dx + U_ =0
H

The second expression means that
c¢; > 0and ay.(1 —x)+ argr > 0.

This means that the first FOC must hold with equality and

OHH
xr << —.
ap.
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Solving for ¢; gives

T,
g =D—"H
agr +aLg
(1§ = 0 means that 222 — ¢; > 1, or
def
fpl.u(a?) = —DO&H.ZEZ—[QD(O{HL + OéLH> — DaH. + QHI + OéLH] l’—f—OéHL—i-OzLH S 0

This is a concave parabola with fp1.11(0) = agr+ary > 0and fp111(1) =
—2D(ayr + arg) < 0. Hence x must exceed the upper root, denoted as

EfP1A11 (D? ag.,omgr + aLH>:
x > ffPl.ll (D, ag., gy + OéLH>.

to = 0 requires that ¢; < cpp =1, or

agrp +oarg
DCYH.
Note that
o «@ o
aHL+aLH2 HH D< HL T OLH
DCYH. ap. agg

Because p < 0 is a sufficient condition for D < %, the restriction
D < D guarantees that ?—HH is the relevant upper bound on z, and that the
constraint ¢; < 1 will always be slack.

Finally, for z > Ty, ,, (D, ap., agp+apy) to be compatible with z < <2,
we need

DZQM2

This menu was defined as menu M2 in the main proposition. We sum-
marise it as

M2 M2 LQH. M2
C =c = D—7 c =1
f r agr +apg’ “F
A agg
Lfp1a1 (D, of., gL+ aLH) <r << ——
ag.
QMQ <D< E
In the main text, we have relabelled Ty, ,, (ap., agr+arm, D) as papx (D).
Remark
This configuration will only exist when D,,, < D. This happens when
am. QHH OHH
arg(2 —apy.) [ — } < g {_ _ OCH-:|
2— Q. af. og.
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If L > . > 52— this inequality is always verified. If ap. > 2L >

2—ayp.’
2?5}1‘ , then the inequality will only be verified if
CHH
p<P—anLon
2—ayg. ap

P1.12. A > 0,u¢ =0,u2 > 0,00 >0. XA > 0 and po > 0 means that
car, = cog = crg (called cp). pb > 0 means that cp = 1. The FOCs then

become

A
[OZHH(l — JZ) — OZHLiL‘] = —
Vg
A
—lag.(1 —2) + apyg] + ay.Dr + — — 2 _y
Vg Vg
b
(1—OéLL—$)—ﬂ+£—O
Vg vy

The first condition means that

CHH
r << —.
ag.

Combining the first two FOC conditions and imposing £2 > 0 requires
H

that
agr + oLy

OéH.D

Compatibility of x < ?—HH and r > % requires that

agr + oy

D >

CHH

For this to be compatible with D < D it is required that
apg.afgr < p,

which is incompatible with the assumption that p < 0.
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P1.13. A >0, uf > O,u’{ =0,u2=0. A > 0 means that cy;, = crpy,

which we call ¢;.  pf > 0 means that ¢, = 21[1—“"; —¢7.  The FOCs then
become

lagr(1—2) —agrzr]er — — <0
Vg
/\ a
—lap.(1 =)+ arpler + ag.Dr + — — A 0
Ve Vg
D a
(1—C¥LL—QT)(2 r —CI)_ﬂ:[]
1—x 1%

a. Suppose that ¢; = 0. Then the last FOC and p{ > 0 requires that
r<1-—ap.
Combining the 2nd and 3th FOC gives
A

2(1—ap, —z)— (1 —2)ag]Dr=(1- :L‘)Z,

so that A > 0 requires that

1+CVLH_05LL
1+OéLH+OéLL’

r <

which is a stronger condition than = < 1 — ayy when p < 0 (cf Lemma C.11
in Appendix C).
11} = 0 requires that 222 <1 or

1

< .
T>179D

This menu was defined as menu Bf in the main proposition. We sum-
marise it as:
== 0. =20
x
1+ arg — g, 1
l+ary+ap,’ 1+2D

x < min{

1.

b. Suppose that ¢; > 0. Then the first FOC holds with equality, and

A > 0 requires that

OHH
xr << —.
ap.
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Combining all three FOCs gives

Dz

- (14 oy +arp)r— (14 apg — app)] — ez —agy) =0

Concavity of 7 in ¢; requires that z > agy. Otherwise either ¢; = 0 or
c; = ¢, (contradicting s = 0). Hence

- Dz 1+arg+oar)r—(1+aryg —arr)
I~ 1-x T — OFH

For ¢; > 0, it is required that

l+ary —arp
1+aLH+aLL

T >

But this requirement is incompatible with z < Og’—HH if p <0 (cf Lemma C.6
in Appendix C).

P1.14. A >0,u¢ >0, =0, >0. X > 0 and py > 0 mean that
Dz
11—

cyr = cLg = crr, which we call cp. pf > 0 means that cp = 2
that

— Cp, SO

Dx
1—x

Cp =

The FOCs become

1—x)— —— =0
lapr(l —x) aHL:v]l_x o
—[aH~(1—$)+aLH]—+aH.Dx+——ﬂ—&_0
1- Vg Vg vy
D a
(1_05LL_I') l’_ﬂ_i_&_o

The 1st equation and A > 0 give that

OHH

ag.

The 1st and 2nd equations give

Dx BT M2
(agg — arg — ap.x) 1 =+,
— X Vg Vg

so that puf > 0, e > 0 require that

gy — OLH
r< —-.
ap.
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Combining this with the 3th equation gives

Dx ¢
lagg + ag. — (1 4+ ay.)x] :2ﬂ,
1—2x VH
so that pu$ > 0 requires that
agg + op.
1+ ay.
We also get
1 1 Dz Lo
—= — —(1 —apy. = —=
[mgonr = own + 51— an)alr— = O,

so that o > 0 requires that

QHIL + ZOLLH
1— .

But this condition is incompatible with x < oquH if p <0 (cf Lemma C.7 in
Appendix C).

P1.15. A >0, uf > O,;ﬂ{ >0, =0. XA > 0 means that cy;, = cpy,

which we call ¢;. p§ > 0 means that ¢, = 21D_—9§3 — ¢y and ulf > (0 means that

—1.

CI:21—$

a. Suppose that ¢; = 0. Then 2% = 1, which can be considered as an
unimportant knife-edge case.

b. Suppose that ¢; > 0. This means that

1

> .
Y7 1¥9D

Then the FOCs become

lann(l — o) — anpal (21D‘T _ 1) Ay

— X Vg
D A a
—[o. (1 =) + apy] (2 - —1) —|—ozH.Dx—|———ﬂ:0
1—=x vy VH
a b
(1_05LL_33)—ﬂ—ﬂ:0
Vg vg
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Since ¢; > 0, we must have that

OgH

ap.

Compatibility with x > ﬁ requires that

1 (05285

D>

2 HH .
. wy /,Lb .
Solving for -1 and *L gives
vy VH

1 1
VH 1—2x

frin(x;apn + o, ap., D),

Since fp1.11(x; D) is concave in x and strictly positive if x = 0, uf > 0 requires
that x is smaller than the upper root of fp115(z;ay., ayr + apy, D) = 0:

T < fol.ll (D, ag.,agr + O-/LH)-
. Mb .
Solving for —L gives
vi

1 1
frru(z;apr +apg,ag., D) = —

(1_aLL_x)_]_—gj

so that pb > 0 requires that

9P1.15($; D) & (1 — oL — ﬁ)(l - $) - fP1.11($; agr + oLy, ag., D) > 0.

This is a difference of two quadratic forms in z.

The first is convex in
x, the second concave.

Hence the difference is convex in z. Moreover,
gp115(0; D) = agy > 0, and gp1.15(1; D) = 2ayy + 2D(ayr, + apg) > 0.
If gp1.15(x; D) = 0 has no real roots, then gpy 15(z; D) > 0 for all z € [0, 1].

Suppose then that gp;.15(x; D) = 0 has two real roots. Let the upper root

be given by T (ag.,agp,apy, D). Then it is possible to show that

Lypi1s (o, anr,ary, D) s

1 arr
<~ D>
1 —|—2D < QCYLH + ag.

Using (9) and (10), it is possible to show that

arr, 1 gy, 1 9
2 2 sap.agr
200 + ag. ~ 2apy p<atn
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Thus, p < 0 is a sufficient condition for L‘J‘# gZIL{ . It then

1
. 2
follows that D > %zﬂ implies that D > ;—L.— and therefore that
- HH 1 aLH+OH. ) )

z,, (am,anr,arn, D) < 55. Hence, for any pair (z,D) satisfying

T > ﬁ and D > %SHL}LI, the expression gp; 15(x; D) will take on a strictly

b
positive value. This means that l’f—; > 0 is automatically verified.

This menu was defined as auxiliary menu B2pX. We summarise it as

Dx
B2pX _ B2pX B2pX __
1 . Ogg _
52D <z< mm{a_H.’fol»ll (D,ay.,agr +arg)}
1o —
—AL - p<D
20éHH

P1.16. A > 0, uf > O,MI{ > 0, g > 0. This means that cy;, = cLg =

crr, = 1 and 113_—5; = 1. This can be considered as an unimportant knife-edge
case.

B.2 Sub-problem 2

The Lagrangian associated to sub-problem 2 is

A
ﬁpg = Wi? + )\1(CLL — C]) + )\Q(CLL +cr — QA—I:) + )\3(1 — CLL)-

The K-T conditions are therefore:

oL A A A
r2 = (1—04LL)D$—04LL$CLL+—1+—2——3 =0 (BG)
8cLL vy Vg Vg
oL A A oL
acpz = [agg — (1 — app)z]er — apgDr — V—l + y_2 <0, 8006[ =0,cr >0
i H H i
(B.7)
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P2.1. \; =0,A = 0,3 =0. Then (B.6) yields

]_ _
cLL = po_%rL
arr
A3 = 0 requires that ¢, < 1, meaning that
D < DC d_ef &(< D).
1-— a1,

(B.7) gives

0L
801

[OZHH — (1 — QLL)I]C[ - OéLHDl' S 0, Cr = 0, Cr Z 0.

If v >4 HL, 7¢. is concave and strictly decreasing in c;, satsifying the

—Q
complementary slackness condition %ETC < 0 with strict inequality so that

cr=0. If z < aHH Wgt is strictly convex in ¢; and the profit with ¢; = 0,

1 1 2(1—04LL)2
tot‘(cl 0,cr., =D ziL)—VL E_QH'D+§D _—

B.8
p— (B.8)
has to be compared with the one when c¢; is increased to its upper bound,
crr- In that case, A > 0, and the analysis below (see configuration P2.5:
A1 > A2 = A3 = 0) shows that the optimal common coinsurance rate is

D= — yielding a maximal profit (B.16). The latter profit does not exceed
iff

tot|(cI =0,cr..=D a‘ziL)

app(l—arp)?
- (1 — OzLL)2 — Oz%[,aLL'

(B.9)

Hence the condition A; = 0 translates as (B.9). From the analysis of config-
uration P2.5, it also transpires that that configuration is only possible when
D D) laHH

oy

coinsurance will exceed 1. Hence, we need to compare Wgt|

LEC? Then the optimal common

—Q
(cr=0,c =pi=oLL
r=0,cLp=D— == )

3 C _ 1 vy,
with 71-tot|(CIZCLL:1) = 5QgH”

c c
ﬂ-tot'(clzo ey =D LL) 2 Miotl(cr=crr=1)
def ApLOHH
x 2 fpa1(D) =

(1 — OéLL)2D2 — 20éLLOéH.D + arr,
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The function fps;(-) has the following properties: (i) fpy (D) = 0iff D =

[ a) .o o o 2
kifL D¢, and (11) fp2.1( DC) i gLHL()l *Of%_f)OéLL

Therefore, in the case where 10";H Do < D < Dg¢, the relevant lower
bound on x is fpe1(D).

Condition A\ = 0 requires that cr; > 2 , and this translates as

1— OlLL

1—-arg
< — B.10
= 1+ arp ( )

It can be shown that p < 0 is a sufficient condition for (B.9) and (B.10)
to define a non-empty set (cf Lemma C.3 in Appendix C).

This menu was defined as menu CI in the main proposition. We sum-
marise it as:

11—«
CI LL
CHL_CLH_Oa LL_D—
arrp
« 1—oar)? 1—arr . « —
HH( _ L;) <z< LL £ D < HH Do
(1—OéLL) — 0g.arg 1+CVLL 1—aLL

1—
fpg‘l(D> < x < QLL lf L

De < D
_1+OéLL 1_O~/LL ©

D < D¢
For this configuration, the maximal profit is given by
1 1 1-— 2
ol =y~ —ap.D+ —DQM (B.11)
2 2 aLL

and we note that it is independent of x.

P2.2. A\ =0,A=0,)3 >0. A3 >0 means that ¢, = 1. Then (B.6)
yields

D > Ec.
As before, (B.7) now gives
oL
[OZHH — (1 — OéLL)l']C[ - OéLHDl' S 0, a CC[ = 0, Cr Z 0.
Cr
Ifz > ﬁz’;, 7¢. is concave and strictly decreasing in c¢; and ¢; = 0,

satisfying the complementary slackness condition 2522 < 0 with strict in-

der
equality, so that ¢; = 0. If z < 24 oo, 72 is strictly convex in ¢; and the

profit with ¢; =0,

7Tto ‘ (er=0,cpr=1) = VL 5(1 - CYLL) +arpgD
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has to be compared with the one when c¢; is increased to its upper bound,
crp = 1. In that case, A\; > 0, and the analysis below (see configuration
P2.6: Ay > 0,2 = 0, A3 > 0) shows that with a optimal common coinsurance
of 1 maximal profit is

1 1
ﬂ-ziﬂ(cl:cLL:l) =V |:§QHH51 .

P2 :
It does not exceed ;.7 |(c,=0,c,,=1) iff

def agH
> D) = .
= fP2.2< ) (1—CYLL)—|—205LHD

For future reference, we note here that (i) fpa1(D) < fpao(D) for all D,
with equality iff D = D¢, and (ii) fhy (Do) = figo(Dc).
Ao = 0 requires that 21[1—9; — 1 < 0 which is equivalent with
1

< .
T=172D

For this to be compatible with = > M-mg)%’ we need

2(aHH — OéLH)D <1-— (OZHH + OéLL)
This is trivially satisfied of agy < arpy. Otherwise, we need

1 _
D agH OCLL‘
2(agy —arLm)

We call this menu menu CX and summarise it as

diiy =i =0,cip =1
QHH <r<
(1_05LL)+204LHD - - 1—|—2D

— — — .
Hu LL,D} (lf OgH > OéLH)

— 1
D¢ < D < min{ o — o)

Dc<D<D (otherwise)

For this configuration, the maximal profit is given by

1 1
ot = VL {5 +argD — §OéLL} (B.12)

and we note that it is independent of x.
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P2.3. )\ = 0, Ay > 0, )\3 = 0. Xy > 0 means that ¢; = 2% — CLL-

a. Suppose that ¢z, < 22L so that ¢; > 0. Then (B.7) and (B.6)
become

A

lagn — (1 —app)zle; —appDr+ — =0
VHa
A2

(1 —-arr)Dr —apreer, + — =0
Vg

implying that

Dz 2(OZLH ‘f‘OéHL) — O[H(]_ — ZL‘)

Crr = y and
1—=x T — QgH
- Dx (1+arg+or)r—(1+ary —arr)
I~ 1-» T — Oy '

For ¢; > 0, we need
1+OéLH — orr,

T > .
1+aLH+aLL

;\—; > 0 requires that (1 — app)Dz — appzery <0, or

def
fras(®) = 1 —app + aprag)e® — [ap(apy — apy) + (1 — apr)® + agple

—I—OZHH(l — CVLL) >0

This quadratic form is convex in z. It is possible to show that fpy3(7)| _ Liapy-apy =

topgtarpr
arg(l —2)(r — agp)|,_1tepy-ay, > 0 and that fp, 5(7)] _1tepy—ay; > 0 if
Itapgtarr 1 Itapgtarr
p < 0. This means that Ay > 0 is implied by z > M—Jjﬂ

A1 = 0 requires that ¢; < ¢, or ¢, > 113—‘2. This is equivalent with

2aLH + (05285
1—OéH. .

This condition is compatible with =z > M—;gii because p < 0 is sufficient
opg—opy o~ 200H+HL

l+arg+arr l-aq.

Finally, A3 = 0 requires that c;;, < 1. This is equivalent with

for

gpaa(t, D) € (Lag.D)a*+{[2(ary + amr) — ag] D — (1 + agn)} a+amy <0,

This is a convex function in z with gpy3(0) = agy > 0 and gpos3(l) =
2(apr + arg)D > 0. It can be shown that it always has two real roots if
D €[0,D]. Thus the requirement is that

Lypy s (D) T < Tgpy (D).

—=gpr2.3
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It can be shown that z, (D) < HOLE-9LL = ence, the lower root is

=gp2.3 Itapg+ory” 1
— . . +a —«
redundant. For z < T,,,.(D) to be compatible with > Tra okl we need
that N
= def
D < DBp def LL

1+aLH — QL

Comparing 20LETOHL with 7, shows that

l—agy.
_ 200,y + app
:'EgP243 (D) 2 1 _ aH
arp —gp — O
Ds

2oLy + amp

It can be shown that p < 0 is a sufficient condition for “A—"HL—CLL < EBP.
LHTOHL
We also have that

2oL + apr

1—CYH.

arp —agrp — g
QaLH +aHL

0

VA <= N

This menu was called auxiliary menu B2pl. We summarise it as:

Bl popr . Dr (I1+apg+app)r — (1 +apy —arg)
Cur — CLH =1 _r - a
HH
B2l _ Dz 2(apy +apr) — ag. (1 —x)
LL 1 P
l+a,y—« . 2apg+ o
e 2 = strnln{M?fgms(l))}
I+arg +arr 1—apy. :
D < Dp,

b. Suppose that c;;, = 22£ such that ¢; = 0. Then (B.7) and (B.6)
become

A
22 < apyDr,
Va
Dx A
(1 —ar)(l —2) —2aL7] T _ﬁ_
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Eliminating A\, from these two expressions results in

Dx
>0
1—x —

(1—ap)(l—2) =207+ apy]

)

1+aLH—aLL
- 1+04LH+04LL.

X

On the other hand, Ay > 0 requires

1—OéLL

— < .
1+ arg

A3 = 0 requires that 21[1—“2 <lor

1
< .
Y=112D
For this to be compatible with ;zii < x, we need
D < Ec.
We also have that
1+ arg — g, = 1
<
1+CYLH+OCLL 1+2D
T
D 2 EBP

This menu was earlier defined as menu Bf. We summarise it as

Dx

B B B

CHQZCLJ{I:O’CL£:21_:C

1-— 1 — 1
OCLL<$<min{ +oarg OéLL’ }

14+ arr l4+arg+ar,’ 1+2D
D < D¢
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P2.4. A\ =0, >0,A3>0. Ay >0 and A3 > 0 means that c,;, =1
and ¢; = 222 — 1. \; = 0 requires that ¢; <1 or

1

<
T>177D

a. Suppose that ¢; = 22 — 1> 0, i.e., that

1
M EEY))
Then (B.7) and (B.6) become
D A
[CYHH— (1—aLL)x] (2 33 —1) —OzLHDI—i——Q :0, (Bl?))
1—x VHa
A A
(]_—OZLL)DJ,‘—O(LL{L‘—F—2 = —3 (B14)
Vg Vg
Eliminating ;\—; results in
Dx A
[2(ans +arm) — o (1= 2)] 7—— = (= — ann) = = (B.15)

vy

The requirement A3 > 0 is then equivalent with

gp2.3(xz, D) >0,
or

T > E9Pz.3(D)‘
It can be shown that

E9132.3 (D) > <<)

0

arr — gL — oL
D < (>
ZOéLH + (05287

1 2. + agy,
> ()

So compatibility of x > T, ,(D) with 2 < =5, requires that

arr — g — oL
D > )
ZOéLH + (05285
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Notice that in (B.13), [agy — (1 — app)x] is the coefficient with ¢; where
the latter is evaluated at 21’2—”; —1. Ifzxr < lf’;’L’L, profit is convex in c;.
The alternative choice for ¢; is then not 23—“; — 1 but 1. This menu yields

a maximal profit of

1 1
W£?|(CI:1:CLL:1) =VL |:§CVHHE:| .

The maximal profit under menu c¢; = 2% —1l,¢cp =11is

1 1
Tiotl(ey=2-22 _1.0p—1) = VL {504HH5 — [2(agg — arm) — 2ap]xD
gy — oLy 2D2$2
QHH T OLH (g _ U
| e 52T

We then have that

P2 P2
ot |(CI:17CLL:1) 2 ot |(clz2%—1,cLL:1)

T
hpg,g(.T) = [OéH. + (1 — OzLL)D] 1’2 — [CYH. + aOgg — OoLg + (OZHH — O{LH)D] x + aOgg — oL

1
1+D"

This is a convex quadratic form in x with roots: %L :“LH and
. . — 1

Claim 1: O‘HIZYH_O‘LH < p-

Proof. This is obvious if agy < argy. Suppose, on the other hand, that

agyg > arg. Then

OHH — OLH 1
1+D

(6528

1—ar, — agn

VA <= VA

D
QHH — QLH
But since p < 0 is a sufficient condition for =%LL—mr - D4 and since

o OHH—QLH
D < D, we have that za—orn ~ _1_ g
) ag. 1+D

4We now want to show that % > D4. Using the fact that oy = appg 1;§H —
QLI-L7 this inequality can be rewritten as

p < OéHH(l — OéH.) — OéH.(OéHH — Oé?{)

Since the rhs is strictly positive for all agpy < ap. < 1, it follows that p < 0 is a

sufficient condition for 1=QLL=QHH ~ ),
OHH —QLH
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. . . . . C C
Claim 2: Since hpy 3() is convex in @, we have ;o[ (¢;=1,c,,=1) < Tiotl (=2 Ds g0, 1)

M QHH—QLH 1 C c ;
lﬁ an. <z < 1+D aﬂd ﬂ—tot|(CI:17'3LL:1) > 7Tt0t|(CI:21D_7$z_1chL:1) lf T <
OHH_—COLH
aH. : 1 L
. . Q: : QHH —YLH
Claim 3: Since we need that > 55, the above interval [*LI—SLIL -]

3 i3 1 QHH—OQLH
is valid if 55 < ot or

1— _
D arr CYHH'
2(agy —arLm)

So we may conclude as follows: if agy < ary, then for any = < 14+D we

c c c
have 7Ttot|(01:21D_°;—1,cLL:1) > Tiotler=ter.=1)- I amm > apy, then 7Ttot|(c1:2—1D_Im—1,cLL:1) >
C QHH—QLH 1 QHH—QLH
Mol (er=1,e1=1) for © € [ v ,7op)-  The lower bound v be-

low which the ranking of the two profits switches starts to be valid for
D > % since for lower levels of D the other lower bound on =z,

1 QHH—OLH
3D, exceeds Py

The requirement that Ay > 0 is equivalent with

]fpg_g(l’) d:ef {1 — L1 — [OéLH — 2(1 — aLL)] D} 1‘2

+ [(OéLH — QOéHH)D — (1 — OéLL) — OéHH] T+ agg >0

This is a convex quadratic form in x with kp32(0) = agg and kpso(1l) =
2(aLH + OéHL)D > 0.

Claim 4: )\, > 0 is always satisfied.

Proof. Recall that (1—ayr)(D— 152;)954—3‘—; = ;\—Z Hence, if D < D¢,
A3 > 0 guarantees that Ay > 0.

Suppose now that D > Dg. Then from (B.14) and (B.15) we get

A D
—QZCYLHDSC—[OJHH—(l—OéLL).T} <2 * —1>
1% 1—=z

Assume first that » > #4 ot Then the square bracket term is negative.
Since we require that x > the large round bracket term is positive.
Therefore Ay > 0.

Assume next that z < lo‘_HTIL{L Recall from above that the lowest value

1
14+2D°

for x for which this configuration is possible is % Evaluating kps.o(z)
at % gives

(OéHH — OéLH) arg(l—app —agg) [l —agg —arp + D(apy — agmy))

kPS.Q B
ag. (0572
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so that

g — QL
(——)

>0
0

l—or; — o
D < LL HH

k?P3.2
ap.

gy — oL

Earlier, we argued that D < % if p < 0. Therefore the above

inequality is fulfilled for any D < D. We can thus cocnlude that the re-
quirement Ay > 0 is satsified. m

This menu was earlier defined as menu B2pX. We summarise this menu
as:

Dx

CHL:CLH:21 —l,cpp =1

1 OHH — OLH

, <z <
152D an. <13 D
OéLL_OéHL_OéLH,O}SDS
2aLH+aHL

maX{mng:s’

S

max{

b. Suppose that ¢; =222 — 1 =0. Then

an unimportant knife-edge case.

P2.5. A\ >0, =0,A3=0. A; > 0 means that ¢c; = ¢y > 1D_—fc. Let
us call the common coinsurance rate cp. Since Ay = 0, cp > 1[1—9; > 0. Hence
(B.7) and (B.6) become

A
[OéHH — (1 — OéLL)x]Cp — aLHDx = —1,
Vg
A1
(1 — OéLL)DZL’ —QLLrcp + — = 0.
Vg

This gives
apg.Dr — (x — agp)cp = 0.

P2

If < agy, ¢ is strictly increasing and convex in c¢p, contradicting that

A3 = 0. Hence,
xr > ogH,
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and

ag.x
cp=D——F———.
r — OHgH

A3 = 0 requires that cp < 1 or

(0%
T > SN
l—DOéH.

Note that 1—(11515}1. > ayp, SO that % is the relevant lower bound on x.

A1 > 0 requires that [agy — (1 — app)x]ep — apg Dz > 0 or

agp(l—arr)
(1—app)®+ aLLoryg

T <

Ao = 0 requires that cp > 3—2 or

amg. + agm
< —
ag. + 1
agp(l—arr) ag.tonp (Cf
I—arrn)?+arLary apg.+1
is the relevant upper bound

It can be shown that p < 0 is sufficient for (

agg(l-arr)
(I—arr)?+arrarn

for . For x < ——2urll=arr) 1, he compatible with > —%22 we need
h (]. aLL) +orprLong 1-Dag.
that

Lemma C.2 in Appendix C), so

D < Ec.
Recall from the discussion of configuration P2.1 that that configuration is

dominated by optimal pooling iff

1 _ 2
G
(1 - aLL) — QgL

apa(l—app)? agg(l—arr)
Note now that (—ari)’—ad, o < (-ars)tariers ©° the relevant upper
a2 . . .
bound on z becomes —~2zu( O‘LZL) . For this to be compatible with = >

(1-arr)?—a%.arL

10‘% we need that
—Dayy.

OHHAOLL OHH — - -
D < = Deo(< Dp, < De).
(1_aLL)2 1—OéLL C( Br C)
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This menu was earlier defined as the auxiliary menu PI. We summarise it

as:
LPL _oPL_  PI_p QHT
HL LH LL T — Qg
2
OHH agp(l—arr)
— << 5 5 ,
1—DO[H. (1_aLL) — Qg apyg
OHH —
D < — D¢

I —arr
For this configuration, the maximal profit is given by
1 1 ra?
PI 2 H-
= ——ag. D+ -D"———— B.16
7-rtot VL {2 03:4 + 9 T — gy } ( )

and we note that it is strictly decreasing in x (as © > apgg).

P2.6. )\ >0, =0,A3>0. A > 0 means that ¢; = ¢;. Let us

call the common coinsurance rate cp. Since A3 > 0, cp = 1. Ay = 0 then
requires that 1 > 2%, or

1
<
Y>1%D

The first order conditions (B.7) and (B.6) become

A
lagr — (1 —arp)r] — apgDr = V—l (B.17)
H
A A
(1 — CYLL)DLU — QLT + —1 = —3
Vg Vg
Eliminating ;\—}11 gives
A3
ay Dx + (agy — ) = —. (B.18)
Vg

A3 > 0 then requires that

OgH

< —.
o 1—OéHD

where the positivity of the denominator is guaranteed by D < D.
A1 > 0 requires that

OHH
1— arr, + OéLHD

T <
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We have that

OHH = OHH
<
1—OAH.D 1—OJLL+OCLHD
i}
D= De
It can also be shown that®
1 agg

iftD<D

>
1+ D 1—ap, +argD

so that x < 14+D is a redundant constraint.
The maximal profit under this configuration is

1 v 1
P2 L
™ Cr = 1 Cr = 1) = —gg— — —OgpglVg.
I. Consider first the case where D < D¢e.  This means that l_“a% <
QHH 3 aAHH OHH
[ p— Then for any feasible x S —ay D we have x < T—a+aruD"

This means that \; > 0 and that the constraint ¢; < ¢y, is strictly binding.
La. If D < ﬁsz{Lbc, then

P2 P2 ray.
e =cpp=1)27n"(c;=cpp =D——
T —OQgH
[0
T § HH
1-— OéH.D
Summary:
Cr = CLL — 1
aghg

T ——

1-— OéH.D
OHH =

D<————D¢

1—arr
5Since
1 2 OgH
1+ D l1—arp +argD
(agg —arp)D S apg +apr
If agg — arpyg < 0, it obviously follows that H_% > 1_&%. Suppose then that
apgm —apg > 0. Then 5 > 24— is equivalent with D < SLLEQHEL — p the

HH LH
previous footnote, we showed that under Assumption N, p < 0 is a sufficient condition for
_1 _ OHH
1+D > l—arr+argD-
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ILb. If D> ﬁiiﬁc, then
1— ag.
—)

P2
(C[ = O,CLL = D
.

7TP2(C] =CLI = 1) 2 m

0

TS fP2,1(D)

Summary:
Cr =CLL = 1
x < fpa1(D)

&iﬁc<D<Eo
1—04LL

YHH >

II. Consider now the case where D > D.. This means that Ry
LA we have z < =21,
—ag.D

0. Then for any feasible v < —"#L——
OfLL+aLHD 1 O‘,LLJFO‘LHD . . L
This means that A3 > 0 and that the constraint c;;, < 1 is strictly binding.

Notice that in (B.17), [agg — (1 — apr)x] is the coefficient with ¢; where the

SHH_ profit is convex in c¢;.

latter is evaluated at 1. If x < T
L the alternative choice for ¢; is then not 1 but the

I1.a. If z < 112D
lower bound 0. That menu yields a maximal profit of

1
oot (c1=0,c00=1) = VL 5(1 —apr) +argD

Under configuration P2.2, it was established that 772(c; = 1,¢crp = 1) >

P2 : QHH 1 _1 -

Tiot l(er=0,cp=1) Ml @ < =——7.  That configuration had 55 a;s up
OHH aHH o

T —— T and since 55 >

per bound on z. Since T —— p—
iff D < 2eLL—ann e can summarise as:

OHH
2(agg—arm)’

l—arp+argD

Cr = CL1, — 1
. OHgH aOgH
r < min
{1 — CYH.D7 1-— arr + QOCLHD

1 —oar, — agn
2(agy — aLm)

Ec<D<

(Note that {——*HL—F = fr21(Dc).)

63



ILb. If z > 55,
lower bound 23—2 — 1> 0. This menu yields a maximal profit of

the alternative choice for ¢y is then not 1 but the

11
Tiotl(er=2-22 1.0y 1) = VL {gaHHE — [2(ann — oaLy) — 2ap]zD

We then have that

P2 > P2
ot ‘(CI:LCLLZI) < Tot |(c1=21%371,cLL=1)

)

hpos(x) 20

where hps 3(z) was deﬁned in the discussion of configuration P2.4.a. That

configuration has lower bound on z. hpys(x ) is a convex quadratic

1+2D as

form in x with lower root “ZE=2LHL and upper root CE))
H +D

w. For this
ap.

P2
Hence, Wtot!(c, Lepp=1) > ﬂ-tot|(cl 2z

to be compatible with z > ; +2 Tiops> We need

1— _
D arp — OgH
2(OéHH - OéLH)

Summary:

Cr =CL1 = 1
g — OLH
<r —m38M8—
1+2D Q.
l—0o;; —«o
D LL HH
2(agy — arm)

This menu was earlier defined as auxiliary menu PX. We summarise it
as:

PX
= CLL =1

. OpH . —
< _ D)YifD<D
L mln{l _ OéH'DafPZl( )i c
OHH . -

< fD>D d <
T l—OzLL+2()zLHD 1 c and &gy s 0Ly
OHH OHH —CVLH}

1 —OéLL+20ZLHD’ QF.

it D> EC and agg > arg

r < max{
D<D
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A1 > 0 means that ¢; = ¢. Again, we

P2.7. A\ > O, Ay > 0, A3 = 0.
call this common coinsurance rate cp. Since Ay > 0, cp = 7= A3 =0 then
requires that 1[1—”; <1, or
1
< —.
=110
The first order conditions (B.7) and (B.6) become
Dx A A
[aHH_(l_aLL)x]l —OéLHDCL’Z—l——2
- Vg Ve
D A A
(1—aLL)Dl'—CkLL£E' L :——1——2
1— Vg Vg
Adding up and rearranging gives
1 Dz )\2
— O —(1 . = ——.
2[(OéHH—|-OéH) ( +OéH)l']1_:U vn

Ao > 0 then requires that
apg + ag.
14+ ag. .

Substituting out ;\—; in one of the first order conditions then gives

——agp — —(1—ap)x = —
g HL LH Tt 5 H -2 oy
A1 > 0 then requires that
2aLH + agr,
1-— Q.
Since p < 0 is a sufficient condition for 20‘?’{ LARL > QnHtAn. the relevant
—og. 14+ag.

constraint is x > mﬁ’%

For x > 20LHTCHL 4 he compatible with z < 14+D’ we need

1 (6521
arr — g — oL
205LH +OéHL

D <
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This menu was earlier defined as the auxiliary menu %’f. We summarise
it as

pan pan Dx
= C Av =
LL

1—=z
200,y + app
—_— < <
1—ag. TS1ED
O<D<04LL—04HL—06LH
200,y + amr

OLL—OHL—QOLH

Remark: this configuration ceases to exist if Z2LETOHL > ] s
1—apy. 2argt+anL

0.

P2.8. A\ >0,X >0,\3 > 0. This can be considered as an unimpor-
tant knife-edge case.

B.3 Sub-problem 3

The Lagrangian for this sub-problem can be written as

Dz
Lps = ng + A\ {CLH +cr — QE} + Ay {C.L — CLH} + ,u{l — C.L}

The first derivatives w.r.t. ¢.;, and cpy are,

OLps A A2 2

=agDr+ (g —2)ep+—+ ———=0 (B.19)
dc.p, Vg VH UH
oL A A oL
P — apgDr — apgepy + — — 22 <0, epp > 0,00 - —2 =0
ocrm vy vy CLu
(B.20)

P3.1. A\ =00 =0,4=0. Then 257 = (0. — 2)vpg.. Iz > ap
L

then 712 is strictly concave in c.;.and its optimal value is

T
C.L:D AL .
r —o.g
For =0 we need c.;, <1 or
Q.
>
1—OéHLD
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(Note that 1 — ay, D > 0 because by the restriction that D < 5.)
If * < a.g then wf, is strictly increasing and convex in c.;, whose optimal
value is c.;, = 1, contradicting p = 0.

From (B.20) we have that % = —arpvy < 0, so that
LH
QT
Crg — D HH .
QLH

For Ay = 0, we need 23—’; — c.;, < ¢, which translates into

fp3.1<$) d:ef OéHHIII2+[OéLH<2+OéHL)—(1+C¥.H)04HH]SU+[Oé.HCYHH—CYLH(2CY,H+OéHL)] S 0
It cannever be a global solution to the main problem to have this inequality
constraint binding. The reason is that profits could unambiguously be in-
creased by lowering the coinsurance rate cgy; down from c.;, to ¢y without
changing any of the incentive compatibility constraints (cf Lemma 15). The
convex quadratic form fps;(z) = 0 has two roots, z;,. ~and Zy,,, so that

the necessary requirement is that

Lfpsy ST Tpy,- (B'21)

It can be shown that z;,. (an.,anm,p) < a.g for any p <p. Hence, z;,.

as a lower bound on x is made redundant by the condition x > —%£&

l—-ayr D"
For Ay =0, we need ¢ g < c.;, which translates into
aLHQ
r<apg+ A (B.22)
aOgH

Moreover, for (A1) and (A2) to be compatible, we need 222 — ¢, < c.p,
or 24 < ¢, This translates into

1—OéLL

x S —
— 14+ ayy

(B.23)

We have that

QLHOHL - 1—ar

Q. T
H . < 1+04HL < Lfp3a
(3
def 1—ay(1+ayr)

< =
p>Pe i 1+ apy.

So the upper bound 11;;% on z is always redundant.
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For z > =L to be compatible with < min{a.py 4 *LLML Ty, |} we

l—ayg agg
need _
. aLH X — .
D S mln{ 5 , fPSAl_
Qg+ QLHAOH. QHLT fpy
Note that _
oL Lfps1 — O-H
2 § — P 2 PE
Xy T~ XLHOH. QHLY fpg 4
Since p < 0 is sufficient for ﬂ% > D, we can summarise as follows:
. H -. .
We call this menu EI and summarise it as
TOHI, g
C,ELI = D—,CEII{ =D
r — o.g ar g
o.g . OLHOHL _
O <o < minfouy + P
1-— OéHLD (052824
. = T —a.g
D < min{D, “frs1 "1y

OHLT fpg 4

For this configuration, the maximal profit is given by

EI P3| 1 D+ 1D2 a%{H i O‘%—IL
e =T _DOHH _pXeHL y = V[, § = — Of. — X
tot tot l(cLp=D arpg DCL Dm*a-H) 2 2 oL H T — o.g

(B.24)
It can be shown that 72! is strictly decreasing and convex in .

P3.2. A\ =0, A=0,u>0. p > 0 means ¢, = 1. The FOCs then
become

agrDx + (g —x) = Hal)

(%2
aguDr —apgery <0, cog >0, ¢y - (agpDr — appepy) =0

Thus R
Crg — D HH .
arg
> 0 requires that
< e
:L' —
1-— OéHLD
Ao = 0 requires that ¢,y <1 or
L
Tz < .
- DCYHH
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We have that

a.g arglHr > OrLH
—= % Qg <
1-— CYHLD agg DaHH
«
Dz —H
052871 +argag.
Since p < 0 is sufficient for D < 4 D <D, implies that —%£_ <
Ay TOLHOH. l—-apgrD
QLHOHL arg . o.H
Qg + T < FH 50 that the relevant upper bound so far is Calp-

A1 = 0 requires that 2% —1<e¢pg or

plant o Dr 1,

O H 1—2x
which is a quadratic inequality in z:

def

fP3.2(SU) =

—OéHHljiC2 + (OéHHD — 2aLHD — OéLH) T+ oaLg Z 0.

fps2(x) is a concave function with fp32(0) = apy > 0 and fp3a(l) =
—2argD < 0. Hence we must have that x does not exceed the upper
root:

T < TfP3.2(OéHH7OéLH7D)'

It can be shown that hmD_,o ffpi),‘g (OZHH7 arg, D) = 1, that ffpgg (O[HH, arg, D)
falls in D.
Claim: If p > pg, then Ty, , (g, ary, D) > 173;2[) for all D < D.

Proof of claim: Since pg > ayy(1 — 2ay.), it follows that p > agy(1 —
2ay.) and therefore that agy > apy. But since

arH _
oD 2 Tfpso (aHHa arLH, D)
T
(Q’HH - Q/LH) D § arg

It follows that

5]

fr3.2 (aHHa QLH, D)



and O‘LH at D = —%LE __  Then

Let us now evaluate both
l-ayr D QHH—QLH

arg a.g |

> 0
—_ %LH & —_ “LH
OzHHD CHH~%LH 1-— OtHLD CHH~%LH

)

p2PEe

Since p > pp by assumption, we have that T, ,(opm, opp, D)|p___oon =
“HH “LH

YLH _og . — . ~
aHHD|D*aH;L—IZLH > - O‘HLD|D*aH:ILI<{xLH' Since ZEfP3_2(()éHH,()éLH,D) is de
Crea,smg in D while ; 5 is increasing in D, it follows that Ty, , (agw, arm, D) >
—— for all D < C’L—H. Because D < —2LEL— when p < 0, it follows

Qff OHH—QLH QHH—OLH

that 93fp3,2(OéHH, ary, D) > =525 for all D < D. This menu was defined
as menu EX in the main proposition. We summarise it as

(0528200
cEX =D BN =1
L

x<a—Hifp>pE

-1 —OZHLD
Q.H — .
T < mln{m,fo3A2(aHH7O(LH7D)} if P < pPE
D<D

For this configuration, the maximal profit is given by

2
EX _ 3| _ 1_ D 1D2$04HH laHH+aLH_Z'
ﬂ-tot 7Tt0 CLH D IngCL 1) vL oghg 2 Ly 2 T
(B.25)

and we note that is strictly decreasing and convex in x independent of .

P3.3. \i=0,2>0,u=0. Xy > 0 means that c;y = c. We call
this common coinsurance rate cp. The FOCs then become

A
OtHLDCC + (OZ.H — JI)CP + U_2 =0
H

A A
apnDr — apgep — = <0, cp > 0,cp - <aHHD$ —arpcp — _2> =0
(2 VH
(B.26)
From the first FOC, Ay > 0 requires that * > a.y and cp > 0. Hence, the
second FOC holds with equality.
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Eliminating ;\—12{ gives

apg.Dr+ (agg —x)ep =0

Since x > a.y > agy, profit is strictly concave in ¢p. Then

ap.T
cp=D—2L"
r — OHgH
Ay > 0 then requires that
QLo
T > o+ M.
07:8:)
i = 0 requires that cp < 1 or
> QOHH
- 1- D()éH.
Note that
09:8:) TNz 087:0
Zoag+
1— DCYH. <= (052021
o __
Dz = ——(>D)

2
Qg +argay.

Hence, the relevant lower bound is «.y + %

A1 = 0 requires that cp > 3—”; or

ayg. + gy
1 + .

T

For this to be compatible with z > 52— we need that
H-

l—«a
D« - “HH
af. +agg

3 ay.to . . a a
Finally, for z < 222 to be compatible with o > a.p + *LE2EL we
need

p > PE-
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Note that since we assume p < 0, the latter requirement requires that

pe <0

0

1< OéH<1 + g — OéHH)

0

Oé%{. >1-— OéH(l — OéHH)

r
aH(l — aHH) >1-— Og{, = (1 — aH.) (1 + OéH.)

0

1_04HH 1—041.[_5

1+CYH. am.

Since t=eun_ ~ l-amu it follows that =22 > D). Hence, the relevant
oag.togg 14+ag. apg.togg

upper bound on D is D.
This menu corresponds to the auxiliary menu PI. We summarise it as

ag.x
= el = D
r — O
QLo oaf. + o
—_— LHOHL . H tQpyg
A+t ———< 1< ——
OHH 1+ ap.
D <D
pe <p<0

P3.4. A\ =0,2>0,u0>0. Xy >0 means that c,y = c.. Moreover,
u >0 means cpg = c.p = 1.
The FOCs then become

A
aHLDac+(a.H —I) = i — —2
VH VH
A
aggDr —apy = =
Vg

Ao > 0 then requires that

OLH
CYHHD.
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Adding up the two FOCS gives

agDx + (agg — ) = il

UVH

i > 0 then requires that
83:0:4

< —.
o 1—OéHD

ALH_ we need
aHHD

For this to be compatible with = >

OrLH
D > 3

But if p < 0, this is incompatible with D < D.

Finally, A\; = 0 requires that 1 > lD—”” or

—x

1
1+ D’

r <

For this to be compatible with z > a‘j{LIfD we need

D(apgng — arp) > apy
requiring that

g > oLy, and

OrLH
D> ———W—
g — QL

Again, if p < 0, this is incompatible with D < D.

P3.5. A\ >0, 2=0,u=0. A > 0 means that cpg = 23—“"; — C.r.
Ay = 0 means that ¢y < ¢.;. The FOCs then become

OLps3 A

. =agrDr + (g — x)ep + é =0
oL oL

7 agpDr — apgern + ~L <0, ¢y > 0,crmH - 0
ocrm Vg Ocry

The first condition implies that = > a.g, for otherwise A\; < 0. For thes
ame reason, the second condition implies that ¢,z > 0. Hence the second
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FOC must hold with equality. Replacing ¢y by 21’2—2 — c¢.r, and solving the

two conditions for c.;, and ;\—}11 gives:
C,L:D A (O{HL—OéHH)(l—fL’)—f—2C¥LH
1—=x T — QgH
ﬁ:D xXr [(CYHL—OéHH)(l—.T)—FQOéLH] (x—a.H)—aHL(l—a:)(as—aHH)
v 1—=x (r — agn)

For Ay = 0, we need that c.,, > 2% which requires that

20,y + apr
Tz < .
1 +« HL — Ogg
The condition A; > 0 is equivalent with fps(z) > 0, which we showed
earlier to be equivalent with
x> EfP?,.l'

For this to be compatible with x < %, we need that p < pg (cf
Lemma C.10 in Appendix C).
The condition ¢ = 0 means that c.;, < 1 which is equivalent with

Frss(z, D) 1 = (any, — apn)D] 8> +[D(an, — any + 2a5y) — 1 — apn] a+agy < 0.
We have that fp35(0) = agy > 0 and fpss5(1) = 2a,yD > 0. Hence, fp3s
needs to be sufficiently convex in x for there to exist x-values that make
fr3s(x) negative. Comparison with gps3(z, D) shows that fpss(z, D) =
gpa3(x, D) —2ay Da?. Since gpss(x, D) is convex in 2 with roots T, , (D)
and z,,, (D), it follows that the roots for fp35(v, D), T, (D) and zp,. (D),

=gpP2.3

must satisfy Ty, (D) > Ty, ,(D) and z;,. (D) < z,,, . (D).

—gpr2.3
This menu cooresponds to the auxiliary menu SUBI. Necessary condi-

tions are

CSUBI: D.CE (OéHL—CYHH)(l—.I')+204LH

L 1—=x T — QgH

supr _ 5 Dz _ SUBI _

LH ey CL,CHH =

_ ) 2y + g _

Tfpsy < T < mln{l T apg — aHHa‘fos.es(D)}
T — Q.

0<D< fP341_ H
CHLT fps q

P < PE

Note that this configuration will never constitute a global optimum, since
it would pay off to pool HL with LH rather than with LL (cf Lemma 15).

74



P3.6. A\ >0,X=0,u0>0. A >0meansthatc,y = 2DL oAy =

1—x
0 means that ¢,y < c.. > 0 means that ¢, = 1. Hence, c g = 2112—'1 —1.

The FOCs then become

oL A
2 :OéHLDQJ—F(Oé.H—CC)—F—I—ﬁ:O
8c.L VH VH
oL D A oL
= = aggDr — oy ( 2 SR + 2L <0, epg > 0,00 2 =0
aCLH 11—z Ve CLH

Again, we must have that c g = 21D_—9;, —1 > 0 (= 0 would contradict
j—; > 0) and therefore that the second FOC holds with eqaulity.
Solving the conditions for the two Lagrange multipliers gives

Dx

vﬁ =12 (opr —oapn)(l —x) + 200 + agy —
. _
)\1 Dz

= (apr —apm)(l —2) 4+ 2apy] — (apy + agrDx)
VH 11—z

j—; > 0 turns out to be equivalent with fp3a(z) < 0, which we showed
earlier to be equivalent with

T > Tfpg,

cLp = 2% — 1> 0 requires that

1
142D

x >

Ao = 0 means that ¢,y < c¢.;, which corresponds to

1

<
YS11D

For this to be compatible with Zy,,, < x, we need
(OéHH — OéLH) D < arLH

This is always verified if p < agg(l — 2ag.). If p > agp(l — 2ag.), the
condition above becomes

OrLH
D<————
gy — OLH

which can show to be always weaker than D < D.
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;}'“; > 0 can be shown to be equivalent with equivalent with fps5(z) > 0,
whic requires that © > Ty,, (D). For this to be compatible with z < HLD,

we need
1-— ZOJLH — OHH

20pm + anr
And for this to be compatible with D < aHgLfféLH we need p < pg (cf
Lemma C.10 in appendix C).
This menu corresponds to the auxiliary menu SUBX. Necessary condi-

< D.

tions are
it =0,c057% = 21113; “hep =1
Max{Z s, , (D), Tfp, (D)} <2 < 1_&1)
1—-20ry — agn «<D<D

20 + apr,
P <PE

Again, note that this configuration will never consitute a global optimum:
pooling HL with LH rather than with LL would pay off (cf Lemma 15).

P3.7. A\ >0,X>0,u0=0. X\ > 0 means that ¢,y = 22% — ¢,.

11—z
Ao > 0 means that ¢y = c.r. If we call this common coinsurance rate cp

then we have that

Dx
cp = .
Pr1—a
1 = 0 requires that
1
<
=110

The FOCs now become

Dz )\1 /\2
+ =+ =
— X VH Vg

D A A
I N ) (B.28)
l1—z vy vy

OéHLDl’ + (OZ.H — (L’) 1 =0 (B27)

OéHHD.I — OLH

A4 A2 5 () means that
vy vy

1—arp
1+OéHL'
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Solving for 2+ and 22 gives
vy vy

A 1 Dx
A - {aH.D:c—l—(aHH—:c) }
vy 1—2
)\2 1 1 Dz
S — —aw)Dr — - _
o (OéHH 20&]{) xr |:OéLH+ 2<OéHH x)] 11—
Then ;\—; > (0 and ;\—; > ( requires that
agg + ag.
1+ ap. ’
2c0
. LH T QHL ’
1+ gL, — gy
respectively.
Since p < (>)pp = .y + AL > (<) ZAUUTAL > ()ALl > (<

ffP&l : : : l—aLL

){QH'MHH (cf Lemma C.10 in Appendix C), we can ignore y7-~L as a lower
OcHA—‘,-l

bound on z.

This menu correpsonds to the auxiliary menu P%. We summarise it as

%%5££<x<1 Dﬁp>@
2ag +apyyg .
TP —— <z < 1+lep<pE
D<{ nﬁ,ﬁiifp>p;;
min {15328 DY if p > pp

P3.8. A >0,A>0,14>0. A\ > 0 means that ¢,y = 222 — ¢
Ao > 0 means that ¢z = c.r. If we call this common coinsurance rate cp

Dz ;> (0 means that cp = 1. This gives z = 14+D’

then we have thatcp = {22
a knife-edge situation.
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C Ciritical p-values and ranking of critical z-
values

In this section we define a number of critical values for the covariance coef-
ficient, p; whether p exceeds a critical value or not determines the sequence
of treshold values for .

Recall that, given agy, ag., and p the remaining parameters of the type
distribution are given by

QL = 0. — Qg (C.1)
1—ap
A H — Ogg an — P s and (02)
ag. Q.
1 —apy.
arr = (OJH. — OLHH) a -+ P (03)

ag. OéH..

Also recall the maximum and minimum feasible value for p which secure that
neither ayy nor ay; become negative:

Definition C.1 p u agp(l —ag.) > 0: mazimal feasible value for p;

Definition C.2 p 1 —agr(1 — ag.) < 0: minimal feasible value for p.

Notice that the lowest possible value for pis —}1 (when agy = 0 and
oy, = %) and the highest possible value for p is }l (when apgy = % and
1
ag. = 5)

Next, we define the set of critical p—values and their properties.
Definition C.3 P1 d:ef oOgH — 2CVHH05H- -+ %Of%{(l -+ OéHH),
Lemma C.1 p; >0 for all agyg < ag. <1 and

p>(<)p1

U
1 +arLg — oL
1 +arg +arr,

2oLy + app
1— .

< (>

< (>)CYHH

. 3 d 2 — :
Definition C.4 p, &) QHLQHTE;{;O —
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Lemma C.2 p; > 0 for all agy < ag. <1, and

p > (<)p2
X8
20,y + aygr ag. + agg
— < (>)1 = <\ >)—
]_—OéH. ( ) arL ( ) (JéH+1
1— _
< (>) amn( : arr) < ()& = A
(1 —arr)®+argorr ag.
Definition C.5 p; ) (am. — apn)® + agu(ad, — agpap. + 1) + a3, —

Lag 4o, +4a%, + ot )2}/ (1 + ann),
Lemma C.3 p3 > 0 for all agyg < ag. <1 and

1—arr agr(l —arp)?
1+arr (1—apn)?—a?ar

p>(<)ps =

.y def 2agg+ad, —3agpap.
Definition C.6 p, = =& 2 ton e

Lemma C.4 py >0 for all agg < ag. <1 and

« —« l+a,yg —«
P> (<)ps — HH LH>(< + ary LL

ag. l+oary+ang
Definition C.7 pg def QFLOH.
Lemma C.5 ps > 0 and
p%peﬁaﬂél—am
.

Definition C.8 p; & Loy an.

Lemma C.6 p; > 0 and

OHH 1+arg —arr
2
QF. 1+arg +arr

p2Zpr =

Definition C.9 P8 gf %OéHLOéH. + %O&HH<1 — OéH.)

Lemma C.7 pg > 0 and

« 205 + «
p> (<)ps = —HE ()14 apy —apy > (<>—LH 2
. 1—&H.
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def

Definition C.10 pq ?T?QHL(l —ay.) >0

Lemma C.8 p § P9 <—> QLH > l-apy. = oy + QLHYHL > QHH

a%IH—i_aH‘O‘LH < am. QO H af.

Definition C.11 pig d:efOcHH(l —ag)? >0

Lemma C.9 Suppose that p > apy(1—2ay.) such that agy > apy. Then

< — arg > l-ap.
P> Pro QHH—QLH aH.

. def Cap)—
Definition C.12 pg f apn(l afﬁa?‘;fLo‘H-O‘HH

Lemma C.10

p<(>)pp = ang+

OH

OrgOHT > (

1-— 2aLH — g

2o + opr
1 + g, — g

1—-arr
1+ anr,

Tfpsa
> (<){aH.+aHH )
ap.+1
arLH

p<(>)pp =

ZOéLH + (05287

<(>)——
( )OéHH—OéLH

Lemma C.11 Independent of any feasible value for p, the following inequal-

ities hold:
l—ar, 1+4+arg—orr
<l—oap, <l+aryg —arr
l+arr l14+oarg+arr
o < afg. +ogg
g < ——————
Q. +1
ag. —ogg  2ang + agp
1—OéH. 1—OéH.
YHH - OH +apgy QHH > an
og. ag. +1 a.

agg(l—app)?

agp(l —arr)

(1—ar)?—a%.arr

T fps.a

(1 —arp)?+arrary
OHH

.

Lemma C.12 For any non-positive value for p we have that

apg(l —apn)?

OrHOH]

(1—ar)?—ao%.arr

< a.g-+
OHH
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Sketch of proof: for any pair (am.,apm) € [0,1] (i) the numerator of

ann(l-ary)” <a.H + QLHSHL ) g g 3th-degree polynomial in p that has

(1—app)?—o? arg agH

three roots which, if real, are all strictly positive; (ii) for p = 0, this polyno-
mial takes on a negative value. Hence, the difference is always negative for

any pair (ag.,agy) € [0,1] and for any p < 0.

Lemma C.13 For any non-positive value for p we have that

1+arg —arr
1+04LH+(1LL.

a.g
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