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Abstract

This paper models an economy where agents perceive the choices they face subjectively, and have

subjective interpretations of the terminology they use in a shared business language. Preferences

are defined on what an agent perceives, and not on what is objectively presented to an agent.

A business language enables agents to trade, provided the terminology in the language is sufficiently

vague: once agents can express more detail than their trading partners can perceive, the language

ceases to be useful. Under some regularity conditions on the language, an appropriately defined

notion of competitive equilibrium exists. However, much less can be said about welfare than in the

neoclassical case, as there are counter-examples to both welfare theorems.
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1 Introduction

For economic activity to occur, both parties in a trade need to have a shared understanding of what

is being exchanged. The economic theorist’s usual starting point is assuming that the commodity

space is common knowledge and that agents have preference relations defined directly on this

commodity space. While agents may fail to consider alternatives, as in the literature on unawareness

(Fagin and Halpern 1988, Dekel, Lipman, and Rustichini 1998a, Modica and Rustichini 1999), they

must still have preferences defined over commodity bundles described in arbitrarily fine detail. That

is, agents must know in principle everything that could become available to them, in any state of

the world, at any location or date.

In such a world, agents in principle can describe everything they might offer or desire in trade.

There may be strategic reasons that reliable communication is restricted (Crawford and Sobel

1982), social benefits of restricted communication (Kanodia, Singh, and Spero 2005), or technical

restrictions placed on the language (Rubinstein 2000), but there is no inherent reason why an agent

cannot know infinitely fine details about what could be traded.

It is easy to imagine situations where subtle distinctions among possible choices are lost on an

agent, and in fact where the same agent may be able to perceive the same object in multiple ways.

For example, an agent might be unable to taste the difference between a medium-bodied wine and a

light-bodied wine, if the two wines differ relatively little in their sugar and glycerin concentrations.

On the other hand, the same agent may be unable to taste the difference between the same medium-

bodied wine and a full-bodied wine, again for sufficiently small differences in the concentrations of

these substances. Thus a fixed bottle of wine, which objectively may be medium-bodied, can be

perceived as both a full-bodied wine and a light-bodied wine. Whether the agent knows the wine’s

objective sugar and glycerin concentrations is not what necessarily determines how well the agent

enjoys the wine; instead, how the agent subjectively perceives the wine’s body is what matters.

Conversely, an agent facing distinct real-world objects may perceive them in the same way: in

the above example, both the full-bodied wine and the light-bodied wine taste the same, at least

sometimes. These two phenomena underlie the notion of a just noticeable difference. It has been

observed that non-degenerate just noticeable differences are problematic for the assumption of
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complete, transitive preferences on the objective commodity space (Mas-Colell, Whinston, and

Green 1995, Knoblauch 1998, Dubra, Maccheroni, and Ok 2004).

As different agents can have different perceptions, a business language will typically enable agents to

describe their proposed trades only approximately. The same perceived object might be reportable

in multiple ways—a given bottle of wine might justifiably be called full-bodied or medium bodied—

and conversely the same description might apply to multiple objects. These two phenomena are the

basis of the accountant’s notion of an immaterial difference. Unless everyone perceives the world

in the same way, it turns out to be useful for a business language to have a non-trivial notion of

immaterial differences: vague requests can be fulfilled more reliably than excessively detailed ones.

In the above wine example, imagine that a connoisseur asks the advice of a novice wine steward.

The connoisseur will discover that an overly precise request is one that the wine steward cannot

reliably fill. After enough unpleasant surprises, the connoisseur presumably will learn that it would

be better to requests that the steward cannot get wrong.

This paper formalizes these ideas, in order to study the economic consequences of subjective infor-

mation. The next section presents an analytic model of an agent’s subjective perceptions. Section

three models the use of a shared business language among agents with private, subjective views

of the world, and provides conditions under which agents can receive in trade what they believe

they agreed upon. Section provides conditions for existence of an appropriately defined notion of

equilibrium, and presents counter-examples to both welfare theorems. Section five concludes.

2 Perception

2.1 Basic Model of Perception

Throughout this paper, there is assumed to be a set I of agents. The model of individual perception

presented here consists of two collections and a binary relation between them. The first collection

consists of possible consumption choices (“real-world objects”) labeled X. Agents do not observe

X, and in fact need not be aware of X; one can think of X as chiefly being in the model for the

researcher’s convenience.
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For agent i ∈ I, there is a collection Si, known only to i, called i′s set of subjective conceptions.

When no confusion can arise, I drop the subscript and write S for an arbitrary agent’s subjective

conceptions. Agent i’s preferences are defined on Si, i.e., on the world as the agent understands it.

A perception is some conception that the agent observes when facing a real-world object. That

is, when an agent sees some x ∈ X, the agent perceives some subjectively meaningful a ∈ S. A

given x ∈ X need not have a unique conception a ∈ S as the only way it can be perceived, but

an agent is assumed to have coarse enough conceptions to enable every object to be perceived as

something. Conversely, not every conception a ∈ S is necessarily the perception of a unique x ∈ X.

In terms of the wine example from the introduction, there are individual bottles of wine that the

agent might in some contexts perceive as full-bodied and in others as light-bodied, and there are

individual conceptions of wine such as “full-bodied” that many wines may be perceived as.

Because of this many-to-many relationship, perception is modeled as a binary relation, written as

, between X and S.1 For x ∈ X and a ∈ S, the relation x  a is read as, “real-world object x

can be perceived as subjective conception a.” With some technical assumptions, it is shown that

the agent’s perceptions induce a topology on X, with S as a base of this topology. Intuitively,

this means that the agent’s preferences are defined on approximate consumption bundles, where

the approximation is determined by the fineness of the agent’s conceptual framework S and by

the fineness of the agent’s perceptual apparatus . Thus the framework here is related to the

approximate price sensitivity in Allen and Thisse (1992), the model of consumer choice over sets in

Kreps (1979), and the approximate meanings of numerical stimuli in Dickhaut and Eggleton (1975)

There are two correspondences associated with the perception relation:

Definition 2.1. The correspondence X
−→ S is given by

(∀x ∈ X)  (x) ≡ {a ∈ S |x  a}.

The inverse correspondence S
−1

−→ X is given by

(∀a ∈ S) −1 (a) ≡ {x ∈ X |x  a}.

1This symbol is the forcing relation introduced by Cohen. For background and historical discussion, see Avigard

(2004).
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There are two possible notions of the image a subset D ⊆ X of the commodity space. One can

take the strong image, giving the members of S that are in the image of every point in D, or one

can take the weak image, giving the members of S that are in the image of some point in D.

Definition 2.2. The strong (or universal) image of D ⊆ X under X
−→ S is

2D ≡ {a ∈ S | −1 (a) ⊆ D} = {a ∈ S |(∀x ∈ X)(x  a → x ∈ D)}.

The weak (or existential) image of D under X
−→ S is

3D ≡ {a ∈ S | −1 (a) G D} = {a ∈ S |(∃x ∈ X)(x  a and x ∈ D)},

where −1 (a) G D denotes that the two sets intersect, i.e., that ∃x ∈−1 (a) ∩D.

The right-hand sides in the above definitions show that the strong and weak images of a correspon-

dence are logically dual. The former gives the subset of S whose members can only be the image

of some point in D, whereas the latter gives the subset of S whose members can possibly be the

image of some point in D. By analogy with alethic modal logic, the strong image is thus written

as 2D (read “necessarily D”), while the weak image is written as 3D (read “possibly D”).2

In an entirely analogous way, the inverse correspondence S
−1

−→ X generates both a strong and

weak inverse image of any U ⊆ S. In the literature, the strong image is called the restriction of U ,

while the weak image is the extent of U ; see for example Johnstone (1977) or Negri (2002).

Definition 2.3. The strong inverse image (or restriction) of U ⊆ S under X
−→ S is

rest U ≡ {x ∈ X |  (x) ⊆ U} = {x ∈ X |(∀a ∈ S)(x  a → a ∈ U)}.

The weak inverse image (or extent) of U under X
−→ S is

ext U ≡ {x ∈ X |  (x) G U} = {x ∈ X |(∃a ∈ S)(x  a and a ∈ U)}.

In addition to the operators 2, rest, 3, and ext, the topological interpretation of perceptions

requires two axioms. First, as indicated above, the agent must have some way, however coarse, of

perceiving anything that might be traded:
2When more than one relation is being discussed, the symbols 2 and 3 are written with appropriate subscripts.

The notation here follows Sambin and Gebellato (1998) and Sambin (2001).
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Axiom 2.1. For each x ∈ X, there is some a ∈ S such that x  a.

Second, the agent’s perceptions must satisfy a consistency condition:

Axiom 2.2. For each a, a′ ∈ S, if there is some x ∈ X such that

x  a and x  a′,

then there is some a′′ ∈ S such that, for all x′ ∈ X,

x′  a′′ iff x′  a and x′  a′.

Thus, an agent who can perceive the same object in multiple ways must have a conception of objects

that can be possibly be perceived in these ways.

2.2 The Topological Interpretation of Perception

Under the stated axioms, it is possible to define the topology induced by perceptions. The process is

to compose the operations from X −→ S with the operations S −→ X, in order to define operators

from X −→ X, and then show that these operators are valid notions of interior and closure.

Intuitively, one can view the members of S as the names of open neighborhoods in the base of a

topology on X. That is, each a ∈ S is associated with

−1 (a) = {x ∈ X|x  a},

which one can view as the neighborhood in X that a names. (Compare Valentini (2001).) Under

this interpretation, all of S becomes associated with the family

{{x ∈ X|x  a}|a ∈ S}.

Definition 2.4 (Vickers (1988)). Let X be a topological space with base S. A subset D ⊆ X is

open iff every x ∈ D has a neighborhood N(x) ∈ S such that N(x) ⊆ D.

Associating S with neighborhoods in X modifies this definition as follows: D ⊆ X is open if and

only if, for every x ∈ D, there is some a ∈ S such that x  a and −1 (a) ⊆ D.
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Definition 2.5. The interior operator on X induced by  is

int ≡ ext 2

Thus, for D ⊆ X, int D = ext2D.

Expanding this definition shows its justification: for D ⊆ X,

int D ≡ ext2D

= {x ∈ X|(∃a ∈ S)(x  a and a ∈ 2D)}

= {x ∈ X|(∃a ∈ S)(x  a and (∀x′ ∈ x)(x′  a → x′ ∈ D))}.

Noting that x  a iff x ∈−1 (a), the last expression above for int D says that it consists of those

points belonging to a neighborhood (named by some a ∈ S) whose points are all in D. That is, the

interior of an arbitrary D ⊆ X matches Definition 2.4.

Conversely, the following holds:

Proposition 2.1 (Sambin (2001)). For arbitrary D ⊆ X, int(int D) = int D.

Proof. This will be shown by showing 2ext2 = 2. The result then follows by composing both sides

on the left with ext.

Expanding definitions gives, for arbitrary D ⊆ X,

2ext2D = {a ∈ S|(∀x ∈ X)(x  a → x ∈ ext2D)}

= {a ∈ S|(∀x ∈ X)(x  a → (∃a′ ∈ S)(x  a′ and (∀x′ ∈ X)(x′  a′ → x′ ∈ D)))}.

The last expression says that 2ext2D names neighborhoods whose points have a neighborhood a′

that is contained in D; thus, 2ext2D ⊆ 2D.

The reverse inclusion is immediate, by choosing a′ = a.

Given that the interior operator matches the classical definition and has the idempotent property

in Proposition 2.2, I make the following definition:
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Definition 2.6. A subset D of X is open in the topology induced by  iff

D = int D.

The standard definition of a closed set is one that contains all of its limit points. That is, the

closure of a set is the collection of points for which every open neighborhood intersects the set.

This would suggest that the closure of an arbitrary D ⊆ X should be defined as

{x ∈ X|(∀a ∈ S)(x  a → (∃x′ ∈ X)(x′  a and x′ ∈ D))}.

Thus the natural definition of closure in this context is the logical dual of interior:

Definition 2.7. The closure operator on X induced by  is

cl ≡ rest3

Thus, for D ⊆ X, cl D = rest3D.

An analogous argument to that in the Proposition 2.2 shows that 3ext3 = 3, and hence that

closure is idempotent. This justifies the following definition:

Definition 2.8. A subset D of X is closed in the topology induced by  iff

D = cl D.

Expanding this definition for D ⊆ X gives

cl D ≡ rest3D

= {x ∈ X|(∀a ∈ S)(x  a → a ∈ 3D)}

= {x ∈ X|(∀a ∈ S)(x  a → (∃x′ ∈ X)(x′  a and x′ ∈ D))}

as desired. Intuitively, a real-world object is in the perceptual closure of D iff every way of perceiving

it is a way of perceiving something in D.

It can now be shown that an agent’s subjective perceptions induce a topology on X.
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Lemma 2.1. In the perceptual topology, ∅ is clopen.

Proof. By definition,

int ∅ = ext2∅

= {x ∈ X|(∃a ∈ S)(x  a and (∀x′ ∈ X)(x′  a → x′ ∈ ∅))} = ∅.

Thus, ∅ is open.

Analogously,

cl ∅ = rest3∅

= {x ∈ X|(∀a ∈ S)(x  a → (∃x′ ∈ X)(x′  a and x′ ∈ ∅))} = ∅.

Thus, ∅ is closed.

Lemma 2.2. In the perceptual topology, X is clopen.

Proof. By definition,

int X = ext2X

= {x ∈ X|(∃a ∈ S)(x  a and (∀x′ ∈ X)(x′  a → x′ ∈ X))

= {x ∈ X|(∃a ∈ S)x  a}.

By Axiom 2.1, this is all of X, so X is open.

Analogously,

cl X = rest3X

= {x ∈ X|(∀a ∈ S)(x  a → (∃x′ ∈ X)(x′  a and x′ ∈ X))} = X.

Thus, X is closed.

Lemma 2.3. The union of open sets in the perceptual topology is open.

Proof. By definition,

⋃
α

int Dα = {x ∈ X|(∃α)(∃a ∈ S)(x  a and (∀x′ ∈ X)(x′  a → x′ ∈ Dα))}
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⊆ {x ∈ X|(∃a ∈ S)(x  a and (∀x′ ∈ X)(x′  a → (∃α)(x′ ∈ Dα)))}

= int
⋃
α

int Dα.

To see the reverse inclusion, note that for any D ⊆ X, if x ∈ int D, then

(∃a ∈ S)(x  a and (∀x′ ∈ S)(x′  a → x′ ∈ D)).

Picking x′ = x gives

x ∈ int D → x ∈ D,

i.e., int D ⊆ D. In particular,

int
⋃
α

int Dα ⊆
⋃
α

int Dα.

Combining these gives the result.

Lemma 2.4. The intersection of finitely many open sets in the perceptual topology is open.

Proof. It suffices to show that the intersection of two open sets is open, as the result then follows

by induction. For D,E ⊆ X,

int D
⋂

int E = {x ∈ X|(∃a, b ∈ S)(x  a and x  b

and (∀x′ ∈ X)(x′  a → x′ ∈ D) and (∀x′′ ∈ X)(x′′  b → x′′ ∈ E))}.

By Axiom 2.2, if x  a and x  b, then there is some c ∈ S such that x  c and

(∀x′ ∈ X)(x′  c → x′  a and x′  b),

which in turn implies,

(∀x′ ∈ X)(x′  c → x′ ∈ D
⋂

E).

Thus, int D
⋂

int E ⊆ int (D
⋂

E).

Conversely, if x ∈ int (D
⋂

E), then there is a neighborhood a ∈ S of x that is contained in D
⋂

E,

which means that −1 (a) ⊆ D and −1 (a) ⊆ E. This says that x ∈ int D
⋂

int E, which by the

arbitrariness of x implies int(D
⋂

E) ⊆ int D
⋂

int E.

Combining these shows that the finite intersection property holds.
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The above lemmata are expressed in the following theorem:

Theorem 2.1 (Perceptual Topology). The open sets induced by perceptions, under Axioms 2.1

and 2.2, form a topology.

2.3 Remarks on Complementation

Nothing has been asserted about the negation of the relation . In particular, it has not been

stipulated whether (x, a) /∈ should be read as “x cannot be perceived as a,” or whether this

should merely indicate that the agent, faced with x, cannot say whether it is an instance of a.

Which reading one chooses determines the appropriate notion of complementation. Following

Bridges, Schuster, and Vı̂ţă (2002) and Vı̂ţă and Bridges (2003), I define the classical logical com-

plement of D ⊆ X as the members of X that do not belong to D:

¬D ≡ {x ∈ X|x 6∈ D}.

The classical logical complement of an open set is then those objects that are not perceived as

something in the set. Depending on how one reads absence from from , one might want a stronger

notion of complementation. Specifically, the apartness complement of D ⊆ X, written Dc, is the

set of objects that are always perceived as something outside of D:

Dc ≡ {x ∈ X|(∀a ∈ S)x  a → a /∈ D}.

If the agent cannot say whether x is an instance of some a ∈ D, then x is in the classical logical

complement ¬D, but is not in the apartness complement Dc. For the two notions of complementa-

tion to coincide, the agent must be able to perceive exactly when a given object belongs to a given

set and when it does not. Since this reasoning applies in particular to every singleton {x} ⊂ X,

¬D = Dc if and only if the agent has perfect perceptions.

From the agent’s viewpoint, the apartness complement is the only notion of complementation that

can be useful. Note, however, that the apartness complement of an open set is not closed. This

feature, though somewhat strange to the uninitiated, is actually desirable: it reflects the fact that

perceptual limits prevent the agent from distinguishing boundaries.
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Because closed sets are not defined as the complement of open sets (assuming one views the apart-

ness complement as the most useful notion), the topology induced by perceptions is intuitionistic

rather than classical. (See Brouwer (1907), Heyting (1956), Troelstra and van Dalen (1988), or

Dummett (2000) for details.) Thus existence proofs proofs must be constructive.

Note that this feature provides an alternative notion of unawareness to that in the literature (e.g.,

Fagin and Halpern (1988), Aumann and Brandenburger (1995), or Dekel, Lipman, and Rustichini

(1998b)). If there exists classically a solution to an agent’s problem, but no solution exists intu-

itionistically, the agent can be viewed as unaware of a solution.

3 Business Language

3.1 Basic Reporting Model and Topological Interpretation

For two agents to trade, they must be able to reach some sort of understanding about what they

are offering or requesting in exchange. Trades cannot be stated in terms of X, as agents do not

observe X directly, or even have mental conceptions of what is in X. Moreover, agents cannot offer

what is in the individual sets of conceptions Si, as these are private and subjective. I introduce a

shared language as a way around this difficulty. The terminology in the shared language is public,

so that the agents can use the language to try to reach some sort of consensual validation of what

objects are under discussion.

A business language is modeled as a set T , interpreted as shared terminology, and, for each i ∈ I,

a binary relation Ri between the agent’s private conceptions Si and T . The relation represents i’s

private semantics, i.e., how the agent may report a subjective conception in the business language.3

A report may be valid for more than one conception that the agent has in mind; in this case,

the conceptions that the agent can report in the same way are said to be within an immaterial

difference. Conversely, the same conception may have more than one way it can be reported.

3I do not discuss the development or evolution of the language, though there is a literature closely related to this

issue. See for example Ahn (2000).
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Recalling the wine example from the introduction, if the language includes only the terms “full-

bodied” and “light-bodied,” then a wine taster may be able to report a medium-bodied wine using

either term, and conversely may have many wines in mind for which a given report is valid. This

is similar to the vague language in Lipman (2001), but because of the perceptual limits here, the

role of ambiguous language in this model is more beneficial than in Lipman’s.

For (a, t) ∈ Si×T , aRi t is read as, “a can be reported as t by agent i.” In parallel with the discussion

on perceptions, there are two correspondences associated with the agent’s reporting relation:

(∀a ∈ Si) Ri(a) ≡ {t ∈ T |aRi t}

and

(∀t ∈ Si) R−1
i (t) ≡ {a ∈ Si|aRi t}.

The inverse correspondence gives the agent’s interpretation of what a report means. These two

correspondences generate the operations 3, ext, 2, and rest. Thus, for U ⊆ Si and W ⊆ T ,

3Ri(U) ≡ {t ∈ T |(∃a ∈ Si)(aRi t and a ∈ U)},

2Ri(U) ≡ {t ∈ T |(∀a ∈ Si)(aRi t → a ∈ U)},

extRi(W ) ≡ {a ∈ Si|(∃t ∈ T )(aRi t and t ∈ W )},

and

restRi(W ) ≡ {a ∈ Si|(∀t ∈ T )(aRi t → t ∈ W )}.

Reporting can be interpreted in terms of the topology (called the reporting topology) on an agent’s

conceptions. As in Theorem 2.1, the derivation requires two axioms:

Axiom 3.1. For each a ∈ Si, there is a t ∈ T such that aRi t.

Axiom 3.2. For each t, t′′ ∈ T , if there is an a ∈ Si such that

aRi t and aRi t
′,

then there is some t′′ ∈ T such that, for all a′ ∈ Si,

a′ Ri t
′′ iff a′ Ri t and a′ Ri t

′.
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Axioms 3.1 is a non-degeneracy requirement. It says that there must be some way, however vague, of

reporting anything the agent may want to report. That is, the language must have some sufficiently

broad terms (“stuff,”for example) to cover anything. Axiom 3.2 requires consistency of the language:

if there are conceptions that can be reported more than one way, there must be a way to express

that there are multiple possible reports. Thus, if a wine could be called “full-bodied” or “light-

bodied,” then there must be a term such as “medium-bodied” for wines that could be reported in

both these ways.

The following definitions are analogous to those under perception:

Definition 3.1. The reporting interior operator is

intRi ≡ extRi2Ri .

The reporting closure operator is

clRi ≡ restRi3Ri .

A subset U of Si is open in the reporting topology if and only if U = intRi(U), and is closed in the

reporting topology if and only if U = clRi(U).

Theorem 3.1 (Reporting Topology). The open sets induced by the agent’s reporting relation, under

Axioms 3.1 and 3.2, form a topology.

Proof. Entirely analogous to the proof of Theorem 2.1.

3.2 Communication

The topological interpretations of perceptions and semantics make it possible to address how agents

with fundamentally different worldviews can nevertheless find a reliable way to trade. The idea

is that what one agent offers in the business language must be something that a trading partner

interprets as a faithful representation of what is actually traded, as the trading partner perceives it.

Because this subjective notion of a faithful representation differs from the accountant’s objective

notion (FASB 1980), I refer to the idea studied here as heterogeneous faithfulness.
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As neither reports nor perceptions are in general unique, the business language cannot guarantee

that the same agent necessarily issues the same report when faced with the same object. The most

that can be required is that one agent reports what he or she sees in a way that a trading partner

would agree is a valid possible report.

Definition 3.2. Let i, j ∈ I be two agents, with conceptions Si, Sj , perception relations i,j ,

and reporting relations Ri, Rj for a set of common terminology T . The business language is het-

erogeneously faithful between i and j if and only if the following diagram commutes:

X
i - Si

Sj

j

?

Rj

- T

Ri

?

That is, the business language is heterogeneously faithful if and only if

Ri◦ i= Rj◦ j .

If this holds for every i, j ∈ I, then the language is said to be heterogeneously faithful.

The following proposition shows that the direction of the definition could be reversed; that is, an

equivalent requirement is that two agents interpreting the same report have the same collection of

real-world objects in mind.

Proposition 3.1. Suppose a business language is heterogeneously faithful between two agents, i, j ∈

I. Then the interpretation of the reports is also heterogeneously faithful, i.e.,

−1
i ◦R−1

i = −1
j ◦R−1

j .

Proof. The heterogeneous faithfulness between i and j means that, given x ∈ X and t ∈ T , agent

i can report x as t iff agent j can do so also. For i to be able to report x as t, there must be some

a ∈ Si that is a way i can perceive x which i can report as t:

(∃a ∈ Si)(x i a and aRi t),
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which also says that i can interpret t as x, i.e., that

(∃a ∈ Si)(a ∈ R−1
i (t) and x ∈−1

i (a)).

By an identical argument, if j can report x as t, then j can interpret t as x. Thus, heterogeneous

faithfulness between i and j means that the following square also commutes:

X �
−1

i Si

Sj

−1
j

6

�
R−1

j

T

R−1
i

6

Proposition 3.1 thus says that a language is useful for reporting entities if and only if it is useful

for end users. This feature depends on the fact that reporting and perception are defined by binary

relations and not necessarily by functions.

Theorems 2.1 and 3.1 show that 〈X, Si〉 and 〈Sj , T 〉 are topological spaces. Heterogeneous faith-

fulness thus requires each agent’s perceptions to induce a correspondence that carries collections of

open neighborhoods to collections of open neighborhoods, i.e., that takes open sets to open sets.

Thus, the condition here is related to lower hemi-continuity (Berge 1963):

Definition 3.3. A correspondence X
−→ S is lower hemi-continuous if, for every U ⊆ S,

{x ∈ X|  (x) G int U}

is open (where G denotes occupied intersection).

Theorem 3.2 (Heterogeneous Faithfulness and Lower Hemi-Continuity). If a business language

is heterogeneously faithful between two agents i, j ∈ I, then j’s perception correspondence j (·) is

a lower hemi-continuous correspondence between X, endowed with i’s perceptual topology, and Sj,

endowed with j’s reporting topology.

Conversely, suppose j (·) is a lower hemi-continuous correspondence between the topological spaces

〈X, Si〉 and 〈Sj , T 〉. Then there is in principle a reporting relation Ri(·) for i that makes the

language heterogeneously faithful.
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Proof. By the proof of Proposition 2.2, 2 ext 2 = 2, and an analogous argument shows that

ext 2 ext = ext.

If U ⊆ Sj is the extent of some W ⊆ T , then int U = int(ext(W )) = ext 2 ext W = ext W = U .

Conversely, if U = int U , then automatically U is the extent of some W ⊆ T , namely 2U . Thus

U ⊆ Sj is open in the reporting topology if and only if it is the extent of some W ⊆ T , i.e., iff it is

the inverse image of some subset of T along Rj . A similar argument holds for an open D ⊆ X in

i’s perceptual topology.

The definition of lower hemi-continuity thus says that the inverse image of any W ⊆ T along

−1
j ◦R−1

j is the extent of some subset U ′ ⊂ Si. So if W = extRiU
′ for some U ′ ⊆ Si, then the

relation j is lower hemi-continuous. But this just says that the square below commutes:

X �
−1

i Si

Sj

−1
j

6

�
R−1

j

T

R−1
i

6

By Proposition 3.1, this is equivalent to heterogeneous faithfulness. Therefore, heterogeneous faith-

fulness implies lower hemi-continuity.

For the second part of the theorem, define the reporting relation for i by Ri ≡ Rj◦ j ◦ −1
i .

The continuity of j means that Ri takes open neighborhoods in i’s perceptual topology to open

neighborhoods in j’s reporting topology, which is just the definition of heterogeneous faithfulness.

Remark. The phrase “in principle” in the second part of Theorem 3.2 reflects that the existence

is non-constructive. An agent using a language that is heterogeneously faithful can observe what

others say and can introspect; by so doing, the agent will fail to refute the claim that the language

has the desired property. Thus while the first portion of the theorem could not be established, it

could in practice at least withstand scrutiny.

The second part, however, requires more. To construct the desired reporting relation for agent i,

one would need access to Si and Sj (along with the various relations that are composed). This
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would imply knowledge of others’ perceptions and of X, but the phenomena being studied is that

no one has such knowledge.

Accordingly, what the latter part of Theorem 3.2 establishes is that the non-existence of the desired

relation is contradictory. To one who is omniscient, this is equivalent to existence, but it is clear

that the relation used in the proof could not in practice be constructed. In light of the first

part of Theorem 3.2, one might view heterogeneous faithfulness as a form of continuity, classically

equivalent to lower hemi-continuity, but constructively stronger.4

There are in general many business languages that enable heterogeneously faithful reporting. Two

degenerate cases are the autarkic language, where T = ∅, and the universal language, where T is a

singleton (e.g, {“stuff”}). In both cases, the reporting relations are trivally faithful. In the autarkic

language, contracting is perfectly incomplete, and the only possible allocation is autarky. In the

universal language, any agents who agree to trade have no information on what they are bargaining

for, and provide no information on what they are offering, so that any economy is a grab bag. In

any other case, it is natural to ask what sort of allocations are attainable as equilibria. I turn to

this question in the next section.

4 Equilibrium and Welfare

4.1 Syntactical Requirements on the Language

Since all trade occurs in the shared language T , equilibrium must be stated in terms of T . For

market clearing to be a meaningful concept, T cannot be an arbitrary language, or even an arbitrary

heterogeneously faithful language. There is a syntactical requirement that an operation of addition

is defined on T , that T be closed under addition, that there is an additive identity (so that excess

demands can be said to sum to zero), and that every t ∈ T have an additive inverse (so that

it is possible to say how markets could clear from an arbitrary set of endowments). Moreover,

4Related ideas on continuity are discussed in Grandis (1997) and Gebellato and Sambin (2001). The notion of

heterogeneous faithfulness as a stability property of a language seems related to the strategic stability of Kohlberg

and Mertens (1986), as strategic stability is likewise a form of lower hemi-continuity.
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the clearing of markets must be consistent with conservation of the physical and perceived flow of

goods. These requirements are summarized as follows:

Axiom 4.1. The shared language T is an Abelian (i.e., commutative) additive group, as are X and

the Si. The addition operation on T is common knowledge.

The perception and reporting relations cannot be assumed to be group homomorphisms. For

example, one cannot assume that  (x+y) = (x) +  (y): both x and y may differ imperceptibly

from 0, but their sum may be large enough to be distinct from 0. Similarly, a material quantity can

be split up into multiple immaterial quantities. It seems reasonable instead to require the following:

Axiom 4.2. For all i ∈ I, the correspondences induced by i and Ri are consistent with group

homomorphisms. That is, for x, y ∈ X, i (x + y) ⊆i (x)+ i (y), and analogously for the Ri.

4.2 Optimality and Equilibrium

Notions of equilibrium and optimality depend on an agent’s preference relation, which for agent

i is assumed to be defined on Si. While there are philosophical reasons that one might want to

permit preferences to be incomplete (e.g., one might argue that conceptions that could be different

ways of perceiving the same object should not have a preference defined between them), a minimal

requirement would seem to be that strict preferences are irreflexive and transitive. Because the

absence of a strict preference might or might not be interpreted as a weak preference, I write a �i b

as a shorthand for ¬(a �i b). I then have the following notion of Pareto dominance:

Definition 4.1. Let (ai), (a′i) ∈
∏

i∈I Si be perceived allocations. Allocation (ai) Pareto dominates

(a′i) iff, for every i ∈ I, a′i �i ai and, for some j ∈ I, aj �j a′j .

The notion of an agent’s lower contour set is likewise defined in terms of perceived consumption:

Definition 4.2. For i ∈ I and U ⊆ Si, the conceptions not better than U are

{a′i ∈ Si|(∃ai ∈ Si)(a′i �i ai and ai ∈ U)} ≡ ext�i
U.
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Given price functional T
p−→ R, agent i can afford to purchase t′ ∈ T if i’s perceived allocation can

be reported (under Ri) as a member of the following set:

I(p, t′) ≡ {t ∈ T |p · t′ ≤ p · t},

where, in keeping with convention, the value of t ∈ T under p is written p · t.

Definition 4.3. For agent i ∈ I with perceived endowment ai ∈ Si, some t′ ∈ T is budget feasible

for i if and only if

(∃t ∈ T )(ai Ri t and t ∈ I(p, t′)),

i.e., iff Ri(ai) G I(p, t′).

An optimal choice is now defined as follows:

Definition 4.4. For agent i ∈ I with perceived endowment ai ∈ Si, a choice of t′ ∈ T is optimal

given prices T
p−→ R iff

1. t′ is budget feasible, and

2. For every budget feasbile t′′ ∈ T , if there are b, c ∈ Si with b reportable as t′, c reportable as

t′′, and c �i b, then R−1
i (t′′) G ext�i

R−1
i (t′).

Thus, the agent must choose something that has at least one interpretation that is no worse than

any budget feasible alternative. Diagramatically, Definitions 4.3 and 4.4 say that optimality is a

commutative square:

Si
Ri - T

Si

ext�i

?

Ri

- T

I(p, ·)

?

This leads to the following result:

Lemma 4.1. A consumer’s budget problem has an optimal choice if and only if the agent’s prefer-

ences are lower hemi-continuous in the reporting topology.
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Proof. Immediate consequence of Theorem 3.2 and Definition 4.4.

The definition of equilibrium is now straightforward: an equilibrium is budget feasible and optimal

for each agent, with markets clearing in the group operation defined in Axiom 4.1.

Definition 4.5. A competitive equilibrium is a price mapping T
p−→ R and a collection {(ti, t′i)i∈I}

of pairs in T ×T such that, if the initial perceived endowments are (ai ∈ Si)i∈I , then for each i ∈ I,

the following conditions hold:

Feasibility ai Ri ti and p · t′i ≤ p · t.

Optimality For feasible t′′i ∈ T , if (∃bi ∈ R−1
i (t′i)) and (∃ci ∈ R−1

i (t′′i )) such that ci �i bi, then

there are b′i ∈ R−1
i (t′i) and c′i ∈ R−1

i (t′′i ) such that c′i �i b′i.

Market Clearing
∑

i∈I ti =
∑

i∈I t′i, where the summations are in the group operation defined

on T by Axiom 4.1.

Since T is the base of a topology on Si, then if T is finite, every open cover of every subset of Si

(for every agent i ∈ I) necessarily has a finite subcover. In other words, T is finite, then every

set is compact. This would seem to be a powerful result for assuring the existence of equilibrium.

However, Axiom 4.1 restricts the cases where T can be finite. In particular, the following holds:

Proposition 4.1. If T is finite and addition is not isomorphic to addition mod n for some n ∈ Z++,

then T is a singleton.

Proof. See Lang (2000), pages 23–5. An intuitive argument is as follows: by Axiom 4.1, T is an

additive group. If t ∈ T and t 6= 0, then t + t ∈ T . If t + t = t, then t + (t + (−t)) = t + 0 = t,

violating the hypothesis. But then t+ t 6= t for every t 6= 0. If T is not a singleton, this means that

either addition must be isomorphic to addition mod n, which is ruled out by hypothesis, or T must

be infinite. Thus, either T = {0} with the only possible notion of addition, or T is infinite.

Nevertheless, it is always possible to coarsen T (even when T is infinite) enough in order to make

every set compact:
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Definition 4.6. T is a Stone-compact space iff (∀W ⊆ T )(∃W0 ⊆ W ) such that

1. W0 is finite, and

2. ext W0 = ext W .

T is a Scott-compact space iff (∀W ⊆ T )(∀t ∈ T )

if ext {t} ⊆ ext W, then (∃t′ ∈ W )(ext {t} ⊆ ext {t′}).

Lemma 4.2. If T is Stone-compact, or if T is Scott-compact and I(p, ·) is finite-set valued for

every p, then a competitive equilibrium exists provided the language is heterogeneously faithful and

each agent’s preferences are lower hemi-continuous (in the sense of Lemma 4.1).

Proof. From heterogeneous faithfulness, preferences are consistent with continuous functions, and

in particular with continuous group homomorphisms (because of Axiom 4.2). Thus, each agent’s

optimization problem includes a continuous group homomorphism over a compact set, so every

agent has a budget feasible optimal choice, given a price functional, and in particular when prices

are market clearing.

Lemma 4.3 (Negri 1996). Ri and T always can be coarsened so that 〈Si, Ri, T 〉 is Stone-compact.

Proof. See Negri (1996), Proposition 2.8 and Theorem 2.10.

Theorem 4.1. A business language can always be coarsened so that competitive equilibrium exists.

Proof. Immediate corollary of Lemma 4.2 and Lemma 4.3.

Axioms 4.1 and 4.2 guarantee that equilibrium is consistent with conservation of the flow of goods;

this is the most that can be hoped for.

Proposition 4.2. Suppose that T is heterogeneously faithful and that individual preferences are

lower hemi-continuous in the sense of Lemma 4.1. Let ωi ∈ X be the initial real-world allocation
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to agent i ∈ I, and let xi ∈ X be what agent i receives in equilibrium. If

∑
i∈I

ωi =
∑
i∈I

xi,

then, for each i ∈ I, there are reports ti ∈ Ri ◦ i (ωi) and t′i ∈ Ri ◦ i (xi) such that markets

clear. Conversely, if markets clear in T , then there are (ωi) and (xi) satisfying the above equation,

i.e., such that the flow of goods is conserved.

Proof. From Axiom 4.1, the above expressions make sense. The correspondences from X −→ Si

and from Si −→ T contain continuous group homomorphisms because of Axiom 4.2, so their

composition contains a continuous group homomorphism.

4.3 Failure of the Welfare Theorems

The results above are promising, in that they show that competitive equilibrium exists for any

sufficiently coarsened business language. Unfortunately, much less can be said about the welfare

properties of equilibrium than in the standard neoclassical case. There can be competitive equilibria

that are Pareto dominated by feasible allocations, and there can be Pareto optimal allocations that

cannot be attained as a competitive equilibrium. Thus, neither welfare theorem holds. Because

of the topological interpretations, one might expect competitive equilibrium to be approximately

Pareto optimal, but even this is untrue. Thus, the welfare theorems do not seem robust to any

ambiguities in perception or language, or to any possible miscommunication.

In the non-heterogeneously faithful case, the failure of the welfare theorems is seen in the following:

Example 4.1. Let X = {x, y}, I = {1, 2}, S1 = {a1, b1}, S2 = {a2, b2}. Assume x 1 a1, x 2 a2,

y 1 b1, and y 2 b2. Thus each agent perceives X perfectly.

Let T have two terms, t1 and t2, and assume that agents 1 and 2 report differently, with a1 R1 t1,

b1 R1 t2, b2 R2 t1, and a2 R2 t2. That is, agent 1 uses t1 to mean x and t2 to mean y, and agent 2

reverses these. Since T is an additive group, assume T is given by all integer multiples of t1 and t2,

with addition defined componentwise.
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Let preferences be given by

b1 �1 a1 a2 �2 b2,

and assume that initially agent 1 is endowed with x and agent 2 with y. Thus both agents can offer

t1 in trade and are willing to trade it for t2. If the price of t2 exceeds that of t1, then autarky is an

equilibrium. However, if both agents were to swap their endowments, they would both be better

off. That is, the allocation (b1, a2) is feasible and Pareto dominates the equilibrium (a1, b2).

In fact, the allocation (a1, b2) is Pareto optimal. However, if it is to emerge as equilibrium, then

both agents must offer to sell t1 at the equilibrium prices, and then purchase t1 at the equilibrium

prices. Since both agents will purchase t2 if it is affordable, in equilibrium the price of t2 must

exceed that of t1. If both agents sell their t1 and buy the other agent’s t1, then the Pareto optimum

is achieved. However, these equilibrium prices and reports are the same as those for which autarky

is an equilibrium. Therefore, no equilibrium prices assure trading from the Pareto dominated

endowments to the Pareto optimal allocation.

The above example depends on the lack of heterogeneous faithfulness. However, it is easy to see

that the welfare theorems fail even in the heterogeneously faithful case. The universal language

provides the simplest example:

Example 4.2. Let T = {0} be a singleton, with the only possible definition of addition. Then,

irrespective of X and the Si, every agent always issues the same report, and markets always clear.

Thus, the market is always in equilibrium. If there is any possible Pareto-dominated allocation,

it can arise as a result of the equilibrium, and nothing can assure a move to a Pareto-superior

allocation. That is, competitive equilibrium need not be optimal, and optimal allocations need not

be attainable as an equilibrium.

This example can be extended to any setting where an agent cannot distinguish in the reporting

language between conceptions over which the agent has a strict preference.

Examples 4.1 and 4.2 show how limits on the business language, in either the form of misun-

derstandings or ambiguities in interpretation, can make competitive equilibrium suboptimal. The

counter-examples do not depend on perceptual limits; indeed, Example 4.1 used perfect perceptions.
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It is straightforward to see that, when agents have perceptual limits, the language will necessarily

either have ambiguous semantics or fail to be heterogeneously faithful. Thus subjective perceptions

or subjective interpretations of the language conflict with the welfare theorems.

A natural way of ranking business languages is by their informativeness. Let T, T ′ be two sets

of shared terminologies, with reporting relations Ri, R
′
i for each agent i ∈ I. If, for each t ∈ T

and each i ∈ I, there is some t′ ∈ T ′ such that extR′
i
{t′} ⊂ extRi{t}, then T ′ is a (weakly) finer

information structure than T . This is closely related to Blackwell’s informativeness.

The results in this section show that ranking business languages by their informativeness is unlikely

to be a reasonable social preference. Once a language allows distinctions to become overly precise,

it ceases to be heterogeneously faithful; i.e., the agents can no longer use it and know what they

are trading. Thus, as in Dubra and Echenique ((2001) and (2004)), more detailed information can

be less desirable than coarser information.

5 Concluding Remarks

This paper studies the economic consequences of subjective information, by modeling how an agent

subjectively perceives real-world objects, and by modeling how such an agent can nevertheless

use a shared business language. The framework here is then used to study the interaction between

subjective perceptions and subjective semantics, and how these affect the way an economy functions.

The models of perceptions and of use of a language have useful topological interpretations. The

connection between what an agent perceives and what an agent reports is shown to be a form

of continuity in these topological spaces. Intuitively, the continuity condition says that an agent

reports a real-world object in a way that a trading partner, viewing the same object, could see

as justified. Because preferences are defined on the agents’ subjective worlds, the topological

interpretation of perceptions can be thought of as saying that agents’ preferences are defined on

open neighborhoods of consumption choices. Thus the model here might be viewed as an argument

in favor of Kreps’s (1979) definition of utilities on sets rather than on points, and with Jeffrey’s

(1983) definition of utility on propositions (hence on subsets). With some regularity conditions
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on agents’ preferences, the topological interpretation is used again to provide conditions for the

existence of equilibrium.

Much less can be said about the welfare properties of competitive equilibria under subjective infor-

mation than in the usual case. Neither welfare theorem necessarily holds, even though preferences

are continuous and there are no externalities. The reason is that each agent does not see exactly

what is being traded, and cannot convey exactly what is desired. The invisible hand is therefore

not always able to allocate resources optimally, largely because the agents are unable to convey

precisely what they want it to do.

The notion of agents’ beliefs thus arises in a different sense from the usual probabilistic one. One

agent may observe another agent’s use of a language, and infer the distinctions that the other agent

is capable of making. Thus an extension of the current model to a dynamic model would enable

one to discuss beliefs about another agent’s subjective understanding of the world.
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