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ABSTRACT. This paper deals with the use of gravity models to examine journeys-to-
work. The purpose of the paper is to study very simple examples demonstrating that
gravity models may be subject to serious misspecification in aggregate systems. The
results are easily interpreted and serve to form a set of ideas that can be extended
to general systems. As an outcome of the theoretical analysis, the paper has several
implications to empirical work. It suggests a variety of modifications, experiments
and procedures that can be carried out to enhance the performance of gravity models
for journeys-to-work.

1. Introduction

In the literature on spatial interaction analysis much attention is focusing on the mi-
croeconomic foundation of specific modeling alternatives; it is of course important
that a model formulation is consistent with reasonable hypotheses of individual
travel demand. In most applied analysis, however, we are faced with aggregate
data or aggregate model specifications of variables. This paper focuses on what
kind of bias that might be introduced when individual variations in aspects of
travel demand are represented by aggregate measures of spatial interaction between
specific central places. We also address the problem of how to choose a model
specification that is best suited to represent the aggregate travel demand of a
population with different individual responses to variations in measures of spatial
separation.

To be more specific we will in this paper consider gravity models in studies of
journeys-to-work. Gravity models represent the most commonly used modeling
framework for spatial interaction analysis. There are several possible classes of
gravity model specifications, reflecting the purpose of the study to be carried out.
The class to be discussed in this paper is formulated for pure trip distribution
purposes; we consider how commuting flows are distributed between origins and
destinations in the spatial system. The classical journey-to-work problem corre-
sponds to the case that Wilson (1967) referred to in his derivation of the gravity

* The author would like to thank J. P. Gitlesen, Kurt Jörnsten, and Inge Thorsen for several valuable discussions

regarding this paper.

1



J. Ubøe

model from entropy maximization. For a more recent discussion of entropy max-
imization and related approaches, see Erlander and Stewart (1990). It is also well
known that traditional gravity models can be derived from random utility theory,
see for example Anas (1983), and that such models are equivalent to a multinomial
logit model formulation. A thorough discussion of the theoretical foundation of
gravity models can be found in Sen and Smith (1995).

In a pure trip distribution problem the marginal totals of the trip matrix are con-
sidered to be given. Hence, such problems call for a doubly constrained model
formulation. This might be appropriate, especially if the model is used in analyses
referring to a short run time perspective. In this paper we will briefly discuss
effects of building a new road. In such cases a changed location pattern of jobs
and residents might result, and this will in general influence commuting flows. A
preferred model would of course be one that integrates location, land-use, and
traffic flows. This can be done through combinations and extensions of models
presented in Nævdal et al. (1996), Thorsen et al. (1999) and Thorsen (1998). Reviews
of other modeling attempts that combine aspects of location and transportation
can be found in Wilson (1998) and Wegener (1994,1998). Our study, however, is
restricted to commuting flows in a spatial system with a given location profile.

As will be clear in forthcoming sections, the basic trip distribution mechanism in
a traditional gravity model is represented by a deterrence function, introducing
deterrence parameters reflecting how the relevant measures of distance deter spa-
tial interaction. Ideally, such parameters represent pure measures of behavioral
response to distance. It is well known, however, that gravity based estimates of
such parameters vary systematically across space, and that the parameter estimates
reflect spatial structure characteristics in addition to individual responses. The
nature of such misspecifications has been discussed for example by Fotheringham
(1981,1983a) and by Baxter (1983). This discussion, however, refers to origin-
specific estimates based on production-constrained gravity models. According to
Fotheringham (1984) a spatial structure bias might also be present in system-wide
estimates, for specific centralized spatial arrangements of economic activities.

One way to remove the spatial structure bias from parameter estimates is to capture
the effects of spatial structure by incorporating relevant measures explicitly in the
model formulation. One attempt in this direction is the competing destinations
model formulation introduced by Fotheringham (1983b). In this approach a mea-
sure of accessibility of potential destinations is explicitly added to a traditional
gravity model. Fotheringham (1983b) offers empirical evidence that this reduces the
spatial variation in origin specific distance deterrence parameter estimates. More
recent applications of the competing destinations modeling framework include
other aspects of spatial structure than destination accessibility. For example, Fik
and Mulligan (1990) and Fik et al. (1992) have found that both special account to
the hierarchical order of potential destinations, and to the number of intervening
opportunities, adds significantly to model performance. Similarly, Thorsen and
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Gitlesen (1998) find that some characteristics of the labour market improve model
performance for the classical journey-to-work problem. Discussions of the theo-
retical foundation for the competing destinations model and related approaches
can be for example be found in Fotheringham (1988), Pellegrini and Fotheringham
(1999) and Gitlesen and Thorsen (2000).

Conventional models for spatial interaction do not distinguish between the univer-
sal and the true choice sets of decision makers. This is often claimed to be one
basic reason for the inconsistent experiences with such models, see for example
Thill (1992) and Pellegrini et al. (1997). Pellegrini et al. (1997) find that parameter
estimates vary systematically with respect to the definition of choice set in shopping
destination choice models. Inconsistent and spatially varying parameter estimates
might be a result of omitted variables and specification errors, that are reduced
when additional information is included for example through measures of spatial
structure.

In this paper we are also concerned with the fact that traditional models of com-
muting flows fail to take the true choice sets of individual workers into account.
We do not, however, focus on aspects of the central place system and measures
of the spatial structure. Rather, we are concerned with spatial variation in labour
market conditions. One important point is that workers are not homogeneous,
neither with respect to the qualifications in the labour market nor with respect to
their response to distance. Combined with the possibility of spatial variation in the
distribution of relevant job offers and in the demand surplus of different categories
of workers, this explains why workers cannot make unrestricted choices in the
universal choice set of labour market options. The restriction that the markets
for different categories of workers have to be cleared introduces restrictions on
individual behavior that explains why traditional models for commuting flows might
be misspecified. Deterrence parameters that are estimated from aggregate data
reflect the effect of varying preferences across categories, as well as of a spatially
varying mismatch between categories of workers and relevant job opportunities.
Hence, specification errors might exist even if spatial structure and separation
measures like accessibility, intervening opportunities, and the hierarchy of central
places do not influence commuting flows. In this paper we will be concerned
with specification bias and spatial variations in system-wide parameter estimates
in doubly constrained gravity models for commuting flows. There is no a priori
reason why the potential specification errors that we discuss are less serious for
system-wide than for origin- or destination-specific parameter estimates. On this
point our discussion differs from some other approaches to specification errors in
spatial interaction models, see for example Fotheringham (1984).

As mentioned above, workers are in general not homogeneous with respect to the
influence of distance on commuting decisions. It can also be argued that systematic
variation in distance deterrence can be found across separate groups of workers.
Workers can for example be grouped together according to gender, age, income,
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and/or profession. In this paper we will discuss specification errors that might
result when all such groups are represented by a common distance deterrence
function in the model specification. It follows from our analysis that the degree
of specification bias depends on how the composition of separate groups and the
corresponding job opportunities varies across space. Based on commuting flow
data from western Norway Thorsen and Gitlesen (1998) found that the performance
of a competing destinations model improved significantly when intrazonal labour
market supply and demand were explicitly taken into account. The explanation is
probably that such an approach captures the labour market behavior of specific
groups, like low educated married woman in two-worker households.

Most applications of gravity models are based on the exponential impedance func-
tion. This is also the specification that follows from a straightforward formu-
lation of the stochastic utility maximization problem. A slight reformulation of
the maximization problem gives a power function, however. Often, the choice of
the deterrence function has been considered to be essentially a pragmatic one in
the literature, see for example Nijkamp and Reggiani (1992). Based on a Box-Cox
specification for an empirical analysis from US migration data Fik and Mulligan
(1998) conclude, however, that the appropriateness of the functional form should
be critically examined. In this paper we reach similar conclusions based on a
theoretical line of arguments, and we also come to some suggestions regarding
a practical specification of aggregate distance deterrence functions for a system.

The paper is organized as follows: In Section 2 we consider different specifications
of the gravity models. The main result is Theorem 2.4 which makes is possible to
translate freely back and forth between the various versions. The main framework
is based on the extreme state model from Thorsen et al. (1999). This provides
a common environment in which different models can be compared on an equal
basis. The formal proofs of these principles are easy, but tedious. For the benefit
of the reader, proofs have been deleted from the main text and are placed in the
appendix.

In Section 3 we study aggregate combinations of a standard gravity model. We
demonstrate that a single gravity model is sometimes reasonably efficient in repli-
cating the responsiveness of an aggregate system. If we replace the deterrence func-
tion by a convex combination of exponentials, however, the overall performance is
much better.

In Section 4 we study the responsiveness of a gravity model in systems where there
is a non-uniform distribution of labor and employment between the zones. In
such systems a single gravity model may be subject to serious misspecification.
An interesting sideeffect, is that one may find spatial variations in the value of
the deterrence parameter depending on the degree of non-uniformity. Hence two
regions can exhibit different values on the deterrence parameter even when all
subcategories in the two regions have the same value on this parameter.
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In Section 5 we study regularity properties of distance deterrence functions in
aggregate systems. With reference to the extreme state model in Thorsen et al.
(1999), we demonstrate that the distance deterrence function d� D[d] can usually
be expected to be globally concave. At short distances, however, the model is biased
due to geometric side effects. The distance between two city centers is generally
different from the average difference in traveling distance between external and
internal commuting. When the distance deterrence function is composed with this
geometric correction, the result is a typical S-shaped curve.

Finally in Section 6, we summarize the paper and offer some concluding remarks.
In particular we point out several topics for empirical studies, and suggest a variety
of modifications that can be carried out to enhance performance of gravity models.

2. Extreme states of the standard gravity model

Consider a region consisting of N different zones, where zone i has a number of
workers Li and a number of employment opportunities Ei. The zones are inter-
connected by roads, and d = {dij}Ni,j=1 denotes the matrix of traveling distances
dij between zone i and zone j. If Tij denotes the number of commuters from zone
i (origin) to zone j (destination), a doubly constrained gravity model TG = {TGij}Ni,j=1
can be formulated as follows:

(2.1) TGij = AiBje−βdij i, j = 1, . . . , N

(2.2)
N∑
k=1

TGik = Li
N∑
k=1

TGkj = Ej i, j = 1, . . . , N

We will further impose the condition that all workers have a job, i.e., that

(2.3)
N∑
i=1

Li =
N∑
j=1

Ej

For the rest of this paper TG will be referred to as the standard gravity model, and
the function d� e−βd will be referred to as the standard deterrence function in the
gravity model.

We will now consider the extreme states of the gravity model, and compare these
with the extreme state model from Thorsen et al. (1999). Here the focus is not on
the extreme state model as such. The point of view, however, is that it sets up a
common framework for the discussion, comparison and visualization of any kind
of model within the field. Different kinds of models can then be translated into this
language and be compared within a common framework. The following proposition
will be useful in that respect.
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PROPOSITION 2.1

For all β > 0, then

(2.4) lim
d→0+

TG =
{

LiEj∑N
k=1 Ek

}N
i,j=1

i.e., the commuting is determined by random choice in this case.

PROOF

This result follows from random utility theory. See, however, the appendix for a
direct proof.

�

To proceed further, we will now restrict the discussion to the caseN = 2. As argued
by Thorsen et al. (1999), we are then faced with two extreme situations:

•When commuting in the system is determined by random choice only, the expected
trip distribution matrix can be expressed as follows:

(2.5) Trandom =
[ L1E1
E1+E2

L1E2
E1+E2

L2E1
E1+E2

L2E2
E1+E2

]

• If, on the other hand, we consider a situation where the total traveling cost is as
low as possible, we get

(2.6) Tminimal cost =
[

min[L1, E1] L1 −min[L1, E1]
L2 −min[L2, E2] min[L2, E2]

]

The basic idea in Thorsen et al. (1999), is then to write any trip distribution matrix
as a convex combination of the two extremes, i.e.,

(2.7) T = Trandom(1−D)+ Tminimal costD

Given any trip distribution matrix T we can then identify a unique numberD, which
measures the level of attraction to the minimal cost state. If d � T[d] denotes
any trip distribution model, this will in turn identify a function d � D[d] which
we will refer to as the distance deterrence function for the model. Hence any trip
distribution model can be translated into a common language providing a very
suitable framework for the comparison of distance deterrence.

If d� D[d] denotes any given distance deterrence function, we can define a model

(2.8) TD = Trandom(1−D[d])+ Tminimal costD[d]

In the following we will denote TD as an extreme state model with distance deter-
rence function D.
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Distance deterrence functions for the standard gravity model

We now wish to construct explicit translations between several different gravity
models and the extreme state model. The following function turns out to be a
useful tool in that direction:

DEFINITION 2.2

The transferring function fG for the gravity model is defined as follows:

If L1 ≤ E1, then fG : (0,min[L1, E2])→ R, with

(2.9) fG[x] = 1
2

ln
[

1
x
(L1 − x)(E2 − x)
L2 − E2 + x

]

If L1 > E1, then fG : (0,min[L2, E1])→ R, with

(2.10) fG[x] = 1
2

ln
[

1
x
(L2 − x)(E1 − x)
L1 − E1 + x

]

The function fG will be central throughout this paper. The formal relations con-
necting this function to the gravity model are, however, somewhat technical. For
the benefit of the reader, we have tried to delete a major part of the technical details
from the main text. Formal proofs are hence left to the appendix.

The transferring function fG can be used to verify the two main principles below.

THEOREM 2.3

Let TG be a standard gravity model. Then for every β > 0 fixed, we have

(2.11) lim
d12→∞

TG =
[

min[L1, E1] L1 −min[L1, E1]
L2 −min[L2, E2] min[L2, E2]

]

Hence the standard gravity model has the same extreme states as the extreme state
model.

THEOREM 2.4

Let the constant M be defined by

(2.12) M = E1 + E2

min[L1 · E2, L2 · E1]
and let fG be the function defined in Definition 2.2. If N = 2, then an extreme state
model defined by (2.8) is equivalent to a doubly constrained gravity model on the
form

(2.13) Tij = AiBje−fG
[

1
M (1−D[dij])

]

Moreover, the distance deterrence function for the standard gravity model is given
by the expression

(2.14) D[d] = 1−M · f−1
G [βd]
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PROOF

For the formal proofs of Theorem 2.3 and 2.4, see the appendix.

�

Theorem 2.4 is of crucial importance to this paper. This theorem makes it possible
to translate quite freely back and forth between various versions of the gravity
model and the extreme point model, and the major part of the constructions in the
paper will be based on this result.

EXAMPLE 2.5

Consider the case where L1 = 1000, L2 = 2000, E1 = 1400 and E2 = 1600. We fix
β = 0.05, and use Theorem 2.4 to compute the distance deterrence function for the
standard gravity model. The result is shown in Figure 1.

20 40 60 80 100d
0.2

0.4

0.6

0.8

1

D

FIGURE 1: A distance deterrence function for the standard gravity model

To see how Theorem 2.4 can be applied in general, we consider a gravity model with
a power function specification, i.e.

(2.15) Tij = AiBj(dij + δij)−β δij =
{

1 if i = j
0 otherwise

Observe that if i 
= j, then

(2.16) Tij = AiBje−β ln[dij]

Using Theorem 2.4, we see that this is equivalent to an extreme state model with

(2.17) D[d] = 1− f−1
G [β ln[d]]

Using the value β = 0.5 and otherwise keeping the values from Example 2.5, the
graph of the distance deterrence function is shown in Figure 2.

20 40 60 80 100d

-0.5

-0.25

0.25

0.5

0.75

D

FIGURE 2: A distance deterrence function for the gravity model in (2.16)
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Note in particular the negative values when d is very small. This means that the
extreme states for the model in (2.16) does not coincide with the extreme states for
the standard gravity model. If we consider the journey-to-work matrix defined by
(2.16) as observations and try to replicate these with a standard gravity model, we
will hence be unable to find good replications if d is very small. This problem is
only of minor importance, however. We will next turn to the discussion of aggregate
systems, and we will see that we will encounter problems of a more fundamental
nature in these systems.

3. The gravity model in aggregate systems

In this section we will consider cases where the working population is divided into
two (or several) disjoint categories. To be explicit we may think of the first category
as a collection of low income groups and the second as a collection of high income
groups. The two categories are non-interacting; employment opportunities for any
one category are without relevance to the other. Moreover, the groups do not have a
common response to distance. If we consider generalized transportation costs, e.g.,
with a component including the cost of time, one would expect that high income
groups are much more sensitive to distance. We assume, however, that the standard
gravity model represents a reasonable framework for each category of workers.

The basic idea is to some extent similar to the one in McFadden and Train (2000).
McFadden and Train (2000) consider mixed multinomial logit models, which they
represent as a weighted integral of standard logit models. The point of view is that
different segments have different preferences w.r.t. discrete choice.

On the basis of the above remarks, we will study aggregated systems of categories
each of which with a very good replication by a standard gravity model. To study
such systems, we start out to consider the extreme states. In aggregated systems
one must take care not to use the aggregate data to define the extreme states.
Following the discussion in Glenn et al. (2001), we consider a system of two zones
with J non-interacting job categories. In zone 1 there are L1j, j = 1, . . . , J workers
and E1j, j = 1, . . . , J employment opportunities in each category. Similarly we have
L2j, j = 1, . . . , J and E2j, j = 1, . . . , J in zone 2.

DEFINITION 3.1

The extreme states for an aggregate system of two zones with J non-interacting
categories, are defined as follows:

(3.1) Trandom =


∑J
j=1

L1jE1j
E1j+E2j

∑J
j=1

L1jE2j
E1j+E2j∑J

j=1
L2jE1j
E1j+E2j

∑J
j=1

L2jE2j
E1j+E2j




(3.2) Tminimal cost =
[ ∑J

j=1 min{L1j, E1j} L1 −
∑J
j=1 min{L1j, E1j}

L2 −
∑J
j=1 min{L2j, E2j}

∑J
j=1 min{L2j, E2j}

]
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and the distance deterrence D is computed with respect to these extreme states. It
is important to notice that this is may be different from the extreme states for the
aggregate system. In the aggregate system we have total populations L1 =

∑J
j=1 L1j

and L2 =
∑J
j=1 L2j in the two zones, together with employment opportunities E1 =∑J

i=1 E1j and E2 =
∑J
j=1 E2j . If the extreme states in (3.1) and (3.2) do not coincide

with the extreme states (2.5) and (2.6), we are faced with serious problems. We will
refer to this situation as a skew system, and such systems are discussed in detail in
Section 4. Some quite general systems are well behaved, however, and the following
set of ideas is useful in that respect:

We call a system homogeneous if the number of workers in every category represents
the same percentage of the population in both zones. Hence in a homogeneous
system where the low income groups represent 70% of the total population of zone
1, they must also represent 70% of the total population of zone 2. Moreover, we
call a system well ordered if either zone 1 or zone 2 has excess of workers in all
categories. A typical example of a well ordered system is one where one of the
zones is mainly a business district while the other is mainly a residential area.

PROPOSITION 3.2

In a homogeneous system the extreme states defined by (3.1) and (2.5) coincide, and
in a well ordered system the extreme states defined by (3.2) and (2.6) coincide.

PROOF

Straightforward.

�

Hence in a homogeneous and well ordered system, aggregated data give the correct
extreme states for a standard gravity model. The following example is of this sort.

EXAMPLE 3.3

We will study a system of two zones with two non-interacting categories in each
zone. Category 1 is defined as follows:

(3.3) L11 = 3000, E11 = 3600, L21 = 6000, E21 = 5400

while category 2 is divided into the sections:

(3.4) L12 = 2000, E12 = 2200, L22 = 4000, E22 = 3800

We assume that within each category commuting is determined by random utility
theory choice, and hence that a standard gravity model can be used within each
category. Category 1 is generally assumed to be more sensitive to distance, however,
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and hence the parameter β in the standard gravity model is different in the two
systems. We will assume that:

(3.5) β1 = 0.05, β2 = 0.025

Using Theorem 2.4 we can compute the distance deterrence function D for this
aggregate system. Note that the definitions (2.5) and (2.6) coincide with (3.1) and
(3.2) in this case. Reversing the construction, we can also go back and compute the
exponent in (2.13), i.e., d � fG

[
1
M (1−D[d])

]
for the aggregate system. Note that

the aggregate system is a standard gravity model if and only if there is a parameter
β s.t.

(3.6) β · d = fG
[

1
M
(1−D[d])

]

for all d. The final result is shown in Figure 3.

20 40 60 80 100 120 d
1

2

3

4

5

6

Exponent

FIGURE 3: Exponent for the aggregate system in Example 3.3

The two straight lines in Figure 3 are referring to d � β1 · d and d � β2 · d.
As is clearly seen from the graph, there is no constant β-value for the aggregate
system. Hence the aggregate system is not a standard gravity model. To replicate
the system with a standard gravity model, the idea is now to find a parameter β
with the property that it replicates the aggregate curve as well as possible at all
distances d simultaneously. To carry out this construction we need a universal
measure of replication that can be computed for different kinds of models. To this
end we propose the following construction: Let Dobserved be the distance deterrence
function for the aggregated system, and letD be the distance deterrence for a model.
We measure the distance between the two versions by

(3.7) RMS[D,Dobserved] =
√√√ 1
dmax

∫ dmax

0
(D[d]−Dobserved[d])2dd

We now have a well defined optimizing problem: Compute a value for β in the stan-
dard gravity model such that the RMS in (3.6) is as small as possible. A numerical
simulation using dmax = 125 (km), gave the value β̂ = 0.036, with RMS = 2.7%. The
distance deterrence curve for the aggregate system and a standard gravity model
with β̂ = 0.036 is shown together in Figure 4.
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FIGURE 4: Replication by the standard gravity model

The next question is how to improve replication. In a resent empirical study Gitlesen
and Thorsen (2001), found that a Box-Cox specification of the gravity model gave a
significantly better replication of data than the standard gravity model. A model of
this kind can be specified as follows:

(3.8) Tij = AiBj exp[−β · d
λ
ij − 1

λ
]

If the same exercise is carried out for this model, the result can be described as
follows: The best replication was obtained using β̂ = 0.066, λ̂ = 0.79 in which case
RMS = 1.0%. (To avoid some numerical problems we started the integration at d = 1
in this case). The replicating curve is shown in Figure 5.
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FIGURE 5: Replication by the Box-Cox model

One problem with the Box-Cox specification is that it is more or less ad hoc. A
better formulation can be based on the information in Figure 3. From Figure 3 it
is quite clear what happens. Category 1 is much more sensitive to distance than
category 2. Hence at small distances β ≈ β1 since the response is mainly due to
changes in this category. As the distance increases, category 2 takes over, so at
large distances β ≈ β2. To replicate this kind of behavior one should consider
families of functions imitating this kind of response. If N = 2, the exact shape of
the curve can be determined from Theorem 2.4. The problem with that approach is
that is difficult to generalize to arbitrary systems. Instead we propose the following
approach: Consider a gravity model of the form

(3.9) Tij = AiBjH[dij]
where H[d] is a convex combination of exponentials, i.e.

(3.10) H[d] =
K∑
k=1

αke−βkd
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This corresponds to a kind of interaction where the different values of β dominates
the picture at different parts of the graph. If we carry out this construction on
the system in Example 3.3 with K = 2, we obtain the following results: The best
replication was obtained using α̂1 = 0.155, α̂2 = 0.845, β̂1 = 0.012, β̂2 = 0.047 in
which case RMS = 0.25%. The replicating curve is shown in Figure 6.
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FIGURE 6: Replication by convex combinations

For easy reference, we have collected results from the various models in Table 1.

Table 1
Model Average replication error Parameters
Standard gravity model 2.7% β̂ = 0.036
Box-Cox formulation 1.0% β̂ = 0.066, λ̂ = 0.79
Convex combinations 0.25% β̂1 = 0.012, β̂2 = 0.047, α̂ = 0.155

4. Aggregation in skew systems

In this section we will consider skew systems. These are systems where we find
a spatial mismatch between workers and job opportunities. In such systems the
extreme states of a linear combination of categories do not coincide with the ex-
treme states predicted from the aggregate data. This in turn may result in serious
replication problems. Consider the example below.

EXAMPLE 4.1

In this example we will study two different regions, both with two zones and two
non-interacting categories within each zone. In both regions all categories are
consistent with discrete choice, and can hence be replicated by a standard gravity
model. Moreover we will assume that all categories can be described by the same
parameter β = 0.03.

In region A, Category 1:

(4.1) L11 = 3000, E11 = 5500, L21 = 7000, E21 = 4500

In region A, Category 2 (same as Category 1):

(4.2) L12 = 3000, E12 = 5500, L22 = 7000, E22 = 4500
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In region B, Category 1:

(4.3) L11 = 3000, E11 = 5500, L21 = 7000, E21 = 4500

In region B, Category 2:

(4.4) L12 = 7000, e12 = 4500, L22 = 3000, E22 = 5500

In region A the two categories are equal, hence the system is homogeneous and well
ordered. A replication using the standard gravity model on the aggregate date is
efficient, and replicates the original value β = 0.03 from both categories.

Now consider region B to see what happens. We fix a distance d = 80, and try to
use a single gravity model to replicate the sum of the two components. An identical
replication can be obtained, but the best replication is obtained using β̂ = 0.01317.
Hence we do not replicate the β from the two separate categories. If we repeat
the same experiment, this time replicating at d = 2, we get the strange result that
β̂ = −0.015. The reason for this is quite simple, the extreme states for the systems
do not coincide. If we calculate the extreme states for region B using (3.1) and (3.2),
we get:
(4.5)

Trandom,aggregate =
[

4800 5200
5200 4800

]
Tminimumcost,aggregate =

[
7500 2500
2500 7500

]

while a single gravity model on the aggregate data L1 = L11 + L12, L2 = L21 + L22,
E1 = E11 + E12, E2 = E21 + E22, has the extreme states
(4.6)

Trandom,gravity =
[

5000 5000
5000 5000

]
Tminimumcost,gravity =

[
10000 0

0 10000

]

As a consequence of these calculations, it seems as if the workers in region B are
much less sensitive to distance. This, however, is obviously a fallacy. The real
reason for the difference between the two regions is a serious spatial mismatch
between workers and job opportunities in region B. If this is the case, very little can
be used to resolve performance. A single gravity model will carry a fundamental
mismatch to the system in question, and probably the only really satisfactory way
out of the problem is to collect data on the individual groups.

At d = 80 (km), we get perfect replication of the system if β = 0.01317. Replica-
tion, however, is unimportant. The primary objective of such models is to predict
changes in the system. Suppose that we plan to build a new road reducing the
distance to d = 60 (km). Using a standard gravity model with β = 0.01317 on the
aggregate data, this model predicts a change in the journey-to-work matrix
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(4.7) T80 =
[

7415 2585
2585 7415

]
→ T60 =

[
6879 3121
3121 6879

]

while the correct response under the given assumptions would be

(4.8) T80 =
[

7415 2585
2585 7415

]
→ T60 =

[
7239 2761
2761 7239

]

5. Regularity properties of distance deterrence functions

In this section we will consider the regularity of distance deterrence curves in
aggregated systems. We first consider such curves for non-aggregate standard
gravity models. In Figure 7 we show a typical collection of such curves.

20 40 60 80 100 120 d
0.2

0.4

0.6

0.8

1

D

FIGURE 7: A distance deterrence function for the standard gravity model

The populations and the employment opportunities are drawn randomly from uni-
form distributions on the interval [10000,100000]. All the curves have been con-
structed using β = 0.04 in the standard gravity model. It is interesting to note that
even if the β-parameters are equal in all these simulations, the systems nevertheless
exhibit a different response to distance. Examining the graphs in Figure 7, we see
that the curves are generally concave. At some occasions, however, the curves are
slightly convex at the origin. Using the construction in the appendix, it is possible
to verify that (we omit the details)

(5.1) Sign[D′′[0]] = Sign[(E2 − E1)(L1 − L2)]

Hence the curves need not be globally concave in general. The deflection from the
concave shape can, nevertheless, be expected to be very small. In testing 1000
curves drawn randomly from the distribution above, all of these turned out to be
concave whenever d ≥ 20. To extend this result to aggregate systems, we appeal to
the following result for the aggregate distance deterrence:

(5.2) D[d] =
∑N
i=1 Eimin

[
E1i
Ei ·

L2i
Li ,

E2i
Ei ·

L1i
Li

]
·Di[d]∑N

j=1 Ej min
[E1j
Ej ·

L2j
Lj ,

E2j
Ej ·

L1j
Lj

]
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In (5.2) D[d] is referring to the distance deterrence in the aggregate system, while
Di[d] refers to the distance deterrence in each subcategory. For a formal proof, see
the appendix. From (5.2) it follows that the aggregate distance deterrence function
is a convex combination of the distance deterrence functions of each subcategory.
Hence if all of these are concave, the same applies for the aggregate object. We
summarize the discussion above in the following principle:

REGULARITY PRINCIPLE 5.1

Aggregating a collection of subcategories where each subcategory can be replicated
by a standard gravity model, the distance deterrence function for the aggregate
system can be expected to be strictly concave at all moderate and large distances,
and close to linear at short range.

It seems quite unlikely that one can specify the shape of the curve beyond this point.
Given any globally concave, strictly increasing function F with F[0] = 0 and with
limd→∞ F[d] = 1, it is probably possible to backtrack the curve to find an aggregate
system of standard gravity models with D = F . Modeling distance deterrence, one
should then look for general families of functions that are able to replicate curves
of this kind. The basic principle in Section 3 can be applied again, and in this case
we suggest to use models on the form

(5.3) D[d] = 1−
K∑
k=1

αke−βkd

A desirable property of the model in (5.3) is that it is closed under aggregation.
Hence if every subcategory can be replicated by this model, the aggregated system
can be replicated by the same class of functions.

Further remarks

The general extreme state model in Thorsen et al. (1999) uses combinations of
one dimensional distance deterrence functions to model commuting in arbitrary
networks. An empirical study of this model is currently in preparation, and it seems
reasonable to conjecture that the above construction can enhance performance in
such systems as well.

Glenn et al. (2001) points to a different kind of misspecification of curves in models
for journeys-to-work. In modeling the commuting distance between two cities, one
usually applies the distance between the city centers. When the cities have a spatial
extension, however, the distance between the city centers do not coincide with the
average difference between internal and external commuting. Glenn et al. (2001)
suggests a simple correction formula to adjust for this effect. A correction curve
of this kind is shown in Figure 8.
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FIGURE 8: Geometric correction

To account for this kind of effect, we suggest to use a composite structure:

(5.4) D̂[d] = D[G[d]]

as a general model for distance deterrence. Due to the geometric correction, these
curves will exhibit a typical S-shape.

6. Some concluding remarks

In this paper we have studied the properties of a standard gravity model in aggregate
systems. A major problem with this model is that it is not closed under aggregation.
Hence if we aggregate a collection of non-interacting subcategories where each
subcategory can be replicated by a standard gravity model, the aggregate system
need not have a good replication by this model.

In homogeneous, well ordered systems we have demonstrated that one may still
obtain a fair replication by a standard gravity model. Based on the discussion in
Section 3, however, replication can be enhanced considerably if we replace the
deterrence function in the standard gravity model by a convex combination of
exponentials. Such a modification should be very easy to implement in almost any
version of the gravity model, and we suggest that this is something that empirical
researcher would like to test.

In skew systems one may still hope to enhance performance by convex combi-
nations. As is quite clear from the discussion in Section 4, however, a single
gravity model may be fundamentally misspecified in such system. If this is so, the
problem cannot be repaired by such simple means. This raises several questions
for empirical research.

The first line of questions is related to skewness: Is it possible to find regions with
skewness?, If so, to what extent is the system skew?, and most importantly: Do
skewness affect the replication?

The second line of questions is related to subsectioning: Is it possible to enhance
replication by a subsectioning of the system?, and: Can subsectioning be used to
reduce the spatial variation of the deterrence parameter?
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On the theoretical side, it would be of interest to consider alternative approaches.
Assuming that information of subcategories are needed to replicate the system, one
would like to collect as few such data as possible. The question is then if one could
find simple, aggregate quantities that are able to measure the degree of skewness.
Assuming that the system has some homogeneous structure, one might then be
able to formulate a theoretical model for the breakdown of the separate categories,
and hence maybe avoid excessive collection of information.

In Section 5, we have discussed the regularity properties of the distance deterrence
function in aggregate systems, and on the basis of this discussion we have suggested
a new model for these functions. This is particularly relevant to network models
like the one discussed in Thorsen et al. (1999). The proposed model offers a very
flexible functional form, and moreover, the model is closed under aggregation. It
would be quite interesting to see how this construction can be applied to empirical
research.

The discussion in Section 5 has an interesting connection to the result in Glenn
et al. (2001). In this paper the authors construct distance deterrence functions
from a microeconomic approach, and partition the system into a large collection of
subcategories. In each subcategory the workers apply for the job with the highest
wages net of commuting costs. Jobs are distributed evenly among the applicants.
This construction is as far as can be from a random utility maximization. Hence
it is of some surprise to observe that the mechanical response in the system is
exactly the same as with an aggregated system of gravity models, i.e., the distance
deterrence function can be expected to be globally concave.
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7. Appendix

In this appendix we will present the formal proofs for several of the technical parts
of the paper. To avoid too much crossreferencing, we will usually repeat the formal
statements included in the main text.

PROPOSITION 7.1

Assume that all dij = 0, i, j = 1, . . . , N. Then

(7.1) Ai = Li√∑N
k=1 Lk

Bj = Ej√∑N
k=1 Ek

satisfies (2.2).

PROOF

(7.2)
N∑
k=1

Bke−βdik =
N∑
k=1

Bk =
∑N
k=1 Ek√∑N
k=1 Ek

=
√√√√√ N∑
k=1

Ek =
√√√√√ N∑
k=1

Lk

Hence

(7.3) Ai = Li∑N
j=1 Bje−βdij

= Li√∑N
k=1 Lk

The second relation is proved similarly.
�

COROLLARY 7.2

For all β > 0, then

(7.4) lim
d→0+

TG =
{

LiEj∑N
k=1 Ek

}N
i,j=1

i.e., the commuting is determined by random choice in this case.
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DEFINITION 7.3

The transferring function fG for the gravity model is defined as follows:

If L1 ≤ E1, then fG : (0,min[L1, E2])→ R, with

(7.5) fG[x] = 1
2

ln
[

1
x
(L1 − x)(E2 − x)
L2 − E2 + x

]

If L1 > E1, then fG : (0,min[L2, E1])→ R, with

(7.6) fG[x] = 1
2

ln
[

1
x
(L2 − x)(E1 − x)
L1 − E1 + x

]

LEMMA 7.4

fG is a strictly decreasing function.

PROOF

We only consider the case L1 ≤ E1 and put g[x] = 1
x
(L1−ε)(E2−x)
L2−E2+x . It suffices to prove

that g is a strictly decreasing function. We differentiate to get
(7.7)

g′[x] = −(L1 + E2 − 2x)((L2 − E2)x + x2)+ (L1 − x)(E2 − x)(L2 − E2 + 2x)
((L2 − E2)x + x2

Since x < min[L1, E2], then L1+E2−2x > 0. All the other terms in the fraction are
trivially positive. Hence we get g′[x] < 0 for all x ∈ (0,min[L1, E2]). The case with
L1 > E1 is similar.

�

COROLLARY 7.5

fG has an inverse function f−1
G which is defined on the interval (−∞,∞).

PROOF

If L1 ≤ E1, it is straightforward to see that

(7.8) lim
x→0+

fG[x] = +∞ lim
x→min[L1,E2]−

fG[x] = −∞

and the other cases are similar.
�

We now define a matrix T[ε] as follows
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(7.9) T[ε] =
[

min[L1, E1]+ ε L1 −min[L1, E1]− ε
L2 −min[L2, E2]− ε min[L2, E2]+ ε

]

PROPOSITION 7.6

If ε = f−1
G [βd12], and TG denotes the standard gravity model, then

(7.10) TG = T[ε]

PROOF

We only consider the case L1 ≤ E1 and define

(7.11) A1 = εeβd12 B1 = L1 − ε
ε

e−βd12

(7.12) A2 = (L2 − E2 + ε)ε
L1 − ε e2βd12 B2 = 1

To verify that TG22 = T[ε]22, we consider

(7.13)

A2B2e−βd22 = (L2 − E2 + ε)ε
L1 − ε e2βd12 = E2 − ε

�
e2βd12 = (L1 − ε)(E2 − ε)

ε(L2 − E2 + ε)
�

βd12 = fG[ε]
�

ε = f−1
G [βd12]

All the other terms are trivial.
�
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COROLLARY 7.7

Let TG be a standard gravity model. Then for every β > 0 fixed, we have

(7.14) lim
d12→∞

TG =
[

min[L1, E1] L1 −min[L1, E1]
L2 −min[L2, E2] min[L2, E2]

]

Hence the standard gravity model has the same extreme states as the extreme state
model.

PROOF

This follows directly from (7.9) and Proposition 7.6, since limd12→+∞ f
−1
G [βd12] = 0

by (7.8).
�

The transferring function fG now offers a direct translation between the gravity
model and the extreme state model.

PROPOSITION 7.8

Let

(7.15) M = E1 + E2

min[L1E2, L2E1]

If D[d] = 1 −M · f−1
G [βd], then the standard gravity model TG coincides with the

extreme state model TD for all distances d12.

PROOF

Due to the balancing conditions, it suffices to prove that TG11 = TD11. Again we
only consider the case L1 ≤ E1. Note that this implies that L2 ≥ E2, and hence
min[L1E2, L2E1] = L1E2. From (2.5), (2.6), and (2.8) we get the equation

(7.16) L1 − ε = (1−D[d12])
L1E1

E1 + E2
+D[d12] · L1

Collecting terms we have

(7.17)
L1E2

E1 + E2
− ε = D[d12] · L1E2

E1 + E2

Using M = E1+E2
L1E2

and ε = f−1[βd12], we get D[d12] = 1−M · f−1[βd12]. The case
with L1 > E1 is similar.

�

As is easily seen from the previous proof, the construction goes both ways. Hence
we have proved the following translation principle.
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THEOREM 7.9

Let the constantM be defined by (7.15) and let fG be the function defined in Definition
7.3. If N = 2, then an extreme state model defined by (2.8) is equivalent to a doubly
constrained gravity model on the form

(7.18) Tij = AiBje−fG
[

1
M (1−D(d12))

]

Moreover, the distance deterrence function for the standard gravity model is given
by the expression

(7.19) D[d] = 1−M · f−1
G [βd]

PROPOSITION 7.10

Consider an aggregate system of J subcategories where each subsystem is determined
by a distance deterrence Dj[d], j = 1, . . . , J. Then the distance deterrence for the
aggregate system can be found from the expression

(7.20) D[d] =
∑N
i=1 Eimin

[
E1i
Ei ·

L2i
Li ,

E2i
Ei ·

L1i
Li

]
·Di[d]∑N

j=1 Ej min
[E1j
Ej ·

L2j
Lj ,

E2j
Ej ·

L1j
Lj

]
PROOF

Using (3.1) and (3.2), we can determine D[d] from the equation

(7.21)

J∑
j=1

L1jE1j

E1j + E2j
(1−D[d])+

J∑
j=1

min[L1j, E1j]D[d]

=
J∑
j=1

L1jE1j

E1j + E2j
(1−Dj[d])+

J∑
j=1

min[L1j, E1j]Dj[d]

If we simplify this expression using Ej = E1j + E2j , (7.21) is equivalent to

(7.22)

D[d]


 J∑
j=1

L1jE1j

Ej
−min[L1j, E1j]




=
J∑
j=1

(
L1jE1j

Ej
−min[L1j, E1j]

)
Dj[d]

Proposition 7.10 follows from this result, since

(7.23)
L1jE1j

Ej
−min[L1j, E1j] = Ej min

[
E1j

Ej
· L2j

Lj
,
E2j

Ej
· L1j

Lj

]

�
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