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1 Introduction

This technical paper contains the proofs of all lemmata, propositions and
other statements made in the paper Multidimensional screening in a monop-
olistic insurance market.1 For convenience, we reproduce in the next section
some of the main de�nitions, assumptions and notational conventions used
in that paper, and restate the main problem. In section 3, we present the
proofs of the no-distortion-at-the-top/no-rent-at-the-bottom result (Theorem
1) and the proofs of the optimal contract menu when insurance takers only
di¤er in risk type (Theorem 2), in risk aversion (Theorem 3), and when risk
type and risk aversion are perfectly positively correlated (Theorem 4). Sec-
tion 4 deals with the two-dimensional heterogeneity case: after a reminder
of some de�nitions and assumptions (Section 4.1), we reformulate the main
proposition of the paper (Section 4.2), and explain our strategy to prove
it (Section 4.3). This strategy consists of four steps; these are dealt with
in Sections 5, 6, 7 and 8, respectively. Section 8 concludes with Theorem
11 which is proven in Appendix A. Appendix B proves the three theorems
stated in Section 6.
The results depend on the relationships between a series of critical values

for the measure of similarity in risk aversion (de�ned as x, x = 1 correspond-
ing to identical risk aversion). The orderings of these critical values depend
on the value for �, a measure of correlation between risk type (�) and risk
aversion (�). Appendix C shows the dependency of these orderings on �. In
particular, it shows that (almost) all orderings are independent of the exact
value of � as long as this value is non-positive. The exception is given in
Lemma C.10.
In the margin of his copy of Diophantus�Arithmetica, Pierre de Fermat

wrote: "To divide a cube into two other cubes, a fourth power or in general
any power whatever into two powers of the same denomination above the
second is impossible, and I have assuredly found an admirable proof of this,
but the margin is too narrow to contain it." We have assuredly found a proof
of the main proposition of our paper. We doubt that it deserves the label
admirable. But that a margin is too narrow to contain it is beyond dispute!

1Olivella, P and F Schroyen (2011) "Multidimensional screening in a monopolistic
insurance market" (NHH DP 19/2011, CORE DP 21/56)
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2 Main notations and assumptions

� C = (c; P ), a linear insurance contract with coinsurance rate c and
premium P

� � 2 f�L; �Hg,where �L < �H : the expected loss

� �� def
= �H � �L > 0

� � def
= r�2: the product of the coe¢ cient of absolute risk aversion and

the variance of the loss

� � 2 f�L; �Hg, �L < �H : the degree of absolute risk aversion (�2 nor-
malised to 1)

� �� def
= �H � �L

� Type ij: a person with characteristics (�i; �j)

� �ij: the share of ij people in the population (i; j = H;L,
P

i;j�ij = 1)

� �k�: the fraction of people with expected loss �k (�k� = �kL + �kH)

� ��k: the fraction of people with perceived variance �k (��k = �Lk+�Hk)

� Rij(c; P ): the certainty equivalent rent that the agent enjoys from con-
tract (c; P );

Rij(c; P )
def
= U ij(c; P )� U ij(1; 0) = �P + (1� c)�i +

1

2
(1� c2)�j. (1)

� Rij
def
= Rij(cij; Pij) (i; j = L;H): the rent when truthful

� �(�): an auxiliary function to write the rent when mimicking;

�(ckl; �i � �k; �j � �l)
def
= (1� ckl)(�i � �k) +

1

2
(1� c2kl)(�j � �l). (2)

� Rij(ckl; Pkl): the rent when pretending to be of type kl;

Rij(ckl; Pkl)
def
= Rkl(ckl; Pkl) + �(ckl; �i � �k; �j � �l). (3)

� monotonicity conditions:
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� for incentive compatibility between contracts Hj and Lj (j =
H;L):

cHj � cLj (4)

� for incentive compatibility between contracts iH and iL (i =
H;L):

ciH � ciL; (5)

� c = ��
��
: the locus of tangency points between HL�s and LH�s indi¤er-

ence curves in the (c; P )-space

� D def
= ��

�L
2 (0;1): a dimensionless measure of the heterogeneity in �

� x def
= �L

�H
2 (0; 1]: a dimensionless measure of the similarity in �

� �ij(c; P ): the principal�s expected pro�t when an agent of type ij has
accepted contract (c; P );

�ij(c; P ) = P � (1� c)�i: (6)

� Total (or expected) pro�ts areX
i;j

�ij

�
1

2
[1� c2ij]�j �Rij

�
. (7)

� The main problem of the principal/insurance company

max
fcij ;Rijg

X
i;j=H;L

�ij

�
1

2
[1� c2ij]�j �Rij

�
, s.t.

Rij � 0 (i; j = L;H); 0 � cij � 1 (i; j = L;H)

RLL �

8<:
RLH + �(cLH ; 0;���)
RHL + �(cHL;���; 0)

RHH + �(cHH ;���;���)
RLH �

8<:
RLL + �(cLL; 0;��)

RHL + �(cHL;���;��)
RHH + �(cHH ;���; 0)

RHL �

8<:
RLL + �(cLL;��; 0)

RLH + �(cLH ;��;���)
RHH + �(cHH ; 0;���)

RHH �

8<:
RLL + �(cLL;��;��)
RLH + �(cLH ;��; 0)
RHL + �(cHL; 0;��)

The next section provides the solution to this problem.
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3 Preliminary results

This section gives the proofs of Theorems 1-4 in the main text.

Theorem 1 At the optimum solution,(i) cHH = 0 and (ii) RLL = 0.

Proof. Part (i). Assume, by contradiction, that c�HH > 0. Then let
c0HH = c

�
HH � " for some su¢ ciently small " > 0. This still preserves non-

negativity of cHH . It also lowers the rents that HL; LH, and LL obtain
when mimicking HH, so that none of the IC constraints get more binding.
Finally, notice that the objective function decreases in cHH .
Part (ii). Observe �rst that Rij � RLL for all ij. To see this, note

that Rij (ij = HL;LH;HH) � RLL whenever cLL � 1. Assume then
by contradiction that R�LL > 0. Then the previous observation tells us that
R�ij > 0 (ij = HL;LH;HH). Then the alternative rent vector (R�LL �
"; R�LH � "; R�HL� "; R�HH � ") does not upset IC and increases the objective
function.

Theorem 2 When all agents have the same risk aversion, the optimal menu
has cH� = 0 and cL� = minfD �H�

1��H� ; 1g.

Proof. Since RH = �(cL�;��; 0) and RL = 0, the Lagrange function is

L = �Hf
1

2
(1� c2H�)� � �(cL�;��; 0)g+ �Lf

1

2
(1� c2L�)g:

The �rst and second order derivatives are:

@

@cH�
= ��H�cH��;

@2

@c2H�
= ��H�� < 0

@

@cL�
= �H���� �L�cL��;

@2

@c2L�
= ��L�� < 0

Hence, c�H� = 0 and c�L� is given by minfD �H�
1��H� ; 1g. c�L� becomes 1 when

�H� � 1
1+D

(< 1).

Theorem 3 When all agents face the same expected loss, the optimal menu
has c�H = 0; and c�L =

�
0 if x > ��H
1 otherwise.
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Proof. With identical risk size but di¤erent risk aversion, RH = �(c; 0;��)
and RL = 0. The Lagrange function is then

L = ��Hf
1

2
(1� c2�H)�H � �(c�L; 0;��)g+ ��Lf

1

2
(1� c2�L)�Lg:

The �rst and second order derivatives are:

@

@c�H
= ���Hc�H�H ;

@

@c�H
= ���H�H < 0

@

@c�L
= ��Hc�L�� � ��Lc�L�L = c�L�H [��H � x];

@2

@c2�L
= �H [��H � x]

Hence, c�H = 0 and

cL� = 0 if ��H � x < 0;
= 1 if ��H � x > 0:

Theorem 4 With perfect positive correlation (�HL = �LH = 0), the optimal

menu has cHH = 0 and cLL =
�
minfD �HHx

x��HH ; 1g if x > �HH
1 otherwise

.

Proof. Since RHH = �(cLL;��;��) and RLL = 0, the Lagrange function
is

L = �HHf
1

2
(1� c2HH)�H � �(cLL;��;��)g+ �LLf

1

2
(1� c2LL)g:

The �rst and second order derivatives are:

@

@cHH
= ��HHcHH�H ;

@2

@c2H�
= ��HH�H < 0

@

@cLL
= �HH(��+ cLL��)� �LLcLL�L;

@2

@c2LL
= �HH�� � �LL�L

Hence, c�HH = 0. Since
@2

@c2LL
= �HH�� � �LL�L = �H(�HH � x), and c�LL is

given by minfD �HHx
x��HH ; 1g if x > �HH , and by 1 if x < �HH .
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4 Two-dimensional heterogeneity

4.1 Notation

� Bivariate probability distribution of types:

�L �H

�L �LL �LH �L�
�H �HL �HH �H�

��L ��H 1

� Correlation between risk (�) and risk aversion (�) plays an important
role in the analysis;

corr(�; �) def=
E(�� E�)(� � E�)

����
=
�HH�LL � �LH�HLp
�L��H�

p
��L��H

:

� � def= �HH�LL � �LH�HL: the numerator of the correlation expression.

� We parameterise the distribution by means of the triplet (�H�; �HH ; �),
and have the remaining fractions determined by

�HL = �H� � �HH ; (8)

�LH = �HH
1� �H�
�H�

� �

�H�
, and (9)

�LL = (�H� � �HH)
1� �H�
�H�

+
�

�H�
. (10)

� � def
= �HH(1 � �H�) and �

def
= ��HL(1 � �H�): upper and lower bounds

on � to guarantee �LH and �LL positive

� A0: the feasible set of distribution parameters;

A0
def
= f(�H�; �HH ; �) 2 [0; 1]2 �R j �HH � �H� and � � � � �g:

� T0: set of admissible values for the parameters x and D;

T0
def
= f(D; x) 2 R+ � (0; 1)g:
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� A1: feasible set of distribution parameters when non-positive correla-
tion of characteristics;

A1
def
= f(�H�; �HH ; �) 2 A0 and � � 0g:

� D def
= 1��H�

�H�
: upper bound on D to avoid exclusion of LL types when

there is no heterogeneity in risk aversion

� T1: set of admissible values for the parameters x and D avoid exclusion
of LL types when there is no heterogeneity in risk aversion

T1
def
= f(D; x) 2 T0 j D � Dg:

� Two possible orderings of coinsurance rates:

Order 1: 0 = cHH � cHL � cLH � cLL � 1; (11)

Order 2: 0 = cHH � cLH � cHL � cLL � 1: (12)

Lemma 1 If order 1 applies with cHH < cLH , it is optimal to pool HL with
HH if x > �HH

�H�
. Otherwise, it is optimal to pool HL with LH.

Proof. With order 1, the only type that may envy the contract for HL
is HH. Thus, the choice of cHL is only governed by weighing the pro�ts
from these two types. Since they have the same risk size, we may apply
Theorem 3 on this sub group. Since the fraction of high risk averse people
in this group is �HH

�H�
, the result follows.

4.2 The main result of the paper

Main proposition Suppose that (�H�; �HH ; �) 2 A1 and (D; x) 2 T1.
De�ne the following �ve menus:

A cAHH = c
A
HL = 0; c

A
LH = c

A
LL = D

�H�
1��H� :

M cMHH = 0; c
M
LL = 1; and

cMLH =

�
D �H�x
�H�(1�x)+�LHx if x > �HH

�H�
; (M1)

D �H�x
�HL+�LH

if x � �HH
�H�
; (M2)

cMHL =

�
0 if x > �HH

�H�
; (M1)

D �H�x
�HL+�LH

if x � �HH
�H�
: (M2)
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B cBHH = 0; c
B
LH = 2D

x
1�x � c

B
LL; and

cBLL =

8<:
1 (BpX),

D 2�LH+�H�(1�x)
(1��H�)(1�x) (B1pI),
2D x

1�x (Bf),

cBHL =

�
0 if x > �HH

�H�
(Bf,B1pI,B1PX),

2D x
1�x � 1 if x � �HH

�H�
(B2pX).

C cCHH = c
C
HL = c

C
LL = 0, and

cCLL =

�
D 1��LL

�LL
(CI),

1 (CX).

E cEHH = 0; c
E
LH = D

�HHx
�LH

, and

cEHL = c
E
LL =

�
D x�HL
x���H (EI),
1 (EX).

When � < b�(�H�; �HH), the solution to the main problem is as depicted in
Figure 3, where the functions xBM(D), xBp(D) and xEC(D) are de�ned in
Table 3 below and b�(�H�; �HH) is speci�ed in Theorem 11. Otherwise, the
upper bound for the region corresponding to menus EI and EX will lie in the
region corresponding to menus Bf and BpX (i.e., menus CI and CX cease
to be optimal for any (D; x)).

�Figure 3 here�

Remark 1. The su¢ xes to the menu names have the following rationale:
"1"("2") stands for HL pooled with HH(LH), in case of order 1; "I"("X")
stands for inclusion (exclusion) of LL; and "p"("f") stands for partial(full)
insurance of LH in case of menu B.
Remark 2. Figure 3 shows that no part of T1 is left unaddressed. The

ordering of the critical values on the two axes is valid for any (�H�; �HH ; �) 2
A1. Hence, the above proposition provides a full characterisation.
Remark 3. The condition on � says that this parameter should be

su¢ ciently negative. However, in Theorem 11 we show that � < �0:089.
is a su¢ cient condition for � < b�(�H�; �HH), all (�H�; �HH). Hence, Figure
3 is the solution for almost all distributions of � and � with non-positive
correlation.

In the next subsection, we explain the strategy to prove the main propo-
sition.
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4.3 Proof strategy

At a very abstract level, the main problem can be formulated as:

max
m2M�

F (M); (13)

where m is a contract menu (CHH ; CHL; CLH ; CLL) andM� is the set of fea-
sible menus satisfying the self-selection and participation constraints. Both
F (�) andM� depend on (�H�; �HH ; �;D; x) 2 A1�T1, but we suppress this in
the notation. Problem (13) is complex both due to the number of inequality
constraints that de�ne the feasible set, and because this set is beset by non-
convexities. To identify the solution for each (�H�; �HH ; �;D; x) 2 A1 � T1,
we proceed as follows.
First, we delineate the set of incentive compatible menus as much as

possible by deriving a list of properties that any optimal incentive compatible
menu should satisfy. This allows us to restrict the feasible set to a reduced
setM�M�, such that

arg max
m2M�(D;x)

F (M ;D; x) = arg max
m2M(D;x)

F (M ;D; x):

This is the subject of Section 5.
Second, we identify three subsetsMi �M (i = 1; 2; 3), with [iMi =M

but not necessarily with empty intersections, which allows us to de�ne three
sub-problems of the type mi = argmaxm2Mi

F (M) (Section 6). Because the
three subsets unite toM, it follows that

arg max
m2M

F (m) = arg max
m2fm1;m2;m3g

F (m): (14)

Third, we solve each of the three sub-problems (Section 7). Finally, we
perform a comparison to distinguish the global solution from the local ones
(Section 8). For this comparison, we make use of the following principle:

Revealed preference principle Let mi = argmaxm2Mi
F (m) (i = 1; 2; 3).

If mi 2Mj ( j 6= i), then F (mi) � F (mj).

5 Step 1: reduction of the feasible menus set
fromM� to M

We �rst derive a set of properties that an incentive compatible contract menu
(ICM) should satisfy. Next, we derive a set of properties that an optimal
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contract menu should satisfy. Both sets of properties allow us to divide the
main problem into three sub-problems.
We use the following notation:

� ij ! kl stands for "type ij has an incentive to mimic type kl", i.e.,
Rij = Rkl + �(ckl; �i � �k; �j � �l);

� ij 9 kl stands for "type ij has no incentive to mimic type kl", i.e.,
Rij > Rkl + �(ckl; �i � �k; �j � �l).

Recall from Section 2 that the monotonicity conditions are necessary for
incentive compatibility of the contracts: cHj � cLj (j = H;L) and ciH �
ciL (i = H;L).

Lemma 2 At an ICM, if HH ! LL, then HH ! HL and HH ! LH:

Proof. Suppose HH ! LL but HH 9 HL, i.e.,

RHH = RLL + �(cLL;��;��) (i)

RHH > RHL + �(cHL; 0;��) (ii)

Since RHL � RLL + �(cLL;��; 0), (i) and (ii) give

RLL + �(cLL;��;��) > RLL + �(cLL;��; 0) + �(cHL; 0;��)

() �(cLL; 0;��) > �(cHL; 0;��)

() cHL > cLL

contradicting monotonicity. Likewise, suppose HH ! LL but HH 9 LH,
i.e.,

RHH > RLH + �(cLH ;��; 0): (iii)

Since RLH � RLL + �(cLL; 0;��), (i) and (iii) give

RLL + �(cLL;��;��) > RLL + �(cLL; 0;��) + �(cLH ;��; 0)

() �(cLL;��; 0) > �(cLH ;��; 0)

() cLH > cLL

contradicting monotonicity.

Lemma 3 At an ICM, if HH ! LH(HL), then cLH � (�)cHL.
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Proof. Incentive compatibility requires

(i) RHH � RHL + �(cHL; 0;��)
(ii) RHH � RLH + �(cLH ;��; 0)
(iii) RHL � RLH + �(cLH ;��;���)
(iv) RLH � RHL + �(cHL;���;��)

(i) and (iii) lead to RHH � RLH + �(cLH ;��;���) + �(cHL; 0;��). There-
fore, if (ii) holds with equality we obtain that

RLH + �(cLH ;��; 0) � RLH + �(cLH ;��;���) + �(cHL; 0;��)
() �(cLH ; 0;��) � �(cHL; 0;��)

and therefore that cLH � cHL. Similarly, combining (ii) and (iv), and (i)
with equality leads to cHL � cLH .

Corollary 1 At an ICM, if HH ! LH and HH ! HL, then cLH = cHL
and therefore LH ! HL and HL! LH hold trivially.

Corollary 2 At an ICM, if HH ! LL, then cLH = cHL = cLL.

Proof. By Lemma 2, HH ! LH and HH ! HL and by 1 cHL = cLH .
cHL = cLH > cLL is ruled out by monotonicity. Suppose now that cHL =
cLH < cLL. Since HH ! LL and HH ! LH,

RLH + �(cLH ;��; 0) = RLL + �(cLL;��;��)

+
RLH = RLL + �(cLL; 0;��) + �(cLL;��; 0)� �(cLH ;��; 0)

= RLL + �(cLL; 0;��) + (cLH � cLL)��

Similarly, HH ! LL and HH ! LH imply that

RHL = RLL + �(cLL;��; 0) +
1

2
(c2HL � c2LL)��

Then by monotonicity, both LH and HL will strictly envy LL�s contract,
contradicting incentive compatibility.

Lemma 4 At an ICM, if HH ! LH(HL) and HH 9 HL(LH), then
cLH < (>)cHL and HL and LH cannot be pooled.

11



Proof. Consider the case where HH has an incentive to mimic LH but
not HL: RHH = RLH + �(cLH ;��; 0) and RHH > RHL + �(cHL; 0;��).
Using RHL � RLH + �(cLH ;��;���) results in RLH + �(cLH ;��; 0) >
RLH + �(cLH ;��;���) + �(cHL; 0;��) giving cHL > cLH .

Lemma 5 At an ICM, either (i) fLH ! LL and LH 9 HLg, or (ii)
fHH ! LH and HH 9 HLg but not both.

Proof. (i) says RLL + �(cLL; 0;��) > RHL + �(cHL;���;��). Adding
this to RHL � RLL + �(cLL;��; 0) gives

�(cLL;���;��) > �(cHH ;���;��)

() (cLL � cHL)�� >
1

2
(c2LL � c2HL)��

By monotonicity, this implies that cLL + cHL < 2
��
��
.

On the other hand, adding RHL � RLH + �(cLH ;��;���) to the second
part of (i), RLH > RHL + �(cHL;���;��), results in

�(cHL;��;���) > �(cLH ;��;���)

() (cLH � cHL)�� >
1

2
(c2LH � c2HL)��

By (ii) and Lemma 4, this inequality implies that cLH+cHL > 2
��
��
. Whence,

cLH > cLL, contradicting monotonicity.

Lemma 6 If HL! LH and LH ! HL, then either cHL = cLH or fcHL 6=
cLH and cLH + cHL = 2

��
��
g.

Proof. Adding RLH = RHL + �(cHL;���;��) to RHL = RLH +

�(cLH ;��;���) yields

�(cHL;��;���) = �(cLH ;��;���)

() (cLH � cHL)�� =
1

2
(c2LH � c2HL)��

Lemma 7 Consider an ICM. Suppose (i) HL ! LH and LH ! HL,
(ii) HH ! LH or HH ! HL but not both, (iii) LH ! LL. Then (iv)
HL! LL.
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Proof. (ii) and Lemma 4 imply that cLH 6= cHL. By (i) and lemma 6,
this means that cLH + cHL = 2

��
��
. Now suppose that (iv) is false. Then

RHL > RLL + �(cLL;��; 0)

= RLH � �(cLL; 0;��) + �(cLL;��; 0)
= RHL + �(cHL;���;��)� �(cLL; 0;��) + �(cLL;��; 0)

where the �rst equality sign follows from (iii). Therefore

�(cLL;���;��) > �(cHL;���;��)

() cLL > cHL and cLL + cHL < 2
��

��

But as cLH + cHL = 2
��
��
, we get cLL < cLH , contradicting monotonicity.

Next, we further delineate the set of incentive compatible contract by
eliminating those IC contract that can be improved upon.

Lemma 8 At an optimal solution, either HH ! HL or HH ! LH or both.

Proof. Suppose not, i.e. HH 9 HL and HH 9 LH. Then by lemma
2, HH 9 LL. But this means it is possible to reduce RHH without upsetting
incentive compatibility, contradicting optimality.

Lemma 9 At an optimal solution either HL! LH or HL! LL or both.

Proof. Suppose not, i.e., HL 9 LH and HL 9 LL. We distinguish
between two case: (i) HL! HH and (ii) HL9 HH.
Case (ii). Then none of the IC constraints for HL are binding and we can
decrease RHL by a small amount without violating incentive compatibility,
contradicting optimality.
Case (i). Then RHL = RHH + �(cHH ; 0;���). By assumption HL 9 LH,
i.e., RHL > RLH + �(cLH ;��;���). Substituting into previous equal-
ity gives RHH > RLH + �(cLH ;��;���) + �(cHH ; 0;��). By de�nition
of �, we can rewrite this as RHH > RLH + �(cLH ;��; 0) � �(cLH ; 0;��) +
�(cHH ; 0;��) = RLH + �(cLH ;��; 0) +

1
2
(c2LH � c2HH)��. The last term

is non-negative, since 0 = c2HH � c2LH by monotonicity. Hence we can
write RHH > RLH + �(cLH ;��; 0), meaning that HH 9 LH. Using this
strict inequality with the constraint RLH � RLL+ �(cLL; 0:��) gives RHH >
RLL+�(cLL; 0;��)+�(cLH ;��; 0) = RLL+�(cLL;��;��)��(cLL;��; 0)+
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�(cLH ;��; 0) = RLL + �(cLL;��;��) + ��(cLL � cLH). By monotonic-
ity cLL � cLH so last term is non-negative. Hence we can write RHH >

RLL + �(cLL;��;��), meaning that HH 9 LL To sum up, we have that.

HL9 LH; HL9 LL; HH 9 LH;HH 9 LL;

HL! HH, i.e. RHL = RHH + �(cHH ; 0;���); and
RHH � RHL + �(cHL; 0;��)

Consider therefore lowering both RHH and RHL by the same small amount.
Then, by inspection, none of the above constraints is violated, and pro�t has
increased. This contradicts optimality.

Lemma 10 At an optimal solution either LH ! HL or LH ! LL or both.

Proof. The proof goes along exactly the same lines as the proof for
Lemma 9, mutatis mutandis.

Lemma 11 At an optimal solution, either HL! LL or LH ! LL, or both.

Proof. From lemma 2, if HL 9 LL and LH 9 LL, then also HH 9
LL. But then it is possible to increase the pro�t on LL by lowering cLL and
without upsetting incentive compatibility, contradicting optimality.

Lemma 12 Suppose HH ! HL, HH 9 LH, HL! LL, and LH ! HL.
Then pro�t can be increased by lowering cLH down to cHL without upsetting
incentive compatibility.

Proof. By lemma 4, cHL < cLH . Adding RHL � RLH+�(cLH ;��;���)
to RLH = RHL + �(cHL;���;��) gives (cLH � cHL)�� � 1

2
(c2LH � c2HL)��.

Since cHL < cLH , this implies that cLH + cHL � 2��
��
. Whence, cHL <

cLH � 2��
��
� cHL. (A requirement is therefore that cHL <

��
��
.). Since

HL ! LL, �HL is determined by cHL; cLL and RLL. Since HH ! HL,
�HH is determined by cHH ; cHL; cLL and RLL. Since LH ! HL, �LH is
determined by cLH ; cHL; cLL and RLL. Therefore a marginal reduction in
cLH will not upset incentive compatibility and will increase the pro�t from
LH without reducing any other pro�t.

Lemma 13 Suppose HH ! HL, HH 9 LH, HL ! LL, LH ! LL,
LH 9 HL, and HL 9 LH. Then pro�t can be increased by a marginal
reduction in cLH without upsetting incentive compatibility.
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Proof. From RHL > RLH+�(cLH ;��;���); RHL = RLL+�(cLL;��; 0)
and RLH = RLL+ �(cLL; 0;��) we obtain that cLH > 2

��
��
� cLL. And from

RLH > RHL + �(cHL;���;��) and the same two equalities we obtain that
cHL < 2

��
��
�cLL. Whence,cHL < 2���� �cLL < cLH . Since HL! LL, �HL is

determined by cHL; cLL and RLL. Since HH ! HL, �HH is determined by
cHH ; cHL; cLL and RLL. Since LH ! LL, �LH is determined by cLH ; cLL and
RLL. A marginal reduction in cLH will then not upset incentive compatibility
and will increase the pro�t from LH without reducing any other pro�t.

Lemma 14 Suppose HH ! LH, HH 9 HL, LH ! HL, and HL !
LH. Then pro�t can be increased by lowering cHL without upsetting incentive
compatibility.

Proof. By lemma 4, cLH < cHL. And by Lemma 6, cLH + cHL =
2��
��
. Since HH ! LH, �HH is determined by cHH ; cLH and RLH . HL can

therefore be pooled with LH. This does not upset incentive compatibility.
It increases the pro�t from HL and does not a¤ect the pro�t from either
HH, LH or LL. See �gure 2.

�Figure 2 here�

Lemma 15 (suboptimality of full separation under Order 2) Suppose that
HH ! LH, HH 9 HL, LH ! HL, LH 9 LL, HL ! LL. Then
pro�t can be increased by pooling HL with LL or with LH. (This lemma was
labelled Lemma 2 in the main text.)

Proof. The situation is depicted in �gure 3.

�Figure 3 here�

First note that cLL must exceed
��
��
for otherwise LH and HL could not

have been separated.
The pro�ts from the di¤erent types are as follows:

�HH =
1

2
(1� c2HH)�H � (1� cLH)��+ (1� cHL)���

1

2
(1� c2HL)�� � (1� cLL)��

�HL =
1

2
(1� c2HL)�L � (1� cLL)��

�LH =
1

2
(1� c2LH)�H + (1� cHL)���

1

2
(1� c2HL)�� � (1� cLL)��

�LL =
1

2
(1� c2LL)�L
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Weighing with the respective population proportions, gives the following �rst
derivatives:

@�tot
@cHH

= ��HHcHH�H ;
@�tot
@cLH

= �HH��� �LH�HcLH
@�tot
@cHL

= ���H��+ ��HcHL�� � �HLcHL�L;
@�tot
@cLL

= (1� �LL)��� �LLcLL�L

The solution for cLL is cLL = minf���L
1��LL
�LL

; 1g. The condition that cLL > ��
��

translates into x < 1 � �LL. If this is satis�ed, there is room to separate
LH from HL. Since

@�tot
@cHL

= ���H��+ [��H(1� x)� �HLx]�HcHL

total pro�t is strictly concave in cHL i¤ x � ��H
1��LL . In that case, the optimal

solution for cHL is

cHL = minf
��

�L

��Hx

��H(1� x)� �HLx
; 1g:

Bymonotonicity, the only chance of full separation is where cHL =
��
�L

��Hx
��H(1�x)��HLx <

1. It remains then to check whether cHL < cLL. Suppose �rst that
cLL =

��
�L

1��LL
�LL

< 1:

cHL < cLL ()
��

�L

��Hx

��H(1� x)� �HLx
<
��

�L

1� �LL
�LL

() x <
��H(1� �LL)

��H�LL + (1� �LL)2

As ��H(1��LL)
��H�LL+(1��LL)2 <

��H
1��LL , this condition contradicts with the assumption

that x � ��H
1��LL . Suppose next that cLL = 1.

cHL < cLL ()
��

�L

��Hx

��H(1� x)� �HLx
< 1() x <

��H
1� �LL +D��H

:

Again, this contradicts with the assumption that x � ��H
1��LL . Hence, cHL =

cLL, meaning that HL is pooled with LL.
On the other hand, if total pro�t is strictly convex in cHL, it pays to

move cHL either down to cLH or up to cLL. Hence, full separation is never
optimal.

By Lemmas 8, 9 and 10, at least one adjacent IC constraint should be
binding for each of the three upper types. This gives 27 possible con�gu-
rations. But using Lemmas 5, 7, 11, 12, 13, 14, 15 and corollary 1, we can
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rule out all but six candidates for an optimal contract menu, as shown in
the table below. In the next section, we show that these candidates are the
solution to three sub-problems.

Table 1. At most 6 con�gurations of binding and non-binding IC constraints
are possible at an optimal solution.
Order

HL9LL
HL!LH

HL!LL
HL!LH

HL!LL
HL9LH

LH9LL
LH!HL subopt (Lemma 11) subopt (Lemma 14) subopt (Lemma 15)

O2 HH9HL
HH!LH

LH!LL
LH!HL not IC (Lemma 7) subopt (Lemma 14) Sub-problem 3
LH!LL
LH9HL not IC (Lemma 5) not IC (Lemma 5) not IC (Lemma 5)
LH9LL
LH!HL subopt (Lemma 11) Sub-problem 2 not IC (Corollary 1)

HH!HL
HH!LH

LH!LL
LH!HL Sub-problem 1 Sub-problem 1 not IC (Corollary 1)

O1 LH!LL
LH9HL not IC (Corollary 1) not IC (Corollary 1) not IC (Corollary 1)
LH9LL
LH!HL subopt (Lemma 11) subopt (Lemma 12) subopt (Lemma 12)

HH!HL
HH9LH

LH!LL
LH!HL not IC (Lemma 7) subopt (Lemma 12) subopt (Lemma 12)
LH!LL
LH9HL Sub-problem 1 Sub-problem 1 subopt (Lemma 13)

6 Step 2: identi�cation of the three sub-problems
Mi (i = 1; 2; 3)

By eliminating con�gurations of binding/non-binding IC constraints, there
are three sub-problems that emerge. The �rst, sub-problem 1, covers four
cells in Table 1. Sub-problems 2 and 3 each corresponds to one cell. Both
of these cells have open feasible sets because one of the downward adjacent
IC constraints is strictly slack. We close the feasible set by allowing the
relevant IC constraint to be binding as well. The constraints for the three
sub-problems are given in Table 2. In the rest of this section, we will
demonstrate why the main problem can be decomposed into these three sub-
problems.

Table 2. The constraints of the three sub-problems.
P1 P2 P3

1 0 � cHL 0 � cHL 0 � cLH
2 cHL � cLH (�) cHL = cLH cLH � cHL (�1)

3 cLH � 2���� � cLL (�a1) cLH � 2���� � cLL (�2) cLH � 2���� � cHL (�2)
4 cLH � cLL (�2) cLH � cLL (�1) cHL = cLL
5 cLL � 1 (�b1) cLL � 1 (�3) cLL � 1 (�)
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We now de�ne each of the three sub-problems.2

Sub-problem 1 (P1) Common for four cells in Table 1 is that HH
has an incentive to mimic HL, HL has an incentive to mimic LH and LH
has an incentive to mimic LL. The last two statements mean that RHL =
RLH + �(cLH ;��;���) and RLH = RLL + �(cLL; 0;��). Since HL may or
may not envy LL, RHL � RLL + �(cLL;��; 0). It then follows that

RLH + �(cLH ;��;���) = RLL + �(cLL; 0;��) + �(cLH ;��;���) � RLL + �(cLL;��; 0)
() �(cLH ;��;���) � �(cLL;��;���)

() (cLL � cLH)�� �
1

2
(c2LL � c2LH)��

By the monotonicity condition that cLH � cHL, we either have cLH = cLL,
or cLH > cLL and cLL+ cLH � 2���� . The feasible set in the coinsurance rate
space is thus open and non-convex: it consists of the entire 45 line and of
the shaded triangle in �gure 4.

�Figure 4 here�

We close and convexify it by restricting the feasible set to the shaded
area, i.e.,.

cLH � cLL and cLL + cLH � 2
��

��
:

In doing so, we forego the possibility to pool LH and LL at a coinsurance
rate that exceeds ��

��
. However, below we show that this does not matter

for the global analysis.
Since LH may or may not envy HL, we have that

RLH � RHL + �(cHL;���;��) = RLH + �(cLH ;��;���) + �(cHL;���;��)
() �(cLH ;���;��) � �(cHL;���;��)

() (cLH � cHL)�� �
1

2
(c2LH � c2HL)��

Because Order 1 applies, this inequality may hold in two ways. Either
cLH = cHL, or cLH > cHL and cLH + cHL � 2��

��
. We can now claim that

2Alternatively, we could have merged sub-problems P1 and P2 into a single problem
by writing the second and third constraints as cHL � cLH and (cLH � cHL) � (2���� � cLL�
cLH) � 0, respectively.
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it is su¢ cient to impose the constraint cHL � cLH . Indeed, by restricting
ourselves to the shaded are in �gure 4, we know that cLH � ��

��
. Since

cHL � cLH , it follows that cHL � ��
��
and therefore that cLH + cHL � 2���� .

By foregoing the possibility of pooling LH and LL at a coinsurance rate
above ��

��
, there are two menus that are excluded. The �rst is where all

the three lower types are pooled at a rate above ��
��
. This menu may be

optimal when there are a lot of HH people around of which a large rent can
be extracted. However, this menu will be feasible under sub-problem 2 and
will therefore be included in the global analysis. The second possibility that
is excluded is sketched in Figure 5. This is a menu where HL is separated
from LH and LL. It is clear that such a menu can never constitute a
global optimum: moving LH from the right hand crossing to the left hand
crossing preserves incentive compatibility but raises pro�ts from LH. In
sum, nothing is lost by excluding in this part of the analysis pooling of LH
and LL at a rate above ��

��
.

�Figure 5 here�

Using the binding rent equations, and the fact that RLL = 0, the pro�ts
from the four types are as follows

�HH =
1

2
vH �

1

2
[1� c2HL]�� +

1

2
[1� c2LH ]�� � (1� cLH)���

1

2
[1� c2LL]��

�HL =
1

2
[1� c2HL]�L +

1

2
[1� c2LH ]�� � (1� cLH)���

1

2
[1� c2LL]��

�LH =
1

2
[1� c2LH ]�H �

1

2
[1� c2LL]��

�LL =
1

2
[1� c2LL]�L

and total pro�t is

�P1tot =
1

2
�L � �H���+ �H�cLH��+

1

2
(1� �LL)c2LL�� +

1

2
(�HH�� � �HL�L)c2HL

� 1
2
(�LH�H + �H���)c

2
LH �

1

2
�LLc

2
LL�L:

The problem is thus to maximise �P1tot s.t. the constraints listed in the �rst
column of Table 2.
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Sub-problem 2 (P2) In this sub-problem, HH has an incentive to
mimic both HL and LH so that cHL = cLH (Lemma 1). Let us call this
common coinsurance rate cI . Because HL has an incentive to mimic both
LH and LL we have RLH + �(cI ;��;���) = RLL + �(cLL;��; 0). Since
LH does not envy LL at all, RLH > RLL+ �(cLL; 0;��). From the previous
expression we then get that

�(cLL;��;���) > �(cI ;��;���)

() (cLL � cI)�� <
1

2
(c2LL � c2I)��:

Because of the monotonicity condition that cI � cLL, the previous inequality
can only be satis�ed when cI < cLL and cI + cLL > 2

��
��
, or 2��

��
� cLL < cI <

cLL. The feasible set for cI is thus open, but for the purpose of describing the
optimal coinsurance rates we close it by including the boundaries. Note that
this sub-problem allows for pooling of the three lower types at a coinsurance
rate larger than ��

��
, which was excluded from Sub-Problem 1.

The pro�ts from the four types are then

�HH =
1

2
vH �

1

2
[1� c2I ]�� � (1� cLL)��

�HL =
1

2
[1� c2I ]�L � (1� cLL)��

�LH =
1

2
[1� c2I ]�H �

1

2
[1� c2I ]�� + (1� cI)��� (1� cLL)��

�LL =
1

2
[1� c2LL]�L

and total pro�t is

�P2tot =
1

2
�L � �H���+

1

2
[�HH � (1� �LL)x]c2I�H + (1� �LL)cLL��

� �LHcI���
1

2
�LLc

2
LL�L: (15)

The problem is thus to maximise �P2tot s.t. constraints 1,3,4 and 5 listed
in column P2 in Table 2, (constraint 2 being taken care of by having set
cHL = cLH = cI).

Sub-problem 3 (P3) Now, HH has only an incentive to mimic LH
and HL has only an incentive to mimic LL. Since LH has an incentive
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to mimic both HL and LL we have RHL + �(cHL;���;��) = RLL +

�(cLL; 0;��), and because RHL = RLL + �(cLL;��; 0), we obtain that

�(cHL;���;��) = �(cLL;���;��)

() (cLL � cHL)�� = (c2LL � c2HL)
1

2
��

()
� cHL=cLL, or
cHL�cLL and cHL+cLL=2���� :

(16)

On the other hand, because HH envies LH but not HL, cLH < cHL.
Finally, as HL envies LL but not LH, RLL + �(cLL; 0;��) > RLH +

�(cLH ;��;���). Using the fact that RLH = RLL + �(cLL; 0;��) this gives

�(cLL;��;���) > �(cLH ;��;���)

() (cLL � cLH)�� <
1

2
(c2LL � c2LH)��:

By monotonicity cLH < cHL � cLL, so that the only way the previous
inequality can hold is when

cLL + cLH > 2
��

��
: (17)

Since the second line in (16) and (17) would result in cLH > cHL, we can
conclude that only the �rst combination in (16), cHL = cLL, is feasible. We
therefore call this common coinsurance rate for the risk tolerant types c�L.
We then have: 0 � cLH < c�L and cLH > 2���� � c�L, or maxf0; 2

��
��
� c�Lg <

cLH < c�L. Clearly, a necessary condition is c�L >
��
��
. The feasible set for

cLH is open. For the calculus analysis of the optimal menu, we close the
feasible set for cLH as maxf0; 2���� � c�Lg � cLH � c�L.
The pro�t equations are given by :

�HH =
1

2
�H � (1� cLH)���

1

2
(1� c2�L)��

�HL =
1

2
[1� c2�L]�L � (1� c�L)��

�LH =
1

2
[1� c2LH ]�H �

1

2
[1� c2�L]��

�LL =
1

2
[1� c2�L]�L

Hence, total pro�t is

�P3tot =
1

2
�L � �H���+ (�HHcLH + �HLc�L)��� �LH

1

2
c2LH�H

+
1

2
(�HH + �LH � x)c2�L�H (18)
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The problem is then to maximise �P3tot s.t. constraints 1,2,3, and 5 listed
in column P3 of Table 2 (the second constraint is taken care of by setting
cHL = cLL = c�L).

7 Step 3: solutions to the three sub-problems

Before presenting the solution to the three sub-problems, we introduce �ve
auxiliary menus.

Menu PI: this menu pools HL, LH and LL at the common coinsurance
rate larger than D x

1�x but less than 1:

cPIHH = 0; c
PI
HL = c

PI
LH = c

PI
LL = D

x�H�
x� �HH

< 1:

Menu PX: this menu pools HL, LH and LL at a common coinsurance
of 1 (exclusion):

cPXHH = 0; c
PX
HL = c

PX
LH = c

PX
LL = 1:

Menu P��
��
: this menu pools HL, LH and LL at a common coinsurance

of ��
��
(= D x

1�x):

c
P ��
��

HH = 0; c
P ��
��

HH = 0; c
P ��
��

HL = c
P ��
��

LH = c
P ��
��

LL = D
x

1� x

Menu B2pI: this menu pools HL and LH at the left hand crossing of
the indi¤erence curves of HL and LH, and positions LL at the right hand
crossing:

cB2pIHH = 0; cB2pIHL = cB2pILH = 2
Dx

1� x � cLL

cB2pILL =
Dx

1� x
2(�LH + �HL)� �H�(1� x)

x� �HH

Menu SUBI: this menu is one that LH positions at the left hand crossing
of the indi¤erence curves of LH and HL, while HL and LL are positioned
at the right hand crossing:

cSUBIHH = 0; cSUBIHL = cSUBILL =
Dx

1� x
(�HL � �HH)(1� x) + 2�LH

x� �HH
cSUBILH = 2

Dx

1� x � c
SUBI
LL
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Menu SUBX: this menu is similar to SUBI, except that the coinsurance
rate at which HL and LL are pooled now equals 1 (i.e., these two types are
excluded):

cSUBXHH = 0; cSUBXHL = cSUBXLL = 1

cLH = 2
Dx

1� x � c
SUBX
LL

Both menu SUBI and SUBX are globally sub-optimal menu since pro�ts
can be unambiguously increased by pooling HL with LH rather than LL (cf
Lemma 14).

Table 3. List of employed functions and symbols:

symbol de�nition description
def.
on
page

(*)

D 1��H�
�H�

overall upper bound on D p 6 P1.1

DM1
(1��H�)�LL

�LH+(1��H�)(1��LL) lower bound on Dfor M1 p 36 P1.3

DM2
�HL(�LH+�HL)
�HH(2�LH+�HL)

�upper bound on D for B1pX
lower bound on D for M2 p 40 P1.7

DBp
�LL

1+�LH��LL

�upper bound on D for B1pI
upper bound on D for B2pI p 38 P1.5

DC
�LL
1��LL

�upper bound on D for CI
lower bound on D for CX p 50 P2.1

xB1pXM1(D) lower root of fP1:3(x;D)
�upper bound on x for B1pX

lower bound on x for M1 p 36 P1.3
xB2pXM2(D) upper root of fP1:11(x;D)

�upper bound on x for B2pX
lower bound on x for M2 p 43 P1.11

xBM(D) max fxB1pXM1(D); xB2pXM2(D)g p 26

xBp(D)
1��H��(1+�LH��LL)D

1��H�(1+D)
�upper bound on x for B1pI
lower bound on x for B1pX p 38 P1.5

xgP2:3(D) upper root of gP2:3(x;D)
�upper bound on x for B2pI
lower bound on x for B2pX p 53 P2.3

xfP3:1 upper root of fP3:1(x;D)
� upper bound on x for EI
lower bound on x for SUBI p 67 P3.1

xCE(D) boundary between C and E p 33
xfP3:5(D) upper root of fP3:5(x;D)

�upper bound on x for SUBI
lower bound on x for SUBX p 74 P3.5

xfP3:2(D) upper root of fP3:2(x;D)
� upper bound on x for EX
lower bound on x for SUBX p 69 P3.2

�E
�HH(1��H�)��HL�H��HH

1+�H�

�critical �-value for the
description of E p 67 P3.1

fP2:1(D)
�HH�LL

(1��LL)2D2�2�LH�H�D+�LL

� lower bound on x for CI
upper bound on x for PX p 50 P2.1

(*) Sub-problem and con�guration in Appendix B.

We can now provide the solutions the the three sub-problems.

Theorem 5 The solution to sub-problem P1 is as follows:
menu A if 1� �LL < x < 1, and 0 < D < D;
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menu M1 if maxfxB1pXM1(D);
�HH
�H�
g < x < 1� �LL and DM1 < D < D;

menu M2 if xB2pXM2(D) < x <
�HH
�H�

and DM2 < D < D;

menu B1pI if 1+�LH��LL
1+�LH+�LL

< x < minf1� �LL; xBpg and 0 < D < DBp;

menu B1pX if maxf 1
1+2D

; xBp;
�HH
�H�
g < x < xB1pXM1(D) and DM1 < D <

minfDM2; Dg;
menu B2pX if 1

1+2D
< x < minf�HH

�H�
; xB2pXM2(D)g and 1

2
�HL
�HH

< D < D;

and
menu Bf if 0 < x < minf1+�LH��LL

1+�LH+�LL
; 1
1+2D

g and 0 < D < D:

Proof. See appendix B.

Remark: menusM2 and B2pX (which have pooling of HL with LH at
a strictly positive coinsurance rate) will disappear if DM2 � D or 12

�HL
�HH

� D,
respectively.

Figure 6 sketches the solution to sub-problem P1 and shows that the list
in Theorem 5 is exhaustive.

�Figure 6 here�

Theorem 6 The solution to sub-problem P2 is as follows:
menu P��

��
if minf2�LH+�HL

1��H� ; 1g < x < 1
1+D

, and 0 < D < �LL��HL��LH
2�LH+�HL

;

menu B2pI if 1+�LH��LL
1+�LH+�LL

< x < xgP2:3 and 0 < D < DBp;

menu B2pX if maxfxgP2:3 ; 1
1+2D

g < x < 1
1+D

and maxf0; �LL��HL��LH
2�LH+�HL

g <
D < D

menu Bf if 1��LL
1+�LL

< x < minf1+�LH��LL
1+�LH+�LL

; 1
1+2D

g and 0 < D < DC ;

menu CI if

(
�HH(1��LL)2

(1��LL)2��2H��LL
< x < 1��LL

1+�LL
and 0 < D < �HH

1��LLDC

fP2:1 < x <
1��LL
1+�LL

and �HH
1��LLDC < D < DC

;

menu CX if �HH
1��LL+2�LHD < x <

1
1+2D

andDC < D <
� D if �HH��LH
minfD; 1��LL��HH

2�HH�2�LH
g if �HH<�LH

;

and
menu PI if �HH

1��H�D < x <
�HH(1��LL)2

(1��LL)2��2H��LL
and 0 < D < �HH

1��LLDC ;

menu PX if 0 < x <

8>>><>>>:
�HH

1��H�D if 0 < D <
�HH
1��LLDC

fP2:1 if �HH
1��LLDC < D < DC

�HH
1��LL+2�LHD if DC < D < D and �HH � �LH

maxf �HH
1��LL+2�LHD ;

�HH��LH
�H�

g if DC < D < D and �HH > �LH

:
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Proof. See appendix B.

Remark: sub-problem P2 is only de�ned when x � 1
1+D

.
Figure 7 sketches the solution to Sub-problem 2 and shows that the list

in Theorem 6 is exhaustive.

�Figure 7 here�

Theorem 7 The solution to sub-problem P3 is as follows:
menu P��

��
ifmaxf�H�+�HH

�H�+1
; 2�LH+�HL
1+�HL��HH g < x <

1
1+D

, and 0 < D < �LL��HL��LH
2�LH+�HL

;

menu SUBI if xfP3:1 < x < minf 2�LH+�HL
1+�HL��HH ; xfP3:5(D)g, 0 < D <

xfP3:1���H
�HLxfP3:1

and � < �E;
menu SUBX if maxfxfP3:2(D); xfP3:5(D)g < x < 1

1+D
, 1�2�LH��HH

2�LH+�HL
< D <

D and � < �E;
menu EI if ��H

1��HLD < x < minfxfP3:1 ; ��H+
�LH�HL
�HH

g and 0 < D < minfxfP3:1���H
�HLxfP3:1

; Dg;
menu EX if 0 < x < minf ��H

1��HLD ; xfP3:2g and 0 < D < D;
menu PI if ��H + �HL�LH

�HH
< x < �H�+�HH

�H�+1
and 0 < D < D and � > �E;

Proof. See appendix B.

Figure 8.a (8.b) sketches the solution to sub-problem P3 when � > �E
(� < �E) and shows that the list in Theorem 7 is exhaustive.

�Figures 8a and b here�

We have now a full characterisation of the solution for each of the three
sub-problems. In the next section, we identify the solution to the main
problem.

8 Step 4: identi�cation of the global opti-
mum

For each tuple (D; x) 2 T1 we �rst ask which menu is optimal under Order
1. There are two sub-problems under Order 1, and we can elicit the opti-
mal menu by applying the revealed preference principle stated at the end of
Section 4.
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Theorem 8 Under Order 1, the auxiliary menus P��
��
and B2pI are always

dominated. Moreover, when x < minf1��LL
1+�LL

; 1
1+2D

g, the solution prescribed
by sub-problem P1 is strictly dominated by that of sub-problem P2.

Proof. 1. In sub-problem P2,menu P��
��
is a menu that pools the three

lower types atD x
1�x : This menu is feasible as long asD

x
1�x � 1, i.e., x �

1
1+D

,
and selected whenminf2�LH+�HL

1��H� ; 1g < x < 1
1+D

, and 0 < D < �LL��HL��LH
2�LH+�HL

.
But if x � 1

1+D
, this menu is also feasible under sub-problem P1. Since it is

not selected there, we can conclude that menuP��
��
will be strictly dominated

by the solution to sub-Problem P1.
2. In sub-problem P2, menu B2pI is chosen when 1+�LH��LL

1+�LH+�LL
< x < xgP2:3

and 0 < D < DBp. This menu is also feasible under sub-problem P1. Since
it is not selected there, this menu is strictly dominated by the solution to
sub-Problem P1. (Because � � 0, we have 1+�LH��LL

1+�LH+�LL
> �HH

�H�
(cf Lemma C.6

in Appendix C). Hence it is optimal to pool HL with HH rather than with
LH (cf Lemma 1)).
3. When x < minf1��LL

1+�LL
; 1
1+2D

g, the solution to sub-problem P1 is given by
menu Bf. This menu is also available in sub-problem P2, but not chosen
there. Hence, for that region, menu Bf is strictly dominated by the menu
chosen under sub-problem P2.

De�ne
xBM(D)

def
= maxfxB1pXM1(D); xB2pXM2(D)g: (19)

Then we can join menusM1 andM2 and de�ne menuM as cMLL = 1; c
M
HH =

0; and

cMLH =

�
D �H�x
�H�(1�x)+�LHx if x > �HH

�H�
; (M1)

D �H�x
�HL+�LH

if x � �HH
�H�
; (M2)

cMHL =

�
0 if x > �HH

�H�
; (M1)

D �H�x
�HL+�LH

if x � �HH
�H�
: (M2)

Then sub-problem P1 prescribes the use of menu M when xBM(D) < x <

1� �LL and DM1 < D < D.
Likewise, we can join menus B1pX and B2pX as menu BpX de�ned as

de�ne cBpXHH = 0, cBpXLH = 2D x
1�x � c

BpX
LL ; cBpXLL = 1 and

cBpXHL =

�
0 if x > �HH

�H�
(B1PX),

2D x
1�x � 1 if x � �HH

�H�
(B2pX).
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Then sub-problem P1 prescribes the use of menuBpXwhenmaxf 1
1+2D

; xBpg <
x < xBM(D) and DM1 < D < D.
Together with Theorems 5, 6, and 8, this leads to

Theorem 9 If restricted to Order 1, the optimal use of menus is as follows:
menu A if 1� �LL < x < 1, and 0 < D < D;
menu M if xBM(D) < x < 1� �LL and DM1 < D < D;

menu BpI if 1+�LH��LL
1+�LH+�LL

< x < minf1� �LL; xBpg and 0 < D < DBp;

menu BpX if maxf 1
1+2D

; xBpg < x < xBM(D) and DM1 < D < D;

menu Bf if 0 < x < minf1+�LH��LL
1+�LH+�LL

; 1
1+2D

g and 0 < D < D:

menu CI if

(
�HH(1��LL)2

(1��LL)2��2H��LL
< x < 1��LL

1+�LL
and 0 < D < �HH

1��LLDC

fP2:1 < x <
1��LL
1+�LL

and �HH
1��LLDC < D < DC

;

menu CX if �HH
1��LL+2�LHD < x <

1
1+2D

andDC < D <
� D if �HH��LH
minfD; 1��LL��HH

2�HH�2�LH
g if �HH<�LH

;

menu PI if �HH
1��H�D < x <

�HH(1��LL)2
(1��LL)2��2H��LL

and 0 < D < �HH
1��LLDC ; and

menu PX otherwise.

Under Order 2, and if x � 1
1+D

, the optimal menu is described by the
solution to sub-problem P3. If x > 1

1+D
, the solution to sub-problem P3 is

empty.
We are now in a position to compare for x � 1

1+D
the optimal solution

under Order 1 and Order 2. We start by relying once more on the revealed
preference principle:

Theorem 10 The auxiliary menus P��
��
, PI, PX, SUBI and SUBX are

always dominated.

Proof. 1. In sub-problem P3, menu P��
��

is a menu that pools the
three lower types at D x

1�x : This menu is feasible as long as D
x
1�x � 1, i.e.,

x � 1
1+D

, and selected when maxf�H�+�HH
�H�+1

; 2�LH+�HL
1+�HL��HH g < x < 1

1+D
, and

0 < D < �LL��HL��LH
2�LH+�HL

. But if x � 1
1+D

, this menu is also feasible under

sub-problem P1. Since it is not selected there, we can conclude that P��
��

will be weakly dominated by the solution to sub-problem P1.
2. The menus PI and PX are chosen under sub-problem P2 when

0 < x <

8>>><>>>:
�HH(1��LL)2

(1��LL)2��2H��LL
if 0 < D < �HH

1��LLDC

fP2:1 if �HH
1��LLDC < D < DC

�HH
1��LL+2�LHD if DC < D < D and �HH � �LH

maxf �HH
1��LL+2�LHD ;

�HH��LH
�H�

g if DC < D < D and �HH > �LH
(20)
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These pooling menus with pooling at a coinsurance rate above ��
��
are also

available under sub-problem P3. PX is not chosen under sub-problem
P3. Hence it is dominated. PI is chosen under sub-problem P3 only
if ��H + �HL�LH

�HH
< x < �H�+�HH

�H�+1
and 0 < D < D and � > �E. But

�HH(1��LL)2
(1��LL)2��2H��LL

< ��H +
�LH�HL
�HH

, and the upper bound in (20) is smaller

or equal to �HH(1��LL)2
(1��LL)2��2H��LL

. Thus in this range, PI is suboptimal. Vice

versa, PI is chosen under sub-problem P3 if ��H + �HL�LH
�HH

< x < �H�+�HH
�H�+1

and 0 < D < D and � > �E; for this range, it is also available under sub-
problem P2, but not chosen. Thus, we can conclude that also PI will never
constitute a global maximum.
3. The menus SUBI and SUBX in sub-problem P3 are chosen when

maxfxfP3:1(D); xfP3:5(D)g < x < minf
2�LH + �HL
1 + �HL � �HH

;
1

1 +D
g;

and 0 < D < D. Though for this range, the same menus are not available
under sub-problem P1 (since that sub-problem has to respect Order 1), these
menus are dominated by menus whereHL is pooled with LH at the left-hand
crossing (cf Lemma 14). Such menus are available under sub-problem P1.
Hence, SUBI and SUBX can be dismissed.

We can now conclude that the optimal solution under Order 1 will be
strictly dominated by that for Order 2 (sub-problem P3) when (20) holds,
and that the optimal solution under Order 2 (sub-problem P3) will be strictly
dominated by that for Order 1 if

x � minf��H +
�HL�LH
�HH

; xfP3:1 ; xfP3:2(D)g: (21)

Therefore, for every value for D, there must be a value for x above the
right-hand side of (20) and below the right-hand side of (21) where the opti-
mal solutions under Order 1 and 2 yield the same maximum pro�t. The �nal
step is to identify the critical value for x at which the optimal menu under
Order 1 and menu E (EI and EX, Order 2) yield the same maximum pro�t
level. The following theorem shows when this critical x-value will be located
below minf1��LL

1+�LL
; 1
1+2D

g, the upper bound for menu C (CI and CX):

Theorem 11 For every pair (�H�; �HH) there exists a b�(�H�; �HH) 2 (�(�H�; �HH); 0]
such that for � � b�; there exists a function xCE(D;�H�; �HH ; �), non-increasing
in D and with a value below minf1��LL

1+�LL
; 1
1+2D

g, the graph of which in the
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(D; x)-space constitutes a borderline between menus CI and CX on the one
hand, and menus EI and EX on the other. Above this line, menus CI and
CX dominate menus EI and EX, and vice versa. A su¢ cient condition for
this to be the case is that � < �0:089.

Proof. See appendix A.

Proof of the main proposition
This follows immediately from Theorems 7, 9, 10, and 11. If � >b�(�H�; �HH), then menus EI and EX will completely dominate menus CI

and CX. In that case, there will exists for every D a critical value for x,
xBE(D), say, such that menu B and menu E gives the same maximal pro�t
at (D; xBE(D)). However, the set of feasible triples (�H�; �HH ; �) for whichb�(�H�; �HH) < � � 0 is very small.�
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Appendix

A Proof of theorem 11

We start the proof of this theorem by guessing that when Order 1 and Order
2 yield the same pro�t level, the optimal menu under Order 1 is CI (for low
D) and CX for high D. We will now show when this guess is correct.
In appendix B, it is shown that the four menus referred to in the theo-

rem have the following maximal pro�t functions (cf (B.11), (B.12), (B.24),
(B.25)):

�CItot = �L

�
1

2
� �H�D +

1

2
D2 (1� �LL)2

�LL

�
(A.1)

�CXtot = �L

�
1

2
+ �LHD �

1

2
�LL

�
(A.2)

�EItot = �L

�
1

2
� �H�D +

1

2
D2x

�
�2HH
�LH

+
�2HL
x� ��H

��
(A.3)

�EXtot = vL

�
1

2
� �HHD +

1

2
D2x�

2
HH

�LH
+
1

2

�HH + �LH � x
x

�
(A.4)

Let TCI and TCX denote the combinations of (D; x) 2 T1 where CI and
CX are optimal under Order 1, i.e.,

TCI =

�
(D; x) 2 T1j

�HH(1� �LL)2
(1� �LL)2 � �2H��LL

< x <
1� �LL
1 + �LL

and 0 < D <
�HH
1� �LL

DC ;

or fP2:1 < x <
1� �LL
1 + �LL

and
�HH
1� �LL

DC < D < DC

�
TCX = f(D; x) 2 T1j

�HH
1� �LL + 2�LHD

< x <
1

1 + 2D
and

DC < D <
� D if �HH��LH
minfD; 1��LL��HH

2�HH�2�LH
g if �HH<�LH

g;

(cf Theorem 6). Likewise, denote by TEI and TEX the combinations of
(D; x) 2 T1 where EI and EX are optimal under Order 2, i.e.,

TEI = f(D; x) 2 T1j
��H

1� �HLD
< x < minfxfP3:1 ; ��H +

�LH�HL
�HH

g and

0 < D < minfxfP3:1 � ��H
�HLxfP3:1

; Dgg; and

TEX = f(D; x) 2 T1j 0 < x < minf
��H

1� �HLD
; xfP3:2g and 0 < D < Dg:

30



(cf Theorem 7).

1. Denote by xCIEI(�H�; �HH ; �) the solution in x to �CItot (x;D) =
�EItot (x;D); it is the lower root to a quadratic equation in x. Note that
this solution is independent on D. For this to be a valid solution, it must
be true that (D; xC1E1) 2 TCI \ TEI .
Since for menu CI the upper bound for x is 1��LL

1+�LL
. we can de�ne for

each value for � (� 0) a region A(�) in the (�H�; �HH)-space such that
xCIEI(�H�; �HH ; �) � 1��LL

1+�LL
:

A(�) = f(�H�; �HH) 2 [0; 1]2 : xC1E1(�H�; �HH ; �) �
1� �LL(�H�; �HH ; �)
1 + �LL(�H�; �HH ; �)

g

We can also de�ne a region R(�) such that the minimum feasible value
for �, �(�H�; �HH)�cf de�nition (C.2)�does not exceed �:

R(�) = f(�H�; �HH) 2 [0; 1]2 : �(�H� � �HH)(1� �H�) � �g

(in other words, R(�) is a �slice�out of the three dimensional set of feasible
distribution parametersA1). It can be shown that A(�) � R(�) for all � � 0,
and that there exists a critical �, b� < 0, such that for all � < b�, A(�) = ?.
Figures A.1a-d show R(�) and A(�) for � = 0;� 1

30
;� 2

30
and � 1

10
. In the last

case, A(�) = ?. Our calculations show that b� ' �0:089.
�Figures A.1a,b,c,d here�

Thus we can state that (xCIEI ; D) 2 TCI if (�H�; �HH) 2 R(�)nA(�) and
D < DC . A su¢ cient condition is that � � �0:089.

When does (xCIEI ; D) 2 TEI? We need to distinguish between two cases.
a. �E < � � 0, in which case we need ��H

1��HLD � xCIEI < ��H +
�LH�HL
�HH

and D � xCIEI���H
�HLxCIEI

.
The equation xCIEI = ��H+ �LH�HL

�HH
is a 3th degree polynomial in �. The

roots for � are: �1 = �(> 0) and two nontrivial roots �2(�H�; �HH); �3(�H�; �HH)
that�if real�are both strictly positive for any feasible pair (�H�; �HH). Since
��H +

�LH�HL
�HH

> xCIEI for any pair (�H�; �HH) when � = 0, this will also be
the case for any � � 0.
The inequality ��H � xCIEI is always satis�ed for a triple (�HH ; �H�; �) 2

A1. This claim is based on an 3-dimensional implicitplot in [0; 1]� [0; 1]�
[�1

4
; 0] in Maple of xCIEI(�HH ; �H�; �) = �HH + �LH(�HH ; �H�; �) and � =
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�(�HH ; �H�).3 Since ��H
1��HLD is monotonically increasing in D, we can con-

clude that (D; xCIEI) 2 TEI for all 0 � D � xCIEI���H
�HLxCIEI

.
b. � < minf0; �Eg, in which case we need ��H

1��HLD < xCIEI � xfP3:1 and
D <

xfP3:1���H
�HLxfP3:1

.
The �rst inequality was shown in a. to be always satis�ed. The second

inequality is always satis�ed for a triple (�HH ; �H�; �) 2 A1. This claim
is based on an 3-dimensional implicitplot [0; 1] � [0; 1] � [�1

4
; 0] in Maple

of xCIEI(�HH ; �H�; �) = xfP3:1(�HH ; �H�; �) and � = �(�HH ; �H�). Thus,

(D; xCIEI) 2 TEI if D �
xfP3:1���H
�HLxfP3:1

.

2. Denote by xCIEX(�H�; �HH ; �;D) the solution in x to �CItot (x;D) =
�EXtot (x;D); it is the lower root to a quadratic equation in x. For this to be
a valid solution, it must be true that (D; xCIEX) 2 TCI \ TEX .
It can be shown that xCIEX(�H�; �HH ; �;D) has the following properties:
(2.i) xCIEX(�H�; �HH ; �; 0) = ��H . This follows straightforwardly from

solving �CItot (x;D) = �
EX
tot (x;D) for x when D = 0;

(2.ii) implicit di¤erentiation of �CItot (x;D) = �
EX
tot (x;D) gives

@xCIEX(�H�;�HH ;�;D)
@D

jD=0 =

2��H�HL > ��H�HL =
@(

��H
1��HLD

)

@D
jD=0;

(2.iii) xCIEX(�H�; �HH ; �;D) ? ��H
1��HLD () D 7 xCIEI���H

�HLxCIEI
; and

(2.iv) xCIEX(�H�; �HH ; �; xCIEI���H�HLxCIEI
) = xCIEI(�H�; �HH ; �)

(2.v) @xCIEX(�H�;�HH ;�;D)
@D

< 0 if D > xCIEI���H
�HLxCIEI

(2.vi) xCIEX(�H�; �HH ; �;DC) >
�HH(1��LL)2

(1��LL)2��2H��LL
;

(2.vii)
xfP3:1���H
�HLxfP3:1

> �LL
1��LL for all (�H�; �HH ; �) 2 A1:. Hence: xfP3:2 does

not matter as upper bound.

Properties (2.iv) and (2.v) show that xCIEX(�H�; �HH ; �;D) is smaller
than the upper bound de�ned by TCI under the same conditions than xCIEX(�H�; �HH ; �)
is. (2.v) and (2.vi) show that xCIEX(�H�; �HH ; �;D) exceeds the lower bound
de�ned by TCI . (2.iii) and (2.vii) show that xCIEX(�H�; �HH ; �;D) is smaller
than the upper bound de�ned by TEX . It follows that (D; xCIEX(�H�; �HH ; �;D)) 2
TCI \ TEX for all D 2 [xCIEI���H

�HLxCIEI
; DC ].

3. Denote by xCXEX(�H�; �HH ; �;D) the solution in x to �CXtot (x;D) =
�EXtot (x;D); it is the lower root to a quadratic equation in x. For this to be
a valid solution, it must be true that (D; xCXEX) 2 TCX \ TEX .

3Since �(�HH ; �H�) = �(�H� � �HH)(1 � �H�), the lowest possible value that � may
take is � 1

4 (when �H� = �HH =
1
2 ).
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Properties of xCXEX(�H�; �HH ; �;D) are:
(3.i) xCXEX(�H�; �HH ; �;DC) = xCIEX(�H�; �HH ; �;DC)

(3.ii) @xCIEX(�H�;�HH ;�;D)
@D

< 0 for all D
(3.iii) xCXEX(�H�; �HH ; �;D) � fP2:2(�H�; �HH ; �;D) for D 2 fDC ; Dg
(3.iv) xCXEX(�H�; �HH ; �;D) < fP3:2(�H�; �HH ; �;D) for D 2 fDC ; Dg
(3.v) 1

1+2D
� xCXEX(�H�; �HH ; �;D) all D

Properties (3.ii) and (3.iii), together with the fact that @fP2:2(�H�;�HH ;�;D)
@D

<

0 shows that xCXEX(�H�; �HH ; �;D) is larger than the lower bound de�ned by
TCX . (3.i), (3.ii) and (3.v) show that xCXEX(�H�; �HH ; �;D) is smaller than
the upper bound de�ned by TCX . (3.i), (3.ii) and (3.iv), together with the
fact that @fP3:2(�H�;�HH ;�;D)

@D
< 0 shows that xCXEX(�H�; �HH ; �;D) is smaller

than the upper bound de�ned by TEX in case � < �E. (3.i), (2.iii) and (2.iv)
shows that xCXEX(�H�; �HH ; �;D) is smaller than the upper bound de�ned
by TEX in case � > �E. It follows that (D; xCXEX(�H�; �HH ; �;D)) 2
TCX \ TEX for all D 2 [DC ; D].

We can now summarise as follows. Let the locus of (x;D)-values that
for which menus C and E yield the same pro�t be de�ned by x = xCE(D).
Then xCE(�) is de�ned as:

xCE(D)
def
=

8<:
xCIEI(�H�; �HH ; �) if D < xCIEI���H

�HLxCIEI

xCIEX(�H�; �HH ; �;D) if xCIEI���H
�HLxCIEI

< D < DC

xCXEX(�H�; �HH ; �;D) if DC < D < D

(A.5)

with x0CE(D) � 0 since both xCIEX(D;�H�; �HH ; �) and xCXEX(D;�H�; �HH ; �)
are strictly decreasing in D.

xCE(D) is depicted in Figure A.2 for �H� = :6; �HH = :2 and � = 0. It
consists of the full horizontal line (xCIEI(�H�; �HH ; �)) until this crosses the
upward sloping bold line ( ��H

1��HLD ), the dashed line (xCIEX(�H�; �HH ; �;D))
until this crosses the vertical bold line (D = DC), and continues as the
dotted-dashed line (xCXEX(�H�; �HH ; �;D)).

�Figure A.2�

This completes the proof of theorem 11.
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B Solving the sub-problems

B.1 Solution to sub-problem 1

The Lagrangian function associated to this sub-problem is

LP1 = �P1tot+� fcLH � cHLg+�2 fcLL � cLHg+�a1
�
2
Dx

1� x � cLH � cLL
�
+�b1 f1� cLLg :

The K-T conditions are therefore:

@LP1
@cHL

= [�HH(1� x)� �HLx] cHL �
�

�H
� 0; @LM

@cHL
cHL = 0; cHL � 0 (B.1)

@LP1
@cLH

= �[�H�(1� x) + �LH ]cLH + �H�Dx+
�

�H
� �a1
�H
� �2
�H

= 0 (B.2)

@LP1
@cLL

= (1� �LL � x)cLL �
�a1
�H
� �b1
�H
+
�2
�H

= 0 (B.3)

P1.1. � = 0; �a1 = 0; �
b
2 = 0; �2 = 0. Then (B.3) becomes

(1� �LL � x)cLL = 0

So either �U is increasing in cLL contradicting that �a1 = �
b
2 = 0, or decreasing

in cLL contradicting that �2 = 0.

P1.2. � = 0; �a1 = 0; �
b
1 = 0; �2 > 0. Then (B.1) implies that

x � �HH
�H�

.

The reason is that if x < �HH
�H�
, then �Mtot would be increasing and convex in

cHL, contradicting that � = 0.
�2 > 0 means that cLL = cLH and we denote this common coinsurance

rate by cL�. (B.3) then gives

(1� �LL � x)cL� = �
�2
�H

so that �2 > 0 requires that

x > 1� �LL:
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Combining (B.2) and (B.3) gives

cL� = D
�H�

1� �H�
:

�a1 = 0 then requires that cL� � Dx
1�x or

x � �H�:

which is made redundant by the stronger condition that x > 1� �LL.
�b1 = 0 requires that

D � 1� �H�
�H�

= D:

Since � � 0 is su¢ cient for �HH
�H�

� 1 � �LL (cf Lemma C.5 in Appendix
C), the condition x > �HH

�H�
is redundant.

This menu was de�ned as menu A in the main proposition. We sum-
marise it as

cAHL = 0; c
A
LH = c

A
LL = D

�H�
1� �H�

;

1� �LL < x;
D � D:

P1.3. � = 0; �a1 = 0; �
b
1 > 0; �2 = 0. Then (B.1) implies that

x � �HH
�H�

.

�b1 > 0 means that cLL = 1. (B.3) then gives

(1� �LL � x) =
�b1
�H

so that �b1 > 0 requires that

x < 1� �LL:

From (B.2) we obtain that

cLH = D
�H�x

�H�(1� x) + �LH
:
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�a1 = 0 requires that 2
Dx
1�x � cLH � 1 or

fP1:3(x)
def
= �H�(1+D)x

2� [2�H� + �LH +D(�H� + 2�LH)]x+ (1��LL) � 0

Since fP1:3(x) is a convex parabola with fP1:3(0) > 0 > fP1:3(1), the
condition is that x exceeds the lower root:

x � xfP1:3(D):

For this condition to be compatible with x < 1� �LL, we need that

D > DM1
def
=

(1� �H�)�LL
�LH + (1� �H�) (1� �LL)

:

�2 = 0 requires that cLH � cLL = 1. Using the earlier derived expression
for cLH , this is equivalent with

x <
1� �LL
�H�(1 +D)

:

Since D � D, this condition is weaker than x < 1 � �LL. Hence 1 � �LL is
the proper upper bound on x.

This menu was de�ned as menu M1 in the main proposition. We sum-
marise it as:

cM1
HL = 0; c

M1
LL = 1;

cM1
LH = D

�H�x

�H�(1� x) + �LHx
maxfxfP1:3(D);

�HH
�H�

g � x < 1� �LL

DM1 < D < D

In the main text, we relabelled xfP1:3(D) as xB1pXM1(D).

P1.4. � = 0; �a1 = 0; �
b
1 > 0; �2 > 0. Since � = 0, (B.1) implies that

x � �HH
�H�

.

�2 > 0 implies that cLL = cLH . We call this common coinsurance rate
cL�. �b1 > 0 then means that cL� = 1.
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Since �a1 = 0, it is required that 1 � Dx
1�x , or

x � 1

1 +D
:

From (B.2), we get that

�[�H�(1� x) + �LH ] + �H�Dx =
�2
�H

so that �2 > 0 requires that

x >
1� �LL
�H�(1 +D)

(>
1

1 +D
):

From (B.3), we get that

1� �LL � x =
�b1
�H
� �2
�H
:

Using the earlier derived expression for �2
�H
, this can also be written as

1� �LL � x� [�H�(1� x) + �LH ] + �H�Dx =
�b1
�H

or

�x [1� �H�(1 +D)] =
�b1
�H
:

�b1 > 0 then requires that
D > D;

contradicting the restriction that (D; x) 2 T1.

P1.5. � = 0; �a1 > 0; �
b
1 = 0; �2 = 0. Since � = 0, (B.1) implies that

x � �HH
�H�

.

�a1 > 0 means that cLL = 2
Dx
1�x � cLH . From (B.3),

x < 1� �LL and cLL > 0:

Combining (B.2) with (B.3) and solving for cLH yields

cLH = D
(1 + �LH + �LL)x� (1 + �LH � �LL)

(1� x)(1� �H�)
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This means that

cLL = D
2�LHx+ �H�(1� x)
(1� x)(1� �H�)

> 0:

�b1 = 0 means that cLL � 1, or

x � xBp
def
=
1� �H� � (1 + �LH � �LL)D

1� �H� � �H�D
;

where the denominator is positive since D � D.
� = 0 means that cLH � 0, or

x � 1 + �LH � �LL
1 + �LH + �LL

:

For this to be compatible with x � xBp, it is required that

D � DBp
def
=

�LL
1 + �LH � �LL

(< D):

�2 = 0 requires that cLH � cLL or cLH � Dx
1�x . Using the earlier derived

expression for cLH , this is equivalent with

x � 1 + �LH � �LL:

Clearly, this condition is ensured by the stronger x < 1� �LL.

Note that 1+�LH��LL
1+�LH+�LL

< 1� �LL (all �ij�cf Lemma C.11 in Appendix C)
and that � � 0 is su¢ cient for �HH

�H�
< 1+�LH��LL

1+�LH+�LL
(cf Lemma C.6 in Appendix

C).

This menu was de�ned as menu BpI in the main proposition. We sum-
marise it as

cB1pIHL = 0; cB1pILH = D
(1 + �LH + �LL)x� (1 + �LH � �LL)

(1� x)(1� �H�)

cB1pILL = D
2�LHx+ �H�(1� x)
(1� x)(1� �H�)

1 + �LH � �LL
1 + �LH + �LL

� x � minf1� �LL; xBpg

D � DBp:
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P1.6. � = 0; �a1 > 0; �
b
1 = 0; �2 > 0. Since � = 0, (B.1) implies that

x � �HH
�H�

.

Since �2 > 0, cLH = cLL; we call this common coinsurance rate cL�.
Since �a1 > 0, cL� =

Dx
1�x . Because �

b
1 = 0, cL� � 1, or

x � 1

1 +D
:

(B.2) and (B.3) now become

�[�H�(1� x) + �LH ]
Dx

1� x + �H�Dx =
�a1
�H
+
�2
�H

(1� �LL � x)
Dx

1� x =
�a1
�H
� �2
�H

Solving for �2
�H
and �a1

�H
gives

�a1
�H

=
1

2
(�H� � x)

Dx

1� x
�2
�H

=
1

2
(x� �H� � 2�LH)

Dx

1� x
so that �2 > 0 requires that x > �H� + 2�LH , while �a1 > 0 requires that
x < �H�, a contradiction.

P1.7. � = 0; �a1 > 0; �
b
1 > 0; �2 = 0. Since � = 0, (B.1) implies that

x � �HH
�H�

.

�a1 > 0 means that cLL = 2 Dx
1�x � cLH , while �

b
1 > 0 means that cLL = 1.

Therefore cLH = 2 Dx1�x � 1. Since �2 = 0, cLH � cLL, requiring that

x � 1

1 +D
.

(B.2) and (B.3) now become

�[�H�(1� x) + �LH ]
�
2
Dx

1� x � 1
�
+ �H�Dx =

�a1
�H

(B.4)

(1� �LL � x) =
�a1
�H
+
�b1
�H

(B.5)
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The second expresion means that

x < 1� �LL:

Solving for �b1
�H
gives

[1� (1 +D)�H�]x2 � [1� �H� � (�H� + 2�LH)D]x =
�b1
�H

so that �b1 > 0 requires that
x > xBp:

For this condition to be compatible with x < 1� �LL, we need that

D > DM1:

Using (B.4), it can be shown that �a1 > 0 is equivalent with fP1:3(x) > 0,
or

x < xfP1:3(�H�; �LH ; D)

Compatibility with x > xBp requires again that D > DM1. It can also
be shown that xfP1:3(�H�; �LH ; D) ? 1� �LL i¤D 7 DM . Compatibility of
x < xfP1:3 with x �

�HH
�H�

requires that

D < DM2
def
=

�HL(�LH + �HL)

�HH (2�LH + �HL)

Finally, cLH � 0 requires

x � 1

1 + 2D
:

This menu was de�ned as menu B1pX in the main proposition. We
summarise it as

cB1pXHL = 0; cB1pXLH = 2
Dx

1� x � 1; c
B1pX
LL = 1

maxf�HH
�H�

; xBp;
1

1 + 2D
g < x < xfP1:3(�H�; �LH ; D):

DM1 < D < DM2
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P1.8. � = 0; �a1 > 0; �
b
1 > 0; �2 > 0. Since �2 > 0, cLH = cLL�we call

this common coinsurance rate cL�.
Since �a1 > 0, cL� =

Dx
1�x . And since �

b
1 > 0, cL� = 1, or

x =
1

1 +D
:

We can therefore consider this as an unimportant knife-edge case.

P1.9. � > 0; �a1 = 0; �
b
1 = 0; �2 = 0. � > 0 means that cHL = cLH�we

call this common coinsurance rate cI .

a. Suppose that cI = 0. Then (B.1) and (B.2) become

� �

�H
� 0;

�H�Dx+
�

�H
= 0;

a contradiction.

b. Suppose that cI > 0. Then (B.1) and (B.2) become

[�HH(1� x)� �HLx] cI �
�

�H
= 0;

�[�H�(1� x) + �LH ]cI + �H�Dx+
�

�H
= 0:

Solving for cI yields
cI = D

x�H�
�HL + �LH

:

On the other hand, (B.3) becomes

(1� �LL � x)cLL = 0:

If x > 1��LL, then pro�t is strictly decreasing and concave in cLL , which is
incompatible with �2 = 0. If x < 1 � �LL, then pro�t is strictly increasing
and convex in cLL , which is incompatible with �a1 = 0; �

b
1 = 0.
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P1.10. � > 0; �a1 = 0; �
b
1 = 0; �2 > 0. Both � > 0 and �2 > 0 means

that cHL = cLH = cLL�we call this common coinsurance rate cP . The FOCs
then become

[�HH(1� x)� �HLx] cP �
�

�H
� 0; @LP1

@cHL
cP = 0; cP � 0

�[�H�(1� x) + �LH ]cP + �H�Dx+
�

�H
� �2
�H

= 0

(1� �LL � x)cP +
�2
�H

= 0

Since �2 > 0, the last expression requires that

cP > 0 and x > 1� �LL:

Then the �rst FOC tells that

[�HH(1� x)� �HLx] cP =
�

�H
:

cP > 0 and � > 0 then requires that

x <
�HH
�H�

By assumption, � � 0. This makes x < �HH
�H�

incompatible with x >
1� �LL (cf Lemma C.5 in Appendix C).

P1.11. � > 0; �a1 = 0; �
b
1 > 0; �2 = 0. � > 0 means that cHL = cLH

(called cI). �b1 > 0 means that cLL = 1. The FOCs then become

[�HH(1� x)� �HLx] cI �
�

�H
� 0; @LP1

@cHL
cI = 0; cI � 0

�[�H�(1� x) + �LH ]cI + �H�Dx+
�

�H
= 0

(1� �LL � x)�
�b1
�H

= 0

The second expression means that

cI > 0 and �H�(1� x) + �LHx > 0:

This means that the �rst FOC must hold with equality and

x <
�HH
�H�

:
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Solving for cI gives
cI = D

x�H�
�HL + �LH

�a1 = 0 means that 2
Dx
1�x � cI � 1, or

fP1:11(x)
def
= �D�H�x2�[2D(�HL + �LH)�D�H� + �HL + �LH ]x+�HL+�LH � 0

This is a concave parabola with fP1:11(0) = �HL+�LH > 0 and fP1:11(1) =
�2D(�HL + �LH) < 0. Hence x must exceed the upper root, denoted as
xfP1:11(D;�H�; �HL + �LH):

x > xfP1:11(D;�H�; �HL + �LH):

�2 = 0 requires that cI � cLL = 1, or

x � �HL + �LH
D�H�

Note that

�HL + �LH
D�H�

? �HH
�H�

() D 7 �HL + �LH
�HH

Because � � 0 is a su¢ cient condition for D < �HL+�LH
�HH

, the restriction
D < D guarantees that �HH

�H�
is the relevant upper bound on x, and that the

constraint cI � 1 will always be slack.
Finally, for x > xfP1:11(D;�H�; �HL+�LH) to be compatible with x <

�HH
�H�
,

we need
D � DM2

This menu was de�ned as menu M2 in the main proposition. We sum-
marise it as

cM2
HL = c

M2
LH = D

x�H�
�HL + �LH

; cM2
LL = 1

xfP1:11(D;�H�; �HL + �LH) < x <
�HH
�H�

DM2 � D < D

In the main text, we have relabelled xfP1:11(�H�; �HL+�LH ; D) as xB2pXM2(D).
Remark
This con�guration will only exist when DM2 < D. This happens when

�LH(2� �H�)
�
�H�

2� �H�
� �HH
�H�

�
< �HL

�
�HH
�H�

� �H�
�
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If �HH
�H�

> �H� >
�H�
2��H� , this inequality is always veri�ed. If �H� >

�HH
�H�

>
�H�
2��H� , then the inequality will only be veri�ed if

� < �� �HL�H�
�HH
�H�

� �H�
�H�
2��H� �

�HH
�H�

:

P1.12. � > 0; �a1 = 0; �
b
1 > 0; �2 > 0. � > 0 and �2 > 0 means that

cHL = cLH = cLL (called cP ). �b1 > 0 means that cP = 1. The FOCs then
become

[�HH(1� x)� �HLx] =
�

�H

�[�H�(1� x) + �LH ] + �H�Dx+
�

�H
� �2
�H

= 0

(1� �LL � x)�
�b1
�H
+
�2
�H

= 0

The �rst condition means that

x <
�HH
�H�

:

Combining the �rst two FOC conditions and imposing �2
�H
> 0 requires

that
x >

�HL + �LH
�H�D

:

Compatibility of x < �HH
�H�

and x � �HL+�LH
�H�D

requires that

D >
�HL + �LH
�HH

:

For this to be compatible with D < D it is required that

�H��HL < �;

which is incompatible with the assumption that � � 0.
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P1.13. � > 0; �a1 > 0; �
b
1 = 0; �2 = 0. � > 0 means that cHL = cLH ,

which we call cI . �a1 > 0 means that cLL = 2 Dx
1�x � cI . The FOCs then

become

[�HH(1� x)� �HLx] cI �
�

�H
� 0

�[�H�(1� x) + �LH ]cI + �H�Dx+
�

�H
� �a1
�H

= 0

(1� �LL � x)
�
2
Dx

1� x � cI
�
� �a1
�H

= 0

a. Suppose that cI = 0. Then the last FOC and �a1 > 0 requires that

x < 1� �LL:

Combining the 2nd and 3th FOC gives

[2(1� �LL � x)� (1� x)�H�]Dx = (1� x)
�

�H
;

so that � > 0 requires that

x <
1 + �LH � �LL
1 + �LH + �LL

;

which is a stronger condition than x < 1� �LL when � � 0 (cf Lemma C.11
in Appendix C).
�b1 = 0 requires that 2

Dx
1�x � 1 or

x � 1

1 + 2D
:

This menu was de�ned as menu Bf in the main proposition. We sum-
marise it as:

cBfHL = c
Bf
LH = 0; c

Bf
LL = 2

Dx

1� x;

x < minf1 + �LH � �LL
1 + �LH + �LL

;
1

1 + 2D
g:

b. Suppose that cI > 0. Then the �rst FOC holds with equality, and
� > 0 requires that

x <
�HH
�H�

:
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Combining all three FOCs gives

Dx

1� x [(1 + �LH + �LL)x� (1 + �LH � �LL)]� cI(x� �HH) = 0

Concavity of �M in cI requires that x > �HH . Otherwise either cI = 0 or
cI = cLL (contradicting �2 = 0). Hence

cI =
Dx

1� x
(1 + �LH + �LL)x� (1 + �LH � �LL)

x� �HH
For cI > 0, it is required that

x >
1 + �LH � �LL
1 + �LH + �LL

But this requirement is incompatible with x < �HH
�H�

if � � 0 (cf Lemma C.6
in Appendix C).

P1.14. � > 0; �a1 > 0; �
b
1 = 0; �2 > 0. � > 0 and �2 > 0 mean that

cHL = cLH = cLL, which we call cP . �a1 > 0 means that cP = 2
Dx
1�x � cP , so

that

cP =
Dx

1� x:

The FOCs become

[�HH(1� x)� �HLx]
Dx

1� x �
�

�H
= 0

�[�H�(1� x) + �LH ]
Dx

1� x + �H�Dx+
�

�H
� �a1
�H
� �2
�H

= 0

(1� �LL � x)
Dx

1� x �
�a1
�H
+
�2
�H

= 0

The 1st equation and � > 0 give that

x <
�HH
�H�

:

The 1st and 2nd equations give

(�HH � �LH � �H�x)
Dx

1� x =
�a1
�H
+
�2
�H
;

so that �a1 > 0; �2 > 0 require that

x <
�HH � �LH

�H�
:
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Combining this with the 3th equation gives

[�HH + �H� � (1 + �H�)x]
Dx

1� x = 2
�a1
�H
;

so that �a1 > 0 requires that

x <
�HH + �H�
1 + �H�

:

We also get

[�1
2
�HL � �LH +

1

2
(1� �H�)x]

Dx

1� x =
�2
�H
;

so that �2 > 0 requires that

x >
�HL + 2�LH
1� �H�

But this condition is incompatible with x < �HH
�H�

if � � 0 (cf Lemma C.7 in
Appendix C).

P1.15. � > 0; �a1 > 0; �
b
1 > 0; �2 = 0. � > 0 means that cHL = cLH ,

which we call cI . �a1 > 0 means that cLL = 2
Dx
1�x � cI and �

b
1 > 0 means that

cI = 2
Dx

1� x � 1:

a. Suppose that cI = 0. Then 2 Dx1�x = 1, which can be considered as an
unimportant knife-edge case.

b. Suppose that cI > 0. This means that

x >
1

1 + 2D
:

Then the FOCs become

[�HH(1� x)� �HLx]
�
2
Dx

1� x � 1
�
� �

�H
= 0

�[�H�(1� x) + �LH ]
�
2
Dx

1� x � 1
�
+ �H�Dx+

�

�H
� �a1
�H

= 0

(1� �LL � x)�
�a1
�H
� �b1
�H

= 0
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Since cI > 0, we must have that

x <
�HH
�H�

:

Compatibility with x > 1
1+2D

requires that

D >
1

2

�HL
�HH

:

Solving for �a1
�H
and �b1

�H
gives

�a1
�H

=
1

1� xfP1:11(x;�HL + �LH ; �H�; D);

Since fP1:11(x;D) is concave in x and strictly positive if x = 0, �a1 > 0 requires
that x is smaller than the upper root of fP1:15(x;�H�; �HL + �LH ; D) = 0:

x < x
fP1:11

(D;�H�; �HL + �LH):

Solving for �b1
�H
gives

(1� �LL � x)�
1

1� xfP1:11(x;�HL + �LH ; �H�; D) =
�b1
�H
;

so that �b1 > 0 requires that

gP1:15(x;D)
def
= (1� �LL � x)(1� x)� fP1:11(x;�HL + �LH ; �H�; D) > 0:

This is a di¤erence of two quadratic forms in x. The �rst is convex in
x, the second concave. Hence the di¤erence is convex in x. Moreover,
gP1:15(0;D) = �HH > 0, and gP1:15(1;D) = 2�HH + 2D(�HL + �LH) > 0.
If gP1:15(x;D) = 0 has no real roots, then gP1:15(x;D) > 0 for all x 2 [0; 1].
Suppose then that gP1:15(x;D) = 0 has two real roots. Let the upper root
be given by xgP1:15 (�H�; �HL; �LH ; D). Then it is possible to show that

xgP1:15 (�H�; �HL; �LH ; D) 7
1

1 + 2D
() D ? �LL

2�LH + �H�

Using (9) and (10), it is possible to show that

�LL
2�LH + �H�

? 1

2

�HL
�HH

() � ? 1

2
�2H��HL

48



Thus, � � 0 is a su¢ cient condition for �LL
2�LH+�H�

< 1
2
�HL
�HH

. It then
follows that D > 1

2
�HL
�HH

implies that D > �LL
2�LH+�H�

and therefore that
xgP1:15 (�H�; �HL; �LH ; D) <

1
1+2D

. Hence, for any pair (x;D) satisfying
x > 1

1+2D
and D > 1

2
�HL
�HH

, the expression gP1:15(x;D) will take on a strictly

positive value. This means that �b1
�H
> 0 is automatically veri�ed.

This menu was de�ned as auxiliary menu B2pX. We summarise it as

cB2pXHL = cB2pXLH = 2
Dx

1� x � 1; c
B2pX
LL = 1

1

1 + 2D
< x < minf�HH

�H�
; x

fP1:11
(D;�H�; �HL + �LH)g

1

2

�HL
�HH

< D < D

P1.16. � > 0; �a1 > 0; �
b
1 > 0; �2 > 0. This means that cHL = cLH =

cLL = 1 and Dx
1�x = 1. This can be considered as an unimportant knife-edge

case.

B.2 Sub-problem 2

The Lagrangian associated to sub-problem 2 is

LP2 = �P2tot + �1(cLL � cI) + �2(cLL + cI � 2
��

��
) + �3(1� cLL):

The K-T conditions are therefore:

@LP2
@cLL

= (1� �LL)Dx� �LLxcLL +
�1
�H
+
�2
�H
� �3
�H

= 0 (B.6)

@LP2
@cI

= [�HH � (1� �LL)x]cI � �LHDx�
�1
�H
+
�2
�H

� 0; @LC
@cI

cI = 0; cI � 0

(B.7)
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P2.1. �1 = 0; �2 = 0; �3 = 0. Then (B.6) yields

cLL = D
1� �LL
�LL

:

�3 = 0 requires that cLL � 1, meaning that

D � DC
def
=

�LL
1� �LL

(< D):

(B.7) gives

[�HH � (1� �LL)x]cI � �LHDx � 0;
@LC
@cI

cI = 0; cI � 0:

If x � �HH
1��LL , �

C
tot is concave and strictly decreasing in cI , satsifying the

complementary slackness condition @LC
@cI

� 0 with strict inequality so that
cI = 0. If x < �HH

1��LL , �
C
tot is strictly convex in cI and the pro�t with cI = 0,

�P2tot j(cI=0;cLL=D 1��LL
�LL

)
= �L

�
1

2
� �H�D +

1

2
D2 (1� �LL)2

aLL

�
(B.8)

has to be compared with the one when cI is increased to its upper bound,
cLL. In that case, �1 > 0, and the analysis below (see con�guration P2.5:
�1 > �2 = �3 = 0) shows that the optimal common coinsurance rate is
D x�H�
x��HH , yielding a maximal pro�t (B.16). The latter pro�t does not exceed

�P2tot j(cI=0;cLL=D 1��LL
�LL

)
i¤

x � �HH(1� �LL)2
(1� �LL)2 � �2H��LL

: (B.9)

Hence the condition �1 = 0 translates as (B.9). From the analysis of con�g-
uration P2.5, it also transpires that that con�guration is only possible when
D < �HH

1��LLDC . What happens ifD > �HH
1��LLDC? Then the optimal common

coinsurance will exceed 1. Hence, we need to compare �Ctotj(cI=0;cLL=D 1��LL
�LL

)

with �Ctotj(cI=cLL=1) = 1
2
�HH

�L
x
:

�Ctotj(cI=0;cLL=D 1��LL
�LL

)
? �Ctotj(cI=cLL=1)
m

x ? fP2:1(D) def=
�LL�HH

(1� �LL)2D2 � 2�LL�H�D + �LL
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The function fP2:1(�) has the following properties: (i) f 0P2:1(D) = 0 i¤ D =
�HH
1��LLDC , and (ii) fP2:1( �HH

1��LLDC) =
�HH(1��LL)2

(1��LL)2��2H��LL
.

Therefore, in the case where �HH
1��LLDC < D < DC , the relevant lower

bound on x is fP2:1(D).
Condition �2 = 0 requires that cLL � 2���� , and this translates as

x � 1� �LL
1 + �LL

. (B.10)

It can be shown that � � 0 is a su¢ cient condition for (B.9) and (B.10)
to de�ne a non-empty set (cf Lemma C.3 in Appendix C).
This menu was de�ned as menu CI in the main proposition. We sum-

marise it as:

cCIHL = c
CI
LH = 0; c

CI
LL = D

1� �LL
�LL

�HH(1� �LL)2
(1� �LL)2 � �2H��LL

� x � 1� �LL
1 + �LL

if D <
�HH
1� �LL

DC

fP2:1(D) � x �
1� �LL
1 + �LL

if
�HH
1� �LL

DC < D

D � DC

For this con�guration, the maximal pro�t is given by

�CItot = �L

�
1

2
� �H�D +

1

2
D2 (1� �LL)2

�LL

�
(B.11)

and we note that it is independent of x.

P2.2. �1 = 0; �2 = 0; �3 > 0. �3 > 0 means that cLL = 1. Then (B.6)
yields

D > DC :

As before, (B.7) now gives

[�HH � (1� �LL)x]cI � �LHDx � 0;
@LC
@cI

cI = 0; cI � 0:

If x � �HH
1��LL , �

C
tot is concave and strictly decreasing in cI and cI = 0,

satisfying the complementary slackness condition @LP2
@cI

� 0 with strict in-
equality, so that cI = 0. If x < �HH

1��LL , �
P2
tot is strictly convex in cI and the

pro�t with cI = 0,

�P2tot j(cI=0;cLL=1) = �L
�
1

2
(1� �LL) + �LHD

�
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has to be compared with the one when cI is increased to its upper bound,
cLL = 1. In that case, �1 > 0, and the analysis below (see con�guration
P2.6: �1 > 0; �2 = 0; �3 > 0) shows that with a optimal common coinsurance
of 1 maximal pro�t is

�P2tot j(cI=cLL=1) = �L
�
1

2
�HH

1

x

�
:

It does not exceed �P2tot j(cI=0;cLL=1) i¤

x � fP2:2(D)
def
=

�HH
(1� �LL) + 2�LHD

:

For future reference, we note here that (i) fP2:1(D) � fP2:2(D) for all D,
with equality i¤D = DC , and (ii) f 0P2:1(DC) = f

0
P2:2(DC).

�2 = 0 requires that 2 Dx1�x � 1 � 0 which is equivalent with

x � 1

1 + 2D
:

For this to be compatible with x � �HH
(1��LL)+2�LHD , we need

2(�HH � �LH)D < 1� (�HH + �LL)

This is trivially satis�ed of �HH � �LH . Otherwise, we need

D <
1� �HH � �LL
2(�HH � �LH)

:

We call this menu menu CX and summarise it as

cCXHL = c
CX
LH = 0; c

CX
LL = 1

�HH
(1� �LL) + 2�LHD

� x � 1

1 + 2D

DC < D < minf
1� �HH � �LL
2(�HH � �LH)

; Dg (if �HH > �LH)

DC < D < D (otherwise)

For this con�guration, the maximal pro�t is given by

�C:2tot = �L

�
1

2
+ �LHD �

1

2
�LL

�
(B.12)

and we note that it is independent of x.
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P2.3. �1 = 0; �2 > 0; �3 = 0. �2 > 0 means that cI = 2 Dx1�x � cLL.

a. Suppose that cLL < 2 Dx
1�x so that cI > 0. Then (B.7) and (B.6)

become

[�HH � (1� �LL)x]cI � �LHDx+
�2
�H

= 0

(1� �LL)Dx� �LLxcLL +
�2
�H

= 0

implying that

cLL =
Dx

1� x
2(�LH + �HL)� �H�(1� x)

x� �HH
; and

cI =
Dx

1� x
(1 + �LH + �LL)x� (1 + �LH � �LL)

x� �HH
.

For cI > 0, we need

x >
1 + �LH � �LL
1 + �LH + �LL

:

�2
�H
> 0 requires that (1� �LL)Dx� �LLxcLL < 0, or

fP2:3(x)
def
= [1� �LL + �LL�H�]x2 � [�LL(�HH � �LH) + (1� �LL)2 + �HH ]x

+�HH(1� �LL) > 0

This quadratic form is convex in x. It is possible to show that fP2:3(x)jx= 1+�LH��LL
1+�LH+�LL

=

�LH(1� x)(x � �HH)jx= 1+�LH��LL
1+�LH+�LL

> 0 and that f 0P2:3(x)jx= 1+�LH��LL
1+�LH+�LL

> 0 if

� � 0. This means that �2 > 0 is implied by x > 1+�LH��LL
1+�LH+�LL

.
�1 = 0 requires that cI � cLL, or cLL � Dx

1�x . This is equivalent with

x � 2�LH + �HL
1� �H�

:

This condition is compatible with x > 1+�LH��LL
1+�LH+�LL

because � � 0 is su¢ cient
for 1+�LH��LL

1+�LH+�LL
< 2�LH+�HL

1��H� .
Finally, �3 = 0 requires that cLL � 1. This is equivalent with

gP2:3(x;D)
def
= (1+�H�D)x

2+f[2(�LH + �HL)� �H�]D � (1 + �HH)gx+�HH � 0;

This is a convex function in x with gP2:3(0) = �HH > 0 and gP2:3(1) =
2(�HL + �LH)D > 0. It can be shown that it always has two real roots if
D 2 [0; D]. Thus the requirement is that

xgP2:3(D) � x � xgP2:3(D):
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It can be shown that xgP2:3(D) <
1+�LH��LL
1+�LH+�LL

. Hence, the lower root is
redundant. For x � xgP2:3(D) to be compatible with x > 1+�LH��LL

1+�LH+�LL
we need

that
D � DBp

def
=

�LL
1 + �LH � �LL

:

Comparing 2�LH+�HL
1��H� with xgP2:3 shows that

xgP2:3(D) ?
2�LH + �HL
1� �H�

m

D 7 �LL � �HL � �LH
2�LH + �HL

It can be shown that � � 0 is a su¢ cient condition for �LL��HL��LH
2�LH+�HL

� DBp.
We also have that

2�LH + �HL
1� �H�

? 1

m
�LL � �HL � �LH
2�LH + �HL

7 0

This menu was called auxiliary menu B2pI. We summarise it as:

cB2pIHL = cB2pILH =
Dx

1� x
(1 + �LH + �LL)x� (1 + �LH � �LL)

x� �HH
cB2pILL =

Dx

1� x
2(�LH + �HL)� �H�(1� x)

x� �HH
1 + �LH � �LL
1 + �LH + �LL

� x � minf2�LH + �HL
1� �H�

; xgP2:3(D)g

D � DBp

b. Suppose that cLL = 2 Dx1�x such that cI = 0. Then (B.7) and (B.6)
become

�2
�H

� �LHDx;

[(1� �LL)(1� x)� 2�LLx]
Dx

1� x = �
�2
�H
:
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Eliminating �2 from these two expressions results in

[(1� �LL)(1� x)� 2�LLx+ �LH ]
Dx

1� x � 0

m

x � 1 + �LH � �LL
1 + �LH + �LL

:

On the other hand, �2 > 0 requires

1� �LL
1 + �LL

< x:

�3 = 0 requires that 2 Dx1�x � 1 or

x � 1

1 + 2D
:

For this to be compatible with 1��LL
1+�LL

< x, we need

D < DC :

We also have that

1 + �LH � �LL
1 + �LH + �LL

? 1

1 + 2D

m
D ? DBp

This menu was earlier de�ned as menu Bf. We summarise it as

cBfHL = c
Bf
LH = 0; c

Bf
LL = 2

Dx

1� x
1� �LL
1 + �LL

< x � minf1 + �LH � �LL
1 + �LH + �LL

;
1

1 + 2D
g

D < DC
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P2.4. �1 = 0; �2 > 0; �3 > 0. �2 > 0 and �3 > 0 means that cLL = 1
and cI = 2 Dx1�x � 1. �1 = 0 requires that cI � 1 or

x � 1

1 +D
:

a. Suppose that cI = 2 Dx1�x � 1 > 0, i.e., that

x >
1

1 + 2D
:

Then (B.7) and (B.6) become

[�HH � (1� �LL)x]
�
2
Dx

1� x � 1
�
� �LHDx+

�2
�H

= 0; (B.13)

(1� �LL)Dx� �LLx+
�2
�H

=
�3
�H
: (B.14)

Eliminating �2
�H
results in

[2(�HL + �LH)� �H�(1� x)]
Dx

1� x � (x� �HH) =
�3
�H
: (B.15)

The requirement �3 > 0 is then equivalent with

gP2:3(x;D) > 0;

or
x > xgP2:3(D):

It can be shown that

xgP2:3(D) > (<)
1

1 +D
> (<)

2�LH + �HL
1� �H�

m

D < (>)
�LL � �HL � �LH
2�LH + �HL

So compatibility of x > xgP2:3(D) with x � 1
1+D

, requires that

D >
�LL � �HL � �LH
2�LH + �HL

:
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Notice that in (B.13), [�HH � (1��LL)x] is the coe¢ cient with cI where
the latter is evaluated at 2 Dx

1�x � 1. If x < �HH
1��LL , pro�t is convex in cI .

The alternative choice for cI is then not 2 Dx1�x � 1 but 1. This menu yields
a maximal pro�t of

�P2tot j(cI=1;cLL=1) = �L
�
1

2
�HH

1

x

�
:

The maximal pro�t under menu cI = 2 Dx1�x � 1; cLL = 1 is

�P2tot j(cI=2 Dx1�x�1;cLL=1)
= �L

�
1

2
�HH

1

x
� [2 (�HH � �LH)� 2�H�]xD

+

�
�HH � �LH

x
� (1� �LL)

�
2D2x2

(1� x)2

�
:

We then have that

�P2tot j(cI=1;cLL=1) ? �P2tot j(cI=2 Dx1�x�1;cLL=1)

m

hP2:3(x)
def
= [�H� + (1� �LL)D]x2 � [�H� + �HH � �LH + (�HH � �LH)D]x+ �HH � �LH ? 0

This is a convex quadratic form in x with roots: �HH��LH
�H�

and 1
1+D

.
Claim 1: �HH��LH

�H�
< 1

1+D
.

Proof. This is obvious if �HH < �LH . Suppose, on the other hand, that
�HH > �LH . Then

�HH � �LH
�H�

7 1

1 +D

m

D 7 1� �LL � �HH
�HH � �LH

But since � � 0 is a su¢ cient condition for 1��LL��HH
�HH��LH > D,4 and since

D � D, we have that �HH��LH
�H�

< 1
1+D

.

4We now want to show that �LH+�HL

�HH��LH > DA. Using the fact that �LH = �HH 1��H�
�H�

�
�
�H�

, this inequality can be rewritten as

� < �HH(1� �H�)� �H�(�HH � �2H�)

Since the rhs is strictly positive for all �HH < �H� < 1, it follows that � � 0 is a
su¢ cient condition for 1��LL��HH

�HH��LH > DA.
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Claim 2: Since hP2:3(x) is convex in x, we have �Ctotj(cI=1;cLL=1) < �Ctotj(cI=2 Dx1�x�1;cLL=1)

i¤ �HH��LH
�H�

< x < 1
1+D

and �Ctotj(cI=1;cLL=1) > �Ctotj(cI=2 Dx1�x�1;cLL=1)
if x <

�HH��LH
�H�

.
Claim 3: Since we need that x > 1

1+2D
, the above interval [�HH��LH

�H�
; 1
1+D

]

is valid if 1
1+2D

< �HH��LH
�H�

, or

D >
1� �LL � �HH
2(�HH � �LH)

.

So we may conclude as follows: if �HH < �LH , then for any x < 1
1+D

we
have �Ctotj(cI=2 Dx1�x�1;cLL=1)

> �Ctotj(cI=1;cLL=1). If �HH > �LH , then �Ctotj(cI=2 Dx1�x�1;cLL=1)
>

�Ctotj(cI=1;cLL=1) for x 2 [�HH��LH
�H�

; 1
1+D

]. The lower bound �HH��LH
�H�

be-
low which the ranking of the two pro�ts switches starts to be valid for
D > 1��LL��HH

2(�HH��LH) since for lower levels of D the other lower bound on x,
1

1+2D
, exceeds �HH��LH

�H�
.

The requirement that �2 > 0 is equivalent with

kP3:2(x)
def
= f1� �LL � [�LH � 2(1� �LL)]Dgx2

+ [(�LH � 2�HH)D � (1� �LL)� �HH ]x+ �HH > 0

This is a convex quadratic form in x with kP3:2(0) = �HH and kP3:2(1) =
2(�LH + �HL)D > 0.
Claim 4: �2 > 0 is always satis�ed.
Proof. Recall that (1��LL)(D� �LL

1��LL )x+
�2
�H
= �3

�H
. Hence, if D � DC ,

�3 > 0 guarantees that �2 > 0.
Suppose now that D > DC . Then from (B.14) and (B.15) we get

�2
�H

= �LHDx� [�HH � (1� �LL)x]
�
2
Dx

1� x � 1
�

Assume �rst that x � �HH
1��LL . Then the square bracket term is negative.

Since we require that x > 1
1+2D

, the large round bracket term is positive.
Therefore �2 > 0.
Assume next that x < �HH

1��LL . Recall from above that the lowest value
for x for which this con�guration is possible is �HH��LH

�H�
. Evaluating kP3:2(x)

at �HH��LH
�H�

gives

kP3:2(
�HH � �LH

�H�
) =

�LH(1� �LL � �HH) [1� �HH � aLL +D(aLH � �HH)]
�2H�
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so that

kP3:2(
�HH � �LH

�H�
) > 0

m

D <
1� �LL � �HH
�HH � �LH

Earlier, we argued that D < 1��LL��HH
�HH��LH if � � 0. Therefore the above

inequality is ful�lled for any D � D. We can thus cocnlude that the re-
quirement �2 > 0 is satsi�ed.

This menu was earlier de�ned as menu B2pX. We summarise this menu
as:

cHL = cLH = 2
Dx

1� x � 1; cLL = 1

maxfxgP2:3 ;
1

1 + 2D
;
�HH � �LH

�H�
g < x < 1

1 +D

maxf�LL � �HL � �LH
2�LH + �HL

; 0g � D � D

b. Suppose that cI = 2 Dx1�x � 1 = 0. Then

x =
1

1 + 2D
;

an unimportant knife-edge case.

P2.5. �1 > 0; �2 = 0; �3 = 0. �1 > 0 means that cI = cLL � Dx
1�x . Let

us call the common coinsurance rate cP . Since �2 = 0, cP � Dx
1�x > 0. Hence

(B.7) and (B.6) become

[�HH � (1� �LL)x]cP � �LHDx =
�1
�H
;

(1� �LL)Dx� �LLxcP +
�1
�H

= 0:

This gives
�H�Dx� (x� �HH)cP = 0:

If x < �HH , �P2 is strictly increasing and convex in cP , contradicting that
�3 = 0. Hence,

x > �HH ;
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and
cP = D

�H�x

x� �HH
:

�3 = 0 requires that cP � 1 or

x � �HH
1�D�H�

:

Note that �HH
1�D�H� > �HH , so that

�HH
1�D�H� is the relevant lower bound on x.

�1 > 0 requires that [�HH � (1� �LL)x]cP � �LHDx > 0 or

x <
�HH(1� �LL)

(1� �LL)2 + �LL�LH
:

�2 = 0 requires that cP � Dx
1�x or

x � �H� + �HH
�H� + 1

:

It can be shown that � � 0 is su¢ cient for �HH(1��LL)
(1��LL)2+�LL�LH <

�H�+�HH
�H�+1

(cf

Lemma C.2 in Appendix C), so �HH(1��LL)
(1��LL)2+�LL�LH is the relevant upper bound

for x. For x < �HH(1��LL)
(1��LL)2+�LL�LH to be compatible with x > �HH

1�D�H� we need
that

D < DC .

Recall from the discussion of con�guration P2.1 that that con�guration is
dominated by optimal pooling i¤

x <
�HH(1� �LL)2

(1� �LL)2 � �2H��LL
:

Note now that �HH(1��LL)2
(1��LL)2��2H��LL

< �HH(1��LL)
(1��LL)2+�LL�LH so the relevant upper

bound on x becomes �HH(1��LL)2
(1��LL)2��2H��LL

. For this to be compatible with x �
�HH

1�D�H� we need that

D <
�HH�LL
(1� �LL)2

=
�HH
1� �LL

DC(< DBp < DC):
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This menu was earlier de�ned as the auxiliary menu PI. We summarise it
as:

cPIHL = c
PI
LH = c

PI
LL = D

�H�x

x� �HH
�HH

1�D�H�
< x <

�HH(1� �LL)2
(1� �LL)2 � �2H��LL

;

D <
�HH
1� �LL

DC

For this con�guration, the maximal pro�t is given by

�PItot = �L

�
1

2
� �H�D +

1

2
D2 x�2H�
x� �HH

�
(B.16)

and we note that it is strictly decreasing in x (as x > �HH).

P2.6. �1 > 0; �2 = 0; �3 > 0. �1 > 0 means that cI = cLL. Let us
call the common coinsurance rate cP . Since �3 > 0; cP = 1. �2 = 0 then
requires that 1 � Dx

1�x , or

x � 1

1 +D
:

The �rst order conditions (B.7) and (B.6) become

[�HH � (1� �LL)x]� �LHDx =
�1
�H

(B.17)

(1� �LL)Dx� �LLx+
�1
�H

=
�3
�H

Eliminating �1
�H
gives

�H�Dx+ (�HH � x) =
�3
�H
: (B.18)

�3 > 0 then requires that

x <
�HH

1� �H�D
:

where the positivity of the denominator is guaranteed by D < D.
�1 > 0 requires that

x <
�HH

1� �LL + �LHD
:
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We have that
�HH

1� �H�D
? �HH
1� �LL + �LHD

m
D ? DC

It can also be shown that5

1

1 +D
>

�HH
1� �LL + �LHD

if D < D

so that x < 1
1+D

is a redundant constraint.
The maximal pro�t under this con�guration is

�P2(cI = 1; cLL = 1) =
1

2
�HH

�L
x
=
1

2
�HH�H :

I. Consider �rst the case where D < DC . This means that �HH
1��H�D <

�HH
1��LL+�LHD . Then for any feasible x � �HH

1��H�D we have x < �HH
1��LL+�LHD .

This means that �1 > 0 and that the constraint cI � cLL is strictly binding.
I.a. If D � �HH

1��LLDC , then

�P2(cI = cLL = 1) ? �P2(cI = cLL = D
x�H�

x� �HH
)

m

x 7 �HH
1� �H�D

Summary:

cI = cLL = 1

x <
�HH

1� �H�D
D <

�HH
1� �LL

DC

5Since

1

1 +D
? �HH
1� �LL + �LHD

m
(�HH � �LH)D 7 �LH + �HL

If �HH � �LH < 0, it obviously follows that 1
1+D > �HH

1��LL+�LHD . Suppose then that
�HH � �LH > 0. Then 1

1+D > �HH

1��LL+�LHD is equivalent with D < �LH+�HL

�HH��LH . In the
previous footnote, we showed that under Assumption N, � � 0 is a su¢ cient condition for
1

1+D > �HH

1��LL+�LHD .
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I.b. If D > �HH
1��LLDC , then

�P2(cI = cLL = 1) ? �P2(cI = 0; cLL = D
1� �H�
�H�

)

m
x 7 fP2:1(D)

Summary:

cI = cLL = 1

x < fP2:1(D)
�HH
1� �LL

DC < D < DC

II. Consider now the case where D > DC . This means that �HH
1��H�D >

�HH
1��LL+�LHD . Then for any feasible x � �HH

1��LL+�LHD we have x < �HH
1��H�D .

This means that �3 > 0 and that the constraint cLL � 1 is strictly binding.
Notice that in (B.17), [�HH � (1��LL)x] is the coe¢ cient with cI where the
latter is evaluated at 1. If x < �HH

1��LL , pro�t is convex in cI .
II.a. If x < 1

1+2D
, the alternative choice for cI is then not 1 but the

lower bound 0. That menu yields a maximal pro�t of

�P2tot j(cI=0;cLL=1) = �L
�
1

2
(1� �LL) + �LHD

�
Under con�guration P2.2, it was established that �P2(cI = 1; cLL = 1) >

�P2tot j(cI=0;cLL=1) i¤ x < �HH
1��LL+2�LHD . That con�guration had 1

1+2D
as up-

per bound on x. Since �HH
1��LL+2�LHD < �HH

1��LL+�LHD , and since
1

1+2D
>

�HH
1��LL+�LHD i¤D <

1��LL��HH
2(�HH��LH) , we can summarise as:

cI = cLL = 1

x < minf �HH
1� �H�D

;
�HH

1� �LL + 2�LHD
g

DC < D <
1� �LL � �HH
2(�HH � �LH)

(Note that �HH
1��LL+2�LHD = fP2:1(DC).)
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II.b. If x > 1
1+2D

, the alternative choice for cI is then not 1 but the
lower bound 2 Dx

1�x � 1 > 0. This menu yields a maximal pro�t of

�P2tot j(cI=2 Dx1�x�1;cLL=1)
= �L

�
1

2
�HH

1

x
� [2 (�HH � �LH)� 2�H�]xD

+

�
�HH � �LH

x
� (1� �LL)

�
2D2x2

(1� x)2

�
We then have that

�P2tot j(cI=1;cLL=1) ? �P2tot j(cI=2 Dx1�x�1;cLL=1)

m
hP2:3(x) ? 0

where hP2:3(x) was de�ned in the discussion of con�guration P2.4.a. That
con�guration has 1

1+2D
as lower bound on x. hP2:3(x) is a convex quadratic

form in x with lower root �HH��LH
�H�

and upper root 1
1+D

.
Hence, �P2tot j(cI=1;cLL=1) > �P2tot j(cI=2 Dx1�x�1;cLL=1)

i¤ x < �HH��LH
�H�

. For this

to be compatible with x > 1
1+2D

, we need

D >
1� �LL � �HH
2(�HH � �LH)

Summary:

cI = cLL = 1

1

1 + 2D
< x <

�HH � �LH
�H�

D >
1� �LL � �HH
2(�HH � �LH)

This menu was earlier de�ned as auxiliary menu PX. We summarise it
as:

cPXI = cPXLL = 1

x < minf �HH
1� �H�D

; fP2:1(D)g if D < DC

x <
�HH

1� �LL + 2�LHD
if D > DC and �HH � �LH

x < maxf �HH
1� �LL + 2�LHD

;
�HH � �LH

�H�
g if D > DC and �HH > �LH

D < D

64



P2.7. �1 > 0; �2 > 0; �3 = 0. �1 > 0 means that cI = cLL. Again, we
call this common coinsurance rate cP . Since �2 > 0; cP = Dx

1�x . �3 = 0 then
requires that Dx

1�x � 1, or

x � 1

1 +D
:

The �rst order conditions (B.7) and (B.6) become

[�HH � (1� �LL)x]
Dx

1� x � �LHDx =
�1
�H
� �2
�H

(1� �LL)Dx� �LLx
Dx

1� x = �
�1
�H
� �2
�H

Adding up and rearranging gives

1

2
[(�HH + �H�)� (1 + �H�)x]

Dx

1� x = �
�2
�H
:

�2 > 0 then requires that

x >
�HH + �H�
1 + �H�

:

Substituting out �2
�H
in one of the �rst order conditions then gives�

�1
2
�HL � �LH +

1

2
(1� �H�)x

�
Dx

1� x =
�1
�H

�1 > 0 then requires that

x >
2�LH + �HL
1� �H�

Since � � 0 is a su¢ cient condition for 2�LH+�HL
1��H� > �HH+�H�

1+�H�
, the relevant

constraint is x > 2�LH+�HL
1��H� .

For x > 2�LH+�HL
1��H� to be compatible with x < 1

1+D
, we need

D <
�LL � �HL � �LH
2�LH + �HL

:
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This menu was earlier de�ned as the auxiliary menu ��
��
. We summarise

it as

c
P ��
��

I = c
P ��
��

LL =
Dx

1� x
2�LH + �HL
1� �H�

< x <
1

1 +D

0 < D <
�LL � �HL � �LH
2�LH + �HL

Remark: this con�guration ceases to exist if 2�LH+�HL
1��H� > 1() �LL��HL��LH

2�LH+�HL
<

0.

P2.8. �1 > 0; �2 > 0; �3 > 0. This can be considered as an unimpor-
tant knife-edge case.

B.3 Sub-problem 3

The Lagrangian for this sub-problem can be written as

LP3 = �P3tot + �1
�
cLH + c�L � 2

Dx

1� x

�
+ �2 fc�L � cLHg+ � f1� c�Lg

The �rst derivatives w.r.t. c�L and cLH are,

@LP3
@c�L

= �HLDx+ (��H � x)c�L +
�1
vH
+
�2
vH
� �

vH
= 0 (B.19)

@LP3
@cLH

= �HHDx� �LHcLH +
�1
vH
� �2
vH

� 0; cLH � 0; cLH �
@LP3
@cLH

= 0

(B.20)

P3.1. �1 = 0; �2 = 0; � = 0. Then @2LP3
@c2�L

= (��H � x)�H :. If x > ��H
then �P3tot is strictly concave in c�L.and its optimal value is

c�L = D
x�HL
x� ��H

:

For � = 0 we need c�L � 1 or

x � ��H
1� �HLD

:
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(Note that 1� �HLD > 0 because by the restriction that D < D.)
If x < ��H then �Etot is strictly increasing and convex in c�L whose optimal

value is c�L = 1, contradicting � = 0.
From (B.20) we have that @

2LP3
@c2LH

= ��LH�H < 0, so that

cLH = D
�HHx

�LH
:

For �1 = 0, we need 2 Dx1�x � c�L � cLH , which translates into

fP3:1(x)
def
= �HHx

2+[�LH(2+�HL)�(1+��H)�HH ]x+[��H�HH��LH(2��H+�HL)] � 0

It cannever be a global solution to the main problem to have this inequality
constraint binding. The reason is that pro�ts could unambiguously be in-
creased by lowering the coinsurance rate cHL down from c�L to cLH without
changing any of the incentive compatibility constraints (cf Lemma 15). The
convex quadratic form fP3:1(x) = 0 has two roots, xfP3:1 and xfP3:1 so that
the necessary requirement is that

xfP3:1 � x � xfP3:1. (B.21)

It can be shown that xfP3:1(�H�; �HH ; �) < ��H for any � � �. Hence, xfP3:1
as a lower bound on x is made redundant by the condition x � ��H

1��HLD .
For �2 = 0, we need cLH � c�L, which translates into

x � ��H +
�LH�HL
�HH

. (B.22)

Moreover, for (�1) and (�2) to be compatible, we need 2 Dx1�x � c�L � c�L,
or Dx

1�x � c�L. This translates into

x � 1� �LL
1 + �HL

. (B.23)

We have that

��H +
�LH�HL
�HH

? 1� �LL
1 + �HL

? xfP3:1
m

� 7 �E def
= �HH

1� �H�(1 + �HL)
1 + �H�

So the upper bound 1��LL
1+�HL

on x is always redundant.
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For x � ��H
1��HLD to be compatible with x � minf��H +

�LH�HL
�HH

; xfP3:1g we
need

D � minf �LH
�2HH + �LH�H�

;
xfP3:1 � ��H
�HLxfP3:1

g

Note that
�LH

�2HH + �LH�H�
7 xfP3:1 � ��H

�HLxfP3:1
() � ? �E

Since � � 0 is su¢ cient for �LH
�2HH+�LH�H�

> D, we can summarise as follows:
We call this menu EI and summarise it as

cEI�L = D
x�HL
x� ��H

; cEILH = D
�HHx

�LH
��H

1� �HLD
� x � minf��H +

�LH�HL
�HH

; xfP3:1g

D � minfD; xfP3:1 � ��H
�HLxfP3:1

g

For this con�guration, the maximal pro�t is given by

�EItot = �
P3
tot j(cLH=D�HH

�LH
x;c�L=D

x�HL
x���H

) = �L

�
1

2
� �H�D +

1

2
D2x

�
�2HH
�LH

+
�2HL
x� ��H

��
(B.24)

It can be shown that �EItot is strictly decreasing and convex in x.

P3.2. �1 = 0; �2 = 0; � > 0. � > 0 means c�L = 1. The FOCs then
become

�HLDx+ (��H � x) =
�

vH
> 0

�HHDx� �LHcLH � 0; cLH � 0; cLH � (�HHDx� �LHcLH) = 0

Thus
cLH = D

�HHx

�LH
:

� > 0 requires that
x <

��H
1� �HLD

�2 = 0 requires that cLH � 1 or

x � �LH
D�HH

:
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We have that

��H
1� �HLD

? ��H +
�LH�HL
�HH

? �LH
D�HH

m

D ? �LH
�2HH + �LH�H�

:

Since � � 0 is su¢ cient for D < �LH
�2HH+�LH�H�

, D � D, implies that ��H
1��HLD <

��H +
�LH�HL
�HH

< �LH
D�HH

, so that the relevant upper bound so far is ��H
1��HLD .

�1 = 0 requires that 2
��
��
� 1 � cLH or

D
�HHx

�LH
� 2 Dx

1� x � 1;

which is a quadratic inequality in x:

fP3:2(x)
def
= ��HHDx2 + (�HHD � 2�LHD � �LH)x+ �LH � 0:

fP3:2(x) is a concave function with fP3:2(0) = �LH > 0 and fP3:2(1) =
�2�LHD < 0. Hence we must have that x does not exceed the upper
root:

x � xfP3:2(�HH ; �LH ; D):

It can be shown that limD!0 xfP3:2(�HH ; �LH ; D) = 1, that xfP3:2(�HH ; �LH ; D)
falls in D.
Claim: If � > �E, then xfP3:2(�HH ; �LH ; D) >

��H
1��HLD for all D < D.

Proof of claim: Since �E > �HH(1� 2�H�), it follows that � > �HH(1�
2�H�) and therefore that �HH > �LH . But since

�LH
�HHD

? xfP3:2(�HH ; �LH ; D)

m
(�HH � �LH)D 7 �LH

It follows that

�LH
�HHD

? xfP3:2(�HH ; �LH ; D)

m

D 7 �LH
�HH � �LH
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Let us now evaluate both ��H
1��HLD and

�LH
�HHD

at D = �LH
�HH��LH . Then

�LH
�HHD

jD= �LH
�HH��LH

? ��H
1� �HLD

jD= �LH
�HH��LH

m
� ? �E:

Since � > �E by assumption, we have that xfP3:2(�HH ; �LH ; D)jD= �LH
�HH��LH

=
�LH
�HHD

jD= �LH
�HH��LH

> ��H
1��HLD jD= �LH

�HH��LH
. Since xfP3:2(�HH ; �LH ; D) is de-

creasing inD while ��H
1��HLD is increasing inD, it follows that xfP3:2(�HH ; �LH ; D) >

��H
1��HLD for all D <

�LH
�HH��LH . Because D <

�LH
�HH��LH when � � 0, it follows

that xfP3:2(�HH ; �LH ; D) >
��H

1��HLD for all D < D. This menu was de�ned
as menu EX in the main proposition. We summarise it as

cEXLH = D
�HHx

�LH
; cEX�L = 1

x � ��H
1� �HLD

if � > �E

x � minf ��H
1� �HLD

; xfP3:2(�HH ; �LH ; D)g if � < �E

D < D

For this con�guration, the maximal pro�t is given by

�EXtot = �
P3
tot j(cLH=D�HH

�LH
x;c�L=1)

= vL

�
1

2
� �HHD +

1

2
D2x�

2
HH

�LH
+
1

2

�HH + �LH � x
x

�
(B.25)

and we note that is strictly decreasing and convex in x independent of x.

P3.3. �1 = 0; �2 > 0; � = 0. �2 > 0 means that cLH = c�L. We call
this common coinsurance rate cP . The FOCs then become

�HLDx+ (��H � x)cP +
�2
vH

= 0

�HHDx� �LHcP �
�2
vH

� 0; cP � 0; cP �
�
�HHDx� �LHcP �

�2
vH

�
= 0

(B.26)

From the �rst FOC, �2 > 0 requires that x > ��H and cP > 0. Hence, the
second FOC holds with equality.
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Eliminating �2
vH

gives

�H�Dx+ (�HH � x)cP = 0

Since x > ��H > �HH , pro�t is strictly concave in cP . Then

cP = D
�H�x

x� �HH
:

�2 > 0 then requires that

x > ��H +
�LH�HL
�HH

:

� = 0 requires that cP � 1 or

x � �HH
1�D�H�

Note that

�HH
1�D�H�

? ��H +
�LH�HL
�HH

m

D ? �LH
�2HH + �LH�H�

(> D)

Hence, the relevant lower bound is ��H + �LH�HL
�HH

.
�1 = 0 requires that cP � Dx

1�x or

x � �H� + �HH
1 + �H�

For this to be compatible with x � �HH
1�D�H� , we need that

D <
1� �HH
�H� + �HH

Finally, for x � �H�+�HH
1+�H�

to be compatible with x > ��H +
�LH�HL
�HH

we
need

� > �E:
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Note that since we assume � � 0, the latter requirement requires that

�E < 0

m
1 < �H�(1 + �H� � �HH)
m

�2H� > 1� �H�(1� �HH)
m

�H�(1� �HH) > 1� �2H� = (1� �H�) (1 + �H�)
m

1� �HH
1 + �H�

>
1� �H�
�H�

= D

Since 1��HH
�H�+�HH

> 1��HH
1+�H�

, it follows that 1��HH
�H�+�HH

> D. Hence, the relevant
upper bound on D is D.
This menu corresponds to the auxiliary menu PI. We summarise it as

cPILH = c
PI
�L = D

�H�x

x� �HH
��H +

�LH�HL
�HH

� x � �H� + �HH
1 + �H�

D < D

�E < � � 0

P3.4. �1 = 0; �2 > 0; � > 0. �2 > 0 means that cLH = c�L. Moreover,
� > 0 means cLH = c�L = 1.
The FOCs then become

�HLDx+ (��H � x) =
�

vH
� �2
vH

�HHDx� �LH =
�2
vH

�2 > 0 then requires that

x >
�LH
�HHD

:
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Adding up the two FOCS gives

�H�Dx+ (�HH � x) =
�

vH

� > 0 then requires that
x <

�HH
1� �H�D

:

For this to be compatible with x > �LH
�HHD

we need

D >
�LH

�2HH + �LH�H�

But if � � 0, this is incompatible with D < D.

Finally, �1 = 0 requires that 1 � Dx
1�x or

x � 1

1 +D
:

For this to be compatible with x > �LH
�HHD

we need

D(�HH � �LH) > �LH

requiring that

�HH > �LH ; and

D >
�LH

�HH � �LH

Again, if � � 0, this is incompatible with D < D.

P3.5. �1 > 0; �2 = 0; � = 0. �1 > 0 means that cLH = 2 Dx
1�x � c�L.

�2 = 0 means that cLH � c�L. The FOCs then become

@LP3
@c�L

= �HLDx+ (��H � x)c�L +
�1
vH

= 0

@LP3
@cLH

= �HHDx� �LHcLH +
�1
vH

� 0; cLH � 0; cLH �
@LP3
@cLH

= 0

The �rst condition implies that x > ��H , for otherwise �1 < 0. For thes
ame reason, the second condition implies that cLH > 0. Hence the second
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FOC must hold with equality. Replacing cLH by 2 Dx1�x � c�L and solving the
two conditions for c�L and �1

vH
gives:

c�L = D
x

1� x
(�HL � �HH)(1� x) + 2�LH

x� �HH
�1
vH

= D
x

1� x
[(�HL � �HH)(1� x) + 2�LH ] (x� ��H)� �HL(1� x)(x� �HH)

(x� �HH)
For �2 = 0, we need that c�L � Dx

1�x which requires that

x � 2�LH + �HL
1 + �HL � �HH

.

The condition �1 > 0 is equivalent with fP3:1(x) > 0, which we showed
earlier to be equivalent with

x > xfP3:1 :

For this to be compatible with x � 2�LH+�HL
1+�HL��HH , we need that � < �E (cf

Lemma C.10 in Appendix C).
The condition � = 0 means that c�L � 1 which is equivalent with

fP3:5(x;D)
def
= [1� (�HL � �HH)D]x2+[D(�HL � �HH + 2�LH)� 1� �HH ]x+�HH � 0:

We have that fP3:5(0) = �HH > 0 and fP3:5(1) = 2�LHD > 0. Hence, fP3:5
needs to be su¢ ciently convex in x for there to exist x-values that make
fP3:5(x) negative. Comparison with gP2:3(x;D) shows that fP3:5(x;D) =
gP2:3(x;D)�2�HLDx2. Since gP2:3(x;D) is convex in x with roots xgP2:3(D)
and xgP2:3(D), it follows that the roots for fP3:5(x;D), xfP3:5(D) and xfP3:5(D),
must satisfy xfP3:5(D) > xgP2:3(D) and xfP3:5(D) < xgP2:3(D).
This menu cooresponds to the auxiliary menu SUBI. Necessary condi-

tions are

cSUBI�L =
Dx

1� x
(�HL � �HH)(1� x) + 2�LH

x� �HH
cSUBILH = 2

Dx

1� x � c�L; c
SUBI
HH = 0

xfP3:1 < x � minf
2�LH + �HL
1 + �HL � �HH

; xfP3:5(D)g

0 < D <
xfP3:1 � ��H
�HLxfP3:1

� < �E

Note that this con�guration will never constitute a global optimum, since
it would pay o¤ to pool HL with LH rather than with LL (cf Lemma 15).

74



P3.6. �1 > 0; �2 = 0; � > 0. �1 > 0means that cLH = 2 Dx1�x�c�L. �2 =
0 means that cLH � c�L. � > 0 means that c�L = 1. Hence, cLH = 2 Dx1�x � 1.
The FOCs then become

@LP3
@c�L

= �HLDx+ (��H � x) +
�1
vH
� �

vH
= 0

@LP3
@cLH

= �HHDx� �LH
�
2
Dx

1� x � 1
�
+
�1
vH

� 0; cLH � 0; cLH �
@LP3
@cLH

= 0

Again, we must have that cLH = 2 Dx
1�x � 1 > 0 (= 0 would contradict

�1
vH
> 0) and therefore that the second FOC holds with eqaulity.
Solving the conditions for the two Lagrange multipliers gives

�

vH
=

Dx

1� x [(�HL � �HH)(1� x) + 2�LH ] + �HH � x

�1
vH

=
Dx

1� x [(�HL � �HH)(1� x) + 2�LH ]� (�LH + �HLDx)

�1
vH
> 0 turns out to be equivalent with fP3:2(x) < 0, which we showed

earlier to be equivalent with
x > xfP3:2

cLH = 2
Dx
1�x � 1 > 0 requires that

x >
1

1 + 2D

�2 = 0 means that cLH � c�L which corresponds to

x <
1

1 +D

For this to be compatible with xfP3:2 < x, we need

(�HH � �LH)D < �LH

This is always veri�ed if � � �HH(1 � 2�H�). If � > �HH(1 � 2�H�), the
condition above becomes

D <
�LH

�HH � �LH
which can show to be always weaker than D < D.
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�
vH
> 0 can be shown to be equivalent with equivalent with fP3:5(x) > 0,

whic requires that x > xfP3:5(D). For this to be compatible with x <
1

1+D
,

we need
1� 2�LH � �HH
2�LH + �HL

< D:

And for this to be compatible with D < �LH
�HH��LH we need � < �E (cf

Lemma C.10 in appendix C).
This menu corresponds to the auxiliary menu SUBX. Necessary condi-

tions are

cSUBXHH = 0; cSUBXLH = 2
Dx

1� x � 1; c
SUBX
�L = 1

maxfxfP3:2(D); xfP3:5(D)g < x <
1

1 +D
1� 2�LH � �HH
2�LH + �HL

< D < D

� < �E

Again, note that this con�guration will never consitute a global optimum:
pooling HL with LH rather than with LL would pay o¤ (cf Lemma 15).

P3.7. �1 > 0; �2 > 0; � = 0. �1 > 0 means that cLH = 2 Dx
1�x � c�L.

�2 > 0 means that cLH = c�L. If we call this common coinsurance rate cP
then we have that

cP =
Dx

1� x .

� = 0 requires that

x � 1

1 +D
.

The FOCs now become

�HLDx+ (��H � x)
Dx

1� x +
�1
vH
+
�2
vH

= 0 (B.27)

�HHDx� �LH
Dx

1� x +
�1
vH
� �2
vH

= 0 (B.28)

�1
vH
+ �2

vH
> 0 means that

x >
1� �LL
1 + �HL

.
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Solving for �1
vH
and �2

vH
gives

�1
vH

= �1
2

�
�H�Dx+ (�HH � x)

Dx

1� x

�
�2
vH

= (�HH �
1

2
�H�)Dx�

�
�LH +

1

2
(�HH � x)

�
Dx

1� x

Then �1
vH
> 0 and �2

vH
> 0 requires that

x >
�HH + �H�
1 + �H�

;

x >
2�LH + �HL
1 + �HL � �HH

;

respectively.
Since � < (>)�E =) ��H +

�LH�HL
�HH

> (<) 2�LH+�HL
1+�HL��HH > (<)

1��LL
1+�HL

> (<

)

�
xfP3:1

�H�+�HH
�H�+1

(cf Lemma C.10 in Appendix C), we can ignore 1��LL
1+�HL

as a lower

bound on x.

This menu correpsonds to the auxiliary menu P��
��
. We summarise it as

c
P��
��

HH = 0; c
P��
��

LH = c
P��
��

HL = c
P��
��

LL =
Dx

1� x
�HH + �H�
1 + �H�

< x <
1

1 +D
if � > �E

2�LH + �HL
1 + �HL � �HH

< x <
1

1 +D
if � < �E

D <

�
minf 1��HH

�HH+�H�
; Dg if � > �E

minf1�2�LH��HH
2�LH+�HL

; Dg if � > �E

P3.8. �1 > 0; �2 > 0; � > 0. �1 > 0 means that cLH = 2 Dx
1�x � c�L.

�2 > 0 means that cLH = c�L. If we call this common coinsurance rate cP
then we have thatcP = Dx

1�x . � > 0 means that cP = 1. This gives x =
1

1+D
,

a knife-edge situation.
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C Critical �-values and ranking of critical x-
values

In this section we de�ne a number of critical values for the covariance coef-
�cient, �; whether � exceeds a critical value or not determines the sequence
of treshold values for x.
Recall that, given �HH , �H�, and � the remaining parameters of the type

distribution are given by

�HL = �H� � �HH (C.1)

�LH = �HH
1� �H�
�H�

� �

�H�
, and (C.2)

�LL = (�H� � �HH)
1� �H�
�H�

+
�

�H�
. (C.3)

Also recall the maximum and minimum feasible value for � which secure that
neither �LH nor �LL become negative:

De�nition C.1 � def= �HH(1� �H�) > 0 : maximal feasible value for �;

De�nition C.2 � def= ��HL(1� �H�) < 0 : minimal feasible value for �.

Notice that the lowest possible value for � is �1
4
(when �HH = 0 and

�H� =
1
2
) and the highest possible value for � is 1

4
(when �HH = 1

2
and

�H� =
1
2
).

Next, we de�ne the set of critical ��values and their properties.

De�nition C.3 �1
def
= �HH � 2�HH�H� + 1

2
�2H�(1 + �HH),

Lemma C.1 �1 > 0 for all �HH � �H� � 1 and

� > (<)�1

+
2�LH + �HL
1� �H�

< (>)
1 + �LH � �LL
1 + �LH + �LL

< (>)�HH

De�nition C.4 �2
def
=

�HL�
2
H�+�HH(1��H �)
1+�H�
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Lemma C.2 �2 > 0 for all �HH � �H� � 1, and

� > (<)�2

+
2�LH + �HL
1� �H�

< (>)1� �LL < (>)
�H� + �HH
�H� + 1

< (>)
�HH(1� �LL)

(1� �LL)2 + �LH�LL
< (>)

�HH � �LH
�H�

:

De�nition C.5 �3
def
= f(�H� � �HH)2 + �HH(�2H� � �HH�H� + 1) + 1

2
�3H� �

1
2
�H�[4�

2
HH + 4�

2
H� + �

4
H�]

1
2g=(1 + �HH),

Lemma C.3 �3 > 0 for all �HH < �H� � 1 and

� > (<)�3 =)
1� �LL
1 + aLL

< (>)
�HH(1� �LL)2

(1� �LL)2 � �2H��LL

De�nition C.6 �4
def
=

2�HH+�
3
H��3�HH�H�
2+�H�

Lemma C.4 �4 > 0 for all �HH � �H� � 1 and

� > (<)�4 =)
�HH � �LH

�H�
> (<)

1 + �LH � �LL
1 + �LH + �LL

De�nition C.7 �6
def
= �HL�H�

Lemma C.5 �6 > 0 and

� ? �6 ()
�HH
�H�

? 1� �LL

De�nition C.8 �7
def
= 1

2
�HL�H�

Lemma C.6 �7 > 0 and

� ? �7 ()
�HH
�H�

? 1 + �LH � �LL
1 + �LH + aLL

De�nition C.9 �8
def
= 1

2
�HL�H� +

1
2
�HH(1� �H�)

Lemma C.7 �8 > 0 and

� > (<)�8 =)
�HH
�H�

> (<)1 + �LH � �LL > (<)
2�LH + �HL
1� �H�
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De�nition C.10 �9
def
= �HH

�H�
�HL(1� �H�) > 0

Lemma C.8 � 7 �9 () �LH
�2HH+�H��LH

? 1��H�
�H�

() ��H +
�LH�HL
�HH

? �HH
�H�

De�nition C.11 �10
def
= �HH(1� �H�)2 > 0

Lemma C.9 Suppose that � > �HH(1�2�H�) such that �HH > �LH . Then
� 7 �10 () �LH

�HH��LH ?
1��H�
�H�

De�nition C.12 �E
def
= �HH(1��H�)��HL�H��HH

1+�H�

Lemma C.10

� < (>)�E =) ��H +
�LH�HL
�HH

> (<)
2�LH + �HL
1 + �HL � �HH

> (<)
1� �LL
1 + �HL

> (<)

�
xfP3:1

�H�+�HH
�H�+1

;

� < (>)�E =)
1� 2�LH � �HH
2�LH + �HL

< (>)
�LH

�HH � �LH
Lemma C.11 Independent of any feasible value for �, the following inequal-
ities hold:

1� �LL
1 + �LL

<
1 + �LH � �LL
1 + �LH + aLL

< 1� �LL < 1 + �LH � �LL

�HH <
�H� + �HH
�H� + 1

�H� � �HH
1� �H�

<
2�LH + �HL
1� �H�

�HH
�H�

? �H� + �HH
�H� + 1

() �HH
�H�

? �H�
�HH(1� �LL)2

(1� �LL)2 � �2H��LL
<

�HH(1� �LL)
(1� �LL)2 + �LL�LH

xfP3:1 >
�HH
�H�

Lemma C.12 For any non-positive value for � we have that

�HH(1� �LL)2
(1� �LL)2 � �2H��LL

< ��H +
�LH�HL
�HH

:
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Sketch of proof : for any pair (�H�; �HH) 2 [0; 1] (i) the numerator of
�HH(1��LL)2

(1��LL)2��2H��LL
�
�
��H +

�LH�HL
�HH

�
is a 3th-degree polynomial in � that has

three roots which, if real, are all strictly positive; (ii) for � = 0, this polyno-
mial takes on a negative value. Hence, the di¤erence is always negative for
any pair (�H�; �HH) 2 [0; 1] and for any � � 0.

Lemma C.13 For any non-positive value for � we have that

��H <
1 + �LH � �LL
1 + �LH + aLL

:
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