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1 Background and outline

In finance it is an empirical fact that return distributions are often skewed and
have heavier tails than the normal distribution. Risk management based on nor-
mal assunptions may therefore lead to underestimation of the risk. Theoretical
researchers have tried to remedy this by offering other classes of distributions,
first the stable Parertian class and more recently the generalized hyperbolic
class. Nevertheless risk management in practice is still mostly based on normal
assumptions, for a variety of reasons, among them: The lack of consensus among
theorists, the mathematics is not understood, the computations are more de-
manding, the results are not easily communicated, and finally, the feeling that
the methods fail to address issues just as important as skewness and heavy tails.
For practical use there is a need to take a pragmatic view in order to overcome
some of the reasons for not choosing one of the available alternatives to the
normal model.
The purpose of this paper is to point out and explore some possible prag-

matics, having applications to financial returns and risks in mind. A desirable
property of the return distribution is that weighted sum of returns have distrib-
ution within the same class. This may put undesirable restrictions on available
distribution classes, unless a more pragmatic view is taken. In Section 2 of
this paper we explore in further detail an approximation suggested by Lillestöl
(2000) concerning the distribution of weighted sum of returns from the univari-
ate normal inverse Gaussian (NIG) distribution. In Section 2 we also explore
some tail-based estimates suggested by Venter and de Jongh (2002). In Section
3 we explore possible pragmatics related to the multivariate NIG-family, among
others: relate univariate and multivariate parameters, extend tail-based estima-
tion to the bivariate case, look into the use of normal copulas as an alternative,
and finally, examine an exchangeable multivariate NIG-structure. .
Before we start, let us give a brief account of our framework and some of

the main issues. The framework is the generalized hyperbolic class (GH) of
distributions, having the hyperbolic (H) and normal inverse Gaussian (NIG)
as special cases, see Barndorff-Nielsen (1997) and Eberlein and Keller (1995),
where details on the univariate and multivariate version of these distributions
are given. They and others have demonstrated that these distributions fit a
variety of financial data extremely well. These distribuitions also fit into a
process context with generalized hyperbolic marginals, and finanicial theory
is developed as alternative to the theory based on the Wiener process as the
driving process, see e.g. Prause (1999a). The fact that the hyperbolic class
is infinitely divisible is mentioned as an advantage, since we are then able to
draw conclusions for different time horizons. However, this must be used with
care. There are strong indications that skewness and kurtosis may not be the
same for different time horizons, and the skewness may even change sign. This is
reported, among others, by Stehle and Grewe (2001) who found that the monthly
rates of return of 18 German stock mutual funds were negatively skewed, while
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the annual returns were positively skewed.
The parameter estimation of generalized hyperbolic distributions can be es-

timated by likelihood methods, e.g. by the ’hyp’ program developed by Blæsild
and Sörensen (1992). The computational burden in the multivariate case is
heavy. The ’hyp’ program can, in a reasonable amount of time, only handle up
to dimension 3. The computational burden becomes much easier by restriction
to symmetric distributions. They have the convenient feature, once the mul-
tivariate relationships are settled, that the marginals are transparent without
further computation, just as in the normal case, but contrary to the skew case.
Bauer (2000) has demonstrated that the common approach to Value-at-Risk
computations carry over to the class of elliptic distributions. The symmetric
generalized hyperbolic distributions are within this class, and offers the addi-
tional conveniency for computation, just as fast as in the multivariate normal
case.
The limitation to symmetric distributions for technical reasons is not much

of a sacrifice for some financial assets, but not for others. The limitation cannot
easily be removed unlesss one takes a more pragmatic approach in some other
respect. To stay within the framework of GH is perhaps to allow too much
generality, both subclasses H and NIG are general enough to fit a wide class of
financial data well.
We prefer NIG to the competing class H, because of its nice additive features

in relation to portfolios, see Lillestöl (2000). The marginalization features are
maybe awkward, i.e. to infer from the joint distibution to the marginal distri-
bution and vice versa. Moreover, there are indications in the literature (e.g.
Prause, 1999b) that NIG fits the tails of distributions slightly better than H,
which is appreciated by Value-at-Risk evaluators. The hyperbolic class H may
be preferred for other reasons, pragmatic or not. An advantage may be faster
ML-estimation due to fewer Bessel functions to compute. However, within the
Bayesian framework the estimation can be done quite easily by Markov chain
Monte Carlo methods, as shown by Karlis and Lillestöl (2002).
To sum up this introduction, the generalized hyperbolic class is able to pick

up several stylished facts in financial data that are not accounted for by tradi-
tional methods.

2 Univariate NIG-variates

2.1 Framework

The Normal Inverse Gaussian (NIG) distribution introduced by Barndorff-Nielsen
(1997) is a promising alternative for modelling financial data exhibiting skew-
ness and fat tails. Various aspects of this are explored by him and his associates,
see the reference list in the expository paper by Barndorff-Nielsen and Shephard
(2001). Lillestøl (2000) has explored some facets of the additive properties of
the NIG distribution useful for risk analysis. Although the NIG-family is closed
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under convolution, non-equally weighted linear combinations of independent
NIG-variates are not NIG.
We will consider a random variate X having a Norman inverse Gauusian

distribution denoted by NIG(α,β, µ, δ). The distribution is characterized by 4
parameters (α,β, µ, δ), where α is related to steepness, β to asymmetry, and µ
and δ are related to location and scale respectively, for short referred to below as
the location and scale parameter. The NIG-distribution has a fairly complicated
density f(x;α,β, µ, δ), but its moment-generating function is simple, namely

MX(u) = exp(uµ+ δ(

q
α2 − β2 −

p
α2 − (β + u)2))

where α ≥ β. The Cauchy distribution is obtained as limiting case when α→ 0
and the normal distribution is obtained as α→∞ together with δ →∞ so that
δ/α→ σ2. The distribution has semi-heavy tails which can be expressed as

f(x;α,β, µ, δ) = { ∼ C|x|
−3/2ebx x→ −∞

∼ C|x|−3/2e−ax x→∞
where a = α−β and b = α+β. From the moment-generating function it follows
that (let γ =

p
α2 − β2 for short)

EX = µ+ δ · β
γ

varX = δ · α
2

γ3

Skewness = 3 · β
α
· 1

(δγ)1/2

Kurtosis = 3 · (1 + 4(β
α
)2) · 1

δγ

The class of NIG-distributions has the following properties:

(i) If X ∼ NIG(α,β, µ, δ) then Y = kX ∼ NIG(k−1α, k−1β, kµ, kδ).
(ii) If X1 ∼ NIG(α,β, µ1, δ1) and X2 ∼ NIG(α,β, µ2, δ2) are independent

then the sum Y = X1 +X2 ∼ NIG(α,β, µ1 + µ2, δ1 + δ2).

From the above we realize that it may be difficult to compare different distri-
butions with respect to proximity to the Gaussian or Cauchy by judging α and
β regardless the chosen scale. A useful property for risk analysis is the fact that
a sum of independent NIG-variates with common α and β, but different location
and scale parameters, is itself NIG with parameters obtained by summing the
location and scale parameters and keeping the others fixed. However, we also
want to handle unequal weights. The assumption of independence may be valid
for credit returns, but of course not for stock returns.
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2.2 An approximation for sums of independent NIG-variates

We are mainly interested in the distribution in the context of credit risks or re-
turns on financial assets. Consider therefore r joint returnsX = (X1,X2, . . . ,Xr)
and the return Y = w0X on a portfolio of credit returns w = (w1, w2, . . . , wr).
In the case of independent NIG-returns with common α and β parameter and
weights that are all equal to 1/r, we have that

Y = X̄ ∼ NIG(rα, rβ, µ̄, δ̄)
where the bars denote the average of the individual greeks. In the case of non-
equal weights we do not have exact NIG. However, we may catch the main
features by approximating as follows:

Y ≈ NIG(αw,βw, µw, δw)
where

µw =
X
i

wiµi

δw =
X
i

wiδi

αw =

P
iwiδiP

iw
2
i δiα

−1
i

βw =

P
iwiδiβiα

−1
iP

i w
2
i δiα

−1
i

These approximations are obtained by matching terms (admittedly somewhat
ad hoc) in the expressions for the expectation and the exponent of the moment-
generating function. This involves a Taylor series expansion with accuracy that
depends on the absolute value of the ratio β/α. We therefore expected the
approximation to get better the closer we are to symmetric distribtions. We
will see in an example below that this is not neccesarily so.
If we introduce the notation σ2i = δi/αi, not to be confused by variance, but

motivated by its limiting property, we see that we can write

αw =

P
iwiσ

2
iαiP

iw
2
i σ

2
i

βw =

P
iwiσ

2
iβiP

iw
2
i σ

2
i

Note that if we let ai = αi − βi and bi = αi + βi denote parameters that
determines the left-tails and right-tails of each distribution respectively, we get
the same weighted sum formula for aw and bw as well.
We have investigated by simulations how well these formulas for NIG-parameter

determination approximate the exact distribution. We did not expect it to be
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very tight in general, but reasonably good at least for some cases of practical
interest. We provide some results in the following example that expose both
possibilities and limitations. Whether it is useful in a financial context, will
depend on the available alternatives, one of them is not use any information on
skewness and heavy tails at all.

Example 1

Consider the variates Xi ∼ NIG(2,βi, 0, 1) with βi’s given in Table 1 and their
equally weighted linear combinations.

r (β1, . . . ,βr) approximate
a. 2 (1, 1) (4, 2, 0, 1)
b. 2 (1, -1) (4, 0, 0, 1)
c. 2 (1, 0) (4, 1, 0, 1)
d. 3 (1, 1, -1) (6, 1, 0, 1)

Table 1: Parameters for simulated examples

For each of the situations a-d in the table we have simulated the variates
and computed the average, and then simulated the variate according to the
approximation (case a. is exact and is included for comparison). We repeated
the simulations n=1000 times and judged the approximations by plotting each
pair of order statistics against each other, i.e. a kind of QQ-plot, see Figure 1.
The fit is good when the points stay close to the equiangular line. The plots
indicate good fit for case a, as expected, and for c and possibly also for d. For
the case b the fit was apparently not good. Being the only symmetric case of
the four, this may seem surprising.

The fit can be measured in a variety of different manners. We can of course
use the common two-sample Kolmogorov-Smirnov statistic for which tables for
determining p-values are readily available or we could use an Anderson-Darling
type statistic, which pays more attention to the tails. Another possibility is to
accumulate the absolute values of the differences between the order statistics,
i.e.

D =
nX
i=1

|X(i) − eX(i)|
obtained from the computed averages Xi of the NIG-simulations and the simu-
lated proxies eXi. An alternative statistic would be to take eX(i) = eG−1(i/(n+1)),
where eG is the cumulative proxy NIG-distristribution, which requires computa-
tion by numerical integration. These test statistics are measures of overall fit.
For many applications it is more important to have a good fit in the tails. This
is so for Value at Risk computations in finance, where the focus is on the lower
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Figure 1: qq-plots

tail. A test statistic for this case is suggested by Venter and de Jongh (2002) as
follows

DLT =
nX
i=1

| log( eG(X(i)))− log(i/(n+ 1))|

Since both log terms are close to zero as the subscripts are getting larger,
the contribution in the sum comes mainly from the low order statistics. The
corresponding upper tail statistic is

DUT =
nX
i=1

| log(1− eG(X(i)))− log((n+ 1− i)/(n+ 1))|

Approximate p-values for the test statistics D, DLT and DUT can be ob-
tained as parametric bootstraps, which are quite reliable in this context, see
Stute et.al. (1993) or Davison and Hinkley (1999). The p-values for the test are
given in Table 2. From this table we see that the statistics confirm the good
fit in case a and c. The bad fit in case b does not show up in the KS-statistic,
but there is an indication in D and in particular in the upper tail statistic DUT.
Case d may seem somewhat peculiar. The KS- and D-statistic indicate bad fit,
but there is no indication of lack of fit in the tails.
Whether the results above was just ”bad luck” for case b and perhaps ”good

luck” for the skew case c is investigated by repeated simulations of each of the
four cases. We see the same picture in general. There is a tendency for the
points of the QQ-plot to be steeper than the equiangular line in the cases b, c
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KS P-KS P-D P-LT P-UT
a. 0.0521 0.13 0.17 0.41 0.47
b. 0.0420 0.34 0.08 0.10 0.05
c. 0.0300 0.76 0.65 0.95 0.99
d. 0.0631 0.05 0.02 0.73 0.58

Table 2: Simulated examples: P-values model fit

and d, more so for b than c and d. This means that the approximations have
tendency to possess lighter tails, and more so when variates of opposite skew-
ness are added. In applications in practice variates are mostly skewed in one
direction, e.g. in finance where large losses may incur. It is of some interest to
compare the lower and upper fractiles for the true distribution and its approxi-
mation, as well as the fractile computed from the normal distributions with the
same expectation and variance. They are given in the Table 3, where the true
distribution is simulated based on n=100.000 observations. The approximate
NIG is simulated as well, in order to avoid inversion of integrals involving Bessel
functions.

Fractile 0.01 0.05 0.95 0.99
a. True -0.637 -0.300 1.679 2.390

NIG -0.639 -0.301 1.695 2.411
Normal -0.886 -0.443 1.598 2.021

b. True -1.600 -0.993 0.997 1.575
NIG -1.230 -0.815 0.813 1.234
Normal -1.443 -1.021 1.021 1.443

c. True -0.936 0.556 1.261 1.862
NIG -0.910 0.546 1.163 1.696
Normal -1.022 -0.638 1.215 1.599

d. True -1.021 -0.612 1.041 1.532
Nig -0.781 0.487 0.869 1.243

Normal -0.986 -0.641 1.026 1.371

Table 3: Fractiles of true and approximate distribution

We see that the Normal 5% and 95% fractiles are not far off in any of the
examples, but that 1% and 99% fractiles are off. This confirms what is generally
known that 5% and 95% fractiles for NIG (and also finance data) are fairly well
approximated by the corresponding Normal ones, and that divergences turn up
in the more extreme fractiles. The exact case a is of course superfluous, but
is included in order to compare with the normal approximation and to get an
impression of simulation accuracy. In the case c with positive β we see, as
expected, that the upper-fractiles are too low and the lower fractiles too high
for both NIG and Normal, and that the NIG fractiles are closer to the true
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extreme fractiles than the corresponding Normal ones. Note, however, that
the symmetric fractile differences are about the same. The symmetric case b
is disturbing. Neither Normal nor NIG is anywhere near the true 1% and 99%
fractile, and the NIG-fractiles are further off than the Normal. Given the results
in case c, we expected reasonably good results in case d as well. This turned
out not to be the case, and we infer that the suggested NIG approximation
is not likely to work if a sum contains summands that are skewed in opposite
directions. However for larger portfolios of returns that are mainly skewed in
one direction our experience indicates that the NIG approximation works as in
case c. On the other hand, the normal approximation becomes better for the
case of more summands as well.
Our hope of a good approximation in general which also works for the tails

is not fullfilled, perhaps because it tries to be an overall approximation with
moderate success. However, approximation adapted to a specific tail may be
obtained along different lines of reasoning.

2.3 Tail based estimation

The estimation of NIG-parameters can be done by maximum likelihood meth-
ods. The ’hyp’ program developed at Aarhus University by Blaesild and Sörensen
(1992) is available for this purpose. A similar program is developed at Freiburg
University by Eberlein et al. (1998). These programs also cover the multivariate
case. Similar programs for the univariate cases exist elsewhere, e.g. at Potchef-
stroom University (Venter and de Jongh, 2001). The estimation is challenging
since some of the parameters are hard to separate, the problem being that a
flat-tailed distribution with a big scale is hard to distinguish from a fat-tailed
distribution with small scale. The likelihood function with respect to these pa-
rameters then becomes very flat, and may have local mimima. Good starting
values and security for convergence of the iterations are therefore essential for
practical use. The estimation can also be done using empirical Bayes methods
using the EM-algorithm as shown by Karlis (2002), and his program produces
results in agreement with those mentioned above. Bayes methods using Markov
chain Monte Carlo methods have also been tried, see Lillestöl (2001) and Karlis
and Lillestöl (2002). Here the estimation problem essentially may be splitted
in two, the estimation of inverse Gaussian parameters and the estimation of
heteroscedastic regression.
A pragmatic approach to the estimation of NIG-parameters in the univariate

case may be the one suggested by Venter and de Jongh (2002). Departing from
the approximate expressions for the tail of the NIG-density given in the previous
section, they derive the following approxination for a = α− β and b = α+ β:

a ∼ 1
2

q1−ε +E(X|X > q1−ε)
E(X2|X > q1−ε)− q1−eE(X|X > q1−e)

b ∼ −1
2

qε +E(X|X < qε)

E(X2|X < qε)− qeE(X|X < qe)
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where qε and q1−e are the left and right ε-fractile of the distribution respectively.
Estimates are then obtained from the order statistics. X(1),X(2), ...,X(n). After
the choice of a suitable ε we can estimate the q’s by the corresponding fractiles
in the empirical cdf and the expectations by averaging over the observations
and squared observations beyond the appropriate fractile. The estimates of α
and β are then obtained from a and b by half their sum and half their difference
respectively. We see also that the product of a and b estimates γ2. We will
name these estimates ”Tail Based Estimates”, TBE for short. Although Venter
and de Jongh originally suggested this procedure for preliminary estimates to
be used as starting values for ML-estimation, it is tempting to stick to it in
practice for the following reasons: It is very transparent, and involves directly
the expression E(X|X < qε) related to ”shortfall”, which is of prime importance
to risk managers, i.e. answers the question ”if return is bad, how bad can we
expect it to be?”.
When α , β and γ are estimated, we can get estimates of δ and µ by just

replacing the mean and the variance in the expression in Section 2 by their
empirical counterparts. We will see how this estimation approach works in
some examples using simulated data. Again we will expose weak points as well
as some comforting.

Example 2

Consider a series n=400 NIG-observations simulated from (α,β, µ, δ) =
(2, 1, 2, 1). This is a situastion of some challenge: Considerable skewness in
conjunction with the small α and only moderate sample size for identifcation.
We got the estimates given in Table 4.

Parameters
Estimate α β µ δ γ
MLE 2.490 1.343 1.876 1.049 1.855
TBE-5% 4.120 3.069 0.766 1.599 2.754
TBE-1% 3.360 1.988 -0.112 3.626 2.709

Table 4: Example Tail-Based estimates

We see that the ML-estimate did reasonably well, but that the TB-estimates
are far off. We have repeated this simulation 100 times in order to get an
impression of the distribution of the TB-estimates. It is not clear which one of
the two TB-estinates is the better. The experience is that for 1 % one frequently
gets too few observations in the tails to get useful estimates. If we increase the
sample size to about 1000 it seems that 1 % is a viable alternative. The results
for TBE-5% are shown in the graphs of Figure 2.
We see that both α and β are systematically overestimated. On the other

hand µ is underestimated, while δ is overestimated (they become negatively
correlated by their definition). In some contexts we are not primarily interested
in precise estimates as long as we can fairly represent the features beyond second
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NIG2121: Histogram mu-estimate
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NIG2121: Histogram delta-estimate

0 5 10
delta

0
5

10
15

20
25

30

 *
E-

2

Figure 2: Histograms of parameter estimates

moments. We see that they are given mainly in terms of the ratio β/α and the
product δγ. The histograms for the estimates of these two are in Figure 3,
and we see that they both are overestimated but less so. Since the skewness is
expressed by a ratio involving these two, this is rather satisfactory.
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Figure 3: Histograms of parameter estimates

The way the TB-estimates of µ and δ are defined we are secured that the
fitted NIG has estimate of expectation and variance that corresponds to using
the first and second order moments only. In the risk management context of
Value at Risk this may be a major step, obtained by simple means, e.g. for
simulation of scenarios that are more realistic wrt. extreme events. Of course
one could simulate directly from the empirical cdf, forsaking the opportunity to
do parameters comparisons and vary these, i.e. to put in more or less skewness
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and heavy tail at will.

3 Multivariate NIG-variates

3.1 Framework

An approximation for i.i.d. variates may be of some use for evaluating credit
risk, although some weak dependencies may be expected, for instance due to
swings in the economy. For portfolio risk involving equities and/or derivatives
the correlations are the key issue. Until recently the only feasible parametric
approach for fast computation has been based on multinormal assumptions,
thus negliecting skewness and heavy tails. Now considerable efforts are made to
provide a wider choice of distributions.
A vector of returns X is distributed multivariate NIG (α , β , µ , δ ,Φ)

where α and δ are scalars, β = (b1, b2, . . . , br) and µ = (µ1, µ2, . . . , µr) are
vectors and Φ = (φij) is positive definite matrix with determinant 1. The
moment generating function is

MX(u) = exp(u
0µ+ δ(

q
α2 − β0Φβ −

p
α2 − (β + u)0Φ(β + u)))

The expectation vector of X is

EX = µ+ δ(α2 − β0Φβ)−1/2βΦ
and the covariance matrix is

Σ = δ(α2 − β0Φβ)−1/2(Φ+ (α2 − β0Φβ)−1Φββ0Φ)
Consequently Φ relates to the covariance in a fairly complicated manner involv-
ing all other parameters as well. Among others we see that Φ diagonal is not
sufficient for Σ to be diagonal and vice versa, unless in the symmetric case when
β is zero. In some cases we may assume that β0Φβ is negligible compared to
α2 and use as approximation

Σ ≈ δ

α
(Φ+

1

α2
Φββ0Φ) ≈ δ

α
Φ

Then the second term in the middle is likely to be negligible as well, and we
may just as well use the even cruder approximation. This amounts to assuming
that Φ diagonal represents approximately uncorrelated returns.

3.2 Relating univariate and multivariate parameters

We are mainly interested in the return Y = w0X on a portfolio w. The moment
generating function is

MY (u) = MX(uw)

= exp(uw0µ+ δ(

q
α2 − β0Φβ −

p
α2 − (β + uw)0Φ(β + uw)))
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This is one-dimensional NIG(αw,βw, µw, δw) where

µw = w0µ
δw = φw · δ where φw = (w

0Φw)1/2

βw = φ−2w w
0Φβ

γw = φ−1w γ where γ = (α2 − β0Φβ)1/2
αw = (γ2w + β2w)

1/2

The marginal distribution of the component Xi’s are obtained by letting wi = 1
and wj = 0 for j 6= i. We then get µw = µi and (note that φ2i = φii)

δi = φi · δ
βi = φ−2i

X
j

φijbj

γi = φ−1i γ

αi = (γ2i + β2i )
1/2

So, if we go to the multivariate setting outlined in the previous section, we are
rewarded by getting all marginal and linear combinations univariate NIG. Note,
however, that independent univariate NIG-variates are not jointly multivari-
ate NIG in the sense above, which is contrary to the case of the multinormal
distribution. Note also that the alfa-scalars here do not correspond to an alfa-
parameter common to all the marginals. We see that the marginal αi’s are
affected jointly by β and Φ. It is worthwhile to note that φ2i (α

2
i − β2i ) must be

constant for all i. This makes it difficult to interpret parameters and a bit awk-
ward to establish a joint model specification from given marginal specifications.
In practice we may want to do that in order to establish simulation schemes
that corresponds to common knowledge, which is mostly about the marginals
for features beyond second order properties.

Example 3

Consider the bivariate case when Φ is diagonal, which means non-negative
correlation, the size depending on the skewnesses. In this case it follows that
βi = bi for i = 1, 2 (this holds for any dimension). Suppose we want to have
equal marginal α-parameters. If the diagonal elements φ2i are different we get
α2i = (φ

2
1b
2
1 − φ22b

2
2)/(φ

2
1 − φ22) while α

2 = (φ41b
2
1 − φ42b

2
2)/(φ

2
1 − φ22). Note that

b1 = b2 = b now implies α2i = b
2 and α2 = (φ21 + φ22)b

2. Note also that in the
case of diagonal Φ and equal marginal α-parameters, the diagonal elements are
equal if and only if the skewnesses for the marginals are equal, and then the
common αi is given by α2i = α2 − β2, where β is their common skewness. If we
instead require that the marginal skewnesses are equal, i.e. βi = bi = b, we get
the restriction φ21α

2
1 − φ22α

2
2 = (φ

2
1 − φ22)b

2.
As a numerical example take δ = 1 and µ = (0, 0)0 and
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Φ =

·
4
3 0
0 3

4

¸
If we add the restriction of a common α-parameter for the marginal, all

parameters are uniquely determined and examples of this are presented in the
first two columns of Table 5. If we take the common β-parameters equal, say to
b, we still have a choice beetween different αi’s for given b (but their squares
are linearly related). As an example take b = 1 and α1 = 2 and compute the
rest. We then get the righthand side column of the table.In dimension more
than two it gets more complicated.

β = (3/2, 1) β = (1, 1/2) β = (1, 1)
α1 1.96 1.40 2.00
α2 1.96 1.40 2.52
α 2.43 1.68 2.47
δ1 1.15 1.15 1.15
δ2 0.87 0.87 0.87
γ1 1.27 0.98 1.73
γ2 1.69 1.31 2.31
EX1 1.37 1.18 0.86
EX2 0.51 0.33 0.37
varX1 2.19 2.40 2.60
varX2 0.69 0.76 0.45
Corr 0.39 0.25 0.36
Skew1 1.89 2.01 1.40
Skew2 1.26 1.01 0.84

Table 5: Parameter determination

In practice it is more likely to have opinions on the marginal α-parameters,
based on experience on where the kind of data at hand should be placed on the
vertical axis between the Cauchy and the Normal distribution. Then it is partly
a question whether skewness or correlation is the dominant feature. It seems
perhaps more convenient to start with a matrix Φ, and then, for the chosen α,
try out a reasonable β-vector, by computing marginals.
In this section we have focused on coherent model specification and not on

estimation. We have mentioned earlier the problems of estimation, in particular
in the multivariate case. There exists various possibilities for a pragmatic solu-
tion to this, depending on the context. We will discuss two possible approaches
in the following.
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3.3 Tail based estimation

It is possible to extend the idea of tail based estimation to get estimates for
bivariate NIG by combining the results of Section 2.3 and 3.2. We have to
add something that can pick up the correlation structure. One possibility is
to look at the tail behaviour of the sum and difference. Let X = (X1,X2)

0 be
distributed NIG (α , β , µ , δ , Φ) where β = (b1, b2)0. Then let Y = (Y1, Y2)

0

where

Y+ = X1 +X2

Y− = X1 −X2
Y+ and Y− are distributed NIG(α+,β+, µ+, δ+) and NIG(α−,β−, µ−, δ−) re-
spectively. From the marginals of X and Y we can estimate αi,βi, γi, δi, µi for
i = 1, 2 and ± as we did in Section 3.2. These univariate NIG-parameters
are related by (using compressed notation and a φ-notation similar to that of
Section 3.2)

µ± = µ1 ± µ2
δ± = δ φ±
φ2± = φ21 + φ22 ± 2φ1φ2ρ
β± = φ−2± (b1φ

2
1 ± b2φ22 + (b1 ± b2)φ1φ2ρ)

γ± = φ−1± (α2 − (b21φ21 + b22φ22 ± 2b1b2φ1φ2ρ))1/2
α± = (γ2± + β2±)

1/2

We need the estimates of α, b1, b2,φ1,φ2 and ρ, which can be obtained from

these equations combined with those of Section 2.3. It is helpful to note that

τ =
φ2
φ1
=

δ2
δ1
= (

γ2
γ1
)−1

θ =
φ+
φ−

=
δ+
δ−

= (
γ+
γ−
)−1

ρ = −1 + τ2

2τ
· 1− θ2

1 + θ2

The third equation is obtained by division of the two expressions for φ2± above
using the first and second equation and solving for ρ. Remembering that φ21φ

2
2 =

(1 − ρ2)−1, we can solve for φ1 and φ2 and then finally obtain b1 , b2, α and
δ. However, this kind of artificial data augmentation leads to an overidentified
situation. For instance, we can either take γ0s or δ0s as basis for estimating τ
and θ. This can be resolved by different means. One possibility is to use both
and ”symmetrice” by taking geometric means, and similarly for δ and γ. We
then get the proxy formulas
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τ̃ =

s
δ2
δ1
· γ1
γ2

θ̃ =

s
δ+
δ−
· γ−
γ+

δ̃ =

s
δ1
φ1
· δ2
φ2

γ̃ =
p
γ1φ1 · γ2φ2

Example 4

We have simulated 400 observations according to the parameters of Example
3 (Table 5 right column) i.e.

Φ =

·
4
3 0
0 3

4

¸
β = (1, 1), µ = (0, 0)0, δ = 1 and α = 2.47, which means γ = 2.00. The scatter
diagram is given in Figure 4 and the smoothed density plot in Figure 5.

-2 0 2 4
X

-1
0

1
2

Y

Figure 4: Scatterplot of original data n=400

The crude estimates obtained by using 5% tails are given in Table 6.
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X

Y

3. column

Figure 5: Smoothed density estimate

We see that some estimates are surprisingly good, and some are a bit off.
The most pronounced deviation is the diminished skewness of the first com-
ponent and the enlarged disparity between the matrix diagonal terms. The
corresponding estimates using the 1 % tails gives similar results except that α
now is overestimated to 3.142, the disparity of the skewnesses is about the same,
but reversed (!), and a slightly larger matrix off-diagonal term occurs. Although
there are some discrepancies from the true values, the result is not bad, and not
worse than expected based on experience from univariate estimation. We also
computed estimates based on a simulated sample size of n=1000. Now 1 % tails
are preferred and results are substantially as above, but with somewhat less dis-

Parameter estimates
i αi βi µi δi
1 1.502 0.538 0.148 1.189
2 2.807 1.081 0.046 0.598
+ 1.238 0.537 0.287 1.258
— 1.341 0.172 0.117 1.419
– ρ φ11 φ22 φ12
– 0.034 1.915 0.523 0.033
δ b1 b2 α γ

0.843 0.511 1.048 2.248 1.909

Table 6: Parameter estimates of bivariate NIG

16



parity between the skewnesses. The findings are supported by repeated (though
not extensive) simulations. The general experience is that the estimates of α
and the skewnesses may show some unstability, in particular for the smallest
sample size, which seems to be balanced off by a reasonably good estimate of γ.

3.4 The use of copulas for NIG-data

Dependence in finance is, as mentioned above, mostly handled by normality and
linear correlation methods. An approach for handling non-normal data without
relying on linear correlation is offered by copulas, see Nelsen (1999). A copula
is a device to parametrize dependence structures according to given marginals.
In the bivariate case we have

F (x1, x2) = C(F1(x1), F2(x2))

where C(u1, u2) is a copula function, which is a bivariate cumulative distribution
on the unit square indexed by a parameter θ that accounts for possible covari-
ation. Some copulas are given in Table 7 with catalogue numbers according to
Nelson (1999).

i Ci(u1, u2) Parameter region
3 u1u2

1−θ(1−u1)(1−u2) θ ∈ [−1, 1]
4 exp(− £(− ln(u1)θ + ln(u2)θ¤1/θ θ ∈ [1,∞]
6 1− £(1− u1)θ + (1− u2)θ + (1− u1)θ · (1− u2)θ¤1/θ θ ∈ [1,∞]
9 u1u2 exp(−θ lnu1 lnu2) θ ∈ [0, 1]
10 u1u2

1−(1−(1−u1)θ(1−u2)θ)1/θ θ ∈ [0, 1]
12

£
1 + (u−11 − 1)θ + (u−12 − 1)θ

¤−1
θ ∈ [1,∞]

Table 7: Some copulas numbered according to Nelsen (1999).

Ideally we should go for copulas with NIG-marginals. However, findings
in the literature seem to indicate that simple copulas based on on normal mar-
ginals most often outperform linear correlation on real (heavy tailed) data. Thus
instead of going for the best, we could see how normal copulas behave on NIG-
data. As an example we will again look at the situation described in Example 3
(righthand column), where the diagonal Φ-matrixs in fact corresponds to linear
correlation of 0.199. Again we use the simulated dataset of n=400 observations
plotted in Figure 4, which has empirical correlation of 0.149. We tried the cop-
ulas in Table 7 as well as a few others. The copula and dependence parameter
may be chosen by visual comparison of the scatterplot in Figure 4 with scat-
terplots of data simulated for different choices in accordance with the observed
marginal structure, i.e. in the case of normal copulas just the means and the
standard deviations. For a chosen copula, the dependence parameter θ may be
estimated by maximum likelihood, exact or by some approximate technique. It
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turned out that copula 4, 6 and 12 were the ones that looked best by visual
inspection and also behaved well numerically using the quantlets VaRsimcopula
and VaRfitcopula in XploRe. However in all three cases the maximum likelihood
estimate of θ turned out to be 1, corresponding to independence for case 4 and
6, while the interval search option in the first two cases gave parameter values
slightly different from 1, although visual inspection of simulated data suggested
a slightly larger value. As an illustration we may compare the scatterdiagram
of the original data with that simulated by copula 6 by taking θ = 1.25.

Original data

-2 0 2 4
X

-2
-1

0
1

2
3

4
5

Y

Data simulated from copula 6

-2 -1 0 1 2 3 4 5
X

-2
.5

-2
-1

.5
-1

-0
.5

0
0.

5
1

1.
5

2
2.

5
3

3.
5

4
4.

5
5

Y

Figure 6: Scatterplot comparison of fitted copula 6

This does not look bad, but a closer examination reveals that the peaked-
ness of the original data is not reflected by the simulated data according to the
fitted copula 6. Note also that the plots support the earlier remarks in Section
2.2 that normal methods applied to heavier tailed data quite often are able to
reproduce 5% fractiles correct, but not 1% fractiles, which are most relevant for
risk analysis. The findings in this example, which are not at all surprising, are
confirmed by repeated simulations. Besides this we draw the tentative conclu-
sion that normal copulas may also tend to neglect weak correlation in NIG-type
data that could be of importance in financial VaR-type calculations. The use
of copulas with NIG-marginals will be explored in a separete paper.

3.5 Reduction to bivariate case by principal components

Let us noe return to the multivariate case. In risk management the correlations
between the returns of the various assets that can go into a portfolio is crucial.
The success of the multinormal distribution in that all you need in this context
is the pairwise correlations besides expectations and variances. It is not easy to
establish and represent the added information neccessary for the corresponding
analysis based on NIG assumptions. Suppose we have large number of assets
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that can potentially go into a portfolio. One possibility is to do a principal
component analysis of the covariance matrix, and then use a small number of
principal components to establish the main risk features in the market. If the
original (large) return vector was multivariate NIG, then the principal com-
ponents, as linear combinations, are univariate NIG (and uncorrelated). The
NIG-parameters of each of these can then be estimated. However, since un-
correlatedness is not independence in the NIG case, we must be careful. If we
stick to just the first principal component there is no problem. If we want to
keep two, we have to consider these as bivariate NIG and estimate parameters
accordingly. In view of the problems of multivariate NIG estimation for di-
mension more than three, it seems fruitless to keep more than three principal
components. Each asset return can then be expressed linearly by the low order
principal component(s) plus a remainder term consisting of the omitted ones.
For risk management one can neglect the remainder, but scale up the expres-
sion so that we get the ”correct” variance. We then have to do a parameter
correction according to property (i) of univariate NIG in Section 2.1. This way
one may be able to pick up both the correlation structure in the market and
that returns are skewed, if so.

3.6 Approximation by exchangeable structure

In some cases it may be helpful to assume an exchangeable correlation structure,
i.e. assume that the components of β = (b, b, . . . , b) are all equal and that Φ =
(φij) has equal diagonal and equal off-diagonal elements. In this case we just
have to specify the dimension r and the ratio c between the off-diagonal and
the diagonal elements (which has to be greater than −1/(r − 1) to achieve a
positive definite matrix). Then the a and b of the multivariate distribution is
uniquely determined by the specification of the (common) marginal αi and βi.
The formulas for the diagonal element in order to achieve determinant 1 is

d = (1− c)−1(1 + c

1− cr)
−1/r

If we let p = 1 + (r − 1)c > 0 we have (the details are given in Lillestöl (1998)
and not repeated here)

b = βi/p

α = d1/2(α2i − β2i (1− rp−1))1/2

We see that the components of the β-vector do not depend on αi, and is
just a rescaling up or down according to whether c is negative or positive. The
influence on the α is more complicated. Some examples may provide a feeling
for the relation between the joint and marginal parameters. It is easily checked
that the common correlations are given by
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c+ z

1 + z

where z = db2p2(α2−db2pr)−1 > 0. For c = 0, that is diagonal Φ, the correlation
is positive. Zero correlation requires negative c = −z. Note however that this
does not correspond to independence. This gives an equation for c that can be
solved numerically. The case r = 2 is particaularly simple. We then get the
cubic equation c3− c− k2/(1− k2) = 0 where k = βi/ai. Solutions are given in
Table 8.

Off-diagonal ratios c for given k
k 0.0 0.1 0.2 0.3 0.4 0.5 0.6
c 0.000 -0.010 -0.042 -0.099 -0.198 -0.395 -

Table 8: Off-diagonal ratios for uncorrelated case

Example 5

Consider first the bivariate case r=2. In Table 9 we have tabulated b for
varying c and βi (nonnegative w.l.g.) valid for any αi.
We see that the components of the β-vector are up 25% from the individual

βi for c=-0.2 and down 16.7% for c=0.2. In Table 10 we have tabulated the
common α for varying c and βi and αi.
In order to get some impression of how the dimension r affects α and b, we

provide Table 11. The most striking feature of the table is the rapid increase
in α for negative c’s as β increases. This is important since we have to take a
negative c in order to get uncorrelated components.

Table of b for r=2 varying c and βi (any αi)
c = -0.3 -0.2 -0.1 0.0 0.1 0.2 0.3 0.4 0.5

βi = 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
1 1.43 1.25 1.11 1.00 0.91 0.83 0.77 0.71 0.67
2 2.86 2.50 2.22 2.00 1.82 1.67 1.54 1.43 1.33
3 4.29 3.75 3.33 3.00 2.73 2.50 2.31 2.14 2.00
4 5.71 5.00 4.44 4.00 3.64 3.33 3.08 2.86 2.67
5 7.14 6.25 4.56 5.00 4.55 4.17 3.85 3.57 3.33
6 8.57 7.50 6.67 6.00 5.46 5.00 4.62 4.29 4.00

Table 9: Common skewness parameter b

20



Table of α for r=2 varying c, αi and βi
c = -0.4 -0.3 -0.2 -0.1 0.0 0.1 0.2 0.3 0.4

αi = 2, βi = 0 2.09 2.05 2.02 2.01 2.00 2.01 2.02 2.05 2.09
1 2.63 2.48 2.37 2.29 2.24 2.20 2.18 2.18 2.20

αi = 4, βi = 0 4.18 4.10 4.04 4.01 4.00 4.01 4.04 4.10 4.18
1 4.47 4.33 4.23 4.16 4.12 4.11 4.12 4.16 4.23
2 5.26 4.96 4.74 4.58 4.47 4.40 4.37 4.36 4.40
3 6.35 5.86 5.49 5.21 5.00 4.85 4.74 4.68 4.65

αi = 8, βi = 0 8.36 8.19 8.08 8.02 8.00 8.02 8.08 8.19 8.36
2 9.45 8.65 8.45 8.32 8.25 8.22 8.25 8.33 8.47
4 10.52 9.91 9.48 9.16 8.94 9.80 8.73 8.73 8.80
6 12.71 11.71 10.97 10.42 10.00 9.69 9.48 9.35 9.31

Table 10: Common tail parameter α

Table of α for αi = 4 varying r and c and βi
c = -0.2 -0.1 0.0 0.1 0.2 0.3 0.4 0.5

r = 3, βi = 0 4.10 4.02 4.00 4.02 4.07 4.17 4.30 4.49
1 4.58 4.35 4.24 4.20 4.22 4.28 4.39 4.56
2 5.80 5.22 4.90 4.71 4.62 4.60 4.65 4.76
3 7.39 6.42 5.83 5.46 5.22 5.09 5.04 5.08

r = 5, βi = 0 4.37 4.05 4.00 4.03 4.12 4.26 4.46 4.73
1 6.91 4.89 4.47 4.35 4.35 4.43 4.59 4.82
2 11.56 6.82 5.66 5.17 4.96 4.90 4.95 5.11
3 16.63 9.17 7.21 6.31 5.83 4.59 5.49 5.55

r = 10, βi = 0 - 4.30 4.00 4.06 4.20 4.40 4.66 5.02
1 - 11.53 5.00 4.57 4.53 4.63 4.83 5.14
2 - 21.82 7.21 5.84 5.38 5.25 5.30 5.51
3 - 32.37 9.850 7.49 6.57 6.16 6.01 6.06

Table 11: Common tail parameter α
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