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Abstract

This paper explores similarities and differences between a com-
pound option and a two-period guarantee. A generalised compound
contingent claim that captures these two claims as special cases is
constructed. The underlying asset of the compound contingent claim
is a generalised simple contingent claim. Similar parities as the put-
call parity are derived for both these claims. Also several other claims
captured by the two general claims are revealed. We also show that
the derivation of a closed form solution for the market value of a com-
pound option under stochastic interest rates is likely to be non-trivial,
if possible at all.
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1 Introduction

Many seemingly different assets may in fact be more similar than they first
appear. In this paper our main goal is to point out similarities between a
compound option and a multi-period guarantee. Once the similarities are
pointed out, also some of the differences will be displayed.

Compound options were first analysed by Geske (1977) and Geske (1979).
A compound option is an option with another option as the underlying
asset. We limit our analysis to a call option written on a call option. The
underlying option is assumed written on a stock.

*Snorre Lindset is a research scholar at the Department of Finance and Management
Science at the Norwegian School of Economics and Business Administration. He would
like to thank Svein-Arne Persson for useful comments.



A multi-period guarantee is an asset that secures that the holder gets
the maximum of the return on the underlying asset and some minimum
guaranteed rate of return within each period. In this paper we focus, for
simplicity, on a two-period guarantee, see e.g., Miltersen and Persson (1999).
We assume that the underlying return of the guarantee is the return on the
stock in which the call option above is written on. It is straightforward
to generalise to a compound option that is written on another compound
option and so on. Also, generalising to guarantees lasting for more than
two periods is straightforward. However, these generalisations will make the
intuition harder to grasp and will not be necessary for our purposes.

To explore the similarities between these two claims, a general compound
contingent claim capturing both claims as special cases is constructed. To
this end we start by constructing a generalised simple contingent claim,
i.e., a claim that is written on primary traded assets such as stocks and
bonds, not other contingent claims. This asset has the necessary generality
to capture both a call option and a maturity guarantee! as special cases. To
construct the generalised compound contingent claim, we assume that there
exists a contingent claim written on the simple contingent claim described
above. This asset captures both the compound option and the two-period
guarantee as special cases. It puts us in a position where we can easily
see similarities between these two claims. It is our hope, since we have not
found any connections in the literature between the compound option, which
was first analysed in the literature some 25 years ago, and the relatively
newly analysed two-period guarantee, that this will shed some new light into
these two claims. Our analysis may also give an alternative introduction to
the theory of multi-period guarantees for the reader familiar to compound
options and vice versa.

Using different specifications for the two claims we construct, we find
that the claims also capture several other claims as special cases, not just
the call option, the maturity guarantee, the compound option, and the two-
period guarantee. Several of these are trivial in the sense that their payoffs
do not represent real-world contingent claims and can even be constants.
Some of the possible specifications lead to claims where we are not able to
derive closed form solutions for the market value. However, based on more
or less well-known results relevant for option pricing, we have pointed out
for what specifications we have been able to obtain closed form solutions.

An important difference between our framework and that of Geske (1977)
and Geske (1979) is that we work under stochastic interest rates. Although
this is in principle a trivial extension, it is interesting to notice that a closed
form solution for the market value of a compound option as analysed by
Geske (1979), i.e., a call option on a standard Black and Scholes call option,
is not trivially obtainable, if obtainable at all. This is caused by difficulties

! A maturity guarantee is effectively the same as a one-period guarantee.



concerning the exercise probability for the compound option.

From the put-call parity we know that there is a close relationship be-
tween a call option and a put option. The put option has a “mirror imaged”
payoff structure of what the call option has and vice versa. We therefore
denote the put option the mirror claim for the call option. By defining the
mirror claims for the two generalised claims, we show how to derive parities
for these claims. This is an issue also addressed in Haug (2002).

We have also picked five specifications of the generalised compound con-
tingent claim and given them a more thorough analysis.

The paper is organised as follows: In section 2 we give a description of
our economic model and some preliminaries. In section 3 a short compar-
ison of a call option and a maturity guarantee is given. In section 4 we
construct a generalised contingent claim. In section 5 a short comparison
of a compound option and a two-period guarantee is given. In section 6 we
construct a generalised compound contingent claim that is written on the
general contingent claim constructed in section 4. In section 7 some claims
that are special cases of the general compound contingent claim are given
a thorough analysis. The paper is ended in section 8 with some concluding
remarks.

2 The Economic Model and Preliminaries

We assume a continuous trading economy on the time interval [0, 7], for
some fixed horizon 7 > 0, and with no transaction costs. A filtered proba-
bility space (Q, F, T, P) is fixed, where 2 is the state space, F is a o-algebra,
F ={F,0<t<T}is a filtration where Fr = F and Fy = {0, Q}, where
@ is the empty set, and P is a probability measure. The o-algebra is gener-
ated by a d-dimensional, d > 1, Brownian motion, W;. We further assume a
complete market, i.e., there exists one unique equivalent martingale measure
Q, see e.g., Harrison and Kreps (1979).

Following the model of Heath, Jarrow, and Morton (1992), the instan-
taneous continuously compounded forward rate at time s as seen from time
t, t < s < T, under the equivalent martingale measure @, is given by

t s t
f(t,s) :f(O,s)—i-/O Uf(U,S)/ af(v,u)dudv—i-/o or(v,s)dW,,

where of(t,s) is the volatility function for the instantaneous continuously
compounded forward rate at time s as seen from time %, satisfying some
technical regularity conditions, see Heath et al. (1992). The short-term in-
terest rate is obtained by setting s equal to ¢, i.e., 7, = f(¢,t). The volatility
function is assumed deterministic, implying Gaussian interest rates. Under
deterministic interest rates we formally set o¢(v,u) = 0. We also assume
that there is a continuum of bonds that trade in the market.



We let the market value of the non-dividend paying primary traded se-
curities ¢, S}, be given under the equivalent martingale measure () by the
equation?

t t .
St = So—l-/ rvSfjdv—i-/ ogi(v)S,dW,,
0

where r;S} satisfies the integrability condition fg |rySi|dv < oo almost surely
for all . Here ogi(t) is the volatility function for the return on asset i and
satisfies the square integrability condition E[fg(asi (v)Sf,)Zdv} < oo (for
further details on integrability conditions, see e.g., Duffie (1996)). Also this
volatility function is assumed to be a deterministic function of time. This
class of assets will be referred to as stocks. For simplicity, when only one
stock is present, we write S} = S;.

We also assume that there exists an instantaneously risk-free asset, a
money market account, that accrues interest according to the short-term
interest rate, yielding a time ¢ market value of

t
M, = M, +/ roMydv, My =1, (1)
0

where .M, satisfies the integrability condition fot |ry My|dv < oo almost
surely for all £. The return on the money market account, under the equiva-
lent martingale measure (), over the time period from time T3 to 75 is given
by (see e.g., Miltersen and Persson (1999))

B = / rodv =~ F(0, Ty, Ty) + 503, +on, mm,

T T>
/ / of(v,u)dudW, +/ / o (v, u)dudW,,

where F'(0,T1,T5) is the time 0 forward price for delivery at time T} of a
zero-coupon bond maturing at time 75 and is given by

P(0,T5)

F0,T1,T5) = 0,1

where P(0,t) is the time zero market value of a zero-coupon bond maturing
at time t > 0. Here O'%T , 18 the variance of the return on the money
2741

market account over the time period from time 77 to T3 and is given by

T1 T2 T2 T2
UZ’TTTI :/0 (/ Uf(UaU)dU)2dv+/ (/ o f(v,u)du)?dv

T1 Tl

’In this paper it is sufficient that i € {1,2,...,6}.



and cr,—7y, 1, is the covariance between the return on the money market
account over the time period from time 0 to 77 and from time 77 to Ty and
is given by

CTy-T\ Ty = /OT1 (/le O'f(’U,U)dU) (/sz Uf(v,u)du)dv.

The return on the stock under the equivalent martingale measure () over
the same time interval is given by

T 1 5 T
ory—1 :/T (ry — 505(1}) )dv +/T os(v)dW,,
1 1

with variance

T2 T2 T2
agT = O'%T T2 os(v) of(v,u)dudv + ox(v)dv.  (2)
»—T1 b =Ty T v o

3 Options and Guarantees

Let us start by considering a standard call option and a maturity guarantee.
The terminal time T payoff for the call option is given by max (St — X, 0) for
some exercise price X € (0,00), while the terminal payoff for the maturity
guarantee is given by max(St, X), or, equivalently, max(Sy — X,0) + X. As
we can see, there is a close relationship between these two claims.

The call option gives the owner the right to receive one unit of the stock
by at the same time delivering X units of account, or, since the face value
of a zero-coupon bond is equal to one, X units of the face value of a zero-
coupon bond. From Merton (1973) we know that the market value of the
call option at time ¢ < T is given by

7T§ = Stq)(dl) - P(taT)X(I)(d2)7 (3)
where
S 1
ln(P(t,Yt‘)X) + iggT_t
d1 = )
O6r_¢
d2 = dl - O.(sT—t’

®(-) is the cumulative normal probability distribution, and agTit follows
from (2).

First we notice that the option only will be exercised if the condition
St > X is satisfied. The market value at time ¢ can be interpreted as
consisting of two parts; the first, S;®(d;), is the time ¢ market value of the



stock multiplied by the probability of receiving the stock at time T'. This
probability is under the equivalent probability measure where the stock price
is used as numeraire. The second, P(t,T)X ®(dy), is the time ¢ market value
of delivering X units of the face value of a zero-coupon bond multiplied by
the probability (under the equivalent probability measure where the bond
price, P(t,T), is used as a numeraire, i.e., the forward probability measure,
see e.g., Jamshidian (1989)) that the face valued has to be delivered.

Using the symmetry properties of the normal probability distribution, it
follows from (3) that the time ¢ market value of the maturity guarantee is
given by

md = $,®(dy) + P(t,T) X B(—dy).

From the above we conclude that the main difference between a call
option and a maturity guarantee is that the call option gives the holder the
choice between receiving one unit of the stock by delivering X units of the
face value of a zero-coupon bond or nothing, while the maturity guarantee
gives the holder the right to choose between receiving one unit of the stock
or X units of the face value of a zero-coupon bond at no cost. Intuitively,
we can think of it as being free to “exercise” the maturity guarantee while
it is costly to exercise the call option. However, this is paid for up front
since the maturity guarantee has a higher initial market value than the call
option.

4 A Generalised Simple Contingent Claim

Let us now construct a generalised contingent claim that captures the two
claims analysed above as special cases. We denote this a simple contingent
claim. By a simple contingent claim we mean a contingent claim that is
only a function of primary traded assets such as stocks and bonds, not other
contingent claims.

There are many different ways in which such a simple contingent claim
can be constructed. We let the final time T payoff be given by

agr = max(AT - BT, CT) (4)

We further let each of Ar, Br, and Cr be equal to one of the following:

1. zero,
2. a strictly positive constant, or

3. a positive valued random variable.



By a “positive valued random variable” we mean a linear? function of the
market value of a primary traded asset.

Though the claim in (4) may seem somewhat ad-hoc, it does in fact do
the job of describing a call option and a maturity guarantee. To obtain a
call option, let Ap = Sy, By = X, and Cp =0, i.e.,

gr = max(St — X,0).
If instead By = 0 and Cr = X we have that
gr = max(St, X),

and the maturity guarantee is obtained as a special case.
In general, the time 0 market value of the simple claim can be calculated
in the following way

go = EQ |:€7ﬁT maX(AT — Brp, CT)]
= ApQ1(A) — BoQ2(A) + CoQs(A), (5)

where Ay = Eg [efﬁTAT], By = Eq [efﬁTBT}, and Cy = Eg [efﬁTCT] A
We define @)1, @2, and Q3 by

d@1 e BT Ap

W@ w[eoar]

dQs B e BT Br

aQ Eq[e=orBr|
and

dQs e Pr0p

% a EQ[efﬁTC’T}‘

Here A = {A7 — By > Cr} and A is the complement to A.
For a constant Ap we define Q1 = @7, for By constant Q2 = Qr,
and finally for C'r constant Q3 = Qr, where Q7 is the forward probability

.. e PT Ap — — eiﬁTBT =
measure. Similarly, we define Tale PrAg] = 0 for Ap =0, ol PT B = 0

_ e PTCr
for By = 0, and Fale=P7 1]

Br = 0. (5) would then be reduced to AgQ1(A) + CoQ3(A).

=0 for Cr = 0. As an example, assume that

3A linear function is a function on the form y = az for some non-zero constant a.

“Notice that these definitions are only used for notational simplicity and do not neces-
sarily mean that e T Ar, e PT By, or e T Cr are Q@-martingales. For instance, if A7 is
a constant, say, A, it follows trivially that Ao # A.



So far we have considered two possible specifications of the claim in (4);
a call option and a maturity guarantee. However, also several other claims
can be constructed by choosing other specifications. A natural question that
then arises is the following: For what specifications of the claim in (4) do
there exist a closed form solution for the market value?

The usual definition of a closed form solution is that it is a (determinis-
tic) function that takes its arguments from a set of known parameter values
and returns a scalar; the market value. This means that there can be no un-
known parameters in the pricing formula such as future stock prices or level
of interest rates. All the arguments used at time ¢ have to be F;-measurable.
Even though, in a Gaussian setting, the cumulative normal probability dis-
tribution has to be approximated by some numerical integration routine,
we follow tradition and also denote an expression for the market value of a
claim containing a cumulative normal probability distribution a closed form
solution.

In total, it is possible to construct 3% = 27 different combinations for the
claim in (4), not all of which are equally interesting. In Table 1 - 3 we have
showed the possible specifications. (A7 = A means that Ay is a constant
and Ay = A that A is a random variable. The same also applies for By and
Cr, with the obvious change of notation. “*” indicates no obtainable closed
form solution.)

The abbreviations in Table 1 - 3 define what the market value of the
different specifications of the general claim are equal to. They are defined
as follows:

b) = a constant.

¢) = a positive valued random variable.

2
|

a call option.
= a put option.

f) = an exchange option.

a maturity guarantee.

j) = a spread option + b).
k) = the maximum of two assets.

1) = a spread option + b) — ¢).



Table 1: Specifications for the simple claim g for C7 = 0.

Ar =0 Ar=A Ap=A
a) b c
Br =0 max(0,0) max(A4,0) max(A, 0)
a) a) or b) d)
Br = B | max(—B,0) | max(4 — B,0) | max(A — B,0)
a) e) f)
Br = B | max(—B,0) | max(4 — B,0) | max(A — B,0)

Table 2: Specifications for the simple claim g for Cp = C.

Ar =0 Ar=A Ap=A
b) b f
Br =0 max(0, C) max(4, C) max(A4, C)
b) b) i)

Br =B | max(—B,C) | max(A— B
. ) b) or h)
Br = B | max(—B,C) | max(A— B

=2

Ar =0 Ar=A Ap=A
c) g f
Br =0 max(0, C) max(A4, C) max(A4, C)
c) c)or g) m)*
Br =B | max(—B,C) | max(A— B,C) | max(A — B,C)
c) 1)* n)*
Br = B | max(—B,C) | max(4 — B,C) | max(A — B,C)

m) = a spread option + c).
n) = an exchange option to deliver By + Cr to receive Ap + c).

If two (or three) of Ap, By, and Cr are equal (or are linear functions
of the same random variable), the definitions above may not apply because
the claim degenerates to another claim. Notice also that the spread option
is defined as a call on the spread.

4.1 A Parity for the Simple Contingent Claim

Using the put-call parity, the market value of a call option can be expressed
in terms of the market value of a put option, the underlying asset, and the
present value of the strike price. In this subsection we find a parity for the
simple contingent claim given in (4).
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Figure 1: The terminal payoff for a call and a put option with exercise price X.

Consider the call and the put option in Figure 1 with the market value
of the underlying asset on the z-axis and the terminal payoff on the y-axis.
When the market value of the underlying asset is greater than X, the payoff
of the call option is given by a 45°-line. Otherwise, the market value is given
by a horizontal line at y = 0. Now, consider placing a vertical two-sided
mirror at x = X. Looking in the mirror from right to left, we see a 45°-line
rising away from us, i.e., the payoff of a put option when the market value
of the underlying asset is less than X. On the other hand, looking in the
mirror from left to right, we see a horizontal line at y = 0 going away from
us, i.e., the payoff of a put option when the market value of the underlying
asset is greater than X. Because the put option has this “mirror imaged”
payoff structure of the call option, we will in the following refer to the put
option as the mirror claim for the call option and vice versa.

Definition 1. For a claim with terminal payoff® max(Zy,Zs) = (71 —
Z3)T + Zs, we define the mirror claim as the claim with terminal payoff
—min(Zl, ZQ) = —(Zl — Zg)i — Zy = max(—Zl, —ZQ).

The terminal time T market value of a call option written on a stock
with market value Sy is given by max(Sy — X,0). From Definition 1 we
have that the market value of the corresponding put option is given by
—min(S7 — X, 0). Alternatively, the terminal market value of the put option
can be found by changing signs (i.e., by multiplying by minus one) inside
the max-operator in the expression for the terminal market value of the

"Let (Z)* = max(Z,0) and (Z)~ = min(Z, 0), for some Z € R.

10
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Figure 2: lllustration of the terminal cash flow for the claim max(3Sy — 15,0.7557)
and for the mirror claim max(15 — 3St, —0.7557).

call option. This gives the more familiar expression for the terminal market
value of the put option, i.e., max(—1-Sp—(—1)X,—1-0) = max(X — St,0).
Using Definition 1 on the simple claim, we find that the terminal market
value of the mirror claim is given by ¢7' = max(Br — Ap, —C7). This is
illustrated in Figure 2 for the simple claim and the mirror claim for Ap =
3ST, BT = 15, and CT = 0.75ST.
Let ¢g; and g;" be the time ¢ market value of the simple claim and the

mirror claim, respectively. Further, define A; = Eg [e* I ’"“d”AT}, B, =
T T
EQ |:67 J; r”dUBT} ,and Cy = EQ |:67 J; T”dUCT] .
Theorem 1. For the simple contingent claim, we have the following parity
gt =g;" + A — By + Cy.

Proof. In the absence of arbitrage, this follows since both the left and the
right-hand side of the parity have the same terminal payoff. U

Another way to justify this interpretation of the mirror claim is the
following rewriting (using the terminal market values)

gr = max(Ar — Br,Cr)
= max(Ar — Br — Cr,0) + Cp
= max(BT — AT, —CT) + A7 — Br + Cr.

11



5 Compound Option and Two-period Guarantee

Let us now consider two somewhat more complicated claims. First we con-
sider a compound option (see e.g., Geske (1979)), i.e., a call option with
another call option as the underlying asset. We assume that the compound
option can be exercised at time 77 at a cost of X; and that the underlying
option is written on a stock and can be exercised at time 75 > T} at a cost
of X5. Let 7rtl be the time ¢ < T market value of the compound option. We
then have that

T, (7€) = max(r§, — X1,0),

where 7¢ is the underlying call option with time 77 market value 77, . Thus,
the compound option can be interpreted in the same way as the call option;
it gives the holder the right to acquire one unit of the underlying asset by
delivering X units of the face value of a zero-coupon bond.

A two-period guarantee secures that the holder receives the maximum
of the return on some underlying asset and some minimum guaranteed rate
of return in each of the two periods. Assume that the minimum guaranteed
rate of return in period i, i € {1,2}, is given by g;. If the guarantee is
written on the return on the stock, the terminal payoff is given by

T = max(&, ety - max(E, e9?).

So St

Sty
Sty
antee over the time period from time 77 to T and where the initial amount
to accrue interest is normalised to one. The time 77 market value of the

two-period guarantee is therefore equal to

ST,
7'(';’{9(71'9) = maX(S—OI, edt) - W%l,

The expression max(=2,e92) is the same payoff as that of a maturity guar-

where 79 is the maturity guarantee and W:gpl is the time 77 market value of
the maturity guarantee.

The interpretation of the two-period guarantee is somewhat different
than the interpretation of the maturity guarantee. The two-period guaran-
tee gives the holder the opportunity to choose between two different quanti-
ties (one of them Fr,-measurable) of the underlying asset (i.e., the maturity
guarantee), whereas the maturity guarantee gave the holder the choice be-
tween one unit of the underlying asset and X. This choice can be made at
time T} at no cost. Comparing this to the compound option, we see that
also the holder of the compound option can choose between two different
quantities of the underlying asset (i.e., the call option); one or zero units,
and if the holder chooses to receive one unit, it comes at a cost.

12



If we instead think of the maturity guarantee as offering the holder the
choice between a stochastic (g—g) and a deterministic (e?) number of units of
account, where one unit of account is equal to 1, the two-period guarantee
is almost identical to the maturity guarantee. The main difference is that
for the two-period guarantee one unit of account is equal to 7'('%1.

The above shows that also the two-period guarantee can be interpreted
as a compound contingent claim, just as the compound option can. This
feature does not seem to have been recognised in the existing literature
on multi-period guarantees. In the next section we construct a generalised
compound contingent claim that captures these two claims as special cases.

6 A Generalised Compound Contingent Claim

We will now, as for the simple contingent claim in section 4, construct a gen-
eralised compound contingent claim that captures the compound option and
the two-period guarantee as special cases. By a compound contingent claim
we mean a contingent claim that is written on some other contingent claim.
In fact, we let the simple contingent claim in section 4 be the underlying
asset.

Consider now a claim with the following time 77 market value

le (g) = max(ang - Ka 'Yng)a (6)

where each of «, v, and K is equal to either zero, a strictly positive constant,
or a positive valued random variable (i.e., the same possibilities as for A,
Br, and C7 in section 4). Again, the claim is somewhat ad-hoc; though it
has the necessary generality to capture the compound call option and the
two-period guarantee as special cases. To show this, let a = 1, K = Xj,
v =0, and gr, = 7y, . This gives

fri(g) = max(rg, — X3,0),

and is equal to the time T} market value of a compound call option. If
Sty

instead a = <o K=0,v=¢€9", and g7, = W:gpl, we get
ST ST
fri(g) = maX(S—(;W:grlaeglﬁzgrl) = maX(S—;,egl) L

and this is equal to the time 77 market value of a two-period guarantee.

Using the results in section 4, changing the maturity date for the simple
claim from time T to T5, and valuing the claim at time 77 instead of at time
0, the market value can be written as

le} - BTlEQ2 |:1A2

le} + CTIEQS [1/12

ar, = ATl EQl |:1A2 le]v (7)

13



where Ay = A and A, is the complement to As. The time 0 market value
of the compound contingent claim can be written as

folg) = Eq|e "™ max(agr, — K, vgn)]

Define
ady = Eg -efﬁTlaATl},
aBy = Eg -e_ﬁTlaBTl],
aly = Eg -efﬁTlaCTl],
Ky = Eole™nK]|,
YAy = Fgle PmiyAn,
7By = Eg -efﬁleBTl],

and

7Co = EQ[e_’BTlfyCTI]

Define further the following Radon-Nikodym derivatives

dQs e Pmi oA,

dQ Eq [0, ozATl- ’
dQs elﬁTl aBr, -
Q Eq -efﬁTl aBTl- ’
dQe e aCr, -
Q Eq [e=fn, aC’Tl- ’
dQy e__fBTl K _
iQ ~ pylern K|
Qs _ e PnyAp

aQ Eg [ =51, ’YATJ ’
dQ _ e PmyBy

aQ Eg [0 61, W’BTl] ’

14



and

dQ10 e PriyCry

aQ Eq [6—/3T1 'YCTJ '

In any of the cases where the denominator in the expressions for the Radon-
Nikodym derivatives equals zero, we define, as in section 4, the Radon-
Nikodym derivative to be equal to zero.

Combining the above, the time zero market value of the compound con-
tingent claim can be written as

folg) = aAoQa(A1 N Az) — aByQs(A1 N A2) + aCyQe(Ar N Ay)
—KoQr (A1) +740Qs (A1 N Ag) — vBoQe (A1 N As)
+7CoQ10(A1 N Ay), (8)

where A; = {agr, — K > vgr,} and A, is the complement to A;.

To determine the market value of the compound contingent claim we
need to be able to determine the exercise probabilities, under the appro-
priate probability measures, for the claim under consideration. This is the
same as saying that we need to determine for what values of the underlying
asset(s) the claim will be exercised. For the compound contingent claim this
means that we must be able to determine for what value(s) of the underlying
asset(s) the following inequality holds with equality

agr — K Z YTt - (9)

We know from the discussion on page 8 that we must be able to determine
when (9) holds with equality based on the information available at time
7Zero.

As a first example, consider the compound option analysed by Geske
(1979), i.e., a call option on a call option under deterministic interest rates.
(9) then becomes (where d; and dy are “adjusted” to time 71)

ST, ®(dy) — P(Ty,T5) Xo®(dy) > X7, (10)

where the left-hand side of the inequality in (10) now is the time 77 market
value of a call option maturing at time T > Tj. Since the call option is
strictly increasing in the market value of the underlying stock, it follows
by the intermediate value property® that there exists a stock price s* that
makes (10) hold with equality for all X; € (0,00), and the probabilities for
the compound option being exercised can then be calculated.

Consider now the setting in this paper, i.e., stochastic interest rates.
Then there is no longer one unique s* for each Xi, but several, each as a

6See e.g., Rudin (1976) Theorem 4.23.
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function of the Fr,-measurable random variable P(7T7,T>). This complicates
matters quite considerably since there does not seem to exist any trivial
relationship between the stock price and the bond price that can be used
to determine the exercise probabilities for the compound option. Hence,
a closed form solution for the market value of a compound option in a
stochastic interest rate framework does not seem to be easily obtainable.
Searching the literature, the only work on compound options and stochastic
interest rates that we have found is in Geman, El Karoui, and Rochet (1995),
but their analysis seems flawed in that they assume that there exists a unique
Fo-measurable s*.

If the holder of the compound option instead of delivering X units of
the face value of a zero-coupon bond for exercising it at time 77 could deliver
X1 units of the zero-coupon bond maturing at time Tb, i.e., X1 P(T1,T5),
(10) could be simplified to (the only difference is that the maturity date for
the bond delivered is changed from time T} to T»)

Ry, ®(dy) — Xo®(do) > X, (11)

% can be interpreted as the market value of the under-
lying asset of a call option with zero interest rates (see e.g., Carr (1988)).
Again using the fact that a call option is strictly increasing in the market
value of the underlying asset, it follows that there exists a unique R* that
makes (11) hold with equality. Hence, the probabilities for the compound
option being exercised can then be calculated.

It seems like if the rewriting above (and similar ones) is possible, it
will also be sufficient for the derivation of a closed form solution, i.e., the
rewriting that makes it possible to calculate the exercise probabilities for the
compound option. However, since we have not tried every possible approach,
we cannot claim that it is necessary to be able to perform such a rewriting
for there to exist a closed form solution.

For what specifications of the compound contingent claim do there exist
a closed form solution? First, for g € {a),b),c)} (see Table 1 - 3) the claim
f(g) is not a compound contingent claim, but at best a contingent claim, and
we will therefore not give any attention to these specifications in this section.
Since there does not exist a closed form solution for the simple claim when
g € {j),}),m),n)}, we will not be able determine when (9) holds with equality,
hence, we are not able to find a closed form solution for the market value of
the compound contingent claim. It turns out that g € {d),e),f),g),h),i),k)}
are quite similar.

When the simple claim falls into the categories d), e), and g), the time
T, market value can be written on the form

where Ry, =

ar, = Z‘:STlé((pl) + P(TlaTQ)XQ(QD?)’
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for the categories f) and k)

ar, = :l:STl(I)(‘pl) + VTl(I)(‘p?)a

and, finally, for the categories h) and i) as

gr, = £S1,®(1) £ P(T1, To) X ®(p2) + P(T1, T2)K.

From now on we define S7; as the market value of the first asset and
P(Ty,Ty) and Vr, as the market value of the second asset. Here K is a
constant. (1 and @y will typically not be the same across the different
specifications, but it will not be necessary to specify them any closer here.
Using the definitions and descriptions below, we have in Table 4 - 6 showed
for what specifications of the compound contingent claim in (6) the market
value can be obtained in closed form solution.
The abbreviations in Table 4 - 6 are defined as follows:

a’) = 0.

b’) = a constant number of g.

¢’) = a constant number of call options on g.

d’) = exchange K to receive a constant number of g - solvable if K is a

function of the second asset.
e’) = a random number of g.
f’) = a call option on a random number of g.

g’) = exchange K to receive a random number of g. Solvable if « is a
function of the first asset and K is a function of the second asset.

h’) = a > v = a given number of the Geske (1979)-option + b’), otherwise
b").

)=a<y=D),a>y=4d) +b)if K a function of the second asset,
otherwise not solvable.

j’) = the maximum of a random and a constant number of g.

k’) = the maximum of a random number of g subtracted a constant and a
constant number of g.

I’) = the maximum of a random number of g subtracted a random variable
and a constant number of g.

m’) = the maximum of a constant number of g subtracted a constant and
a random number of g.

17



Table 4: Specifications for the claim f(g) for v = 0.

a=0 a=a a=aoa
a’) b’) e’)
K=0 max(0,0) max(agr, ,0) max(&gr, ,0)
a?) C?)* f?)*
K =K | max(—K,0) | max(agr, — K,0) | max(agr, — K,0)
) a’) ) g)
K =K | max(—K,0) | max(agr, — K,0) | max(agr, — K,0)

Table 5: Specifications for the claim f(g) for v = 7.

b’) b’) i)
K=0 max(0, ygr, ) max(a&gr, , yg1, ) max(&gr, , Y9, )
~ b7_) h:) j Kk * B
K =K | max(=K,%gr,) | max(agr, — K,5gr,) | max(agr, — K,%gr,)
~ b’) V) DR
K = K | max(=K,qgr,) | max(agr, — K,ygr,) | max(agr, — K,7gr,)
Table 6: Specifications for the claim f(g) for v = 4.
a=20 a=« a=a
e’) i) o)
K=0 max(0, ygr, ) max(agr , Y91, ) max(agr, , Y97, )
_ e) m’)* - p)*
K =K | max(—K,qgr,) | max(agr, — K,9gr,) | max(&gr, — K,7gr,)
e’) n’)* q’)*
K = K | max(~K.3gr,) | max(agr, - K.7gr,) | max(agr, — K. 7gr,)

n’) = the maximum of a constant number of g subtracted a random variable

and a random number of g.

0’) = the maximum of two random numbers of g.

p’) = the maximum of a random number of g subtracted a constant and a

random number of g.

q’) = the maximum of a random number of g subtracted a random variable

and a random number of

As in section 4, the above may not apply if two or more of the variables

g.

coincide or are linear functions of the market value of the same asset.
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6.1 A Parity for the Compound Contingent Claim

We will in this subsection derive a parity for the compound contingent claim.
The mirror claim for the compound contingent claim has the following
time T market value

fYr‘rll (g) = ma'X(K — QgTy, _'yng)'

We now define the following for t < T3, K; = Eq [e* i T”d"K}, agy =

T T
Egle li'mdvagy |, and vg, = Eq e*ftl’"“d“vgn]

Theorem 2. For the compound contingent claim, we have the following
parity for t < Ty

fi(g) = f{"(9) + age — K¢ + vg:.

Proof. The left and the right-hand side of the parity have the same time T}
market value, and the result follows therefore in the absence of arbitrage. [

7 Other Claims Captured by (6)

In this section we give a closer analysis of some of the claims captured by
the general claim in (6). The market values are found using the general
formula in (8). In the proofs we have for simplicity only taken into account
the terms in (8) that are non-zero.

7.1 A Compound Exchange Option

An exchange option seems first to have been analysed by Fischer (1978)
and Margrabe (1978). This is a contingent claim that gives the holder the
option to exchange a given number of units of one assets in return for one
unit of another asset, say, deliver X units of an asset with market value S%
to receive one unit of an asset with market value St.. Carr (1988) analysed
a compound exchange option, i.e., an option to exchange a given number of
units of an asset to receive one unit of an exchange option.

Consider the following specification of (6): Ap, = S:},z, Br, = XQS%2,
Cr,=0,a=1, K = Xls%l, and v = 0. This gives the same payoff as the
compound exchange option.

Proposition 1. (Carr (1988)) The time 0 market value of an exchange
option on an exchange option is given by

folg) = Sy®(ds,da, p) — X2S3®(ds — v(T1),ds — v(T), p)
—X1S5®(ds — v(Th)),

19



where

d =
3 U(Tl) )
In(=32,) + Lo2(T
o I+ b
4 - ’U(TZ) ’
_ o(Th)
IO - ’U(TQ)’
Sl
Ry = 35
0 Sga

(T = /T (72 (0) = 2051 (V)02 (0) + 722 (0) ) o

®(a,b,p) is the cumulative bivariate normal probability distribution evalu-
ated at the points a and b with correlation p, and R* is the critical ratio of
St

equal to X4 S’%l.

that makes the time Ty market value of the underlying exchange option

Proof. The market value can be found using (8). For the compound ex-
change option it follows that adg = S’&, aBy = XgSg, and Ko = Xng.
The three probability measures (4, 05, and ()7 are defined by the Radon-
Nikodym derivatives

Q4 — 2 Jo % (0)dv+ [ 751 ()W,
dQ
and
Qs _ dQr _ ¢ 5 Jo 022 (v)dv+[§ 052 (v)dWs
dQ  dQ
From this we get that

fo(g) = SgQa(A1 N A2) — X2S3Q5(A1 N A2) — X1S5Q7 (A1),

where A; = {7% > Xls%l}, Ay = {Sp, > XgS%z}, and 779 is the time T3
market value of the underlying exchange option. The result then follows. [

It is interesting to notice that the result in Proposition 1 that is derived
under stochastic interest rates is (if ogi(v) is time independent) identical
to the result in Carr (1988) where the result is derived under deterministic
interest rates. This is in line with the comment in Carr (1988) that “...there
is no presumption that the term structure of interest rates be flat or even
known.”

Carr (1988) analysed several claims that can be shown to be special
cases of his formula and different interpretations of the compound exchange
option. All these claims and interpretations are of course also captured by
the claim in (6).
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7.2 An Option on a Maturity Guarantee

Another version of a compound contingent claim is the following (this is, to
the best of our knowledge, a claim that has not previously been analysed).
Assume that one at time T has the right to exchange X; units of a zero-
coupon bond maturing at time T for one unit of a maturity guarantee
maturing at time 75. The compound contingent claim in (6) and this claim
are seen to coincide when using the following specification: A7, = S,
BT2 = 0, CT2 = Xg, o = 1, K = XIP(Tl,TQ), and Y= 0.

Proposition 2. The time 0 market value of an option to exchange X
units of a zero-coupon bond maturing at time To for one unit of a maturity
guarantee maturing at time To is given by

folg) = So®(ds,ds, p) + X2P(0,12)®(d5 — 0y, —ds + o7, —p)
—le(o, TQ)(I)(dg, — O'RT1 ),
where
In(72) + 50%,
ds = ,
O Ry,
S 1 2
dg = 1n(X2P(%7T2)) + §U5T2
Tbr, ’

T T3 T T,
UIZ’ETI = /0 (/ Uf(U,U)dU)ZdU—F?/O Us(v)/ o (v, u)dudv
Ty
+/ o2 (v)dv,
0

p = COV(]H(RTI),5T2) . O'RT1
ORr, Oor, Tbp,

Ry = %, and R* is the critical ratio % that makes the time T
market value of the maturity guarantee equal to X1 P(Ty,Ts).

Proof. The time 0 market value can be found using (8). For the exchange op-
tion on the maturity guarantee it follows that Ay = Sy, aCy = XoP(0,Ts),

and Ky = X1 P(0,T5). The probability measures Q4, Qg, and Q7 are defined
by the Radon-Nikodym derivatives

dQa _ 1 jt o2 (vt [ os(v)aw,
dQ
and
dQe _ @ _ 67% fot(fT2 D'f(’U,’U.)d’U.)QdU*fOt fUT2 0§ (v,u)dudW,

aQ ~ dQ ’
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respectively. It then follows that

fU(g) = SOQ4(1A1QA2) +X2P(07T2)Q6(1A1ﬂf12) _XIP(OvTZ)Q7(1A1)7

where A1 = {Ry, > R*}, Ay = {Sr, > X»}, and Ay is the complement to
As.

Consider now the inequality (where d; and ds are “adjusted” to time T7)
ST, ®(d1) + XoP(Ty,To)®(—dy) > X1 P(Th, Ts). (12)

The left-hand side of (12) is the time 77 market value of the underlying
maturity guarantee and the right-hand side is the time 7} exercise price for
the compound contingent claim. Dividing through by P(Ty,Ts), we get

Ry, @(dy) + Xo®(dy) > X;. (13)

That there exists an R* that makes (13) hold with equality follows since
the left-hand side of (13) can be thought of as the time 7 market value

of a maturity guarantee with Ry, = % being the market value of the
underlying asset and with zero interest rates. The market value of this claim
is strictly increasing in Ry, and there does therefore exist a solution to (13),
i.e., a parameter R*.

The result then follows. O

7.3 Instantaneous Compound Contingent Claims

We now analyse a type of contingent claims that we have not found previ-
ously to been treated as compound contingent claims. For the assets we have
in mind here, the two exercise dates, T7 and T5, coincide and are termed T'.
These claims do not exactly fit into our general claims. However, replacing
the max-operator in the expression for the simple claim by a min-operator,
things work out fine.

Consider first a capped call option, i.e., a contingent claim that gives the
final time T payoff

fr(g) = max(min(St, Xs) — X1,0) (14)
= max(—max(—S7,—X3) — X1,0),

where we assume that Xo > X7 > 0. The expression in (14) can be rewritten
as

fr(g) = max(St — X1, max(Sy — X2,0)) — max(Sy — X»,0)
= max(S — X1,0) — max(Sy — X»,0),

since Xo > X;y. This is the difference between two call options, and from
section 4 we know that the market value is easily obtainable in closed form
solution (corresponds to the case denoted d) in Table 1 - 3).
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This compound contingent claim can be obtained as a special case of (6)
by using the following specification: Ar = Sy, Br =0, Cr = X5, a =1,
K=X;,and y=0.

Another compound contingent claim, though somewhat similar as the
one in (14), is a call option on the minimum of two assets and has been
analysed by Stulz (1982) and Johnson (1987). This claim has the terminal
payoff

fT(g) = max(min(s%a S%) - X, 0)

The specification for the claim in (6) that corresponds to a call option
on the minimum of two assets is as follows: Ap = S%, Br=0,Cr = S%,
a=1, K=X,and v=0.

7.4 A Random Number of Call Options

We end this section by considering a claim that is captured by the general
claim in (6) but that is not a compound contingent claim. Assume that we
at time 7T will receive a random number of call options, more precisely S,
units. This could for instance be some sort of a bonus mechanism for the
employees. Instead of using more traditional stock options as an incentive,
we could strengthen the incentive by also making the number of call options
depend on the development in the stock price. This is a sort of a quanto
option, see e.g., Reiner (1992).

This claim is obtained by the following specification: Ap, = St,, By, =
X,Cr,=0,a=_57, K=0,and v =0. What is the value of such a claim?

Proposition 3. The time 0 market value of the claim with time Ty payoff
St, max(St, — X,0) is given by

S, 2
Jo(0) = Pt B(d) - SF (0,1 Ty) Xe 0101 8(ay),
where
; ln(%) + %agTQ + o5, + cov(dr,—1y,07,)
7T = 3
Oor,
g - ln(%) + %U(?TQ — O4p,—07; — Cov(de—T1’5T1)
8 06T2 )
and

T T
cov(dry—1y, 01 ) = ey 1 +/ 05(1))/ of(v, u)dudv.
0 T
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Proof. From (8) it follows that
Ay = 2o
aAQ T)

and
aBy = SoF (0, Ty, Ty) X e~ V021,01,

The exercise set for this claim is given by 4 = {Sp, > X}. Using the
Radon-Nikodym derivatives

dQ4 _ STI STQ/MT2
dQ EQ |:ST1 ST2/MT2]

and
dQs _  Sry /Mr,
dQ Eq [STI /MTz]

it follows that the market value can be written as

S0)? & _
folg) = %e "7 Qa(A) — SoF (0,T1,Tp) Xe~ “V0T-m01) Qg (A).

The result then follows. O

Another interpretation of this claim can be obtained by replacing a =
St, with a time T5 currency exchange rate, say, Yr,, and then by interpreting
the call option as an option on a stock in a foreign economy. By arbitrage
arguments, it is easily seen that the time 0 market value of such a claim is
equal to Ypgg, where gy now is the time 0 market value of the call option
denoted in the foreign economy’s currency.

8 Conclusions

We have in this paper constructed two general contingent claims. The first
a simple claim that is written on primary traded assets. Among the claims
that were captured by this claim, special attention was given on a call option
and a maturity guarantee. The second was a compound contingent claim
that was written on the simple claim. First the focus was on the similarities
between a compound option and a two-period guarantee. The analysis also
showed that the market value of a compound option under stochastic interest
rates is not easily obtainable. In addition, also a few of the other claims
captured by the general compound contingent claim were given a deeper
analysis. Among these, the compound exchange option analysed by Carr
(1988) was rediscovered, but this time under stochastic interest rates.
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