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Abstract

Empirical evidence suggests that agricultural futures price movements have fat-
tailed distributions and exhibit sudden and unexpected price jumps. There is
also evidence that the volatility of futures prices is time-dependent. It varies
both as a function of calendar-time (seasonal e®ect) and time to maturity (ma-
turity e®ect). This paper extends Bates (1991) jump-di®usion option pricing
model by including both seasonal and maturity e®ects in the volatility speci¯ca-
tion. An in-sample ¯t to market option prices on wheat futures shows that the
suggested model outperforms previous models considered in the literature. A
numerical example indicates the economic signi¯cance of our results for option
valuation.

Key words: Option pricing, futures, time-dependent volatility, jump-di®usion,
agricultural markets.



1 Introduction

Black (1976) derives a pricing model for European puts and calls on a com-
modity futures contract, assuming that the futures price follows a geometric
Brownian motion (GBM). In the literature on agricultural futures markets, sev-
eral empirical characteristics have been documented, indicating that the GBM
assumption may be too simple. Research has detected leptokurtic returns in
agricultural futures prices (e.g. Hudson et al. (1987) and Hall et al. (1989)),
and the prices often exhibit sudden, unexpected and discontinuous changes.
Price jumps will typically occur due to abrupt changes in supply and demand
conditions, and such discontinuities in the price path of futures prices will a®ect
the prices on options written on futures contracts. Hilliard and Reis (1999)
used transactions data on soybean futures and futures options to test the Black
(1976) di®usion model versus the jump-di®usion option pricing model of Bates
(1991). Their results show that Bates' model performs considerably better than
Black's model in both in-sample and out of sample tests.
A number of studies have demonstrated the presence of a volatility term

structure in agricultural futures prices. Samuelson (1965) claimed that the
volatility of futures price returns increases as time to maturity decreases. He
argued that the most important information was revealed close to maturity of
the contract. For example, the weather a®ecting demand or a temporary supply
disruption will a®ect spot prices and hence short dated futures contracts. In
the long-term, short-term price movements are not expected to persist rather
revert back towards a normal level. This implies that long dated contracts will
be less a®ected by spot price changes and experience lower volatility than short
dated contracts. This maturity e®ect is sometimes referred to as the "Samuel-
son hypothesis". Other authors have argued that the volatility of futures prices
depends on the distribution of underlying state variables. This is sometimes
termed the "state variable hypothesis". For crop commodities one would typ-
ically expect the information °ow to vary during the crop cycle. The most
important information is revealed during the growth and harvest season, hence
seasonality in the volatility of futures prices is expected. Empirical research
has produced mixed evidence on the two e®ects. Milonas (1986) found strong
support for the maturity e®ect after controlling for seasonality. Galloway and
Kolb (1996) concluded that the maturity e®ect is present in markets where
commodities experience seasonal demand and/or supply, but not in commod-
ity markets where the cost-of-carry model works well. Anderson (1985) found
support for the maturity e®ect, but claimed it is secondary to seasonality. An-
derson (1985) also concluded that the pricing of options on futures contracts
should allow for the regular pattern to the volatility of futures. Bessembinder
et al. (1996) have reconciled much of the early evidence on the "Samuelson hy-
pothesis". They have shown formally that, in markets where spot price changes
include a temporary component so that investors expect some portion of a typ-
ical price change to revert in the future, the "Samuelson hypothesis" will hold.
Mean reversion is more likely to occur in agricultural commodity markets than
in markets for precious metals or ¯nancial assets (Bessembinder et al. (1995)),
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so we expect to see maturity e®ects in agricultural commodity markets.
Any regular pattern in the volatility is inconsistent with the underlying

assumptions in Black (1976) and Bates (1991). Choi and Longsta® (1985) ap-
plied the formula of Cox and Ross (1976) for constant elasticity of variance
option pricing in the presence of seasonal volatility. They found this superior
to the model of Black (1976) for pricing options on soybeans futures. Myers
and Hanson (1993) present option-pricing models when time-varying volatility
and excess kurtosis in the underlying futures price are modelled as a GARCH
process. Empirical results suggest that the GARCH option-pricing model out-
performs the standard Black (1976) model. Fackler and Tian (1999) proposed
a simple one-factor spot price model with mean reversion (in the log price) and
seasonal volatility. They show that futures prices consistent with this spot price
model have a volatility term structure exhibiting both seasonality and maturity
e®ects. Their empirical results indicate that both phenomena are present in the
soybean futures and option markets.
There are two basic approaches when it comes to valuation of commodity

contingent claims valuation. The ¯rst concentrates on modelling the stochastic
process of the spot price and other state variables such as the convenience yield
(see for example Brennan and Schwartz (1985), Gibson and Schwartz (1990),
Schwartz (1997) and Hilliard and Reis (1998). The main problem with spot price
based models is that forward (or futures) prices are given endogenously from
the spot price dynamics. As a result, theoretical forward prices will in general
not be consistent with market observed forward prices. As a response to this,
a line of research has focused on modelling the evolution of the whole forward
curve using only a few stochastic factors taking the initial term structure as
given. Examples of this research building on the modelling framework of Heath
et al. (1992), are, among others, Cortazar and Schwartz (1994) (copper) and
Clewlow and Strickland (2000) (crude oil).
In this paper we adopt the futures curve approach, and we assume that

the futures price follows a jump-di®usion process. The di®usion term includes
time-dependent volatility that captures (possibly) both seasonal and maturity
e®ects. We derive a futures option pricing model given our speci¯ed forward
curve dynamics. The model parameters are estimated from option prices written
on the futures contract. Eleven years of futures and option data is collected
from Chicago Board of Trade (CBOT). Parameters of our futures price model
are estimated using non-linear least squares. The futures price dynamics of
several models suggested previously in the literature are nested in our model
speci¯cation, and we can use standard statistical tests to determine whether
jumps and time-dependent volatility are present in the data. In accordance
with the evidence presented in Fackler and Tian (1999), we ¯nd that both the
maturity- and the seasonal e®ect is present in the wheat futures market. The
estimated jump intensity is signi¯cantly di®erent from zero. This result is in line
with results found in the soybean futures option market reported in Hilliard and
Reis (1999). The simpler models suggested previously are rejected in favour of
our proposed model with jumps, seasonality- and maturity e®ects. A numerical
example illustrates the economic signi¯cance of our results.
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Te rest of this paper is organised as follows: In the next section we present
the futures price dynamics and derive a futures option pricing formula. Section
3 describes the data. In section 4 the estimation procedure is described, and
the results are presented in section 5. Section 6 concludes.

2 Model description

We assume that there exists an idealised futures market (liquid, frictionless, no
taxes, limitless short selling allowed etc.). Let the forward market be represented
by a continuous forward price function, where F (t; T ) denotes the forward price
at date t for delivery of the commodity at time T . Throughout the paper
we assume constant risk free interest rate, so that futures prices and forward
prices with common maturity are identical (see Cox et al. (1981)). The futures
price is assumed to be governed by the following dynamics under the equivalent
martingale measure (EMM):

dF (t; T )

F (t; T )
= ¡¸·dt+ ¾(t; T )dB(t) + ·dq; F (0; T ) 8 T (1)

where B is standard Brownian motion under the EMM and · is the random
percentage jump conditional upon a Poisson distributed event, q, occurring and
· is de¯ned as the expected value of the jump size if it in fact occurs. The
jump intensity is given by ¸. The counting process q is independent of ·, with
Prob (dq = 1) = ¸dt and Prob (dq = 0) = 1 ¡ ¸dt. Since the observed futures
prices at time 0, F (0; T ), are given as initial conditions, our model is consistent
with the observed futures curve by construction.
By standard no-arbitrage arguments we know that since it costs nothing to

enter a futures contract, the expected return on holding the contract should be
zero under the EMM. We can easily check that this is the case in our model:
The Brownian motion has zero expectation. The expectation of ·dq during a

time increment dt is E [·dq] = E [·]E [dq] = ·¸dt, thus E
h
dF (t;T¤)
F (t;T¤)

i
= 0. We

now need to specify the jump distribution and the time-dependent volatility.1

The inclusion of jumps in a model free of arbitrage raises some issues of market
incompleteness. We give a brief discussion of this in the following subsection.
We then describe a time-dependence volatility function that is able to capture
both seasonal and maturity e®ects, and ¯nally we provide analytical valuation
expression for options written on futures contracts in our model.

1We present our modelling framework in a non-technical manner. Merton (1976) ¯rst
introduced the jump-di®usion model of asset prices. The modern mathematical framework
for modelling discontinuities in asset price is by the use of so called marked point processes,
in which the Poisson distributed jump arrival process considered in this paper is one of many
possible candidates. See Veredas (2000) for a nice, readable introduction on marked point
processes. A very nice exposition of forward, futures and option pricing in a very general
framework is given in BjÄork and Land¶en (2002). Since the focus of this paper is the empirical
properties of a jump-di®usion model, we have omitted the technicalities.
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2.1 Jump distribution and market incompleteness

We assume that ln (1 + ·) is a normally distributed random variable with mean¡
° ¡ 1

2º
2
¢
and variance º2. Consequently, the expected percentage jump size

is E [·] ´ · = e° ¡ 1. These distributional assumptions are equal to those
stated in Merton (1976)2 and Bates (1991), but other distributions might be
considered.3 Note that the jump parameters are constants, in particular they
are independent of time to maturity. This means that if a jump occurs, a
parallel shift in the term structure of futures prices will emerge. If we observe
futures contracts with time to maturity spanning several years into the future,
the assumption that the returns on all contracts jump with equal amounts may
seem inadequate. If, for example, exceptional bad weather (such as a hurricane)
partly destroys a harvest, then futures prices are likely to jump due to a negative
shift of supply. But long term futures contracts will depend on future harvests,
and so intuition suggest that long term contracts are less jumpy, compared to
short term contracts. This behaviour can easily be incorporated in our model by
imposing time dependence on the jump amplitude. Such an extension is ignored
here since the maturity of the futures contracts analysed in the empirical part
of this paper never exceed one year. Hence, in our data set, imposing parallel
jumps may be a satisfactory assumption.
Merton (1976) assumed that jumps are symmetric (zero mean) and non-

systematic. In a stock market model, this means that jumps are of no concern
to an investor with a well-diversi¯ed portfolio, since jumps on average cancel
out. Given such assumptions of ¯rm speci¯c jump risk, parameters concerning
the jump part are equal under both the real world probability measure and the
EMM. The assumption of non-systematic jump risk may be inappropriate in
many settings, and this is also the case in commodity futures markets. If, for
example, bad weather results in a poor harvest, futures prices may jump. How-
ever, the occurrence of such an event is likely to move all the commodity futures
prices in the same direction, and so diversifying the jump risk within this market
is impossible. In other words, jump risk is systematic. It is well known that the
presence of systematic jump risk makes it incomplete in the Harrison and Pliska
(1981) sense. This means that it is not possible to set up a dynamic hedging
strategy in the underlying asset and a risk free asset that replicates a contingent
claim due to the possibility of abrupt jumps in the underlying asset price. This
essentially means that under the absence of arbitrage opportunities, there are
many (in¯nite) equivalent martingale measures. Furthermore, without explicit
assumptions on preferences and technologies, each martingale measure de¯nes
an admissible price of a contingent claim (see Harrison and Kreps (1979)).
Bates (1991) derives a unique martingale measure in a jump-di®usion setting

2Merton (1976) assumed zero mean jump size, hence ° = 0.
3Other jump distributions are considered in the ¯nancial literature. Du±e et al. (2000)

assume that abrupt changes in volatility are caused by Pareto distributed jumps, and Kou
(2000) investigates option pricing in the presence of double-exponentially distributed price
jumps. The literature on jumps in ¯nancial agricultural prices, as far as we know, concentrates
on the lognormal jump model. Investigating other jump distribution in agricultural markets
is left for further research.
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by considering a speci¯c equilibrium model. He assumes that optimally invested
wealth follows a jump-di®usion, and the representative consumer is equipped
with time-separable power utility. Bates (1991) shows that both the di®usion
term and the variance of the jumps in (1) are the same under both the EMM
and the real world measures. But both the jump intensity and mean jump size
is, in general, di®erent under the two measures. Bates (1991) interprets ¸ as
the cost per unit time of jump insurance. If the mean jump size is zero, and the
representative investor is risk averse, he ¯nds that ¸ > ¸R, where ¸R is the jump
intensity under the real world probability measure. Mathematically this means
that the probability of a jump occurring is greater under the risk neutral measure
than under the objective measure. The economic intuition is that risk aversion
among market participants increases the price of jump insurance. Bates (1991)
also ¯nds that the mean jump size will typically be downward biased under
the equivalent martingale measure. The model suggested by Merton (1976) can
be seen as a special case of Bates (1991) with a risk neutral agent and zero
mean jump size. In this special case all jump parameters are equal under both
probability measures. In the empirical part of this paper, we extract jump
parameters from option prices. From the discussion above it is clear that these
parameters are not equal to the parameters of the actual jump process governing
futures prices under the objective measure. This must be kept in mind, when
evaluating the parameters implicit in option prices.

2.2 Time-dependent volatility

We now proceed to specify the volatility dynamics of our model, but ¯rst we
discuss some spot price models (without jumps) suggested previously in the lit-
erature. Consider the model proposed by Fackler and Tian (1999) for soybeans.
They model the spot price as

dS(t)

S(t)
= ± (¹(t)¡ lnS(t)) dt+ ¾(t)dB(t) (2)

where ± refers to the speed of adjustment and ¹ and ¾ are seasonal functions
of time. They show that stochastic di®ererential equation governing the futures
price in this model can be written as

dF (t; T )

F (t; T )
= ¾(t)e¡±(T¡t)dB(t) (3)

where the initial futures price F (0; T ) is a function of the spot price at time 0
and the parameters of the model.4 We see from (3) that the time-dependent
volatility of the futures price can be decomposed into two distinct parts: ¾(t)
governs the changing volatility over the course of the year, and e¡±(T¡t) governs
the maturity e®ect. If ± is high (strong mean reversion), the price movements for
a futures contract with long time to maturity will be substantially smaller than

4Here we assume that the model is set up under the EMM. If (2) is speci¯ed under the
real world measure, the initial futures price will also depend on the market price of risk.
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the price movements for a contract with short time to maturity. The one-factor
model in Schwartz (1997) appears when ¹ and ¾ are constants.
In some markets volatility raises sharply as contracts approaches maturity.

This can be achieved by a high value of ± in (3). But this again implies that the
futures contracts with long time to maturity gets very low, and a pure negative
exponential maturity e®ect may have a hard time capturing the volatility of
both short and long term contracts. For this reason we propose the following
volatility function for the di®usion term in (1):5

¾(t; T ) = ¾(t)
³
(1¡ e¾) e¡±(T¡t) + e¾´ (4)

with the seasonal part as a truncated Fourier series

¾(t) = ¾ +
JX
j=1

¡
®j sin (2¼jt)¡ ¯j cos (2¼jt)

¢
(5)

The parameters are restricted in the following way: ®j and ¯j are real constants,
¾; ± ¸ 0 and 0 · e¾ · 1. From (4) we see that as the contract approaches
maturity, T ! t, the volatility function collapses to ¾(t; T ) = ¾(t). Since the
spot price in this model is given implicitly as S(t) = F (t; t), this means that ¾(t)
governs the implied spot price volatility in our futures price model. The seasonal
speci¯cation given with the truncated Fourier series has been applied previously
in e.g. Fackler and Tian (1999). We can also investigate the dynamic properties
of contracts with long time to maturity. In the limit, as T approaches in¯nity,
we note that ¾ (t; T ) = ¾(t)e¾. Thus in our model speci¯cation the volatility
of a futures contract is bounded within [¾(t)e¾; ¾(t)], where ¾(t)e¾ · ¾(t) since
0 · e¾ · 1. If, for example, e¾ = 0:5, instantaneous volatility of long term
contracts is half the volatility of the spot price. If the maturity e®ect is strong
(high value of ±), the instantaneous volatility of the futures contract quickly
approaches ¾(t)e¾ as time to maturity increases.
In addition to the added °exibility of our volatility function, this particu-

lar speci¯cation nests the futures price volatility dynamics of several models
suggested previously in the commodity contingent claims literature.6 The pa-
rameter restrictions corresponding to earlier models are listed in table 1. In the
empirical part of this paper we will estimate these constrained models along
with our new unconstrained model.

5This particular form has been suggested by Strickland (2002) for modelling the forward
curve in the energy market.

6Note that the models of Schwartz (1997) and Fackler and Tian (1999) are spot based
models. This means that the spot price dynamics are given exogenously and, using arbitrage
arguments, futures prices can be endogenously calculated from parameters governing spot
price dynamics. Endogenously determined futures prices typically do not match (exactly)
real world prices observed in the market place. Since we use futures prices as inputs in our
option valuation model, we need a futures price based model to ensure consistency between
the theoretical model and the data in the empirical part of this study. Hence, when we refer to
the models as nested, we are actually refering to the nesting of futures price dynamics implied
by the previously suggested spot based models.
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Previous models Parameter constraints
Black (1976) ¸ = ± = ®j = ¯j = 0; e¾ = 1
Schwartz (1997) ¸ = ®j = ¯j = e¾ = 0
Fackler and Tian (1999) ¸ = e¾ = 0
Bates (1991) ± = ®j = ¯j = 0; e¾ = 1

Table 1: Volatility dynamics of previously suggested models. The futures price

volatility of previously suggested models in the literature can be recaptured in our model by con-

straining the parameters in (1), (4) and (5). The models are given in column one, and the corre-

sponding parameter constraints are given in column two.

2.3 Valuation of futures options

Consider a European call option, C, with maturity T ¤ and strike K written on
a futures contract with maturity T , where T ¤ · T . The value is given by

C (F (t; T ) ; t; T ¤) = e¡r(T
¤¡t)

1X
n=0

P (n)
³
F (t; T ) eb(n)(T

¤¡t)©(d1n)¡K©(d2n)
´

(6)
where

P (n) =
e¡¸(T

¤¡t) (¸(T ¤ ¡ t))n
n!

b(n) = ¡¸·+ n°

T ¤ ¡ t

d1n =
ln
³
F (t;T )
K

´
+ 1

2

¡
!2 + nº2

¢
+ b(n)(T ¤ ¡ t)

p
!2 + nº2

d2n = d1n ¡
p
!2 + nº2

! =

sZ T¤

t

¾ (s; T )2 ds

and ©(²) denotes the cumulative standard normal distribution. This formula is
a slight generalisation of the formula given in Bates (1991) and Merton (1976).
A proof of the formula in a more general framework is given in BjÄork and Land¶en
(2002). The formula can be understood intuitively as a sum of Black-Scholes
(BS) type formulas with variance !2 + nº2 and a risk free rate b(n)(T ¤ ¡ t),
with each BS formula weighted by the probability of n jumps occurring in the
period [t; T ¤]. Since there is no upper limit to the number of possible jumps
occurring in this period, we are in fact summing over in¯nite BS formulas. In
practise this is not a big problem, since, for reasonable jump parameters, very
accurate prices can be obtained when truncating the in¯nite sum by setting

7



n rather low.7 Put options can be calculated explicitly, or they can be found
via the futures option put-call parity. In the empirical part of this paper, we
use data on American futures options, and consequently, some modi¯cation of
the above European option pricing model is required. Bates (1991) derives an
approximation for an American option in the jump-di®usion framework. His
approximation generalises the formula of Barone-Adesi and Whaley (1987) to a
jump-di®usion model of the underlying asset. We use the same approximation
as described in Bates (1991), replacing the constant volatility in his setting with
the time-dependent volatility given by ! above. This model is called New in
the empirical part of the paper.

3 Data description

We use price quotes on wheat futures and wheat futures options collected from
CBOT to estimate the parameters of the futures price dynamics. Weekly data
were obtained from January 1989 until December 1999. The total sample con-
sists of ¯fty-¯ve futures contracts. The futures contracts matures in March,
May, July, September, and December. Each contract starts trading one year
prior to maturity. At each point in time there are ¯ve contracts traded, and
maximum time to maturity for a single contract is one year. The options written
on the contracts can be exercised prior to maturity, hence they are of American
type. The last trading day for the options is the ¯rst Friday preceding the ¯rst
notice day for the underlying wheat futures contract. The expiration day of a
wheat futures option is on the ¯rst Saturday following the last day of trading.
We applied several exclusion ¯lters to construct the data sample. First,

we did not use prices prior to 1989 since market prices then were likely to be
a®ected by government programs in the United States (price °oor of market
prices and government-held stocks). Second, only trades on Wednesdays were
considered, yielding a panel data set with weekly frequency. Weekly sampling is
simply a matter of convenience. Daily sampling would place extreme demands
on computer memory and time. The reason for choosing Wednesday is that
this is the day of the week least a®ected by holidays. Third, only settlement
(closing) prices were considered. Fourth, the last six trading days of each op-
tion contract were removed to avoid the expiration related price e®ects (these
contracts may induce liquidity related biases). Fifth, to mitigate the impact of
price discreteness on option valuation, price quotes lower than 2.5 cents/bu were
deleted. Sixth, assuming that there is no arbitrage in this market, option prices
lower or equal to their intrinsic values were removed. Three-month Treasury
bill yields were used as a proxy for the risk free discount rate. The exogenous
variables for each option in our data set are strike price, K, futures spot price,

7In our empirical investigation we set out with n ¼ ¸Te° . Then n is extended until
additional terms do not increase accuracy. Following Bates (1991) we set n = 1000 at the
maximum. There is a way of avoiding the truncation problem altogether. Zhu (1999) computes
the characteristic function of the jump-di®usion and by inverting this using Fourier inversion
technique, he propose an alternative formula without summation. This method could easily
be applied in our model as well, but this is not done here.
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F , today's date, t, the maturity date of the option contract, T ¤, the maturity
date of the futures contract, T , the instantaneous risk-free interest rate, r, and
observed settlement option market price, C.

4 Estimation method

Besides the exogenous variables obtained from the data set, the option pricing
formula requires some parameters as inputs. In the full model the maturity-
and seasonal parameters

¡
¾, e¾, ®j , ¯j , and ±¢ and the jump related parameters

(°, º, and ¸) must be estimated. There are two main approaches to estimate
these parameters; from time series analysis of the underlying asset price, or by
inferring them from option prices conditional upon postulated models (Bates
(1995)). There are two main drawbacks of the former approach. First, very
long time-series are necessary to correctly estimate jump parameters, at least if
prices jump rarely. Second, parameters obtained from this procedure correspond
to the actual distribution, and hence the parameters cannot be used in an option
pricing formula, since the parameters needed for option pricing are given under
the EMM. The latter approach is chosen here, and it has been used previously
in e.g. Bates (1991, 1996 and 2000), Bakshi et al. (1997) and Hilliard and
Reis (1999). Implicit parameter estimation is based on the fact that options,
if rationally priced, contain information of the future probability distribution
under the EMM.
We infer model-speci¯c parameters from weekly option prices over an eleven

years long time period. In previous studies, implicit parameters are inferred
from option prices during very short time intervals, often daily (e.g., Bates (1991,
1996) and Hilliard and Reis (1999)). However, this method can be applied to
data spanning any interval that has su±cient number of trades (Hilliard and
Reis (1999)). Daily calibrations can fail to pick up longer horizon parameter
instabilities (Bates (2000)). In this study we need the data to span several
years in order to reveal any predictable seasonal patterns in volatility. American
option prices, Cis, are assumed to consist of model prices plus a random additive
disturbance term:

Cis = C

0@Fis;Ki; t; T; T ¤; r; °; º; ¸; ¾; e¾; JX
j=1

®j ;
JX
j=1

¯j ; ±

1A+ "is (7)

The subscript i represents an index of transactions (calls of assorted strike prices
and maturities), and the subscript s represent an index of weekly observations
in the sample. Equation (7) can be estimated using non-linear regression. The
unknown parameters °, º, ¸, ¾, e¾, ®i, ¯i, ± are estimated by minimising the
sum of squared errors (SSE) for all options in the sample given by

SSE =
SX
s=1

IX
i=1

[Cis ¡C(²)]2 =
SX
s=1

IX
i=1

["is]
2 (8)
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Many alternative criteria could be used to evaluate performance of option
pricing models. The overall sum of squared errors (SSE) is used as a broad
summary measure to determine how well each alternative option pricing model
¯ts actual market prices. Assuming normality of the error term, nested models
can be tested using F -tests. We will perform such tests in the next section.

5 Results

The following models were estimated (abbreviations used later in the paper are
in parentheses). The di®usion model of Black (1976) with constant volatility
(Black76 ), the one-factor model of Schwartz (1997) (Schwartz97 ), the jump-
di®usion model of Bates (1991) (Bates91 ), the model suggested by Fackler and
Tian (1999) with a seasonal and maturity dependent di®usion term (Fackler99 )
and our unrestricted model with both time dependence and jumps (New). Ta-
ble 2 shows implicit parameter estimates for wheat futures call options. In the
seasonal speci¯cation for both Fackler99 and New we have set J = 3. Exper-
imenting with higher order lags resulted in only marginally better ¯t, and the
results are not reported here. As a result of forcing eleven years of data into one
option pricing model with constant parameters, the SSE is quite large. From
table 2 we also see indication that both time-dependent volatility and jumps are
important. The unrestricted model (New) produces the lowest SSE for all con-
tracts. This is not surprising, since more parameters necessarily means better
¯t.
We have formally tested the models against each other using F -statistics.

The F -statistic is computed as F [G;N ¡ L] = (SSER¡SSEU )=G
SSEU=(N¡L) where SSEU

and SSER are sum of squared errors for the unrestricted and restricted models
respectively, G is the number of restrictions, N is number of observations in
the sample, and L is number of parameters in the unrestricted model. The test
statistic is asymptotically F -distributed withG and (N¡L) degrees of freedom.8
The appropriate restrictions for each model are in table 1. The results, given in
table 3, shows that we can reject the null hypothesis of a pure lognormal model
of Black76 versus both the volatility time-dependent models of Schwartz97 and
Fackler99 and the jump-di®usion model of Bates91. This last observation is in
accordance with the conclusion in Hilliard and Reis (1999) - Bates91 performs
better than Black76. We also ¯nd that all these models are rejected in favour of
the model New with both jumps and time-dependent volatility. In the following
sub-sections we investigate these parameter estimates further.

5.1 A closer look at the time-dependent volatility

Recall the volatility dynamics in (1), (4) and (5). We have plotted the volatility
time-dependence in ¯gure 1, using the estimated parameters for the model New

8See for example chapter 5 in Davidson and MacKinnon (1993) for a description of di®erent
tests available in non-linear least squares regression. Since the test statistics is F¡distributed
only asymptotically, they term it a pseudo-F test.
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Parms. Black76 Schwartz97 Fackler99 Bates91 New
¾ 0.22 0.25 0.24 0.17 0.24

(3247) (3380) (2027) (758) (242)e¾ 1 1 0.49
(156)

° 0.05 0.09
(244) (975)

º 0.19 0.44
(1039) (1627)

¸ 0.60 0.16
(531) (267)

± 0.38 0.26 3.44
(2931) (205) (325)

®1 -0.001 -0.01
(-11.2) (-12.7)

¯1 -0.04 -0.05
(-211) (-40.6)

®2 0.001 0.02
(1.0) (6.4)

¯2 0.01 0.005
(9.3) (2.9)

®3 0.01 0.02
(8.3) (7.7)

¯3 -0.001 -0.005
(-0.6) (-1.5)

SSE 200570 195100 166930 188530 152990

Table 2: Implicit parameter estimates for various models. The table shows parameter
estimates from non-linear least squares regressions on wheat futures call option prices. Estimations

are made separately on weekly observations of all contracts in the period 1989-1999 using a toal

of 18 831 observations. Five models are estimated: Black76, Schwartz97, Bates91, Fackler99 and

New. Three terms are used in the seasonal volatility speci¯cation of two latter models. The four

former models are constrained versions of the latter (see table (1) for parameter constraints for each

model.) Sum of squared errors (SSE) are reported for each model, and t-values are in parentheses.
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Testing H0 versus H1 F-value F-critical Decision
Black76 vs. Schwartz97 527.9 254.3 Reject H0
Black76 vs. Fackler99 541.9 3.2 Reject H0
Black76 vs. Bates91 400.8 8.5 Reject H0
Schwartz97 vs. New 518.0 2.5 Reject H0
Fackler99 vs. New 428.7 5.6 Reject H0
Bates91 vs. New 546.5 2.9 Reject H0

Table 3: Model speci¯cation tests. The table reports the results from several hypothe-

sis tests. The null hypothesis of constant volatility (H0 =Black76) is tested separately against

time-dependent volatility (H1 =Schwartz97 and H1 =Fackler99) and the presence of jumps

(H1 =Bates91). The volatility time-dependent models (H1 =Schwartz97 and H1 =Fackler99)

and the pure jump model (H0 =Bates) are tested against the full model (H1 =New). The critical

value of the F-tests are given for a con¯dence level of 95 per cent.

in table 2. For each contract the volatility dynamics spans one year and ends
as the futures contract expires. In panel A we have plotted the overall (both
maturity- and seasonal e®ect) instantaneous volatility of the March, May, July,
September and December contracts. Both seasonal and maturity e®ect is clearly
present, the latter e®ect is most clearly observed in the May, July and September
contracts.
To study each e®ect separately, we have decomposed the overall volatility

into the maturity e®ect in panel B and the seasonal e®ect in panel C. From
panel B we see a strong maturity e®ect, and as the contract approaches maturity
the volatility of the futures approaches the implied spot price volatility. And,
having "turned o®" the seasonal variation, the implied spot price volatility
equals the yearly average of ¾ = 0:24. The dashed line represents the long run
volatility (¾e¾) meaning the volatility of futures contracts with in¯nite time to
maturity. We note that, due to the strong maturity e®ect, volatility of futures
contract is essentially equal to the long run volatility when there is more than
one year to maturity. In panel C we have "turned o®" the maturity e®ect
(setting T = t), to concentrate on the seasonal volatility of the implied spot price
volatility. We see that volatility is high during summer and autumn months.
This supports previous ¯ndings that the most important information is revealed
during growing and harvest season (e.g. Choi and Longsta® (1985)). During
winter the implied spot price volatility is considerably lower. The dashed line
in panel C represents the the average implied spot price volatility ¾.

5.2 A closer look at the jump parameters

Futures prices characterised solely by deterministic time-dependent volatility are
lognormally distributed. As a result the implied volatility from option prices will
be constant across strike prices.9 However, if jumps are likely to occur, implied

9The fact that we are dealing with American options, means that implied volatility is not
necessarily constant across strikes. However, prices on American and European futures option
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Figure 1: Time-dependent volatility of wheat futures contracts decomposed
into maturity-and seasonality e®ects. Panel A plots the overall instantaneous volatility

of the March, May, July, September and December contracts. The volatility function is given by

(¾(t; T ) = ¾(t)((1¡ e¾) e¡±(T¡t) + e¾) and the parameters are those given in table 2. Panel
B plots the maturity e®ect with seasonality "shut o®" (setting ¾(t) =¾). The dashed line represent
the long run volatility lim(¾(t; T ))T!1= ¾e¾. Panel C plots the implied spot price volatility

given by ¾(t) =¾+
P3
j=1

³
®j sin (2¼jt)¡ ¯j cos (2¼jt)

´
. The dashed line is the average

implied spot price volatility volatility ¾:
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volatility will not be constant across strike prices. An illustration of the e®ect
the jump parameters have on implied volatility follows. Suppose that our model
speci¯cation is correct; that both the time-dependent volatility and jumps are
present in futures prices, and hence our option pricing formula calculates the
true option price. First, ¯x the current date to October 1, and assume that, at
this date, the May contract is trading at 300, hence F (t; T ) = 300, t = 9=12
and T ¡ t = 7=12 years. Second, assume that that the volatility dynamics
are given by the estimated parameters from the New model in table 2 and
that r = 0:05. Now consider American call options with 2,4 and 6 months to
maturity (T ¤¡t = 2=12, 4=12 and 6=12), and 5 di®erent strike prices (K = 240;
270; 300; 330 and 360) at each maturity. The resulting implied volatility curves
are plotted in ¯gure 2.
Note that for at-the-money (ATM) options (K = 300), implied volatility in-

crease in time to maturity. This is mainly due to time-dependent volatility. Re-
call from panel A in ¯gure 1 the volatility time-dependence for the May contract.
The upward slope of the instantaneous volatility causes the average volatility
for a short term call options to be lower than for an option with maturity closer
to the maturity of the futures contract. We note that implied volatility is not
constant across strike prices. This is known as the volatility "smile", and it is
also evident that this "smile" gets more pronounced as option expiration gets
closer. As we get close to option maturity, far out-of-the-money (OTM) calls
in a lognormal model are worth relatively little, since an extreme upward price
movement is very unlikely. In a jump-di®usion model, these options may end up
in-the-money (ITM) if a positive jump occurs, and consequently, these options
will be relatively more valuable in a jump-di®usion than in a lognormal world.
ITM call options will be relatively more valuable in a jump di®usion model
compared to a lognormal model, since a positive jump may push the option
deeper into the money. When there is long time to option maturity, the jump
component plays a less prominent part, and the smile °attens. This is due to
the fact that for OTM options say, the di®usion term alone will be able to move
the futures price so that the option will end up ITM, and the di®erence between
the two models decreases.10

5.3 A numerical example

Finally, we provide a numerical example showing the potential economic signi¯-
cance of our ¯ndings. Suppose that the model suggested in this article is in fact
correct. What kind of mispricing will take place if we use the model of Black
(1976), Schwartz (1997), Fackler and Tian (1999) or Bates (1991) previously
suggested in the literature? We consider the same May contract described in
the previous sub-section. For each of the models Black76, Schwartz97, Fack-

di®er very little (Bates (2000)), hence implied volatility from American futures options are
close to horizontal in a lognormal model.
10Jump e®ects will in general be more visible in terms of implied volatility as time to

expiration shortens (see Das and Sundaram (1999) for an investigation of term structure
e®ects in a jump-di®usion model).
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Figure 2: Implied volatility smiles from wheat call options. Parameters for the the
model New reported in table 2 are used in the computations. The futures price is set to 300 for

a futures contract with maturity 7 months from now ((T ¡ t = 7=12)), and the risk free rate is

5%. Option prices are computed using the formula in (6) adjusting for the early exercise feature

as in Bates (1991) for di®erent strikes (K = 240; 270; 300; 330 and 260) and option maturities

(T¤ ¡ t = 2=12; 4=12 and 6=12). To back out implied volatilities we use the Black (1976) model

adjusted for early exercise premium of American options as described in Barone-Adesi and Whaley

(1987).
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%-Di®erences in option prices
Option Black76 Schwartz97 Fackler99 Bates91
maturities Strike vs. New vs. New vs. New vs. New

260 0.7 0.4 0.1 0.3
T ¤ ¡ t = 2=12 300 22.1 14.2 5.9 21.1

340 -69.4 -77.0 -83.8 -24.0

260 1.8 1.3 0.3 1.1
T ¤ ¡ t = 4=12 300 7.1 3.6 -5.0 10.9

340 -49.8 -54.5 -65.3 -21.5

260 -0.8 -0.8 -0.7 -1.1
T ¤ ¡ t = 6=12 300 -10.5 -10.5 -10.2 -5.7

340 -46.0 -45.9 -45.5 -26.0

Table 4: Comparison of American wheat futures option pricing models. The

table reports percentage di®erences between the model New, and the models Black76, Schwartz97,

Fackler99 and Bates91. Option prices are calculated using (6) and adjusting for the early exercise

premium of American options as in Bates (1991). For each model, the parameter estimates reported

in table 2 are used in the computations. Additional inputs are: F (t; T ) = 300, t = 9=12, T¡t = 7=12

and r = 0:05. Prices are computed for strikes K = 260; 300; and 340 and maturities T¤ ¡ t =

2=12; 4=12 and 6=12.

ler99, Bates91 and New we pick parameters from table 2. We then compute
option prices for American calls with the same parameters as in the example
above for di®erent strikes and maturities. The results are given in table 4.
We report the percentage di®erences between each of the previously suggested
models and our proposed model.
Prices for ITM options (K = 260) are more or less the same for all three

models for all maturities. This is due to the fact that the intrinsic value dom-
inates the value of an option when deep ITM, and hence most models would
produce quite similar results. Notice from panel A in ¯gure 1 the volatility
time-dependence for the May contract. The instantaneous volatility for the
May contract from November to April shows a very strong maturity e®ect. The
seasonality e®ect is less pronounced. The fact that the volatility of futures con-
tract increases as maturity approaches, means that using an average value for
the volatility will produce too high option prices for short maturity options and
too low prices for long maturity options. We observe this pattern for at-the-
money (ATM) options of the Black76 and Bates91 models. For the shortest
option maturity (T ¤ = 2=12) the prices of Black76 and Bates91 ATM options
(K = 300) are just over 20% higher than New. This number is down to about
7¡ 11% for the next maturity (T ¤ = 4=12). At the maturity closest to the ma-
turity of the futures contract (T ¤ = 6=12), we see that ATM option prices from
Black76 and Bates91 produce prices 6¡10% lower than New. The evidence for
ATM options in the Schwartz97 and Fackler99 models is somehow mixed. The
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overpricing for short end options are less dramatic than Black76 and Bates91,
and for the middle maturity Schwartz97 produce a higher price and Fackler99 a
lower price than New. This discrepancy is due to the seasonality adjustment in
Fackler99 uncounted for in Schwartz97. Both models underprice ATM options
for the long maturity. The explanation for this can be found in table 2. In Fack-
ler99 and Schwartz97 the parameter ± governs the maturity e®ect of volatility,
whereas in the model New both ± and e¾ governs this e®ect. We observe that the
estimated parameter for ± in model New is much higher than the corresponding
estimates in Fackler99 and Schwartz97. In these models the estimated ±0s seem
to be a compromise between short- and long term volatility, producing a less
pronounced maturity e®ect. This also explains the overpricing of short term op-
tions. Finally, all alternative models produce signi¯cantly lower price for OTM
calls (K = 340) than New for all maturities. For the Black76, Schwartz97 and
Fackler99 models, this fact is not surprising since OTM calls are more valuable
when prices are allowed to jump. The di®erence between Bates91 and New
deserves some remarks. We see from table 2 that the parameters governing the
jump dynamics estimated for Bates91 and New are very di®erent. This is be-
cause, as the volatility time-dependence is restricted to be °at in Bates91, the
jump parameters will in°uence both the volatility across strikes - the "smile"
- and the overall level of volatility. In other words, if option prices with dif-
ferent maturities are generated by the model of Bates91 and these prices are
turned into implied volatility by the model of Black76, we would observe implied
volatility curves with increasing level of overall volatility as option maturities
increase. For this reason, parameter estimates in a pure jump model is likely to
be biased of the correct speci¯ed model exhibits time-dependent volatility.11 In
the model New, the parameters governing the maturity- and seasonality e®ects
can take care of the price level, and the jump parameters can \concentrate"
on "smile" e®ects. Hence the parameters in Bates91, through the estimation
method, emerge as a compromise of the two e®ects.
The results reported here might be important in other valuation contexts.

For example, Hilliard and Reis (1999) argue that average based Asian options are
popular in commodity over-the-counter (OTC) markets. They show that Asian
option prices in the Black76 versus Bates91 di®er even more than is the case
for European/American options prices. The very pronounced volatility time-
dependence suggests that Asian options are more expensive when the averaging
period is in the summer than is the case the rest of the year. Also, if the futures
contract itself is the underlying asset, an averaging period close to maturity will
typically be more volatile and resulting in higher option prices than the case
would be if the average period occurs with long time to maturity of the futures

11This fact may partly explain the observation reported in Hilliard and Reis (1999) that
parameter values are not stable over time. In their estimation procedure, they calibrate the
model each day. Using their procedure, Bates91 will be able to replicate New as long as we are
only considering options with one maturity date. When either the option or futures maturity
change, the parameters in Bates91 must change to capture the volatility time-dependence.
Hence we would expect unstable parameters in the analysis of Hilliard and Reis (1999) if, in
fact, there exist volatility time-dependence in the underlying futures price dynamics.
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contract.

6 Conclusions

In this paper we develop an option pricing model that incorporates several
stylised facts reported in the literature on commodity futures price dynamics.
The volatility is allowed to depend on both calendar-time and time to maturity.
Furthermore, futures prices may exhibit sudden, discontinuous jumps. We esti-
mate the parameters of the futures price dynamics by ¯tting our model to eleven
years of wheat options data using non-linear least squares. Volatility dynamics
of several models suggested previously in the literature are nested within our
model, and they all gave signi¯cantly poorer ¯t compared to the full model.
In a numerical example we show that ignoring volatility time-dependence and
jump e®ects in futures prices might lead to severe mispricing of options.
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