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Abstract

This paper addresses two weaknesses of the subjective expected
utility representation of Savage: The first is that the resulting sub-
jective probability measure P is atomless only, the second is that P
is only finitely additive. We give conditions under which a numerical
representation of preferences is an expected utility 4 la Savage, but
with respect to an arbitrary, countably additive probability measure.

Savage has seven axioms in his theory, some of which are rather
hard to interpret in an economic setting. One advantage with the
theorem of this paper is that, essentially, one has to relate to only
four axioms for the general representation to hold, all of which easy
to interpret in economic terms.
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1 Introduction

The two classical numerical representations of preferences in presence of un-
certainty is the von Neumann-Morgenstern (1944) theory using objective
probabilities and the Savage (1954) theory based on subjective probabilities.
These theories appear in different settings, formally speaking, and also have
somewhat different situations of choice in mind. The most widely applicable
one to economists is that of Leonard Savage, especially for the purpose of
modelling general equilibrium. In his theory a probability distribution is, for
each agent, also part of the representation of preferences, not only a utility



function as in the von Neumann-Morgenstern theory. In between, Anscombe
and Aumann (1963) have derived a characterization for a two-stage decision
problem with subjective probabilities in the first stage and objective proba-
bilities in the second stage. Since in the general equilibrium model there are
hardly any objective probabilities, at most Savage’s approach seems applica-
ble.

In a choice between subjective and objective probabilities, the recent
unfortunate events on September 11, 2001 in New York and Washington is
illustrative: Looking at the Twin Towers in isolation, they were owned by the
Port Authority of New York, so the buildings had most likely not property
insurance, but shortly before the incident took place, the towers had been
leased to a private businessman, who bought insurance for the buildings in
the amount of USD 3.5 Billion.

Another example is the award offered in 1971 by the whisky producer
Cutty Sark of one million pounds for the capture of the monster assumed to
exist in Loch Ness. Apparently somebody in the higher echelons of Cutty
Sark got cold feet after the offer had been made, and approached Lloyd’s in
London. As usual Lloyd’s was obliging, and agreed to cover the risk for a
premium of 2500 pounds. The case was appropriately handled by the marine
underwriters (see Borch (1976)).

If the requirement is that it must be possible to estimate the probabili-
ties of the relevant events from past observations alone, in order for a risk to
be insurable, insurance contracts would not have existed for the two situa-
tions described above, and in numerous other cases treated by the insurance
industry every day.

On rare occasions real life presents the realization of events which are as
outlandish as anything which can be dreamed up at a philosopher’s desk.
In the September 11. event it seems doubtful that the observed events were
even included in the state space. These problems deserve particular attention,
because they actually happened.

Savage originally developed his theory under a set of axioms, where one of
them leads to the conclusion that this probability measure P is atomless, i.e.,
P(w) =0 for all w € . On the other hand, this theory is usually illustrated
in microeconomics textbooks and scientific papers when there is only a finite
number of outcomes in the state space €2, so that the utility representation



is claimed to be given by a sum

Vi(h) = me(h(wz'))- (1)

Here 7 is a set of consequences, or prizes, and H is the set of all functions
from Q to Z. The elements h € H are called acts, or horse race lotteries,
and it is on the set H that the preference relation - is defined. Thus the
decision maker will choose among the elements h € H. In contrast, in the
von Neumann-Morgenstern theory the decision maker will choose between
the set of probability measures on (Z, B), where B signify the Borel sets in
Z. 'The utility function u is then defined from Z to R, the latter being the
real numbers. The set Z is a separable, complete metric space, which in
many cases can be thought of as the set of real numbers R, or the Euclidean
m-space R™.

Strictly speaking the representation given in (1) is not valid according to
Savage’s seven axioms. Stigum (1972), Hens (1992) and Lensberg (1999) all
provide different sets of axioms ensuring that the representation above is a
numerical representation of - on H, i.e., h 7 g ifand only if V/(h) > V(g). By
this we mean that provided these axioms are valid for the preference relation
- on H, there exists a probability measure P given by a set of discrete
probabilities (p1,p2, ... ,pn) on Q = {wy,wa, ... ,wy}, where P({w;}) = p;,
and a Bernoulli utility function u : Z — R such that V on H given by (1)
numerically represents >~ on H in the above described manner. This is thus
a characterization of subjective probabilities in a model with a continuum of
consequences and a finite number of states.

This paper will try to establish a Savage type representation in the general
case, that is for a probability distribution that can be continuous, discrete, a
combination thereof, or otherwise. In this connection we notice that Savage’s
probability P is only finitely additive. This has to do with the fact that it
is defined on the set of all the subsets of 2. In contrast, we will obtain a
countably additive probability measure P in our representation. By taking as
the starting point a representation in the finite case, we will give a condition
on the set of probability measures generated on the space Z induced by the
acts h € H, as the number of states in {2 grows, that will provide the required
representation of preferences, valid also for an arbitrary probability measure
P. Since this probability also is a part of the representation of preferences, it
is a subjective probability measure defined on a o-field F in the set of states
Q.



We will think of the acts A as measurable mappings from €2 to Z, to wit,
h=Y(B) € F for all B € B. The resulting probability measure P will then be
defined on F only, but thus in turn be countably additive. More importantly,
it will be a general probability measure, that need not be atomless, nor need
it be purely discrete.

In short, to obtain this representation on an arbitrary state space (2, F),
we start out with a finite state space, establish the representation (1) on this
set, and then we refine the state space, and move to the induced state space
(Z, B), where we have the required mathematical structure.

As mentioned above, the first part, that of obtaining a representation on
a finite state space, has been treated in Hens (1992). Lensberg established a
corresponding representation at about the same time, published in 1999 (in
Norwegian). Furthermore, Stigum (1972) has a an expected utility represen-
tation for a finite number of states of the world. His representation is based
on preferences that can be represented by an absolutely continuous utility
function that has finite positive partial derivatives almost everywhere on
[0, 00]. Hens (1992) bases his derivation on on the slightly stronger concept
of continuous differentiability, resulting in simpler proofs. Stigum’s axioms
also provide a bit too much, since it gives a strictly concave utility function.
In general, we would prefer to keep the question of weather an agent is an
expected utility maximizer distinct from his risk attitude.

In section 3 we follow Lensberg, by and large, but avoid the quasi-
concavity of preferences inherent in his approach. We generalize both Hens’
and Lensberg’s treatments from a euclidean space of consequences, to a sepa-
rable and complete metric space Z, the appropriate setting for our approach.

The paper is organized as follows. In section 2 we give a brief account of
the model and the notation, and present some simple examples. In section
3 the theory with a finite number of states of the world and a continuum
of consequences is briefly presented. In section 4 we present the general
representation theory, based on weak convergence of probability measures
and the concept of tightness. Section 5 concludes.

2 Model and notation

Let Q) = the set of states and F = the set of events, a o-algebra in 2. Let
Z = set, of consequences, or prizes, B = collection of Borel sets in Z. We
assume Z is a separable and complete metric space. H = set of all measurable



mappings h: Q2 — Z.

Example 1. Consider the following risk sharing model. We have a group
of I agents, having preferences >; over a suitable set of random variables
with realizations (outcomes) in some A C R. Each agent is endowed with a
random payoff w; called his initial portfolio. Let w = (wy, wo, ... ,wy).

To wit, there exists a probability space (£, F, P) such that i is enti-
tled to payoff w;(w) when w € Q occurs. The possible events F = F¥ =:
o(wy,wy,...,wr) is the o-field generated by the initial random vector w,
so that any random variable h in this model can be written in the form
h = f(wy,wy,...,wyr) for f a suitable real, Borel-measurable function.

The preferences are represented by expected utility, meaning that for any
two F-measurable random variables A and g, there is a set of continuous
utility indices u; : R — R, such that h >; ¢ if and only if Fu;(h) > Eu,(g).
O

This is a very common set-up, but it is rather unprecise. The question
is, do we here mean von Neumann-Morgenstern expected utility, or do we
mean Savage expected utility?

To be considered as the former, the preference relation should indeed be
defined on a set of probability measures, not on a set of random variables.
Furthermore, different random variables may have the same probability dis-
tribution. To be the latter, the probability measure should be atomless and
finitely additive, but we have here a o-field F, we have genuine random vari-
ables, not just merely acts, and we have said nothing about the probability
distribution of the random vector w. Furthermore, we usually think of P as
being countably additive, and employ the axioms of probability theory that
depend on this assumption.

We could also have one probability measure P; for each agent. Assuming
that the agents have common beliefs, the above description can, however, be
seen to be in accordance with the representation theorem we develop in this
paper.

Why is the subjective probability theory relevant in economics? Let us
consider a very simple example.

Example 2. In a choice between von Neumann-Morgenstern expected util-
ity and the Savage type expected utility, one may consider the scenario:

h - If Manchester United wins the European cupwinner cup next year, you
receive 1000, otherwise you get zero.

g - You win 1000 if a fair coin gives heads four times in a row, otherwise you
get nothing.



You get to choose between h and g. In the von Neumann-Morgenstern
theory this type of situation is not an interesting problem of choice, depending
upon a utility function u of the agent (as long as he prefers more to less):

Eu(h) = pu(1000) + (1 — p)u(0) =p

1., 1., 1
Bu(g) = (5)"u(1000) + (1 - (5))u(0) = —.
assuming we normalize to u(1000) = 1, u(0) = 0, which we always can, since
u is unique modulo an affine transformation. Here p is objectively known, so
every decision maker in the von Neumann-Morgenstern world must arrive at
the same conclusion, regardless of his/her utility function w. ([

Let > be a preference relation on H, i.e., a complete and transitive binary
relation, and let >, be a preference ordering on 7, such that
1) > on H is consistent with >, on Z (meaning that if h, is the function
h,(w) = z for all w € Q, then for arbitrary z, 2’ € Z and h,,h, € H, h, = h,
if and only if z >, 2').

2) The preferences are “smooth” (indifference curves exist and are continu-
ously differentiable).

By Debreu (1959a) and further by Mas-Colell (1985) there then exists

a continuously differentiable utility function V' : H — R numerically repre-
senting = on H: h > g if and only if V/(h) > V(g) for all h,g € H.
3) The sure thing principle. Suppose we are comparing h and g € H. Sup-
pose moreover that the set of states {2 contains a subset B on which h and g
are identical; for every w € B, h(w) = g(w). Then how the agent feels about
h compared to g depends only on how h and g compares on states that are
not in B.

Formally, if h > ¢g and A’ and ¢' are two other acts such that
(a) h is identical with A', and g is identical with ¢’ on B°.

(b) b’ and ¢ are identical on B, h and g are identical on B,
then ' > ¢’ must follow.

This principle says that preferences between acts should not depend on
those states that have identical consequences for the two acts, or, the ordering
of h and ¢ does not depend on the specific way that they agree on B - that
they agree is enough.

In our differentiable setting the sure thing principle implies that for every
good, the marginal rate of substitution between two states is independent of
the amount of goods consumed in other states.



This principle is found reasonable by many individuals provided that the
state that obtains does not depend on the act that is actually implemented.
Let D be the risk free acts, i.e., those that are constant on : h € D if
and only if h(w) = d for all w € Q, for some d € Z.
4) Along D the indifference curves are constant.

A bet on an event is an act offering a specific consequence if one of the
states in the event prevails, and offering a less preferred consequence in the
remaining states.

As an example, consider a bet h giving USD 2 in state 1, and a loss of USD
1 in state 2. This is a bet on state 1, and the “odds” are 2:1. Suppose the
decision maker can choose if he wants to bet on state 1 or state 2. Consider
the risk free initial position d, and suppose that the decision maker prefers
to bet on state 1, in other words, that d + h > d — h. Next we donate the
decision maker an amount so that his risk free position changes to d’, and ask
if he still prefers to bet on state 1. If the decision maker claims that he now
prefers to bet on state 2, it is natural to say that he has changed his mind
with regard to whether the odds of 2:1 in favor of state 1 is still favorable.
Savage excludes this type of inconsistent attitude towards bets.

This means that if a bet on h is preferred to a bet on —h at level of wealth
d, we will assume that h will also be preferred to to —h at any other level of
wealth d': Formally, d+h > d — h then d' + h = d — h for all d,d' € D and
h € H such that d+ h € H, d— h € H, and similarly for d'.

3 The finite representation

Let €, contain a finite number of points, €, = {w;,ws,... ,w,}. For sim-
plicity of notation we refer to these as Q,, = {1,2,... ,n}. Let us first hold n
fixed, and demonstrate that the numerical representation V' has the required
representation under the above assumptions on preferences, i.e., that there
exists a function u : Z — R, and probabilities p;, i = 1,2,... ,n such that
Vi(h) = 32y piu(ha).

To this end, suppose the decision maker chooses an act h, and let V}/(h) =
g—}‘;(h), where h = (hq, ho, . .. , hy). The marginal rate of substitution of prizes
between states 7 and j is defined as




According to the sure thing principle it follows that m®(h) = m%(h;, h;).
Consider a third state k. Then we may write m" (h;, h;) as follows

Vith) _ Vi(h)/Vi(h)
Vi(h)  Vi(h)/Vi(h)

J

mi* (hy, hy,)’

m" (hy, h;) = ) =
From Leontif’s separability theorem (see e.g., Debreu (1959b)!) we then know
that the preference relation can be represented by an additive function, i.e.,
there exist functions u; : 7 — R, 1 =1,2,...,n such that

hizg e Y ulh) > ulg)
i=1 i=1

for any h and g € H.
By the consistency requirement 1), since each u; is a numerical repre-
sentation of 7, on Z, these functions must be identical up to strictly in-

~Z

creasing rescalings v; : R — R, that is, there exists a state utility function
v : Z — R representing the agent’s basic tastes over consequences, such that
ui(h) = 9;(v(h)), i =1,2,... ,n. Thus the relation 2~ on H can be written

hz g« Zﬁi(v(hi)) > Zﬁi(’v(gi))-

Next we want to establish the relation (1). To this end, define for each w;
the function P;j(h) : H — R by

V(v (hi))
2 jea, Ui (v(hy))
This function is proportional to the gradient of V'(h), and }_. .o Pj(h) =1

for all h € H.? Now requirement 4) implies that this function is constant on
D. Thus P;(hy) = p; for i =1,2,... ,n and for all hy € D. Consequently

Hw(h) _ i
I (o(ha) ~ p;’

Pi(h) = (2)

!Not based on derivatives.

2Note the similarity between (2), and the likelihood ratio between the “risk adjusted”
probability and the given measure in models of exchange equilibria, where the latter quan-
tity is given by the marginal utility (of the representative agent).



or, for some differential function ¥ it must be the case that

B(o(ha)) _ Pyw(ha) _ Dy(v(ha))
P b2 ; Pn

= ¥'(v(ha))

for all hy € D, independent of the state i. This means that p;9'(v(h;) =
V4 (v(h;) for all i and any h; € Z. Integrating over the range of the function
v gives

Vi(v(hs)) = pid(v(hi)) + k;

for appropriate integration constants k;, i = 1,2,... ,n. This gives

n

V(h) = Zﬁz‘(v(hi)) = (pid(v(h)) + k;) = sz‘ﬂ(v(hi)) +k

i=1

for k = >, k;. Choosing u(-) = J(v(-)), and using the fact that expected
utility is unique modulo an affine transformation, we get the required repre-
sentation (1).

4 The general representation

We now want to demonstrate the following:

Theorem 1 Suppose the preference relation = on H satisfies 1)-4). Then
it 18 possible to construct a numerical representation of = given by

V(h) = /Q w(h(@) dP(w),  heH (3)

where u : Z — R is a Bernoulli utility function, and P is a countably additive
probability measure on Q.

Note that P need not be atomless, nor discrete only.

The construction is carried out as follows: Let €2,, contain a finite number
of points of 2, and €2, C €, C ... C (. Here we assume that 2 = U2 €2,
Q, € F. Let F, be the corresponding restriction of F to £2,. Any function
h € H is automatically defined on 2, by its natural restriction to this set.



The function u : Z — R is continuous, and can also be shown to be bounded.
The latter we prove as follows: For fixed n consider the representation

V(h) = /Zu(z)d(Pnhl)(z) = U(P,h 1.

Since P, is a countably additive probability measure on (2, F,), and h is a
function in H, P,ht(-) =: uu(-) is a countably additive probability measure
on (Z,B). As h varies in H, the functional U(+) is continuous in the topology
generated by weak convergence of probability measures. Moreover U(:) is
also linear, i.e.,

Ulapn + bug) = aU(pn) + bU ().

Hence U(+) is a continuous, linear functional on the set of probability mea-
sures {un : h € H}, and is consequently bounded on this set. For every
z € Z,let h, be the act in H such that u, = 9., where 9, is the probability
measure in {yy : h € H} that puts all its probability mass in the point z, i.e.,
h,(w1) = hy(ws) = ... = h,(w,) = 2. Then, from the above representation
it follows that U(P,h;') = u(z) for all z € Z, and this implies that u(-) is
bounded on Z.

The probability measure we have just constructed on €2, we denote by
P,. We now increase n and consider the effect of any given act h along the
sequence of probability measures P,. Since the sequence P,h~! of probability
measures is defined on the measurable space Z, we may utilize the nice
mathematical structure on the this space: First notice that

V() = Y ulh@)Pue) = [ ulhe))dPu(o)

weQn n

= /Zu(z)d(Pnhl)(z).

The first equality is just a matter of notation. The second involves a change
of variable. Let us now suppose that this probability measure is tight, i.e.,
for all ¢ > 0 there exists a compact K in Z such that P,h ' (K) > 1 — .
This seems like an innocuous assumption for any given probability measure
on Z, and it turns out that it really is: If Z is separable and complete (as
we assume it is), then every probability measure on (Z, B) is tight. Now we
make the following assumption:
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Assumption 1 The collection of probability measures Ty, := {P,h™! : n =
1,2,...} is tight, i.e., for all € > O there exists a compact K € B such that
P.hm' (K)>1—c¢ foralln=1,2,...

The above assumption is considered very weak in general. That this involves
a restriction, can be seen from the following examples:

Example 3. Let P,h~'(—n) = 1, and P,h~'(n) = 5. Then this sequence
of probability measures is not tight: The probability mass runs out to infinity
as n grows. Another example is the following sequence of “uniform” distri-
butions: P,h (1) = P,h1(2) = ... = P,h 1 (n) = 1/n. Here the rightmost
tails of the distributions become too heavy as n grows. ([

In the above examples, for each h, note that (P,h™') is a probability
distribution on the set of consequences Z. Consider e.g., the above uniform
example: According to equation (2), describing how probabilities are assessed
by the decision maker, the marginal utility of large consequences are not
decreasing sufficiently fast, relative to the marginal utility of more moderate
z—values. Most people would agree to some sort of decreasing marginal
utility, in which case these type of examples are effectively ruled out.

There are other reasons why these classes of distributions do not make
much economic sense, as n grows beyond any limit - one being simply that
the resources in the world are limited. If this is not reflected in the range
of possible values of consequences, it should certainly be reflected in the
corresponding probabilities of extreme values, as compared to more plausible
ones.

Definition 1 p, converges weakly to the probability measure p on (Z,B)
(notation p, = ) if and only if [, v(z)dun(z) — [, v(2)du(z) as n — oo
for all continuous and bounded real functions v: Z — R.

Definition 2 A family T of probability measures on (Z, B) is called relatively
compact if every sequence of elements of I' contains a weakly convergent
subsequence.

By Prohorov’s theorem (see e.g., Billingsley (1968)), if T’ is tight, then it
is relatively compact, and thus there is a subsequence {P,h~'} such that
Pyh ' = Ph™! or

V(h) = / u(2)d(Pyh ) (z) — / u(2)d(PhY)(2).

11



as n’ — oo, since u is continuous and bounded (and thus will do as a test
function v). But

[ uaPr e = [ unw)apw),

by (the now) standard change of variable. Thus we obtain the required
representation

V(h) :/Qu(h(w)dP(w).

The measure space Z is assumed to be separable, so the set F' of all prob-
ability measures on (Z, B), endowed with the topology generated by weak
convergence of probability measures in F', is also known to be separable, i.e.,
any probability measure g in F' can be approximated in the weak sense by
simple probability measures with a finite domain. The limiting measure P
on (9, F) can accordingly be of arbitrary type, depending on the nature of €2,
and is countably additive. Since the probability measure P is approximated
by subjectively derived probability measures P,, it must therefore itself be
derived from preferences.

5 Conclusions

When representing preferences in models of general competitive equilibrium,
a numerical representation of preferences cannot be dispensed with. The
subjective expected utility representation of Savage is the one that seems
most useful among the three representations considered in this paper. This
is not to say that there are no problems with this representation, in that
it does not always give the right predictions of what people actually do in
various situations of choice in a world of uncertainty. These problems have
been discussed intensively in the literature, starting already in the 50ties
(e.g., Ellsberg (1961)).

The topic of this paper has been some weaknesses of the original math-
ematical representation: In Savage’s original treatment the subjective prob-
ability measure is atomless only, and it is also finitely additive. In general
we have situations in mind where neither is fulfilled: It is natural, and com-
mon, to work with probability measures which are countably additive, since
most of the theory of random variables, and stochastic processes, is based
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on this assumption. Furthermore it is not natural at the outset to limit this
probability measure to be atomless only, so that P(w) =0 for all w € Q.

In this paper we have presented conditions under which a numerical rep-
resentation of preferences can be given by expected utility 4 la Savage, but
with respect to an arbitrary, countably additive probability measure P. This
we have done by going via a representation, valid for a finite state space, and
then increased the number of states. We use a transformation through acts
to a sequence of probability measures on a separable, complete metric space,
the set of consequences, where we have the required mathematical structure,
of tightness and relative compactness, to obtain our representation, using
Prohorov’s theorem. Our additional assumption about tightness turns out
to be a very weak requirement in light of its economic implications. It is also
considered a weak mathematical requirement.

Savage has seven axioms in his theory, some of which are rather hard to
interpret in economics. One advantage with the theorem of this paper is that,
essentially, one has to relate to only four axioms for the general numerical
representation to hold, axioms that economists seem more or less familiar
with.
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