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Abstract

In this paper a potential problem with tests for Granger-causality
is investigated. If one of the two variables under study, but not the
other, is measured with error the consequence is that tests of fore-
castablity of the variable without measurement error by the variable
with measurement error will be rejected less often than it should. Since
this is not the case for the test of forecastability of the variable with
measurement error by the one without there is a danger of concluding
that one variable leads the other while it is in fact a feed-back rela-
tionship. The problem is illustrated by an example.
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1 Introduction

Since the ground-breaking work by Granger (1969), tests for what is now
called Granger-causality have been employed to evaluate forecasting ability
of one time series variable by another. Even though sometimes mixed up with
the everyday-use word �causality� it can, at least rule out that one variable
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is causing another by the reasonable idea that for an event to cause another
event it must at least precede it. Therefore it is perhaps as close as we can
get in using data analysis to evaluate the philosophical concept of causality.
Some variables in macroeconomics and �nance are arguably measured with
error. Examples are in�ation, economic growth and volatility in �nancial
markets. In the next section, a brief review of Granger causality and how to
test it is given. Section 3 investigates properties of the test when one of the
variables is measured with error. Section 5 concludes.

2 Granger causality

A time series variable x is said to fail to Granger-cause another variable
y if the mean squared error (MSE) of a forecast of yt+s based on Fxy

t =
{xt, xt−1, ..., yt, yt−1, ...} is equal to the MSE of a foreacast based on Fy

t =
{yt, yt−1, ...}, s > 0. Tests of Granger-causality can e.g. be based on a vector
autoregressive model, a multivariate MA-representation or a regression of
yt+s on Fxy

t . See Hamilton (1994) for a review of such tests. For the purpose
of this paper, the last of these approches is particularly helpful and therefore
chosen. The test I consider is simply performed by testing the hypothesis{

H0 : α1 = ... = αp = 0
H1 : At least one αj 6= 0

(1)

where the parameters are given by the model

yt = α0 + α1xt−1 + ... + αpxt−p + β1yt−1 + ... + βpyt−p + a1t (2)

where a1t is a zero mean strict white noise. The choice of the lag length, p,
is of great importance for this type of analysis but is not the object of this
paper. Therefore, it is assumed to be known. The possibility that a1t can be
autocorrelated in practice is not considered either.

In order to test H0 the model

yt = γ0 + γ1yt−1 + ... + γpyt−p + a0t (3)

is estimated as well. We form

S1 =
T (RSS0 −RSS1)

RSS1

(4)
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where

RSSi =
T∑

t=1

â2
it, (5)

and i = 0, 1, are the residual sum of squares for the null and alternative hy-
pothesis, respectively. Then, under the null hypothesis, S1 is asymptotically
χ2(p)-distributed.

3 Measurement error

It is common that tests of Granger-causality are used both to investigate
whether x fails to Granger-cause y and vice versa. This can be made, e.g.
in order to establish whether events connected with in�ation are preceding
events connected with consumer behaviour or whether the opposite is true.

Assume now that x is measured with error while y is not. Thus, x can
be written

Xt = xt + et (6)

where Xt is the observed value of x and et is a measurement error which
is assumed to be a strict white noise with variance σ2

e . As an example we
consider the case where p = 1 and α0 = 0. Then

α̂1
p−→ α1

σxy − σ2
xσ

2
y

σxy − (σ2
x + σ2

e)σ
2
y

≤ α1 (7)

showing that we will on average, underestimate the parameter α1, represent-
ing the forecasting value of x on y.

If we instead test if y is useful in forecasting x, the measurement error
ends up both in the dependent and independent variables. Maintaining that
p = 1 and the absence of intercept the regression

yt = γ1xt−1 + δ1yt−1 + b1t (8)

is estimated. The probability limit of the OLS estimate of δ1 is then

δ̂1
p−→ δ1

σ2
xσ

2
y − σ2

xy

(σ2
x + σ2

e)σ
2
y − σ2

xy

+ γ1
σ2

eσxy

(σ2
x + σ2

e)σ
2
y − σ2

xy

(9)

From (9) it can be seen that there is no clearcut inequality as in (7). Whether
δ̂1 converges to a quantity larger or smaller than δ1 depends on the size and
sign of σxy, the correlation between x and y, and the parameter γ1.
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Say, as an example, that σxy > 0 and γ1 > 0. Then the inequality

plimδ̂1 > δ1 can occur.1. This is true for all values of σ2
e except the special

case

σ2
e =

δ1(σ
2
xy − σ2

xσ
2
y)

γ1σxy

(10)

The equation (9) also indicates that we are dealing with, mainly, a small
sample problem. The explanation to this is that, if δ1 6= 0, the estimator
δ̂1 will converge, in probability, to a quantity not equal to zero and thereby
cause a rejection of the null hypothesis that y is Granger causing x. In the
next section the small sample problem is illustrated by means of a simulation
study.

4 Simulation study

The calculations in Section 3 was instructive in order to see that the asymp-
totic consequence of measurement error in x was di�erent for the test of
forecasting power in x on y than for the test of forecasting power in y on
x. However, it did not show how it a�ected the power of such tests. The
question now is: Given that there is a feedback between x and y, does a
measurement error in x cause more rejections in one of the tests than in the
other?

In order to study this in the �nite sample case data from a bivariate
VAR(1)-models is generated.{

xt = 0.5xt−1 + 0.2yt−1 + ax,t

yt = 0.2xt−1 + 0.5yt−1 + ay,t
(11)

where (ax,t, ay,t)
′ is a normally distributed bivariate white noise with covari-

ance matrix Σa, is considered. This example is a situation where there is
a symmetry in the sense that yt is Granger-caused by xt �as much as� the
opposite is true. However xt is measured with error according to (6). The
rejection of the two null hypotheses

H0xy : x fails to Granger-cause y

and
H0yx : y fails to Granger-cause x

1plim indicates �limit in probability�
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Given the data generating process above, both these hypotheses should, op-
timally, be rejected as often as possible.

The parameter of interest that I will vary is the covariance between ax,t

and ay,t. The results are presented in Table 1. The table shows empirical
rejection rates when the nominal signi�cance level is 5%. In the case of a

Σa =

[
1 0
0 1

]
Σa =

[
1 0.5

0.5 1

]
Σa =

[
1 −0.5

−0.5 1

]
H0xy 0.409 0.259 0.376
H0yx 0.527 0.788 0.189

Table 1: Monte Carlo rejection rates (power) of the two tests H0xy and H0yx

for three di�erent Σa. The nominal signi�cance level is 5%, the signal to
noise ratio is one and the sample size, T is 100.

signal-to-noise ratio of one and a positive correlation between a1 and a2, as
can be seen in Table 1, yield a power for the test of H0yx which is substantially
larger than for the test of H0xy. The implication of this is that it is more likely
that the conclusion is that y is driving x is more likely than the opposite. In
the case of a negative correlation between a1 and a2, the opposite is true.

Σa =

[
1 0
0 1

]
Σa =

[
1 0.5

0.5 1

]
Σa =

[
1 −0.5

−0.5 1

]
H0xy 0.572 0.342 0.512
H0yx 0.610 0.679 0.403

Table 2: Monte Carlo rejection rates (power) of the two tests H0xy and H0yx

for three di�erent Σa. The nominal signi�cance level is 5%, the signal to
noise ratio is 4 and the sample size, T is 100.

In Table 2 the case with a signal to noise ratio of 4 is considered. The
tendency is the same while the relative decrease in measurement error is
moving the power of the two tests closer.
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5 Conclusion

The problem of measurement errors in one of the variables in tests of Granger-
causality has been studied. In small samples where the correlation between
the two variables are positive the problem occurs in that the variable mea-
sured with error is often mistakenly concluded to fail to Granger-cause the
other variable while the Granger causality in the other direction is more often
detected. This causes a tendency to conclude that one variable is driving the
other while there is indeed a feedback relationship present.

References

C.W.J Granger. Investigating causal relations by econometric models and
cross-spectral methods. Econometrica, 37:424�438, 1969.

J.D Hamilton. Time Series Analysis. Princeton, 1994.

Appendix

Consider the model
yt = α1xt−1 + β1yt−1 + a1t (12)

and
Xt = xt + et. (13)

where E(xt) = 0. The OLS-estimator of α1 can be written

α̂1 =

∑T−1
t=1 y2

t

∑T−1
t=1 Xtyt+1 −

∑T−1
t=1 Xtyt

∑T−1
t=1 ytyt+1∑T−1

t=1 X2
t

∑T−1
t=1 y2

t − (
∑T−1

t=1 Xtyt)2
(14)

Multiplying both the numerator and denumenator by 1/T 2 and taking each
of the terms in probability limit we obtain

α̂1
p−→

σ2
y(α1σ

2
x + β1σxy)− σxy(α1σxy + β1σ

2
y)

(σ2
x + σ2

e)σ
2
y − σ2

xy

(15)

which can be rewritten as (7).
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Now keeping the variables Xt−1 and yt−1 on the right-hand side of (12)
but replacing the left-hand side with Xt we can write the OLS-estimator of
δ1 in the regression

yt = γ1xt−1 + δ1yt−1 + b1t (16)

as

δ̂1 =

∑T−1
t=1 X2

t

∑T−1
t=1 ytXt+1 −

∑T−1
t=1 Xtyt

∑T−1
t=1 XtXt+1∑T−1

t=1 X2
t

∑T−1
t=1 y2

t − (
∑T−1

t=1 Xtyt)2
(17)

Again, multiplying both the numerator and denumenator by 1/T 2 we obtain

δ̂1
p−→

(σ2
x + σ2

e)(γ1σxy + δ1σ
2
y)− σxy(γ1σ

2
x + δ1σxy)

(σ2
x + σ2

e)σ
2
y − σ2

xy

(18)

which can be rewritten as (9).
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