
Efficient equilibria in markets

Efficient Statistical Equilibria in Markets

Kurt Jörnsten and Jan Ubøe

Norwegian School of Economics and Business Administration

Helleveien 30, N-5045 Bergen, Norway.

ABSTRACT. In this paper we will study statistical equilibria in commodity markets where

agents have a specified utility attached to every transaction in their offer sets. A probability

measure on the product of all offer sets is called benefit efficient if market transactions with

higher total benefit are more probable. We will characterize all such probability measures and

show how this defines a new family of statistical equilibria in commodity markets. If agents are

indifferent with respect to utility, these equilibria reduce to the classical entropy maximizing

states. Moreover, we show how to construct what we call the most likely explanation for a

set of observed commodity prices.
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1. Introduction

Foley (1994) initiated a new theory of statistical equilibria in commodity markets. His

basic idea was to show how the classical theory of statistical mechanics developed by

Boltzmann, Maxwell and Gibbs could be incorporated into a setting where different types

of agents carry out transactions in a commodity market. Assuming that there are many

agents of each type and that agents of the same type are indistinguishable, any feasible

transaction can be carried out in a large number of different ways. Some states will be

more probable that others, however, and the point of view in statistical mechanics is that

we can expect that the combined probability distribution will get a strong peak at the most

probable state. Hence it is quite unlikely that we will observe states that are much different

from this state.

While Foley´s approach is novel with respect to commodity markets, the idea of exploiting

statistical mechanics in economics is by no means new. Horowitz and Horowitz (1968)

used entropy and markov processes to study competition in the brewing industry. Theil

(1969) discussed entropy in the formation of political parties. In the same time period

Georgescu-Roegen presented economic models based on entropy and the second law of

thermodynamics, see Beard and Lozada (1999).

In a more recent application Krebs (1997) shows how entropy theory can be used to con-

struct statistical equilibria in one-step forward looking models, and generally there now

seems to be a quite substancial number of authors with an interest to entropy construc-

tions. In the recent literature one can also find numerous references to entropy used as a
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measure of statistical fitting. Such applications are, however, somewhat on the side of the

major issues discussed in our paper and will not be referenced here.

Entropy maximizing has been studied intensively by spatial economists for a large period

of time. Wilson (1967) was the first to show that transportation models could be derived

from entropy maximizing principles, and his theory has ever since been an important topic

for further studies. The number of applications are too numerous to be mentioned here, we

refer instead to the classical textbook by Sen and Smith (1995) and the references therein.

Transportation models based on entropy maximizing principles are commonly referred

to as gravity models. They have found widespread use, and today practically every road

planning office are running program packages based on such applications. In spite of this

success story, the critics of these models have not been silent. As Brøcker (1989) puts it:

“Neither do people behave like Newtonian masses nor like molecules bumping into each

other under certain macroeconomic conservation constraints”. The basic point of view

is that models of this kind must be derived from behavioral principles. As it turns out,

however, gravity models are surprisingly robust, and it is well known that they can be

derived in many different ways. Anas (1983) was the first to show that gravity models can

be derived from random utility theory, and we refer to Erlander and Stewart (1990) for a

number of different derivations of these models. Of particular interest is the derivation

from cost efficiency principles, see Erlander and Smith (1990). In their paper Erlander and

Smith show that gravity models can be derived from cost efficiency principles. Their basic

hypothesis is that transportation states with smaller total costs should be more probable,

and it turns out that there are very few probability measures with this property. More

precisely: if transportation states with smaller total costs are more probable, the model

must be of gravity type.

Foley (1994) assumes that all feasible transactions are equally probable. In the absence of

information this is of course a reasonable hypothesis. In many cases, however, it seems

likely to assume that some information is present and that agents value the different trans-

actions in their offer sets somewhat differently. In this paper we will show how Foley´s

framework can be extended to incorporate effects of this sort. Our framework is based

on Foley´s original framework, and we wish to extend this framework to a setting where

all agents of the same type have a specified utility attached to every transaction in their

offer sets. In doing so we will rest heavily on the construction of cost efficient probability

measures in Erlander and Smith (1990). In our case we will argue that transactions with a

higher total benefit should be more probable, and then we can use the core argument in

Erlander and Smith (1990) to construct a representation of all benefit efficient probability

measures. In doing so we will exploit a simplified construction of these measures as it is

presented in Jörnsten et al. (2004).

Our paper is organized as follows: In Section 2 we present the general framework and give

a brief sketch of Foley´s original construction. As we wish to include additional effects,

we have chosen to modify the notation to better suit our purposes. We hope that this is

not too confusing for the reader. In Section 3 we introduce utilities and give the precise

definition of benefit efficiency. The highlight is Theorem 3.2 which provides an explicit

characterization of all benefit efficient probability measures. In Section 4 we consider an

explicit example to discuss the various consequences of Theorem 3.2. When agents put no
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emphasis on the different utilities, we will see that the only benefit efficient states is the

one provided by maximum entropy, i.e., the state given by Foley´s construction. As more

emphasis is put on utility, agents (according to our model) are typically concentrated at

the more beneficial states. In Section 5 we will return to the general discussion. We will

show that efficient probability measures always exist, and that they in all but degenerate

cases can be interpreted in terms of unique entropy prices. In Section 5 we also discuss

inverse problems: Assume that we have observed prices in the market. Is it then possible

to find a set of utilities that offers an explanation for these prices. We argue that such

explanations can be found. Moreover, if we search for an explanation with the largest

possible entropy, such an explanation can be expected to be unique. In Section 5 we also

discuss an example where we observe negative entropy prices, but where the sign of these

prices can be reversed if we can persuade a new type of agent to enter into the market.

Such agents can be interpreted as arbitrageurs; they can only be persuaded to enter if they

are paid sufficiently much for their entry. Finally in Section 5 we offer some concluding

remarks.

As some basic proofs are quite theoretical, we have placed parts of this material in the

appendix. It is our hope that this will facilitate reading of the paper.

2. The framework

In this paper we will assume that there are K types of commodities, T types of agents and

that all agents of type t have the same offer set Ot ⊂ R
K . The explicit meaning of offer

sets is explained through the following example.

EXAMPLE 2.1

Assume that there are K = 4 commodities and T = 2 types of agents. All agents of type 1

have the offer set

(2.1) O1 = {(4,−2,3,−4), (8,−4,6,−8), (0,0,0,0)}

and all agents of type 2 have the offer set

(2.2) O2 = {(−1,1,0,3), (−3,1,−3,1), (−8,4,−6,8), (0,0,0,0)}

The interpretation is as follows. If an agent of type 1 performs the transaction (4,−2,3,−4)
it literally means that he uses 4$ to buy commodity 1, sells commodity 2 to receive 2$, and

so on. We enumerate the various transactions according to their position above, and let

Fij denote the event that an agent of type i does transaction j. An example of a feasible

transaction is then

• That one agent of type 1 does transaction F11

• That one agent of type 2 does transaction F21 and that another agent of type 2 does F22

• All other agents take no action, i.e., choose F13 or F24 according to type
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This particular combination clears the market. This market can of course be cleared in a

multitude of different ways. The particular combination F11, F21, F22 involves coordination

between 3 agents, and it seems more easy to carry out transactions of the form F12, F23. If

F12 improves the position of agents of type 1, it seems not unlikely that F22 might improve

the position even more. Hence it is relatively easy to point out scenarios where the different

feasible actions have different probabilities.

General framework

In general we will assume that there are Nt agents of type t, and that there are N =
∑T
t=1Nt

agents altogether. We order the agents according to type, and define

(2.3) I1 = {1,2, . . . , N1}, I2 = {N1 + 1, N1 + 2, . . . , N1 +N2}, etc

Hence agent i is of type t if and only if i ∈ It . Letting xi ∈ R
K denote the transaction

carried out by agent i,1 ≤ i ≤ N, we define a market transaction x ∈ RKN by

(2.4) x = (x1, x2, . . . , xN)

A market transaction x is feasible when it clears the market for all commodities, i.e.

(2.5)

N∑

i=1

xik = 0 ∀k = 1, . . . , K

Agents of the same type are assumed to be indistinguishable, and a statistical equilibrium

is obtained in a situation when there is a strong tendency that many agents of the same type

use the same transaction. Hence given any feasible transaction x it is important to keep

track of the number of agents of type t that carries out a particular transaction x ∈ RK .

To this end we define for x ∈ RK

(2.6) f x
t [x] =

∑

i∈It

X[xi = x] where X[xi = x] =

{

1 if xi = x
0 otherwise

We make the following observation which will be of some use in the sequel:

PROPOSITION 2.2

A market transaction x is feasible if and only if

(2.7)

T∑

t=1

∑

x∈Ot

f x
t [x]x = 0

PROOF

(2.8)
T∑

t=1

∑

x∈Ot

f x
t [x]x =

T∑

t=1

∑

x∈Ot

∑

i∈It

X[xi = x]x =

T∑

t=1

∑

i∈It

∑

x∈Ot

X[xi = x]x =

T∑

t=1

∑

i∈It

xi =

N∑

i=1

xi

�
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DEFINITION 2.3

Since agents of the same type are indistinguishable, we say that two market transactions

x and y are equivalent if

(2.9) f x
t [x] = f

y
t [x] ∀t ∈ T ,x ∈ Ot

Given t and x it is important to see in how many ways the Nt agents of type t can be

rearranged keeping

(2.10) f x
t [x] = f

y
t [x] ∀x ∈ Ot

By definition there are f x
t [x] agents of type t that does transaction x. Throughout the

paper we will assume that all offer sets are finite. Hence there is altogether

(2.11)
Nt !

∏

x∈Ot f
x
t [x]!

rearrangements of these agents giving an equivalent outcome. We can state the following

proposition:

PROPOSITION 2.4

Given any market transaction x, there are altogether

(2.12)

T∏

t=1

Nt !
∏

x∈Ot f
x
t [x]!

market transactions within the equivalence class defined by x.

We now assume that all x ∈ Ot are equally probable. To find the most probable equivalence

class, we must then search for a set of integers {ft[x]|t = 1, . . . , T , x ∈ Ot} with the

following properties

(2.13)

ft[x] ≥ 0
∑

x∈Ot

ft[x] = Nt

T∑

t=1

∑

x∈Ot

ft[x]x = 0 ∀t = 1, . . . , T , x ∈ Ot

and such that

(2.14)

T∏

t=1

Nt !
∏

x∈Ot ft[x]!

is as large as possible. If such a set can be found, it is then easy to verify that we can find

a feasible market transaction x∗ such that

(2.15) f x∗

t [x] = ft[x] ∀t = 1, . . . , T , x ∈ Ot
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The equivalence class of x∗ is hence the most probable set of transactions. We observe

that Nt is exogenous, and taking logarithms we can conveniently rephrase the problem as

follows:

Optimization problem

Given Nt ∈ N,Ot ⊂ R
K t = 1, . . . , T , find a set of integers {ft[x]|t = 1, . . . , T , x ∈ Ot} such

that

(2.16)

ft[x] ≥ 0
∑

x∈Ot

ft[x] = Nt

T∑

t=1

∑

x∈Ot

ft[x]x = 0 ∀t = 1, . . . , T , x ∈ Ot

and such that

(2.17) −

T∑

t=1

∑

x∈Ot

ln[ft[x]!]

is as large as possible.

The basic idea in Foley (1994) is now to assume that the number of agents performing

every legitimate transaction is so large that we can use Stirling’s approximation to the

factorial function, and replace this integer optimization problem with a classical entropy

maximizing problem. If so, he can appeal to the Kuhn-Tucker theorem and see that the

maximum entropy problem has a unique solution which can be described as follows:

There exist a set of equilibrium prices π∗t ∈ R
K , t = 1, . . . , T such that

(2.18) f∗t [x] = Nt ·
exp[−π∗t · x]

∑

y∈Ot exp[−π∗t ·y]
∀x ∈ Ot

Hence Foley concludes that if all transactions are equally probable, then there exists a set

of entropy prices defining a statistical equilibrium for the market. In the next section,

however, we will consider a more general version of the problem.

3. Efficiency

We now assume that all agents of type t has a given utility Ut[x] associated with each

transaction x ∈ Ot , and we define a total benefit function B : RKN → R by

(3.1) B[x] =

T∑

t=1

∑

x∈Ot

f x
t [x] ·Ut[x]

Let Pt denote an arbitrary probability measure onOt . The efficiency principle can be stated

as follows:

6



Efficient equilibria in markets

A probability measure P =
∏T
t=1 Pt is called benefit efficient if and only if

(3.2) B[x] ≤ B[y]⇒

T∏

t=1

∏

x∈Ot

Pt[x]
f x
t [x] ≤

T∏

t=1

∏

x∈Ot

Pt[x]
f

y
t [x]

which says that transactions with higher total benefit should be more probable. We em-

phasize that in these formulas the superscripts f x
t [x] and f

y
t [x] are exponents, i.e., that

(3.3) Pt[x]
f x
t [x] = Pt[x] · Pt[x] · · ·Pt[x]

︸ ︷︷ ︸

f x
t [x] times

(3.4) Pt[x]
f

y
t [x] = Pt[x] · Pt[x] · · ·Pt[x]

︸ ︷︷ ︸

f
y
t [x] times

Taking logarithms (3.2) can conveniently be rewritten as follows:

(3.5) B[x] ≤ B[y]⇒

T∑

t=1

∑

x∈Ot

ln[Pt[x]] · f
x
t [x] ≤

T∑

t=1

∑

x∈Ot

ln[Pt[x]] · f
y
t [x]

Clearly it is possible to order all Pt[x] in a single sequence of length M which we identify

with P, and correspondingly we can order all f x
t [x] and f x

t [x] in two sequences fx and fy

of the same length M . With this notation (3.5) can be written in the compressed form

(3.6) B[x] ≤ B[y]⇒ ln[P] · fx ≤ ln[P] · fy

Here we have used the convention that we apply a function to a vector applying the function

to each component of the vector. Hence

(3.7) ln[P] = (ln[P1], . . . , ln[PM])

This convention will be used in the sequel without further remarks.

The next issue is to incorporate the market restrictions into the framework. We note that

(3.8)
∑

x∈Ot

ft[x] = Nt

T∑

t=1

∑

x∈Ot

ft[x]x = 0 ∀t = 1, . . . , T , x ∈ Ot

are all linear restrictions on f. Hence it is possible to find a matrix A and a vector b such

that (3.8) is equivalent to the statement

(3.9) Af = b
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Next we note that in the definition of the benefit function B, it is only the frequencies that

are important. Hence if x and y are two market transactions with the same frequencies f,

then

(3.10) B[x] = B[y]

and by a slight abuse of notation we define

(3.11) B[f] = B[x] where x is any element in the equivalence class defined by f

Activity equivalence

We say that two frequency vectors f and g are activity equivalent under A if Af = Ag.

Hence if there exist at least one feasible market transaction x, then (3.8) is equivalent to

the statement Af = Afx. This leads us to our central definition:

DEFINITION 3.1

A probability vector P is called benefit efficient under A if for all feasible frequency vectors

f and g that are activity equivalent under A

(3.12) B[f] ≤ B[g]⇒ ln[P] · f ≤ ln[P] · g

We will now characterize all benefit efficient probability measures. The following theorem

applies.

THEOREM 3.2

Assume that there exist at least one strictly positive feasible market transaction, and that

P is a probability measure that is benefit efficient under the activity matrix A in (3.9) with

reference to the benefit function defined in (3.1). Then there exist constants u1, . . . uT+K ∈
R, uT+K+1 ∈ R

+ such that

(3.13) ln[P] = (u1, u2, . . . , uT+K)A+uT+K+1U

Conversely any probability measure defined by (3.13) is benefit efficient under A.

PROOF

See the appendix.

�

The result in Theorem 3.2 is written in a compact notation, and it is not straightforward

to see what are the real implications of this result. To clarify these issues, we will in the

next section discuss a few explicit examples to see what is the real contents of this result.
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4. Interpretations and examples

We will now return to the setting in Example 2.1, i.e., we consider K = 4 commodities and

T = 2 types of agents. The strong linear dependence between the elements in the offer

sets, however, puts us in a position where unique entropy prices cannot be found. The

problem is degenerate, and we will hence consider a slightly extended version to remove

the degeneracy:

Throughout this section we will assume that there are N1 = 15 000 agents of type 1 and

N2 = 8 000 agents of type 2. We let f1, f2, f3, f4, f5 denote the number of agents of type 1

that carries out actions

F11 = (4,−2,3,−4), F12 = (8,−4,6,−8), F13 = (0,0,1,−1)

F14 = (−1,1,−1,1), F15 = (0,0,0,0)

respectively, and correspondingly we let f6, f7, f8, f9, f10, f11 be the number of agents of

type 2 that carries out actions

F21 = (−1,1,0,3), F22 = (−3,1,−3,1), F23 = (−8,4,−6,8)

F24 = (0,0,−6,6), F25 = (1,−1,1,−1), F26 = (0,0,0,0)

The 6 feasibility restrictions in (2.13)/(3.8) can then be expressed as follows.

(4.1)












1 1 1 1 1 0 0 0 0 0 0

0 0 0 0 0 1 1 1 1 1 1

4 8 0 −1 0 −1 −3 −8 0 1 0

−2 −4 0 1 0 1 1 4 0 −1 0

3 6 1 −1 0 0 −3 −6 −6 1 0

−4 −8 −1 1 0 3 1 8 6 −1 0


































f1

f2

f3

f4

f5

f6

f7

f8

f9

f10

f11























=












15 000

8 000

0

0

0

0












The optimal solution of (2.17) can easily be computed, giving maximum entropy at

(4.2) f∗ = (2 628,1 568,4 484,1 917,4 403,1 080,1 080,2 342,747,1 917,834)

The corresponding entropy prices are as follows

(4.3) π∗ = (0.92,1.73,−0.38,−0.36)

We observe that the entropy price of commodity 3 and 4 are both negative. The reason is

of course that we are dealing with a model with non-free disposal. One way to handle this
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is to consider an alternative formulation where we admit partial clearing of the market. If

we replace (2.16) with

(4.4)

ft[x] ≥ 0
∑

x∈Ot

ft[x] = Nt

T∑

t=1

∑

x∈Ot

ft[x]x ≤ 0 ∀t = 1, . . . , T , x ∈ Ot

we will get non-negative entropy prices. This, however, will not provide a completely

satisfactory solution to our problem as all commodities that does not strictly clear the

market must have an entropy price equal to zero due to complementary slackness.

What happens if we instead consider benefit efficient probabilities? To illustrate this we

will assume that the agents has an exogenously given utility vector

(4.5) U = (1,2,1,1,0,1,1,2,1,1,0)

We let A be coefficient matrix on the left hand side of (4.1). Theorem (3.2) states that all

benefit efficient probability vectors can be expressed on the form

(4.6) ln[P] = (u1, u2, u3, u4, u5, u6)A+u7U

Seemingly this seems to leave the system with 7 degrees of freedom, and hence an abundant

set of such vectors. If we assume that the numbers of agents is very large, however, the set

of feasible frequency vectors that can arise from such probabilities is highly restricted. In

fact 6 degrees of freedom must be used to fulfill the feasibility restrictions, which leaves

the system with only one additional degree of freedom.

If we assume that u7 ≥ 0 is given, we hence get a parameterized set of frequencies defined

in terms of the value of u7. This parameter has a very striking interpretation; it defines

how much impact the utility vector U has on the equilibrium distribution.

To carry out the calculations, we must try to find a solution of the non-linear system

(4.7) A exp[(u1, u2, u3, u4, u5, u6)A+u7U] = (
15 000

23 000
,

8 000

23 000
,0,0,0,0)

This makes up a special system of transcendent equations, which under normal circum-

stances would be very difficult to solve. A closer inspection of this system, however, reveals

that is has some very attractive mathematical properties. To explain this we take a closer

look on the third equation which can be rearranged as follows:

(4.8)
4eu1+4u3−2u4+3u5−4u6+u7 + 8eu1+8u3−4u4+6u5−8u6+2u7

= eu2−u3+u4+3u6+u7 + 3eu2−3u3+u4−3u5+u6+u7 + 8eu2−8u3+4u4−6u5+8u6+2u7
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The important observation is the following: The left hand side is an increasing function

of u3 and the right hand side is a decreasing function of u3. Hence given any values for

u1, u2, u4, u5, u6, u7, this equation has a unique solution. It turns out that this principle

is true in general: Given all parameters except ui, then equation i in (4.5) has a unique

solution, see the Appendix for a complete proof of the general case. The system can then

be solved by the following algorithm:

Given u7, we put

i) (u0
1, u

0
2, u

0
3, u

0
4, u

0
5, u

0
6) = (0,0,0,0,0,0)

ii) Given u0
2, u

0
3, u

0
4, u

0
5, u

0
6, find u1

1 such that equation 1 is satisfied.

iii) Given u1
1, u

0
3, u

0
4, u

0
5, u

0
6, find u1

2 such that equation 2 is satisfied.

...

vii) Given u1
1, u

1
2, u

1
3, u

1
4, u

1
5, find u1

6 such that equation 6 is satisfied.

viii) Repeat steps ii)-vii) until the system comes to rest at an equilibrium.

This provides an exceptionally fast numerical algorithm for this problem, and solutions

can be found in only a few seconds. The basic idea is very similar to idea behind the

well known Bregman balancing algorithm that is commonly used in spatial economics, see

Bregman (1967).

Case 1: u7 = 0. In this particular case the agents do not care about the utility vector U

which may in fact be arbitrary. Using the algorithm above, we find

(4.9) f = (2 628,1 568,4 484,1 917,4 403,1 080,1 080,2 342,747,1 917,834)

If we compare this solution with the max entropy solution given in (4.2), we see that these

solutions coincide. Hence if the agents are insensitive with respect to the benefits from

trading, there is a unique frequency vector that is benefit efficient, and this vector coincides

with the max entropy solution. See Theorem 5.1 for a discussion of the general case.

Case 2: u7 = 1. In this case the utility vector U = (1,2,1,1,0,1,1,2,1,1,0) is crucial to get

a well defined result. Using the algorithm above, we find

(4.10) f = (2 750,3 415,5 174,1 447,2 214,515,515,4 532,862,1 447,128)

We observe that the no-transaction states 5 and 11 are now considerably less attractive.

Moreover agents of type 1 are now much more likely to prefer transaction 2 which is the

one that gives the most profit, and correspondingly agents of type 2 are more likely to

prefer transaction 8.

Case 3: u7 = 6. Due to the exponential nature of the problem, a value u7 = 6 is very large,

implying, e.g., a ratio e12 ≈ 150 000 between transactions 2 and 5. Using the algorithm

above, we find
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(4.11) f = (984,6 222,7 622,17,155,0,0,6 714,1 270,15,0)

We see that this case is quite extreme. No agents of type 2 carries out transactions F21, F22

and F26 which are less profitable for these agents. It may seem surprising that transaction

F24 = (0,0,−6,6) is not void. The reason for this, however, is obvious: one transaction

of this type allows for no less than 6 transactions of type F13. Hence we would see a

considerable loss in entropy if F24 is void.

5. General issues and entropy prices

We have seen that when agents put more and more emphasis on utility we get a gradual

change in distribution. The next issue, however, is how this affects entropy prices. It

is not clear that the setting in Theorem 3.2 can be interpreted in the sense of entropy,

but a convenient reformulation of the problem clarifies the picture. Consider an entropy

problem of the form:

Optimization problem

Given β ≥ 0 find a feasible transaction f such that B[f] ≥ β and such that the entropy

(5.1) −

M∑

i=1

fi ln[fi]

is as large as possible.

It is then easy to see that the characterization in Theorem 3.2 is nothing but the Kuhn-

Tucker conditions for this non-linear problem. Since f , f ln[f] is convex and all restric-

tions are linear, we have a unique optimal value, and in all but degenerate cases there exists

unique shadow prices (u1, . . . , uT+K+1). Hence uT+K+1 can be interpreted as the entropy

cost associated with the gain of one unit of utility, and the vector

(5.2) π = (−uT+1,−uT+2, . . . ,−uT+K)

defines entropy prices for the K commodities. If β = 0, this problem reduces to the

classical entropy problem studied by Foley. This explains why the solutions in (4.2) and

(4.9) coincide. These observations can be summarized as follows:

THEOREM 5.1

Let U ∈ RM be any exogenously given utility vector and let

(5.3) P = exp[(u1, . . . , uT+K)A+uT+K+1U]

For any uT+K+1 ∈ R+ there exist u1, . . . , uT+K such that the vector

(5.4) f = N · P

is feasible. Moreover

12
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• π = (−uT+1,−uT+2, . . . ,−uT+K) defines the entropy prices for the K commodities.

• If the gradients of the binding restrictions to (5.1) are linearly independent, then the

u1, . . . , uT+K are unique.

• If uT+K+1 = 0, then f given by (5.4) coincides with the classical entropic maximum.

EXAMPLE 5.2

We now return to the example studied in Section 4, to see what entropy prices we get in

that case. As in case 2, we assume that u7 = 1 and that

(5.5) U = (1,2,1,1,0,1,1,2,1,1,0)

It turns out that the entropy prices defined in Theorem 5.1 are as follows

(5.6) π = (1.41,2.99,−0.5,−0.66)

These entropy prices are, however, still negative. Hence we need to rephrase our question:

Is it possible to find a utility vector U yielding strictly positive entropy prices in this case?

As it turns out we can do considerably better than that. We consider an inverse problem:

Assume that we have observed, e.g., a price vector

(5.7) πobserved = (1.0, 2.0, 0.5, 0.5)

in the market. Is it possible to find a utility vector U replicating these prices? The answer

is yes, and one possible such U (using u7 = 1) is

(5.8) U = (0.36,0.35,3.55,0.35,2.08,7.00,2.50,0.00,3.96,0.55,0.01)

This offers one possible explanation why a market of this sort may give rise to positive

entropy prices. We can see, e.g., that when agents have a strong preference for transaction

nr 6, i.e., F21 = (1,−1,0,3), they highly value the trade in commodity 4, reversing the sign

of the entropy price in (4.3). The solution is of course not unique; we have essentially

11 degrees of freedom in our choice of U and only 7 of these are used in the replication.

Hence there will always be a large number of different explanations for the observed prices

in (5.7). Explanations with high entropies are, however, more likely that the others. Hence

we should search for an explanation with maximum entropy, and such an explanation we

can expect to be unique (when units are chosen). In general we formulate the framework

as follows:

DEFINITION 5.3

Assume that we have observed commodity prices

(5.9) πobserved = (π1, . . . , πK)

in the market. The most likely explanation for these prices is a utility vector U∗ such that

(5.10) f = N · exp[(u1, . . . , uT+K)A+uT+K+1U∗]

• is feasible

• πobserved = (−uT+1,−uT+2, . . . ,−uT+K)

• the entropy of f is as large as possible

13



Remark

If uT+K+1 6= 1, we can define a new utility vector Ũ = uT+K+1U∗. Clearly Ũ will be optimal

if uT+K+1 = 1. Hence we can assume that uT+K+1 = 1 without loss of generality. This only

corresponds to a choice of utility units.

The solution in (5.8) was found using the Nelder-Mead simplex algorithm with the origin

and the unit vectors as initial points. If we perform a more refined search taking maximum

entropy into account, we get

(5.11) U∗ = (0.63,1.33,0.71,0.37,2.93,5.52,1.02,5.04,0.66,0.11,0.75)

increasing the entropy from −192 694 in (5.8) to −189 248 in (5.11). If we compare this

vector with the utility vector from (5.8), i.e.

(5.12) U = (0.36,0.35,3.55,0.35,2.08,7.00,2.50,0.00,3.96,0.55,0.01)

we can notice some characteristic features. Both vectors puts strong emphasis on compo-

nent nr 6, with the implications we discussed above. The optimal vector in (5.11), however,

is much more evenly distributed. This is what we expect. If all the components of U are

equal, we get the solution in (4.2), i.e., the global entropic maximum.

Arbitrageurs

Let us return to the case where U = (1,2,1,1,0,1,1,2,1,1,0) and u7 = 1. As we have seen,

this leads to some negative entropy prices. Assuming that U is fixed, it turns out that we

still can obtain positive entropy prices if new agents are introduced in the system. One

example of this sort can be described as follows: Let us introduce N3 = 3 000 agents of

type 3 in the system. Agents of type 3 can carry out the transactions

(5.13) F31 = (0,0,0,1), F32 = (0,0,−1,0), F33 = (0,0,0,0)

For simplicity we assume that F32 and F33 has utility 0. The basic question is now; What is

the minimum utility on F31 = (0,0,0,1) giving non-negative entropy prices? It turns out

that if the utility of doing transaction F31 is U31 = 3.12, then we obtain entropy prices

(5.14) π = (0.89,1.46,0,0.02)

and strictly positive entropy prices are obtained if we increase this utility beyond that

point.

We can think of agents of type 3 as arbitrageurs in the system. They are initially unwilling

to participate in the market. If they are paid sufficiently, however, they can be persuaded to

enter. As we have just seen, such an entry may give rise to strictly positive entropy prices

in a situation where no such prices can be found initially. Hence it might be beneficial for

all parties to pay agents of type 3 a certain fee for their entry.

14
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6. Concluding remarks

In this paper we have showed how the classical entropy framework can be extended to

cases where agents can attach different utilities to the transactions in their offer sets. If

all such utilities are equal, our solutions coincide with those suggested by the classical

theory. While the final results coincide in this case, our framework offers an alternative

derivation which we believe is appealing from an economic point of view. We have showed

that the classical equilibrium is the only state that is consistent with an efficient probability

measure, i.e., a measure where states with a larger total utility are more probable.

Foley´s original approach rested on the assumption that all transactions are equally likely.

In our extended approach no such conditions are needed. Quite the contrary, we have

studied situations where we assumed that market prices were different from the ones

obtained from the classical entropy models. In that setting we showed how to construct

a set of utilities that offers an explanation to the deviation. Moreover, we suggested that

one should search for a set of utilities with the largest possible entropy, and this set we

would like to interpret as the most likely explanation for the observed prices.

The usefulness of our approach must eventually be judged from its empirical explanatory

power. This raises a number of topics for future research. In particular we believe it would

be interesting to apply the suggested framework to currency markets. Here bundles of

currencies are traded in a manner that may be quite suitable for entropy modeling. In the

last few years there has also been increasing interest for entropy models in marketing, see,

e.g., Phillips (1994), and we suggest that the ideas in our paper can be useful in that setting

as well.

A slight limitation of our framework is that it can only be applied to situations where there

is a reasonably large number of agents and where the number of different transactions is

not too large. While the number of agents should be large, there is no reason to assume

astronomical numbers like the ones commonly used in particle physics. Within the field of

regional science similar models have been applied to situations with moderate numbers of

agents with great success, and we expect that our approach can be used in such cases as

well. Moreover, the advances of modern computer science now admits applications with

fairly large offer sets. Balancing algorithms of Bregman type have long since been used in

situations more than 25 000 different equations/inequalities, see, e.g., Herman et al (1978).

Hence we suggest that offer sets with a similar or even higher order of magnitude may be

within reach.

7. Appendix

Proof of Theorem 3.2

Assume that P is benefit efficient under A. Choose any feasible frequency vector g > 0,

and consider the LP-problem

(7.1)
max

f
ln[P] · f

Af = Ag, B[f] ≤ B[g], f ≥ 0
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This particular LP-problem must have the solution f∗ = g, for if not the pair f∗,g would

violate (3.12). For simplicity of notation we let m = T + K and n = M . If we define an

extended matrix

(7.2) W =







a11 a21 · · · am1 U1
...

... · · ·
...

...

a1n a2n · · · amn Un







the dual problem of (7.1) can be stated as follows:

(7.3)
min

u=(u1,...,um+1)
gWu

Wu ≤ ln[P] u1, . . . um ∈ R, um+1 ∈ R
+

Since f∗ > 0 in (7.1), all slack variables in the dual problem must be zero, i.e.,

(7.4) ln[P] = (u1, u2, . . . , um)A+um+1U

Conversely if P is defined by (3.13), let f and g be any two feasible frequency vectors that

are activity equivalent under A. Then

(7.5)
ln[P] · g − ln[P] · f = ((u1, u2, . . . , um)A+um+1U)(g − f)

= (u1, u2, . . . , um)(Ag −Af)+um+1(B[g]− B[f])

Hence if B[f] ≤ B[g], then ln[P] · g − ln[P] · f ≥ 0, i.e., ln[P] · f ≤ ln[P] · g.

�

Assume in general that there are K different commodities and T types of agents, with

N1, . . . , NT > 0 agents of each type. Let M be the total number of available transactions,

and let U = (U1, U2, . . . , UM) be given utilities from each different transaction. Consider

the i-th component of the left hand side of the equation

(7.6) A exp[(u1, . . . , uT , uT+1, . . . , uT+K)A+uT+K+1U] = (N1, . . . , NT , 0, . . . ,0
︸ ︷︷ ︸

K times

)

i.e.

(7.7)

(A exp[(u1, . . . , uT , uT+1, uT+K)A+uT+K+1U])i

=

M∑

j=1

Aij exp





uiAij +

T+K∑

k=1
k6=i

ukAkj +uT+K+1 ·Uj







Note that equation (7.6) does not define a probability measure P. It is, however, straight-

forward to find a probability measure that is consistent with the frequencies in (7.1). The

following scaling principle explains this.
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PROPOSITION 7.1

Given u1, . . . , uT , uT+1, . . . , uT+K define

(7.8) vi =

{
ui + ln[C] if 1 ≤ i ≤ T
ui if T < i ≤ T +K

Then

(7.9) exp[(v1, . . . , vT+K)A+ vT+K+1U] = C · exp[(u1, . . . , uT+K)A+uT+K+1U]

PROOF

Observe that if 1 ≤ i, j ≤ T , there is exactly one Aij = 1 and all other such Aij are zero. The

effect of adding ln[C] to all those ui is hence that one and only one term in (7.7) is affected,

i.e.

(7.10)

exp





viAij +

T+K∑

k=1
k6=i

vkAkj + vT+K+1 ·Uj





 = exp





ln[C]+uiAij +

T+K∑

k=1
k 6=i

ukAkj +uT+K+1 ·Uj







�

COROLLARY 7.2

If we can find u1, . . . , uT+K such that (7.6) is satisfied, we can find a consistent probability

measure P using C = 1/
∑T
i=1Ni in Proposition 7.1.

PROPOSITION 7.3

For all i = 1, . . . , K + T , then given any values of u1, . . . , ui−1, ui+1, uT+K+1 the i-th compo-

nent of equation (7.6) has a unique solution.

PROOF

First assume that 1 ≤ i ≤ T . Then all Aij are either 0 or 1. In this case the function in (7.7)

is strictly increasing from 0 to ∞, and hence given u1, . . . , ui−1, ui+1, uT+K+1 we can find a

unique ui such that

(7.11) (A exp[(u1, . . . , uT+K)A+uT+K+1U])i = Ni

Next assume that T < i ≤ T +K. Then we can split the sum in (7.7) into two different parts

according to the sign of Aij , i.e.

(7.12)

(A exp[(u1, . . . , uT+K)A+uT+K+1U])i

=

M∑

j=1
Aij≥0

Aij exp





uiAij +

T+K∑

k=1
k 6=i

ukAkj +uT+K+1 ·Uj







−

M∑

j=1
Aij<0

|Aij| exp





−ui|Aij| +

T+K∑

k=1
k6=i

ukAkj +uT+K+1 ·Uj
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We have assumed in general that there exist at least one feasible transaction. Hence there

must be at least one Aij > 0 and at least one Aij < 0 (if not commodity i does not admit

any transactions and can be ignored from the outset). Letting ui pass from −∞ to +∞ the

first sum in (7.12) will hence be strictly increasing from 0 to +∞, while the second sum

in (7.12) will be strictly increasing from −∞ to 0. The whole expression will be strictly

increasing from −∞ to +∞, and given u1, . . . , ui−1, ui+1, uT+K+1 we can find a unique ui
such that

(7.13) (A exp[(u1, . . . , uT+K)A+uT+K+1U])i = 0

�

The next corollary is an immediate consequence of Proposition 7.3.

COROLLARY 7.4

If the algorithm: Given uT+K+1, put

i) Put u0
i = 0 for all i = 1, . . . , T +K

ii) Given u0
2, . . . , u

0
T+K , find u1

1 such that first component of (7.6) is satisfied.

iii) Given u1
1, u

0
3, u

0
T+K , find u1

2 such that the second component of (7.6) is satisfied.

...

vii) Given u1
1 . . . , u

1
T+K−1, find u1

T+K such that the last component of (7.6) is satisfied.

viii) Repeat steps ii)-vii) until the system comes to rest at an equilibrium.

converges, it gives a solution to (7.6)

One relatively important question is left without a precise answer. We are presently unable

to prove that the algorithm above always converges. From Theorem 5.1 and Proposition 7.1

we know that there exists a solution to (7.6), and that this solution is usually unique. Still we

cannot completely exclude the possibility that the algorithm above diverges. This problem

is common to several widely used algorithms, so it should not exclude this algorithm from

practical use.
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