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ABSTRACT. In this paper we suggest a microeconomic model for how commuting

flows relate to traveling distance. Commuting is the preferred choice of a worker

whenever he can obtain an increase in wages greater than the cost of commuting.

Our framework is based on an approach where workers apply for jobs according to a

strategy that maximizes their expected payoffs (wages minus commuting costs). We

also discuss systematic bias in comparing the distances between city centers with the

actual average traveling difference between intrazonal and interzonal commuting.
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1. Introduction

According to Griffith and Jones (1980, p. 190), spatial interaction is defined as
geometric linkages between areal units over which forces pulsate that bring about
spatial interrelationships. The level of spatial interaction is influenced by the fact
that the areal units are geographically separated. Physical distance is the most
obvious measure of separation that can be expected to influence spatial interaction.
Another measure that can be relevant is the number of intervening opportunities
between specific areal units. In general, one can argue that interaction flows are
affected by several characteristics of spatial structure. In this paper we focus on the
effect of physical distance between the points of origin and destination in space. To
keep the analysis free from disturbing elements we only consider geographies with
two areal units or central places. The basic mechanisms underlying the analysis
are of course also relevant in systems with more complex configurations of central
places.

Studies of spatial interaction and travel choices have attracted a lot of attention in
transportation economics as well as in urban and regional economics and planning.
Such studies constitute the basic ingredients in economic assessments of invest-
ments in transportation infrastructure. For example, models of travel choices con-
tribute with estimates of the willingness to pay for changes in the road network,
and by predicting impacts on traffic flows from the introduction of road pricing.
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Models of travel choices can be distinguished according to the purpose of the study
and to the level of the decision process. In general, four main categories of studies
and models appear in the literature. The specific categories are trip distribution,
trip generation, mode choice and trip assignment. For a standard textbook pre-
sentation of travel demand models, see Ortuzar and Willumsen (1994). For each
category of models one can distinguish between several trip purposes, such as trips
for shopping, recreation, or commuting to work. In this paper we consider the trip
generation and the trip distribution aspects of commuting to work.

Consider the following expression of a spatial interaction model:

(1.1) Tij = fi(Ai)fj(Bj)Cij

Here, Tij represents traffic flows from origin i to destination j, fi(Ai) represents
compound origin generativity factors and fj(Bj) represents compound destination
attraction factors. When commuting flows are considered the generativity factors
are related to the concentration of workers residing in zone i, while the attrac-
tion factors are related to the number of jobs in zone j. Cij is introduced as a
generalized friction effect, representing the disutility of travel. This formulation
subsumes a set of spatial interaction models. Models belonging to the gravity mod-
eling tradition are most commonly applied to the problems relevant in this paper.
For a discussion of the theoretical foundation and practical applications of gravity
models, see Erlander and Stewart (1990) or Sen and Smith (1995).

In the literature on spatial interaction problems a lot of interest has been focused
on the specification of the friction effect, i.e., the distance-deterrence function. For
many studies this is a matter of choosing a functional specification for how inter-
action is deterred by physical distance. Two approaches dominate in the literature.

One is the power deterrence function, defined by C(dij) = dβij , the other is the
exponential deterrence function, C(dij) = exp(−βdij). For both specifications the
parameter β represents the sensitivity of the interaction volume with respect to
dij , the physical distance between points i and j.

One reason why the exponential distance-deterrence parameter has been widely
used in empirical spatial interaction analysis is that it follows as a result of a stan-
dard derivation of the gravity model from an optimizing framework. The so-called
entropy-maximizing procedure was introduced by Wilson (1967) as a theoretical ba-
sis for gravity models. This procedure results in a negative exponential impedance
function. As pointed out by Ortuzar and Willumsen (1994), among others, however,
reasonable reformulations of the optimizing problem result in a power function
specification. It is also well known in the literature on spatial choice behavior that
that traditional gravity models can be derived from stochastic utility maximization,
(see for example Anas, 1983). This derivation results in an exponential distance-
deterrence function if (indirect) utility is related to distance, while a power function
results if it is the natural logarithm of distance that appears in the (indirect) utility
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function. In general, the literature offers no strong theoretical arguments in favor
of one particular specification. For example, Nijkamp and Reggiani (1992) claim
that the choice of a deterrence function is essentially a pragmatic one. They do,
however, underline that the form of the function is strongly influenced by the spa-
tial configuration leading to the interaction. According to Nijkamp and Reggiani
(1992) the exponential structure is suitable for systems without strong barriers
or metropolitan areas. Fotheringham (1983) refers to empirical support to show
that a power function represents a more accurate description of the perception of
distance for data on an interurban scale.

An alternative approach that has been chosen in some recent studies, is to let
the data decide the specification of the distance-deterrence function. This can
be achieved through a Box-Cox transformation of the distance variable. Fik and
Mulligan (1998) concluded that the appropriateness of the functional form should
be critically examined. Based on migration data they found that Box-Cox transfor-
mations significantly improved the goodness of fit of their gravity-related model
formulation. They also found that the functional form they started out with was
significantly incorrect, and that parameter estimates were considerably changed
when the functional misspecification was corrected. Similar results were found in
Gitlesen and Thorsen (1999) in a study of commuting flows.

In Thorsen et al. (1999) the distance-deterrence function for commuting is rep-
resented by a logistic specification. In the paper the authors introduced models
defined in terms of the extreme states of the system. The focus in our paper is not
particularly on these models as such. Our point of view, however, is that Thorsen
et al. (1999) sets up a common framework for the discussion, comparison and vi-
sualization of any kind of model within the field. Ubøe (2001) uses this framework
to discuss properties and relationships between several different kinds of gravity
models. The same set of ideas will be used here to visualize the responsiveness to
distance of micro-economic models for commuting.

Thorsen and Gitlesen (1998) considered the performance of gravity models to ex-
plain commuting flows. One result is that model performance improves signif-
icantly when a parameter is introduced in the distance-deterrence function that
represents an additive constant term attached to the diagonal elements of the trip-
distribution matrix. One possible interpretation for this is that measurement errors
are introduced through the specification of distances in a discrete geography. Dis-
tances between zones are measured relative to the zonal centers, while the jobs and
the residents are in general more evenly scattered over the region. Consequently
the measured distance might diverge from the real distance of a journey to work.

A short survey of the extreme state approach is given in Section 2 of this paper. In
Section 3 we study the determination of commuting flows through a game where
wage differences are evaluated against commuting costs. In Section 4 we restrict
the discussion to the cases where each individual worker is left with two or three
job alternatives. In Section 5 we extend the discussion in Section 4 to the case
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where the labor force is divided into a number of different categories. Systematic
bias due to measurement errors and a geometrical correction procedure for this
are considered in Section 6. We consider the aggregate effect of labor market con-
ditions and geometrical corrections in Section 7. Finally in Section 8 we offer some
concluding remarks.

2. Extreme states and distance deterrence

We now give a short survey of the discussion in Thorsen et al. (1999): Consider
a framework with two towns. Let L1, L2 denote the number of workers residing in
towns 1 and 2, respectively, and let E1, E2 denote the corresponding number of jobs
in each town. All workers are assumed to have a job, so L1+L2 = E1+E2. The trip
distribution matrix T is then defined as T = {Tij}2

i,j=1 where
(2.1)
Tij = Traffic flow, i.e., the number of people commuting from town i to town j

Thorsen et al. (1999) focus on two extreme situations:

• When commuting in the system is determined by random choice only, the ex-
pected trip distribution matrix can be expressed as follows:

(2.2) Trandom =
[ L1E1
E1+E2

L1E2
E1+E2

L2E1
E1+E2

L2E2
E1+E2

]

• If, on the other hand, we consider a situation where the total traveling cost is as
low as possible, we get

(2.3) Tminimal cost =
[

min[L1, E1] L1 −min[L1, E1]
L2 −min[L2, E2] min[L2, E2]

]

The basic idea in Thorsen et al. (1999) is then to write any trip-distribution matrix
as a convex combination of the two extremes, i.e.,

(2.4) T = Trandom(1−D)+ Tminimal costD

D measures the level of deterrence from the random cost case, and the basic hy-
pothesis is that D = D(d) where d is the traveling distance. As argued in Thorsen
et al. (1999), we expect that commuting will be random when the distance is very
short, i.e., there is no deterrence and D(d) ≈ 0. When the traveling distance is very
long, however, we expect that action is taken so as to minimize the traveling cost in
the system, i.e., there is full deterrence and D(d) ≈ 1. To allow for some friction in
the system, we consider a marginal level of interaction, α. The distance d0 signifies
the distance at which D is marginally close to no deterrence, and d∞ signifies the
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distance at which D is marginally close to full deterrence. The conditions above
can then be expressed as follows:

• d ≥ d∞ ⇒ D(d) ≥ 1−α
• d ≤ d0 ⇒ D(d) ≤ α

In Figure 1, we show a distance-deterrence function corresponding to the discussion
above. In Figure 1, d0 = 10 (km) and d∞ = 60 (km). In the regions where d0 ≤ d
and d ≤ d∞, the function falls within α = 5% of its extreme values.
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FIGURE 1: A distance-deterrence function

The main purpose of this paper is to provide a theoretical discussion of the func-
tional form of such distance-deterrence functions. In particular, we will demon-
strate that the basic properties mentioned above can be argued to be the result of a
framework where the level of commuting is determined from game theory together
with a geometric correction procedure.

3. A game theoretical approach to commuting

We now consider a situation where there are N1 different types of jobs in town 1,
each of which have E1j , j = 1, . . . , N1 employment positions, with wages W1j , j =
1, . . . , N1. Correspondingly there are N2 different types of jobs in town 2, with
E2j , j = 1, . . . , N2 employment positions, and wagesW2j , j = 1, . . . , N2. The workers
in each town apply for the positions with the purpose of maximizing their individual
wages net of commuting costs. We assume that the jobs are sorted with the N1

jobs in town 1 first, then followed by the N2 jobs in town 2. The game is played as
follows:

• The workers in each town hand in a set of applications for the jobs in the system.
Each worker applies for one and only one job.

• If there are more applicants than jobs, the individuals getting the jobs are deter-
mined by random choice. We hence assume that all workers are equally qualified
for the jobs, and invoke the law of large number to compute the distribution be-
tween towns. These jobs and the corresponding numbers of workers are then
removed from the game.

• When the number of applications is less than the number of employment posi-
tions, all the applicants get hired, and the corresponding number of employment
opportunities is removed from the game.
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• The game is then repeated until all positions are resolved.

Since E1+E2 = L1+L2, at least one type of job will be resolved in each round, so the
maximum duration of the game will be N1 + N2 rounds. The point of importance
here is that workers appointed to jobs in the opposite town must adjust their wages
with respect to the traveling cost, TC. If L(i)j denotes the number of workers residing
in town i appointed to job j, then the average outcome of the game can be computed
as follows:

(3.1)

Average outcome for town 1 := O1 =
N1∑

j=1

L(1)j W1j +
N2∑

j=1

L(1)j+N1
(W2j − TC)

Average outcome for town 2 := O2 =
N1∑

j=1

L(2)j (W1j − TC)+
N2∑

j=1

L(2)j+N1
W2j

To simplify the notation, we define N = N1 +N2, and let W (i)
j represent net wages

for workers in town i and jobtype j:

(3.2)
W (1)
j =

{W1j if 1 ≤ j ≤ N1

(W2j − TC) if N1 < j ≤ N
W (2)
j =

{ (W1j − TC) if 1 ≤ j ≤ N1

W2j if N1 < j ≤ N

With this notation

(3.3) O1 =
N∑

j=1

L(1)j W
(1)
j O2 =

N∑

j=1

L(2)j W
(2)
j

Note that all mixed strategies for this game can be defined from a choice probability
P defined on the set of all types of jobs, i.e., a function defining the probability that
a worker will apply for each type of job given that his choice is restricted to a
particular subset of the jobs.

The game defined above has L1 + L2 individual players. Each player in town 1
gets an average outcome equal to the average outcome for town 1 divided by L1,
with a corresponding result for town 2. Since L1 and L2 are fixed, we can assume
without loss of generality that the players try to maximize the outcomes in (3.2).
All the players within the same town are by assumption identical. If we make the
additional assumption that each such player has a unique best strategy, and that
all the players use this strategy, we may essentially consider this as a two player
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game; all the workers in town 1 apply the same choice probability, P , and all the
workers in town 2 apply the same choice probability Q.

4. 2-job and 3-job games

To simplify the discussion further, we will restrict ourselves to some special cases.
The simplest such case occurs when there is only one job in each town, i.e., N1 =
N2 = 1. We refer to this situation as a 2-job game. In this case we let p denote
the fraction of workers in town 1 applying for the job in town 1, and q denotes
the fraction of workers in town 2 applying for the job in town 1. The outcome of
the game in this case is fairly obvious, but we include some details merely as an
illustration of the technical complexity of the game.

(4.1)

O1[p, q] =



pL1E11
pL1+qL2

W (1)
1 + (L1 − pL1E11

pL1+qL2
)W (1)

2 if pL1 + qL2 ≥ E11

(L1 − (1−p)L1E21
(1−p)L1+(1−q)L2

)W (1)
1 + (1−p)L1E21

(1−p)L1+(1−q)L2
W (1)

2 if pL1 + qL2 < E11

(4.2)

O2[p, q] =



qL2E11
pL1+qL2

W (2)
1 + (L2 − qL2E11

pL1+qL2
)W (2)

2 if pL1 + qL2 ≥ E11

(L2 − (1−q)L2E21
(1−p)L1+(1−q)L2

)W (2)
1 + (1−q)L2E21

(1−p)L1+(1−q)L2
W (2)

2 if pL1 + qL2 < E11

From (4.1) and (4.2), we get

(4.3)
∂O1

∂p
=



qL1L2E11
(pL1+qL2)2(W

(1)
1 −W (1)

2 ) if pL1 + qL2 ≥ E11

(1−q)L1L2E11
((1−p)L1+(1−q)L2)2(W

(1)
1 −W (1)

2 ) if pL1 + qL2 < E11

(4.4)
∂O2

∂q
=



pL1L2E11
(pL1+qL2)2(W

(2)
1 −W (2)

2 ) if pL1 + qL2 ≥ E11

(1−p)L1L2E11
((1−p)L1+(1−q)L2)2(W

(2)
1 −W (2)

2 ) if pL1 + qL2 < E11

From (4.3) and (4.4), it follows that O1 is monotone in p, and that O2 is monotone
in q. Hence ifW (1)

1 6= W (1)
2 andW (2)

1 6= W (2)
2 , then there is a unique Nash equilibrium

characterized by a strategy where a player always applies for the job with the best
wages. If W (1)

1 = W (1)
2 , then player 1 is indifferent between all the strategies, and

may just as well only apply for job 1. If W (2)
1 = W (2)

2 , then player 2 is indifferent
between all the strategies, and may just as well only apply for job 2. Because
of the traveling costs, preferences may be subject to change when the distance d
between town 1 and town 2 changes. Figure 2 shows a numerical simulation of the
distance-deterrence function in this case. In Figure 2 we have used the values E1 =
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11 423, E2 = 7 577, L1 = 13 276, L2 = 5 724,W11 = 30 000,W21 = 32 000 subject to
a traveling cost of $50 per kilometer per year.
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FIGURE 2: A distance-deterrence function for a 2-job game

Now consider the case where there are two different jobs in town 1 and one job in
town 2, i.e., N1 = 2 and N2 = 1. The outcome of the game is now quite different.
The players have to balance the possibility of getting the best job against the danger
of falling into the worst category. In this case the game is too complex to admit
a straightforward analysis, so we will resort to a numerical approach. One basic
principle remains from the 2-job game, however; the players never apply for the
worst category.

EXAMPLE 4.1

In this example we set L1 = 4000, L2 = 6000, E11 = 4000, E12 = 2500 and E21 =
3500. The wages areW11 = 29000 ($/year),W12 = 22000 ($/year), andW21 = 30000
($/year). The wage differences have to be balanced against a traveling cost of 80
($ per km per year). From the numerical simulations, we see that the players now
continuously change their strategy. The resulting distance-deterrence function is
shown in Figure 3.
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FIGURE 3: A distance-deterrence function for a 3-job game

In this case the non-trivial choice probabilities are the ones for job 1 and job 3 on
the first level. The players never apply for job 2, and on the second level there are
at most two jobs left, so the analysis for the 2-job game applies. We mention a few
typical values: At d = 20 the players in town 1 apply p1 = 0.58 and p3 = 0.42,
while the players in town 2 use q1 = 0.48 and q3 = 0.52. At d = 40 km the players
in town 1 apply p1 = 0.67 and p3 = 0.37, while the players in town 2 use q1 = 0.46
and q3 = 0.54. The corresponding trip distribution matrices are as follows

(4.5) T20 =
(

2774 1226
3726 2274

)
T40 =

(
2978 1022
3522 2478

)
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and, as can be expected, we observe an increase in internal commuting.

5. The N-job game with multiple categories

To proceed one step further, we consider a case where there areM different job cat-
egories, and where the same job categories are found in both towns. Each worker is
only qualified for work in one job category, but jobs offered for a specific category
are not homogeneous. Each category (profession) consists of workers with spe-
cific qualifications, but as a group they are faced with job offers of varying tasks,
responsibilities and wages.

Hence the labor force L1 in town 1 can be divided into categories L11, L12, . . . , L1M ,
where each category is qualified for its corresponding job category. The corre-
sponding categories in town 2 are denoted L21, L22, . . . , L2M . We will assume that
the workers L1k, L2k in each category are qualified for the jobs E1jk, k = 1, . . . , N1k
and E2jk, k = 1, . . . , N2k only. All the workers within each category compete for the
jobs according to the game in the previous section. By a slight abuse of notation, we

define E1k =
∑N1j
j=1 E1jk and E2k =

∑N2j
j=1 E2jk, i.e., the total number of employment

opportunities in each town and category.

In the numerical simulations, we only consider two special cases. In the first case we
assume that within each category, there is one and only one job option in each town.
HenceN1k = N2k = 1 for all k, and E1k = E11k, E2k = E21k denote the number of jobs
available for category k. In the second case we assume N1k = 2, N2k = 1 for each
k, in which case E11k, E12k and E21k denote the number of available jobs available
for category k. Then E1k = E11k + E12k denotes the total number of available jobs
in town 1 in category k, and E2k = E21k denotes the total number of available jobs
in town 2 in category k.

When a population is divided into categories as above, the matrices Trandom and
Tminimal cost must be computed from the expressions

(5.1) Trandom =


∑
k
L1kE1k
E1k+E2k

∑
k
L1kE2k
E1k+E2k∑

k
L2kE1k
E1k+E2k

∑
k
L2kE2k
E1k+E2k




(5.2) Tminimal cost =
[ ∑

kmin{L1k, E1k} L1 −
∑
kmin{L1k, E1k}

L2 −
∑
kmin{L2k, E2k}

∑
kmin{L2k, E2k}

]

Note that the matrices defined by (5.1) and (5.2) will in general be different from the
corresponding expressions given by (2.2) and (2.3). To illustrate this, we consider
the following example:

Assume that we have 2 different categories, with values

(5.3) E11 = 100, E12 = 0, E21 = 0, E22 = 300
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and

(5.4) L11 = 0, L12 = 300, L21 = 100, L22 = 0

In this case we get E1 = 100, E2 = 300 and L1 = 300, L2 = 100. Using the aggregated
data in (2.2) and (2.3), we get:

(5.5) Trandom =
[

75 225
25 75

]
Tminimal cost =

[
100 200

0 100

]

while the correct specification is given by (5.1) and (5.2), i.e.,

(5.6) Trandom =
[

0 300
100 0

]
Tminimal cost =

[
0 300

100 0

]

In this example all workers must commute to the neighboring town. Hence the ag-
gregated data in (5.5) will give a serious misspecification of the distance deterrence.
This example is extreme, but it illustrates a point of importance: in modeling com-
muting to work, each category of the labor force must be treated separately, and
the results from each category added together.

For a throughout discussion of aggregation and the modeling issues it poses with
respect to gravity models, see Ubøe (2001). Here we will need to compute distance-
deterrence functions for aggregated systems, and we refer to the following result
from Ubøe (2001).

THEOREM Ubøe (2001)

Consider an aggregated system of M categories, where each of the categories k
has a distance-deterrence function Dk, k = 1, . . . ,M . If we let Ek = E1k + E2k, k =
1, . . . ,M and Lk = L1k + L2k, k = 1, . . . ,M denote the total number of employment
opportunities/workers in each category k in the whole system, then the distance
deterrence D for the aggregated system can be found as follows:

(5.7) D[d] =
∑M
k=1 Lkmin

[
E1k
Ek ·

L2k
Lk ,

E2k
Ek ·

L1k
Lk

]
·Dk[d]

∑M
k=1 Lkmin

[
E1k
Ek ·

L2k
Lk ,

E2k
Ek ·

L1k
Lk

]

When the working population is divided into several categories, we get a more
complex interaction pattern for the distance-deterrence function even for the 2-
job game. An example of this with 3 different categories (professions) is shown in
Figure 4.
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FIGURE 4:
A distance-deterrence function for a 2-job game with 3 different categories

In systems with a small number of categories, the distance-deterrence function can
have almost any shape according to the characteristics of each category. As the sys-
tem is refined into a large number of small categories, however, it seems reasonable
to conjecture that the local anomalies will be significantly reduced. Figure 5 shows
a numerical simulation of the distance-deterrence function in a system where the
workers are subdivided into 500 different professions. In this framework, com-
muting is computed on the basis of wage differences between the two towns. In
Figure 5 we have used a construction where the difference in wages decreases with
the size of the categories (see the theoretical discussion below).
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FIGURE 5:
A distance-deterrence function for a 2-job game with 500 different categories

The resulting picture in Figure 5 is a globally-concave function. To examine this
further, we repeated the experiment for a 3-job game. In this case the game comes
out with a variety of different curves and patterns depending on the relative size
of the various groups. A typical selection is shown in Figure 6 below. When these
systems are aggregated, however, all the peculiarities are wiped out, and the re-
sult is again a globally-concave function. Figure 7 below shows the result of an
aggregation of 500 categories.
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FIGURE 6: A collection of distance-deterrence functions for a 3-job game

The curves in Figure 6 and 7 have been constructed as follows: We first sampled
Lk = Ek, k = 1, . . . ,500 from a uniform distribution on the interval [100,10000].
Then each Lk was subdivided into L1k, L2k by random choice, and correspondingly,
we split Ek into E11k, E12k and E21k. To simplify the programming, we always placed
2 jobs in town 1. Finally the wagesW11k,W12k, andW21k were drawn from a uniform
distribution on the interval [30000 · (1− 100/Lk),33000].
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FIGURE 7:
A distance-deterrence function for a 3-job game with 500 different categories

Theoretical discussion

To try to explain these results from a theoretical point of view, we consider the 2-job
game. We let ∆Wk = |W1k−W2k|, k = 1, . . . ,M , i.e., the difference in wages between
the two towns in category k. For this game the distance-deterrence functions are
given by the simple expression

(5.8) Dk[d] = X∆Wk≤TC[d] =
{

1 if ∆Wk ≤ TC[d]
0 otherwise

Hence from (5.7), we get

(5.9) D[d] =
∑M
k=1 Lkmin

[
E1k
Ek ·

L2k
Lk ,

E2k
Ek ·

L1k
Lk

]
· X∆Wk≤TC[d]

∑M
k=1 Lkmin

[
E1k
Ek ·

L2k
Lk ,

E2k
Ek ·

L1k
Lk

]

If we consider a distance where TC[d] = ∆Wk, the curve jumps upwards with a
jump of relative size

(5.10) Lkmin
[
E1k

Ek
· L2k

Lk
,
E2k

Ek
· L1k

Lk

]
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To explain what is happening with the curve, we fix a distanced0 and consider all the
job categories where TC[d0] ≤ ∆Wk ≤ TC[d0 +∆d0]. If ∆d0 is not too small, there
will be many job categories within this range of wage differences. What controls
the size of the jumps is mainly the first term in (5.10), i.e. the size of the total

population, Lk. Consider the second term in (5.10), i.e., min
[
E1k
Ek ·

L2k
Lk ,

E2k
Ek ·

L1k
Lk

]
.

Note that the largest value of this term is obtained whenever

E1k = E2k = L1k = L2k = 0.5 · Ek
If E1k 6= 0.5 · Ek, however, the largest value is obtained whenever L1k = E1k. Hence,
the more symmetry, the more impact the term has on the final curve. This term
thus adjusts for an uneven spread in the fraction of employment opportunities in
a given job category between each town in relationship to the fraction of workers
in the same job category. If we assume that the two stochastic terms in (5.10) are
independent of each other, i.e., that the proportion of local employment in each
job category is largely independent of the population size, Lk, then the effect of
the adjustments will average out. This being so, the size of the jump in the interval
[d0, [d0 +∆d0]] will be proportional to

(5.11)
∑

k:TC[d0]≤∆Wk≤TC[d0+∆d0]
Lk ≈

∑

k:TC[d0]≤∆Wk≤TC[d0+∆d0]
Expectation[Lk]

invoking the law of large numbers. What happens with the average number of
workers in these job categories when d0 increases and ∆d0 is fixed? We think it is
reasonable to assume that

• The number of job categories with TC[d0] ≤ ∆Wk ≤ TC[d0 +∆d0] goes down

For example, there will be fewer job categories where the wage differences between
the two towns are in the interval between $10000 and $10500 than in the interval
between $1000 and $1500.

• The expected population, Expectation[Lk], goes down

That is, that jobs with large wage differences are generally more specialized, con-
sisting of a smaller number of workers.

Under these assumptions, the relative increase inD will decrease with increasing d,
giving rise to a globally concave profile. This argument applies to the 2-job game.
For the N-job game the analysis is much more difficult. Some parts of the previous
discussion applies, however. Formula (5.7) can be used in this case as well. Hence
much of the behavior is controlled by the coefficient

(5.12) Lkmin
[
E1k

Ek
· L2k

Lk
,
E2k

Ek
· L1k

Lk

]

For the N-job case the particular shape of each Dk, k = 1, . . . ,M is too complicated
to admit a detailed analysis. From the numerical simulations shown in Figure 7,
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however, it seems reasonable to expect that the same principle holds for this case
as well, i.e., that distance-deterrence curves for aggregated systems can be expected
to be globally concave.

Some remarks

Ubøe (2001) considers aggregated systems of gravity models with an exponential-
deterrence function, and obtains a similar result: the deterrence functions are con-
cave at moderate and large distances and close to linear at short distances. Notice
that the behavior of each category is completely different from the approach in the
present paper. In Ubøe (2001) the categories behave according to a random utility
maximation. In the present paper the behavior is determined from a fixed rule de-
termined by the game. The deterrence functions for each subcategory of workers
are completely different in the two cases. Nevertheless we get exactly the same
kind of response in the aggregate system.

It seems quite unlikely that one could improve the specification of the curves much
beyond the point of globally concave functions. Given any such properly-scaled
function f , it is probably possible to backtrack the construction to set up an ag-
gregated system with D = f . In this connection, note that an aggregated system
of gravity models with an exponential-deterrence function is not, in general, of
an exponential type, see (Ubøe, 2001). Hence particular functional forms such as
exponential or power-function specifications generally fail in aggregate systems.

6. Geometric corrections

Our model takes into account the expenses for commuting between towns, and we
have used the distance between the centers in each town to calculate the traveling
costs. This is a reasonable approach as long as all internal traveling distances are
small. In general, however, the distances between urban centers will have to be
adjusted with respect to intrazonal traveling distances. Traveling distance in itself
is not crucial; the important factor is the actual difference in traveling distance
between the alternative job locations.

FIGURE 8: Euclidean distances

Consider the framework in Figure 8. The first town is separated from the second
one by a distance d between the two centers. The actual difference in traveling
distance is, in general, different from d. To analyze this further we start out with
a number of simplifying assumptions. We assume that movement is unrestricted,
i.e., that any pair of positions within the two towns can be joined by a link with
length equal to the euclidean distance between the two positions. We also assume
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that job and residential sites are uniformly distributed within two circles, each of
which has radius r . If so, the average internal traveling distance, ITD, is given by
the integral

(6.1) ITD = 1
π2r 4

∫ r
−r

∫√r2−x2

−
√
r2−x2

∫ r
−r

∫√r2−u2

−
√
r2−u2

√
(x −u)2 + (y − v)2dvdudydx

The average external traveling distance, ETD = ETD(d), is given by the correspond-
ing expression
(6.2)

ETD(d) = 1
π2r 4

∫ r
−r

∫√r2−x2

−
√
r2−x2

∫ r
−r

∫√r2−u2

−
√
r2−u2

√
(x −u+ d)2 + (y − v)2dvdudydx

If we are to compare the average difference in traveling expenses between intra-
zonal and interzonal commuting, we must consider the average difference in trav-
eling distances, Gr (d) = ETD(d) − ITD. Figure 9 shows the graph of this function
in the case where r = 10 (km). The straight line corresponds to the case where
intrazonal distances are zero.
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FIGURE 9: Geometric correction, euclidean case
From the graph we may conclude that the effect of intrazonal traveling is highly
significant. Given that

(6.3) lim
d→∞

d−
√
(x −u+ d)2 + (y − v)2 = u− x

it is easy to see that limd→∞ d − Gr (d) = ITD. Hence the long range correction is
equal to the average intrazonal traveling distance.

One argument against the construction above is that motion is usually restricted to
movement along fixed roads, and that euclidean distance cannot be obtained. To
determine the effect of this we carried out the same kind of construction for the
cases shown in Figure 10.

FIGURE 10: Restricted geometries
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In both of these cases travel is restricted to movement along the straight lines in
each figure. The resulting differences in the average traveling distance are shown
in Figure 11 together with the results from the euclidean case. In Figure 11 the
geometry from the left-hand side of Figure 10 is represented by the dotted line,
while the geometry from the right-hand side is depicted by the dashed line.
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FIGURE 11: Geometric corrections

Ignoring the part of the curve near d = 20, it is surprising to see that the incorpora-
tion of just a few interconnecting lines pulls the solution strongly in the direction
of the euclidean case. The behavior near d = 20 is very artificial, and is due to
collapsing geometries when the two circles touch each other. This part of the curve
has no practical significance. If two towns are situated in a position such as this,
one would expect a number of small roads connecting the areas. This would pull
the solution strongly in the direction of the euclidean case.

A geometric problem of a different kind is encountered whenever a town«s geogra-
phy does not coincide with the dispersion of the actual population. Two examples
of this type are shown in Figure 12.

FIGURE 12: Misspecifications of city center and extension

In the figure on the left-hand side of Figure 12, the intrazonal traveling distance will
be misspecified if it is calculated with reference to the total geographical extension
of the town. In the figure on the right hand side we need to adjust both the center
and the extension to give an appropriate description of the population density.

7. Composition of distance deterrence and geometric corrections

From the arguments in Section 6, it seems reasonable to model the distance deter-
rence from a globally concave function depending on the actual traveling distance
x. As an example of this , we suggest using the simple expression

(7.1) D(x) = 1− e−γx
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where we, in the spirit of Section 2, set γ = 1
d∞ ln

(
1
α

)
. In applications of this theory,

however, we usually do not refer to actual traveling distances asd but rather refer to
the difference between two city centers as d. As argued in Section 5, we quite often
expect to find a systematic bias between d and the average difference in traveling
distance between intrazonal and interzonal traveling. From this point of view, we
suggest using the euclidean correction x = Gr (d). Here, r is the radius of the town.
In the spirit of Section 2 again, we put r = d0. This gives us

(7.2) D(d) = Dd0,d∞(d) = 1− e−γGd0 (d) with γ = 1
Gd0(d∞)

ln
(

1
α

)

A plot of this function using the parameter values α = 5%, d0 = 10 and d∞ = 60 is
shown in Figure 13.
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FIGURE 13: A model for distance deterrence
Thorsen et al. (1999) suggested that one could modelD(d) using a logistic function.
This is the function shown in Figure 1. As we can see from Figure 10, the result-
ing graph is not very different. Nevertheless, it is our opinion that the composite
structure above is more satisfying from a theoretical point of view.

8. Concluding remarks

In this paper we have discussed some theoretical aspects of distance-deterrence
functions in modeling commuting to work. We started out by defining a game
where each worker applies for a job in one of two towns in the geography. The
simplest case occurs when there is only one kind of job in each town. Commuting
flows are the result of a unique Nash equilibrium determined by wage differentials
and the distance between the towns. A more complex situation arises in the case
where there are many different job alternatives for each type of worker (profes-
sion). We base our discussion on the assumption that the individual workers are
qualified for one and only one job category. We demonstrate that commuting flows
in such situations result not only from wage differentials and distances, but also
from a spatial mismatch between the types of jobs and the categories of workers.
This represents a potential problem when distance-deterrence parameters are esti-
mated from aggregated data on commuting flows. We formulate explicit conditions
that have to be met to avoid biased estimates of parameters that are intended to
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measure behavioral responses to variations in distance. We then carry out sim-
ulation experiments based on the specification of the game. Finally, we discuss
analytical results for the resulting distance-deterrence function in the case where
the number of job categories is very large. Under quite general conditions we are
able to demonstrate that the distance-deterrence function is globally concave when
observed on a scale that is not too small.

The globally concave distance-deterrence function does not account for possible
measurement errors resulting from a practice where distances between zones are
measured relative to the zonal centers, while the jobs and the residents are in gen-
eral more evenly scattered over the region. We argue that this calls for a geomet-
ric correction of distances, and demonstrate that this correction typically should
correspond to the average intrazonal traveling distance. Through this geometric
correction of the otherwise globally concave function we end up with a distance-
deterrence function with a logistic profile.

It is of course possible to extend the game-theoretical analysis considerably in many
directions from the simple framework that is offered in this paper. The main pur-
pose of this paper is to demonstrate that it is possible to derive a profile for the
relationship between distances and commuting flows from a game-theoretical spec-
ification of a labour market equilibrium. This profile can next be compared to the
alternative distance-deterrence functions that appears in the literature. Consider-
ing, for example, the experiences with Box-Cox transformations that are mentioned
in the introduction, we find it surprising that so little attention has been directed
towards purely theoretical aspects of the distance-deterrence relationship in the
literature on spatial interaction problems.
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