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Abstract

The purpose of this paper is to present a general stochastic calculus approach
to insider trading. In a market driven by a standard Brownian motion B(t) on a
filtered probability space (2, F,{F},~,,P), by an insider we mean a person who has
access to a filtration (information) G = {G;},,<p which is strictly bigger than the
filtration F = {F;}y<;<p of B(t). In this context an insider strategy is represented by
a Gi-adapted process ¢(t) and we interpret the portfolio of an insider as the forward
integral [;° ¢(t,w)dB~(t) defined in [18].
We consider an optimal portfolio problem with logarithmic utility for an insider with
access to a general information G; D F; and show that if the value of this problem is
finite and an optimal insider portfolio 7*(¢) exists, then By is a G;-semimartingale, i.e.
the enlargement of filtration property holds. This is a partial converse of previously
known results in this field.
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1 Introduction
How do we model the hedging by an insider in finance? Let {B(t)},5 = {B(f,w)};5 ,ecq be @

standard Brownian motion on a filtered probability space (Q, F,{F},.,,P) . By an insider

we mean a person who has access to a filtration G = {G;},.,. which is strictly bigger than

the filtration F = {F;},.,.; of B(t). Therefore the question is how to interpret integrals

of the form

/0 o(t,w)dB(1) (1.1)

where ¢ is assumed to be adapted to G; D F;.
A natural, and the most common, approach to this question is to assume that G; is such
that B(t¢) is a semimartingale with respect to G;. In this case we can write

B(t)=B(t)+ A(t), 0<t<T (1.2)

where B (t) is a Gi-Brownian motion and A; is a continuous G;-adapted finite variation

process.
If A; has the form

A(l) = /0 a(u)du (1.3)

then the process a(-) is called the information drift ([9]). In general, if a relation of the
form (1.2) holds, then it is natural to define

T T T
| otwran = [ owwaBo + [ otwiaw (14)
0 0 0
because both terms of the right-hand side are well-defined.
Example 1.1 Let Ty > T and

G =FVo(B(Ty); 0<t<T (1.5)

i.e. Gy is the o-algebra generated by F; and the terminal value B(Ty). Then it can be
shown that (see e.g. [11])

B(t) == B(t) - /Ot %d& 0<t<T (1.6)

is a Gy-Brownian motion. So in this case (1.2) holds with

A(t) == /Ot%ds; 0<t<T (1.7)



In general, there are several difficulties with this approach:

(i) How do we know if (1.2) is possible?
(i) If (1.2) is possible, how do we find A,?
(iii) What do we do if (1.2) is not possible?

Partial answers to (i) and (ii) can be found in the contributions to the book of Jeulin
and Yor ([11]). See also [9].
The purpose of this paper is to present a more general approach to insider trading which
does not assume that (1.2) holds. One of our main results is in fact a kind of converse: we
consider an optimal portfolio problem with logarithmic utility for an insider with access to
the information G; D F; and show that if the value of this problem is finite and an optimal
insider portfolio 7*(¢) exists, then in fact (1.2) and (1.3) hold, with «(t) closely related to
7*(t). See Theorem 3.5.

2 Some preliminaries

A general reference for this section is [15]. See also [17].

2.1 The Wiener-Ito chaos expansion theorem

We first recall the classical Wiener-Ito6 chaos expansion theorem.
A function g : R* — R is called symmetric if

g(xfflﬁ"'axffn):g(xla---;xn) (21)
for all permutations o of (1,...,n). If in addition
91122 ) = /R g3z, ... zy)da . dx, < 00 (2.2)
+

we say that g € [AJQ(R’}F), the space of the symmetric square integrable functions on
R? =Ry x --- xRy, where Ry = [0,00).
Ifge L? (R% ), we define the n-fold iterated It6 integral I,,(g) of g by

I(g) == n! /OOO(/OI"(. ) (/Om o(z1, . w)dB@))dB(@s)...) .. dB(z)  (2.3)

Then we have

0 if n#m
El1(90) I (9m)] = {

”!||9n||%2(m) if n=m
If n =0 we set In(go) = go if go is constant.
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Theorem 2.1 (The Wiener-1t6 chaos expansion) Let F(w) be an Fu-measurable ran-
dom variable such that E[F?] < oo where E = Ep denotes the expectation with respect to P.
Then there ezists a unique sequence (fn)nen € L*(RY) such that

oo

F(w) =Y In(fa) (2.5)
n=0
Moreover, we have the isometry
E[F?] = Zn!||fn||2i2(m) (2.6)
n=0

2.2 The Skorohod Integral

Suppose that ¢(¢,w) is a stochastic process such that

é(t,w) is Fo-measurable for all ¢ > 0 (2.7)

and

E [¢*(t,w)] < oo forall t >0 (2.8)

Then for each ¢ we can apply the Wiener-Ito chaos expansion to F(w) := ¢(t,w) and we
get that there exist functions f,(-,t) € L*(R") such that

(t,w) = Z L (fu(51))

Here f,(t1,...,tn,t) is symmetric with respect to the first n variables ¢y, ..., ,. Therefore
the symmetrization f, of f, as a function of all the (n + 1) variables 1, ..., t,,t is given by,
with tn+1 = t,

Fulhs e ) = %H[fn(tl, e tost) o fallns e s )] (2.9)

where we only sum over those permutations o of the indices (1,...,n + 1) which inter-
change the last component with one of the others and leave the rest in place.

Definition 2.2 (Skorohod Integral) Suppose ¢(t,w) satisfies (2.7), (2.8) and has a chaos
erpansion

Bt w) =Y Ln(ful-1)) (2.10)



Assume that

o0

}:W+1MMM;RTU<QJ

n=0

Then we define the Skorohod integral of ¢ by

/‘¢tw58 }:hﬂfa

If (2.11) holds, we say that ¢ is Skorohod integrable.

Note that if ¢ is Skorohod integrable then

E{Am¢@wﬁ3@]:

and

U #ltw)OB(E >] Z(nﬂ)nfnnwﬂ

Example 2.3 We have fOT B(T,w)dB(t) = B¥T) — T, where in general

/0 B(t,w)0B(t) := / om0t w)5B(0)

2.3 The Malliavin Derivative
Definition 2.4 Let F(w) € L*(P) have the ezpansion

We say that F' is Malliavin differentiable and write F' € Dy o if

oo
Z nn!”fn”%?(Ri) <0
n=1

In this case, we define the Malliavin derivative of F' at t, D,F (w), by

Z nly 1 (fu(:r1))

(2.11)

(2.12)

(2.13)

(2.14)

(2.15)

(2.16)



Note that

B[ Dreral - Znn'anllp - 2.17)

Example 2.5 We have

Dt(/ooof(s)dB(s)) — ) foraa t

if fis a deterministic function in L*(R, ).

2.4 The Wick product
Definition 2.6 Let F € L?(P), G € L*(P) have the expansion

Flw) = Zjn(fn)a G(w) = ZIm(g )

Then we define the Wick product (F ¢ G)(w) by the expansion

m,n=0 k=0 n+m==k

when convergent in L*(P). Here ® denotes symmetrized tensor product, i.e. [,Qqm, is the
symmetrization with respect to the n + m variables xy,... , T,y of the tensor product

(fn ®gm)(x17 Ly Ty g1yttt 7xn+m) = fn(xla e 7xn)gm(xn+17' T 7xn+Tn) (2'19)

Example 2.7 If f(t),g(t) € L>(Ry) are deterministic, we have

1 [;" f@®)dB(t) o [7 g(t)dB(t) = [J7 f(t)dB(t) - [~ g(t)dB(t) — [5~ f(t)g(t)dt

In particular,

B(T)oB(T)=B*T)-T

exp°(/000f(t)dB(t)>: n,/ F(dB( —exp</ F(dB( ——/ £2(8) dt>

3. E[FoG| = E[F]- E|G], when defined. We remark that here independence is not
required.



If one of the factors is Gaussian, then there is a simple and useful relation between
the Wick product and the ordinary product. Let F' € Dy, and let h(t) € L*(Ry) be
deterministic. Then

F. / " h(H)dB() = Fo / " haB() + / LD Fdt (2.20)

Hence, by (2.13) and 3. above

E [F - /Ooo h(t)dB(t)] _B Uooo h,(t)Dtht] (2.21)

One reason for the importance of the Wick product is that it is closely related to Ito
and Skorohod integrals. Let ¢(t,w) be cadlag (i.e. right-continuous with left limits) and
Skorohod integrable. Then

T
/ d(t)6B(t) = hm Z o(t;)oAB(t;) in L2 (2.22)
0 ;
where AB(t]) = B(t]'+1) - B(t]), At] = t]'_|_1 - t]', {tﬂ}] being a partition of [0, T]

2.5 The forward integral
For more information about the forward integral, we refer to [18].
Definition 2.8 Let ¢(t,w) be a measurable process. The forward integral of ¢ is defined by

B(t+¢) — B(t)

/ o(t,w)dB™(t) = hm ¢(t w) dt (2.23)

if convergent in probability. If the limit exists in L*(P) we write ¢ € Domyd™.

Note that if ¢ is cadlag then



/Oooqs(tde —11301/ B(t, w) Hﬁi B{) 4 —
it B(t+e€) —B(t) ,,
Z¢ )l ), e

tj+1 t+e
Z ot l1m (/ dB,)dt =
6*)0 € t; "

> o(t;) lim - € dB, =
> 0(t;)(Bltj = B(t))

If we combine (2.24) with (2.22) and (2.21) we get the following relation between the forward
integral, the Skorohod integral and the Malliavin derivative:

Lemma 2.9 Let ¢ € Domyd~ be Skorohod integrable and cadlag and assume that ¢(s) € Dy o
for all s € [0,T]. Then

/qﬁtde /qﬁtwéB /Dt+¢ (2.25)

Dt""d)( ) = lim Dsd)( )

s—tt

U LB ] U Dot dt] (2.26)

ProoOF. Combining (2.24), (2.20), (2.22) we get

where

In particular,



Remark 2.10 Note that if ¢(t,w) is Fi-adapted, then

Dy g(t) =
because Do (t) = 0 for all s > t.

We now explain how the forward integral appears naturally in insider modeling. Let
G; D F; as in Section 1 and assume that B(t) is a semimartingale with respect to G, so that
(1.2) holds, i.e.

B(t)=B(t)+ A(t); 0<t<T

where B (t) is a G-adapted Brownian motion, A; is a G;-adapted finite variation contin-
uous process. Then we have

Lemma 2.11 Let ¢(s,w) be as in Lemma 2.9. Then

/qs t)dB(t /¢> (t)dA, = /qs £)6B(t /Dﬁd) (2.27)

PROOF. By equation (1.2) and Lemma 2.9, we get

Corollary 2.12 Let ¢ be as in Lemma 2.11. Then

/qs t)dB(t /¢> (t)dA, = /qs t)dB~ (2.28)



In view of Corollary 2.12 we see that if (1.2) holds, then it is natural to interpret
“fo P(t,w)dB(t)” as fo é(t,w)dB~(t) in insider trading model, when ¢(#) is G;-adapted.
From now on we adopt thls as our mathematical model in insider trading in general, without
assuming that (1.2) holds. Thus in (1.1) we put

/qﬁtde /qﬁ t)dB~ /qﬁtwéB /Dﬁqs (2.29)

for all processes ¢(t,w) which are Skorohod-integrable and such that D+ ¢(t) exists for
a.a. t and

E {(/OT |Dt+¢>(t)|dt)2} < oo (2.30)

Definition 2.13 A stochastic process ¢(t,w) is called an admissible insider portfolio if
1. ¢(t) is Gi-adapted
2. ¢(t) is Skorohod-integrable over [0, T]

3. Dy+¢(t) exists for almost all t € [0,T] and

B {(/0T|Dt+¢(t)|dt)2} < 00

The set of all admissible portfolios is denoted by A.

3 Optimal portfolio of an insider
Suppose that our financial market has the form

Bond price dSy(t) = r(t)So(t)dt; Sp(0) =1 (3.1)

Stock price dS,(t) = S, (t)[u(t)dt + o()dBE)]); S (0) =z (3.2)

Here r(t), u(t), o(t) are Fi-adapted processes, where as before F; is the filtration of the
Brownian motion B(t).
Now fix an insider filtration G := {Gi}yc;cr D {Fitocser = F. Let m(t) be a portfolio
denoting the fraction of the wealth invested in the stock at time ¢ by an insider. Thus 7(t)
is a G,-adapted stochastic process. The corresponding wealth X (t) = X (™ (¢) of the insider
at time ¢ will then satisfy the equation

()1 — 7)) X (O)dt + 7() X () [u(t)dt + o (t)dB ()] =
(b)) dt + o(®)r(t)dB (£)]; X(0) = g (3.3)

—
~
~
—
~=
=
—~
~
+
—~ =
=
—
~
~
|
=
—~
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Fix a terminal time 7" > 0 and a utility function

U:R— [—00,00)
assumed to be concave, nondecreasing and upper semicontinuous. Consider the following

instder optimal portfolio problem:

PROBLEM 3.1: Find V¥ € R and 7* € A such that

Vi =sup E [UX™(T))] = B [UXT)(T))] (3.4)
TEA

We recall that here A denotes the set of admissible portfolios (Definition 2.13).
We call V# < oo the value of the optimal portfolio problem and 7* € A the optimal portfolio
(if it exists).

This problem was first studied by Pikovski and Karatzas ([12]). They assume that

U(x) =logx (3.5)
and that G; has the form

for some fixed random variable L. They also assume that there exists a G;-adapted
process a(t) such that

E(t):B(t)—/O a(s)ds (3.7)

is a G;-Brownian motion.
Subsequently, this problem has been studied by many authors, but to the best of our knowl-
edge they all assume that (3.6) and (3.7) hold. See for example Leon, Navarro and Nualart
[14] and Imkeller [9] and the references therein. The recent paper Corcuera et al. [3] has a
different, but related assumption. The purpose of our paper is to study Problem 3.1 for a
general filtration G; D F;, without assuming (3.6) or (3.7).

We first prove the following result of independent interest:

Theorem 3.1 Let &(t) and n(t) be G;-adapted processes such that fot (1€(s)| + n*(s)) ds < o0
andn € A for all t > 0. Then the equation

dX(t) = X(@)[§(t)dt +n(t)dB~(1)];  X(0) = xo (3.8)

has the unique solution

X = oo ([ e1- 3o s+ [was ) 120 09)

11



Remark 3.2 Theorem 3.1 is an extension of Theorem 2.13 in [14], where the same solution
formula is obtained (by a different method) for the special case when (3.6) holds, i.e.

L being a fizred Fr-measurable random variable.

Remark 3.3 For notational simplicity we use the notation

Dy f(t) for Dy f(t)

from now on.

PROOF. 1.FEzistence

Put

v = oo ([ {e6) - e} as+ [nan)) =
e ([ e = 30700+ Danto) s+ [ n(o1505)) (3.10)

The by the It6 formula for Skorohod integrals (Theorem 6.1, [16]) we get

ay () =Y (1) [(w) — S (0) + D)t + n(t)aBm] +
+ %Y(t)nZ(t)dt—i—Y(t)n(t) {th(t) +/0 Dm(u)éB(u)} dt =

Y(0)E(t)dt + Y (8) Den(t))dt + Y ()n(t)0B(t) + Y (t)n(t) {th(t) + /Ot Dm(U)5B(U)] dt

(3.11)
where
0= [ {6~ 39+ Dante) fas (3.12)
Now (see (2.25))
Y(#)n()oB(t) =Y ()n(t)dB~(t) — Dy(Y ()n(t))dt =
Y (t)n(t)dB~ (t) — Y (¢t)Dyn(t)dt — DY (t)n(t)dt (3.13)

Therefore (3.11) can be written

12



AY (1) = Y (O ()dt + Y ()n()dB (1)
+ <—DtY(t)77( )+ {th / Din(u)dB(u ])

So X, :=Y; satisfies equation (3.8) if and only if

DY (t) [th /Dm )OB(u ]

1.e.

Dy (log Y (t) /Dm )oB(u (3.14)

By (3.10) we see that

Dulog () = Dif )+ 01 [ i)

20+ 01 [ walanin)
D / D)0 B(u) + T n(s)xio(s) =

+/Dmu63u

The last line is (3.14). This proves that the process X; = Y; given by (3.9) solves equation
(3.8).

2.Uniqueness
Let X, () be some solution of (3.8). Then

dXy(t) = { X2 (D)€(8) + Di(Xa(8)n(2)) } di + ()0 B(t)

Define

Z(t) = exp (— /Ot {&(s) - %nZ(s)} ds — /Utn(s)dB_(s)> =
o ([ {603 s+ [ cana o)) exo ([ o)

Then by the multi-dimensional It6 formula for Skorohod integrals ([16], Theorem 6.4)
and by Part 1
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AZ(t) = 2(1) [(~€(t) + (1))t — ()dB*(t)}
— {Z()(~€(8) +n*(8) — Di(Z(n(®) } dt — (5 B()

Hence by the multi-dimensional Ito6 formula again

d(X1(t)Z(t)) = X1(t)dZ(t) + Z(t)d X, (t) — t
Xy (@)n(t)DiZ(t) — n(t) Z(t) D X1 (t)] di
(=€) +n°(t)) — D(Z()n(t))] dt — n(t)oB(t) }
()+Dt( 1(B)n(8))] dt +n(t)oB(t)}
t) [Xa () Dy Z(t) — Z(t) Dy X1 (1)] di

Z(t) X1 ()n(t)*d
1 X1(t)

—

I | |
=
——

Xq(t

Hence X (t)Z(t) is constant and therefore

Xi(t) = X;(0)Z 1(t) = X(¢) (defined in (3.9))
O

We now return to Problem 3.1. We consider the case when (3.5) holds, i.e. U(z) = logx.
By Theorem 3.1 the solution X (t) = X(™(#) of the wealth equation (3.3) is

X(t) = 29 exp (/Ot {r(s) 4 (u(s) — r(s))m(s) — %oﬂ(s)w?(s)} ds + /Ota(s)ﬂ(s)dB_(s)>

(3.15)
where t > 0. Hence
FE _log @} =
- T 1, T )
E /0 {r(s) + (u(s) —r(s))m(s) — 30 (s)m (s)} ds —i—/o o(s)m(s)dB (s)] =
Bl /0 {r(s) + (uls) — r(s))(s) — %(12(5)772(5) + Ds(a(s)w(s))} ds] (3.16)
Now we write
_pls) —r(s) | als)
m(s) = 2(5) + () (3.17)

for some Gi-adapted process «(t). Substituting ( 3.17) in (3.16), we obtain

14



Eh@X@q:ELﬁ{ﬂﬁ+lg@lﬁ@ﬁ+Dﬂ@—%M@%mﬁ

T 2 o (s)

X@(T
Therefore, to maximize £ {log )] over all Gi-adapted processes 7 (t) € A it suffices
Zo
to maximize
T 1
H(a) = E [ / {Dsa(s) - §a2(s)} ds} (3.18)
0

for all G-adapted processes a(t) € A.

Remark 3.4 Note that if G, = F; then Dsa(s)(= Dsia(s)) =0 for all o € A and therefore
it is optimal to choose ae = 0 in this case. Hence, in this case we have the well-known result

v;f‘:EUOT {r(s)+1M}ds], r(s) = M =) g

2 o?(s) o?(s)

To maximize (3.18), we apply a variational argument.
Suppose «(t) maximizes H(«). Then if y € R and 6(t) is another G;-adapted process in A
we have that the function

y — H(a+ yb)

is maximal for y = 0. Therefore

d
0= —H(CY + yﬁ)yzo =

dy
e [ {pee e - )] -
B[ [ 1p06) - alop)} s 3:20)

Now fix ¢ € [0,7") and apply (3.20) to the process
0(s) = Xppaam()0(t); 0<s<T

where h > 0 is a constant such that t + h < T and 6(t) is G;-measurable and Malliavin
differentiable. Then (3.20) and (2.26) give

0=FE [/tm (DuO(#) — a(uw)0()} du: _
E {9(75) /t B - o) /t Hhoz(u)du: _

E [e(t) {B(t +h) — B(t) — /tHh a(u)du}:

15



Since this holds for all G;-measurable Malliavin differentiable 0(¢) we conclude that

E {(B(t +h) - B(t) — /tHh a(u)du>

This is equivalent to saying that the process

Qt] =0

B(t) .= B(t) — /Ota(u)du; 0<t<T

is a G;-martingale and hence a G;-Brownian motion. We have proved

Theorem 3.5 Suppose that there exists an optimal portfolio w*(t) for Problem 3.1 when
U(x) =logx with V¥ < co. Then 7*(s) has the form

(s) = L (‘22?8;(8) + :8 (3.21)

where a(t) is a Gi-adapted process such that

B(t) := B(t) — /0 a(u)du (3.22)

15 a Gi-Brownian motion. The corresponding value is

VE Z log o + F VOT {r(s) L L) =) ey - %oﬁ(s)} ds} (3.23)

2 o?(s)

Remark 3.6 This result provides a kind of converse of the result of Pikovski and Karatzas
([12],[15]) and others, in the sense that if Vi < oo then (3.22) is in fact necessary for the
existence of the optimal portfolio.

Now that (3.22) and (3.23) are established, we get from (3.15) and (2.28) that

E [ /0 Ta(s)yr(s)dﬁ(s)] =0 (3.25)



Using the substitution (3.17) we transform this to

Ehgggq:E{AT&wﬂjﬂ&ilﬂwi+iﬂ$+a@g§i:&ﬁ}$]

T 2 o?(s) 2 o(s)
(3.26)
by the same calculation as the one following (3.17). Note that since 5(t) := W
is Fi-adapted, we have by (3.22)
T T T R
E dt| = FE dB(t) — dB =0 3.27
[ swawa] B[ [ swist) - [ swase) (3.7

Therefore (3.26) gives
X(T) ! L(p(s) —r(s)* | 1
Ellog——=| =F —— 4 - d 2
{og o } [/0 {T(S) +3 72(5) +50 (s) pds (3.28)
Combining this with Theorem 3.5 and (3.19) we get

Theorem 3.7 Suppose that there exists an optimal portfolio w*(t) for Problem 3.1 when
U(x) =logz with V¥ < co. Then, as in Theorem 3.5,

(= B =) als)
= 2
*(s) 2(5) + () (3.29)
where a(t) is such that
N t
MQ:B@—/awWL (3.30)
0
is a Gi-Brownian motion. The corresponding value is
1 T
VE=V5+ 5 U a2(s)d8] (3.31)
0

1 T
Here V' represents the value of the honest trader and §E [/ a2(s)ds] the additional
0

value (utility) obtained by the insider. Theorem 3.7 represents a partial converse of Theorem
2.1in [9].

As an illustration, we give the following well-known example.
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Example 3.8 Suppose G, = F; V o(B(1p)) for some constant Ty > T. Then we have seen
in Example 1.1 that

B(Ty) — B(s)
= — 3.32
a(s) = 2= (3.3
satisfies (3.30). It was proved in [12] that in this case the additional utility for the insider
i8

1 r 1 /71 1 Tp
- F 2 d - — ds = —1 .
5 {/Oa(s) s] 2/0 TO—SS 2Og<T0—T> (3.33)

If Ty =T then V,f = oo!
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