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Introduction

Evolutionary game theory has provided a fresh perspective on the matter of equilibrium

selection in games. Since the Nash equilibrium concept does not necessarily provide a unique

prediction of the outcome of a game, finding a solution concept with stronger predictive

powers has been a major task of game theory. In the words of Sugden (2001, p. 115), ''the

Holy Grail is a solution concept which, for every game, picks out one and only one

combination of strategies as the solution". Though falling somewhat short of the Holy Grail,

key solution concepts proposed in evolutionary game theory do sharpen predictions, in what

appears to be a less ad hoc manner than some of the attempts of classical game theory. This

sharpening of predictions comes at the expense of some degree of rationality, in a way that

might or might not bring theory closer to how human beings make their choices.

The two essential elements of evolutionary models are adaptation and mutation.' Basically,

then, evolutionary game theory views decision making as analogous to a biological process of

evolution. Adaptation captures an idea that agents imitate the actions of others, or choose their

best action given how others have been acting. Mutations represent idiosyncrasies in

behaviour, such as errors or experimentation, by which agents diverge from the process of

adaptation. An initial solution concept proposed by Maynard Smith and Price (1973), that of

evolutionary stability, focuses only on whether an equilibrium is robust to the invasion of a

small number of mutants. Though excluding some Nash equilibria, the concept of

evolutionary stability does not select among strict Nash equilibria, for instance those of a

standard 2x2 coordination game.

By contrast, the solution concept suggested by Foster and Young (1990), stochastic stability,

captures the outcome in the very long run when each agent has a small chance of mutating at

any time.' There is thus a small probability that many agents mutate simultaneously. This

solution has a much sharper predictive capacity than evolutionary stability, for instance

facilitating selection between the two strict Nash equilibria of a coordination game (Young,

1993). However, for more complex games, there is a possibility that the long run outcome is a

l The matching of agents is important for the outcome, but is here subsumed under adaptation.
2 The term long run stochastic stability, coined by Ellison (2000), is used henceforth instead of stochastic
stability, to keep terms consistent.
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limit cycle, where the process cycles between different strategy combinations forever. A

unique solution is thus not offered for every game possible.

This thesis examines the nature of the strategy combinations, represented in evolutionary

models as states of play, selected through evolutionary dynamics. In the standard models of

Young (1993) and Kandori, Mailath and Rob (1993), the very long run outcome in a 2x2

coordination game entails play according to the risk dominant equilibrium. In other words, in

the very long run the models predict that all agents play strategies consistent with an

equilibrium that is not necessarily Pareto optimal. Ellison (1993) extents this result to the case

where agents interact locally.

From various angles, the first. three essays of this thesis considers ways in which evolutionary

selection leads to states in which all agents do not pursue the same strategies, where there is

no single conventional strategy everywhere and for everyone. In other words, these essays

explore the possibility of a coexistence of conventions in evolutionary models. The models of

essay 1 and 3 consider only adaptive dynamics, while essay 2 includes persistent mutations in

the manner of Young and Kandori, Mailath and Rob. Essay 4 adds balance to the thesis by

discussing the interpretation of the evolutionary concepts of adaptation and mutation in terms

of human decision making, and points out how differences in the interpretation of mutations

can lead to the selection of different equilibria.

In essay 1, "What constitutes a convention? Implications for the coexistence of conventions",

a model due to Sugden (1995) is reviewed. In this model a coordination game is repeatedly

played at different locations in a continuous social space. Players receive noisy signals of the

location of their game, and thus adapt to past play in a region around the actual location of

their game. Play in one location is thus influenced by the history of play in other locations,

which makes it possible for conventions to spread across locations. Sugden suggests that in a

model of this kind, there can be a stationary state of convention coexistence only if interaction

is non-uniform across social space, i.e. only if the game is played more frequently in some

locations than in others. Essay 1 argues, however, that this result is based on a definition of

conventions focussing on the expectations rather than the actions of players. An alternative

definition of conventions is suggested, which permits convention coexistence when

interaction is uniform.
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Essay 2, "Viscosity and dispersion in an evolutionary model ofleaming", presents a model of

adaptation and mutation in which members of two distinct populations preferring different

equilibria interact. Interaction ranges from complete viscosity, where agents interact only with

members of their own population, to complete dispersion, where agents interact only with

members of the other population. The idea of dispersive interaction is a conceptual extension

of the viscous-fluid continuum used by Myerson, Pollock and Swinkels (1991).

With complete viscosity, the long run stochastically stable state has each population playing

its preferred equilibrium. In a sense, this results matches that of Kandori, Mailath and Rob

(1993). With complete dispersion, the long run stochastically stable states match those of

Hehenkamp (2001). The population most difficult to dissuade from playing its preferred

equilibrium, imposes this equilibrium on the other population, unless the other population is

sufficiently much larger, in which case its preferred equilibrium is played by both

populations. When interaction is fluid, which means that agents interact as frequently with

any agent from their own population as with any agent from the other population, there is a

possibility of convention coexistence, where each population plays according to its preferred

equilibrium.

When different populations with conflicting interests interact, the Pareto principle provides

insufficient guidance on which states are preferable from a welfare point of view. To evaluate

the welfare properties of the long run stochastically stable states under dispersive, fluid and

viscous interaction, utilitarian and Rawlsian measures are therefore used. While the long run

stochastically stable state is preferable from a utilitarian and Rawlsian perspective when

interaction is completely viscous, the same does not necessarily hold when interaction is

completely dispersive or fluid. In other words, whether evolutionary selection and normative

criteria diverge, depends inter alia on the degree of viscosity in interaction.

In the literature on urban labour markets, neighbourhood effects and worker mobility have

been used as explanations for the pattern of employment in cities. In essay 3, "Social origins

of a work ethic: Norms mobility and urban unemployment", an analytical framework for

studying the joint impact of these two factors is constructed. Neighbourhood effects are

modelled by letting workers' employment decisions be influenced by the decisions of the

agents closest to them in a simply construed social space. Mobility takes the form of workers

trading locations in social space, similar to the neighbourhood segregation model of Schelling
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(1971). However, a range of different rules for when two workers trade locations are

considered, some of which assume that workers move where the unemployment situation is

better, while others assume that the composition of neighbourhoods in terms of the education

of workers determines mobility. Each mobility rule produces a different set of long run

outcomes in terms of unemployment levels and segregation of workers with different levels of

education. However, full employment and total segregation is found to be a long run outcome

for most of the mobility rules. The results of the model are sensitive to certain of its

specifications, yet it provides an illustration of how evolutionary models can be applied to the

study of locallabour markets.

The fourth and final essay, "Evolution with endogeneous mutations", asks some fundamental

questions about whether an evolutionary model of adaptation and mutation provides an

adequate representation of decision making. One aspect of this is how to interpret mutations.

Bergin and Lipman (1996) prove that selection in the models ofYoung (1993) and Kandori,

Mailath and Rob (1993) depends critically on the assumption that mutations are equiprobable

in all states. If any variation in mutation probabilities is allowed, any equilibrium can be

selected. What we take mutations to represent, and consequently how their probabilities can

be assumed to vary across states, thus becomes vital for the predictions of an evolutionary

model.

Van Damme and Weibull (1998) provide one approach to endogenizing mutations, by stating

that if we interpret mutations as mistakes, then agents would want to avoid mistakes that are

associated with larger payoff losses. Conversely, if mutations capture experimentation, agents

experiment less is states where payoffs are high. Van Damme and Weibull prove that if agents

focus on payoff losses when determining their mistake probabilities, and reducing these

probabilities is costly, then the selection results of Young and Kandori, Mailath and Rob are

upheld. However, it is no less intuitively appealing to make the reverse claim about mistakes

and experiments; that agents avoid experimenting when the payoff losses thereof are large,

and that agents try to make fewer mistakes in states where payoffs are high. Essay 4 suggests

one way in which to model mistakes in this manner, and proves that the result of van Damme

and Weibull can thereby be reversed.
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Abstract

A model of repeated play of a coordination game, where stage games

have a location in social space, and players receive noisy signals of the

true location oftheir games, is reviewed. Sugden (1995) suggests that

in such a model, there can be a stationary state of convention

coexistence only if interaction is non-uniform across social space. This

paper shows that an alternative definition of conventions, which links

conventions to actions rather than expectations, permits convention

coexistence when interaction is uniform.
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Introduction

The old adage "When in Rome, do as the Romans" advises us to adopt the

behavioural patterns of the people in whose presence we find ourselves. Whether of

necessity or for pleasure, the proverb suggests that it is somehow advantageous to

mimic the actions and mannerisms of our social surroundings. The proverb thus

prescribes a change in behaviour as we move from one social sphere to another, say,

from Rome to Paris, from the cinema to the theatre, from themail room to the board

room and so on. In chameleon-like fashion, we should change our language from

Italian to French in the first case, our code of dress from casual wear to formal wear in

the second, the formality of our speech from less to more in the third case.

How do the behavioural patterns we observe come into existence in the first place?

Why do individuals who find themselves in similar social surroundings often share a

common way of doing things; speaking the same language, wearing similar clothes,

employing common means of exchange such as money, and using common standards

of measure? The evolutionary approach suggests that these conventions form through

the repeated interaction of individuals. The basic idea is as follows. If there is some

advantage to acting in a manner similar to others, and if a shared history of actions is

used as a gauge of how others will act, then present actions will reflect past actions,

and over time a pattern could form in which one way of acting becomes dominant.

According to this line of thinking, then, interdependent individual actions form a

collective pattern, a convention, through the indirect observance of precedent. In

Rome you speak Italian because it eases communication with others who, based on

what you know about Rome, are more likely to speak Italian than any other language. l

Evolutionary models of learning adopt the above perspective in one form or another,

to explain how agents who adapt to or learn from the actions of their environment, can

end up using the same type of action. In the model of Kandori, Mailath and Rob

(1993), agents adapt by choosing a best reply to the distribution of actions in the

l According to this perspective, agents coordinate by watching the past actions of each other, rather
than by communicating with each other. This approach is therefore better suited to situations where
communication is costly relative to the cost of switching between different actions. In the current
example, we are therefore implicitly assuming that travellers are sufficiently well versed in different
languages as to make communication on which language to use a waste.
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population in the preceding period. Young (1993, 1998), on the other hand, assumes

that agents observe a limited sample of the actions taken in a given number of

preceding periods, and choose a best reply to this sample. Both Kandori et al and

Young do in fact have even greater ambitions than showing that one convention or

another will arise through the adaptation of agents, they also want to establish which

convention will be chosen. To this end, they introduce a small probability of error into

the strategy implementation of agents, and show that as this error probability grows

arbitrarily small, one particular convention might be observed with near certainty in

the very long run. For populations playing 2x2 coordination games, both Kandori et al

and Young obtain the result that the convention thus selected entails play according to

the risk dominant equilibrium of the game, as defined by Harsanyi and Selten (1988).2

The models of Kandori et al and Young are global interaction models, where an agent

has a positive probability of interacting with any other agent in the population.'

However, Ellison (1993) shows that the risk dominant equilibrium is also selected in a

local interaction model where agents have fixed locations on a circle and adapt to the

actions of a limited set of neighbours only, adaptation taking a form similar to

Kandori et al. Judging from the results of this model, local interaction seems to leave

little room for differences in conventions across locations. These results are, however,

due to the persistent errors in the strategy implementation of agents. There exist local

interaction models without this particular feature that do permit convention

coexistence in simple coordination games. Anderlini and Ianni (1996) assume that

errors only occur when agents attempt to use a different strategy than they did in the

preceding period, which produces a non-ergodic dynamic process whose absorbing

states do in some cases contain different strategies at different locations. In a model

without implementation errors, Goyal and Janssen (1997) assume that agents can at

some cost choose both strategies, thus always achieving coordination, and show that

for intermediate cost levels, convention coexistence can be a stationary state.

2 Note that for more complicated games, the models of Kandori et al and Young might differ in their
predictions of the very long run outcome, as demonstrated by Jacobsen, Jensen and Sloth (2000).
Sometimes the term uniform, rather than global, is used to describe interaction of this kind, see e.g.

Ellison (1993). As the term uniform interaction is used in another context here, I choose the term global
interaction to avoid confusion.
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On the other hand, we have local interaction models which deem contagion of a

particular strategy throughout a population likely. Blume (1995) shows that if there is

spatial variation in the initial condition and randomness in the order in which agents

revise their strategies, then we get coordination on the risk dominant equilibrium. Lee

and Valentinyi (2000) similarly prove that if initially each agent has a positive

probability of playing the risk dominant strategy and the population is sufficiently

large, the risk dominant equilibrium is realized almost with certainty. In a more

general setting, Morris (2000) shows that for any local interaction structure, there

exists some contagion threshold, and coexistence is possible if agents do not choose to

play according to the risk dominant equilibrium, whenever the probability with which

their opponent does so is below this threshold.

A common feature of all the local interaction models discussed above, is that agents

have fixed locations in some social space. The proverb "When in Rome, do as the

Romans" suggests, however, that there is some manner of local interaction that these

models do not properly address. The proverb advises a change in behaviour as we

move from place to place, and we therefore need mobile agents to analyze social

adaptation of this kind. Sugden (1995) presents a model in which interaction is global

in the sense that agents have a chance of meeting all other agents in a population, yet

local in the sense that each meeting has a random location in a social space. Agents

are matched repeatedly at varying locations to playa coordination game, and adapt to

the past history of play at the location at which they find themselves. To make the

evolution of play at different locations interdependent, agents are assumed to have an

imperfect understanding of their current location. Sugden concludes that in this

model, a coexistence of conventions is possible if and only if the frequency of

interaction across social space varies in a certain way. If there is no variation, i.e. if

interaction is uniform across locations, there can be no coexistence of conventions.

In this paper, I argue that we can expand Sugden's coexistence result to include the

case of uniform interaction without unduly altering the fundamental structure of his

model. Specifically, the result that coexistence is impossible under uniform

interaction hinges on a definition of conventions that focuses on the expectations

rather than the actions of agents. I show that if we adopt a more reasonable definition

based on what agents do rather than what they expect others to do, a coexistence of
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conventions is possible even if there is no spatial variation in the frequency of

interaction. With a different and weaker definition of conventions, we thus strengthen

the case for coexistence initially made by Sugden.

The paper is organized as follows. In the next section, Sugden's model of convention

formation is outlined. In section three, his definition of a convention is reviewed, and

his results on coexistence are derived, with a detailed look at why coexistence is

impossible when interaction is uniform. In section four, the main reasons for

challenging Sugden's definition of a convention are given, and an alternative

definition is presented. Section five shows that under this alternative definition,

convention coexistence is possible in the case of uniform interaction. A final section

raises the important point ofrobustness of the coexistence outcomes.

Sugden's spatial model of convention formation

To intuitively understand the model presented by Sugden (1995), let us use a simple

example to sketch the situation facing the agents of the model and the manner in

which they behave. Suppose you have been invited to a party, and have to decide

what to wear. You want to blend in with the other guests, so the first thing you do is

form an opinion of who else is likely to come, and what they are likely to wear. You

know the identity of your hosts, and who they are likely to invite, but this still leaves

you with only an imprecise idea of the mix of people you will face at the party.

Suppose that in the past you have observed that the way people dress depends on

certain of their personal characteristics, let us say their age. You then combine your

imprecise understanding of the average age of the people invited with your

expectation of how people of that age will dress, and choose the garment that best

matches the resulting estimate.

Now, the way you and others dress at this party, influences the ideas you and others

have about what people wear what kind of clothes. So the way you and others dress

for the next party with a similar mix of people, will be influenced by what people

wear at this party. Moreover, since everyone has an imprecise idea of the mix at this

party, they might adapt to different ideas of the average party-goer. The garments
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normally worn at parties with one mix of people might therefore influence the

garments worn at parties with a different mix of people. The kind of question

Sugden's model is designed to answer, is whether this willlead to a sitation in which

the code of dress is the same for all parties regardless of the age of those invited, or

whether we can have a stable situation in which dress codes vary with age.

Sugden frames this basic idea in terms of a model in which agents are repeatedly

matched to play a coordination game, where each stage game has a random location

in a social space. The players do not know the exact location of their game, instead,

they receive a signal of their location which is close to but not necessarily spot on

their actuallocation. The players have a common understanding of the past pattern of

play at the various possible signals, and they are able to compute a probability

distribution for their opponent's signal given the signal they themselves have

received. Based on this information, each player calculates the probability with which

his opponent will choose either strategy, and chooses the strategy which maximizes

his expected payoff.

In more formal terms, consider a large population of identical agents. In each period,

a pair of agents is drawn at random from the population to play the following game

Player 2

A B

A a,a c,d
(Gl)

Player 1
B d,c b,b

We assume that a> d and b > c, which makes (Gl) a coordination game with two

Nash equilibria in pure strategies, (A,A) and (B,B). Moreover, we assume that
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a - d > b - c , which implies that (A,A) is the risk dominant equilibrium as defined by

Harsanyi and Selten (1988).4

Players choose the strategy that maximizes their expected payoff. From the above

payoff matrix, we see that a player is indifferent between strategies A and B if the

probability with which his opponent chooses A is a ,where

b-ca=------
(a-d)+(b-c)

(1)

For probabilites greater than a, players prefer strategy A. And for probabilities lower

than a , they prefer strategy B. Note that since strategy A is risk dominant, a < 0.5 .

This implies that players may choose strategy A even if the probability with which

their opponent does so is below 50%. In a sense, the players are more easily

persuaded to choose strategy A than strategy B, as the former strategy requires a

lower probability that their opponent acts similarly.

Each game is assigned a random location in a social space. Social space is continuous,

consisting of all points on the real line from ° to 1. The location of a game is a

random variable y in the interval [0,1]. The probability that a game is assigned to a

location less than or equal to y, is represented by F(y). The corresponding density

function f(y), which denotes the frequency of interaction at each location, is

assumed to be continuous, with f(y) >° for all yE [0,1]. In other words, all points on

the real line from ° to 1, have a positive probability of being host to the game in any

given period.

4 Harsanyi and Selten (1988) define risk dominance in the following way. Consider any 2x2 game with
two strict Nash equilibria U and V,where the losses to players I and 2 from unilaterally deviating from
the equilibria are (ul' u2) and (VI' v2) , respectively. U risk dominates V if Ul • u2 > VI • v2' and V
risk dominates U if the opposite inequality holds.
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Figure l. Social space, location of games and distribution of signals

Each player receives a signal z of the location of the game. Figure 1 depicts the

probability distribution of signals, given the location y of a game. The signal of a

player never falls more than a small distance v from the true location y of a game.

Signals closer to y do not have lower probabilities than signals further away from y,

and signals equally far from yare equally probable. Formally, the distance between a

signal and the true location of a game, z - y, is a random variable with density

function e(z - y). For some small positive v, e(z - y) > ° if and only if

z - y E (- v,v). The density function e(z - y) is continuous, symmetric around a

mean of 0, non-decreasing in the interval [- v,O] and non-increasing in the interval

[O,v]. The signals of the two players are assumed to be stochastically independent.

Note that if the game is played at a location less than v from ° or 1, players may

receive signals lower than °or higher than 1. The signal space is thus wider than the

social space, and contains all points in the interval [- v,l + v] .

Knowing the distribution of games in social space, and the distribution of his signal

around the true location of a game, a player can compute a probability function for the

true location of a game given his own signal. A player is also aware of the distribution

of his opponent's signal around the location of the game, and can calculate a

probability function for the signal ofhis opponent given his own signal. Let H(xlz)

be a cumulative probability function which states the probability that the signal of his

opponent is less than or equal to x, given his own signal z. The corresponding density

function h(xlz) thus represents the probability that the other player receives signal x

when a player receives signal z. Note that since a player's signal is at most a distance

v above or below the location of a game, the signals of two players are at most 2v
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apart. The function h(~z) is thus positive if and only if x E (z - 2v,z +2v), i.e. in an

interval ofwidth 4v.

A player expects his opponent to conform to past behaviour at the signal his opponent

has received. There is thus a kind ofbounded rationality at play, where players expect

others to make simple decisions based on their signals, while they all actually let more

complicated evaluations of their opponent's actions determine their own. A state of

play function gt (z) denotes, for all feasible signals z E [- v,l + v], the probability that

a player receiving signal z at time t will choose strategy A. This function captures past

play in the sense that it increases for signals at which A is chosen, reaching a

maximum of 1 after a finite number of periods in which A is played repeatedly. For

signals at which B is chosen, the state of play function decreases and reaches a

minimum of O after a finite number of periods where B is repeatedly chosen. We can

thus define the state space n as

n = {g(z): Os g(z) s 1, \::jzE [- v,l + vD (2)

Weighing the probabilities g(.) that strategy A is chosen at different signals with the

probabilities hqz) that an opponent receives these various signals, a player arrives at

a probability that his opponent chooses A given his own signal z. Formally, the

probability 7r(z) that your opponent will choose strategy A when you receive signal z

is

7r(z) = J h(~z)g(x)dx (3)

Maximizing expected payoffs, a player thus chooses strategy A if 7r(z) > a, and B if

7r(z) <a.

The choices of the players in turn feed into the state of play function, and potentially

influence play in future periods. We are interested in the stationary states of the

system, which can be defined as follows.
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DEFINITION 1

A state g(z) e il is a stationary state if and only ifthefollowing holds:

lfg,(z)=g(z) then gs(z)=g(z) for all s>t and all ze[-v,l+v]

In other words, we are at a stationary state when the state of play function stays the

same forever after we have reached this state.

Uniform interaction and coexistence

In the context of the above model, Sugden suggests that a convention is realized at

some signal z (or as he puts it, universally followed at z), when two conditions are

met. Firstly, a player receiving signal z must observe the convention with certainty.

Secondly, the opponent of a player receiving signal z must observe the convention

with certainty. In other words, we have an A-convention when for some signal z, both

g(z) and 1l'(z) equal one. Similarly, we have a B-convention when for some signal z

both g(z) and 1l'(z) equal zero. Finally, to have a coexistence of conventions we

must have an A-convention at some signal, a B-convention at some other signal, and

this state of play must be a stationary state.

Interaction is uniform when the frequency of interaction at each location is the same,

f(y) = 1 for all y. In any given period, then, a game has an equal chance of being

assigned a location anywhere on the real line from O to 1. With uniform interaction,

and given the above definition of a convention, no state in which there exist two

different conventions can be a stationary state, as implied by the following

proposition.

10



PRoposmONl

Suppose f(y) = 1for all y.

If g(.) is a state of play function with the following properties for some signals

z' ,zlte [- v,l + v]:

i) g(z) = 1for all z e (z' ,zit)

ii) g(z) ''Id for some z (i!: (z' ,zit)

iii) z"-z' ~ 4v or [zlt-z' = 2vand z' = -v] or [zlt-z' = 2v and zit= 1+ v].

Then g(.) is not a stationary state.

A formal proof of the proposition is given in the appendix, as are the proofs of later

propositions.

Proposition 1 rules out coexistence in the following way. For an A-convention to

exist, there must be some signal z at which a player is certain that his opponent

chooses A, i.e. n(z) = 1 for some z e [- v,l + v]. From equation (3), we see that this

implies that A must be played with certainty, g(.) = 1, at all signals his opponent has a

positive probability of receiving. Since the signal of his opponent can fall anywhere

within a distance of 2v from his own, this means that A must be played with certainty

in a region of width 4v.5 However, from proposition 1 we see that if A is played with

certainty in a region of this width, we are not at a stationary state if somewhere else A

is not played with certainty. With uniform interaction, then, a state in which there is

an A-convention somewhere but not everywhere, is not stationary.

There is a simple intuitive reason for this result. Consider a state in which A is played

with certainty at all signals between z' and zit, where z' and zit are at least 4v apart.

A player receiving a signal at the edge of the region, say at z', calculates a probability

distribution h(~z') for his opponent's signal which can be illustrated as follows

5 If we are considering a signal at the edge of signal space, z = -v or z = l + v , then the region need
only be 2v wide. This is reflected in part iii) of the proposition.
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h(~z')

(_____ 3"........."....----
g(z) = 1

Figure 2. Probability distribution of opponent's signal at edge of A-region

When interaction is uniform, h(~z') has a nice symmetric form around z'. For a

player receiving signal z', half the bulk of h(~z') falls within the region in which A is

played with certainty. In other words, for a player receiving a signal at the edge of a

region where A is played with certainty, the probability that his opponent receives a

signal inside the region is 0.5. From equation (3), this means that the probability with
,

which his opponent plays A, 7r(z'), is at least 0.5. Since a < 0.5 and thus 7r(z') >a,

the player at the edge therefore strictly prefers strategy A. Moreover, by continuity,

the same is true for a player receiving a signal ever so slightly to the left of z'. The

state of play function g(z) therefore increases for signals at the lower edge of the

region. A similar argument tells us that players receiving a signal at the upper edge of

the region z", also strictly prefer strategy A. The region in which A is played with

certainty thus expands in both directions, and keeps doing so until A is played with

certainty throughout signal space.

If the distribution of games is uniform, then, the only stationary state which contains

an A-convention is a state which contains only an A-convention. Any state in which

there is both an A-convention and a B-convention eventually collapses as the space

commanded by the A-convention gradually expands. In a sense, the definition of an

A-convention used by Sugden, requires a region where A is played which is above the

critical size at which conventions are able to coexist when interaction is uniform.

When interaction is not uniform, however, two conventions can stably coexist. Note

that if there are variations in the frequency of interaction across locations, then the

probability distribution depicted in figure 1 need not be symmetric. If the variations

are of a certain order, a player getting a signal at the edge of a region where A is

played with certainty, might then calculate the probability ofhis opponent's getting a
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signal within the region as being equal to a . In this case, if B is played with certainty

to the other side of his signal, the player is indifferent between strategies A and B.

Neither region thus expands, and we can have a stationary state with coexistent

conventions.

What constitutes a convention - actions speak louder than expectations

The definition of convention existence used by Sugden prevents conventions

coexistence when interaction is uniform. A convention only exists if there is some

signal where a player can be sure that his opponent observes the conventional

strategy. And if there is a signal where a player can be sure his opponent chooses the

risk dominant strategy A, then no other convention is stable. The element of certainty

in expectations used in the definition of conventions is thus what kills coexistence. It

is therefore fitting to ask whether it is reasonable to put so much emphasis on

expectations when defining conventions.

Intuitively, the definition used by Sugden seems to include more than a definition of

conventions need include. A commonly cited definition of conventions due to Lewis

(1969) suggests that "a convention is a pattern ofbehavior that is customary, expected

and self-enforcing". A convention denotes a behavioural pattern, a regularity in the

actions taken by a set of agents. The basic units that form a convention are thus the

actions of individual agents, not their expectations. Expectations do form a basis on

which to choose actions, but it is regularities in the actions chosen that are of interest,

not regularities in expectations. Expectations are only of derivative importance, in

perpetuating the regularities in actions needed for a convention to persist.

This is certainly the VIew taken in other parts of the evolutionary literature.

Conventions are defined on the basis of state of play vectors, matrices or functions,

and expectations are an element ofwhat keeps conventions in place (see e.g. Young,

1993, 1996). A conventional definition of conventions would thus focus on strategies,

and impose no stricter requirements on expectations than that they perpetuate strategy

choices. In the context of Sugden's model, this means that requiring players to be

absolutely certain their opponents choose a particular strategy, is too strict a demand
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to impose in a definition of conventions. For a player to do what has generally been

done at his signal, he need only deem it sufficiently probable that his opponent

chooses similarly. A more reasonable definition would thus substitute an idea of

sufficient probability in expectations for that of absolute certainty.

At a signal where A is generally played, g(z) = 1, players need only expect their

opponents to play A with probability 7r (z) above a , to keep playing A at this signal.

Where B is generally played, g(z) =O, we need only 7r (z) < a for B to continue

being played. We thus arrive at an alternative definition of conventions which does

not include more than such a definition need include: There is an A-convention iffor

some signal z, A is played with certainty by players at this signal, g(z) = 1, and A is

the optimal choice for a player receiving this signal, 7r(z)>a . Similarly, there is a B-. "

convention if for some signal z, g(z) = O and 7r(z)<a". In accordance with Sugden's

idea of coexistence, we have a coexistence of conventions when an A-convention

exists at some signal, a B-convention exists at another signal, and this state is a

stationary state.

Uniform interaction and coexistence revisited

Ifwe adopt the alternative definition of a convention, states of convention coexistence

can be stationary states when interaction is uniform, as the following proposition

implies.

PROPosmON2

Suppose f(y) = 1for all y.

If g(.) is a state of play function with the following properties for some signals

z',xe(v,l-v):

i) g(z) =1for all ze(z',x)

ii) g(z)=Oforall z~(z',x)

Then there exists some signal x = z" for which g(.) is a stationary state.
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The proposition says that with a uniform frequency of games in social space, a state in

which strategy A is played with certainty within some region, and B is played with

certainty everywhere else, is a stationary state provided the region where A is played

is of a certain width. Clearly, such a state meets the requirements of coexistence under

the above alternative definition. By using a more reasonable definition of convention

coexistence, we thus get a result which is stronger in the sense that it deems

coexistence possible even if interaction is uniform.

The intuition behind the proposition is as follows. Imagine that we are in a state g(.)

where A is played with certainty in some region of signal space z' to x, and B is

played with certainty at all signals outside this region. Consider a player who receives

a signal at the lower end z' of the region where A is played with certainty. The

probability distribution ofhis opponent's signal can be illustrated as follows

h(~z')

z' x~--------~-------~----------~---------_/
g(z)=1 g(z)=Og(z) =0

Figure 3. Probability distribution of opponent's signal at border between A-

and B-playing regions.

For a player receiving signal z', the shaded area represents the probability that his

opponent gets a signal in the region where A is played with certainty. The location of

x determines how large this probability is. The further away x is from z', the larger is

this probability, with a maximum of 0.5 if x is a distance 2v or more from z'. Due to

the fact that A is played with probability one between z' and x, and probability zero

elsewhere, the shaded area also equals 7l'(z'), the probability that A is played by the

opponent of a player receiving signal z'. Now, imagine that we first let x be a distance

2v above z', which implies 7l'(z') = 0.5. If we start sliding x towards z', 7l'(z')

decreases, and due to the continuity of h(~z'), at some point x = z", we get
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7r(z'} = a . The player at the border z' between two regions where A and B is played,

is now indifferent between the two strategies. Due to the fact that h(~z'} is symmetric

and the same for all signals when interaction in uniform, the player at the other border

z" is also indifferent between A and B.

For a player receiving a signal inside the region z' to z", A is the optimal strategy.

The reason is that ifwe place the centre of the h(~z}-curve anywhere between z' and

z", the weight this curve puts on the region in which A is played, is greater than ifthe

curve centred on one of the edges ofthat region. In other words, the probability 7r(z}

that your opponent plays A is greater for signals inside the region than at its edges,

and we thus have 7r(z} > a for all signals between z' and z". Moreover, a similar

argument tells us that 7r(z} < a for signals ouside this region, and the optimal choice

for a player receiving such a signal is strategy B. Consequently, for x = z", state g(.)
is a stationary state.

Concluding remarks

Sugden (1995) argues that in a model where agents are matched repeatedly to play a

coordination game, where games have a location in a social space, and players do not

know the exact location of their game, conventions can coexist only if the frequency

of interaction varies across locations. We might interpret this as saying that if

everyone acts according to the rule "when in Rome, do as the Romans" or "when at a

party, dress the age of the other party-goers", the possibility that over time codes of

conduct or dress would remain different in different surroundings, is limited.

However, this paper argues that Sugdens's definition of a convention focuses too

much on the expectations of the players rather than their actions. If instead we adopt a

definition where their actions are the key element, we get the result that coexistence is

possible even if interaction is equally frequent at alliocations in social space.

The stationary state of coexistence established above is, however, only one type of

stationary state. The state in which A is played with certainty across the space of
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signals, or the one in which B is played with certainty at all signals, are also stationary

states. Moreover, as the state of coexistence can crumble if the state of play function

is perturbed only slightly, this state might be less robust to different kinds of

perturbations than other stationary states. Ideally, we ought to test the different states

for robustness. One way to do so is to follow the approach of Young (1993) and

Kandori, Mailath and Rob (1993), and introduce a small probability that agents

choose their inoptimal strategy. However, the processes studied by Young and

Kandori et al are defined on a finite and discrete state space, and as the model studied

here has a continuous state space, their algorithm for identifying robust states is not

applicable in this case. A different way of assessing robustness which might be more

attuned to the present context, is to use the approach of Blume (1995) and see whether

variations in initial conditions make some states more likely than others.

Finally, a note on the dispersion of signals in the above model. When the dispersion

of signals v is small and interaction uniform, one can have a string of correctly sized

segments playing A in a social space where B is otherwise played. As .long as these

segments are at least 2v apart, they do not exert a joint influence strong enough to

alter the state of play. A generallesson from the above model is therefore that the

more certain players are of their true location, the greater can the variation in

conventions across social space be. Conversely, the greater is the confusion about

one's correct location, the less variation in conventions is possible. In the extreme, if v

is large in comparison to social space, there can be no coexistence of conventions,

even by the alternative definition. The impact of the dispersion of signals on the

maximum number of regions with different conventions has to do with the influence

play in one location has on play in another. The more confusion about true locations,

the greater is the range of locations that influences play in anyone location.
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Appendix: Proof of propositions

PROOF OFPROPosmON 1:

This proposition is proved by reference to theorem 2 in Sugden (1995), which

basically establishes the following:

Let g(.) be a state of play function which has the following properties for some

signals z', z"e [- v,l + v]:

i) g(z) = 1 for all z e (z', z"]

ii) z"-z' ~ 4v or [z"-z' = 2v and z' = -v] or [z"-z' = 2v and z"= 1+ v]

iii) 1-H(z1z') ~ a

iv) H(z"lz".) ~ a

If at any time t, the state of play function is g (.) , then

a) For all S>I, gs(z)=g(z)=lforall ze(z',z")

b) If l-H(z1z') >a, then for some finite s > I, gs (z) = 1 for some z e [-v,z')

c) If H(z"lz") > a, then for some finite s > t , gs (z) = 1 for some z e (z", 1+ v]

In state g(.), strategy A is played with certainty in a region ofwidth at least 4v (or at

least 2v at the edges of signal space), and players receiving signals at the edge of this

region perceive the chance of their opponent's receiving a signal inside the region as

at least a . Part a) then says that in all later periods, strategy A will keep being played

with certainty at all signals inside the region. Part b) and c) say that if a player

receiving a signal at either edge of the region deems the probability ofhis opponent's

getting a signal inside the region as strictly higher than a , then the region in which A

is played with certainty will expand at this edge.

With uniform interaction, f(y) = 1 for all y, for a player receiving signal z, the

probability that the signal of his opponent is above z is 0.5, as is the probability that

the signal is below z. Due to the fact that a < 0.5 , we thus have
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1-H(zlz) = H(zlz) >a for any signal z e [- v,I +v]. By iterated application of the

above theorem, this means that a region of width 4v in which strategy A is played

with certainty, will expand until A is played with certainty at all signals. By definition

l, this implies that a state gO fitting the description of proposition 1 is not a .

stationary state ifinteraction is uniform.o

PROOF OF PROPosmON 2:

When fey) = 1 for ally, h(~z) has the following properties:

i) h(xlz) is symmetric around mean z

ii) h(xlz) is non-decreasing in the interval [- v, z)

iii) h(~z) is non-increasing in the interval (z,I + v]

iv) h(z'+alz') = h(z"+alz") for all a e (- 2v,2v) and z' ,z"e (v,I- v)

Consider the interval (z', x). Clearly:

n(z') = H(~z')-H(z'lz') for x;;?:z' (Al)

Since H(~z) is continuous in x, n(z') is continuous in x, and has a maximum value

of 0.5 and a minimum value of O. There thus exists some point x = z" at which

n(z') =a .

Moreover by properties i) and iv):

n(z") = H(z'1z")-H(z1z")= H(z'1z')-H(z1z') = n(z') (A2)

19



Finally, when f(y) = 1:

B7r(a) B[H(z'1a-H(z1a)] 1 1
___;,_;_= = h(z a)-h(z' a)
Ba Ba

(A3)

Thus, from properties i), ii) and iii), 7r(a) is non-decreasing for a E (- V, Z'~Z") and

non-increasing for a E (z'~Z" ,1+ v). Which implies:

7r(a) ~ 7r(z') for all a E (z' ,Z") (A4)

7r(a) ~ 7r(z') for all a E [z' ,Z"] (AS)

For a state of play function g(.) such as that of proposition 2, agents between z' and

z" continue playing A, agents below z' or above z" keep playing B, and agents at z'

or Z" are indifferent. All ofwhich makes g(.) a stationary state by definition 1.0
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Abstract

A two-population evolutionary model of learning is proposed where
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interaction ranges from complete viscosity to complete dispersion. The

long run stochastically stable states under complete viscosity match

those of Kandori, Mailath and Rob (1993). With complete dispersion,

the long run stochastically stable states match those of Hehenkamp

(2001). With fluid interaction, there is a possibility of convention

coexistence. Welfare properties of the long run stochastically stable

states are examined using utilitarian and Rawlsian measures of welfare.
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Introduction

In a biological context, Hamilton (1964) defines viscosity as the tendency of

individuals to have a higher rate of interaction with their close relatives than with

more distantly related individuals. Myerson, Pollock and Swinkels (1991) formulate

this idea in terms of a biological game, where an agent has a higher probability of

meeting any agent sharing his strategy than any agent using a different strategy.

Taking the limit as the degree ofviscosity tends to zero, Myerson et al defme a set of

fluid population equilibria. Since the set of fluid population equilibria consists only of

Nash equilibria, but not of all Nash equilibria, their model can be viewed as a

contribution to the refinements literature. Moreover, since all evolutionarily stable

strategies are contained as a subset in the set of fluid population equilibria, Myerson
I

et al have also coined a concept of evolutionary stability which serves as an

alternative to that of Maynard Smith and Price (1973).

Others have explored the notion of viscosity in ways more or less similar to that of

Myerson et al. The idea of strategy correlation, that agents using the same strategies

meet more frequently than agents using different strategies, has been explored by

Frank (1988) for the prisoner's dilemma game and by Skyrms (1994, 1996) for a

larger set of games. Models of local interaction, most notably those of Ellison (1993),

Blume (1993, 1995) and Anderlini and Ianni (1996), capture a form of viscosity

where agents have a fixed location and interact only with a limited set of neighbours.

Oechssler (1997) suggests a model in which a population is divided into groups that

interact only internally, but where agents can occasionally leave one group for

another. Finally, viscosity is frequently used as a justification for introducing mutant

clusters into evolutionary models, such as in Binmore and Samuelson (2001).

Whereas Myerson et al confine themselves to biological games, the aforementioned

contributions forcefully underscore the potential importance of viscosity in human

interaction. What is striking, however, is that none of these contributions mention the

opposite possibility, that similar agents might in certain cases interact less frequently

than dissimilar agents, a phenomenon we might term dispersion. To appreciate the

importance of dispersive interaction, we need only think of interactions such as those

of buyers and sellers, of principals and agents, of professors and students, of males
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and females, and so on. While it is true that multi-population evolutionary models of

learning appear to adopt dispersion as a matter of course, they always do so in the

sense of full dispersion, where similar agents never interact. To name a few, Young

(1993, 1998), Hahn (2000) and Hehenkamp (2001) all assume that the members of

different groups take on distinct roles in the games played. This might prove a good

fit for pure buyer-seller relationships, but once the buyers or sellers start interacting

among themselves as well, we have a different kind of situation requiring a different

kind of analysis. Current models thus capture the cases ranging from viscosity to

fluidity, plus the extreme case of full dispersion. In order to attain "a framework

general enough to accomodate all kinds of non-random pairing" (Skyrms, 1996), we

ought therefore attempt to fill the gap between fluidity and full dispersion.

In this paper, I present an evolutionary model of learning which accomodates the full

range of interaction of nyo distinct populations, from viscosity through fluidity

through dispersion. The basic learning process is similar to that of Kandori, Mailath

and Rob (1993), as elaborated on by Kandori and Rob (1995), Hahn (2000) and

Hehenkamp (2001). These models basically either assume that members of a

population only interact with each other (as in the former two contributions) or only

interact with members of the other population (as in the latter two contributions). The

gap between these two extremes is partly filled in one specific sense by the local

interaction model of Ellison (1993), which employs a learning process similar to that

of Kandori et al. The below model adopts a more flexible view of non-random

interaction, and attempts to fill the entire gap between these specific models of

learning.

The paper proceeds as follows. In the next section, the basic model is presented. Two

populations of agents play a game of coordination, where agents from different

populations prefer different equilibria. Every so often, agents are called upon to revise

their strategies, choosing a best reply to the strategy profile of the preceding period.

On rare occasions, agents choose a strategy at random. As the probability of such

random choices approaches zero, we study the long run probabilites of different

population states. States that have a positive probability ofbeing observed in the very

long run when noise is virtually absent, we call long run stochastically stable,

adopting the term used by Ellison (2000). The three subsequent sections establish
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long run stochastically stable states when interaction is dispersive, fluid and viscous,

respectively. Interestingly, the results obtained with complete dispersion mirror those

ofHehenkamp (2001). Similarly, the results obtained with complete viscosity are akin

to those of Kandori, Mailath and Rob (1993). In a sense, then, the results of

Hehenkamp and Kandori et al emerge as special cases in the below model. In the case

of fluid interaction, I prove that a state where different populations use different

strategies can be long run stochastically stable. This possibility of convention

coexistence marks a departure from the results of previous models of learning with a

similar mutation structure, and adds to the literature on coexistence initiated by

Sugden (1995).1 In a final section, I note that in the evolutionary literature, the debate

on welfare properties of long run stochastically stable states has largely been limited

to games of common interests, such as in Bergin and Lipman (1996). This section

suggests that utilitarian and Rawlsian measures of welfare can be employed in models

of conflicting interests, and reports some results on how the long run stochastically

stable states fare when gauged by these measures.

Themodel

In its literal sense, the term viscous is used to describe a liquid that is thick or sticky,

and thus hard to pour. Viscosity is thus an apt term for interaction where agents

largely stick to a limited set of partners or opponents. By contrast, the term fluid

describes a liquid that flows freely or easily. The analogy of fluid interaction thus

implies that an agent interacts just as easily or frequently with one opponent as with

another. To expand the dichotomous imagery used by biologists to describe

interaction, add the term dispersion, which suggest that agents of the same type scatter

to interact more frequently with agents of a different type.

An interpretation of the above three terms can be made within the confines of a two-

population model. Consider two distinct populations 1 and 2 of finite sizes NI and

l Anderlini and Ianni (1996) assume that errors only occur when agents attempt to use a different
strategy from that of the preceding period, which implies a non-ergodic dynamic process where in
some cases coexistence is an absorbing state.
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N2, respectively. The following figure provides a description of the three different

modes of interaction.

Population 1

o
Population 2

o
Figure 1. Structure of interaction

As the arrows indicate, the members of a population can interact with agents from

their own population, and/or agents from the other population. If populations only

interact internally, Le. members from different populations never meet, interaction is

completely viscous. In terms of evolutionary models of learning, Kandori, Mailath

and Rob (1993) in essence adopt this assumption by studying single-population

interaction. Conversely, if populations only interact externally, i.e. members of the

same population never meet, interaction is completely dispersive. Young (1993) and

Hehenkamp (2001) propose multi-population models of learning that exhibit this

feature. If agents interact as often with any member from one population as from

another, interaction is fluid, which is analogous to the definition suggested by

Myerson, Pollock and Swinkels (1991).

Specifically, the notion of a round-robin tournament is used to describe interaction. In

a round-robin tournament, agents are paired a number of times so that each agent

meets each other agent exactly once. Tournaments of this kind are an easy way of

having agents interact with the population average, which simplifies the modelling of

strategy revision, as discussed below. In the current model, however, we want the

frequency with which agents interact with members of their own population and

members of the other population to vary. To this end, we imagine that an agent

participates in a series of round-robin tournaments with his own and the other

population. In each period, agents play r rounds of round-robin tournaments with their

own population, and s rounds of tournaments with the other population. Each agent
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thus interacts with the average of each population, but not necessarily with the

average across populations.

The quotient p = is captures the frequency with which agents interact with any

member of their own population relative to any member of the opposite population,

and p is thus a measure of the degree of viscosity (or dispersion) in interaction.

Interaction is fluid if an agent plays an equal number of rounds with each population,

i.e. if p = 1. Ifhe plays more rounds with his own population, i.e. p> 1, interaction is

viscous, where p ~ 00 implies complete viscosity. Fewer rounds played with your

own population, p < 1, implies dispersive interaction, and complete dispersion as

p ~ O. For p e (0,00), this formulation in principle allows the study of any form of

interaction from completely dispersed through completely viscous.

Another way of modelling interaction that would also be amenable to the notion that

agents interact with the population average, is to assume that all agents are paired

once, and that the probability of meeting any agent from the same population is the

same, though the probability ofmeeting agents from different populations may differ.

The problem with this approach is that populations of different sizes would then

exhibit different levels of viscosity, and the interaction of the larger population could

never reach a level of full dispersion. To understand why, assume that NI = 100 and

N2 = 50. With complete dispersion, the probability of meeting a member of the

opposite population is one, which means that if population 2 exhibits full dispersion,

all fifty members ofthat population are paired with members ofpopulation 1. To add

up, this must mean that 50 members of population 1 interact with members of

population 2, which means that the probability of meeting a member of the opposite

population is only 2/3 for agents from population 1. Nor can that probability be raised

above 2/3, since there are no more potential agents from population 2 with whom

agents from population 1 can be paired.

The chosen way of modelling matching also differs from that of Myerson et al. Their

basic take on viscosity is to say that with probability p, an agent gets an opponent

from his own population, whereas with probability (1- P) his opponent is drawn at
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random from the overall population, Le. both his own and the other population. The

main drawback to this approach is that it only allows the study of the cases ranging

from fluid interaction (P -+O) to completely viscous interaction (P -+ l). There is no

natural way in which to expand this framework to the case of dispersive interaction.

In an appendix, however, I show that for the range covered, matching according to

Myerson et al yields results similar to those of the round-robin matching regime

proposed above.

Given the round-robin matching regime, matched agents play a game with two

strategies A and B. The game is essentially one of coordination, where a player

prefers to use the same strategy as his opponent. However, we assume that the

populations differ with respect to which pair of similar strategies is preferable, there is

thus a conflict of interests between populations. Hence, regardless of the identity of

his opponent, let an agent from population I receive payoffs according to the

following matrix, where a > 1

Opponent

A B

A
Player from
population I

B

a O
(Pl)

O I

Similarly, the payoffs to an agent from population 2 can be represented as, for b > 1

Opponent

A B

(P2)
A I O

Player from
population 2

B O b
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Thus, whenever two members of population 1 are matched, they play a coordination

game, where they both prefer strategy profile (A,A).

Player from
population 1

A B
(Gl)

A a,a 0,0
Player from
population 1

B 0,0 1,1

The coordination game is pure in the sense of Kandori and Rob (1995). Equilibrium

(A,A) is thus both Pareto dominant and risk dominant/

Similarly, when two members of population 2 meet, they playa pure coordination

game where both prefer (B,B)

Player from
population 2

A B

(G2)
A 1,1 0,0

Player from
population 2

B 0,0 b,b

In this game, equilibrium (B,B) is Pareto and risk dominant.

2 Harsanyi and Selten (1988) define risk dominance in the following way. Consider any 2x2 game with
two strict Nash equilibria U and V,where the losses to players 1 and 2 from unilaterally deviating from
the equilibria are (Ul' u2) and (VI' V2) , respectively. U risk dominates V if Ul • U2 > VI • V2' and V
risk dominates U if the opposite inequality holds.
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Finally, when members of opposite population interact, they playa battle of the sexes

game, where the agent from population l prefers profile (A,A) and the agent from

population 2 prefers (B,B)

Player from
population 2

A B

(G3)
A a,I 0,0

Player from
population l

B 0,0 I,b

In game (G3), no equilibrium Pareto-dominates the other. Without loss of generality,

we assume that a> b , which makes equilibrium (A,A) risk dominant in this game.'

Population l thus has a stronger preference for its preferred strategy profile than the

corresponding preference of population 2.

Denote by z: the number of agents playing A in population l in period t, and let z~
represent the number of agents playing A in population 2 in period t. The vector

z' = (z: , z~) thus captures the state of the system at time t. The state space O is

discrete and finite

(1)

To ease subsequent discussion, let ZAA ==(NpN2) represent the state in which all

agents play strategy A, and let zSs == (0,0) capture the state in which all play B.

Similarly, in state ZAS == (NI ,O) all members of population l play A and all members

of population 2 play B. Conversely, in state Z SA == (O, N 2) B is played byeveryone in

population 1 and A is played byeveryone in population 2.

3 Cardinal interpersonal comparability ofpayoffs must be assumed for this statement to be meaningful.

9



The state vector z' evolves as follows. In-between periods, each agent has a

probability 8 E (0,1) of being called upon to revise his strategy. If called upon, an

agent chooses the strategy which maximizes his expected payoffs in the next period,

given a belief that all other agents will playas they did in the preceding period. We

thus have a stochastic best-reply learning dynamic, where agents are myopic in only

heeding the most recent actions of others. Moreover, the dynamic is what Hehenkamp

(2001) defines as individualistic, since it leaves open the possibility that none or some

or all agents in a population revise at any given time.

From payoff maximization, it follows that a revising agent from population 1 chooses

strategy A if the relative frequency with which he expects to encounter A-players

exceeds al æ _1_, where al <0.5.An agent from population 1 therefore chooses A
l+a

if

(2)

lfthe opposite relation holds, an agent from population 1 chooses B.

Similarly, a revising agent from population 2 chooses strategy A if the frequency with

which he meets A-players is above a2 æ __!!_, where 0.5 < a2 < 1-al. A revising
l+b

agent from population 2 will thus choose strategy A if

(3)

Conversely, B is chosen if the opposite relation holds. In the case where agents are

indifferent between A and B, i.e. (2) or (3) hold with equality, we may assume a coin

toss determines the strategy chosen.
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Inequalities (2) and (3) capture the directions of change in the model. For ease of

subsequent exposition, rewrite these two inequalities as:

(4)

(5)

By means of these inequalities, we can draw a stability diagram for the system. Figure

2 provides an illustration of such a diagram:

L
r

Figure 2. Illustration of stability diagram

The number of A-players in each population, Zl and Z2' is measured along the

respective axes. This implies that ZBB lies at the origin, and ZAA at the upper right

comer of the rectangle formed by the axes and population sizes. Similarly, ZAB is at

the lower right comer of the rectangle, and ZBA at its upper left comer. The thicker of

the two sloping lines represents the demarcation line between areas where Zl

increases (above the line) and decreases (below the line). The thinner of the two lines

in the same manner demarcates the areas where Z2 increases (above) and decreases
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(below). An absorbing state is a state which once reached, the process never leaves. In

the case depicted in figure 2, there would be three absorbing states, ZAA, Z88 and

zAB. Note that the assumption that agents toss a coin when indifferent implies that

states along the demarcation lines are not absorbing.

From inequalities (4) and (5) we see that the two lines of demarcation have inverse

slopes, p and fp, respectively. And as p changes, the two lines pivot around the

points (atNpatN2) and (a2Nl'a2NJ, respectively. As p increases, the thicker line

gets steeper, and as p ~ 00 it becomes vertical. Remember that an increased p means

that agents interact more frequently with their own population. From a state in which

members of population 1 are indifferent between strategy A and B, if the number of

A-players in population 1 is reduced by one, the number of extra A-players needed in

population 2 for population 1 to remain indifferent, increases with p. In other words,

the more frequently you interact with your own population, the larger a change in the

behaviour of the opposite population is needed to offset a given change of behaviour

in your own population. Conversely, as p decreases, a given change in the behaviour

of your own population is offset by smaller changes in the behaviour of the opposite

population. Hence, the thicker line in figure 2 gets flatter as p decreases, and for

p ~ O it becomes horizontal. A similar line of arguments applied to population 2 tells

us that the thinner line grows less steep as p increases, grows horizontal for p ~ 00 ,

and vertical for p ~ O.

Finally, to gauge the relative attraction of multiple absorbing states, we introduce

mutations into the decision making of agents. This takes the form that in each period

each agent has a small probability c of choosing strategies at random from a uniform

distribution over the two strategies. This random choice then trumps any previous

choice of strategy. In sum, then, we have a perturbed stochastic process. For a given

level of viscosity p, let P(p, c) be the transition matrix implied by the above learning

process including mutations. In other words, element ij of P(p, c) is the probability

of going from state i to state j from one period to the next. For any given p, we can

then represent the process by a transition matrix P(p, c) on a state space n, for
which we use the shorthand formulation (n,P(p, c».
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We are interested in where the process (n,p(p,c» goes in the very long run when

noise is very small. For given p, we therefore study the probability distribution over

population states in n,as time goes to infinity and noise c to zero. States that have a

positive probability in this distribution, are what Kandori, Mailath and Rob (1993)

call long run equilibria, and what Young (1993) calls stochastically stable states.

Below, the compromise term of long run stochastic stability proposed by Ellison

(2000) is used to denote such states. Standard methods of computing long run

stochastically stable states are used in the following analysis of the model, and

described in more detail in an appendix.

Dispersive interaction

Let us start by analyzing the case where interaction is dispersive, in other words when

interaction with any member of the opposite population is more frequent than with

any member of your own population. In the limit, when interaction with your own

population is so rare as to be relatively non-existent (p ~ O), dispersion is complete.

The following proposition describes some key properties of the long run behaviour of

the process in this case.

PROPOSITION 1:

Consider theprocess oflearningwith noise (n,p(p, c», and suppose p ~ O. Then:

i) For NI = N2 sufficiently large, ZAA is the unique long run stochastically stable

state.

ii) For NI sufficiently large, there exists some N2 >NI such that for all N2 > N2,

ZBB is the unique long run stochastically stable state.

A formal proof of the proposition is given in an appendix, as are the proofs of later

propositions.

For p ~ O, interaction takes the form of agents from different populations playing

the battle of the sexes game (G3). Proposition l i) basically states that if populations
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are equally large, players conform to the risk dominant equilibrium (A,A) of this

game in the long run. However, as part ii) of the proposition points out, if the

population preferring the risk dominated equilibrium (B,B) is sufficiently much larger

than the other population, the risk dominated equilibrium is played in the long run. .

These results are essentially the same as those captured by proposition 2 in

Hehenkamp (2001).

The intuitive reason for the above results can be explained as follows. When p ~ O,

inequalities (4) and (5) reduce to:

(6)

(7)

In a stability diagram, this implies that the line demarcating increases and decreases in

ZI is horizontal, and the corresponding line for Z2 is vertical. As in figure 2, the thick

line in the below figure represents the former demarcation line, and the thin line the

latter.

Z
ZBA

r L

! _JZAB
~

AA

Figure 3. Stability diagram for the case of complete dispersion.
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As the diagram reveals, no matter where we start out, we eventually reach either state

ZAA or state ZBB. This includes starting points on the demarcation lines, since

indifferent agents tossing a coin can then shift the process off the lines. For p ~ O,

the unperturbed process thus has two absorbing states, ZAA and ZBB. As established

by Young (1993), for perturbed processes of the kind studied here, the long run

stochastically stable state must be one (or both) of these. In computing the long run

stochastically stable state, we note that a number of unlikely mutations are needed to

leave one absorbing state for the other. When the probability of mutations is infinitely

small, transitions between states that require more mutations are infinitely less likely

than transitions that require fewer mutations. With two absorbing states, the frequency

with which we can expect to observe either one of them in the very long run, reflects

the difficulty with which that state can be left for the other absorbing state. The long

run stochastically stable state is thus the absorbing state that requires more mutations

to leave for the other absorbing state, than vice versa.

A closer look at figure 3 tells us that to leave ZAA, enough agents must mutate to

strategy B to bring us to a state on either of the two demarcation lines. One of the

populations then has B as a best reply, and we might therefore eventually reach ZBB.

If the populations are of equal size, NI =N 2' we can represent this in figure.3 by

letting the units on both axes be of similar size. Clearly, then, we must move fewer

units to the left from ZAA to reach the thin demarcation line, compared to the number

of units we would have to move downwards from z AA to reach the thick demarcation

line. The easiest way to leave ZAA, Le. the way requiring the least mutations, is

horizontally to the left, which takes (1- a2 )NI mutations to strategy B in population

l. Similarly, to leave ZBB, we could either move upwards to the thick demarcation

line or to the right to the thin line. Clearly, with similarly sized units on both axis,

fewer mutations are needed to move up to the thick line, so to leave ZBB we need a

minimum of alN2 mutations. Since we have assumed that al <(1-a2), it is thus

easier to leave ZBB for ZAA than vice versa, which means that ZAA is long run

stochastically stable for equal population sizes.
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If population 2 is larger than population 1, N 2 >NI' we must represent the units in

figure 3 differently. We can then think of the units on the second axis as being smaller

than those on the first, agents are in a sense packed more densely on the second axis

than the first. And if the density with which they are packed on the second axis grows

sufficiently large, the number of units from Z88 upwards to the thick demarcation

line, exceeds the number of units from z AA leftwards to the thin demarcation line. In

other words, if population 2 is sufficiently much larger than population 1, fewer

mutations are needed to leave ZAA for Z88 than vice versa. This holds even if

population 2 becomes so much larger that the easiest way to leave Z88 is rightwards

to the thin demarcation line, since this always implies a greater number of mutations

than the transition from z AA to the thin line.

Incidentally, the reason why the sizes NI and N 2 of the two populations must be

sufficiently large for the above results to hold, is as follows. Imagine that each

population consisted of only one agent, NI =N2 = 1. In that case, we could leave any

absorbing state by means of a single mutation, and the criterion of long run stochastic

stability would therefore not discriminate between absorbing states. By requiring that

NI and N2 be sufficiently large, we are in effect making sure that the units on the

axes of figure 3 are sufficiently fine-grained for such a distinction between absorbing

states to be made.

Fluid interaction

When an agent interacts as frequently with any agent from his own population, as

with any agent from the other population, interaction is fluid. In the current model,

this means that an agent engages in the same number of round-robin tournaments with

beth populations, p = 1. For a revising agent, this means that the actions of all agents

in the preceding period receive the same weight in determining the optimal strategy.

Since population sizes may differ, this means that the larger population has a greater

impact on the decision of a revising agent than the smaller population. For fluid

interaction, the following proposition holds.
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PROPOSITION 2:

Consider the process oflearning with noise (O,P(p, c)), and suppose p = 1. Then:

For NI and N2 sufficiently large, there exists some a2 such that for all a2 > a2,

ZAB is long run stochastically stable.

On the face of it, proposition 2 states that if population 2 prefers strategy profile (B,B)

sufficiently strongly over (A,A), then the state in which the two populations adhere to

different conventions, ZAB, is long run stochastically stable. Note, however, that on

the assumption that a> b , (1- a) is bounded below by a2, which implies that the

upper bound of al must decrease as a2 increases. An implication of proposition 2 is

therefore that ZAB is long run stochastically stable if al and a2 are sufficiently far

apart. In other words, z AB is observed with certainty in the long run if both

populations prefer their desired strategy profiles sufficiently strongly.

The intuitive argument underlying the proposition IS as follows. With p = 1,

inequalities (4) and (5) reduce to:

(8)

(9)

The lines demarcating the areas where Z I increases and decreases, and z 2 increases

and decreases, are now parallel and have a slope of -1, with the latter line above and

to the right of the former. In the below diagram, the thick line partitions the areas

where Z I increases and decreases, and the thin line the areas where Z 2 increases and

decreases.
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Figure 4. Sketch of stability diagram with fluid interaction.

In the above figure, there are three absorbing states, ZAA, ZBB and ZAB. Note that for

p = 1, there need not be more than two absorbing states, ZAA and ZBB, since with

unequalpopulationsizes, al(NI +N2) couldexceed s.,« a2(NI +N2)-NI could

be negative. However, for given population sizes, we can construct a case in which

there are three absorbing states by increasing a2 and hence decreasing the upper

bound on al' which slides the two demarcation lines apart. At some level of a2 < 1,

we thus get lines that cross in the manner of figure 4.

The same argument can be used to explain why ZAB is the long run stochastically

stable state if a2 is sufficiently large. As before, the long run stochastically stable

state must be in the set of absorbing states. For a2 sufficiently large, there are three

absorbing states, and a long run stochastically stable one can be characterized as being

harder to leave for either of the other absorbing states, than it is to reach from the

absorbing state from which it is hardest to reach. That ZAB can have this property for

large a2' we can illustrate by examining the case where a2 ---+ 1. This implies that

al ---+ O. The demarcation lines then slide as far as they go into opposite comers of the

above figure. To leave either of the two states ZAA or ZBB for ZAB now requires only

one mutation. However, to leave ZAB for either of the two other absorbing states

requires a minimum of min {NI ,N2} mutations. For large population sizes, this means
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that it is harder to leave ZAB for either of the other two absorbing states, than it is to

leave either of the other two for ZAB. With fluid interaction, then, the state of

coexistent conventions zAB can be long run stochastically stable if populations

adhere sufficiently strongly to their preferred strategy profiles. This possibility of

coexistence marks a departure from previous evolutionary models of learning, such as

those of Kandori, Mailath and Rob (1993), Young (1993) and Hehenkamp (2001),

whose results do not permit long run convention coexistence.

Viscous interaction

When interaction is viscous, an agent meets any member of his own population more

frequently than any member of the opposite population. In our formulation, more

rounds of round-robin are played with members of your own population than with the

other population. In the limit, when interaction with the other population is

comparatively non-existent, i.e. p ---+ 00, we have complete viscosity. The following

proposition captures the evolution of play in this instance.

PROPOSITION 3:

Consider theprocess of learning with noise (0,P(p, c», and suppose p ---+ 00. Then:

If and only if NI and N2 are sufficiently large, ZAB is the unique long run

stochastically stable state.

In other words, when the two populations virtually never interact, each population

adopts its preferred strategy, regardless of the strength of that preference. This result

is akin to the main result ofKandori, Mailath and Rob (1993), who find that a single

population interacting only with itself will end up playing according to the risk

dominant equilibrium. By implication, according to their model, two separate

populations having different risk dominant equilibria, will thus play differently in the

long run. This mirrors the case where p ---+ 00, since we have two virtually separate

populations playing games (Gl) and (G2), respectively.
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The procedure of comparing how easily absorbing states are left for and reached from

other absorbing states is inconclusive in this instance, and proving that zAB is the

only long run stochastically stable state is therefore a more complex operation. As

shown in an appendix, the formal proof relies on a comparison of the ease with which

an absorbing state can be reached by way of all the other absorbing states. In a sense,

the absorbing state that can be reached with the least number of mutations in this

manner, is long run stochastically stable.

It is difficult to illustrate this result by the simple means used in previous sections.

However, the result mirrors the fact that ZAB has the largest basin of attraction of the

absorbing states in this case, i.e. there are more states from which we transit to ZAB

with certainty in a finite number of periods, than to any other absorbing state. This we

can demonstrate graphically. For p ~ 00, inequalities (4) and (5) can be rewritten as:

(lO)

(11)

The demarcation line which distinguishes between increases and decreases in ZI is

now vertical, and the line which separates increases and decreases in Z 2 is horizontal.

Let a thick and a thin line represent these two demarcation lines. The stability diagram

then looks as follows.

20



~

z

~ L

~ r
ZAB

AA

Figure 5. Stability diagram for the case of comp/ete viscosity.

As the diagram shows, there are four absorbing states, ZAA, ZBB, ZAB and ZBA. The

size of the basin of attraction of each is the area within which the learning dynamic

brings us to that state. The four states thus have basins of attraction of sizes

(l-aJNl ·(l-a2)N2, alNI ·a2N2, {1-aJNl ·a2N2 and alNI ·(l-a2)N2,

respectively. Since al < (1- a2) <a2 < (1- al)' state ZAB thus has the larger basin

of attraction of the four. In a sense, then, ZAB is the absorbing state which is easiest to

reach by way of the other absorbing states.

Welfare properties of the long run stochastically stable states

The welfare properties of long run stochastically stable states in learning models, has

been the topic ofmuch debate. For the processes studied by Kandori, Mailath and Rob

(1993) and Young (1993), the long run stochastically stable states in coordination

games entail play according to the risk dominant equilibria. This is potentially

troublesome, since a risk dominant equilibrium can be Pareto dominated by another

equilibrium. However, Bergin and Lipman (1996) show that by allowing mutation

probabilities to vary between states, the Pareto dominant equilibrium can be selected

in the very long run. In other evolutionary models such as that of Binmore, Samuelson
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and Vaughan (1995), the structure of the payoffs determine whether we end up in the

risk dominant or Pareto dominant equilibrium.

Less has been said about the welfare properties of games of conflicting interest, where

gains for one player entail losses for another. In such games, the Pareto principle has

no cutting power, and we need some other criterion by which to evaluate welfare, a

criterion which weighs the relative payoffs of different populations. One such

criterion would be a classical utilitarian one, where the better outcome is that which

produces the highest payoffs summed over all individuals (see e.g. Harsanyi (1977)).

In the current context, we can gauge the total payoffs in any state z by the sum of the

average payoffs 7ri(z) to each population i=1,2, weighted by the size of each

population Ni•
4 If we define the relation z' >-u z" as meaning that state z' is

strictly better than state z' from a utilitarian point of view, this relation is

characterized as follows

Another criterion is the Rawlsian leximin principle, which claims that the better state

is the one where the worst off group has the highest payoff, and ifthe worst off group

is equally well off in two states, the better state is the one where the second worst off

group has the highest payoff, and so on (Rawls, 1971). Let us define a relation

z' >-R z' as denoting that state z' is strictly better from a Rawlsian perspective than

z" . If we simplify slightly by equating groups with populations in our model, this

relation has the following property'

if [min tri (z'), 7r 2 (z')}> min tri (z"), 7r 2 (z") ~

or [min tri (z'), 7r 2 (z')}= min tri (z"), 7r2 (z")}

and max tri (z' ),7r2 (z')}> max tri (z" ),7r2 (z") ~

(13)

4 Average payoffs means average both across encounters within a period and across the members of
population i. To meaningfully sum these we must assume cardinal interpersonal comparability of
rayoffs.
Ordinal interpersonal comparability of payoffs must be assumed in this case.
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Let us evaluate the long run stochastically stable states established above according to

these criteria. In the case of full dispersion, p ~ O, the following result holds.

PROPOSITION 4:

Consider theprocess of learning with noise (O, P{p, c», and suppose p ~ O. Then:

For NI sufficiently large, there exists same N2 >N2 >NI such that for

is the unique long run stochastically stable state, while

The proposition says that there is a range of relative population sizes within which the

long run stochastically stable state is not the absorbing state producing the maximum

total payoff, nor is it the state leaving the worst off population better off. In other

words, for some population sizes, the evolutionary process selects a state which is

inoptimal from a utilitarian and from a Rawlsian point ofview.

A simple way to understand the fact that a state is selected which does not maximize

total payoff, is to note that utilitarianism and the evolutionary process implicitly

maximize different things. According to utilitarianism, ZBB is better than ZAA if the

sum of the payoffs of the two populations is larger in the former state, i.e. if

N ·l+N ·b>N -a+N ·1I 2 I 2 (14)

From the discussion and proof of proposition 1, we know that the evolutionary

process selects ZBB if N2 > (1- a2) . Using the definitions of al and a2, we can
NI al

rewrite this inequality as

N ·b-N ·l>N ·a-N ·12 I I 2 (IS)

In other words, the evolutionary process selects ZBB if the difference between the

total payoffs of the best off population and the worst off population in that state is

greater than the difference between the best off and worst off population in ZAA.
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Where utilitarianism maximizes the sum of payoffs, the evolutionary process thus

implicitly maximizes the difference in payoffs between the better and worse off

population. As a consequence, while utilitarianism is egalitarian in letting everyone

count for one, the evolutionary process is fiercely inegalitarian in letting the worse off

agents count negatively.

The reason for the divergence between utilitarianism and the evolutionary process, is

that the evolutionary process selects the state more robust to mutations, which is not

necessarily the state that yields the highest total payoff" Rewriting (15), we get that

the evolutionary process selects ZBB if

N2 (l-a2) a+l-> =--
NI al b+l

(16)

The degree to which population 2 must be larger than population 1, depends on the

ease with which population 2 switches to B, compared to the ease with which

population 1 switches to A. This in turn proves a matter of how large the sum of

payoffs over the two states ZAA and ZBB is for the two populations. Which state is

more robust to mutations thus depends on population sizes and total payoffs over the

states.

By contrast, a version of (14) tells us that utilitarianism prefers ZBB if

N2 a-l
->--
NI b-l

(17)

Utilitarianism thus focuses on payoff differences between the states ZAA and ZBB.

The degree to which population 2 must be larger, depends on the loss incurred by

each member ofpopulation 1 in moving from ZAA to ZBB, compared to the gain to

each member of population 2 in moving between the two states. The two populations

differ less in their total payoffs across the two states, than in their payoff differences

6 See Hehenkamp (2001) for a discussion of the relation between selection in this case and risk
dominance.
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between the states. By implication, for the lowest population ratios at which zSs is

more robust to mutations than ZAA, the utilitarian principle prefers ZAA over ZSS.

On the Rawlsian leximin principle, zSs is not preferable to ZAA for any relative

population sizes. This stems from the fact that the average payoff of the worst off

population is 1 in both ZAA and zSs, which means that we must compare the payoffs

of the best off population in each state, which is a in ZAA and b in ZSS. Given the

view the evolutionary process takes of the payoffs of the worst off population, it is not

very surprising that the process in some cases selects a state which is worse according

to the leximin principle.

Turning to the case of fluid interaction, p = 1, we can prove the following result.

PROPOSITION 5:

Consider the process of learning with noise (n,P(p, &)), and suppose p = 1. Then:

For NI = N2 sufficiently large, there exists some a2 such that for all a2 >a2 ' ZAS

is long run stochastically stable, while z AA >-U Z AS and z AB >- R Z AA •

Remember from proposition 2 that the state of convention coexistence, ZAS, is long

run stochastically stable when the populations are sufficiently biased in favour of their

preferred strategy. Proposition 5 states that for equal population sizes, if said bias is

sufficient for ZAS to be long run stochastically stable, ZAS is worse in terms of total

payoffthan ZAA, but better in terms ofpayoffto the worst off population," Note that

in state z AA , all encounters entail coordination, which means that population 1 earns

an average payoff of a,whereas population 2 earns 1. In z AS, on the other hand, there

is only coordination when members of the same population meet, i.e. in half the

encounters of each player. Population 1 thus earns on average a / 2 and population 2

earns b / 2. The proof of proposition 5 shows that for b > 3, ZAS is long run

stochastically stable. Thus, from the average payoffs we see that the worse off

population 2 is better off in ZAS than ZAA, when ZAS is long run stochastically

7 Indeed, one can show that z AB is worse in terms of total payoff than z øs if a - b < 2 .
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stable. However, in going from ZAA to ZAB, a member of population 2 improves his

b-2average payoff by --. On the other hand, the loss incurred by a member of
2

population 1 from such a transition is a /2. Since by assumption a > b, the loss to

population 1 is thus greater than the gain to population 2, which implies that ZAA is

better from a utilitarian perspective than ZAB. In the current context, then,

utilitarianism prefers coordination since it has a favourable impact on total payoffs.

The result highlights the fact that utilitarianism cares only about the total level of

utility, and cares not about how that total is distributed among agents.

Though the results so far are mixed, that is not the case when interaction is completely

viscous.

PROPOSITION 6:

Consider theprocess of leaming with noise (C,P(p,e», and suppose p ~ 00. Then:

In other words, ZAB is better on both criteria when interaction is completely viscous.

The simple reason is that with complete viscosity, agents only play their own

population, and in the absorbing states in question, they always coordinate with their

opponents. In state z AB , both groups play according to their preferred equilibria, and

thus get an average payoff of a and b, respectively. In state ZAA, only population 1

gets to play its preferred equilibrium, which makes average payoffs a and 1,

respectively. In state ZBB, only population 2 plays its preferred equilibrium, which

makes average payoffs 1 and b, respectively. Even a casual glance at these numbers

reveals that ZAB is better than the other two both in terms of total payoff, and in terms

of the payoff accruing to the worst off group. With complete viscosity, convention

coexistence thus has some merit.
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Concluding remarks

The basic argument of this paper is that in modelling the interaction of several distinct

populations, we should allow for the possibility that agents might interact more

frequently, or less frequently, with members of their own population than with

members of another population. The framework proposed above captures this idea in

a simple manner, and permits the study of the whole range of two-population

interaction, from complete dispersion through complete viscosity. Though the round-

robin matching regime could be expanded into a model featuring any number of

populations, one need not have more than two populations with conflicting interests to

obtain noteworthy results. Notably, in an evolutionary model of learning based on this

matching regime, results similar to those of previous evolutionary models emerge in

the special cases of complete viscosity and complete dispersion. Moreover, a novel

result from this model is that interacting populations can exhibit different conventions

in the very long run, there is in other words a possibility of convention coexistence.

The notion that populations have conflicting interests also facilitates a richer

understanding of the normative properties of states selected by evolutionary

dynamics. What makes one state better than another is less of a trivial matter when

interests diverge, and since different normative principles take different views of this

matter, we get a more detailed basis on which to evaluate evolutionary selection. As

noted previously, selection in evolutionary models of learning focus on robustness

against errors or mutations, and the characteristics that make one state normatively

preferable to another are only important to the extent that they influence robustness. It

is therefore not hard to appreciate why evolutionary selection is sometimes at odds

with what is normatively preferable. For utilitarian and Rawlsian views of what is

normatively preferable, the results obtained above suggest that whether evolutionary

selection and normative principles diverge, depends inter alia on the degree of

viscosity in interaction.
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Appendix A. Proof of propositions 1 through 3

The process defined by strategy revision and mutations is a discrete time Markov

process on a finite state space n, since the probability of transiting between two

states from the current period to the next, depends on the properties of no state other

than the current. For any s >O, there is a positive probability of moving from any

state in n to any other state in n in a finite number of periods, which by definition

means the process is irreducible. Let Il be a probability distribution over the states in

n, and P(p, &) be the matrix of transition probabilities. For an irreducible process, a

standard result for finite Markov chains states that there exists a unique solution to the

following equation:

IlP(P,e)= Il (Al)

In other words, such a process has a unique stationary distribution, which we term

Il s • Moreover, the process in question is aperiodic, since we can move from state z

and back again in any positive number of periods, for any state z in n.8 Let

VI (ZIZo) be the probability that at time t we are in state z, when at time Owe were

in state ZO . For an aperiodic and irreducible process the following result holds:

(A2)

The probability ofbeing in a certain state z as time goes to infinity, thus converges to

the probability u' (z) awarded that state by the stationary distribution. The

probability that the process reaches any state after a large number of periods, is thus

independent of the initial state.

8 Young (1998) gives a precise definition of an aperiodic process: For each state Z E Cl , "let N, be
the set of all integers n ~ 1 such that there is a positive probability of moving from z to Z in exactly n
periods. The process is aperiodic iffor every z, the greatest common divisor of Nz is unity."
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The stationary distribution u" is difficult to compute, so we focus on the case where

the probability of mutations is arbitrarily small, Iimzz". States z which have the
&-+0

property that limps (z) >O, we define as long run stochastically stable. A
&-+0

fundamental result by Young (1993) establishes that limps exists, and equals a
&-+0

stationary distribution of the corresponding process without mutations, e =O. Note

that the process without mutations is not irreducible, which means that it can have

several stationary distributions. For any such stationary distribution, u"; the states Z

that have positive probabilities in this distribution, pO (z) >O, constitute a limit set of

the process. Young proceeds to prove that the long run stochastically stable states are

those contained in the limit sets that have minimum stochastic potential. Stated

differently, limps equals the stationary distribution pO. which puts positive
&-+0

probability on the limit set having minimum stochastic potential.

To find the long-run stochastically stable states of a process, we thus first find the

limits sets when mutations are absent, and then compute the stochastic potential of

these limit sets. The search for limit sets is executed as follows. A state z' is

accessible from z, if there is a positive probability of reaching z' from z in a finite

number of periods. Two states communicate if each is accessible from the other. A

limit set is a set of states such that all states in the set communicate, and no state

outside the set is accessible from any state inside the set. A limit set is thus a set of

states which once reached, the process never leaves. An absorbing state is a limit set

consisting of a singleton state.

To find the limit sets with mrmmum stochastic potental, i.e. the long run

stochastically stable states, we can proceed in two ways, one simple yet in some cases

inconclusive, and the other more complex yet conclusive. The simpler method is due

to Ellison (2000), who defines two characteristic numbers for each limit set Z, a

radius R(Z) and a coradius CR(Z). In the current context of equiprobable mutations,

the radius R(Z) of a limit set Z is the minimum number of mutations needed to

leave Z and enter a state from which another limit set is accessible. The radius thus

provides a measure of how easily Z can be left for another limit set. To compute the
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coradius CR(Z), you take the minimum number of mutations needed to leave each of

the limit sets different from Z for a state from which Z is accessible, and let the

coradius equal the maximum of these. The coradius thus measures how easily Z can

be reached from the other limit sets, specifically from the limit set from which Z is

most difficult to reach. Ellison proves that if R(Z) >CR(Z), then the states in Z are

long run stochastically stable. This condition is just a sufficient condition for long run

stochastic stability, there can thus be long run stochastically stable states which

Ellison's method does not identify.

Which brings us to the more complex method which produces a complete

characterization of long run stochastically stable states. This is the original method of

tree surgery devised by Young (1993). For all limit sets, find the minimum number of

mutations needed to go from one limit set to another. Next, for each limit set,

construct all possible trees rooted at that set. A tree rooted at limit set Z has the

property that from each limit set different from Z there is a unique sequence of

directed edges between limit sets leading to Z. As an example, imagine that there are

three limit sets; A, B and C. There are thus three trees rooted at A:

A

/\
A

/
A

\
B c B+---- c B---.......c
Figure AI. Trees rooted at A with three limit sets A, Band C.

Similarly, there are three trees rooted at B, and three trees rooted at C. For all trees

constructed in this manner, we compute the sum of the mutations associated with each

directed edge. We then find the tree with the minimum sum of mutations, and the

limit set rooted at this tree has minimum stochastic potential. In other words, it

contains the stochastically stable states of the process in question.
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PROOF OF PROPOSITION 1:

For p ~ O, let us first compute the limit sets. For E = O, ZAA and ZBB are absorbing

states of the process. In ZAA, everyone plays A, and any revising player thus expects

to meet only A-players in the next period, which makes A his optimal choice.

Similarly, in ZBB, everyone plays B, and any revising player chooses strategy B. No

other states are thus accessible from ZAA and ZBB, which makes them absorbing

states.

Note that all members of a specific population have the same best reply to the

population state of the preceding period. In a given period, there is a positive

probability that all agents are drawn for strategy revision, in which case all agents

from each population choose the same strategy if they have a unique best reply to the

preceding state. If the members of a population are indifferent between strategies A

and B, i.e. if they have several best replies, they all toss a coin. Since there is a

positive probability that all coin tosses show the same result, there is a positive

probability that all members of a population choose the same strategy. The states

ZAA, ZBB, ZAB or ZBA are thus accessible from any other state. However, since in

ZAB a revising player from population 1 expects to meet only B-playing members, he

would switch to B. And due to the fact that there is a positive probability that all

population 1 agents are drawn for revision, they might all change to B, which means

that a transition from ZAB to ZBB has positive probability. Similarly, in state zBA, all

population 1 agents might be drawn for revision, having A as their optimal choice.

From zBA a transition to ZAA thus has positive probability. In sum, this means that

the absorbing states ZAA or ZBB are accessible from any other state in n, which
implies that no other state can be contained in a limit set.

With two limit sets, the above two methods of computing the long run stochastically

stable states are equivalent. The reason is that each limit set is at the root of only one

tree, and the mutations associated with the single directed edge of this tree equals the

coradius of this limit set and the radius of the other limit set. For the limit set at the

root of the tree with the minimum number of mutations, the radius thus exceeds the

coradius. The radius-coradius method in this way provides a full characterization of
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long run stochastically stable states in this instance, and we can therefore use it to

identify the unique long run stochastically stable states of the process.

As figure 3 reveals, the shortest route from ZAA to the a state from which zSs is

accessible, is along one of the axes. The minimum number of mutations needed to

leave ZAA for zSs istherefore min{(l-al)N2,(I-a2)NI}. Inotherwords:

R(ZAA) = CR(Zss) =min {(l- al)N 2' (1- a2 )NI} (A3)

Similarly, the shortest way from z ss to Z AA is along either axis, which makes

R(ZSS) = CR(ZAA) =min{aIN2,a2NJ} (A4)

(AS)

In other words, for equal population sizes, ZAA is the unique long run stochastically

stable state.

. () N (l-a)For N2 >NI' we still have CR(ZSB) = 1- a2 NI' However, for _2 > 2, we
NI al

get the following relation:

(A6)

li N2 BBFor suf ciently large N ,z is thus the unique long run stochastically stable
I

state. o
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PROOF OF PROPOSITION 2:

For p = 1, the following arguments apply. For e =O, ZAA and ZBB are still

absorbing states, for the same reasons as in the proof of proposition 1. Note that in

state ZAB, ZI =NI and Z2=O. From inequality (2), we thus see that the frequency

with which a member of population 1 encounters A-players is NI . If this
NI +N2

frequencyexceeds al' revising agents from population 1keep playing A, i.e. if

(A?)

Similarly, the frequency with which population 2 players meet A-players is NI
NI +N2

If this frequency does not exceed a2' revising agents from population 2 keep playing

B, that is if:

(A8)

Since al <(1-a2), for NpN2 e(O,oo) there exists some a2 <1 forwhich (A?) and

(A8) hold. For sufficiently large a2, ZAB is thus an absorbing state.

As before, there is a positive probability that all agents revise simultaneously. As

agents from the same population have the same optimal strategy, there is thus a

positive probability that we end up in ZAA, ZBB, ZAB or ZBA from any state other

than these four. In ZBA, an agent from either population encounters N2 A-
NI +N2

players. A revising member ofpopulation 1 would continue playing B if

(A9)
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Similarly, a revising population 2 agent would keep playing A if

(AIO)

However, since a2 > al' (A9) and (AIO) are incompatible. Thus, in state ZBA, if all

agents revise, all members of either or both populations will switch strategies, in

which case we transit to ZAA, ZBB or ZAB.

Next, we find the stochastically stable states when there are three absorbing states,

ZAA, ZBB and ZAB. As figure 4 reveals, the easiest way to leave one absorbing state

for another, is along the axes. We want to prove that ZAB can be stochastically stable,

so let us compute the radius and coradius ofthis absorbing state. The radius is:

(All)

And the coradius (when we make use of the fact that al < (1- a2) ):

(AI2)

Ifthe first element in the radius expression is the minimum of the two, then the radius

exceeds the coradius when:

(A13)

Ifthe second element is the minimum, the radius exceeds the coradius when:

(A14)
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Since al <(l-a2), for NI,N2 e(O,oo) there exists some a2 <1 for which (A13)

and (A14) hold. For sufficiently large a2, ZAB is thus stochastically stable.o

PROOF OF PROPOSITION 3:

For p ~ 00, the limit sets are as follows. As above, ZAA, ZBB, ZAB or ZBA are

accessible from any other state. For the same reasons as above, ZAA and ZBB are

absorbing states. With completely viscous interaction, in state ZAB any revismg

player from population 1 expects to meet only A-players from his own population,

and therefore keeps playing A. Any revising player from population 2 expects to meet

only B-players from population 2, and hence keeps playing B. ZAB is therefore an

absorbing state. In zBA, agents from population 1 meet only B-players and keep

playing B, while agents from population 2 meet only A-players and keep playing A,

so zBA is also an absorbing state.

The radius-coradius method does not identify the long run stochastically stable state

in this case. We therefore use the more elaborate tree surgery method. The following

matrix reflects the minimum number of mutations needed to transit from the

absorbing states in the rows to those in the columns, cf. figure S.

ZAA ZBB zAB ZBA

ZAA - (l-al)Nl +(l-a2)N2 (l-a2)N2 (l-al)Nl
ZBB alNI +a2N2 - alNI a2N2

zAB a2N2 (l-al)Nl - (1- al )Nl +a2N2

zBA alNI (l-a2)N2 a.N, +(l-a2)N2 -

(AlS)

With four absorbing states, there are 16 trees rooted at each absorbing state, 64 trees

in all. Ido not recount the total mutations associated with each of them here, but these

calculations are available upon request. Note, however, the following two trees rooted

at ZAB
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zAB ZAS

/ -. / '"ZSS ZAA

Z"~
ZAA

/
ZSA ZSA

Figure A2. Two trees rooted at ZAS.

The sum of mutations for the transitions of each tree is 2al NI + (1- a2)N 2 and

a.N, + 2(1- a2 )N2, respectively. A comparison with the total mutations of all other

trees, reveals that they all have a sum of mutations higher than either of these two

trees. A z AS -tree thus has the minimum total mutations associated with it, which

means that ZAS is the unique long run stochastically stable state. Note that this result

holds if and only if populations sizes are sufficiently large, if for instance each

population consisted of only one agent, the minimum mutation tree for any absorbing

state would involve three mutations, which implies that there is no unique long run

stochastically stable state. o
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Appendix B: Proof of propositions 4 through 6

PROOF OF PROPOSITION 4:

Suppose p ~ O and define fl2 as follows

~ l __ b_
N2 (l-a2) l+b l+a-= = =
NI alII +b

l+a

(Bl)

From proposition 1, we know that if for N2 > fl2, ZBB is the unique long run

stochastically stable state.

Since agents only play with the other population, a player from population 1 earns a

payoff of a from each encounter in ZAA , and a payoff of I in state ZBB . Similarly, a

player from population 2 earns a payoff of I per encounter in ZAA and b in ZBB.

Thus, we know that ZAA >-u ZBB if

N2 a-l
a·N +I·N >I·N «s» <=>-<--

I 2 I 2 N b-I
I

(B2)

However, for a >b

a-l l+a-->--
b-l l+b

(B3)

In other words, ifwe define N2 as follows

-N a-l2 _-=--
NI b-l

(B4)
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Then N2 >N2, and for N2 e(N2,N2), ZBB is long run stochastically stable and

ZAA >-u ZBB.

That ZAA >-R ZBB, is a trivial implication of the average payoffs discussed above. The

worse off population is equally badly off in both states, whereas the better off

population is better off in state ZAA than in ZBB .0

PROOF OF PROPOSITION 5:

Suppose p = 1. For equal population sizes NI = N2 = N, (All) and (A12) become:

(B5)

CR{ZAB) = 2{1- a2)N (B6)

Furthermore, al < (1- a2) implies:

R{ZAB) = {2a2 -l)N (B7)

Consequently, we have:

(B8)

If a2 =0.75, then for all a2 >a2, ZAB is long run stochastically stable. Note that

a2 >0.75 implies a>b>3.

Since populations are equally large, an agent plays as many encounters with his own

population as the opposite one. In state ZAB, an agent from population 1 coordinates

with his own kind for a payoff of a half the time, and miscoordinates with the other

population for zero payoffhalfthe time, which makes his average payoffin state ZAB
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a / 2. The same happens to agents from population 2, except they coordinate with

their own kind for a payoff of b, which makes their average payoff b / 2. In state ZAA ,

there is always coordination, and agents from population 1 earn a from each

encounter, and agents from population 2 earn 1. In comparing total payoffs in the two

states, we have ZAA >-u ZAB when

a+b{a+l)·N>--·N ~a >b-2
2

(B9)

In other words, since a > b, ZAA is always better in terms of total payoff than ZAB,

which also applies to the cases where ZAB is long run stochastically stable.

Population 2 is worse offthan population 1 in both state ZAA and state ZAB, and gets

an average payoff of b / 2 in the former state and 1 in the latter. Thus, for b > 3, ZAB

is the better state according to the leximin principle, z AB >- R Z AA • In other words,

when ZAB is stochastically stable, it is preferable to ZAA on the leximin principle.o

PROOF OF PROPOSITION 6:

Suppose p ~ 00. The members of a population thus only play against each other. In

state ZAB, both populations coordinate on their preferred equilibria, which makes

payoffs a in population 1 and b in population 2. In ZAA, only population 1 plays

according to its preferred equilibrium, which makes payoffs a and 1, respectively. In

ZBB, the converse is true, and payoffs are 1 and b, respectively. If we compare the

total payoffs in these three states we thus get

aN +bN > aN +N ~ ZAB >-u ZAAI 2 I 2 (BlO)

N +bN >N +bN ~ZAB >-uZBBa I 2 I 2 (BIl)
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In terms of minimal average payoffs in each state, the worst off population is better

off in state z AB than in either of the other two. The worst off population is equally

well off in ZAA and ZBB, but the better off population is better off in ZAA than in

ZBB. The ordering of the leximin principle is thus ZAB >-R ZAA >-R ZBB.D
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Appendix C: Matching according to Myerson et al.

As mentioned earlier, Myerson, Pollock and Swinkels (1991) model viscosity in a

different way. In their model, players have a probability p of being matched with

someone from their own population, and a probability (1- P) of being matched at

random with the total population. Myerson et al defined a population (or kin group) as

a set of agents sharing the same strategy, but let us explore the analogous idea when

populations are characterized by different payoffs from interaction as studied above.

Introducing matching according to Myerson et al into this framework, we get that a

member of population l chooses strategy A if:

(Cl)

Similarly, an agent from population 2 chooses strategy A if:

(C2)

These inequalities correspond to (2) and (3) in the main model. Let us rewrite the

inequalities in the following way:

(C3)

(C4)

The resulting inequalities correspond to (4) and (5).

Matching according to Myerson et al only makes sense for PE [0,1], so we cannot

study the case of dispersion.
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Fluid interaction in this model occurs when p ~ o. Inequalities (C3) and (C4) then

reduce to

(CS)

(C6)

These two inequalities match (8) and (9) exactly. Long run stochastically stable states

would thus be derived in exactly the same way, and proposition 2 holds for this kind

of matching as well.

Completely viscous interaction means that p ~ 1. In this case (C3) and (C4) reduce

to (10) and (11), and the long run stochastically stable states are as in proposition 3.

42



References

Anderlini, L. and A. Ianni (1996), "Path dependence and learning from neighbours",

Games and economic behavior, vol. 13, no. 2, 141-177

Bergin, James and Barton L. Lipman (1996), "Evolution with state-dependent

mutations", Econometrica, Vol. 64, No.4, 943-956

Binmore, Ken and Larry Samuelson (2001), "Coordinated action in the electronic

mail game", Games and economic behavior, 35, 6-30

Binmore, Ken, Larry Samuelson and Richard Vaughan (1995), "Musical chairs:

Modeling noisy evolution", Games and economic behavior, 11, 1-35

Blume, Lawrence E. (1993), "The statistical mechanics of strategic interaction",

Games and economic behavior, 4, 387-424

Blume, Lawrence E. (1995), "The statistical mechanics of best-response strategy

revision", Games and economic behavior, 11, 111-145

Ellison, Glenn (1993), «Learning, local interaction, and coordination», Econometrica,

61, 1047-71

Ellison, Glenn (2000), ''Basins of attraction, long-run stochastic stability, and the

speed of step-by-step evolution", Review of economic studies, 67, 17-45

Frank, Robert H. (1988), Passions within reason. The strategic role of the emotions,

W. W. Norton & Company, New York

Hahn, Sunku (2000), ''The long run equilibrium in a game of 'battle of the sexes"',

mimeo, Saitama University

Hamilton, W. D. (1964), ''The genetical evolution of social behavior", Journal of

theoretical biology, 7, 1-52

43



Harsanyi, John C. (1977), "Morality and the theory of rational behavior", Social

research, v. 44, iss. 4, 623-656

Harsanyi, J. and R. Selten (1988), A general theory of equilibrium in games,

Cambridge: MIT Press

Hehenkamp, Burkhard (2001), "Equilibrium selection in the two-population KMR

model", Wirtschaftstheoretische Diskussionsbeitrdge, no. 2001-01, Universitåt

Dortmund

Kandori, Michihiro, George J. Mailath and Rafael Rob (1993), «Learning, mutation,

and long run equilibria in games», Econometrica, vol. 61, no. 1,29-56

Kandori, Michihiro and Rafael Rob (1995), "Evolution of equilibria in the long run: A

general theory and applications", Journal of economic theory, 65, 383-414

Maynard Smith, J. and G. R. Price (1973), "The logic of animal conflict", Nature,

246, 15-18

Myerson, Roger B., Gregory B. Pollock and Jeroen M. Swinkels (1991), "Viscous

population equilibria", Games and economic behavior, 3, 101-109

Oechssler, Jorg (1997), ''Decentralization and the coordination problem", Journal of

economic behavior and organization, vol. 32, 119-135

Rawls, John (1971), A theory of justice, The Belknap Press of Harvard University

Press, Cambridge, Massachusetts

Skyrms, Brian (1994), ''Darwin meets the logic of decision - correlation In

evolutionary game-theory", Philosophy of science, vol. 61, no.4, 503-528

Skyrms, Brian (1996), Evolution of the social contract, Cambridge University Press,

New York

44



Sugden, Robert (1995), ''The coexistence of conventions", Journal o/ economic

behavior and organization, vol. 28, 241-256

Young, H. Peyton (1993), ''The evolution ofconventions", Econometrica, vol. 61, no.

2,57-84

Young, H. Peyton (1998), Individual strategy and social structure - An evolutionary

theory of institutions, Princeton University Press, Princeton, New Jersey

45



Addendum to

"Viscosity and dispersion in an evolutionary model of learning"

Ivar Kolstad

December 2001

The following completes the proof of proposition 3 in "Viscosity and dispersion in an

evolutionary model of learning". A figure of all ZAA -trees is drawn, and all trees

rooted at other limit sets are derived from this figure by switching pairs oflimit sets in

the figure. The sum of the minimum mutations needed for the transitions of each tree,

which below is termed the total resistance of each tree, is computed. I then show that

the minimum resistance tree must be a tree rooted at z AB .
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Figure of z AA -trees.
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Total resistance of ZAA -trees:

Let r jAA denote the resistance of z AA -tree i in the above figure. We then have:

3

(l)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)

(lO)

(11)

(12)

(l3)



Since al < (1- al)' we easily see that

r JAÅ > rf for all i E {1,2,3,4,8,9,1 0,11,14,IS,16}

Similarly, since (1-a2) <a2, we have

r JAÅ > rIf for all i E{S,6,12}

The ZAA -tree with minimum resistance is thus either tree number 7 or number 13.
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(14)

(15)

(16)

(17)

(18)



Total resistance of ZBB -trees:

Let ZAA and ZBB switch places in the above figure. We then get the 16 ZBB -trees.

Denote by riBB the total resistance oftree i derived this way.

(19)

(20)

(21)

(22)

(23)

(24)

(25)

(26)

(27)

(28)

(29)

(30)

(31)
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Since (1-a2) < a2 , we have

r:B >r:B for all i E {1,2,3,4,8,9,10,11,14,15,16}

And due to al < (I - al ) ,we have

r JBB > r I~B for all i E {5,6,12}

The ZBB -tree with minimum resistance is thus either tree number 7 or number 13.
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(32)

(33)

(34)

(35)

(36)



Total resistance of ZAS -trees:

As in the preceding section, ifwe let ZAA and ZAS switch places in the above figure,

we get the 16 z AS -trees. Denote by r JAB the total resistance of tree i.

(37)

(38)

(39)

(40)

(41)

(42)

(43)

(44)

(45)

(46)

(47)

(48)

(49)
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(50)

(51)

(52)

Here, since al < (1- al) ,we have the following

r;AB > r:B for all i E {1,2,3,7,8,9,10,11,14,15,16} (53)

Since (1-a2) <a2, we get

r;AB > r:B for all i E {6,12,13} (54)

The ZAB -tree with minimum resistance is therefore tree 4 or 5.
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Total resistance of zBA -trees:

Finally, let ZAA and zBA switch places in the preceding figure, which transforms the

trees into ZBA -trees. The resistance y;BA of ZBA -tree i is:

(55)

(56)

(57)

(58)

(59)

(60)

(61)

(62)

(63)

(64)

(65)

(66)

(67)
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(68)

(69)

(70)

rjBA > rl~A for all i E {1,2,4,5,6,8,9,11,12,13,14} (71)

And since al < (1- al ), we get:

(72)

Thus, the ZBA -tree with minimum resistance is tree number 10 or 16.
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Minimum resistance trees:

Due to the fact that (l-a2)<a2, a Comparison of(7) and (40), and (13) and (41)

reveals that

(73)

and

YAA > yAB
13 5 (74)

Moreover, since al < (1 - al ), when we compare (25) and (41), and (31) and (40), we

get

(75)

and

YBB > yAB
13 4 (76)

Finally, a comparison of (64) and (41), and (70) and (40) tells us that

YBA >yAB
ro 5 (77)

and

YBA >yAB
16 4 (78)

Consequently, the minimum resistance tree is a ZAB -tree.o
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Abstract

Neighbourhood effects and worker mobility have been proposed as

explanations for the pattern of employment in cities. This paper

presents a theoretical framework within which the joint impact of these

two factors can be analyzed. The evolution of unemployment patterns

is modelled as a stochastic process, where workers sometimes make

employment decisions influenced by local norms, and sometimes

decisions of where to live based on neighbourhood characteristics. A

long run outcome of full employment and complete segregation is

found to be robust to a wide range of process specifications. More non-

segregated long run outcomes are possible if mobility decisions are

based on neighbourhood employment rates than if they are based on

other neighbourhood characteristics.
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Introduction

In many cities, there is a concentration of social problems to certain inner-city areas.

The disproportionate presence of poverty, crime and unemployment in central urban

areas has been extensively documented by a number of empirical studies (e.g.

Glaeser, Kahn and Rappaport (2000), Glaeser, Sacerdote and Scheinkman (1996),

Fieldhouse (1998), Immergluck (1998), Reingold (1999) and Raphael (1998)). A

number of explanantions for this spatial pattern of social problems have been

suggested, many of which view unemployment as a key problem. The explanatory

factors used are commonly some variation on notions of opportunity, influence and/or

mobility. The traditional spatial mismatch hypothesis of Kain (1968) argues that

suburban job growth has increased the distance an average inner city worker must

commute to work, and thereby increased their costs of employment. In a much cited

contribution, Wilson (1987) suggests that unemployment is part of a greater tangle of

social problems, but deems salient the exodus of good role models from poorer

neighbourhoods as an explanation of these problems. There have also been

suggestions of an inflow of poor people to inner city areas, due to lower housing costs

(see e.g. Glaeser, 1999) or access to public transportation for those too poor to own a

car (Glaeser, Kahn and Rappaport, 2000). O'Regan and Quigley (1998) find human

capital and exposure to the employed the most important factors for employment,

from which we can surmise that low skill levels in inner cities lead to unemployment,

which leads to more unemployment as others follow suit. Conversely, Bertrand,

Luttmer and Mullainathan (I999) find that the probability of being on welfare

increases with your exposure to social networks in which welfare use is more

common.

The notion that there are neighbourhood or peer group effects in the spatial pattern of

unemployment, has lately received much attention. Though empirical studies

documenting neighbourhood effects face some methodological challenges, there

nevertheless seems to be a consensus that such effects are real and important (see e.g.

Glaeser, 1999). If indeed there are neigbourhood effects in employment, one

implication is that the spatial distribution of employment might exhibit multiple

equilibria. Or, in the words of Glaeser and Scheinkman (2000), there might exists a

social multiplier, where small changes in the fundamental causes of individual
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employment might have a large impact on the aggregate level of employment. That

small changes in employment policy might have a large impact on aggregate

employment, is obviously something of which policy makers should take note.

However, to correctly heed these neighbourhood effects, we need some theoretical

framework within which to study their implications.

In this paper, I propose a theoretical framework by means of which we can study the

joint impact of neighbourhood influence and worker mobility on the level and spatial

distribution of urban unemployment. The purpose of the paper is to provide a

foundation for a systematic treatment of the issues involved, rather than to draw

precise policy implications. The notion of influence used is consistent with that of

Lindbeck, Nyberg and Weibull (1999), where workers are assumed to be influenced

by a social norm against being unemployed, and where the strength of the norm

depends on the number of employed workers. In contrast to Lindbeck et al, however, I

assign workers locations on a social grid, and assume that each worker is influenced

only by his closest neighbours. The norms are thus local, rather than global, in scope.

The existence of a social grid also permits the study of worker mobility, which in the

model takes the form of pairs of workers exchanging locations, as in the

neighbourhood segregation model of Schelling (1971). A variety of ways in which

workers might decide to move is explored, some of which are consistent with the idea

of Wilson (1987) that good role models leave depressed neighbourhoods, some of

which are not.

The basic approach of the paper is to model the locations and employment status of

workers as a stochastic process, where workers are repeatedly drawn at random to

make either decisions of whether or not to be employed, or of whether or not to move

to another location. The limit sets of the process are taken to represent the patterns of

employment and worker locations we can expect to see in the long run, when the

process has run for a sufficiently large number of periods. The objective of the paper

is to see how different assumptions about the manner in which workers make

employment and mobility decisions can lead to different long-run outcomes. Though

essentially a model of interdependent preferences, many of the elements of the model

developed below were inspired by models in the field of evolutionary game theory,

specifically those of Kandori, Mailath and Rob (1993), Ellison (1993) and Young
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(1993, 1998). In particular, the notion of local interaction is similar to that introduced

by Ellison. Since the time horizon within which it makes sense to study employment

and mobility decisions is restricted, however, we focus only on long run outcomes

and do not introduce error terms into decisions to select between long run outcomes,

the way the aforementioned models do. The basic model also has similarities to that

of Bala and Goyal (2001), but has a different object of study.

In the following section I present an initial version of the model in which workers are

immobile and segregated according to their level of education, and have their

employment decisions influenced by their neighbours. In section three, this simple

introductory version is used to illustrate that reducing the sample of neighbours

observed by a worker when making employment decisions, in effect works as a means

of selection between long run outcomes. In particular, if sample sizes are below a

certain level, the state of full employment is the only possible long run outcome.

Section four specifies the general model in which workers make both employment

decisions and decisions of where to live, and section five suggests a range of different

ways in which decisions of whether or not to move can be made. In section six, I

show that a state of full employment and complete segregation according to education

is a long run outcome for almost all of the motives for mobility specified. Moreover,

if workers move to locations that are strictly better on some characteristic, very

different long run outcomes are possible, including states of full employment, states

of full unemployment among those with a low level of education, states of full

segregation according to education and states of full integration. In addition, more

non-segregated long run outcomes are possible when mobility decisions are based on

neighbourhood employment rates rather than neighbourhood composition in terms of

education.

A model of neighbourhood effects in a segregated city

Consider a finite population of N workers, who inhabit equally many locations of a

circular city. The workers are heterogeneous in some characteristic e E {L,H}, which

we take to be education, though it might also be productivity or some other
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characteristic. Denote by NI the number of workers with a high level of education,

e =B .And let N2 = N - NI be the number of workers with a low level of education,

e = L. Initially, we will assume that workers are completely segregated in terms of

education, with the high education workers occupying positions 1 through NI' and

the low education workers inhabiting positions NI +1 through N. In this formulation,

workers thus do not have a choice of where to live.

Workers do, however, have a choice between, working full time (E) and being

unemployed (U). We will assume time is discrete, and in each period each worker has

a probability 8 E (0,1) ofbeing called upon to revise his current employment status.

When revising, a worker perceives the rewards from working as the utility u(.) of

consuming his net wages -wC.). We assume that wages are increasing in levels of

education, -wCB) > -wCL), and for a worker with education ei we write the payoffs

TCi(E) from being employed as

TCi(E) = u[w(e;)] (1)

The rewards from being unemployed are the utility of consuming unemployment

benefits T. There is also a social cost to being unemployed, which depends on the

composition of the neighbourhood of a worker in terms of employment. We assume

each worker has k neighbours to each side of him on the circle, 2k neighbours in all. A

revising worker at location i observes a sample S E [1,2k] of his neighbours, and

assumes the proportion ffi of employed workers in this sample is representative for

his neighbourhood. The social cost to being unemployed is an increasing function

vCffi) of this proportion. The payoffs TCi (U) from choosing unemployment can then

be written as'

TCi (U) = u(T) - v(ffi ) (2)

I In equation (2) we assume additive separability. This means that we view the utility from benefits and
the social costs as distinct elements which do not influence each other.
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The social cost v((j;) might have several interpretations. Lindbeck, Nyberg and

Weibull (1999), who employ a similar payoff structure, suggest that the cost v(qJ
might reflect some social norm in favour of working, a norm whose strength depends

on the number of agents adhering to it. Alternatively, if we view v(if;) as a relative

social cost, capturing the difference in socially derived payoffs when unemployed as

compared to when employed, v(if; ) might represent some advantage in acting

similarly to one's neighbours. Being the deviant can expose you to the resentment or

distrust of others, but there are also more tangible rewards from acting in a manner

similar to others. Being employed while having a network of employed neighbours

might for instance provide you with more opportunities for finding a better paying job

or with better ways of doing your current job. And if you are unemployed in a

neighbourhood of unemployment, your chances of discovering better ways of

exploiting the system ofbenefits might increase.

However social costs are construed, payoffs translate into actions in the following

way. A revising worker at location i chooses employment if niCE) > n;(U), and

unemployment if the opposite inequality holds. If n; (E) = n; (U), the worker is

indifferent and tosses a coin to select his employment status.

For given forms of the functions u(.), wC.) and v(.) and a given value of the

parameter T,we can derive the minimum proportion q: of employed workers needed

to induce a worker with education e to choose employment. In other words, there is

some q~ such that a high education worker chooses employment if if; > q~, and

unemployment if 'if; < q~. Similarly, there is some q~ such that a low education

worker chooses employment if if; > q~ and unemployment if if; < q~ . To add some

further structure to the model, assume that q~ < °,which means that a high education

worker always chooses employment no matter how much or how little employment

there is in his neighbourhood. This restriction eases analysis, by decreasing the

number of states we have to consider. For low education workers, on the other hand,

q~ E (0,1), which implies that their choice of employment status does differ according
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to the employment situation oftheir neighbourhood.' Utilities and social costs fitting

these restrictions are illustrated by the below figure.

u [w{H)]

u [w{L)]

u(T)-v«(jj)

~--------~.--------------~--~~
qLo 1

Figure 1:Restrictions on payoffs

Given the assumption that agents are immobile and segregated, we can represent the

state of play in period t by a vector mf, whose ith element mI E {E,U} is the

employment status of the agent at position i on the circle at time t. The state space n
consists of all state vectors m such that each element in m is either E or U.

n= {m: mj E {E,U}, Vi E [l,Nn (3)

For ease of exposition, let us name a few states. Denote by mEE the state in which

everyone is employed, i.e.

(4)

Similarly, let mEU represent the state in which only the high-education agents are

employed, while the low-education agents are unemployed

2 The set of which q: is an element does not contain its boundaries, which means that low education
workers are not indifferent if everyone in their neighbourhood is employed or unemployed. Including
the boundaries would not alter the gist of the results that follow, but would make them significantly
less tidy, as the limit sets in the boundary cases could be cycles containing a large number of states.
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(S)

Given the manner in which agents revise their employment status, the evolution of the

state vector mf constitutes a Markov chain on the state space O. For any given

neighbourhood sample size s, let P{s) be the transition matrix implied by the process

ofrevision, where elementjk of P{s) is the probability of going from statej to state k

from one period to the next. For any given s, we can then represent the process by a

transition matrix P{s) on a state space O, which we can sum up as (O, P (s) .

Long run behaviour in a segregated city

Our object of study is the evolution of play as agents repeatedly reconsider their

employment status. The long run outcomes of this process, i.e. where we end up after

the process of revisions has run for a large number of periods, is represented by the

limit sets of the process. A limit set is a set of states which once reached, the process

never leaves.' Even more strictly, an absorbing state is a limit set consisting of only a

single state. In other words, once we have reached an absorbing state, we remain in

that state in all later periods. A limit set that contains several states, is often referred to

as a limit cycle.

For the above process, the following proposition captures the long run behaviour of

agents:

PROPosmON 1

Consider the process (O, P{s». For NI and N2 sufficiently large:

i) mEE is an absorbing state/or all q~ E (0,1) and all SE [1,2k].

ii) mEU is an absorbing state if and only if q~ E (0.5,1) and s >..!..
qL

iii) There are no other limit sets/or any q~ E (0,1) and s E [1,2k].

3 Markov chains and limit sets are defined more rigorously in an appendix.

8



A formal proof of the proposition is presented in an appendix, as are the proofs of

later propositions.

The first part of the proposition tells us that the state of full employment, mEE
, is an

absorbing state for all relevant values of q~ and s. The state of full employment is

thus robust to variations in these parameters. The intuitive reason mEE
· is an

absorbing state in all these cases, is that a revising worker in this state draws a sample

of only employed workers, and thus chooses to remain employed. Once we are in the

state of full employment mEE
, no worker ever alters his employment status, which

means that we stay in mEE
•

In contrast, the state of full unemployment in the low education group mEU is only an

absorbing state for a restricted range ofvalues of q~ and s. Specifically, q~ E (0.5,1)

means that for a low-education worker the required number of unemployed

neighbours that would make him choose unemployment is lower than the required

number of employed neighbours that would make him choose employment.

Moreover, the sample ofworkers cannot be too small, q~ E (0.5,1) and s >!:. imply
qL

that s > k, so workers must sample more than half their neighbourhood for

unemployment to be a stable long-term outcome.

The reason mEU is not an absorbing state when low education workers are more

easily persuaded to choose employment than unemployment, is as follows. Imagine

that a low education worker chooses employment if exactly half or more of his

neighbours are employed, q~ = 0.5. Assume that there are at least k employed high

education workers. In any given period there is a chance an unemployed low

education worker living next to a high education worker is called upon to revise his

employment status. If he samples his entire neighbourhood, s = 2k, he perceives a

neighbourhood employment rate of 50% and thus chooses employment. If he samples

less than his entire neighbourhood, s < 2k, there is still a chance that half or more

than half his sample are employed, upon which he chooses employment. The same
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argument applies if in the next period the next unemployed worker on the circle

revises his employment status, so there is a chance he chooses employment as well.

And thus we can continue around the circle until all low education workers have

chosen employment, and we have reached the state of full employment mEE
• The

state of full employment among those with a low level of education thus unravels as

the workers at the edges of the unemployed segment switch to employment.

A similar argument tells us why neighbourhood samples must be of a certain size for

mEU to be an absorbing state. Imagine the smallest possible sample size, s = 1, and

consider once more the unemployed low education worker living next to a high

education worker. The sample drawn by this worker might consist of a high education

employed worker, which would make him choose employment for any relevant value

of q~. The same is true for the next unemployed worker on the circle, and so on until

we reach the state of full employment mEE
• As the second part of proposition 1 tells

us, the minimum sample size needed to prevent such an unraveling of the unemployed

segment decreases as it gets harder to make low education workers choose

employment.

The unemployed segment does not unravel from its edges in the above manner, if a

low education worker chooses employment only if more than half his neighbours do

q~ > 0.5 , and if sample sizes are sufficiently large s > .!.. In that case, mEU is an
qL

absorbing state. Note that this hinges on the size of the low education group being

sufficiently large for the unemployed to sustain each other's choices. As the last part

of the proposition establishes, mEU and mEE are in fact the only possible limit sets

of the process. The reason is that if there are two low education workers living next to

each other who differ in their employment status, then they have the same number of

employed neighbours. If called upon to revise, at least one of them might therefore

want to alter his status. Repeated revisions ofthis sort can bring us to mEE or mEU•

For certain values of the parameters of the model, we thus have two absorbing states,

whereas for other values we have only one. In particular, a notable implication of

proposition 1 is that by reducing the sample size of the agents in the model, we can
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reduce the number of absorbing states. Reductions of sample size can thus be viewed

as a means of selection between absorbing states in the present model. As small

sample sizes might be taken to represent imitative behaviour of agents, and larger

sample sizes more rational best reply deliberations, a reasonable interpretation of this

result is that less rationality entails a more unique prediction oflong run outcomes.

A model of neighbourhood effects and mobility

The above assumption of full segregation and immobile agents is rather extreme, yet

serves as a useful introductory case. We now abandon this assumption, allowing any

initial configuration of residences for high and low education agents, and affording

agents the opportunity to switch locations. Workers thus sometimes revise their

employment status, and sometimes their place of residence. The choice of

employment status takes place much as in the above model, whereas for the choice of

residence a range of different rules that might govern mobility are proposed.

As in the preceding model, there are N agents occupying as many locations on a

circle, NI of whom have a high level of education (li) and the remainder a low level

of education (L). The idea that workers sometimes revise their employment status and

sometimes their place of residence can be modelled in a variety of ways, yet we

choose the following simple variant. In each period there is a random draw, which

with probability p puts us in a situation mode (S) and with probability (1- p) puts us

in a residence mode (R). The size of p might then reflect the frequency with which

choices of employment are made relative to choices of mobility.

In a period in which we are in a situation mode, each worker has a probability

S E (0,1) of being selected to revise his employment status. The choice between

employment (E) and unemployment (U) is then made the same way as in the

preceding model, with one modification. Having made the above point about sample

sizes, we now abandon this element and let s = 2k. A worker revising his

employment status now observes the proportion of employment in his entire

neighbourhood (i.e. across all 2k neighbours), and ifwe denote by qj the proportion
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employed in the neighbourhood of the worker currently occupying location i, the

payoffs to this worker from unemployment become

1rj(U) = u(T) -v(qj) (6)

A revising worker compares these payoffs with the payoffs from employment given

by equation (1), and makes the choice which maximizes his payoffs, tossing a coin if

indifferent. The restriction on payoffs imposed earlier remain in place, so a high

education worker always chooses employment, whereas a low education worker is

influenced by the level of employment in his neighbourhood. In the situation mode,

no worker changes his place of residence.

In a period where the random draw puts us in a residence mode, two workers are

drawn at random to consider switching locations with each other. The basic idea is

that a move is made if both find the residence of the other more desirable than their

own, or if one of the two finds the residence of the other more desirable and has the

means to compensate the other for making the switch. In this respect, the model

resembles the residential segregation model of Schelling (1971). In the present model,

there is a variety of ways in which workers can assess the desirability of locations. In

the next section, we discuss a range of these. The different ways of assessing locations

are captured by rules of mobility, stating that two workers exchange locations if they

and their neighbourhoods have certain characteristics. If the two do not have the

required characterstics, the workers remain in their current locations. In the residence

mode, no worker revises his employment status.

With mobile agents, we can represent the state of play at time t by a matrix Mt,

whose ith column m: E {E,U}x {H,L} captures the employment status and the level

of education of the agent at location i on the circle at time t. The state space Cl

consists of all state matrices M such that each column m, of M has E or U in its first

row, and H or L in its second row.

Cl = {M:m, E {E,U}x {H,L}, 'Vi E [l,Nn (7)
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For expositional convenience, we name a few sets of states. Denote by MEE the set of

states in which all workers are employed.

MEE æ {M:ml E {E}x {H,L}Vi E [l,Nn (8)

Moreover, let MEESEG be the set of states in which every worker is employed, and

workers are completely segregated according to their level of education. Note that

MEESEG is a subset of MEE • If A is a set oflocations on the circle, and A the set of all

such sets A that contain NI adjacent locations on the circle only, then we can define

MEESEG as follows.

MEESEG æ {M: mi = (E,H)Vi E A Be M, = (E,L)Vi fi!O AlA E A} (9)

Similarly, let MEU denote the set of states in which all workers with a high level of

education are employed, and all workers with a low level of education are

unemployed.

MEU æ {M:ml E {(E,H),(U,L)}Vi E [l,v] {lO)

The set of states in which all high education workers are employed, alilow education

workers unemployed, and workers are completely segregated according to levels of

education, we call MEUSEG. It follows that MEUSEG is a subset of MEU•

MEUSEG æ {M: ml = (E,H)Vi E A Be M, = (U,L)Vi fi!O AlA EA} (11)

In contrast, let MINT be the set of states of perfect integration, where every other

worker has a high level of education and is employed, and the locations in-between

are occupied by low education workers who are unemployed.

INT {M: (ml = {E,H}, Vi odd & ml = {U,L}, Vi even) }
M æ or (ml ={E,H},Vieven&ml ={U,L},Viodd)INeven

(12)
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This set exists only when there are equally many agents with each type of education,

which implies that the total number of agents must be even. Nevertheless, when these

states do exist, they are a candidate to consider when calculating limit sets. Note that

MINT is a subset of MEu.

Rules of mobility

To know the properties of the process that governs the evolution of the state of play

matrix, we must specify how decisions to move are made. To this end, we define a

number of rules of mobility, each of which captures a different motive for moving. In

the context of the above model, a worker revising his place of residence basically has

two characteristics by which to evaluate how attractive a neighbourhood is to live in.

One is the level of employment in the neighbourhood (or conversely the level of

unemployment), the other is the proportion of high education workers in the

neighbourhood (or conversely the proportion oflow education workers). For any state

Mt EO and any neighbourhood size k, let q: denote the proportion of employed

workers in the neighbourhood of the worker residing at i, and let h: denote the

proportion of high education workers in that neighbourhood. A revising worker can

use one ofthese characteristics, or a combination ofboth, to calculate whether another

location is better than his own.

Even if a worker desires to move to another location, the worker currently occupying

that location might be unwilling to switch. In this case, the worker desiring to switch

might compensate the other party, if he has the means to do so. Whether a switch is

made thus depends on characteristics of the revising workers. One assumption is that

employed workers have the means to compensate unemployed workers, and high

education workers have the means to induce a switch with low education workers.

The below rules of mobility capture variations of these ideas, depending on the

neighbourhood characteristics by which workers evaluate the attractiveness of

locations.
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Let us start with the case where workers evaluate locations solely by the employment

rate of their neighbourhoods. Here we make the basic assumption that workers are

upwardly mobile, and thus desire to move to a location with an employment rate no

lower than their current location. We also make the assumption that when one worker

wants to move but not another, an employed worker can compensate an unemployed

worker in order to induce a switch. For the mobility rules defined below, it would not

make that much of a difference if we added the possibility that high education

workers can compensate low education workers. Let us define three mobility rules

based on upward mobility in terms of employment, starting with the one that requires

the least in terms of an improvement in employment.

Mobility rule ri states that workers want to move to locations that have at least as

many employed neighbours as their current location, where the employment rate of a

neighbourhood is gauged by its level before a move is made. In other words, ri

supposes a limited amount of rationality in workers, since a location that is as good as

your current one before a move is made, might actually prove worse after the move is

made.

DEFINmON 1:

Suppose that at time t we are in state Mt En, and that two agents at locations

a,b E [1,N] are drawn to revise their locations.

Then by ruler' m!+1 =m~ and m~+1= m!

If i) q~ ~ q~, ii) m! E {E}x {H,L} and iii) m~= (U,L).

The definition of rule ri thus says that if two workers are drawn to revise their

locations, they switch if one is employed and the other unemployed, and the latter is

currently in a location with at least as many employed neighbours as the former. Note

that this and the following definitions describe only the columns in which Mt
+
1 differs

from Mt, i.e. the locations that are affected by workers revising their locations, for all

locations i unaffected by such revisions m:+1 =m: , as implicitly specified by the

general description of the residence mode.
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The next rule r2 holds agents to be slightly more rational, comparing the rate of

employment in their current location to what would be the rate of employment in a

prospective location after they had moved there. As in the preceding rule, workers

desire to move to locations with at least as many employed neighbours, and two

workers switch locations if one is employed and desires to move and the other is

unemployed.

DEFINITION 2:

Suppose that at time t we are in state Mt eO, and that two agents at locations

a, b e [l,N] are drawn to revise their locations.

Then by ruler? m!+1 =m! and m!+1 =m!
Ifthereb? i) q~+l~q~, ii) m! e{E}x{H,L} andiii) m! =(U,L).

A third rule r3 states that workers want to move to locations where there are strictly

more employed neighbours. Whether workers gauge employment by its level before

or after a move is made, does not matter that much here, but we assume that they use

the after-move level. As the below definition explains, an employed and an

unemployed worker switch locations if the employed worker so desires.

DEFINmON3:

Suppose that at time t we are in state Mt e O, and that two agents at locations

a,b e [l,N] are drawn to revise their locations.

Then by rule r3 m!+1 = m! and m!+1 = m!
Ifthereby i) q~+l> q~, ii) m! e {E}x {H,L} and iii) m! = (U,L).

Of course, workers need not be upwardly mobile. Frank (1985) suggests that it can be

better to be a large fish in a small pond than vice versa. Let us include a rule reflecting

this idea, where employed workers crave the status of being employed in a

neighbourhood where few others are. Ru1e . r4 states that an employed and an

unemployed worker switch locations if the employed worker gets strictly less

employed neighbours this way. This ru1e is then in a sense the opposite of the

preceding rule r3 •
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DEFINITION 4:

Suppose that at time t we are in state Mt En, and that two agents at locations

a,b E [1,N] are drawn to revise their locations.

Then by rule r4 m!+1 = m~and m~+1=m!
Ifthereby i) q~+l<q~, ii) m! E{E}x{H,L} andiii) m~=(U,L).

Having introduced a few rules based solelyon neighbourhood levels of employment,

let us now turn to rules that rely only on proportions of high and low education

workers. In what follows, we will adopt the basic idea of Schelling (1971) that agents

gravitate towards neighbourhoods that hold a greater number of agents of their own

type, where the type of an agent is his level of education. High education workers thus

prefer to live in neighbourhoods richer in high education workers, and low education

workers prefer neighbourhoods poorer in high education workers. For the mobility

rules to come, we will assume that a high education and a low education worker

switch positions when the former so prefers, in order to keep definitions minimalistic.

However, we could equivalently have assumed that a switch is made when both find it

beneficial. Moreover, adding the possibility that low education employed workers

compensate low education unemployed workers for making a switch the former finds

desirable, would not significantly affect the results.

The first rule based on neighbourhood composition in terms of education, r", states

that workers desire to move to locations where the number of neighbours currently

sharing their level of education is at least as high as in their current locations. In the

rationality awarded agents, this rule thus resembles ri, since agents assess locations

by their neighbourhood composition before a move is made.

DEFINITION 5:

Suppose that at time t we are in state Mt En, and that two agents at locations

a,b E [1,N] are drawn to revise their locations.

Then by rule r5 m!+1 = m~and m~+1=m!
If i) h! ~ h~, ii) m! E {E,U}x {H} and iii) m~E {E,U}x {L}.
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The next rule r6 presupposes a higher degree of rationality, in stating that workers

prefer to leave their current location if a prospective location holds more neighbours

sharing their level of education, after the move is made.

DEFINmON6:

Suppose that at time t we are in state Mt EO, and that two agents at locations

a,b E [1,N] are drawn to revise their locations.

Then by rule r6 m!+1 = m! and m!+1 = m!
Ifthereby i) h~+l ~ h~, ii) m! E {E,U}x {H} and iii) m! E {E,U}x {L}.

A third rule based on neighbourhood composition in terms of education, r 7 , states

that workers move only to locations with strictly more of their own type. The

definition assumes neighbourhood compositions are compared after a move is made,

but comparisons being made before the move would not affect the results to come.

DEFINmON7:

Suppose that at time t we are in state Mt EO, and that two agents at locations

a, b E [1,N] are drawn to revise their locations.

Then by rule r 7 m!+1 = m! and m!+1 =m!
Ifthereby i) h~+l > h~, ii) m! E {E,U}x {H} and iii) m! E {E,U}x {L}.

Once more, one might entertain the possibility that a worker would rather be a big fish

in a small pond, than blend in with their neighbours. In the present context, this would

mean that workers prefer locations poorer in neighbours sharing their level of

education. Rule r8 captures a variant ofthis idea, where locations with strictly fewer

neighbours of their own type are preferred by workers.
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DEFINTI10N 8:

Suppose that at time t we are in state Mt En, and that two agents at locations

a,b E [1,N] are drawn to revise their locations.

Then by rule r8 m!+1 =m! and m!+1 =m!
lfthereby i) h;+1< h;, ii) m! E {E,U}x {H} and iii) m! E {E,U}x {L}.

Thw two characteristics of a neighbourhood, the rate of employment and the

proportion of high education workers, can also be combined in a variety of ways, to

gauge how attractive locations are. Let us explore a few simple rules that combine the

two. The first two of these rules are lexicographic orderings according to the two

characteristics; workers prefer a location better to another according to a first

characteristic, but if two locations are equally good according to the first

characteristic, then workers prefer the location that is better according to the second

characteristic. In this manner, rule r9 states that an employed and an unemployed

worker switch locations if the former worker gets a strictly higher number of

employed neighbours that way; if.he gets as many employed neighbours, a switch is

made if he is a high education worker who gets strictly more high education

neighbours ifhe moves.

DEFINIT10N 9:

Suppose that at time t we are in state Mt En, and that two agents at locations

a,b E [I,N] are drawn to revise their locations.

Then by ruler" m!+1 =m! and m!+1 =m!
lfthereby i) q!+1> q;, ii) m! E {E}x {H,L} and iii) m! = (U,L)

or i) q!+1= q; and h;+1> h!, ii) m! E {E,U}x {H} and iii) m! E {E,U}x {L}.

Rule rIo is just the reverse, a high and low education worker switch locations if the

former gets strictly more neighbours of his own type; if he gets at least as many, a

switch is made if the low education worker is unemployed and the high education

worker gets at least as many employed neighbours.
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DEFINITION 10:

Suppose that at time t we are in state Mt en, and that two agents at locations

a,b e [l,N] are drawn to revise their locations.

Then by ruler'? m!+1=m~ and m~+1=m!

Ifthereby i) h!+!> h!, ii) m! e {E,U}x {H} and iii) m~e {E,U}x {L}

or i) h!+!=h! and q~+!>q~, ii) m! e{E}x{H,L} andiii) m~=(U,L).

The final rule r 11 does not rank characteristics, but states that a move is made

whenever an employed workers can get strictly more employed neighbours by

switching places with an unemployed worker, and whenever a high education worker

can get strictly more neighbours with a high level of education by switching places

with a low education worker.

DEFINITION 11:

Suppose that at time t we are in state Mt en, and that two agents at locations

a, b e [l,N] are drawn to revise their locations.

Then by ruler" m!+1= m~ and m~+1= m!

Ifthereby i) q~+!> q~, ii) m! e {E}x {H,L} and iii) m~ = (U,L)

or i) h!+!> h!, ii) m! e {E,U}x {H} and iii) m~e {E,U}x {L}.

Denote bye the set containing all eleven rules of mobility.

e = ~i :j e {l,.... ,ll}} (13)

Given the way in which agents revise their employment status and place of residence,

for any of the mobility rules ri e e, the evolution of the state matrix Mt constitutes

a Markov chain on the state space n. If we denote by P(ri) the transition matrix of

the process when rule ri is in place, we can sum up the process as (n,P(ri»).
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Long run behaviour when agents are mobile

For each of the mobility rules defined above, the limit sets can be computed. For each

rule, there can be several limit sets, depending on the value of the parameter q~ .

Rules that are stricter in their requirements for mobility, typically have more limit

sets. Limit sets for a specific few of the above rules are explored below, but let us

start by examining some regularities across mobility rules.

PROPosmON2

Consider the process (n,P(rj»). For NI and N2 sufficiently large:

i) A state M is contained in a limit set for all rules r! Ee- {rs }, if and only if
ME MEESEG.

ii) No state MEn is contained in a limit set for all rules r' E e •

The first part of the proposition captures the fact that all states in the set MEESEG, i.e.

states of full employment and total spatial segregation according to education, are

absorbing states or contained in a limit cycle for every mobility rule defined above

except r", States of this kind are thus remarkably robust to variations in motives of

mobility, in fact more so than the states of any other set. However, no set of states is

contained in a limit set for all the previously defined mobility rules, as the second part

of the proposition posits. Even for states in MEESEG, there are thus bounds to

robustness.

The intuitive reasons why states of full employment and full segregation remain in

place almost whatever motive workers have for moving, are as follows. If everyone is

employed, no worker has any unemployed neighbours, and thus no worker chooses to

be unemployed. The local employment norm is everywhere too strong for

unemployment to be an attractive option. No unemployed workers also means that

there is no available location for an employed worker to move to, so no moves are

made on the basis of neighbourhood employment rates.
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With full segregation, the high education workers already occupy the locations with

the most high education neighbours, and they therefore cannot gain more neighbours

of their own type by switching locations with low education workers. They could get

as many neighbours of their own type by moving, but since larger segments of high

education workers are at least as attractive as smaller ones, there is always a chance

that we return to a state of full segregation. The states of full employment and full

segregation thus cannot be forever abandoned if moves are made on the basis of

employment, or if workers prefer to live with their own kind. If, on the other hand,

workers prefer to live with the other kind, they will move away from concentrations

of their own kind and not return, in which case a fully segregated state can be forever

abandoned.

In more technical terms, the reason states in MEESEG are robust to all rules of mobility

but one, can be explained in the following way. First, notice that when all players are

employed, employment is the optimal choice for any worker drawn to revise his

employment status. If we are in a state M E MEESEG , no worker thus ever changes his

employment status, which means that in all later periods, we remain within the set of

states where everyone is employed MEE • Second, for any of the above mobility rules,

save rule r8, either no location switches are possible by which we go from a state in

MEESEG to a state unsegregated according to education, or if such switches are

possible there exists some series of switches which brings us back to a segregated

state. For the four mobility rules based solelyon neighbourhood employment rates,

ri, r2, r3 and r'", this is a fairly trivial matter, since according to these rules one

agent must be unemployed for a location switch to occur. As there is no

unemployment in a state M E MEESEG, there is thus no possibility of a switch

happening, and each state in the set is thus an absorbing state.

For the first two rules based on education type, r5 and r'", location switches are

possible in any state M E MEESEG. Consider the following figure, where there are

twelve locations, and six workers of each type forming contiguous segments.
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Figure 2. Illustration of a state of segregation.

From the figure, we see that a high education agent at the edge of the high education

segment has as many high education neighbours as his closest low education

neighbour. Under rule rS, this implies that two workers of this kind would exchange

locations if called upon to consider this option. This particular rule thus allows us to

leave a state ME MEESEG for one without complete segregation. One can show,

however, that from any state that is not segregated, one can reach any state

ME MEESEG . Loosely, the reason why this happens is that any stray high education

worker finds more high education neighbours in a contiguous high education segment

than elsewhere. This means that the states in the set MEESEG must be part of a limit set

under rule r", Under rule r'", adjacent high and low education workers in the above

figure would not exchange locations, as they would get fewer neighbours of their own

type after such an exchange. However, a high education worker at one edge of the

high education segment could exchange locations with a low education worker at the

other edge of that segment. Thus, location switches can rotate the high education

segment around the circle, which implies that under rule r'", the states ME MEESEG

form a limit cycle.

As figure 2 reveals, there are no locations to which a high education worker can move

and get strictly more high education neighbours. In a state ME MEESEG , no moves are

thus possible under rule r 7 , which makes each state in the set an absorbing state.
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Rules r'", rIo and ril just combine strict requirements of employment and high

education neighbours in various ways, and thus do not allow any location switches,

making any state M E MEESEG an absorbing state under any of these rules. In sum,

then, for rules rI through r 7 and r9 through ril, any state ME MEESEG is contained

in a limit set.

The reason why no other state is contained in a limit set for all these ten rules, can be

explained in two steps. First, we can show that for rule rI, only states of full

employment ME MEE are contained in limit sets. Consider the following figure in

which the Ls and Hs offigure 2 have been replaced by Us and Es, respectively.

E

U E

U

Figur 3. Illustration of a state containing employment and unemployment.

For similar reasons as in the above discussion of rule r5, through location switches

under rule rI, we can reach a state in which there is total segregation according to

employment status. Note that an employed worker at the top of the circle would now

want to change locations with the unemployed worker to his left. If this happens, the

next employed worker to the right on the circle would also want to switch positions

with the unemployed worker. Thus we can continue until the unemployed worker has

only employed neighbours, and chooses employment if called upon to revise his

employment status. Every unemployed worker can be brought into the employed fold

in this manner, and made to choose employment. Once everyone is employed, noone
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wants to switch back to unemployment. For the rule rI, a state is contained in a limit

set only if M EMEE •

Second, under rule r 6 , only states segregated according to education are contained in

limit sets. Through a slightly more complicated argument than in the above case of

rule r5, one can show that under r" any state in which there is incomplete

segregation according to education can be transformed into one of complete

segregation through a series of location switches. Again the main reason is that high

education workers prefer to move to locations where the concentration of high

education neighbours is greater, which it is in contiguous segments. Once a state of

segregation is reached, r 6 does not permit segregation to be abandoned. In sum, then,

since under rI only states of employment are contained in limit sets, and under r6

only states of segregation according to education are contained in limit sets, no state

Me MEESEG can be contained in a limit set for all rules rI through r7 and r9 through

Finally, no state Men is contained in a limit set across all mobility rules ri Ee ,
due to the fact that no state M E MEESEG is contained in a limit set under rule r8 • From

figure 2, it is obvious that any high education agent would want to exchange locations

with any low education agent under rule r8, since the former agent would thereby

reduce his number of high education neighbours. However, any high education agent

thus separated from a high education segment would not want to rejoin that segment,

since his number of high education neighbours would then rise, In a sense, high

education workers want to avoid congregations of their own kind. Thus any state

M E MEESEG can be left for a state outside that set, but since the final switch that

would lead us back to a state in that set from any other set cannot be made, the states

M E MEESEG cannot be part of any limit set.

As noted earlier, though states in MEESEG are particularly robust to variations in

mobility rules, specific mobilty rules permit a variety of limit sets, sometimes

including states that are not in MEESEG. The mobility rules requiring prospective

neighbourhoods to be weakly better are what drives the restriction of limit sets seen in
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proposition 2. A greater range of limit sets exists under the rules that require a

prospective neighbourhood to be strictly better for a worker to want to move there. A

closer examination of long run outcomes under these rules is therefore warranted. A

full characterization of limit sets is difficult for the rules in question, yet the following

propositions adequately capture the variety in possible long run outcomes.

PROPosmON3

Consider the process (a,P(rj»).
For j = 3, and NI and N2 sufficiently large:

i) Any state M E MEE is an absorbing state.

ii) Any state ME MEUSEG is an absorbing state if and only if q~ E (0.5,1).

iii) Any state M E MINT is an absorbing state if q; E (0.5,1) and k is even.

This proposition addresses rule r", by which employed workers move to locations

that are strictly betler in terms of employed neighbours. As the first part of the

proposition indicates, any state of full employment, regardless of the spatial location

of high and low education agents, is an absorbing state. The reasons for this are that

when everyone is employed, no worker ever chooses unemployment, and since there

are no unemployed workers to switch locations with, no two workers ever exchange

locations.

According to the second part of the proposition, any state in which there is total

segregation according to education and every low education worker is unemployed, is

an absorbing state provided low education workers are more easily persuaded to

choose unemployment than employment, q~ > 0.5 . As figure 3 tells us, no employed

worker in such a state would get more employed neighbours by switching places with

an unemployed worker. And the proportion of employed neighbours for any low

education worker in such a state is one half or less, which implies that if q~ > 0.5 , all

low education workers stay unemployed. If, on the other hand, q~ :s; 0.5 the low

education workers at the edges of the unemployed segment could switch to

employment, and a succession of such switches would make the unemployed segment

crumble from its edges.
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The third part of the proposition claims that a state in which alllow education workers

are unemployed, and there is full integration in the sense that employed high

education workers and unemployed low education workers occupy alternate locations

on the circle, is an absorbing state provided q~ > 0.5 and the number of neighbours to

each side k is an even number. To appreciate why this is, consider the following

figure.

L

H H

L

Figur 4. Illustration of integrated state

Imagine that k = 2 , so each player has four neighbours, two to each side. Exactly half

the neighbours of every worker are then employed. Thus if q~ > 0.5, low education

workers remain unemployed. Every employed worker has two employed neighbours,

and would get two or less by switching locations with an unemployed worker, so no

location switches will occur. This line of reasoning extends to any case in which k is

even. If, on the other hand, k were odd, less than half the neighbours of an employed

person would be employed, whereas half or more than half his neighbours would be

employed if he switched locations with an unemployed worker. For k odd, then, a

state of total integration would crumble.
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Very similar results to those of proposition 3 can be derived when mobility decisions

are motivated by neighbourhood levels of education, or by a combination of

employment rates and levels of education.

PROPosmON4

Consider the process (n,P(rj)).

For j E {7,9,10,11}, and NI and N2 sufficiently large:

i) Any state M E MEESEG is an absorbing state.

ii) Any state ME MEUSEG is an absorbing state if and only if q~ E (0.5,1).

iii) Any state M E MINT is an absorbing state if q~ E (0.5,1) and k is even.

The second and third parts of proposition 4 mirror those of the preceding proposition.

When we allow for the fact that here mobility is (also) based on levels of education,

the reasons why segregated and integrated states of full unemployment among those

with a low level of education are absorbing states, are very similar to those recounted

in the above justification of proposition 3. Let us instead focus on where mobility

based on education levels produces a different result from mobility based on

education, as captured by the first part of the two propositions. When mobility

happens due to differences in levels of education, or such differences provide an

added reason to move, all states of full employment need not be contained in limit

sets. Intuitively, this can be explained by imagining a state of full employment in

which all high education workers but one fonn a contiguous segment. The high

education worker isolated from his peers would then gain high education neighbours

by switching locations with a low education worker at the edge of the contiguous

segment of high education workers. Once such a move is made, we reach a state of

full segregation, in which no high education worker can get more high education

neighbours through further moves. In other words, while segregated states of full

employment are absorbing states, not all non-segregated states of full employment are

absorbing states.

In conjunction, propositions 3 and 4 reveal that if moves are made to locations that are

strictly better on some characteristic, a wide range of long run outcomes can be

observed. Both states of full employment and of full unemployment among those with
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a low level of education can be absorbing states, as can both fully segregated and fully

integrated states. Moving processes of this kind thus permit a wide variety of worlds

to exist in the long run. However, variety is greater where decisions to move are based

solelyon employment levels, than where these decisions feature a comparison of

neighbourhood education levels. In a sense, then, mobility based on education

generates a bias towards more segregated long run outcomes.

Concluding remarks

The results obtained in this paper show that complete segregation and full

employment is a long run outcome robust to variations in sample size, payoffs to

workers and mobility motives. Though sample size was studied only in the initial

model with fixed locations, where reduced samples were heralded as a means of

selection among limit sets, a similar point could be made if employment decisions in

the models including mobility were based on limited samples. However, then we

would also have to tackle the question of whether only employment decisions should

reflect limited samples, or if samples ought also to be assumed limited in mobility

decisions. If so, more moves would be permitted under each of the above mobility

rules, which on the one hand could mean that segregated states would be easier to

reach, while on the other hand segregated states could also be easier to leave. Though

limited samples might in this context reduce the number of limit sets, the number of

states included in each limit set might rise, which makes the selection effect more

dubious.

As noted initially, the purpose of the above framework is to study the joint impact of

employment and mobility decisions in an urban context. A few of the assumptions on

which the analysis is based are of course highly stylized, in particular the idea that

workers inhabit a circular space, and that their payoffs from employment and

unemployment are restricted they way they are. A more general model would let

workers inhabit a more general social grid, and one way of analyzing such a model

would be by means of the concept of contagion thresholds introduced by Morris

(2000). Assuming greater variation in the characteristics that determine the payoffs to

individuals would make the analysis richer, but also more complex as long run
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outcomes would vary according to how the population is distributed across these

characteristics. Finally, as matters of education or productivity are influenced by the

choices, opportunities and social situation of workers, making these characteristics

endogenous would also constitute an improvement to the framework proposed here.
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Appendix: Proof of propositions 1 through 4

The two processes (C,P(s» and (C,P(rj») are discrete time Markov processes on

finite state spaces, since the probability of transiting between two states from the

current period to the next, depends on the properties of no state other than the current.

A state m' (or M') of such a process is accessible from another state m (or M), if

there is a positive probability of reaching m ' (or M') from m (or M) in a finite

number of periods. Two states communicate if each is accessible from the other. A

limit set is defined as a set of states such that all states in the set communicate, and no

state outside the set is accessible from any state in the set. A limit set is thus a set of

states which once reached, the process never leaves. An absorbing state is a limit set

consisting of a single state, whereas we call a limit set consisting of several states a

limit cycle.

For the process (0, P (s) , an absorbing state is a state in which no worker would

alter his employment status, for any sample he could draw of his neighbours. For the

process (C,P(rj»), an absorbing state is a state in which no worker would alter his

employment status, and no two workers would switch locations by rule rj• In the

below proofs of the propositions, we typically establish some absorbing states (or

limit sets), and then proceed to rule out further limit sets by showing that an absorbing

state (or a limit set) is accessible from the remaining states.

PROOF OF PROPosmON 1:

i) In state mEE
, for any revising worker, the proportion of employed neighbours

observed is one, gi = 1> q~.No worker ever changes his employment status, which

means that no other state is accessible from mEE
• The state mEE is thus an absorbing

state.
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ii) If at time t we are in state mEU
, then

(Al)

The sequence of revisions in which agents at positions NI + 1 through N successively

revise their employment status has positive probability. If with positive probability

q~I+I ;?: q~, then with positive probability we get m~~1= E, which implies that with

positive probability q~:~2= q~I+I and m~:2= E, which by repeated application

implies that with positive probability m~~i = E for all i E [1,N -NI]' With positive

probability we thus reach mEE in a finite number of periods, which implies that mEE

is accessible from mEU
, and since mEE is an absorbing state, mEU can therefore not

be contained in any limit set.

If on the other hand the probability that q~I+I ;?: q~ is zero, then by virtue of (AI),

q;' < q~ for any revising player at location i E [NI + 2,N]. No sequence of revisions

thus exists, for which m ~I +i = E for any r > t and i E [1,N - NI ]. In this case, no

other state is accessible from mEU
, it is consequently an absorbing state.

The state mEU is thus an absorbing state if and only if q~I+I < q~ for all possible

samples the player at position NI + 1 could draw. For any sample size S E [1,2k],

q~I+I ;?: 0.5 with positive probability, since it is always possible that the sample the

player at the edge of the employed segment draws contains all employed neighbours

or only employed neighbours. For mEU to be an absorbing state, we must therefore

have q~ > 0.5 . Moreover, since at most q~I+I= 1 if s < k and q~+1= k at most if
I s

s;?: k, we must have k < q~ for q~+1 ;?: q~ to have zero probability. Thus, for mEU

s I

to be an absorbing state, we must have s > ~ .
qL
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iii) Imagine that at time t we are at some state m' e {mEE ,mEU
}. Starting at location

NI +1 and moving clockwise, find the first two locations for which m'; '¢ m';+1 where

i E [NI +I,N -1]. Two adjacent agents have 2k-2 neighbours in common, they

have each other as neighbours, and their final neighbour they do not have in common.

For two adjacent agents with different employment status, the employed agent then

has at least as many unemployed neighbours as the unemployed agent, and the

unemployed agent has at least as many employed neighbours as the employed agent.

Thus, if m', = E and m';+1 =U, then q:+1 ;;::q;, and vice versa. For at least one of the

two agents there must then exist some sample which would make him alter his

strategy upon revision. If the player at location i alters his strategy, then by

implication all players from i -1 counter-clockwise to NI + 1 might successively

alter their strategies. If the player at location i +1 alters his strategy, we proceed

clockwise to the next pair of adjacent agents with different employment status. By

repeated applications of this procedure, we eventually end up in a state where alllow-

education agents have the same employment status, i.e. in mEE or mEU
• No state

m' e {mEE ,mEU
} can thus be contained in a limit set.o

PROOF OFPROPosmON 2:

i) First we prove that any state M E MEESEG is contained in a limit set under all

mobility rules r' Ee- {rs}. Note that in any state ME MEE, q; = 1> q~ for any

location i E [I,N], so no state outside MEE is accessible from a state in MEE• In

words, no worker ever switches to unemployment since all his neighbours are

employed. Since MEESEG c MEE , no state outside MEE is thus accessible from a state

in MEESEG.

For the mobility rules based on employment, rI, r2, r3 and r4, location switches

occur only between unemployed and employed workers, and since there are no

unemployed workers in any state M E MEESEG , these states must be absorbing states.
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For rules r5 and r'", location switches are possible. However, we can prove that from

any state in MEE that is not in MEESEG, i.e. that is not segregated, we can transit to a

state in MEESEG. Hence, states in MEESEG must be contained in some limit cycle.

Consider any state M' E MEE - MEESEG, and note that it has at least two segments of

adjacent high education agents, and two segments of low education agents, otherwise

it would be segregated. By implication, there are at least four pairs of high and low

education workers residing at adjacent locations. By virtue of an argument similar to

that used in the proof of proposition 1iii), the low education worker of such a pair

must have at least as many high education neighbours as the high education worker of

that pair. This due to the fact that they have 2k - 2 neighbours in common, they have

each other as neighbours, and only one neighbour that they do not share.

From the pairs of adjacent high and low education workers, take the pair with the

highest number of high education neighbours (if there are several such pairs, pick any

one of them). Let us say their proportion of high education neighbours is fz. If the

number of workers with each type of education, NI and N2, are large, there now

exists some other pair of adjacent high and low education workers that have fz or less

high education workers, and that do not have the fonner pair in their neighbourhood.

Both under rule r5 and r'", the high education worker of the latter pair and the low

education worker of the fonner would switch locations.

We thus reach a new state Mil, where the high education worker thatjust moved has
A

h high education neighbours, and any low education worker living next to him also
A

has h high education neighbours. Furthermore, for any worker that does not have this

high education worker as a neighbour, the proportion of high education workers is

equal to or less than what he had in state M'. Among these, there thus exists some

pair of high and low education adjacent agents, where the high education worker

would switch locations with the low education worker adjacent to the high education

worker that just moved.

Thus we reach a new state Mil', from which we can repeat the argument a finite

number of times until a low education segment is eradicated. Then we start allover
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again by finding the pair of high and low education workers with the highest number

of high education neighbours, and gradually eradicate the segment associated with

this low education worker as well. A finite number of repetitions of this procedure

eradicates all low education segments but one, and we have reached a state in

MEESEG.

For rules r 7, r9 , rIo and ril, in a state ME MEESEG no location switch is ever made

on the basis of employment, since under rule r 7 it is not permitted, and under rules

r", rIo and ril there are no unemployed workers with whom an employed worker

can switch positions. Any switches would have to be made on the basis of education.

However, if at time t we are in a state M E MEESEG , then

h: s h~ if m; =(·,L) and m', =(.,H) (A2)

By implication, no high education worker can get strictly more neighbours with a high

level of education by switching locations with a low education worker, and no

switches are thus ever made. Under rules r 7, r9, rIO and ril, any state ME MEESEG

is thus an absorbing state.

Next we prove that only states ME MEESEG are contained in limit sets for all rules

r! E e- ~8 }. This is done in two steps, first by showing that only states in MEE are

contained in limit sets under rule rI, and second by showing that of the states in MEE,

only those in MEESEG are contained in limit sets under rule r6 •

Under mobility rule rI, any state M'En that is not segregated according to

employment, can be transformed into one that is thus segregated by a series of

location switches. Start with any employed agent, and number his position on the

circle 1. Then move clockwise to the first location occupied by an unemployed agent,

say location a. Then proceed clockwise to the first subsequent location occupied by an

employed agent, say at location b. The employed agent at location b has at least as

few employed neighbours as the unemployed worker at location b -1 , and would thus

want to exchange locations with him. Having moved to location b -1 , the employed
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worker has at least as few employed neighbours as any unemployed worker

immediately preceding him on the circle, and would want to move once more. Thus

we can continue until the employed worker reaches location a. By repeating this

process for each employed worker, a contiguous segment of employed workers forms

from location l onwards, a segment that eventually holds all employed workers,

which means that we are in a state of full segregation according to employment.

From a state of full segregation according to employment, we can proceed to eradicate

unemployment through further location switches. Imagine that the employed segment

stretches from location l to location c. The unemployed worker at location c + l has

at least as many employed neighbours as the employed worker at location c, and the

two might therefore exchange locations. The unemployed worker now at location c

has at least as many employed neighbours as the employed worker at location c -1 ,

and the two might exchange locations. Thus we can keep moving the unemployed

worker into the employed segment. If the number of high education workers is

sufficiently high, the unemployed worker in question eventually has only employed

workers in his neighbourhood. If selected to revise his employment status, he would

then choose employment. In a similar manner we can move every single unemployed

worker at locations c + 2 through N into the employed segment one at a time, and

make them choose employment, which means that we eventually reach some state of

full employment M E MEE
•

Under rule rI, from any state that is not segregated according to employment we can

move to one that is segregated, and from any segregated state we can move to one of

full employment. A state in MEE is thus accessible from any state outside that set. But

as argued above, no state outside MEE is accessible from a state in MEE, which

implies that no state outside MEE is contained in a limit set under rule rI.

For rule r'", we have already proved that from any state in MEE, we can transit to a

state in MEESEG. We now add a proof of the fact that no state outside MEESEG is

accessible from any state in MEESEG under rule r", Consider the high education

workers in a state M E MEESEG • If not on the boundary of the high education segment,

a high education worker has at least k +1 high education neighbours, and switching
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locations with any low education worker would leave him with at most k high

education neighbours. If on the boundary of the high education segment, a high

education worker has exactly k high education workers, and would get as many high

education neighbours if he exchanged locations with the low education worker at the

opposite boundary of his segment, otherwise he would get strictly fewer. The only

location switches permitted by rule r'' in a state Me MEESEG are thus between high

and low education workers at opposite boundaries of the high education segment.

This implies that from any state in MEESEG we can move only to other states in

MEESEG, which implies that the states in MEESEG fonn a limit cycle. Moreover, since a

state in MEESEG is accessible from any state in MEE, no state in MEE is contained in a

limit set under rule r6 •

Summing up, only states in MEE are contained in limit sets under rule rI, and of the

states in MEE only those in. MEESEG are contained in limit sets under rule r'", which

implies that no state not in MEESEG can be contained in a limit set for all rules

r! e 0- {rs}.

ii) Here we need only prove that no state in MEESEG is contained in a limit set for rule

r". Note that any high education worker in a state M'e MEESEG has k or more high

education neighbours, where the workers at the boundary of the high education

segment have exactly k and those not at the boundary more than k. By switching

locations with any low education worker, they would get k or less high education

neighbours. Thus any high education worker not at the edge of the high education

segment would switch locations with any low education worker. Moreover, a high

education worker on the boundary would want to exchange locations with the low

education neighbour next to him on the circle, since he would then get k -1 high

education neighbours. (The only location switch between high and low education

workers that is not permitted under rule rS is between a low and high education

worker at opposite edges of the high education segment.) Thus from a state

M'e MEESEG, we can transit to a state M"~ MEESEG.
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However, any switch that caused such a transition cannot be undone, since the high

education worker who moved now has at most k high education neighbours if he

moved from the interior of the high education segment or at most k -1 high

education neighbours if he moved from the boundary. To make the high education

segment complete again, he would have to move to a location where he would get at

least k +1 high education neighbours in the former case, and k high education

neighbours in the latter. Under rule r8, such a move would not be made. And since

location switches happen sequentially, one at a time, such a move is needed as the

final switch in a series through which an unsegregated state is supplanted by a

segregated state. Under rule r8, then, from a state in MEESEG we can transit to a state

in MEE - MEESEG , but no state in MEESEG is accessible from a state in MEE _ MEESEG ,

which means that no state is contained in a limit set for all rules r! Ee .0

PROOF OFPROPosmON 3:

i) In any state ME MEE, qj = l> q; for a worker at any location i E [1,N]. Moreover,

no worker is unemployed, so no two workers ever exchange locations by rule r3 • Any

state ME MEE is therefore an absorbing state.

ii) If at time t we are in any state Mt EMEUSEG , and we let NI + 1 be the location of

the unemployed worker who has an employed worker before him and an unemployed

worker after him on the circle, then (AI) holds. By implication, since q~l+1 = 0.5,

then no worker would ever alter his employment status if q; E (0.5,1). If on the other

hand, q; E (0,0.5], then upon revision the player at position NI +1 could choose

employment, m~::1= (E,L), which implies q~~2 = 0.5, which could mean

m~:!2= (E,L), and so on until m~:~1= (E,L) for all i E[l,N -NJ. We have thus

reached some state Mt+' E MEESEG C MEE, and no state Mt E MEUSEG is therefore

contained in a limit set.
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In any state M EMEUSEG , any employed worker has at least k employed neighbours.

By switching locations with an unemployed worker, the most employed neighbours

he could get is k. No two workers would therefore exchange locations under rule r".
In conlusion, any state ME MEUSEG is absorbing ifand only if q; E (0.5,1).

iii) In any state M E MINT, if k is even then qj = 0.5 for alilocations i E [1,N]. By

implication, no revising worker changes his employment status if q; E (0.5,1). Any

employed worker in a state M E MINT has k employed neighbours, and would get kor

less by switching locations with an unemployed worker, so under rule r3 no location

switches occur in such a state. Any state M E MINT is therefore an absorbing state for

k even and q; E (0.5,1).0

PROOF OF PROPosmON 4:

i) See the proof of proposition 2.

ii) From the proof of proposition 3 we know that in any state M E MEUSEG , no worker

changes his employment status if q; E (0.5,1), whereas all unemployed workers could

change sequentially to employment if q; E (0,0.5]. Any high education worker has at

least k high education neighbours in a state M E MEUSEG, and would get k or less by

switching locations with a low education worker. From the proof of proposition 3ii)

we know that no employed worker can get more employed neighbours by switching

locations with an unemployed worker. Under rules r 7, r", rIo and ril, no location

switches thus occur in a state ME MEUSEG. In conclusion, any state ME MEUSEG is

absorbing if and only if q; E (0.5,1) .

iii) The proof of proposition 3iii) tells us that in a state M E MINT, no worker changes

his employment status if k is even and q; E (0.5,1), and no employed worker could

get more employed neighbours by switching locations with an unemployed worker. If
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k is even, in any state Me MINT a high education worker has k high education

neighbours, and would get k or less if by switching with a low education worker.

Under rules r 7, r9, rio and ril, then, any state M e MINT is absorbing if k is even

and q~ e(0.5,1).o
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Abstract

Bergin and Lipman (1996) prove that equilibrium selection in the evolutionary

dynamics ofKandori, Mailath and Rob (1993) and Young (1993), is not robust

to variations in mutation rates across states. Specifically, a risk dominant

equilibrium can be selected against if the mutation rates are higher in its basin

ofattraction than elsewhere. Van Damme and Weibull (1998) model mutations

as a compromise between payoff losses and control costs, finding that mutation

rates are lower in the risk dominant equilibrium. This paper argues that this

result in not driven by control costs, but by the assumption that players focus

on payofflosses when choosing mutation rates.
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Introduction

. One of the more promising approaches to selection among multiple equilibria in games, has

been the one proposed by Kandori, Mailath and Rob (1993) and Young (1993). Both these

contributions study a population of agents who are matched repeatedly to playa game, acting

adaptivelyby choosing a best reply to play in previous periods. In the model of Kandori et al,

agents adapt to play in the preceding period, whereas in the model of Young, agents adapt to

an observation of a limited sample of play in the most recent periods. In a simple 2x2

coordination game, these adaptive dynamics lead us to one of the two pure Nash equilibria.

What makes selection among the equilibria possible is the introduction of a mutation

probability on top of the adaptive dynamics. Every time an agent decides on a strategy, there

is a small probability that he implements a strategy different from his preferred one. As this

mutation probability becomes arbitrarily small, the relative frequency with which we observe

one of the equilibria in the very long run tends to one. Specifically, Kandori et al and Young

show that the equilibrium thus selected is what Harsanyi and Selten (1988) term the risk

dominant equilibrium.

Bergin and Lipman (1996), however, challenge the notion that small mutation rates select a

unique equilibrium. Their basic point is that Kandori et al and Young base their results on the

restrictive idea that mutation rates are the same in all states. If we allow any variation of

mutation rates across states, Bergin and Lipman show that any strict Nash equilibrium can be

selected when mutation rates are taken to zero. Specifically, the risk dominant equilibrium

need not be selected if mutation rates are higher in its basin of attraction than in that of

another equilibrium.

To say anything precise on equilibrium selection, then, we need to specify the element of

mutations more precisely. What is it we mean to capture by mutations, and what implications

does this have for variations in mutation rates across states? Van Damme and Weibull (1998)

suggest one way in which to understand mutations; as mistakes that agents can control at a

cost. By assuming that agents want to avoid mistakes more that are more costly in terms of

payoff losses, van Damme and Weibull reach the conclusion that agents have lower mistake

probabilities in the risk dominant equilibrium. Selection of the risk dominant equilibrium is

thus upheld under this interpretation of mutations.
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This paper takes a closer look at mutations in evolutionary models, and in particular the

mechanism behind the latter result. In the next section, we recount the rudiments of the

evolutionary models of Kandori et al and Young, explaining the intuition behind equilibrium

selection when mutation rates are fixed and when they vary. In section three, we consider

different ideas of what mutations can be taken to represent, and explore specifically the

implications of viewing mutations as experiments or mistakes. In section four, we review the

results of van Damme and Weibull, focusing on why mutation rates in their model are lower

in the risk dominant equilibrium. It is suggested that what drives their result is not the cost

associated with lowering mutation probabilities, but their assumption that an agent wants to

reduce probabilities more when these are more costly to that agent. If agents care about the

possibility of reaching a better state through mutations, the opposite result can be proven,

where the risk dominant equilibrium has a higher mutation rate. A final section argues that if

the equilibrium selection results are to become more precise and applicable to a human

decision making context, the basic evolutionary framework must reflect empirical regularities

in the way humans make decisions.

The dichotomy of adaptive dynamics and mutations

The evolutionary models of Kandori, Mailath and Rob (1993) and ofYoung (1993) basically

view actions as the outcome of two distinct processes, an adaptive dynamic and a random

process of mutation. The two models allow some variation in the way the adaptive process is

modelled, but the following framework captures their general gist. From a finite population,

agents are matched repeatedly to playa game. In each period, agents update their strategies,

assuming that the frequency with which strategies were played in the preceding period reflect

the probability with which they will be played in the current period, and choosing a best reply

to this probability distribution. If we let the number of players using each strategy represent

the state of play in any period, the process of adaptation is then a Markov process on a finite

state space.

Let O be the state space, and P the transition matrix defined by the adaptive process, where

element ij of P is the probability of going from state i toj from one period to the next. Let f.L

be an invariant probability distribution over O, which has the property f.L = f.LP. Since the
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process P on n can have several such invariant distributions, the long run outcome of the

process need not be unique. However, if we add mutations, in the sense that in each period

each agent has a small probability e of choosing a strategy at random, we get a new process

P& on n which is irreducible since every state has a positive probability of being reached

from every other state. And an irreducible Markov process has a unique invariant distribution

u' . Young (1993) shows that if we let the probability of mutation e get arbitrarily small,

then lim J.l e exists and equals an invariant distribution of the process without mutations, P on
&-tO

n. Arbitrarily small mutation rates thus permit selection among the states that can be

observed in the long run without mutations. The states that have a positive probability in

lim J.l ", Young calls stochastically stable. They can be identified as the states with minimum
&-tO

stochastic potential, which basically means that they are more costly to leave in terms of

mutations than they are to reach from other states.

Let us briefly review why the above process of adaptation and mutations selects the risk

dominant equilibrium in a 2x2 coordination game. For simplicitly, assume the game is

symmetric.

Player 2

A B

A c,d
(Gl)

a,a

Player 1
B d,c b,b

We assume a> d and b > c, which makes (Gl) a coordination game with two Nash

equilibria in pure strategies, (A,A) and (B,B). We also assume that a - d > b - c, which

implies that (A,A) is the risk dominant equilibrium as defined by Harsanyi and Selten (1988).1

Finally, assume that b > a, which makes (B,B) the Pareto dominant equilibrium.

1Harsanyi and Selten (1988) define risk dominance in the following way. Consider any 2x2 game with two strict
Nash equilibria U and V, where the losses to players I and 2 from unilaterally deviating from the equilibria are

(Ul ,u2) and (VI' v2), respectively. U risk dominates V if Ul • u2 > VI • v2' and V risk dominates U if the
opposite inequality holds.
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A player is indifferent between A and B if the probability with which his opponent chooses A

is a, where,

b-ca=------
(a - d) + (b - c)

(1)

If the probability is higher than a , a player prefers strategy A, if it is lower, he prefers B. The

assumption that (A,A) is risk dominant implies that a < 0.5 .

According to the adaptive dynamics, the probability that your opponent chooses A equals the

frequency with which A was played in the population in the previous period. If the proportion

playing A is above a , players thus switch to A, increasing the proportion playing A. If the

proportion playing A is below a, it decreases over time. If the population constists of N

agents, and Z E [O,N] denotes the number playing strategy A, we can depict the adaptive

dynamics as follows.

I~4~--~4---.4--~--~.~--~.~--~.~-~.----~.1z
O ~ N

Figure 1. Adaptive dynamics

The adaptive dynamics thus leads us to a state in which everyone plays A, i.e. where

equilibrium (A,A) is observed, or to a state where everyone plays B, and (B,B) is observed.

As the figure shows, there are more states leading to (A,A) than to (B,B), the former state thus

has the larger basin of attraction.

By adding mutations, we can select between the two equilibria. The greater size of the basin

of attraction of (A,A) implies that it takes more mutations to upset this equilibrium than

equilibrium (B,B). More than half the population must mutate for us to leave a state in which

everyone plays A for one where everyone plays B, whereas less than half the population must

mutate for the opposite transition to occur. If mutations are equally probable in all states, it is
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thus less likely that equilibrium (A,A) is upset by mutations than (B,B), and infinitely less

likelyasthe probability of mutation E tends to zero. In having the larger basin of attraction,

the risk dominant equilibrium (A,A) -is thus the more costly to leave in terms of mutations,

and it is therefore the one selected by the process of adaptation and mutation.

Bergin and Lipman (1996) point out, however, that the above result is based on the restrictive

assumption that mutation rates are the same in all states. They show that if we allow any

variation in mutation rates across states, we can make the invariant distribution of the process

with mutations equal any invariant distribution of the mutationless process, as E ~ O. In

other words, any strict Nash equilibrium can be selected by the process of adaptation and

mutations, if mutation rates are not the same in all states.

By implication, we can select the Pareto dominant equilibrium (B,B) of (G 1) if mutation rates

are higher in the basin of attraction of (A,A) than in the basin of attraction of (B,B). To be

more specific, the mutation rates must converge to zero at different rates, if E is the rate of

mutation in the former basin of attraction and EX in the latter, then we must have x> 1 for

(B,13) to be selected. By reference to figure 1, we can explain the selection of (B,B) as

follows. Though the risk dominant equilibrium (A,A) has the larger basin of attraction, in the

sense that it takes more mutations to leave, the basin of the Pareto dominant equilibrium (B,B)

is deeper or steeper in that each mutation is less probable. If the basin of (B,B) is sufficiently

deep, it is harder to upset (B,B) than (A,A) through mutations, which means that the process

of adaptation and mutations selects the Pareto dominant equilibrium (B,B).

The conclusion we can draw from Bergin and Lipman's result is that ifwe know nothing of

how mutation rates vary, we cannot determine which equilibrium will be selected.

Conversely, to argue for the selection of one equilibrium over another, we need a closer

specification of mutation rates. The contents of such a model of mutations depends on what

we take mutations to represent.
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Mutations as experiments or mistakes

The idea of a dynamic process consisting of adaptation and mutation is taken from biology,

where it has a firm basis in Darwin's theory of evolution and in genetics. The adaptive part

here reflects the idea that genes that are more successful in reproducing themselves, will over

time grow more prominent in the total gene pool. Mutations capture the idea that genes

change spontaneously on rare occasions. Whether it is reasonable to base a theory of decisions

on a similar dichotomy, depends on what the theory is meant to represent. Is it a theory of

how rational beings make decisions, or is it a theory ofhow human beings make decisions?

If the evolutionary models of Kandori, Mailath and Rob (1993) and of Young (1993) are a

continuation of the endeavours of game theory in studying the behaviour of rational beings,

then equilibrium selection through mutations seems to come at the expense of internal

consistency. By allowing deviations from a clearly defined best reply relation, mutations seem

to introduce an element ofbounded rationality into a theory ofrationality. Whether rationality

is indeed sacrificed through the introduction of mutations, of course depends on what

definition of rationality you use. Mutations and even the idea of gradual adaptation seem hard

to reconcile with a theory of ideally rational players, who have perfect foresight and are

infallible. Sugden (2001) thus suggests that the evolutionary approach marks a sharp

departure from the fundamentals upon which game theory is based. Yet on a weaker

conception of rationality, it is possible to imagine players who are rational in pursuing their

ends, yet fallible in sometimes not being able to carry out their preferred strategies.

Superimposing adaptation and mutations on a theory of decisions thus seems to come at the

expense of the degree ofrationality rather than at the expense ofinternal consistency.

If, one the other hand, the evolutionary models are to be models of human decision making,

then the idea that decisions can be divided into adaptation and mutations must be empirically

justified. Thus far, the empirical basis for the analogy of human decisions to biological

evolution is anecdotal at best. To explore the empirical justification of using adaptation and

mutations to model decisions, the field of cognitive psychology and in particular social

psychology should be consulted. Sugden (2001) suggests that behavioural economics sets a

useful standard for how a theoretical approach to human decisions ought to evolve.
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The distinction between evolutionary models as models of rational decision making versus

human decision making, has some implications for our understanding of what mutations

represent. The adaptive component is thought to represent the way agents adjust to or learn

from the actions of others, and typically takes the form of strategy changes that leave agents

better off. Mutations, on the other hand, are idiosynchrasies in behaviour, random actions

taken though they may leave an agent worse off. These random idiosynchrasies are typically

seen as experiments on the part of agents, or as mistakes in implementing strategies. Whether

we view mutations as experiments or as mistakes, should somehow be reflected in the way in

which we model mutations, in particular in the way we let mutation rates vary across states.

Van Damme and Weibull (1998, p. l) suggest that there are natural or reasonable implications

of viewing mutations as experiments or as mistakes. If mutations represent experiments,

"individuals may be expected to experiment less in states with higher payoffs". In other

words, the rate of experimentation can be expected to be higher in the risk-dominant

equilibrium (A,A) of(Gl) than in the Pareto-dominant equilibrium (B,B). On the otherhand,

if mutations are mistakes, "one might argue that mistakes associated with larger payoff losses

are less likely". 'Which means that the rate of mistakes is lower in the risk dominant

equilibrium (A,A) than in the Pareto-dominant equilibrium (B,B), since (loosely) the loss

from being the sole agent playing B in a population of A-players is larger than that of being

the only A-player in a B-playing population.

These implications are not as self-evident as they may seem. They are made on the basis of

appeals to intuition, yet it does not seem less intuitively appealing to make the reverse claim:

Individuals make fewer mistakes in states with higher payoffs, and experiments associated

with larger payoff losses are less likely. What is missing is a definition of experimentation

and of mistakes, which clearly delineates what each is and how it is different from the other.

From such a distinction one could then attempt to draw some implications about variations in

mutation rates.

In trying to make a distinction between the two notions of mutation, the basis on which such a

distinction is to be made depends on what the evolutionary model is trying to capture. If the

evolutionary model is a model of how rational beings make decisions, the two terms need

only be defined in a way consistent with rationality in the sense assumed by the model. Since

a world of rational beings is an abstract construct, there is no natural way in which to
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distinguish experimentation from mistakes. Thus one might choose to define experimentation

as the kind of random idiosynchrasy which has a higher probability when payoffs are lower,

and mistakes as the kind more likely when payoff losses are lower. But any insights about

equilibrium selection in each case are then a matter oftautology.

On the other hand, if the evolutionary model is one of how human beings make decisions,

experimentation and mistakes can perhaps be viewed as empirically distinct and

distinguishable aspects ofhuman conduct. There might thus be a natural way of separating the

two, and hence each might give rise to a different probability structure across states. However,

a forceful empirical argument for the idea that experimentation and mistake probabilities

differ in the particular way suggested by van Damme and Weibull, has yet to be made.

Evolution with mutation control costs

Based on their idea ofwhat mistakes are, van Damme and Weibull (1998) formulate a model

of how mistake probabilities are determined. Using an idea from van Damme (1987), they

assume players can control the probability with which they make mistakes, but at a cost.

These control costs are assumed to grow infinitely large as mistake probabilities are

eliminated completely, which implies that players will not invest in completely avoiding

mistakes. The gains from reducing mistake probabilities, van Damme and Weibull assume to

be the reduced expected loss to an agent from deviating from his best reply. In other words,

agents want to avoid mistakes more that are more costly to make.

If we limit ourselves to game (G 1), the basic structure of this model of endogenous mistake

probabilities is as follows. Let Z E [O,N] denote the number of A-players in a population of N
agents. The expected payoffs to an agent from choosing strategy SE {A,B} is denoted by

1l'(s, z). Define b(z) as the payoffs to a player from choosing his best reply to the strategy

profile z of the population

b(z) == max{1l' (A, z),1l'(B, z)} (2)

Similarly, let l1{z) be the payoffs from choosing his worst reply to z
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w(z) == min{7r(A,z),7r(B,z)} (3)

For mistake probability E E (0,1), let the function v(E) denote the control costs of keeping

mistakes at probability E. The control cost function v(E) is assumed to be positive, strictly

convex, symmetric around 0.5, twice differentiable, and has lim v(E) = lim V(E) = +00. In
£-+0 £-+1

other words, reducing E increases costs, and more from a lower level of probabilities E , until

costs increase infinitely as E approaches zero. The below figure illustrates a control cost

function which meets these requirements.

V(E)

1

Figure 2. Illustration of control costfunction V(E)

Each agent is assumed to choose the mistake probability E which maximizes his expected

payoff, wherein the control costs V(E) are scaled by a parameter 8 which measures the

relative size of control costs to payoffs

max (1- E)b(z) +Ew(z) -8v(E)
e

(4)

The first-order condition is

-V'CE) = b(z)-w(z)
8

(5)
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The left-hand side of (5)'is the marginal cost ofreducing the mistake probability E. Given the

assumptions about v(E), -V'(E) decreases from infinity to zero on the interval E E (O,M). The
right-hand side of (5) is the payoff loss from mistakes in state z, divided by the scaling

parameter 8 . Since by assumption a - d > b - c, the payoff loss is greater when everyone

plays according to the risk dominant equilibrium (A,A), i.e. z =N, than in the Pareto

dominant equilibrium (B,B), z = O. As shown in the below figure, the first order condition

thus tells us that the risk dominant equilibrium (A,A) is associated with lower mistake

probabilities E(N), than that of the Pareto dominant equilibrium, E(O).

beN) - weN)
o

I----+-~-------- b(O) - w(O)
8

1

-V'(E)

Figure 3. Mutation rates in the van Damme and Weibull model

With the endogenously determined mutation rates of the above model, the equilibrium

selection result of Kandori, Mailath and Rob (1993) and Young (1993) thus holds; the

evolutionary process selects the risk dominant equilibrium. Van Damme and Weibull suggest

that what drives the result, are the control costs. Though control costs are important to the

result, it is more reasonable to claim that what drives the result is the assumption that agents

want to avoid mistakes that lead to greater payoff losses. To make this point more fully, let us

consider another motive agents might have, one that can lead us to the opposite result even in

the presence of control costs.

Besides payoff losses from mistakes, agents might consider the possibility that mistakes bring

them to a better or worse state than the current one. If enough agents make a mistake in either

of the two equilibria, the adaptive dynamics lead us to the other equilibria. An agent might
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thus perceive choosing a higher mistake probability in one state as increasing the chances that

the other equilibrium is reached. He might therefore want to have a high probability of

mistakes in the risk dominant equilibrium, to increase the probability of jumping to the Pareto

dominant equilibrium where payoffs are higher. Similarly, he might want to have a low

probability of mistakes in the Pareto dominant equilibrium, since a jump to the other

equilibrium would entaillower payoffs.

Let us consider one specific version of this idea. Assume that in choosing mistake

probabilities, agents want the highest possible expected payoffs given a notion that all other

agents choose the same mistake probability. Agents are in a sense Kantian, in seeing where

mistakes would lead them if all agents shared their choice of mistake probabilities. The idea

that the adaptive process is governed by selfish motives, and mutations by Kantian motives

might seem contradictory. However, since the adaptive process and mutations are meant to

capture distinct and different phenomena, there is nothing inherently inconsistent in assigning

different governing motives to the two.

Let p(z) be the payoffs from the equilibrium in whose basin of attraction is the present state z

{
n(A,N) if z > aN

p(z) == n(B,O) if z < aN
(6)

Similarly, let r(z) be the payoffs from the equilibrium in whose basin of attraction the present

state z is not

{
n(A,N) if z < aN

r(z) == n(B,O) if z > aN
(7)

From the equilibrium in whose basin of attraction is the current state z, let fz (E) be the

probability that enough mistakes occur to reach the other basin of attraction. In other words

(8)
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This implies that

{

Lconst; [E(i-l)(1- E)(N-;-I)li-EN) if z > aN
f '(E) = ;e«(I-a)N,N). .
z Lconst, [E (I-I) (1- E) (N-I-I) li-EN) if z < aN

;e(aN,N)

(9)

Note that fz '(E) > O if a> E, which holds ifmistake probabilities are sufficiently low.

In choosing mistake probabilities, we assume that agents maximize a weighted average of

payoff losses as in (4), and expected equilibrium payoffs if everyone chooses the same

mistake probability, from which we subtract control costs V(E) defined as above.

max /3[(1- E)b(z) +EW(z)]+ (1- /3)[((1- fz(E»p(Z) + fz(E)r(z)]-«5v(E) (10)
I:

The first-order condition thus becomes

- V'(E) = f!_[b(z) - w(z)]+ (1- /3) (p(z) - r(z)lrz '(E)
«5 «5

(11)

We can now prove the following relation between mistake probabilities when everyone plays

A, E(N), and mistake probabilities when everyone plays B, E(O).

PROPosmON 1

For agents maximizing (lO), there exists some /3 E (0,1) and some control costfunction VeE)

such that E(N) > E(O).

PROOF OF PROPosmON 1:

For z = N, p(z) < r(z) and for z = O, p(z) > r(z). Given a, from (9) we know there is

some region E E (O,i) for which fz '(E) > O for any z.
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Let /3 ~ O. The right hand side of the first-order condition (11) starts in the origo and in the

interval E E (O,i) slopes upward for z = O and downward for z = N.

The left hand side of (11) slopes downward from plus infinity to zero in the interval

E E (O,M), and from zero to minus infinity in the interval E E (Yz,l). We let E(O) denote the

and l [b(O) - w(0)]+ (1- /3) (p(0) - r(O)]fo '(E). If i;?: M, or if the8 8
is sufficiently flat m the interval E E (i,M), then

intersection of - v' (E)

slope of -V'(E)

l [b(N) - w(N)J+ (1- /3) (P(N) - r(N)]f/(E) is downward sloping in the interval8 8
E E [O,E(O)), and consequently intersects - V'(E) at a point E(N) > E(O).D

The intuitive argument for proposition l is perhaps best understood by means of a figure of

the first order condition (11). The right hand side of (11) is now not a constant, since E

features in the term fz '(E). Note that in the risk dominant equilibrium, z =N, the' payoffs in

the present state is lower than that of the other equilibrium, peN) - reN) < O. In the Pareto

dominant equilibrium, z = O, on the other hand, p(O) - reO) > O. For small E, equation (9)

tells us that fz '(E) > O. The right hand side of (Il) is thus upward sloping for the Pareto

dominant equilibrium and downward sloping for the risk dominant one.

l [b(O) - w(O)J+ (1- /3) [p(0) -r(O)Vo '(E)8 8

l [b(N) -w(N)]+ (1- /3) [p(N)-r(N)]fN'(E)8 8

1

-V'(E)

Figure 4. Mutation rates in the augmented model
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As the figure illustrates, we can thus have a situation where the the right and left hand side of

(11) intersect at a lower mistake-probability c for the Pareto dominant equilibrium than for

the risk dominant one. In other words, we can get a higher rate of mutations in the risk

dominant equilibrium than in the Pareto dominant equilibrium. Augmenting the objective

function of the agents we thus get the opposite result of van Damme and Weibull, even ifthe

control costs have the same structure as in their model. Control costs alone are therefore not

sufficient to uphold the equilibrium selection results of Kandori, Mailath and Rob (1993) and

Young (1993).

Concluding remarks

Bergin and Lipman (1996) question the robustness of equilibrium selection in the

evolutionary models of Kandori, Mailath and Rob (1993) and Young (1993), by pointing out

that ifmutation rates are allowed to vary in any way across states, any strict Nash equilibrium

can be selected by the evolutionary process. Equilibrium selection thus becomes a matter of

determining the structure of mutations in specific cases, which comes down to a question of

what we want mutations to represent. Van Damme and Weibull (1998) endogenize mutation

rates by assuming that mutations represent mistakes that agents can control at a cost, and

suggest that this corroborates the equilibrium selection results of Kandori et al and Young. In

this paper, I show that the equilibrium selection result obtained by van Damme and Weibull

follows from the assumption that agents seek to avoid mistakes that are more costly, more

than from the introduction of control costs. Specifically, if agents see mistakes as a way to get

to a better (or worse) equilibrium, we can get the opposite result even in the presence of

control costs.

The discussion of the technicalities of equilibrium selection obscures what is perhaps a more

fundamental challenge to the evolutionary perspective: Does a biological model of adaptation

and mutation provide a good or even useful representation of decision making. As stated

earlier, this depends on what such a model of decision making is supposed to capture. If it is a

model of how rational beings make decisions, spontaneous idiosynchrasies in the form of

mutations must somehow be reconciled with the concept of rationality which underpins the

approach. If it is a model of how human beings make decisions, the specifics of the model
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must be reconciled with empirical regularities in human decision making. If the dichotomy of

adaptation and mutation is at all useful in the latter sense, a closer examination of the forces

behind human experimentation and error is needed to increase our understanding of how

humans come to focus on one out of several possible equilibria.
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