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ABSTRACT. In this paper we will consider gravity models for journeys-to-work. In

applications of the theory it is sometimes assumed that the parameters in such models

are fixed. We will provide examples to show that this is not always a reasonable

assumption, for instance when the model is applied to predict how changes in the road

transportation network influence commuting flows. Models where the parameters are

subject to change usually comply with C-efficiency and random utility theory.

1. Introduction

Economic evaluations of investments in transportation infrastructure in general call
for predictions on how traffic flows are affected. Most commonly such predictions
are based on models belonging to the gravity modeling tradition. Consider the
following doubly-constrained version of a gravity model:

(1.1) TGij = AiBje−βdij i, j = 1, . . . , N

(1.2)
N∑

k=1

TGik = Li
N∑

k=1

TGkj = Ej i, j = 1, . . . , N

(1.3)
N∑

i=1

Li =
N∑

j=1

Ej

Here TGij denotes the number of travelers from origin i to destination j, see Section
2 for definitions of the various other symbols. This doubly-constrained model
formulation is constructed for trip distribution problems. For a discussion on the
theoretical foundation of this model, see for instance Erlander and Stewart (1990)
and/or Sen and Smith (1995).
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As a first step the model is normally used to calibrate the parameter β from obser-
vations representing the current state of the system. This parameter is traditionally
interpreted to reflect how individuals in general respond to distance in the relevant
geography, and the model offers an explanation to the observed traffic flow pattern.
In many applications of the model, however, the problem is to predict how the
traffic flow pattern responds to a specific exogenous change in the system. The
prediction of a new state is then based on the assumption that the parameter
β is autonomous to the exogenous change. This paper primarily deals with the
validity of this assumption, and with the interpretation of the distance deterrence
parameter and the interaction model in general.

Traditionally the distance deterrence parameter in gravity models was interpreted
as a behavioral measure. In the late seventies and early eighties this interpretation
was challenged both by theoretical analysis and by empirical findings. Based on air-
line passenger interaction between the hundred largest cities in the US, Fothering-
ham (1981) offered origin-specific estimates of the distance deterrence parameter.
Within an unconstrained model formulation Fotheringham (1981) found consid-
erable spatial variation in parameter estimates, and he found that this variation
depended systematically on the accessibility of an origin within the configuration
of cities. Those findings initiated a debate focusing primarily on the impact of
spatial structure characteristics in applications of gravity models. Fotheringham
(1983a) found that the spatial variation in parameter estimates were considerably
reduced in a production constrained modeling framework, which corresponds to
a model formulation with an exogenuously given number of trips originating from
each zone (

∑N
k=1 T

G
ik = Li). This introduces a balancing factor that to some de-

gree implicitly captures the possibility that interaction flows are influenced by the
accessibility pattern of the alternative destinations. Several succeeding studies
have demonstrated that model performance is improved if the accessibility of the
destinations is explicitly taken into account, see for instance Fotheringham (1983b,
1984, 1986), Ishikawa (1987), Desta and Pigozzi (1991) and Thorsen and Gitlesen
(1998). The introduction of destination accessibility defines the so called competing
destinations model as a specific variant within the family of gravity interaction
models.

The discussion concerning destination accessibility was motivated by the general
idea that the traditional gravity model is misspecified, since it ignores relevant char-
acteristics of the spatial structure. If strong agglomeration or competition effects
are present, then the distribution of trips will be affected by the clustering system
of destinations in addition to distance. The effect of omitted spatial structure
variables is that estimates of the distance deterrence parameter are biased, and not
autonomous to for instance variations in space or changes in the transportation
network. Some studies focus on other aspects of the spatial structure than the
position of a potential destination relative to the other destination alternatives. Bax-
ter (1983) derives rather complex formulas for specification errors in a traditional
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spatial interaction model, and finds that the bias in parameter estimates in general
depends on many characteristics of spatial structure. Fik and Mulligan (1990) and
Fik et al. (1992) extend the relevant family of spatial interaction models beyond
the pure competing destinations model. They find that taking special account of
the hierarchical order of potential destinations and to the number of intervening
opportunities adds significantly to the explanatory power.

Some contributions to the literature are critical to the competing destinations ap-
proach, see for instance Ewing (1986). Gordon (1983) claims that the competing
destinations model “differ only in trivial and arbitrary particulars from the conven-
tional doubly-constrained gravity model” and that “spatial variation in distance de-
terrence should focus on functional and economic differences between areas rather
than simply on map pattern or physical accessibility”. In more recent studies of
spatial interaction modeling focus has in fact tended to change towards a discussion
of economic and behavioral aspects. Fotheringham (1986) derives the competing
destinations model from random utility theory by including destination accessibil-
ity as an additive separable component of the utility function. If shopping is the
relevant kind of spatial interaction destination accessibility enters as an attribute
in a utility context, since it represents the availability to alternative opportunities
in destinations nearby. Accessible and spatially complementary destinations might
be most attractive as a consequence of the economies of scale in the information
flow and the underlying trip structure. This corresponds to the effect of economic
substitution between goods and services in alternative destinations, see Lo (1991).
Other approaches stress the importance of distinguishing between the universal
and the true choice set of individual decisionmakers. Applied to shopping problems
Fotheringham (1988) interprets the competing destinations model to result from
a two-stage decisionmaking process, corresponding to the ideas of probabilistic
choice set generation in Manski (1977). First, the decisionmakers select the set of
alternatives which are relevant destination choices. Second, a specific destination
is selected from this set of alternatives. Accessibility affects the hierarchical struc-
ture, while variables which appear through the structural part of the utility function
affect the second stage of the decisionmaking process. Thill (1992) questions the
behavioral base of Fotheringham’s (1988) approach, arguing that “the behavioral
soundness of the model would require other factors to be considered, if only the
distance from home”. Pellegrini et al. (1997) demonstrate that a misspecification of
choice sets might produce misleading parameter estimates and predictions; param-
eter estimates vary systematically with respect to the definition of choice sets in
shopping destination models. Based on numerical experiments Thill and Horowitz
(1997) found that substantial prediction errors might result if the presence of
limited time budgets is ignored in the model specification.

It is well known in the literature that the family of gravity models can be justified
from random utility maximization. Such models can also be derived from a prin-
ciple of C-efficiency with respect to a linear cost function C = ∑i,j c · dij , where c
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is a constant traveling cost per unit of distance. Hence, the models are based on a
sound foundation, and we think that the referred research has generated model
formulations with satisfying explanatory power to a specific pattern of spatial
interaction flows. As indicated above, however, we are more concerned by the
practice of applying such models for prediction purposes. Even if spatial structure
is correctly specified we question the idea of a constant distance deterrence param-
eter, autonomous to the relevant exogenous changes in the system. Our concern
is based on arguments that have not been addressed in the referred literature. C-
efficiency and random utility maximization deal with systems that are static in the
sense that distances are fixed. In this paper, however, we will see that changes in the
system might affect individual preferences and behavior. In replication/prediction
problems distances are subject to change, and a relevant model should be equipped
with hypotheses on how the behavior is affected by such changes. To keep analysis
as simple as possible, our points are made clear within the framework of a con-
ventional gravity model ((1.1), (1.2) and (1.3)), with no attempts to account for the
possibility that additional measures of the spatial structure contribute to explain
the distribution of trips. In this paper we also restrict our analysis to consider
commuting flows.

The paper is organized as follows: In Section 2 we recall the basic properties of
C-efficiency with reference to Erlander and Smith (1990). In particular we prove
that given a linear cost C = ∑

i,j cdij , an activity matrix A and a probability mea-
sure q > 0, there is an infinite number of trip distribution models that are C-
efficient w.r.t. A. In particular the β-parameter in a standard gravity model need
not be unique, given C,A and q. In Section 3 we consider replication/prediction
problems, and prove that any non-degenerate trip distribution model comply with
C-efficiency/random utility if the cost structure is chosen in an appropriate way.
Hence C-efficiency/random utility is not sufficient to the determine the outcome of
a replication/prediction problem. To determine a unique outcome it is necessary
to equip the system with an additional behavioral hypothesis. Constancy of the β-
parameter is one such additional assumption, but it is not the only one. In Section
4 we consider examples where an assumption of a constant β-parameter may lead
to completely wrong predictions. In Section 5 we briefly discuss some alternative
behavioral assumptions and compare the outcomes in the different cases. Finally
in Section 6 we offer some concluding remarks.

2. C-efficiency

In this section we will briefly recall the main properties of C-efficiency, see Erlander
and Smith (1990). To simplify the discussion, we will consider a slightly stronger
version where activities need not be integer valued. This keeps all the essential fea-
tures of the original concept, while at the same time admitting a more transparent
exposition. The basic core of the argument is nevertheless the same as in Erlander
and Smith (1990), so we cannot claim originality on that part.
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Consider a choice between M alternatives a1, . . . , aM , let z = (z1, . . . , zM) denote
observed frequencies of these alternatives, and let n = ∑M

k=1 zi denote the total
number of choices that are made. We will assume that choices are made from a
probability distribution P = (P1, . . . , PM). If the choices are independent and n is
very large, it is reasonable to assume that z ≈ P ·n. The alternatives are equipped
with costs c = (c1, . . . , cM), and hence z gives rise to a total cost C =∑Mk=1 ckzk.

EXAMPLE 2.1

In a trip distribution model in a system withN nodes, the alternatives are trips with
origin i = 1, . . . , N to destination j = 1, . . . , N; a total of M = N2 alternatives. To
simplify notation, we introduce the following identification:

If B = {Bij}Ni,j=1 is an N ×N matrix, we let

(2.1) ~B = (B11, . . . , B1N , B21, . . . , B2N , . . . , BNN) ∈ RN
2

Hence if we associate a cost cij = c · dij from traveling the distance dij between
origin i and destination j, we can define a cost matrix c = {cij}Ni,j=1, which in turn
defines a cost vector ~c through (2.1). Note that with these conventions, the total
cost C can be expressed on the form

(2.2) C =
N∑

i,j=1

cijzij = ~c · ~z

In applications of this theory, we will only consider frequencies z = {zij}Ni,j=1 that
are consistent with the marginal restrictions on the system, i.e.

(2.3)
N∑

i=1

zij = Ej
N∑

j=1

zij = Li i, j = 1, . . . , N

where Ej denotes the number of employment opportunities in destination j, and
Li denotes the number of workers residing in origin i. For consistency we always
assume that

∑N
i=1 Li =

∑N
j=1 Ej . To write the restrictions in (2.3) on a form that is

more suitable for analysis, we consider a 2N ×N2 matrix A, defined as follows:

Case 1: 1 ≤ k ≤ N

(2.4) Akl =
{

1 if l = k+ iN, where i = 0, . . . , N − 1
0 otherwise
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Case 2: N + 1 ≤ k ≤ 2N

(2.5) Akl =
{

1 if (k−N − 1)N < l ≤ (k−N)N
0 otherwise

If we define a vector b ∈ R2N by

(2.6) b = (E1, . . . , EN , L1, . . . , LN)

then one can verify that (2.3) is equivalent to the matrix equation

(2.7) A~z⊥ = b⊥

where ~z⊥ denotes the transpose of the vector ~z, i.e.

(2.8) ~z⊥ =




~z1

~z2
...
~zN2




EXAMPLE 2.2

Here is how (2.3)/(2.7) looks like for a 2× 2 system:

(2.9) T =
[
z11 z12

z21 z22

]
→




1 0 1 0
0 1 0 1
1 1 0 0
0 0 1 1







z11

z12

z21

z22


 =




E1

E2

L1

L2




We then consider the following definition: We say that two frequency vectors ~u, ~v
are activity equivalent under A if

(2.10) A~u = A~v

In the context of trip distribution models, with A defined by (2.4-5), activity equiv-
alence is then just to say that both frequencies satisfy the standard marginal re-
strictions in (2.3).

Let P = (P1, . . . , PM) be any probability measure on the set of alternatives, and let
C = ~c·~z denote the total cost associated with the frequency z. Loosely speaking, the
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efficiency principle defines that states with small costs should be more probable,
i.e., if

(2.11) ~c · ~u ≤ ~c · ~v ⇒
M∏

k=1

Pukk ≥
M∏

k=1

Pvkk

or equivalently

(2.12) ~c · ~u ≤ ~c · ~v ⇒
M∑

k=1

ln[Pk] ·uk ≥
M∑

k=1

ln[Pk] · vk

Strictly speaking, this only makes sense when u and v are frequencies, i.e., non-
negative integers. To avoid some technical complications, we exploit the following
definition: A probability measure P is called strongly C-efficient under A if for all
probability measures p = (p1, . . . , pM) and q = (q1, . . . , qM)

(2.13) ~c · p ≤ ~c · q, Ap⊥ = Aq⊥ ⇒
M∑

k=1

ln[Pk] · pk ≥
M∑

k=1

ln[Pk] · qk

If we define ln[P] = (ln[P1], . . . , ln[PM]), we can write this on the form

(2.14) ~c · p ≤ ~c · q, Ap⊥ = Aq⊥ ⇒ ln[P] · p ≥ ln[P] · q

Let σ = (1,1, . . . ,1) ∈ RM . Then x = (x1, . . . , xM) ≥ 0 is a probability measure if
and only if σ · x = 1. Choose any probability measure q > 0, and consider the
LP-problem

(2.15)

min
x

ln[P] · x

σ · x = σ · q

Ax⊥ = Aq⊥

~c · x ≤ ~c · q

x ≥ 0

If P is strongly C-efficient under A, it is trivial to see that (2.15) must have the solu-
tion x∗ = q > 0 (otherwise the pair (x∗,q) would violate (2.14)). Obviously, (2.15)
has a dual problem which can be expressed as follows: y = (y0, y1, . . . , y2N , y2N+1)

(2.16)

max
y

q (σ⊥,A⊥,−~c⊥)y⊥

(σ⊥,A⊥,−~c⊥)y⊥ ≤ ln[P]⊥

yk ∈ R, k = 0,1, . . . ,2N
y2N+1 ∈ R+
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Here we have used the shorthand notation

(2.17) (σ⊥,A⊥,−~c⊥) =




1 a11 a21 · · · a2N,1 −c1
...

...
... · · · ...

...
1 a1,N2 a2,N2 · · · a2N,N2 −cN2




Since x∗ > 0, all slack variables in the dual problem must be zero. Hence

(2.18) ln[P]⊥ = y0σ⊥ +A⊥(y1, . . . , y2N)⊥ −y2N+1~c⊥

Conversely, if

(2.19) ln[P]⊥ = y0σ⊥ +A⊥(y1, . . . , y2N)⊥ −y2N+1~c⊥

then for all pairs (p,q) s.t. ~c · p ≤ ~c · q, Ap⊥ = Aq⊥, we have (using u · v = uv⊥)

(2.20)

ln[P] · p− ln[P] · q

= (y0σ⊥ +A⊥(y1, . . . , y2N)⊥ −y2N+1~c⊥)⊥(p⊥ − q⊥)
= y0(σ · p− σ · q)+ (y1, . . . , y2N)(Ap⊥ −Aq⊥)+y2N+1(~c · q− ~c · p)
= y2N+1(~c · q− ~c · p) ≥ 0

Hence ln[P] · p ≥ ln[P] · q, proving that P is strongly C-efficient under A.

We have proved the following: If P is a probability measure that is strongly C-
efficient under A, then

(2.21) ln[P]⊥ = y0σ⊥ +A⊥(y1, . . . , y2N)⊥ −y2N+1~c⊥

What is not clear, however, is the following: Given C,A and q > 0, is it then always
possible to find a probability measure P s.t.

i) P is strongly C-efficient under A

ii) AP⊥ = Aq⊥ (corresponding to (2.7))

The difficulty is now if we can find y = (y0, y1, . . . , y2N , y2N+1) with y2N+1 > 0, s.t.
P defined by (2.21) is a probability measure satisfying AP⊥ = Aq⊥. Choose and fix
any y2N+1 > 0, y0 ∈ R. Define β = cy2N+1, and consider a gravity model

(2.22) Pij = RiSje−βdij
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with the side conditions

(2.23)
N∑

i=1

Pij =
N∑

i=1

qij
N∑

j=1

Pij =
N∑

j=1

qij

Choose any pair R, S solving these equations, and define

(2.24) yk =
{

ln[Sk]−y0 if 1 ≤ k ≤ N
ln[Rk] if N + 1 ≤ k ≤ 2N

It is then tedious but straightforward to verify that with these definitions we get a
probability measure satisfying AP⊥ = Aq⊥.

Erlander and Smith (1990) observe that given P, then y0, . . . , y2N+1 are (usually)
unique. From the argumentation above, we see that in the converse problem, i.e.,
given C,A and q > 0, the probability P is not unique. In particular every different
choice of y2N+1 corresponds to a different choice of β in the gravity model. When
distances within a network are subject to change, there is hence little reason why
the values on the β-parameter could not change as well.

3. Predictions

We now consider a given network with a distance matrix doriginal. We wish to
consider a change in the network giving rise to a new distance matrix dnew. Consider
any given pair of positive real numbers β1, β2, and let β : RN → R be any continuous
function such that

(3.1) β[doriginal] = β1 β[dnew] = β2

Choose any probability measure q > 0 and consider a gravity model on the form

(3.2) Pij = RiSje−β[d]dij

with the side conditions

(3.3)
N∑

i=1

Pij =
N∑

i=1

qij
N∑

j=1

Pij =
N∑

j=1

qij

If the cost function is of the form cij = c dij , then clearly P defined from (3.1) and
(3.2) is strongly C-efficient with respect to the marginal conditions (2.3). One hence
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cannot necessarily conclude that β is a universal constant, even if the system varies
continuously and is strongly C-efficient for all d.

To proceed one step further, one can consider gravity models on the form

(3.4) Pij = RiSje−fij[d]

Choose and fix any d ≥ 0. We can then think of d̃ij = fij[d] as a generalized dis-
tance between origin i and destination j, and consider a generalized cost function
of the form cij = c d̃ij . The model in (3.4) is hence strongly C-efficient with respect
to this generalized cost regardless of the choice of d.

If d , P[d] denotes any non-degenerate trip distribution model that is consistent
with respect to the marginal constraints (2.3), we may of course consider a gravity
model on the form

(3.5) Pij[d] = RiSje− ln
[

1
Pij [d]

]

In this sense we can always define generalized costs such that any non-degenerate
trip distribution model is globally C-efficient w.r.t. to these costs.

The argumentation above applies toC-efficiency. A similar set of arguments applies
to a random utility maximizing. With an appropriate choice of utility function, any
non-degenerate trip distribution model complies with this principle as well. If we
restrict attention to utilities defined in terms of a linear cost function, however,
we end up with a standard gravity model. Whenever a change is introduced in the
network, there is little reason to exclude the possibility that the parameter of the
extreme value distribution could change as well. Hence one cannot argue that the
β-parameter is necessarily constant in such systems.

4. Predictions made from constant parameters

Ubøe (2001) discusses several problems with the gravity model in aggregate sys-
tems. To examine this within the context of C-efficiency/random utility, we elabo-
rate a bit further on the following example from Ubøe (2001):

EXAMPLE 4.1

Consider a region with two towns and two different population groups. In the
first group we have 3000 workers and 5500 employment opportunities in town 1,
while in town 2 we have 7000 workers and 4500 employment opportunities. In the
second group there are 7000 workers and 4500 employment opportunities in town
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1, while in town 2 there are 3000 workers and 5500 employment opportunities.
The two population groups are non-interacting, i.e., the people in the first category
cannot take work in the second category and vice versa. We will assume that both
categories behave according to a standard gravity model as in (1.1-3), both with the
same value on the deterrence parameter; β = 0.03.

Assume that initially the distance between the two towns is d12 = 80 (km). Using
the gravity model on each category and adding the result together, we end up with
an aggregated trip distribution matrix:

(4.1) T80 =
[

7415 2585
2585 7415

]

This aggregate system is strongly C-efficient w.r.t a linear cost function. The system
has a perfect replication by a standard gravity model on the aggregated data, i.e.,

(4.2) L1 = 10000, L2 = 10000, E1 = 10000, E2 = 10000

and the replicating parameter is β = 0.0137. We now change the distance between
the towns to d12 = 60 (km). Once again the system is strongly C-efficient with
respect to a linear cost function. The aggregated trip distribution matrix is

(4.3) T60 =
[

7239 2761
2761 7239

]

which is consistent with a parameter β = 0.0161. A prediction based on the
parameter β = 0.0137 calibrated from the original system, is seriously biased. If
this parameter is used to predict the system at d = 60, the predicted values are

(4.4) T60 =
[

6879 3121
3121 6879

]

Inspection of (4.1-3) shows that an approach based on a constant β overestimates
the change by 200%. If we differentiate the exponent f[d] = β[d]·d in the standard
gravity model, we get

(4.5) f ′[d] = β′[d] · d+ β[d]

The hypothesis β′[d] = 0, yields f ′[d] = β[d]. Figure 1 shows the fraction
β[d]/f ′[d] for the above system. Whenever this fraction is close to one, we can ex-
pect that a replication based on constancy of the β-parameter will be fairly accurate.

11



         

This is OK if d ≈ 25 (km). If d > 60, however, this fraction is above 2, suggesting
that a change in the β-parameter is the dominant effect. Thus ignorance of the
term β′[d] ·d leads to a severely biased result. In fact, the original observation T80

will be a better prediction of T60 in this case!

20 40 60 80 d
1

2

3

4

5

6
Fraction

FIGURE 1: The fraction β[d]/f ′[d] in Example 4.1

Note that the systems at d = 60 and at d = 80 are both strongly C-efficient and
consistent with random utility theory. Hence there is no conflict with any of these
theories. The problem lies in the non-constancy of the β-parameter. To examine
this further, we show the graph of the mapping d, β[d], see Figure 2.

20 40 60 80 100 d

-0.05
-0.04
-0.03
-0.02
-0.01

0.01
0.02

Beta

FIGURE 2: Variation of the β-parameter in Example 4.1

It is interesting to notice that β is negative if d ≤ 3. Hence if d ≤ 3, the aggregate
system is neither C-efficient nor consistent with random utility theory.

A weakness of the above result is that the underlying subcategories are assumed
to comply with a constant β-parameter. This in itself may not be a reasonable
hypothesis. In the following example, however, no such assumptions are needed.

EXAMPLE 4.2

The next example is similar to the above in that we again consider two towns and
non-interacting population groups within these populations. Here, however, com-
muting is determined from the result of a simplistic behavioral rule: Within each
population group the wages in the two towns are different. A worker first applies
for the work with the highest wages net of commuting costs. If he don´t succeed,
he will be employed in the less favorable position. We assume that qualifications
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within each separate category are equally distributed between the two towns, so
that the number of successful applicants can be determined from random choice.

As the distance between the towns changes, the preferred alternative will be sub-
ject to change. A once favorable position in the opposite town, will be rendered
unfavorable when the commuting cost gets too high. Consider a system of N
such categories. To carry out a numerical simulation of a system of this sort, we
draw wages and sizes of population groups from certain random distributions. A
detailed specification of these distributions is unimportant, and is omitted. Once
drawn, the quantities are fixed throughout the simulation. For each value of d =
d12, we can then determine the trip distribution matrix from the behavioral rule.
The aggregate system is generally strongly C-efficient, and for each d we can find
a parameter β = β[d] which yields a perfect replication of the system. In Figure 3
we show the result of a numerical simulation with 500 different categories.

20 40 60 80 100 120 140 d
0.05
0.1

0.15
0.2

0.25
0.3

0.35
0.4
Beta

FIGURE 3: Variation of the β-parameter in Example 4.2

As is clearly seen in Figure 3, the β-parameter is subject to a significant change.
The change, however, is the result of some specific choice of distributions for the
wages and the different population groups. In particular there is no reason to
claim that this specific choice is more reasonable than anything else. For the sake
of argument let us introduce the additional hypothesis that β is constant, and ask
what extra conditions does this impose on the wage distribution? We let c = c[d]
denote the cost of commuting if the distance is d. Loosely speaking, the value
of β will be reduced at d = d0 if there are too many firms with wage differences
in the interval [c[d0], c[d0 + ∆d0]], it will increase if there are too few. Hence if
we assume that the population categories are fixed, constancy of the β-parameter
imposes an extremely restrictive condition on the distribution of wage differences.

A closer examination reveals that the intuitive idea above above is a bit too simple.
It is true that the result depends on the number of firms, but it also depends on
the relative positioning of the population groups. A more rigorous argument can
be described as follows: Let Ej denote the total number of working opportunities
in category j, and Lj denote the total number of workers. We always assume
Lj = Ej . Correspondingly, we let Eij , Lij denote the number of working opportuni-
ties/workers in town i and category j, respectively. For each category j = 1, . . . , N
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we can define an impact factor Ij as follows

(4.6) Ij = Lj ·min

[
4 · E1j

Ej
· L2j

Lj
,4 · E2j

Ej
· L1j

Lj

]

The impact is thus determined by the total number of workers Lj in the category,
adjusted by a factor measuring a spread between the two towns. The impact
adjustment has a maximal value equal to 1 obtained in the most symmetric state;
E1j = E2j = L1j = L2j . It is zero if a category has either zero working opportunities
or zero workers in one of the towns. Such categories have no impact since the
resulting trip distribution is trivial in this case. We define the relative impact Rj by

(4.7) Rj =
Ij∑N
i=1 Ii

The usefulness of the above definitions will be clear from the following theorem:

THEOREM 4.3

Let ∆Wj denote the wage differences in category j, let Rj denote the relative impact
of category j as defined in (4.6-7), and let c denote the traveling cost pr. km. If the
number of employment opportunities/workers in every town and category is fixed,
there exists a smooth function g s.t. the β-parameter for the system in Example 4.2
is approximately constant if and only if

(4.8)
∑

j:cd<∆Wj≤c(d+∆d)
Rj ≈ g[βd] ·∆d

Remarks: The system is discrete, and the resulting trip distribution is piecewise
constant in d. Hence equality can only be achieved in the limiting case N →∞. The
function g can be written down by an explicit expression, which does not depend
on the wage distribution, see Ubøe (2001). This expression is quite complicated,
however, so we have chosen to omit the details.

PROOF

This is a straightforward application of Theorem 7.9 and Proposition 7.10 in Ubøe
(2001).

�

From Theorem 4.3 we can hence see that a constant β-parameter can only be
obtained if the sum of the relative impact factors of all firms with wage-differences
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in the interval [cd, c(d + ∆d)] equals g[βd] · ∆d. It is very hard to imagine that
firms should comply with a condition of this sort. For a more refined discussion of
aggregate systems of the above type, see Glenn et al. (2001).

5. Alternative dynamic restrictions

A system can be equipped with a dynamic hypothesis in many different ways, and
we will now discuss some particular features of the examples below:

• β is constant
• The entropy; H = −∑i,j Tij · ln[Tij] is constant
• The total cost; C =∑i,j c · dij · Tij is constant

These are three different examples of a dynamic hypothesis. There are of course
many more. The three quantities are related, and the following expression applies:

(5.1)
∂H
∂β
= β · ∂C

∂β

see, e.g., Erlander and Stewart (1978). Let us look at a few simple examples to
see what is going on. Consider the 5-node network in Figure 4. In this case we
assume that there is only one category of workers, and that the initial system can
be described by a standard gravity model with parameter β = 0.03.

1

2

3

4 5d

FIGURE 4: A 5-node network

We will assume that d12 = d23 = d45 = 20 (km), and that d24 = d (km), and that:

L1 = 1000, L2 = 1000, L3 = 1000, L4 = 5000, L5 = 2000

E1 = 1500, E2 = 2500, E3 = 1500, E4 = 3000, E5 = 1500

Initially we assume that d = 60. The system is completely determined from the
specifications above, and we have

(5.2) Tinitial =




498 326 150 19 6
230 500 230 30 10
150 326 498 19 6
479 1039 479 2260 743
142 309 142 672 734
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We now introduce a change in the network, reducing the distance d from 60 km to
40 km, and ask what is the effect of the change in the three cases mentioned above.

Case 1: We assume that β is constant. If so, the resulting trip distribution is given
by the matrix Tβ below.

(5.3) Tβ =




476 307 143 55 18
215 460 215 82 27
143 307 476 55 18
512 1096 512 2160 720
154 329 154 648 716




Case 2: We assume that the entropy is constant. This determines a unique value of
β = 0.0365 in the final network, and the resulting trip distribution is given by the
matrix Tentropy below.

(5.4) Tentropy =




542 291 126 32 9
216 498 216 54 16
126 291 542 32 9
482 1112 482 2256 667
134 309 134 626 798




Case 3: We assume that the total cost is constant. This determines a unique value
of β = 0.0193 in the final network, and the resulting trip distribution is given by
the matrix Tcost below.

(5.5) Tcost =




356 314 164 119 47
203 388 203 147 58
164 314 356 119 47
580 1108 580 1954 778
197 375 197 662 570




From the results in (5.3)-(5.5) we see that if the entropy is constant, the parameter
β increases, and we get less commuting than if β is constant. If on the other hand
the average traveling cost is constant, the parameter β decreases, and we get more
commuting.

When we fix the distances in the system, each level of the cost defines a unique
β value which in turn defines a unique entropy. Hence we can define a function
H = H(C). In Figure 5 we show numerical plots of this function for the initial
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network, labeled d = 60, and for the final network, labeled d = 40. From (5.1) we
see that

(5.6) β = ∂H
∂C

Hence the β parameter can be interpreted as the slope of the graphs in Figure 5. In
Figure 5 we see that a constant entropy corresponds to point I, and that a constant
cost corresponds to point III. If β is constant, the tangents must have the same
slope, corresponding to point II in the figure. Clearly this defines three different
states of the system.

C

H

d=60

I II
III

d=40

FIGURE 5: Entropy H versus cost C

The important question is now the following: Which of these cases is the “right”
solution to the problem? The answer depends crucially on the context, and as we
already have seen in Section 4, the answer may well be: None of the above.

Constant cost of commuting is a natural budget constraint, and it is easy to imagine
a scenario where this is indeed the governing force in the system. If the entropy is
constant, however, certain forces must be present which slow down the response
in the system.

Consider the following extreme: All the workers within a job category reside in the
same zone, while all the employment opportunities are in a different zone. This
puts a forcing restriction on the commuting flows; no matter how the distances
change, this particular flow will remain constant. If all the links are reduced by
the same percentage, constant entropy is equivalent to constant trip distributions.
Hence if the system is dominated by binding flows, constant entropy may in fact
be a favorable assumption, at least in some special cases.

What about a constant β parameter? From a random utility approach the parameter
β can be interpreted as the marginal utility related to variations in commuting
distance. This interpretation is not valid, however, if commuting behaviour is in-
fluenced by other distance-dependent attributes related to the spatial configuration
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of central places. To be more precise commuting behaviour can be influenced for
example by competition or agglomeration effects related to the spatial accessibility
of alternative destinations. In addition, however, the observed commuting flow pat-
tern also depends on how separate categories of jobs and workers are distributed
between the central places in the geography. Such kind of aggregation problems
contribute to make the assumption of a constant distance deterrence parameter
inappropriate for making predictions in time and space.

6. Concluding remarks

The problems discussed in this paper have a common core. C-efficiency and ran-
dom utility theory are excellent tools for the discussion of systems that are ho-
mogeneous and where the distances are fixed, whereas the replication/prediction
problem deals with changes in the underlying structure. The important question
in the replication/prediction problem is not how preferences are distributed but
rather how preferences change when the system changes. To study this kind of
problem, it is necessary to equip the model with an extra behavioral hypothesis.
Assuming that the parameters are fixed, is one such extra hypothesis, but as we
have just seen, this need not always be a satisfactory solution. It would be much
more satisfactory if one could postulate the distance dynamics from some sort of
differential principle. The problem with the gravity approach is that this setup
is not all that suitable for extensions of this kind. This motivates the search for
alternative approaches. Such approaches migth lead to models that are inferior
with respect to explanatary power, but for many purposes is is more important to
consider the predictability of the model.
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