A Pricing Model for Yield Contracts.

Knut K. Aase
Norwegian School of Economics and
Business Administration
5045 Sandviken - Bergen, Norway

2002

An economic model is proposed for a combined price futures and yield futures
market. The innovation of the paper is a technique of transforming from
quantity and price to a model of two genuine pricing processes. This is
required in order to apply modern financial thoery. It is demonstrated that
the resulting model can be estimated solely from data for a yield futures
market and a price futures market.

We develop a set of pricing formulas, some of which are partially tested,
using price data for area yield options from the Chicago Board of Trade.
Compared to a simple application of the standard Black and Scholes model,
our approach seems promising.
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Introduction

In the farming industry as well as for many other primary commodity pro-
ducers it is possible to effectively manage price risk by the use of futures
price contracts and options on futures. However, in many of these industries
there is still considerable uncertainty left when it comes to revenue, since
quantities produced can be volatile, depending on many factors, such as e.g.,
weather conditions in the growing season. Until recently, similar market-
based instruments for managing yield risk have not been available. Instead,
federal agricultural support programs and subsidized crop yield insurance
programs have served as alternatives. In an important development in 1995,



the Chicago Board of Trade (CBOT) has launched its Crop Yield Insurance
(CYI) Futures and Options contracts. The first CYI contract that began
trading on 2 June 1995 was Iowa Corn Yield Insurance Futures and Options.
On 19 January 1996 the CBOT added a U.S. contract plus four additional
state corn yield contracts for Illinois, Indiana, Ohio, and Nebraska. So far
the trading volumes have been fairly modest. Regardless of the status of this
particular market for the moment, we want to discuss such contracts from a
principle point of view, and develop a pricing theory for this kind of markets.

The CYT contracts are designed to provide a hedge for crop yield risk. For
example, CYI futures users can lock in a certain crop yield several months
into the future as a temporary substitute for a later yield-based commitment,
or they can alternatively lock in the revenue of a given acreage by combining
yield contracts with futures price contracts. !

The focus of this paper is to construct a pricing model for yield futures
and futures option contracts. The innovation is in the modelling stage. In
order to apply modern financial theory, one has to start with genuine pricing
models. The starting point here is, on the other hand, a model for yield and
a model for the spot price of corn. A transformation is proposed in order
to overcome this difficulty. It is demonstrated that the resulting technique
is consistent with financial pricing theory, and also possible to implement in
practice.

There is a large literature on non-market based risk management and
insurance of crop yield, which we will not address here. Yield contracts
have been dealt with from the perspective of hedging, using a mean variance
approach by Vukina, Li and Holthausen 1996, while minimizing the variance
of revenue was the objective in Li and Vukina 1998. In both these papers
the yield contracts traded at CBOT are explained, so we need not elaborate
on the market structure here.

There was another securitized insurance market at the CBOT centered
around certain catastrophe indexes, these indexes playing a similar role to
the yield index of the present paper; e.g. (Aase 1999, 2001). The analysis
of such markets must typically differ from the model chosen in the present
paper, since catastrophes can not be modelled well by a continuous stochastic
process.

The paper is organized as follows: In the first section we present the eco-
nomic model, which we develop in the subsequent section to a pricing model
for any combination of yield and price futures and futures option contracts,
like a futures contract on revenue (if it were to exist). In the third section we
specialize to pure yield contracts, where in Proposition 2 we present pricing
formulas for yield futures and yield option contracts. These we calibrate and
estimate from price data at the CBOT. Two proofs are relegated to Appendix



1 and some contract specifications are given in Appendix 2. The last section
concludes.

Area Yield Futures and Options

Introduction

Imagine a country, or another area, sectioned into regions which are uniform
in terms of growing conditions for a certain crop, say corn. In each area there
is a quantity index 3, for time ¢ running from 0 to 7', where 7T is the time
of sale and 0 is the time of sowing. As an example, for agricultural yield
contracts in the USA traded at the CBOT the values of y are provided by
the United States Department of Agriculture (USDA). One may think of y;
as a forecast at each time ¢ of quantity, measured in bushels per acre, up for
sale in this specific region at the final time 7". On this index we assume it
is possible to trade futures, and futures options contracts. In order to bring
in the quantum uncertainty, we assume that this index can be modeled as a
stochastic process. A farmer in this region may have production uncertainty
that is well represented by this index, where the relevant number of contracts
can be determined from each farmer’s production area.

The idea is that if the producer can buy options on this quantity index
or on its corresponding futures index, the farmer can lock in a prespecified
quantity by buying an appropriate number of such contingent claims. This
strategy is of course only 100% efficient if the farmer’s yield uncertainty is
perfectly represented by the index, an unlikely event, but a careful selec-
tion of homogeneous regions may make such markets useful for practical risk
management purposes. Presumably one can use a yield market in combina-
tion with an ordinary futures market for the price of the crop to lock in a
prespecified revenue, abstracting from production costs. Exactly how this
can be done is the subject of another paper (Aase (2002)).

Crop Yield Insurance Futures Contracts

This paper presents a model of two combined futures markets, a quantity
market and a price market. The mechanics of using yield futures can best
be illustrated by an example.

Example 1. Consider a farm of 1000 acres in Iowa, in an area with ex-
pected crop FY = 130 bushels per acre at time ¢. The futures price of corn
is F}! = $2.50 per bushel, also at time ¢, in both cases for contracts expiring
at a future time 7.



Consider a strategy that sells 130,000 corn futures and similarly sells 2,500
area yield futures, both at time ¢ and these positions are held until maturity.
The payoff at expiration for this strategy would be

(F7 — ¢8"*)F} - 1000 4 (F} — y5**) F} - 1000.

Consider four scenarios:

(i) The observed price of corn at time 7' turns out to be ¢%* = $2 per
bushel, the observed yield index y%** ended up on 100 bushels per acre. This
is the case of situation the farmer would like to insure against. The payoff
from this strategy would be $140,000. Without futures contracts, the farmers
would end up $125,000 below the expectation, assuming a perfect correla-
tion between the farm output and the yield index, and after the gain from
the futures contracts are taken into consideration, the “net gain” would be
$15,000.

(ii) ¢%* = $3, y%* = 160 bushels per acre. The payoff from the above
strategy would be -$140,000. Under the same simplifying assumptions as
above, the farm would now end up with a result of $155,000 higher than
projected, in which case the “net gain” would also be $15,000.

(iii) ¢%* = $2, y9** = 160 bushels per acre. The payoff from the above
strategy would be -$10,000. Under the same simplifying assumptions as
above, the farm would now end up with a result of $5,000 below the expec-
tation, in which case the “net loss” would be $15,000.

(iv) g% = $3, y%* = 100 bushels per acre. The payoff from the above
strategy would be $10,000. Under the same simplifying assumptions as above,
the farm would now end up with a result of $25,000 below the expectation,
in which case the “net loss” would also be $15,000.

If these four cases were equally likely, the expected “net gain” would equal
zero, so on average the insurance would then work.

When considering pure area yield contracts, one should notice that for
yield futures contracts is used a multiplication factor of $100 per bushel to
convert production to income (here: in US §), and also, the trading unit for
corn futures is 5000 bushels. U

In Appendix 2 we have relegated further specifications for three types of
contracts considered in the paper.

The Economic Model

Introduction

In this section we present a simple, testable model of a futures market for
both price and yield. Quantity y(¢) at time ¢, measured in bushels per acre, is
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not a price process. In order to be able to use the framework of no arbitrage
pricing theory of financial economics, we start with two pricing processes; (i)
the spot price process ¢(t) of the crop, and (ii) another spot price process
denoted p(t) such that the fraction

y(t) ==~ (1)

One may wonder what p(t) will be the spot price of, if anything, but, perhaps
surprisingly, this turns out not to be a crucial question. First note the units
of measurement of p must be in $§ per acre. Since ¢ is measured in measured
in $ per bushel, y is now measured in bushels per acre as it certainly should.
Second, consider the price of a leasing contract of agrarian land for the crop
in the particular region of consideration, which expires at time 7. Then,
under certain presumptions, one my think of p(¢) as the spot price of such a
leasing contract.

Other crops than corn can, of course, be produced on the agrarian land,
so the above interpretation can not be strictly valid if this is possible. But
if we assume that the particular crop is the dominating agricultural product
in the area under consideration, this interpretation of p is fruitful, at least as
a thought experiment. The introduction of the pricing process p primarily
plays a consistency role in the model. It turns out that the parameters of
the pricing process p(t) will indirectly be available from observations in the
following three markets: The yield futures market, the yield futures options
market and the ordinary price futures market of corn. In other words, we
will never need to study separately the leasing market for corn land.

Associated with the crop there is a convenience yield, which we model
by a constant fraction of the relevant price process. For the crop there is
assumed to be a world futures market, which can be used to determine the
convenience yield rate ¢, for the crop. Associated with the leasing market
for agrarian crop land, the “convenience yield” can better be interpreted as
a leasing rate, say 9d,.

We now give the formal description of the model. Given is a filtered prob-
ability space (Q,F,F, P), where Q is the set of states with generic element
w, P is a probability measure, the “objective probability”, F is the set of
events in ) given by a o—algebra, F = {F,,0 < ¢t < T} is a filtration satis-
fying the usual conditions, where F, C F; if s < t, F; signifying the possible
events that could happen by time ¢, or “the information available by time
t”. We assume F; to be trivial, containing only events of probability zero
or one, meaning roughly that there is no information available at time zero,
and Fr = F, i.e. at time 7" all the uncertainty is resolved.



We assume there is a risk-free asset having rate of return r and price at
time ¢, (;, given by

dﬁt = T/Btdt, ﬁ(] = ]. (2)

On the filtered probability space (€2, F,F, P) are given two stochastic price
processes; one price process p; related to leasing agrarian land measured in $
per acre and a price process ¢; of the crop measured in $ per bushel satisfying
the following stochastic differential equations

dp(t) = Npp(t)dt +p(t) (Up,ldBl (t) + Op,2dBy (). (3)

dg(t) = pgq(t)dt + q(t)(0g,1d By (1) + 04,24 B (1)) (4)

Here B; and B, are two independent, standard Brownian motions gen-
erating the filtration F, 1, is the conditional expected rate of change of the
capital gain of the crop, sometimes termed the instantaneous expected cap-
ital gain, with a similar interpretation for u, related to agrarian land, and
04,1,0¢2,0p1,0p2 are volatility parameters. To explain the latter more pre-
cisely, let

Op,g = 0p,10¢,1 + 0p 2042 (5)
Oy = 0 0y (6)
0g =001 + 045 (7)
Opyq
pr=—" (8)
Op0yq

Then 03 is the rate of change of the conditional variance of the return on
the crop, with a similar interpretation for ag related to the return on leasing
agrarian land. Since

ra = G S)COVs(Up,l(Bl(t) — Bi(s)) + 0p2(Ba(t) — Ba(s)),
041 (B1(t) — Bi(s)) + 0q2(Ba(t) — Ba(s)),  (9)

the parameter o, , is the rate of change of the conditional covariance be-
tween the return on the crop and the return on leasing land, and p is the
corresponding instantaneous correlation coefficient?.

Now let us consider the quantity variable y measured in bushels per acre.
Using Ito’s lemma on y(t) = p(t)/q(t) in (1), we find that also y satisfies a
stochastic differential equation of the form given for p and ¢ above, i.e.,

dy(t) = pyy(t)dt + y(t)(oy,1dB: (t) + 0y,2d Bs(t)), (10)
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where
_ o o 2 _ - _ -
Hy = [p — g — Opq+ 0y, Oy1 = Op1 — 01, Oyo = Opa — Ogpa. (11)

This follows by the Ito differentiation rule, since

1 dpida, 1 (2
dy(t) = —dp, — g, — LI 4 2 (%) (dgy)?

qt q; Qt2 2\ g
. dpy dqy dp; dqy dqy ?
=Y— = Y— =Y | —— | Ty | —
Dt qt bt qi qt

= y(fp — pg — Opq + ag)dt + yi((0p1 — 04.1)dB1(t) + (0592 — 042)dBs(1)).
From this we also notice that

Oyq = Opg — 03. (12)

Since there are no restrictions on the values of the parameter o, 4, any values
of the covariance rate o, is allowed. Normally we would expect that o, , < 0,
at least if yr represented the total quantum per acre up for sale at time 7.
Similarly if y refers to an important region in terms of produced quantity
brought to the market, we also anticipate a negative covariance, but typically
the correlation may be close to zero in smaller and regions with less impact.
Notice that if 0, , = 0 for some region, not an unreasonable assumption, then
0y, < 0 for this area, which follows from the relation (12) since o7 > 0.

Discussion of the model

The reader will have noticed that we have chosen correlated geometric Brow-
nian motions as models for the quantities p and ¢. These processes are strictly
positive for all ¢ > 0 almost surely, an important property here, since both
prices in question are positive, and quantum y becomes well defined and pos-
itive as well. In all, as a first approach, we believe this model can serve as a
reasonable choice.

Convenience yields on the crop is related to the return, and is assumed
stochastic in our model, but is a bounded variation process. It is represented
by a fixed percentage J, of the price ¢(t). The accumulated convenience
yields in the time interval (0, ¢] is fot dq9s ds, and is thus a stochastic process.
The notion of convenience yield was introduced by the economists Kaldor
and Working who, among other things, studied the theory of storage. In the
present context it may reflect the relative advantage a holder of the crop has
compared to someone who only has a claim to a future delivery of the crop.
Convenience yield can of course vary through the season, and can in fact be
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negative and equal to physical storage cost, as with corn from December to
March. Since we typically consider time durations of say one year or less, it
may not be unreasonable to consider the percentage J, to be a constant in
this time interval.

For the price process p, interpreted loosely as the price of leasing agri-
cultural land, there is also a “convenience yield” here, but now interpreted
simply as a rent of this land. We make similar assumptions for the rental
rate 0, as above.

The rates 6, and J, are assumed to be constants, although there are few
problems to allow for these to be stochastic processes as well, e.g., Gibson and
Schwartz 1990, who used the Ornstein-Uhlenbeck process in this regard. In
our case this would serve to unnecessarily complicate matters, in particular
since these quantities are not marketed assets, so we choose parsimony.

Regarding our choice for the interest rate r, it could of course also have
been modeled by a stochastic process, say a mean reverting one, but we
choose simplicity here as well.

In a relatively recent paper Miltersen and Schwartz 1998 develop a fairly
general model to value options on commodity futures in the presence of
stochastic interest rates as well as stochastic convenience yields. However,
they do not consider quantity contracts and contracts on revenue as we do.

Suppose there is a futures market for the crop under consideration. Bren-
nan and Schwartz in their pioneering research (1985) incorporated the con-
venience yield in the valuation of commodity derivatives, and established in
particular the relationship between the spot price ¢; and the futures price F
at time ¢ for delivery of the commodity at the future time 7', given by

Fi=qe=00@  for < T (13)

Since all the quantities in this formula, including the left-hand side, are
directly observable except for the convenience yield rate d,, this parameter
can be estimated from this relationship, using observations in the spot and
the futures market for the crop.

Now consider the leasing of agrarian land. It is not common to have an
associated futures markets on p(t) directly, so the question then comes up
how to estimate the rental rate J,. From our results in the next section it
follows that the futures price on the quantity variable y is given by

FY = et @0 for < T (14)

The only remaining unknown parameter here is ¢,, which can then be esti-
mated from this relationship, using the observations for the index y(¢) noted
in the quantity futures market, and the observed futures prices F} for yield
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y in this market. Thus the existence of a futures market for quantity will
effectively resolve this estimation problem. This we illustrate later.

We notice in particular that we do not need to estimate the parame-
ters associated to the process p from observations of the leasing market for
agricultural land, in order to employ the present model to the futures yield
market. Thus the inclusion of a market for leasing of land was necessary
primarily to establish a consistent pricing model.

The financial pricing model

We are now in position to use the pricing theory of financial economics; e.g.
(Duffie 1996 Ch. 6). To this end, consider the following linear system of

equations
(ptap,l thp,2> (m) _ ((,up +0p — T)pt> (15)
Qt0q1  Qt0q2 ) \ "2 (g + 04 —7)q
By assumption both p; and ¢; are positive for all ¢ with probability one, so
in this system of equations both these quantities cancel.

The right hand side in (15) follows since p and ¢ are price processes where
the drift terms must be adjusted for the relevant convenience yields and the
risk free interest rate r. In general, when there is a risk free asset, it is the
drift and diffusion terms of the discounted, adjusted price processes, that
appear in this equation, and since the convenience yields can be treated as
dividend rates, the drift terms of the discounted gains processes are given by
(tp+6, —1)py for the price process of leasing agrarian land, and (p,+3d,—7)q:
for the price process of the crop, while the associated diffusion terms of the
discounted, adjusted price processes are both unaltered from that of the price
processes p and ¢, since both the risk free asset and the convenience yields
are of bounded variation.

The solution of the system of equations given in (15) is as follows:

m = Op2(lg +0q = 1) = 0g2(pp + 0, — 1) (16)
0p,20q,1 — 0p,10¢,2
6y — 1) — 6 —

m = Oty +0p = 71) = 0p (g + 7")’ (17)

0p,20q,1 — 0p,10¢,2

assuming the determinant in the denominator different from zero. Thus the
market-price-of-risk parameters 1, and 7, are determined in terms of the
parameters of the model, including the convenience yield rate J, and the
rental rate d,,.



The model as outlined above is complete, which means that if X; rep-
resents the payoff of any asset or contingent claim at time 7', having no
intermediate dividends, then the market price X; at time ¢ < T is given by

1

X, = g—Et{e_’"(T_t)gTXT} (18)

where the density process & in our model is given by the expression

1
& = exp{—mBi(t) — n2Ba(t) — 5(77% +m)ty  for t<T, (19)
or, in differential form, by Ité’s lemma

dft = _gt(nldBl (t) + UQdBQ(t)), 60 =1. (20)

Here m; := &e™

price).

An equivalent martingale measure () is given by % = &7, where P is the
given probability measure under which the joint probability distribution of
(¢,y) can be found from the equations (4) and (10). By completeness of the
model, the measure () is uniquely determined, and the pricing formulas above
can alternatively be expressed in terms of discounted expectations under Q).
For example can the market value in equation (18) be written as

is the state price deflator (the pricing kernel, or the shadow

X, =B {7 T0X ) (21)

This formula usually gives the most dirct way to carry out the computa-
tions of prices once the probability distributions of p and ¢ are known under
the measure (). Here we notice that the drift rate of the process p is (r —d,)
under (), the drift rate of ¢ is similarly (r — J,), whereas the variance and
covariance rate parameters are the same as under P. As a consequence it
follows from the relations (11) and (12) that the drift rate u? of the yield
variable y is given as

ug =0, — 0p — Oygq under Q. (22)

Note that the futures prices are lognormally distributed, and futures con-
tracts are traded assets. Thus the futures indexes serve as underlying traded
assets, supporting the no arbitrage arguments behind the pricing results,
known to hold under these assumptions.

In the extant literature there are several papers dealing with pricing of
products of processes. A typical area of application is exchange rate models,
as in e.g., Babbel and Eisenberg 1993. This paper also treats a variety
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of other issues. Other applications are to the valuation of the option to
exchange one asset for another (Margarbe 1978), options on the minimum
and the maximum of two risky assets (Stulz 1982), (Johnsen 1987), or the
valuation of a random number of put options (Marcus and Modest 1986).
There are also papers treating the situation with an uncertain exercise price,
e.g., Fisher 1978. A related literature on real options is of course of interest,
as e.g., Bjerksund and Ekern 1990, Paddock, Siegel and Smith 1988, Majd
and Pindyck 1987, among others.

In the next section we illustrate how to apply the above model in the
valuation of general financial contracts. For example we show how to price
futures on revenue directly. Of course, there is no market for such contracts,
so therefore these examples will mainly serve as theoretical benchmarks for
the subsequent analysis of pure yield and price contracts.

The futures option price of revenue

Introduction

In this section we use the valuation theory outlined above to compute market
values V;(Xr) at any time ¢ < T of a claim on the future delivery of Xt at
time T for various contingent claims X, and also associated futures prices
and futures options prices. We then use the insights obtained from this to
find the market values of yield contracts.

It seems reasonable to start with the processes y and ¢, and the revenue
R := yq, since it is the uncertainty in the revenue the farmers presumably
are concerned with. This is natural, since the sources of information will be
the spot and futures markets for the crop, as well as the quantity index y
and its associated futures market.

To this end let us consider the problem of finding the current value, at
time ¢, of a claim on the future delivery of Ry = qryr at time 7. This value
we denote by Vi(Rr). We claim it is given by the expression

Vi(Br) = q(t)y(t)e 0. (23)
This expression follows from the valuation formula (21):
Vi(Rr) = ¢ "V E {gryr}.
Since y; = pi/qu, this equals

6—r(T—t)EtQ{pT} — e—r(T—t)pte(r—(Sp)(T—t)’ (24)
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where the last equality follows since the drift rate of the price process p of
agrarian land under the risk adjusted pricing measure @) is (r — d,). Thus
the conclusion follows from the definition of p.

Observe that the parameters of interest are reduced to

T 0p; Ogs Oy,15 02, g1, Og2 and Oyyq-

Futures options on revenue

If there existed a futures market for the revenue process R itself, the futures
price F® at any time ¢t < T is determined by the relation®

Ef(Ry — FFy =0,
which implies that
FF = E2(qryr) = quye T, (25)

since F! is contained in the information set F; at time ¢.

We can also consider contingent claims, or options, on the futures price
index F'®. Suppose a contingent claim has payoff only at some time T} < T..
If the futures price is Fff at this time, the payoff of the contingent claim is
@(Fft), where ¢ is some nonlinear, real function determined by the specific
contract.

As an example, suppose a farmer wants to lock in at least a revenue p°
(a constant) by time T;. Then he could consider buying a put option on the
futures index for revenue (if it were to exist), in which case p(z) = (p—x)™.
In the case where his own production is closely connected to the quantity
index, this futures option may give adequate protection against a bad season.

If we consider the contingent claim as an option on F®, we have a con-
ventional futures option, with market price at time t is given by

Vi(o(Ff)) = e "B (o(FL)). (26)

In this case the premium in (26) is payable at time t*. On the other hand, if
we consider the contingent claim as a futures contract, we have a pure futures
option, in which case we determine the futures price F? from

E7 (p(Ef) — Ff) =0,
or

Ff = B2 (p(Ff)). (27)
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Here nothing is paid at the initiation of the contract.

We will consider the latter interpretation when treating options on futures
contracts. In the present model the price of the conventional contract is
simply the discounted value of the pure futures option price.

As an illustration, let us evaluate a put option on the futures price of
revenue in our model. The easiest way to accomplish this is to use the
results of the previous section.

Proposition 1 The value of a European put option, with exercise price p°
and expiration time Ty < T, on the futures price process of revenue, the latter
with expiration time T, is given as follows:

FP = B0 — Ff)*} = pBy) — Rie T D(yy),  (28)

where D(-) is the cumulative probability distribution function of the standard
normal distribution, where

(%) — (r — &, — 363)(Ty — t) — (r — 6,)(T — T1)

= /T =1

b

In(Z) — (r — &, + 36%)(T1 — t) — (r — 6,)(T — Th)

e N ’

and where & is

2= (Jy,l + Uq,l)2 + (Uy,2 + Uq,2)2- (29)

o
The proof of Proposition 1 can be found in Appendix 1.

Notice how the formula for this price simplifies somewhat if the expiration
time of the option coincides with that of the underlying futures contract, i.e.,
when T = T;.

We notice that

OFF
=t > 07

dé,

so the futures put is more valuable as the rent on agrarian land increases,
ceteris paribus. When this rental rate increases, the probability increases that

Ry, exp{(r — 4,)(T — Ty) falls below p°, so the futures put option increases
in value.
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The futures price of general “product contracts”

In the present model we can find market prices of more involved financial
contracts, and for later comparisons with “product markets” to be treated
in the next section, an analysis of such contracts will be useful. Consider a
general contingent claim with payoff at time 7" given by X = g(yr) - h(qr),
where g(-) and h(-) are some functions determined by the contract. We use
the pure futures option interpretation, and for simplicity of exposition we let
the expiration time coincide with the expiration time 7" for the underlying
futures contract on revenue. This “product contract” can not be analyzed
by only knowing the probability distribution of revenue, as we did for the
futures put contract of the previous section. In general the futures price
FI"9 10 question is given by

th(y)h(Q) _ EtQ(g(yT)h(QT)) for any t<T. (30)

As an illustration of such contracts, and for later comparisons, consider a
farmer who is concerned with having at least a harvest of k bushels per acre
by time 7. In this case the following contract is of interest:

g(x) = (k—2)",  h(z) ==,

i.e., a put option on the quantity variable separately, having value (k—yr)tqr
at the expiration time 7". Let us denote the corresponding option futures price
)t . . .
by F*79 at time ¢ < T. We then have the following simple expression for

this futures option price:

Theorem 1 The separate futures option described above has price Ft(kfy)Jrq
at any time t < T given by
FE70 = gyt =0 00(dy) — Rye"0 =0 (dy), (31)
In(y) = (8 — & — 505)(T — 1)
oyvVIT —1
and
In(£) — (6, — 0, + L2\ (T —t
M) = 6y, 3BT 1) )

oyVIT —1
The proof of this theorem can be fond in Appendix 1.
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Non-separable futures options

Situations with more complicated futures options are also possible in this
market. Although slightly outside the scope of this paper, the story can
quickly be told: Instead of the contract of equation (30), consider a contract
on h(qr,yr), where h is some function of two variables. The futures price of
this futures option is given by

FY = B2 (hgr.yr))  foramy  t<T. (34)
In cases where this expectation is difficult to compute, we may alternatively

solve a partial differential equation. For reasonable functions h, there exists
a function f € C**!'(R% x [0,7)), such that

fla, yi,t) = EtQ(h(QT, yr))
satisfying
Df(q.y,t)=0,  (q.y,t) R} x[0,T)
with boundary condition

flg,y.T)=h(q,y), (¢y) € R,

where

0 0 0
Df(q,y,t) = af(q, y,t) + a—qf(q, Yy, t)(r —d)g + a—yf(q, Y. 1)(0g — Or — 0y.q)Y

+1 8—2( t)q*o? +2 > flq,y,t)qyo +a—2f( t)y’o?
2 an Q’y’ q q aqay Q7?Ja qy q,y ayQ Q’y’ y Yy .

(q:v)

The price process f(q,yi,t) = Fth is a (Q-martingale having stochastic

differential equation given by

0 ~ ~
df(Qs: Ys, S) = a_qf(QSa Ys, S)Qs(aq,ldBl(S) + Uq,QdBQ(S))

0 - .
+a—yf(qs, Ys, $)Ys(0y1dB1(8) + 0y2dBs(s))  for  t<s<T.

We shall not be concerned with contracts of the type where h(q,y) is not
a separable function of ¢ and y.
In the next section we turn to the analysis of yield contracts.
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Yield futures and futures options

We now utilize the results of the last section to construct a pricing model
for yield futures and futures option contracts. These we calibrate to price
data at the CBOT, and estimate the model. In particular we derive an
estimate of the convenience yield d, of the price process p, the “rental rate”
of agricultural corn land in Towa.

Pure yield contracts

We are now in position to discuss a pure futures market for quantity. What
we mean by this is the following: Consider a contingent claim having final
payoff X of the form X = g(yr)-1, where g(-) is some real function specifying
the terms of the contract. Here we have simply chosen the function h(z) = $1
per bushel for all z > 0. According to the general futures formula (30), the
futures price £/ at any time ¢ < T is given by F/“" = EQ(g(yr) - 1).

The dimension of this quantity is value, i.e., in units of the risk free asset,
while the dimension of the quantity ¢(yr) is, say bushels per acre, so the
number one in these formulas is meant to signify one unit of the numeraire
per bushel. In other words, settlement in this market is in cash, not in bushels
of wheat, say °.

The important example of the futures price for quantity is found as fol-
lows: Using the fact that FY = EZ(ys - 1), we have that

FY = E2(yp-1) =y, - 1= owa)(T—1) forany ¢t <T, (35)

which follows from the relation (22), where we showed that the drift rate of
y; under () is given by

/’Lg? = 0q — 0p — Oyyq-

This establishes the result reported in (14).

Notice from the formula (35) that when o,, > 0, F/ is smaller than in
the case where o, , < 0, ceteris paribus. If this covariance rate is positive,
this roughly means that the agricultural area under consideration is such
that, on the average, it harvests larger quantities of the crop when the rest
of the world production tends to be low. In this situation, a farmer who
sells a quantity futures contract at time ¢, receives (F —yr) at time T, if he
holds the position until expiration, which is a lower payout than in a region
where o0, , < 0, ceteris paribus. This seems reasonable, since a quantity
insurance would be more needed in an area having o, , < 0 with a low world
production, compared to an area where o, , > 0.
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As an example of a futures option, consider a quantity put option with
strike price k. The futures price of this contract is

o
Ft(kfyT)+.1 _ EtQ((k . yT)+ . 1) _ / (k _ yte(quf%ag)(Tft)Jrayz)Jrf(Z) dz,
—00
where f(-) is the probability density of a normal variate with mean zero and
variance (T — t). Thus we summarize our findings as:

Proposition 2 The futures price at time t of a pure futures yield put option
with strike price k and expiration time T s given by

Ft(k—yT)+'1 = kd(x1) — 1y - 1€V =00 T (1,), (36)
where
. ln(i) — (0g = 6p — 0y g — %05)(T — 1) (37)
oy V1T —1
o ln(i) — (0g — 0p — Oy q + %05)(T —1) (38)
2 oy T —t ‘

Furthermore, the futures price at time t of a futures contract of yield v,
expiring at time T, is given by

Fty =y 16(54*513*”11,4)(71*” fO’f' any t S T. (39)

Proof: Direct integration in the case of the futures yield put option. O

One should not expect that contracts of the non-separable type given in
(34) can be obtained equivalently in the two separate markets for quantity
and price that we discuss. Such contracts are not our concern, however, and
for all contracts of the separable type given in (30), it is shown in Aase (2002)
that one may, in principle, restrict attention to these two separate markets
rather than the idealized, non-existing market of revenue, outlined above.
This statement is, strictly speaking, true only if the correlation rate o, , = 0.

Consider the contracts g(yr) = (k—yr)* and h(gr) = gr. In the situation
where 0, , = 0,

_)t _ _ _ _

Ft(k Y) F! = (kq@(z1) — y,el% T 0, (,) )70 T—1)
by the formulas (13) and (36), which coincides with the expression for Flkvta
given in Theorem 1 when o, , = 0. Note that this is also consistent with the
well-known property that a zero correlation between to bivariate normal ran-
dom variables implies that they are statistically independent. In this case
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one can lock in a prespecified revenue by a combined use of the yield and
price markets (see Aase (2002)).

When o,, # 0 the futures price of (k — yr)*qr is given by Theorem 1,
and can now only approximately be locked in by a combined use of the yield
and price markets separately (for details, see Aase (2002)).

Notice that central conclusions (except the given formulas) of the the
paper are not confined to the special probability distributions chosen. Of
particular interest is to allow for models where the volatilities display sea-
sonal effects (observed for e.g., Iowa corn yield options). Seasonal effects are
treated in a separate paper.

We now discuss the use of the formulas in Proposition 2 in the light of
some yield put option data obtained from the CBOT.

Calibrating the parameters

In order to see how the theory presented above can be used, we now calibrate
the model to trading data at the CBO'T.

One possible test of the put option formula above could be to estimate
implied volatilities and compare to historic estimates. In order to single out
the parameter o,, we need separate estimates for the parameters 6,0, and
0y,4- In principle it is clear what we must do.

First consider the world futures market for corn. Contract specifications
of this market are given in Appendix 2. Typically the basis, or, the difference
between spot price and futures price, is negative. Based on historic estimates,
we use the value Sq = —.10. ® This we may interpret to mean that the storage
costs are dominating compared to the advantage to utilize a sudden increase
in the demand for corn.

Next we consider the market for corn yield futures for the region of Iowa.
Contract specifications for this market is presented in Appendix 2. Towa is
a major producer of corn, and an estimate of the covariance rate o, , turns
out to be negative. Based on historic values we use 5, , = —.20

For the yield markets one has observed that the spot price is sometimes
above, and sometimes below, the futures price. Considering the expression
for the yield futures price in Proposition 2 given by F} = y, exp{(d, — 6, —
0y.q)(T'—1)}, this will depend on the parameters of this expression. Analyzing
data of corn yield futures for the years 1995, 1997 and 1998, we obtained an
estimate of the rental rate for agricultural corn land 4, in Iowa to be around
17%. A graph of how this estimate varies as a function of time to maturity
shows that it does not fluctuate much around the mean value during the
year, but gets a sharp drop towards the end of the year to levels around
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minus 40-50%. See Figure 1 for the year 1997. The other years show similar
patterns.
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-0.54
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Time to maturity

Figure 1: Estimated rental rate Sp of agricultural corn land in Iowa as a
function of time to maturity 7 =7 —¢. Year 1997.

This sharp drop towards the end of the life of the contract probably
reflects that the crop has been harvested, so the agricultural land has no
immediate use which can give the owner any positive expected return the
rest of he year.

Finally we turn to the market for corn yield futures options for the region
of Towa, with contract specifications given in Appendix 2. We considered put
options expiring in January of the years 1996, 1997 and 1999. These years
were chosen because trade then took place in the put options with several
different strikes. The implicit volatility o, in the futures option formula
(36) was then inverted from the pricing formula using the Newton-Raphson
algorithm. Common to all the put options analyzed is that time to expiration
runs from about three months to around one year. 7

For the year 1995 we estimated an implied volatility o, of 17%. We have
also investigated the volatility structure during 1995 for put options with five
different strikes, 1050, 1100, 1150, 1200 and 1250, as a function of the time
to expiration. The typical picture is that the implied volatility decreases
slowly during the year as time to maturity decreases, but then there is a
sharp increase towards the end of the year, stronger for the put with the
lower strike. This year the yield index of lowa ended at 123 bushels per acre,
which was higher than the markets expectations a few months earlier, based
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on trading at that time.

For the year 1996 an the average estimate o, = .23. The 8 different
strikes were 1000, 1050, 1100, 1150, 1200, 1250, 1300 and 1350. Here the
picture shows very little variation during the year, where it has been steady
at around 20%, but with a sharper increase at the end, than for the year
1995. The yield index of Towa ended at 138 bushels per acre, lower than
expected a few months earlier.

3,5
3
2,5 A
z 2
g
[
> 1‘5 4
‘l 4
0,5
——
0
1,06 1,00 0,94 0,89 0,83 0,78 0,72 0,67 0,61 0,56 0,50 0,44 0,39 0,34 0,28 0,23 0,17 0,12 0,06 0,00
Time to maturity

Figure 2: Estimated volatility as a function of time 7 to maturity for five
different strikes: 1100, 1150, 1200, 1250, 1300, 1350. The lowest strike has
the sharpest increase, then the next lowest, etc. Year 1998, with contracts
expiring in January 1999.

For the year 1998 the average turned out to be 20.66%. The 6 different
strikes were 1100, 1150, 1200, 1250, 1300 and 1350. The estimated volatilities
for the different strikes stayed approximately constant up until just a short
time before expiration. See Figure 2 for this year. The other two years
roughly show similar patterns. The yield index of Towa ended at 145 bushels
per acre, lower than expected based on trade a few months earlier.

The estimates of the implied volatilities for all the three years display a
similar structure: Relatively constant through the year, but with a sharp in-
crease just before expiration. This increase we partly attribute to the release
at that time of the harvest report by United States Department of Agricul-
ture (USDA). In this report USDA updates its forecasts of the different types
of corn in the different states. The yield index of Iowa is an average of all
the harvests of this state, and the estimates of USDA published just a short
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time before expiration will constitute an important piece of information in
forming the market’s expectations of the final level of the index. One reason
for the sharp increase in the volatility may be that the market participants
held expectations different from the USDA forecast.

For all the put options we observed the estimates of the implied volatilities
to be quite similar when time to expiration was more than one half year.
For shorter durations the picture changes so that the put option with the
lowest strike gets a higher estimated implied volatility. These are the options
furthest from the market’s expectations of the yield index level, given the
prices the yield futures were traded at shortly before expiration. Knowing
that the put prices increase with the volatility, this seems reasonable. We
will not observe the usual U-form of the “volatility smile” for yield futures
options, but a smile skewed to the right, since there is no trade in these
options having a strike sufficiently high for the put option to be “in the
money”.

A paper published by the CBOT (E. Kunda) refers to a similar investi-
gation for options on yield futures with expiration in September 1995, but
where a standard Black-Scholes model was used. This model gave an aver-
age estimated implied volatility of 28%. The historic volatility for the same
period was estimated to 13%. Also here was observed a significant increase
in the estimated implied volatility when USDA presented its yield forecasts.

The historic yield for corn in the period of 1972-1994 for the state of Iowa
shows an average value of 112.2 bushels per acre, with an estimated volatility
of 18.7% (source: USDA).

Finally we remark that we did not update the yield index y; daily, but
instead based the analysis on USDA monthly forecasts.

Compared to a simple application of the standard Black and Scholes
model, our approach seems promising since the difference between the implied
volatilities and the historic ones are smaller for our model. Also for this case,
however, there seems to be clear indications that e.g., the parameter o, ought
to be modelled by, say, a time a varying deterministic function, or perhaps,
even a stochastic process.

Conclusions

An economic model is proposed for a joint price and yield futures market. We
develop a set of pricing formulas, some of which are partially tested. Com-
pared to a simple application of the standard Black and Scholes model, our
approach seems promising since the difference between the implied volatilities
and the historic ones are smaller for our model.
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The innovation of the paper lies in the modelling stage. In order to apply
modern financial theory, one has to start with genuine pricing models. The
starting point here was, on the other hand, a model for yield and a model for
the spot price of corn. A transformation was proposed in order to overcome
this difficulty. It was demonstrated, both theoretically and empirically, that
the resulting technique is consistent with financial pricing theory, and also
possible to implement in practice.
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Appendix 1

In this section we present the proofs of Proposition 1 and Theorem 1.

We start with Proposition 1: It follows from the definition of the revenue pro-
cess R that it has the following dynamic equation under the equivalent martingale
measure Q:

th = Rt(r - 5R)dt + Rt[(Uy’l + Uq’l)dél (t) + ((Ty’g + O'q’g)dég(t)]. (40)

Here B; and B, are two independent, standard Brownian motions under the proba-
bility measure ). Thus we know the distribution of R under @); it is lognormal and
the random variable [(0, 1 4+ 04.1)B1(t) + (042 + 042) Ba(t)] is normally distributed
with mean zero and variance 62, where

6% = (oy1 + Uq,1)2 + (oy2 + Uq,2)27 (41)
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and any computation of market values that depend only on R is in principle
straight-forward.

Proof of Proposition 1:

We have to compute

ER[(p° — Ry el =) (T=Tr)H,

By substitution in the associated integral to the standard normal distribution, we
get

Y1 . . 1 1
0 (r=0p—162)(T1—t)+(r—6p)(T=T1)+62v/T1—t —1g?
/_oo (p Re PT3 P ) —27r6 dx,

where 1 is as given above.
The first integral above simply equals p®(y;), whereas for the second integral
the only difficulty is to compute the term
o eﬁ'x\/T1 —t 1
—o V2

where y5 = y; — 6/T) —t. Here we have made a full square in the exponent in
order to transform to the standard normal distribution. Putting this together with
the above expression, gives the result of the proposition. O

Proof of Theorem 1:

We have to compute

Y
e_%x2dx:e% 2Ty — t)/ ’ 1 e~
2

2

™ dz = 37 1= (y)

(NI

Rkt EQ[(k yr)tar)]

/ / k e~ 3Tt oy uyT=E )
(r—o6q—
qie

30)(T—D)+0gvVT— L (u,v) du dv,

where f(u,v) is the joint probability density of two random variables U and V
which are binormally distributed with zero means, unit variances and covariance
equal to p given in equation (8). First we get rid of the + in the function (-)¥,
and the above futures price equals:

(k—y)*q * (r—8g—2a2)(T—t)+oquov/T—1
Ft :/ qie 1 2%¢q a
—00

< / (k = e =D T =070 /T=0) 1y, 0) du) dv, (42)

— o0
where

In(£) — (5, — 8, — 0y g — 202
. (yt) (dq p ¥, — 29y . (43)
oyVIT —1
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The above expression for the futures price is a sum of two integrals, and we start
with the first one, which can be written:

(e ¢] C
kqte(r_éq_%ag)(T_t)/ e”q””T_t/ fu,v) dudv. (44)
—0o0 — 00

Let us concentrate on the integral, abstracting from the multiplying constant. By
Fubini’s theorem we get,

/ e”q“Tt/ flu,v)dudv =

c o0
/ du/ e?1VT=t f(y,v) dv =
—00 —00
| BT =)

where fy(u) is the probability density of U, a standard normal variate having
mean zero and variance one. The conditional distribution of V given U = u is
again normal with mean pu and variance (1 — p?), and using again the well-known
expression for the moment generating function of a normal variate, we get that
the above integral equals

e%ag(lfﬁ)(Tft) /C :; eptrqu\/Tftféu2 du
—co V2T

1 2 ¢ 1 1 2
_ pboa(r—1) / o= Hu—oupTTD? g,

oo V2T

A / T L o4 gy — AT 0 — gyp/ T
=e e T =e c—ogp —t).
o V2

Here we have made a full square in the exponent inside the integral, and used the
substitution z = v —oypv/T — t. Picking up the constant multiplier of the integral
from the expression in (44), we have that the first integral equals

kqte(r—éq—%ag)(T—t)—l—%ag (T_t)@(dl) _ kqte(’"_‘sq)(T_t)qﬁ(dl), (45)

where the expression for d;, given in (32), follows from (43) and the above substi-
tution.

We now turn to the last term in the expression (42). It is the negative of the
following;:

Rte(f-i-u?—5q—%(03+05))(T—t) /oo /C TaVT=ltoyuT=t ¢y ) duy d. (46)
—00 J =00
Considering again just the integral, by Fubini’s theorem we get:

< prc
/ / eaqv\/T—teayu\/T—tf(u’ 1)) du dv
—00 J—o00
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= [ e ( [ el dv) o (u) du
—00 —00
_ ic2a—p)(T-1) /C (pog+oy)uvT—t 1 —Lu? d
= e2 2
€274 7006 \/ﬂe U

—(pog+oy)VT—1
_ 30342000, +03) (11 / brteVI 1
—o V2T
1

— e3 (Ug+2p0'qu+0'§)(T7t)¢(d2)’

1.2
e 2% dg

where dy := (¢ — (pog + 0y)VT —t) is given in equation (33), and where f(v|u) is
the probability density of the conditional distribution of V given U = u. Returning
to equation (46), we see that the last term in (42) can be written

_Rte(T+HyQ*(547%(03+U§))(T7t)+%(Ug+2p0'qu+0'§)(T7t)¢(d2)

= —Rte(riéR)(Tit)é(dQ).

Adding this term to the first integral given in equation (45), we obtain the con-
clusion of the theorem. 0.

Appendix 2

Contract specifications for contracts considered in the
paper.

Corn futures:

Trading unit: 5000 bu. Price quotations: cent and quarter per bushel. “Tick
size”: 1/4 cent per bu. ($12.50 per contract). Contract months: December, Mars,
May, July, September. Last trading day: seven days before last day of trade
in month of delivery, for contracts with date of delivery in Mars 2000 and later:
trading day before the 15. in contract month. Trading time: 9:30 to 13:15 Chicago
time, Monday to Friday. Ticker symbol: C

Corn-yield futures:

Underlying asset: Official forecast from USDA for each relevant state and for
the entire USA throughout the corn season. Trading unit: Corn yield estimate
multiplied by $100. “Tick size”: 1/10 bu. per acre ($10 per contract). Contract
months: September, October, November, January. Last trading day: Last business
day in the month before the release of the USDA forecasts of corn for the relevant
states and for all of USA. Trading time: 10:30 to 12:45 Chicago time, Monday to
Friday. Ticker symbol: CA (Iowa).

Corn-yield futures options:

Trading unit: One CBOT® corn-yield insurance futures for a specific corn
producing area (Towa, Illinois, Indiana, Ohio, and all of USA) for a specific contract
month. “Tick size”: 1/10 bu. per acre ($10 per contract). Strike-yield: Intervals
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of 5 bu. per acre (for strike yield closest to the previous day’s settlement yield
and the next 20 successive higher and lower strike yields). Strike yields will also
be noted from 20 to 200 in 10 bu. per acre units over and under the 5 bu. strike
interval. Contract months: September, October, November, January. Last trading
day: Last business day in the month before the release of the USDA forecasts for
the relevant states and for all of USA. Trading time: 10:30 to 12:45 Chicago time,
Monday to Friday. Ticker symbol: CAC (Iowa Crop Yield Calls), CAP (Iowa Crop
Yield Puts).
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Notes

'Tn an earlier paper (Aase 2002) it is shown what strategy can be used
to lock in a certain revenue, when combining these two markets. Here it
is abstracted from production costs, and assume zero local price basis (i.e.,
local cash price equals futures price) and zero yield basis (i.e., individual
farm yield equals index yield).

?Here cov,(-) denotes conditional covariance, given the information avail-
able at time s < t.

3Notice that the forward price and the futures price are equal in this
model, since the interest rate is deterministic.

4The current value of a claim on the future delivery of the revenue R(T})
is precisely a conventional futures option, where ¢(z) = x for all real z.

®Since there is a risk free asset, the futures price at time ¢ of 1 at time 7'
is 1. Also, recall the multiplication factor of $ 100 per bushel for the Towa
corn contracts in Example 1.

6These estimates we have obtained at the courtesy of dr. Eugene Kunda
at the CBOT.

TAll the data are again at the courtesy of dr. Kunda.
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