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Abstract

In this paper we present empirical results based on a network model for commuting

flows. The model is a modified version of a construction introduced in Thorsen et al. (1999).

Journeys-to-work are determined by distance deterrence effects, the effects of intervening

opportunities, and the location of potential destinations relative to alternatives at subsequent

steps in the transportation network. Calibration is based on commuting data from a region

in Western Norway. Estimated parameter values are reasonable, and the explanatory power

is found to be very satisfying compared to results from a competing destinations approach.

We also provide theoretical arguments in favor of a network approach to represent spatial

structure characteristics.

1 Introduction

The main purpose of this paper is to offer an empirical implementation of a network model for

journeys to work. The basic construction of the network model was presented in Thorsen et

al. (1999). The model was constructed for pure trip distribution problems, and it focuses on

the impact of spatial structure and road network characteristics rather than on socioeconomic
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variables and various structural aspects of the labour market. In short, the network description

of the geography was combined with a set of hypotheses on spatial labour market behaviour and

some balancing procedures.

In this paper we introduce some extensions and modifications of the modeling framework

that was presented in Thorsen et al. (1999). Based on central issues in the literature of spatial

interaction and destination choice we briefly evaluate the individual search strategy and the

delineation of choice sets involved in the network model formulation. We argue that the network

approach offers a more transparent interpretation of the decision procedure than standard models

within the gravity tradition, and that the delineation of the true choice set of individual workers

comes out as a more natural result of the model structure.

We focus on pure trip distribution problems, and hence ignore other aspects that might

influence commuting flows. For a review of modeling attempts to integrate location, land-use

and transportation flows, see for instance Wilson (1998).

In the empirical parts of this paper we first discuss the quantitative effects of network and

spatial structure characteristics on destination choice. The estimation of parameters is based on

information of job and residential location for workers in a region in southern parts of Western

Norway. Our results are further compared with estimates based on a gravity based model

specification, and the models are evaluated with respect to their ability to explain commuting

flows. The estimates resulting from the gravity based model specification are presented in

Thorsen and Gitlesen (1998), and for the sake of comparison we now use the same data in our

estimation of the network model. In particular it is interesting to note that the 5-parameter

network model performs better than the 7-parameter gravity based model used in Thorsen and

Gitlesen (1998).

As will be clear in subsequent sections the gravity family of spatial interaction models rep-

resents a benchmark for theoretical and empirical evaluations of our network approach. For

this reason some aspects of such interactions models are reviewed in Section 2. Section 3 deals

with the network approach to model commuting flows, emphasizing in particular some revisions

of the modeling framework formulated in Thorsen (1999). Section 4 refers to some theoretical

aspects concerning the choice between a gravity type of model and a network approach. The

region and the data is presented in Section 5. Parameter estimates are presented in Section 6,
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and the results are compared with the corresponding estimation results from a gravity model

specification. Finally, we offer some concluding remarks in Section 7.

2 The gravity modeling tradition of spatial interaction models

The models most commonly used in applied analysis of trip distribution problems are those

belonging to the tradition of gravity modelling. In a gravity model it is assumed that spatial in-

teraction is explained by the distance between an origin and a destination, and by two aggregate

measures: one to account for generativity of origins and another that adresses the attraction

of destinations. In studies of journeys to work the generativity of origins is in general defined

in terms of the number of workers, while the attraction of destinations is usually measured by

total employment. One way of formulating a traditional gravity model is:

Tij = AiOiBjDj exp(−βdij) (1)

Ai =

∑
j

BjDj exp(−βdij)

−1

(2)

Bj =

[∑
i

AiOi exp(−βdij)

]−1

(3)

Here:

Tij is the estimated number of travellers from origin i to destination j, i, j = 1, ..., n

Oi is the observed number of trips originating from zone i = 1, ..., n

Dj is the observed number of trips destinating in zone j = 1, ..., n

dij is travelling time by car, from origin i to destination j; i, j = 1, ..., n

β is a distance deterrence parameter. Ai and Bj are the balancing factors that ensure the

fulfillment of the marginal total constraints;
∑

j Tij = Oi and
∑

i Tij = Dj . Consequently, this

doubly constrained model specification is constructed for a pure trip distribution problem. For

a discussion of the theoretical foundation of this model, see for example Erlander and Stewart

(1990) or Sen and Smith (1995). It is a well known fact that the doubly constrained gravity
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model is equivalent to the multinomial logit model. Hence, the gravity model can be derived from

stochastic utility theory, in addition to approaches dominated by the macro-oriented tradition

that is inspired by social physics and based on the entropy concept.

Several authors within the spatial interaction literature point out that gravity models might

be misspecified due to an inability to account for relevant aspects of spatial structure. This

especially applies to unconstrained or production constrained model formulations, see for exam-

ple Fotheringham (1981). In several publications by Fotheringham (for example Fotheringham

(1983, 1986, and 1988) it has been argued that account should be taken to the possibility that

destination choice is affected by competition or agglomeration effects. For this purpose, Fother-

ingham (1983) introduced the competing destinations model. In this approach, the clustering

system of destinations enters into the model through a term defining the accessibility of a desti-

nation, perceived from the specific origin. Within a doubly constrained framework the structural

equation of the competing destinations model is formulated as follows

Tij = AiOiBjDjS
ρ
ije
−βdij (4)

The balancing factors Ai and Bj are defined similarly to the expressions (2) and (3). Acces-

sibility is measured by Sij , which is defined as the accessibility of destination j relative to all

other destinations, as perceived from i

Sij =
w∑

k=1
k 6=i,k 6=j

Dke
−βdjk (5)

Here, w is the number of potential destinations. The standard reference to this kind of

accessibility measures is Hansen (1959). The sign of the parameter ρ in the interaction Equation

(4) is a matter of empirical research, rather than theoretical considerations. When agglomeration

kind of forces are dominant, the sign will be positive, while the parameter takes on a negative

value if competition like forces are dominant.

The competing destinations model has been object to empirical testing based on data for dif-

ferent kinds of spatial interaction problems. We will not review the empirically based evaluation

of the model specification here. Relevant references can be found in Pellegrini and Fotheringham

(1999). In Thorsen and Gitlesen (1998) the competing destinations model is evaluated from the
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same data set that is described in Section 5. Based on commuting flow data and a doubly con-

strained model specification it was found that the competing destinations formulation performs

significantly better than the traditional gravity model. It was also found that competition effects

were dominating for this kind of spatial interaction.

A theoretically based criticism that can be directed towards the traditional gravity model

formulation is related to the property of independence of irrelevant alternatives (IIA property).

This property is in general undesirable for spatial choice situations, see for instance Liaw et

al. (1986) for a discussion of the problem. The IIA property follows as a result of the unilevel

simultaneous destination choice evaluation of the multinomial logit model and, equivalently,

the standard gravity model. One way to deal with this problem is the approach in Liaw and

Ledent (1987), who introduce a hierarchical processing strategy by distinguishing between a

departure model and a destination choice model in a nested logit formulation. The competing

destinations model represents an alternative way to deal with the IIA property. By introducing

the accessibility measure the odds ratio corresponding to two destination alternatives will in

general no longer be independent of changes in other, surrounding, destination alternatives.

Spatial choices are in general based on many alternatives of which only a portion is repre-

sented in the true choice set of individual decision makers. A conventional model formulation

that does not distinguish between the universal and the true choice set involves specification er-

rors. Analyses that demonstrate how a misspecification of choice sets might produce misleading

parameter estimates and predictions can be found in for example Pellegrini et al. (1997), Thill

(1992), and Thill and Horowitz (1997). Many of the spatial interaction studies dealing explicitly

with the problem of restricted choice sets are along lines suggested by Manski (1977), with a

probabilistic choice set generation. The probability assigned to a specific alternative is defined to

be the product of the choice set generation probability and the (conditional) probability that this

alternative is chosen from destination opportunities in the relevant choice set. In Fotheringham

(1988) the probability of an alternative being in the true choice set is assumed to be determined

by a measure of potential accessibility relative to alternative destination opportunities. This

set-up produces the competing destinations model. This means that the competing destinations

model can be interpreted to result from a two-stage decision process. First, the decision makers

select the set of alternatives which are relevant destination choices. Second, a specific destination
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is selected from this set of alternatives. Hence, the competing destinations model corresponds

to a hierarchical decision process. Gitlesen and Thorsen (2000) offer a more detailed theoretical

interpretation of the competing destinations modeling framework in modeling commuting flows.

Both the nested logit and the competing destinations model can be explained from a hy-

pothesis of a hierarchical processing search strategy rather than a simultaneous evaluation of

all alternatives. This means that such models involve a delineation of choice sets of individual

workers. As Fotheringham (1988) points out, the nested logit model is based on an apriori

specified choice structure, where alternatives are assigned to clusters prior to model calibration.

In other words the modeling framework assumes that the modeller has knowledge to individual

choice sets. Pellegrini and Fotheringham (1999) argue that this is a drawback of the nested logit

model as a spatial choice model. Contrary to the nested logit model the competing destinations

model is based on a procedure which considers the likelihood of an alternative being in the true

choice set. This likelihood is according to the similarity, or position, of that alternative relative

to the other alternatives. Pellegrini and Fotheringham (1999) argue that this flexible multistage

approach is one important argument in favour of the competing destinations model.

The specification of appropriate choice sets is related to aggregation aspects. One such

aspect is the spatial aggregation level. According to Horner and Murray (2002) zonal commuting

flow data should be as disaggregate as possible. We will not enter into this discussion in this

paper, our data do not allow for real experiments with the spatial aggregation level. There

is another kind of potential aggregation problem, however, that is not accounted for in the

recommendations in Horner and Murray (2002). Workers are not homogeneous, and the response

to variations in distance might differ, for example with respect to gender, age, income, and/or

profession. Deterrence parameters that are estimated from aggregate data reflect the effect of

varying preferences across worker categories, as well as of a spatial mismatch between categories

of workers and relevant job opportunities, see Ubøe (2004), Jörnsten et al. (2004), and O’Kelly

and Lee (2005). If a system is divided into smaller units spatial aggregation problems might get

less severe, but the possibility increases of a serious spatial mismatch between relevant job offers

and worker categories. To some degree such aggregation aspects have influenced the specification

of a distance deterrence function in this paper. For more details on those matters, see Ubøe

(2004).
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3 A network approach to commuting

As mentioned in the introduction the empirical results to be presented in this paper follow

from a modified version of a model formulation proposed by Thorsen et al. (1999). In this

model commuting flows are determined through a procedure based on a network description of

the geography. The individuals adapt to the environment through a sequence of choices, and

destinations are selected according to the level in the network. The specification of the network is

origin-specific, it starts out to consider the elements of one row in the journey-to-work matrix at

a time. As in gravity models commuting flows are determined both by the individual preferences

and by a set of basic restrictions on the system. The models might differ, however, with respect

to how large part of the predicted commuting flows that is left for the balancing procedure. We

will return to this problem in the section where the results are presented.

In this section we start by introducing a general distance deterrence function that appears at

several stages in the network model construction. As a next step we present the module account-

ing for within-zone journeys-to-work, before we explain the mechanism determining commuting

flows to specific levels of remaining destinations in the transportation network. Finally, the

balancing procedure is explained. Basically, the construction is the same that was presented in

Thorsen et al. (1999). The empirical implementation of the modeling framework demonstrated,

however, that some modifications were required. In the presentation to follow most weight is

put on the parts of the model construction representing changes from the framework proposed

by Thorsen et al. (1999).

3.1 The distance deterrence function

The network model construction introduced by Thorsen et al. (1999) is based on three basic

principles:

• Journeys-to-work are determined by random choice when distances are short

• Journeys-to-work are determined by minimal cost when distances are long

• Commuting flows matrices can be expressed as convex combinations of extreme states

We refer to Thorsen et al. (1999) for complete details. The extreme states correspond to the

cases where all the distances within the system are either zero or infinitely large. Roughly
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speaking, distance deterrence is defined as the total level of attraction towards the minimum

costs state, that is a state where the total traveling cost in the system is as small as possible.

Equipped with such ideas it is obviously important to find an appropriate specification of a

distance deterrence function. It is reasonable that any distance deterrence function should

satisfy the following properties:

• D(0) ≈ 0

• d 7→ D(d) is increasing

• limd→∞D(d) ≈ 1

Thorsen et al. (1999) proposed a logistic function to represent the distance deterrence effect.

Based both on empirical experiments and theoretical considerations, however, we introduce a

convex combinations of exponentials. This means that the distance deterrence function to be

exploited in this paper is given by the specification:

D(x) = 1−
(
αe−β1x + (1− α)e−β2x

)
(6)

Here, α, β1, and β2 are parameters to be estimated from observations of commuting flows. Ubøe

(2004) offers a theoretical rationale for the use of this specification of a distance deterrence

function. The basic idea is that it adjusts for possible specification errors resulting from the

possibility that workers are not homogeneous, neither with respect to the qualifications in the

labor market, nor with respect to their response to distance. As made clear by Ubøe (2004)

workers can for example be grouped together according to age, income, and/or profession. Deter-

rence parameters that are estimated from aggregated data reflect the effect of varying preferences

across worker categories, as well as of a spatially varying mismatch between categories of workers

and relevant job categories. Ubøe (2004) argues, and demonstrates through numerical exper-

iments, that the convex combination of exponentials is appropriate to deal with the presence

of different population groups that are non-interacting in the labor market. The exponential

terms allow the distance deterrence function to shift its shape as the distance changes, reflecting

the possibility that distinct population groups respond differently to changes in distance. Ubøe

(2004) also argues that such effects are satisfactorily captured by a function with two exponen-

tial terms even if the real population consists of many non-interacting groups of workers. It is of
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course in particular important to adjust for the relevant kind of aggregation problems in cases

where the geography is subdivided into zones with strongly asymmetric distributions of different

categories of workers that respond substantially different with respect to changes in distance.

For simplicity of notation we also include the following definition

Dκ(x) = (1−D(x))κ (7)

where κ is another parameter to be estimated from our data, reflecting to what degree the

distance deterrence effect excludes zones as destination alternatives. In what follows, we will

try to model the journey-to-work matrix as the result of an hierarchical sequence of choices in

which each alternative is weigthed according to the level of the distance deterrence. If there are

alternatives within short or medium distance from the residential location of an agent, these will

be the preferred choices, and no weight should be put on other alternatives. If all alternatives

are at long range, however, such alternatives must be put into practice. All efforts in this paper

are then directed towards using the functions D and D to account for such principles at all

stages of the decision prosess.

3.2 Within-zone journeys-to-work

The “zero-th” level, or step, in the decision process concerns the propensity to work and live in

an area that is represented by the same node in the network. Consider node A. Ac then denotes

the collection of all other nodes. Thorsen et al. (1999) view this as a two node system, and

they define two extreme states of the corresponding commuting matrix. T 0
A represents the case

of random commuting (corresponding to so short distances that the whole system is effectively

acting as a single node), while T∞A represents the minimal cost solution that corresponds to long

distances between the nodes in question. The extreme states can be found from the explicit

expressions

T 0
A =

[ LAEA
EA+EAc

LAEAc

EA+EAc

LAcEA
EA+EAc

LAcEAc

EA+EAc

]
T∞A =

[ min{LA, EA} LA −min{LA, EA}

LAc −min{LAc , EAc} min{LAc , EAc}

]
(8)

In Thorsen et al. (1999) LAc and EAc were defined as the total labor/employment outside A.

If the system is very large, the within-zone commuting flows would then be nearly zero in the
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random case. The term EA
EA+EAc

can be interpreted as the probability of choosing employment

in zone A at random. As a modification we now define EAc to mean relevant job opportunities

outside A. This means that we introduce a procedure where zones are weighted according to

their total relevance as job destinations for workers living in zone A, and vice versa for workers

with residence in other zones. To achive this, we define

EAc =
∑
i∈Ac

Dκ(dAi)Ei (9)

The parameter κ introduced in Equation (7) is controlling for the size of this effect. Commuting

from zone A is now defined as a convex combination of the two extreme states:

TA(dAAc) = T 0
A(1−D(dAAc)) + T∞A D(dAAc) (10)

where dAAc corresponds to the generalized distance to the other nodes of the system. We define

the generalized distance from a node A to a set B through the expression

dAB =
∑
j∈B

WAj∑
k∈B WAk

dAj i = 1, 2, . . . , N (11)

Here, WAj∑
k∈B

WAk
is the relative relevance (weight) of potential destination j. One possibility is

that the variable WAj is defined by the number of job opportunities in zone j; WAj = Ej . Then

dAB is equal to the average euclidean distance to the job opportunities in set B. As a more

refined measure, however, our weights in addition reflect both the position of the alternative

destinations relative to zone A (Dκ(dAj)), and the labor market situation within the alternative

zones (Ej

Lj
), i.e.:

WAj = Dκ(dAj)Ej
Ej

Lj
(12)

Notice that the total and the relative relevance of destination alternatives are conceptually

different. The first is used to exclude irrelevant alternatives from the calculation of the extreme

states. The second is used as a measure of how alternative zones outside A contribute to the value

of the generalized distance from zone A. Assume as an example that the labor market situation

is particularly favorable in zones located close to zone A, with relatively few job opportunities

in more distant locations from A. The value of the generalized distance will then be low, and
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total commuting flows from zone A will not differ substantially from the situation with random

commuting, represented by T 0
A.

The reservation wage related to job offers is a declining function of the distance to job

opportunities elsewhere in the spatial system. The job opportunities in zone j are not, however,

reflected by Ej alone. In addition it can be argued that the labour supply Lj originating from

zone j should be incorporated, to account for the tendency that many workers prefer jobs in

the neighborhood. As argued by Thorsen and Gitlesen (1998) the alternative of being offered

a job in the neighborhood might for some individuals be to leave the labor force, for instance

due to problems of running a two-worker household. Local firms might to some degree exploit a

monopsonistic labor market position, resulting in a tendency to employ workers who are spatially

and professionally immobile, with a relatively low reservation wage for local job offers. Such a

labor market situation might explain a tendency that jobs are occupied with workers residing

nearby, and this is the reason why the factor Ej

Lj
is included in the definition of relative relevance.

3.3 The commuting flow to the first order level in the transportation network

In Equation (10) TA is a 2×2 matrix, and the element TAA := TA
11 defines the internal commuting

in zone A. Its complement TAAc := TA
12 defines the traffic flow directed outwards in the system.

The next part of the construction is to distribute the commuting flow TAAc among the zones

outside of A. The first step in this direction is to distribute mass to first order neighbors (adjacent

nodes). The basic idea is to measure how much better the first order neighbors are positioned

compared to the rest of the system. To this end Thorsen et al. (1999) introduced a neighboring

distance deterrence function, n(dAA1 , dAAc
1
). Here A1 denotes the first order neighbors, and Ac

1

denotes all the neighbors further out in the transportation network. The idea is to compare

the relevance of these two groups of alternatives for workers living in zone A. Technically the

neighboring distance deterrence function is defined by:

n(dAA1 , dAAc
1
) := σ

Dγ(dAA1)
Dγ(dAAc

1
)

(13)

Here σ and γ are parameters to be estimated from data on commuting flows. If some members

of A1 and some members of Ac
1 are positioned close to A, then the generalized distances dAA1

and dAAc
1

will be roughly equal, and the factor Dγ(dAA1
)

Dγ(dAAc
1
)
≈ 1. A tendency might still exist that
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first order neigbors are preferred to higher order alternatives. This corresponds to the idea in

the so called intervening opportunities model, stating that spatial interaction between two zones

is proportional to the total number of trips from the origin, and inversely proportional to the

number of intervening opportunities, see for instance Wilson (1970). The parameter σ represents

the absorption, reflecting the effect of intervening opportunities and search costs. This measures

the tendency that n(dAA1 , dAAc
1
) > 1 even when dAA1 ≈ dAAc

1
. Another kind of absorption effect

arises if the generalized distance to relevant first order neighbors is significantly lower than

the generalized distance to relevant higher order alternatives, Dγ(dAA1
)

Dγ(dAAc
1
)

> 1. The parameter γ

measures the size of this effect; the impact of differences between generalized distances to specific

levels in the transportation network will be moderated by a low estimate for this parameter.

Assume that the distances to subsequent levels in the transportation network are quite similar

and that commuting is determined by physical distances alone. In such a case the extreme state

of random commuting offers a reasonable estimate of commuting flows to first order neighbors.

Thorsen et al. (1999) introduced the following fraction for this purpose:

RF1 =
∑

i∈A1
Ei∑

i∈Ac Ei
(14)

This definition fails its purpose in large networks, however, since RF1 ≈ 0 in that case. Once

again we therefore modify the modeling framework according to the relevant job opportunities.

The modified version of the random fraction is defined as follows:

RF1 =
∑

i∈A1
Dκ(dAi)Ei∑

i∈Ac Dκ(dAi)Ei
(15)

As a next step this random fraction is combined with the neighboring distance deterrence func-

tion to determine the fraction of commuting flows from zone A with a destination at the first or-

der neighboring level. Hence, the estimated commuting flows reflect the two kinds of absorption

effects underlying the neighboring distance deterrence function. To be specific the commuting

flow TAA1 from A to the first order neighbors is determined by the following equation:

TAA1 = TAAc · fδ(n(dAA1 , dAAc
1
) · RF1) (16)
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where fδ is defined as follows

fδ(x) =
x

(1 + xδ)
1
δ

(17)

The function fδ is introduced as a consistency requirement, to ensure that TAA1 ≤ TAAc . The

function has the following properties:

i) 0 ≤ fδ(x) ≤ 1 when x ≥ 0, ii) fδ(x) ≈ x when x ≈ 0 and iii) limx→∞ fδ(x) = 1

The parameter δ controls the speed of which fδ(x) approaches 1 when x > 1. If δ is large,

almost all traffic will be directed to the first order neighbors whenever n(dAA1 , dAAc
1
) ·RF1 > 1.

A small δ, however, will slow down this effect.

3.4 The distribution of first order journeys-to-work to alternative zones at

this level

The next step in the model construction is to distribute the commuting flow TAA1 to the individ-

ual first order neighbors. First, however, it is necessary to test and account for two consistency

requirements:

i) If TAA1 exceeds the total number of jobs in A1, we put TAA1 =
∑

i∈A1
Ei, and distribute a

traffic flow TAi = Ei to each zone in A1.

ii) If TAAc
1

exceeds the total number of jobs in Ac
1, we put TAA1 = TAAc −

∑
i∈Ac

1
Ei, and

distribute a traffic flow TAi = Ei each zone in Ac
1.

Once the consistency requirements are fulfilled, the following multinomial logit model ex-

pression is used to distribute mass to the individual nodes in the network:

TAi = TAA1 ·
WAie

−βdAi∑
j∈A1

WAje−βdAj
(18)

where β is a parameter to be estimated from our data. These expressions, too, must be tested

for consistency. The idea is to distribute as much mass as we can to each node, and then

redistribute excess mass proportionally to consistent alternatives. This is done through the

following algorithm:

Put pold
i = WAie

−βdAi∑
j∈A1

WAje
−βdAj

, i ∈ A1. Find the set S of all i ∈ A1 where Ei ≥ TAA1 · pi. We

define pnew
i = Ei

TAA1
if i ∈ A1 \ S, and pnew

i = K · pold
i if i ∈ S, and compute a value for K such
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that
∑

i∈A1
pnew

i = 1. This process is then repeated until S = A1. We can then define

TAi = TAA1 · pfinal
i (19)

and all these flows are consistent. This completes the distribution of mass to the first order

neighbors.

3.5 The commuting flow to higher order neighbors and the balancing proce-

dure

After the derivation of commuting to first order neighbors we are left with a flow TAA2 =

TAAc − TAA1 to be distributed among neighbors at higher order levels. This is done in exactly

the same way as for the first order level. The various steps are repeated until we reach neighbours

of maximal order in the transportation network. At this stage there is no mass to distribute

to alternatives further out in the system, so at this last level we only use the multinomial logit

model expression to distribute the mass. Because of all the previous consistency checks, the

system will always be consistent on this last level, and that completes the distribution of mass

from node A.

The function fδ(x) in Equation (17) was not incorporated in the model formulation presented

in Thorsen et al. (1999). The commuting flow from a zone might then in general be totally

absorbed by the destination alternatives at a specific level in the transportation network, with

zero probabilities of selecting alternatives further out in the network. The functional form fδ(x)

is introduced to avoid that the model assigns zero probabilities of choosing specific destination

alternatives. The choice probabilities will be insignificant for distant alternatives far out in the

transportation network, but no alternatives will be totally ruled out by definition. Even at

very long distances, a positive probability will in general exist that commuting finds place, for

example due to rigidities concerning the hiring and firing procedure, and slow adjustment to

residential relocations.

If we assume that the network consists of N nodes, we carry out the above construction

using A = 1, 2, . . . , N to define a journey-to-work matrix T = {Tij}N
i,j=1. This matrix satisfies
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the condition
n∑

j=1

Tij = Li (20)

It does not, however, necessarily satisfy the condition

n∑
i=1

Tij = Ej (21)

Thorsen et al. (1999) solved this problem using a projection procedure. By this projec-

tion procedure the final journey-to-work matrix is defined by minimizing the squared deviations

between the entries of the temporary and the final journey-to-work matrix, subject to the con-

straints of given row and column sums, and the constraint that all the entries of the resulting

matrix are non-negative. In this paper we propose to replace the projection with a penalty

method to balance the system. The idea is to penalize the weights of the nodes that is allo-

cated too much commuting, and to enhance the weights of the nodes where the structural model

mechanism has allocated too small commuting. Technically we compute the factors

Fj =
Ej∑n

i=1 Tij
, j = 1, 2, . . . , N (22)

and redefine the weights using

W new
ij = Fj ·W old

ij (23)

The process is then repeated until
∑N

j=1(Fi−1)2 is sufficienty small. At this stage all the factors

Fj will be suffiently close to 1, i.e., the balancing condition

n∑
i=1

Tij = Ej (24)

is satisfied.

One problem of the model that is proposed by Thorsen et al. (1999) appears for spatial

systems where one zone (or a few zones) represents substantially more attractive employment

opportunities than the remaining zones. The argument is that the relevant sequence of steps

allocates too much commuting to the central node(s) in the spatial system. The number of

workers that was allocated to the central node(s) tends to exceed the limited number of employ-

ment opportunities here. Hence, the relevant mechanisms fail to take adequately into account

15



the competition between workers with respect to attractive employment opportunities. The

projection procedure in Thorsen et al. (1999) is motivated to fulfill the basic restrictions that∑
i Tij = Ej rather than by theoretical considerations based on plausible mechanisms. In this

paper we have chosen an approach that is based on a more plausible balancing mechanism. The

weights (WA) in the model are adjusted by a factor that is based on a comparison between the

coloumn sums that follow from our row-wise model construction and the coloumn sums that

are known from the data set. This correction factor takes the competition between attractive

employment opportunities into account, and represents a “penalty method” that balances the

system.

4 Theoretical aspects related to the choice between a gravity

model formulation and a model based on a network approach

As for the gravity model and the intervening opportunities model the basic ideas in our network

approach to commuting are straightforward and easy to explain. Still, the specification of the

geography and the balancing procedures result in a more complex model structure. In our

opinion this drawback of increased complexity can be defended by a more appropriate modeling

of relevant spatial structure characteristics, individual choice sets, and the spatial labour market

behaviour.

In the network approach spatial structure characteristics appear explicitly in the basic con-

struction of the model. Gravity based models are not constructed to capture other spatial

structure characteristics than one dimensional distances. Spatial structure effects to some de-

gree enter into the model through the balancing factors. The nature of those factors are diffuse

and aggregate, however, and it is difficult to keep track of how specific changes in spatial struc-

ture influence spatial interaction through different mechanisms. From a behavioural point of

view spatial structure effects should appear through reasonable hypotheses on the destination

choice procedure rather than implicitly through possibly relevant effects related to the balancing

of the system.

To some degree the gravity family of model can be modified to take spatial structure effects

into account. It was clear from Section 2 that the competing destinations model represents one

such modification, where a Hansen accessibility measure is introduced as an additional variable
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in the model formulation. In this paper the measure of generalized distance is preferred as a

measure of spatial structure. From a theoretical point of view we think that the idea of marginal

and deterring distances capture important aspects in the choice of job locations, and the relevant

parameters represent a flexibility that does not apply to the Hansen type of accessibility measure.

According to the discussion and the literature review in Section 2 a misspecification of choice

sets might produce misleading parameter estimates and predictions. Both the competing desti-

nations model and the nested logit model formulation represent methods where the unilevel deci-

sion process is substituted by a hierarchical specification of destination alternatives, introducing

the probability of an alternative being in the true choice set. Still, those model formulations

are not based on a sequential interpretation of the search procedure, through the specification

of a search path. For some kinds of spatial interaction the sharp distinction between choice set

delineation and the choice of a particular destination might seem somewhat artifical. With a

network specification of the geography a decision process comes out natural where individuals

consider different levels in the network at a time. Due to the presence of search costs we think

that this specification of a link-based spatial sequential decision procedure is appealing from a

behavioural point of view. It is also appealing that the delineation of the true choice set follows

from the specification of the search procedure, including a stopping rule.

Summarized, the network approach benefits from the fact that both relevant aspects of the

spatial structure, the delineation of individual choice sets, and a reasonable sequential decision

procedure, follow explicitly from the basic model construction. Hence, we think that the funda-

mental mechanisms underlying the spatial labour market behaviour are more transparent and

realistic in a network approach than for the gravity family of models.

5 The region and the data

As stated in the introduction one important ambition in this paper is to compare results based

on the network modeling framework to results based on more traditional gravity model specifi-

cations. For this purpose we use the same data that was used by Thorsen and Gitlesen (1998),

in an empirical evaluation of alternative specifications of gravity and competing destinations

models. The data represent information of job and residential location in 1989, for workers in

a region in southern parts of western Norway. The region does in some respect come close to
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what Paelinck and Nijkamp (1975, pp. 173) refer to as a polarized region (core region, or nodal

region), “a connex area, in which the internal economic relationships are more intensive than the

relationships with respect to regions outside the area”. This high degree of intra-dependency

within the region is very much due to physical, topographical, transportation barriers, that

lengthen travel distances, and thereby deter economic relationships with other regions. The

region also comes close to what is defined as “an economic area” in Barkley et.al. (1995), with

a relatively self-contained labor market, and a relatively large central place (Haugesund) which

influences on economic activity in a peripheral region. There are seven municipalities in the

region, and each municipality is divided into postal delivery zones. All in all the region is di-

vided into 43 (postal delivery) zones. The corresponding transportation network is illustrated

in Figure 1. The total number of inhabitants in the region was 88000 in 1989. Far the biggest

zone is the regional center Haugesund, with 27250 inhabitants in 1989.

Haugesund

Kopervik

Etne

Stord

Vikedal

Ølen
Sveio

roads

To Stavanger

To Oslo

To Sauda

ferry connections

25 km

To Bergen

Figure 1: The main transportation network in the region in 1989.

This division of the region into zones corresponds to the most detailed level of information

which is available on residential and work location of each individual worker within the region.
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The information is based on the so called AA-register, which belongs to the National Insurance

Administration of Norway, and includes a code for the postal delivery zone of both residence

and work location. A trip distribution matrix was constructed after a correction for some faults

in the data that was provided for us.

The spatial pattern of population and employment in this region is very appropriate for our

problem. Population and employment is concentrated to the zonal centers rather than more

evenly dispersed, and most centers are not too isolated and distant from each other to prevent

a considerable interzonal commuting. The division of zones corresponds to a natural kind of

clustering, where the interzonal distances are in general significantly longer than intrazonal

distances. Distances are measured as traveling time by car, and they refer to the shortest route

from an origin to the specific destinations.

6 Results

The parameters are estimated by the method of maximum likelihood. Maximum likelihood was

found through an irregular simplex iteration sequence (see Nelder and Mead (1965)). Standard

errors were estimated by numerical derivation. In accordance with Thorsen and Gitlesen (1998)

we have used the assumption of quasi independence for cells with no observations.

6.1 Goodness-of-fit and parameter estimates

In this section we will present estimation results based on the following model formulations:

M0= the basic model formulation

M1= a model formulation where the weight attached to the distance deterrence function is the

same on different steps in the decision process (γ = κ)

M2= a model formulation with only one exponential term in the distance deterrence function

(α = 1), estimated by finding the maximum likelihood solution

We report both parameter values and values of some goodness-of-fit indices. According to

Knudsen and Fotheringham (1986) the Standardized Root Mean Square Error (SRMSE) is the

most accurate measure to analyze the performance of two or more models in replicating the same
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data set, or for comparing a model in different spatial systems. SRMSE is defined by SRMSE =√∑
ij (Tij−T̂ij)2

I·J∑
ij

Tij

I·J

, where I denotes the number of rows (origins) in the trip distribution matrix,

while J is the number of columns (destinations). A measure with a more obvious interpretation,

but inappropriate for statistical testing, is the Relative Number of Wrong Predictions, RNWP =∑
i,j(|T̂ij−Tij|)∑

ij
Tij

.

Table 1: Estimations results based on alternative model formulations. M0 and M1 are based on
a distance deterrence function represented by a convex combination of exponentials, while M2
is based on the distance deterrence function D(x) = 1− e−β1x

M0 M1 M2
α̂ 0,3248 0,7212 -

(0,1032) (0,0832) (-)
β̂1 0,0208 0,0146 0,0107

(0,0021) (0,0014) (0,0003)
β̂2 0,0069 0,0023 -

(0,0010) (0,0014) (-)
β̂ 0,0819 0,0833 0,0829

(0,0039) (0,0038) (0,0038)
κ̂ 8,4396 8,6738 8,6714

(0,3458) (0,3708) (0,3569)
γ̂ 9,1867 8,6738 8,6714

(0,2369) (0,3708) (0,3569)
δ̂ 0,4424 0,4475 0,4487

(0,0097) (0,0081) (0,0092)
σ̂ 6,1026 6,7733 6,3658

(0,1696) (0,6270) (0,6981)
RNWP 0,1924 0,1925 0,1918
SRMSE 0,6992 0,7024 0,6793
L −121768, 44 −121770, 03 −121779, 14

Note: Standard errors in parentheses. κ = γ for the model specifications M1 and M2.

Notice first from Table 1 that the estimates of κ and γ resulting from model M0 are of similar

size. Those parameters reflect to what degree the distance deterrence function excludes zones

as relevant destination alternatives at the specific steps in the decision process. κ influences the

tendency that workers choose job opportunities within in the zone where they reside, while γ

affects the tendency to be absorbed in an occupation at a specific neighboring level rather than

searching for jobs further out in the transportation network. According to the results presented

in Table 1 we find no strong empirical support for distinguishing between the effect of distance

deterrence at separate steps in the decision process. In comparing models M0 to model M1 it

follows that the explanatory power is not significantly reduced in the case where κ = γ a priori.

The value of the likelihood ratio test statistic is 2,92, which is lower than the critical value of a

20



chi square distribution with one degree of freedom at the 5% level of significance.

The parameter estimates resulting from specification M0 have reasonable interpretations in

terms of commuting behavior. As was clear in Section 3 the parameters β1, β2, and α operate

through the distance deterrence function, and affect the probability that a worker is absorbed

in an occupation at a specific level in the transportation network. Estimated values of α̂ ≈ 0, 38

and β1 6= β2 mean that the distance deterrence function effectively is estimated to be a convex

combination of exponentials, and that the population consists of non-interacting groups with

different spatial labor market response to variations in distance. The idea is that the parameter

estimates β̂1 and β̂2 can be interpreted as the distance responsiveness of two categories of workers.

According to the estimates resulting from specification M0 the responsiveness with respect to

variations in distance is almost four times higher for category 2 than for category 1.

The estimates of β1, β2, and α are found to be relatively sensitive with respect to model

specification. By comparing the model specifications M0 and M1 to the specification M2 it

follows from the relevant likelihood ratio test that the introduction of the convex combination

adds significantly to the explanatory power. Still, the values of the remaining two goodness-of-fit

measures (SRMSE and RNWP) indicate that explanatory power even is deteriorated through the

introduction of the more complex distance deterrence function. Hence, empirical results based

on our model specification and our data set give no unambiguous support for the hypothesis

that distance deterrence effects are best represented by a convex combination of exponentials.

This hypothesis calls for more empirical testing.

Our network approach distinguishes between two kinds of distance deterrence effects. The

parameters involved through the distance deterrence function D(x) refer to decisions where

relevant job opportunities in the entire transportation network are considered. The parameter β

refers to how variations in distance affect choices between alternatives at the same neighboring

level. The estimates in Table 1 indicate that distance has a considerably stronger impact on the

choice of destination at a specific level in the transportation network than on the general choice

between system-wide alternatives.

Also the parameters κ, δ, and σ reflect the response to network characteristics of the geogra-

phy. The estimated value of κ (and γ in M0) is very high, and corresponds to a case with myopic

spatial behavior, where only nearby destination alternatives affect the tendency that commuting
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flows are absorbed at a specific level in the network. Given this delimitation of the true choice

set the relatively low value of δ̂ means that the absorption tendency is only moderately sensitive

to the value of the neighboring distance deterrence function. In other words, the decision to

choose a job opportunity at a specific level in the transportation network is not very sensitive

to the location of relevant alternatives at subsequent levels. The significantly positive estimate

of σ means that commuting flows between two zones depend not only on distances, but also on

the number of intervening opportunities. The order in the transportation network matters for

how commuting flows are distributed to relevant zones.

6.2 A comparison with results based on a gravity model formulation

Based on the same data set that was presented in Section 5, Thorsen and Gitlesen (1998) tested

several versions of gravity based models for journeys-to-work. The model specification that

was found to be most satisfying in explaining the observations is represented by the structural

equation Equation (4) in Section 2, extended by some terms representing the tendency that

workers reside and work in the same zone:

Tij = AiOiBjDjS
ρ
ij

(
Oα1

i Dα2
j

)δij
e(−βdij+µδij) (25)

Here, δij is the Kronecker delta and µ is a parameter representing a start up cost tp be incurred

if work and residence are not in the same zone. The term Oα1
i Dα2

j represents the possibility that

the frequency of within-zone journeys-to-work depends on local labor market characteristics in

addition to the distance deterrence effect and the start up cost. The introduction of this term is

motivated by a hypothesis that local sectors tend to employ workers who are spatially and pro-

fessionally immobile, for instance due to practical problems of running two-worker households.

A high value of Oi and a low value of Di is expected to result in a relatively high value of Tii.

This hypothesis is supported by the empirical results in Thorsen and Gitlesen (1998); α1 is esti-

mated to be significantly positive, while α2 is found to be significantly negative. The hypothesis

of a positive start up cost is supported by a significantly positive estimate of µ. Commuting

flows are found to be negatively related to the accessibility of a destination relative to other des-

tinations (ρ̂ < 0); competitive forces are found to dominate. Hence, it affects commuting flows

to a destination negatively if this destination is located within a cluster of potential destinations
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rather than in a more isolated location, ceteris paribus.

Thorsen and Gitlesen (1998) introduced two additional parameters through the specification

of the accessibility measure. First, a parameter γ accounts for the possibility that total inflow

Dk is not necessarily the correct value to represent the contribution of destination k. Second,

the weight attached to distance in the accessibility measure is not necessarily the same that the

distance deterrence parameter β appearing in the specification of commuting flows in Equation

(25). The accessibility measure is then defined by Sij =
w∑

k=1
k 6=i,k 6=j

Dγ
ke−σdjk . Both parameters

are found to contribute significantly to the explanatory power of the model, with γ > 0 and

σ̂ ≈ 0, 031 < β̂ ≈ 0, 067.

This version of the competing destinations model has 7 structural parameters. As another

alternative the accessibility measure Sij and the three corresponding parameters (ρ, γ and σ)

can be ignored. In Table 2 those two gravity based models are denoted by:

CDM= the competing destinations model represented by the structural Equation (25)

GM= a gravity model, with no account taken to the accessibility measure Sij

The corresponding values of the goodness-of-fit indices in Table 2 are taken from Thorsen and

Gitlesen (1998). It follows from the table that our network approach results in more satisfying

values of all the indices. Notice in particular that a network model with only 5 structural

parameters performs better than the 7-parameter competing destinations model, CDM.

Table 2: The value of goodness-of-fit indices for alternative spatial interaction models.
M0 M1 M2 CDM GM

RNWP 0,1924 0,1925 0,1918 0,1993 0,2312
SRMSE 0,6992 0,7024 0,6793 0,7409 0,9202
L −121768, 44 −121770, 03 −121779, 14 −121880, 8 −122193, 0
# parameters 8 7 5 7 4

Such findings have to be interpreted with care. In both modeling frameworks it is probably

possible to account for additional effects and alternative parametric specifications that would

increase the explanatory power. The results nevertheless indicate that a network approach is at

least an interesting alternative to standard gravity based approaches. In the choice of approach

such results have to be supplemented by theoretical considerations on how alternative modeling

frameworks capture spatial structure characteristics and relevant aspects of the decision process.
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It is obvious from the results presented in Thorsen and Gitlesen (1998) that spatial structure

characteristics are not adequately represented by the distance deterrence effect and the balancing

factors, nor by the fraction between labor supply and labor demand within each zone. If the

accessibility measure Sij and the three corresponding parameters (ρ, γ and σ) are ignored in

the gravity based model formulation, it follows from Table 2 that goodness-of-fit is considerably

reduced. Still, the question is whether the accessibility measure captures the relevant spatial

structure characteristics adequately, or if a network approach is more appropriate.

The empirically based explanatory power is of course one important factor in the evaluation

of a model. In addition the evaluation has to consider the reliability of the basic mechanisms.

Summarized, the competing destinations model in Thorsen and Gitlesen (1998) is based on

distance deterrence effects, the fraction between labor supply and labor demand within each

zone, and spatial structure characteristics represented by the accessibility measure.

The network approach presented in this paper is based on a hypothesis that commuting

flows result from sequential decisions, where alternative destinations are considered successively,

relative to their location in the transportation network. The parameter estimates determine

the relative importance of the steps in this decision process. Our sequential network approach

means that journeys-to-work are determined by

• distance deterrence effects

• the effects of intervening opportunities

• the location of potential destinations relative to alternatives at subsequent steps in the

transportation network

We also find it to be very important that irrelevant alternatives are excluded from the choice

set (a high value of κ̂). The relative location of relevant destinations is accounted for through

the sequential model specification and the use of generalized measures of distance. Though

our approach is based on a few, well-established, behavioral principles, it captures effects of

complex spatial structure characteristics. We think that this is at least an appealing alternative

to introducing explicitly measures of spatial structure into structural equations in a gravity

modeling framework. In some cases it is far from obvious how such measures relate to basic

behavioral principles.
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7 Concluding remarks

The empirical results presented in this paper do of course not provide evidence for categorical

conclusions on the choice of modeling framework in studies of journeys-to-work. As mentioned in

the previous section both the gravity based framework and the network approach probably could

be extended to account for additional effects and alternative parametric specifications that would

increase the explanatory power. Still, both theoretical considerations and our empirical results

at least introduce the network approach as an appealing alternative to the more established

gravity based approaches. Relevant characteristics of spatial structure can be argued to be

better represented in a network approach than through the introduction of separate measures

in a gravity based approach.

In addition to more empirical testing a natural next step in the evaluation of modeling al-

ternatives is to consider the predictability. How do, for instance, alternative model formulations

predict implications of specific changes in the road transportation network? Are parameter es-

timates autonomous to specific characteristics of spatial structure? Can parameter estimates

based on data from one region be used for making reliable predictions of commuting flows in

other regions? Are parameter estimates reasonably constant across both space and time? The

predictability of a network model specification might be acceptable even if individual param-

eter estimates varies considerable. To some degree the relevant mechanisms are represented

by the simultaneous effect of several parameters, covariation problems might cause variation in

individual estimates. We leave empirical testing of such aspects for future research.

References

[1] Barkley, David L., Mark S. Henry, Shuming Bao and Kerry R. Brooks. 1995. “How Func-

tional are Economic Areas? Tests for Intra-regional Spatial Association Using Spatial Data

Analysis”, Papers in Regional Science, Volume 74, Number 4, 297-316.

[2] Erlander, S. and N.F. Stewart. 1990. “The gravity Model in Transportation Analysis -

Theory and Extensions”, VSP, Utrecht.

[3] Fotheringham, A. Stewart. 1981. “Spatial Structure and Distance-decay Parameters”, An-

nals of the Association of American Geographers, vol. 71, no. 3, 425-436. Fotheringham, A.

25



S. 1983. “A new set of spatial-interaction models: the theory of competing destinations.”

Environment and Planning A, volume 15, 15-36.

[4] Fotheringham, A.S. 1986. “Modelling hierarchical destination choice”, Environment and

Planning A, volume 18, 401 - 418.

[5] Fotheringham, A.S. 1988. “Consumer store choice and choice-set definition”, Marketing

Science, Vol. 7, 299-310.

[6] Gitlesen, J.P. and I. Thorsen. 2000. “A competing destinations approach to modeling com-

muting flows: a theoretical interpretation and an empirical application of the model”,

Environment and Planning A, volume 32, 2057-2074.

[7] Hansen, W.G.1959. “How Accessibility Shapes Land Use”, Journal of the American Insti-

tute of Planners 25, 73-76.

[8] Horner, M.W. and A.T. Murray. 2002. “Excess commuting and the modifiable areal unit”,

Urban Studies, 39, 1, 131-139.

[9] Jörnsten, K., I. Thorsen, and J. Ubøe. 2004. “Replication/prediction problems in the

Journey-to-work”, Environment and Planning A, volume 36, 347-364.

[10] Liaw, K-L, P. Kanaroglou, and P. Moffett. 1986. “Metropolitan outmigration pattern of

Canadian labour force entrants, 1971-1976”, The Canadian Geographer, 30, 229-242.

[11] Liaw, K-L, and J. Ledent. 1987. “Nested logit model and maximum quasi-likelihood

method”, Regional Science and Urban Economics, 17, 67-88.

[12] Manski, C.F. 1977. “The structure of random utility models,” Theory and decision, 8,

229-254.

[13] Nelder, J. A. and R. Mead. 1965. “A Simplex Method for Function Minimization”, Com-

puter Journal, 7, 308-313.

[14] O’Kelly, M.E. and W. Lee. 2005. “Disaggregate journey-to-work data: implications for

excess commuting and jobs-housing balance”, Environment and Planning A, 37, 2233-2252.

26



[15] Paelinck, Jean H. and Peter Nijkamp. 1975. Operational Theory and Method in Regional

Economics. Saxon House, D.C. Heath Limited, Great Britain.

[16] Pellegrini, P.A., A.S. Fotheringham, and Ge Lin. 1995. “An enpirical evaluation of param-

eter sensitivity to choice set definition in shopping destination choice models”, Papers in

Regional Science, 76, 257-284.

[17] Pellegrini, P.A. and A.S. Fotheringham. 1999. “Intermetropolitan migration and hierarchi-

cal destination choice: a disaggregate analysis from the US Public Use Microdata Samples”,

Environment and Planning A, 31, 1093-1118.

[18] Sen, A. and T. Smith. 1995. Gravity Models of Spatial Interaction Behavior, Springer-Verlag

Berlin Heidelberg.

[19] Thill, J.-C. 1992. “Choice set formation for destination choice modelling”, Progress in Hu-

man Geography, 16, 361-382.

[20] Thill, J.-C. and J.L. Horowitz. 1997. “Travel-time constraints on destination-choice sets”,

Geographical Analysis, 29, 108-123.

[21] Thorsen, I, and J.P. Gitlesen. 1998. “Empirical Evaluation of Alternative Model Specifica-

tions to Predict Commuting Flows”, Journal of Regional Science, Vol.38, No.2, 273-292.

[22] Thorsen, I., J. Ubøe, and G. Nævdal. 1999. “A Network Approach to Commuting”, Journal

of Regional Science, Vol. 39, No.1, pp. 73-101.

[23] Ubøe J. 2004. Aggregation of gravity models for journeys-to-work”, Environment and Plan-

ning A, 36, 715-729.

[24] Wilson, A.G. 1970. Entropy in urban and regional modeling, London: Pion.

[25] Wilson, A.G. 1998. “Land-use/Transport Interaction Models. Past and Future”, Journal of

Transport Economics and Policy, 32, 3-26.

27


