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Abstract

In this paper we extend the utility based option pricing and hedg-
ing approach, pioneered by Hodges and Neuberger (1989) and further
developed by Davis, Panas, and Zariphopoulou (1993), for the mar-
ket where each transaction has a fixed cost component. We present
a model, where investors have a CARA utility and finite time hori-
zons, and derive some properties of reservation option prices. The
model is then numerically solved for the case of European call options.
We examine the effects on the reservation option prices and the corre-
sponding optimal hedging strategies of varying the investor’s ARA and
the drift of the risky asset. Our examination suggests distinguishing
between two major types of investors behavior: the net investor and
the net hedger, in relation to the pricing and hedging of options. The
numerical results of option pricing and hedging for both of these types
of investors are presented. We also try to reconcile our findings with
such empirical pricing biases as the bid-ask spread, the volatility smile
and the volatility term-structure.
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1 Introduction

The break-trough in option valuation theory starts with the publication of
two seminal papers by Black and Scholes (1973) and Merton (1973). In both
papers authors introduced a continuous time model of a complete friction-
free market where a price of a stock follows a geometric Brownian motion.
They presented a self-financing, dynamic trading strategy consisting of a
riskless security and a risky stock, which replicate the payoffs of an option.
Then they argued that the absence of arbitrage dictates that the option
price be equal to the cost of setting up the replicating portfolio.

In the presence of transaction costs in capital markets the absence of ar-
bitrage argument is no longer valid, since perfect hedging is impossible. Due
to the infinite variation of the geometric Brownian motion, the continuous
replication policy incurs an infinite amount of transaction costs over any
trading interval no matter how small it might be. A variety of approaches
have been suggested to deal with the problem of option pricing and hedg-
ing with transaction costs. We maintain that the utility based approach,
pioneered by Hodges and Neuberger (1989), produces the most ”optimal”
polices. The rationale under this approach is as follows. Since entering
an option contract involves an unavoidable element of risk, in pricing and
hedging options, one must consider the investor’s attitude toward risk. The
other alternative approaches are mainly preference-free and concerned with
the ”financial engineering” problem of either replicating or super-replicating
option payoffs. These approaches are generally valid only in a discrete-time
model with a relatively small number of time intervals.

The key idea behind the utility based approach is the indifference argu-
ment. The writing price of an option is defined as the amount of money that
makes the investor indifferent, in terms of expected utility, between trading
in the market with and without writing the option. In a similar way, the
purchase price of an option is defined as the amount of money that makes
the investor indifferent between trading in the market with and without
buying the option. These two prices are also referred to as the investor’s
reservation write price and the investor’s reservation purchase price. In
many respects a reservation option price is determined in a similar manner
to a certainty equivalent within the expected utility framework, which is an
entirely traditional approach to pricing in economics.

2



The utility based option pricing approach is perhaps not entirely satis-
factory due to some apparent drawbacks: First, the method does not price
options within a general equilibrium framework, and, hence, instead of a
unique price one gets two price bounds that depend on the investor’s utility
function, which is largely unknown. Second, the linear pricing rule from the
complete and frictionless market does not apply to the reservation option
prices. Generally, the unit reservation purchase price decreases in the num-
ber of options, and the unit reservation write price increases in the number
of options. Nevertheless, the method is well-defined in contrast to ad-hoc
delta hedging in the presence of transaction costs, and, moreover, it yields a
narrow price band which is much more interesting than the extreme bounds
of a super-replicating strategy1. Some attractive features of these bounds
are as follows. It can be proved that in a friction-free market the two reser-
vation prices coincide with the Black-Sholes price. The bounds are robust
with respect to the choice of utility function since the level of absolute risk
aversion seems to be the only important determinant. Judging against the
best possible tradeoff between the risk and the costs of a hedging strategy,
the utility based approach seems to achieve excellent empirical performance
(see Martellini and Priaulet (2000), Clewlow and Hodges (1997), and Mo-
hamed (1994)). Quite often one points out that the numerical calculations
of reservation option prices are very time-consuming. Considering the ex-
ploding development within the computer industry this problem gradually
becomes less and less important. All these suggest that the utility based
approach is a very reasonable and applicable option pricing method.

The starting point for the utility based option pricing approach is to
consider an investor who faces transaction costs and maximizes expected
utility of end-of-period wealth. The introduction of transaction costs adds
considerable complexity to the utility maximization problem2 as opposed to
the case with no transaction costs. The problem is simplified if one assumes
that the transaction costs are proportional to the amount of the risky asset
traded, and there are no transaction costs on trades in the riskless asset. In
this case the problem amounts to a stochastic singular control problem that
was solved by Davis and Norman (1990). Shreve and Soner (1994) studied

1 Shreve, Soner, and Cvitanic (1995) proved, in particular, that in a continuous time
model with proportional transaction costs the costs of buying one share of stock is the
cheapest super-replicating policy

2In this paper we consider the two-asset problem only
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this problem applying the theory of viscosity solutions to Hamilton-Jacobi-
Bellman (HJB) equations (see, for example, Flemming and Soner (1993) for
that theory).

In the presence of proportional transaction costs the solution indicates
that the portfolio space is divided into three disjoint regions, which can be
specified as the Buy region, the Sell region, and the no-transaction (NT)
region. If a portfolio lies in the Buy region, the optimal strategy is to buy
the risky asset until the portfolio reaches the boundary between the Buy
region and the NT region, while if a portfolio lies in the Sell region, the
optimal strategy is to sell the risky asset until the portfolio reaches the
boundary between the Sell region and the NT region. If a portfolio lies in
the NT region, it is not adjusted at that time.

The problem is further simplified if the investor’s utility function is of
the exponential type (CARA investor). In this case the option price and
hedging strategy are independent of the investor’s holdings in the risk-free
asset and the computational complexity is considerably reduced.

In all the papers with numerical solutions (except for Andersen and
Damgaard (1999)) the authors used the method of the Markov chain ap-
proximation (see, for example, Kushner and Dupuis (1992)). Using this
method, the solution to the utility maximization problem is obtained by
turning the stochastic differential equations into Markov chains in order to
apply the discrete-time dynamic programming algorithm.

Hodges and Neuberger (1989) introduced the approach and calculated
numerically optimal hedging strategies and reservation prices of European
call options using a binomial lattice, without really proving the convergence
of the numerical method. For simplicity they chose the drift of the risky asset
equal to the risk-free rate of return. Davis et al. (1993) rigorously analyzed
the same model, showed that the value function of the problem is a unique
viscosity solution of a fully nonlinear variational inequality. They proved the
convergence of discretization schemes based on the binomial approximation
of the stock price, and presented computational results for the reservation
write price of an option. Whalley and Wilmott (1997) did an asymptotic
analysis of the model of Hodges and Neuberger (1989) and Davis et al.
(1993) assuming that transaction costs are small. They show that the opti-
mal hedging strategy is to hedge to a particular bandwidth3. Clewlow and

3That is, the optimal strategy is not to rehedge until the position moves out of the line
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Hodges (1997) extended the earlier work of Hodges and Neuberger (1989)
by presenting a more efficient computational method, and a deeper study of
the optimal hedging strategy.

Constantinides and Zariphopoulou (1999a) considered an infinite hori-
zon economy with multiple securities having time stationary returns, a con-
stant interest rate, and any number of derivatives. In this model upper
and lower bounds on reservation write and purchase prices, respectively, are
obtained for the class of investors with time additive preferences and a util-
ity function of the power type. Constantinides and Zariphopoulou (1999b)
derived analytic bounds on the reservation write price of a European-style
contingent claim.

Andersen and Damgaard (1999) were the first to compute the reserva-
tion prices of European-style options in a market with two risky securities
and an investor with HARA utility. They suggested using the method of
convex optimization. Unfortunately, using this method the calculations are
highly time-consuming and were implemented for a 9-period model only.
They found that the reservation option prices based on the exponential
utility function is a good approximation of the reservation prices implied
by HARA utility function with the same initial level of absolute risk aver-
sion. Damgaard (2000a) and Damgaard (2000b) computed the reservation
prices of European and American-style options for an investor having a
HARA utility. He examined how the reservation prices and corresponding
portfolio policies depend on the risk aversion coefficient, the level of the
investor’s initial wealth, and the drift of the underlying risky asset.

To the best of our knowledge, no one has calculated reservation option
prices and hedging strategies in the market with a fixed cost component4.
The solution to the utility maximization/optimal portfolio selection prob-
lem where each transaction has a fixed cost component is more complicated
and is based on the theory of stochastic impulse controls (see, for exam-
ple, Bensoussan and Lions (1984) for that theory). The first application of
this theory to a consumption-investment problem was done by Eastham and
Hastings (1988). They developed a general theory and showed that solving
this general problem requires the solution of a system of so-called quasi-

with the perfect hedge position by a certain amount
4 Clewlow and Hodges (1997) made computations for a 3-period model in the market

with both fixed and proportional transaction costs, without really presenting a continuous-
time model for this case
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variational inequalities (QVI). This initial work was extended by Hastings
(1992) and Korn (1998), and was further developed by Øksendal and Sulem
(1999) and Chancelier, Øksendal, and Sulem (2000).

In this paper we extend the works of Hodges and Neuberger (1989), Davis
et al. (1993), and Clewlow and Hodges (1997), who computed reservation
option prices in the model with a CARA investor and the presence of pro-
portional transaction costs only. First, we formulate the option pricing and
hedging problem for the CARA investor in the market with both fixed and
proportional transaction costs and derive some properties of reservation op-
tion prices. Then we numerically solve the problem for the case of European
call options applying the method of the Markov chain approximation. The
solution indicates that in the presence of both fixed and proportional trans-
action costs, most of the time, the portfolio space can again be divided into
three disjoint regions (Buy, Sell, and NT), and the optimal policy is de-
scribed by four boundaries. The Buy and the NT regions are divided by the
lower no-transaction boundary, and the Sell and the NT regions are divided
by the upper no-transaction boundary. If a portfolio lies in the Buy region,
the optimal strategy is to buy the risky asset until the portfolio reaches the
Buy target boundary. Similarly, if a portfolio lies in the Sell region, the
optimal strategy is to sell the risky asset until the portfolio reaches the Sell
target boundary.

Our examination of the effects on the reservation option prices and the
corresponding optimal hedging strategies of varying the investor’s ARA and
the drift of the risky asset suggests distinguishing between two major types
of investors behavior in relation to the pricing and hedging of options: the
net investor and the net hedger. The net investor, as well as the net hedger,
has his own pattern of pricing and hedging options. Both the net investor’s
reservation option prices are above the BS-price, and they are very close to
each other. The net investor overhedges both long and short option positions
as compared to the BS-strategy. The net hedger’s reservation purchase price
is generally below the BS-price, and the net hedger’s reservation write price
is above the BS-price. Here the difference between the two prices depends on
the level of the net hedger’s absolute risk aversion and the level of transaction
costs. Judging against the BS-strategy, the net hedger underhedges out-of-
the-money and overhedges in-the-money long option positions. When the
net hedger writes options, his strategy is quite the opposite. The net hedger
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overhedges out-of-the-money and underhedges in-the-money short option
positions. The remarkable features of the net hedger’s strategy are jumps
to zero in target amounts in the stock when the stock price decreases below
some certain levels. And at these levels the NT region widens.

We point out on two possible resolutions of the question: Under what
circumstances will a writer and a buyer agree on a common price for an op-
tion? In the model with both fixed and proportional transaction costs under
certain model parameters there occurs a situation when the reservation pur-
chase price is higher than the reservation write price. The other possibility
arises when a writer and a buyer, both of them being net investors in the
underlying stocks, face different transaction costs in the market.

We also try to reconcile our findings with such empirical pricing biases
as the bid-ask spread, the volatility smile and the volatility term structure.
Our general conclusion here is that these empirical phenomena could not be
accounted for solely by the presence of transaction costs.

The rest of the paper is organized as follows. Section 2 presents the
continuous-time model and the basic definitions. In Section 3 we derive
some important properties of the reservation option prices. Section 4 is con-
cerned with the construction of a discrete time approximation of the contin-
uous time price processes used in Section 2, and the solution method. The
numerical results for European-style call options are presented in Section 5.
Section 6 concludes the paper and discusses some possible extensions.

2 The Continuous Time Formulation

Originally, we consider a continuous-time economy, similar to that of Øksendal
and Sulem (1999), with one risky and one risk-free asset. Let (Ω,F , P ) be
a probability space with a given filtration {Ft}0≤t≤T . The risk-free asset,
which we will refer to as the bank account, pays a constant interest rate of
r ≥ 0, and, consequently, the evolution of the amount invested in the bank,
xt, is given by the ordinary differential equation

dxt = rxtdt (1)
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We will refer to the risky asset to as the stock, and assume that the price of
the stock, St, evolves according to a geometric Brownian motion defined by

dSt = µStdt + σStdBt (2)

where µ and σ are constants, and Bt is a one-dimensional Ft-Brownian
motion.

The investor holds xt in the bank account and the amount yt in the stock
at time t. We assume that a purchase or sale of stocks of the amount ξ incurs
a transaction costs consisting of a sum of a fixed cost k ≥ 0 (independent
of the size of transaction) plus a cost λ|ξ| proportional to the transaction
(λ ≥ 0). These costs are drawn from the bank account.

If the investor has the amount x in the bank account, and the amount
y in the stock, his net wealth is defined as the holdings in the bank account
after either selling of all shares of the stock (if the proceeds are positive after
transaction costs) or closing of the short position in the stock and is given
by

Xt(x, y) =





max{xt + yt(1− λ)− k, xt} if yt ≥ 0,

xt + yt(1 + λ)− k if yt < 0.
(3)

We suppose that at any time the investor can decide to transfer money
from the bank account to the stock and conversely. The control of the
investor is a pure impulse control v = (τ1, τ2, . . . ; ξ1, ξ2, . . .). Here 0 ≤ τ1 <

τ2 < . . . are Ft-stopping times giving the times when the investor decides
to change his portfolio, and ξj are Fτj -measurable random variables giving
the sizes of the transactions at these times. If such a control is applied to
the system (xt, yt), it gets the form

dxt = rxtdt τi ≤ t < τi+1

dyt = µytdt + σytdBt τi ≤ t < τi+1

xτi+1 = xτ−i+1
− k − ξi+1 − λ|ξi+1|

yτi+1 = yτ−i+1
+ ξi+1

(4)

We consider an investor with a finite horizon [0, T ] who has utility only
of terminal wealth. It is assumed that the investor has a constant absolute
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risk aversion. In this case his utility function is of the form

U(γ, W ) = − exp(−γW ), (5)

where γ is a measure of the investor’s absolute risk aversion (ARA), which
is independent of the investor’s wealth.

2.1 Utility Maximization Problem without Options

The investor’s problem is to choose an admissible trading strategy to maxi-
mize Et[U(XT )], i.e., the expected utility of his net terminal wealth, subject
to (4). We define the value function at time t as

V (t, x, y) = sup
v∈A(x,y)

Ex,y
t [U(γ, XT )], (6)

where A(x, y) denotes the set of admissible controls available to the investor
who starts at time t with an amount of x in the bank and y holdings in
the stock. We assume that the investor’s portfolio space is divided into
two disjoint regions: a continuation region and an intervention region. The
intervention region is the region where it is optimal to make a transaction.
We define the intervention operator (or the maximum utility operator) M
by

MV (t, x, y) = sup
(x′,y′)∈A(x,y)

V (t, x′, y′) (7)

where x′ and y′ are the new values of x and y. In other words, MV (t, x, y)
represents the value of the strategy that consists in choosing the best trans-
action. The continuation region is the region where it is not optimal to
rebalance the investor’s portfolio. We define the continuation region D by

D =
{
(x, y);V (t, x, y) > MV (t, x, y)

}
(8)

Now, by giving heuristic arguments, we intend to characterize the value
function and the associated optimal strategy. If for some initial point (t, x, y)
the optimal strategy is to not transact, the utility associated with this strat-
egy is V (t, x, y). Choosing the best transaction and then following the opti-
mal strategy gives the utility MV (t, x, y). The necessary condition for the
optimality of the first strategy is V (t, x, y) ≥ MV (t, x, y). This inequality
holds with equality when it is optimal to rebalance the portfolio. Moreover,
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in the continuation region, the application of the dynamic programming
principle gives LV (t, x, y) = 0, where the operator L is defined by

LV (t, x, y) =
∂V

∂t
+ rx

∂V

∂x
+ µy

∂V

∂y
+

1
2
σ2y2 ∂2V

∂y2
. (9)

The subsequent theorem formalizes this intuition.

Theorem 1. The value function is the unique constrained viscosity solution
of the quasi-variational Hamilton-Jacobi-Bellman inequalities (QVHJBI, or
just QVI):

max
{
LV, MV − V

}
= 0 (10)

with the boundary condition

V (T, x, y) = U(γ,XT ).

The proof can be made by following along the lines of the proof in Øksendal
and Sulem (1999) with corrections for no consumption, and our finite hori-
zon.

The amount of xT is given by

xT =
x

δ(T, t)
−

n∑

i=0

(k + ξi + λ|ξi|)
δ(T, τi)

, (11)

where δ(T, t) is the discount factor defined by

δ(T, t) = exp(−r(T − t)), (12)

and t ≤ τ1 < τ2 < . . . < τn < T . Therefore, taking into consideration our
utility function defined by (5), we can write

V (t, x, y) = exp(−γ
x

δ(T, t)
)Q(t, y), (13)

where Q(t, y) is defined by Q(t, y) = V (t, 0, y). It means that the dynamics
of y through time is independent of x. This representation suggests trans-
formation of (10) into the following QVI for the value function Q(t, y):

max
{
DQ(t, y), sup

y′∈A(y)
exp

(
γ

k − (y − y′) + λ|y − y′|
δ(T, t)

)
Q(t, y′)−Q(t, y)

}
= 0,

(14)
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where y′ is the new value of y, A(y) denotes the set of admissible controls
available to the investor who starts at time t with y holdings in the stock,
and the operator D is defined by

LQ(t, y) =
∂Q

∂t
+ µy

∂Q

∂y
+

1
2
σ2y2 ∂2Q

∂y2
. (15)

This is an important simplification that reduces the dimensionality of the
problem. Note that the function Q(t, y) is evaluated in the two-dimensional
space [0, T ]× R.

In the absence of any transaction costs the solution for the optimal trad-
ing strategy is given by

y∗(t) =
δ(T, t)

γ

(µ− r)
σ2

, (16)

by using the result in Davis et al. (1993).
The numerical calculations show that in the presence of both fixed and

proportional transaction costs, most of the time, the portfolio space can
be divided into three disjoint regions (Buy, Sell, and NT), and the optimal
policy is described by four boundaries. The Buy and NT regions are divided
by the lower no-transaction boundary, and the Sell and NT regions are
divided by the upper no-transaction boundary. If a portfolio lies in the
Buy region, the optimal strategy is to buy the risky asset until the portfolio
reaches the Buy target boundary. Similarly, if a portfolio lies in the Sell
region, the optimal strategy is to sell the risky asset until the portfolio
reaches the Sell target boundary.

However, there is generally a time interval, say [τ1, τ2)5, when the NT
region consists of two disjoint sub-regions which, in their turn, divide either
the Buy region (when µ > r) or the Sell region (when µ < r) into two
parts. Nevertheless, as in the former case, the target boundaries are unique.
The rationale for the existence of a second (minor) NT sub-region can be
explained in terms of fixed transaction costs. Recall how we define the
investor’s net wealth (see equation (3)). If the investor’s holdings in the
stock are positive, he will sell all his shares of the stock on the terminal date
only if the proceeds are positive after transaction costs. Putting it another
way, the rational investor will not sell his shares of the stock if y(1−λ) < k.

5τ = T − t represents the time remaining until the terminal date
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Suppose for the moment that yτ → 0+ for some τ ∈ [τ1, τ2). Consider the
two alternatives: (i) No trade at τ and thereafter up to the terminal date,
and (ii) buy a certain number of shares of the stock at τ in order to move
closer to the optimal level of holdings in the model with no transaction costs.
In the former case it is almost sure that at the terminal date the holdings in
the stock will not exceed the fixed transaction fee k. That is, y0(1− λ) < k

a.s., and, thus, it is not optimal to sell shares of the stock. Hence, in the first
alternative the investor does not pay any transaction costs. In the second
alternative the investor pays at least round trip transaction costs equal to 2k
(we ignore the time value of money). It turns out that the first alternative
is better than the second one when the terminal date is close.

All the NT and target boundaries are functions of the investor’s horizon
and do not depend on the investor’s holdings in the bank account, so that
a possible description of the optimal policy for τ ∈ (0, τ1) ∪ [τ2,∞) may be
given by

y = yu(τ)
y = y∗l (τ)
y = y∗u(τ)
y = yl(τ),

(17)

where the first and the forth equations describe the upper and the lower NT
boundaries respectively, and the second and the third equations describe
the target boundaries. For τ ∈ [τ1, τ2) a possible description of the optimal
policy may be given by

y = yu(τ)
y = y∗l (τ)
y = y∗u(τ)
y = yl(τ)
y = y2u(τ)

y = y2l(τ) = 0.

(18)

The first and the forth equations describe the upper and the lower bound-
aries of the main NT sub-region. The second and the third equations de-
scribe the target boundaries. The last two equation characterize the minor
NT sub-region which lies in between y = y2u(τ) < k and y = y2l(τ) = 0. It
is always the case that yl < y∗l < y∗u < yu and y2l < y2u. The minor NT
region is largely insignificant. Further we will not pay any attention to it in
order to keep focus and concentration only on important issues.
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The analysis of the optimal portfolio policy without options for a CARA
investor with a finite horizon and a large set of realistic parameters, as well
as the illustration of the case where the NT region consists of two disjoint
sub-regions, is beyond the scope of this paper. The interested reader may
consult Zakamouline (2002) for details.

If the function Q(t, y) is known in the NT region, then

Q(t, y) =





exp
(
γ k−(1−λ)(y−y∗u)

δ(T,t)

)
Q(t, y∗u) ∀y(t) ≥ yu(t),

exp
(
γ

k+(1+λ)(y∗l −y)

δ(T,t)

)
Q(t, y∗l ) ∀y(t) ≤ yl(t).

(19)

This follows from the optimal transaction policy described above. That is,
if a portfolio lies in the Buy or Sell region, then the investor performs the
minimum transaction required to reach the closest target boundary.

2.2 Utility Maximization Problem with Options

Now we introduce a new asset, a cash settled European-style option contract
with expiration time T and payoff g(ST ) at expiration. For the sake of
simplicity, we assume that these options may be bought or sold only at time
zero. This means that there is no trade in options thereafter.

Consider an investor who trades in the riskless and the risky assets and,
in addition, buys θ > 0 options. This investor we will refer to as the buyer of
options. The buyer’s problem is to choose an admissible trading strategy to
maximize Et[U(XT + θg(ST ))] subject to (4). We define his value function
at time t as

Jb(t, x, y, S, θ) = sup
v∈Ab

θ(x,y)

Ex,y
t [U(γ, XT + θg(ST ))], (20)

where Ab
θ(x, y) denotes the set of admissible controls available to the buyer

who starts at time t with an amount of x in the bank and y holdings in the
stock.

Definition 1. The unit reservation purchase price of θ European-style op-
tions is defined as the price P b

θ such that

V (t, x, y) = Jb(t, x− θP b
θ , y, S, θ) (21)

In other words, the reservation purchase price, P b
θ , is the highest price
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at which the investor is willing to buy options, and when the investor is
indifferent between the two alternatives: (i) a utility maximization prob-
lem where he trades in the riskless and risky assets only, and (ii) a utility
maximization problem where the investor, in addition, buys options at price
P b

θ .
Consider now an investor who trades in the riskless and the risky assets

and, in addition, writes θ > 0 options. This investor we will refer to as the
writer of options. The writer’s problem is to choose an admissible trading
strategy to maximize Et[U(XT−θg(ST ))] subject to (4). We define his value
function at time t as

Jw(t, x, y, S, θ) = sup
v∈Aw

θ (x,y)
Ex,y

t [U(γ, XT − θg(ST ))], (22)

where Aw
θ (x, y) denotes the set of admissible controls available to the writer

who starts at time t with an amount of x in the bank and y holdings in the
stock.

Definition 2. The unit reservation write price of θ European-style options
is defined as the compensation Pw

θ such that

V (t, x, y) = Jw(t, x + θPw
θ , y, S, θ) (23)

That is, the reservation write price, Pw
θ , is the lowest price at which

the investor is willing to sell options, and when the investor is indifferent
between the two alternatives: (i) a utility maximization problem where he
trades in the riskless and risky assets only, and (ii) a utility maximization
problem where the investor, in addition, writes options at price Pw

θ .
The solutions to problems (21) and (23) provide the unique reservation

option prices and the optimal strategies. We interpret the difference in the
two trading strategies, with and without options, as ”hedging” the options.

Theorem 2. The value functions of both problems (20) and (22) are the
unique viscosity solutions of the quasi-variational Hamilton-Jacobi-Bellman
inequalities:

max
{
LJ, MJ − J

}
= 0 (24)
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with the boundary conditions

Jb(T, x, y, S, θ) = U(γ, XT + θg(ST ))
Jw(T, x, y, S, θ) = U(γ, XT − θg(ST ))

where the operator L given by

LJ =
∂J

∂t
+ rx

∂J

∂x
+µy

∂J

∂y
+µS

∂J

∂S
+

1
2
σ2y2 ∂2J

∂y2
+σ2yS

∂2J

∂y∂S
+

1
2
σ2S2 ∂2J

∂S2
.

(25)

The proof can be carried out by following along the lines of the proof of
Theorem (1).

As in the case of the optimal portfolio selection problem without options,
we can show that the dynamics of y through time is independent of x.
Therefore

Jb(t, x, y, S, θ) = exp(−γ x
δ(T,t))H

b(t, y, S, θ),

Jw(t, x, y, S, θ) = exp(−γ x
δ(T,t))H

w(t, y, S, θ),
(26)

where Hb(t, y, S, θ) and Hw(t, y, S, θ) are defined by Hb(t, y, S, θ) = Jb(t, 0, y, S, θ)
and Hw(t, y, S, θ) = Jw(t, 0, y, S, θ) respectively. This also suggests trans-
formation of (24) into the following QVI for the value function H(t, y, S, θ):

max
{
DH, sup

y′∈A(y)
exp

(
γ

k − (y − y′) + λ|y − y′|
δ(T, t)

)
H(t, y′, S, θ)−H(t, y, S, θ)

}
= 0,

(27)
where y′ is the new value of y, A(y) denotes the set of admissible controls
available to the investor who starts at time t with y holdings in the stock,
and the operator D is defined by

DH =
∂H

∂t
+µy

∂H

∂y
+µS

∂H

∂S
+

1
2
σ2y2 ∂2H

∂y2
+σ2yS

∂2H

∂y∂S
+

1
2
σ2S2 ∂2H

∂S2
. (28)

Again we have reduced the dimensionality of the problem by one. Note that
the function H(t, y, S, θ) is evaluated in the three-dimensional space [0, T ]×
R × R+. Consequently, after all the simplifications, the unit reservation
purchase price is given by (follows from (21) and (26))

P b
θ (t, S) =

δ(T, t)
θγ

ln
(

Hb(t, y, S, θ)
Q(t, y)

)
, (29)
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and the unit reservation write price is given by (follows from (23) and (26))

Pw
θ (t, S) =

δ(T, t)
θγ

ln
(

Q(t, y)
Hw(t, y, S, θ)

)
. (30)

In practical applications one usually assumes that the investor has zero
holdings in the stock at time zero.

In the absence of any transaction costs the solution for the optimal trad-
ing strategy for the writer of options in (y, S)-plane is given by (see, for
example, the result in Davis et al. (1993))

y∗w(t, S, θ) = θS
∂PBS(t, S)

∂S
+

δ(T, t)
γ

(µ− r)
σ2

, (31)

and the solution for the optimal trading strategy for the buyer of options is
given by

y∗b (t, S, θ) = −θS
∂PBS(t, S)

∂S
+

δ(T, t)
γ

(µ− r)
σ2

, (32)

where PBS(t, S) is the price of one option in a market with no transaction
costs (i.e., the Black-Sholes price).

As in the case without options, in the presence of both fixed and propor-
tional transaction costs the portfolio space again can be divided into three
disjoint regions6 (Buy, Sell, and NT) may be given by

y = yu(τ, S)
y = y∗l (τ, S)
y = y∗u(τ, S)
y = yl(τ, S).

(33)

Section 5 of this paper provides illustrations of the optimal portfolio strategy
with options.

If the function H(t, y, S, θ) (here we suppress the superscripts w and b)
is known in the NT region, then

H(t, y, S, θ) =





exp
(
γ k−(1−λ)(y−y∗u)

δ(T,t)

)
H(t, y∗u, S, θ) ∀y(t, S) ≥ yu(t, S),

exp
(
γ

k+(1+λ)(y∗l −y)

δ(T,t)

)
H(t, y∗l , S, θ) ∀y(t, S) ≤ yl(t, S).

(34)
6To put it more precisely, some of them may have sub-regions. Recall our stipulation

that in the presentation we do not pay any attention to the minor NT sub-region
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That is, according to the optimal transaction policy, if a portfolio lies in
the Buy or Sell region, then the investor performs the minimum transaction
required to reach the closest target boundary.

3 No-Arbitrage Bounds and Properties of the Reser-

vation Prices

3.1 No-Arbitrage Bounds in Presence of Transaction Costs

First of all we want to derive upper and lower bounds for option prices that
do not depend on any particular assumptions about the investor’s utility
function7. We, namely, want to adjust the no-arbitrage pricing bounds
derived in Merton (1973) for the presence of both fixed and proportional
transaction costs. We will consider cash settled call and put options with
exercise price K.

From both the definition of an option and the absence of arbitrage con-
dition, we have that

Pθ(t, S) ≥ 0, (35)

where Pθ(t, S) is a unit option price of a position of θ options for both the
buyer and the writer.

Proposition 1. The upper bound for the price of a call option is given by

Pθ(t, S) ≤ S(t)
1 + λ

1− λ
+

k

θ
(1 + δ(t, T )) (36)

Here we use the condition that the option can never be worth more than
the stock. If this relationship is not true, an arbitrager can make a riskless
profit by buying θ

1−λ stocks and selling θ call options. The upper bound for
a put option price is the same as in the case of no transaction costs, i.e., K.

For European call and put options we can derive tighter lower bounds
than the relationship (35).

Proposition 2. A lower bound for the price of a European call option is

Pθ(t, S) ≥ max
[
0, S(t)

1− λ

1 + λ
− k

θ
(1 + δ(t, T ))−Kδ(t, T )

]
(37)

7The only requirement that the investor prefers more to less
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This proposition is an extension of Theorem (1) in Merton (1973) in the
presence of both fixed and proportional transaction costs. If this relationship
is not true, an arbitrager can make a riskless profit by shorting θ

1+λ stocks,
buying θ call options, and investing the proceeds risk-free.

Proposition 3. A lower bound for the price of a European put option is

Pθ(t, S) ≥ max
[
0,Kδ(t, T )− S(t)

1 + λ

1− λ
− k

θ
(1 + δ(t, T ))

]
(38)

If this relationship is not true, an arbitrager can make a riskless profit
by borrowing θKδ(t, T ) at the risk-free rate, and buying θ

1−λ stocks and θ

put options.
Note, that in all the relationships, due to the presence of a fixed trans-

action fee, the bounds depend on the number of options. These bounds
converge to the bounds in the market with only proportional transaction
costs when the number of options goes to infinity.

3.2 Properties of the Reservation Option Prices

Let’s for the moment write the investor’s value function of the utility max-
imization problem without options as V (t, γ, x, y, k), and the correspond-
ing value function of the utility maximization problem with options as
J(t, γ, x, y, k, S, θ). By this we want to emphasize that both the value func-
tions depend on the investor’s coefficient of absolute risk aversion and the
fixed transaction fee.

Theorem 3. For an investor with the exponential utility function and an
initial endowment (x, y) we have

V (t, γ, x, y, k) = V (t, θγ,
x

θ
,
y

θ
,
k

θ
), (39)

J(t, γ, x, y, k, S, θ) = J(t, θγ,
x

θ
,
y

θ
,
k

θ
, S, 1). (40)

Proof. Both these relationships can be easily established from the
form of the exponential utility function. In particular, the portfolio pro-
cess {xs

θ , ys

θ ; s > t} is admissible given the initial portfolio (xt
θ , yt

θ ) and
fixed transaction cost fee k

θ if and only if {xs, ys; s > t} is admissible given
the initial portfolio (xt, yt) and fixed transaction cost fee k. Furthermore,
U(γ, XT ) = U(θγ, XT

θ ) and U(γ, XT ± θPθ) = U(θγ, XT
θ ± Pθ).
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Corollary 4. For an investor with the exponential utility function and an
initial holding in the stock y we have

Q(t, γ, y, k) = Q(t, θγ,
y

θ
,
k

θ
), (41)

J(t, γ, y, k, S, θ) = J(t, θγ,
y

θ
,
k

θ
, S, 1). (42)

Proof. This follows from Theorem (3) and the definitions of the value
functions Q and H.

Theorem 5. For an investor with exponential utility function we have that

1. An investor with an initial holding in the stock y, ARA coefficient γ,
and the fixed transaction fee k has a unit reservation purchase price of
θ options equal to his reservation purchase price of one option in the
case where he has an initial holding in the stock y

θ , ARA coefficient θγ

and the fixed transaction fee k
θ . That is,

P b
θ (t, S) =

δ(T, t)
γ

ln

(
Hb(t, θγ, y

θ , k
θ , S, 1)

Q(t, θγ, y
θ , k

θ )

)
. (43)

2. An investor with an initial holding in the stock y, ARA coefficient γ,
and the fixed transaction fee k has a unit reservation write price of θ

options equal to his reservation write price of one option in the case
where he has an initial holding the in stock y

θ , ARA coefficient θγ and
the fixed transaction fee k

θ . That is,

Pw
θ (t, S) =

δ(T, t)
γ

ln

(
Q(t, θγ, y

θ , k
θ )

Hw(t, θγ, y
θ , k

θ , S, 1)

)
. (44)

Proof. This follows from Theorem (3), the definitions of the value func-
tions Q and H, Corollary (4), and equations (21) and (23).

As mentioned above, in the practical applications of the utility based
option pricing method one assumes that the investor has zero holdings in
the stock at time zero, i.e., y = 0, hence y

θ = 0 as well. In this case
Theorem (5) says that the resulting unit reservation option price and the
corresponding optimal hedging strategy8 in the model with the triple of

8Here, the hedging strategy per option. For θ options the strategy must be re-scaled
accordingly
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parameters (γ, k, θ) will be the same as in the model with (θγ, k
θ , 1). That

is, instead of calculating a model with θ options we can calculate a model
with 1 option only. All we need is adjusting the two parameters for θ: the
absolute risk aversion from γ to θγ, and the fixed transaction fee from k to
k
θ .

Corollary 6. For an investor with exponential utility function, an initial
holding in the stock y = 0, and the fixed transaction fee k = 0 we have that

1. The unit reservation purchase price, P b
θ (t, S), is decreasing in the num-

ber of options θ.

2. The unit reservation write price, Pw
θ (t, S), is increasing in the number

of options θ.

The result in Corollary (6) is quite intuitive. When there are transaction
costs in the market, holding options involves an unavoidable element of risk.
Therefore, the greater number of options the investor holds, the more risk
he takes. When, in particular, there are only proportional transaction costs,
according to the pricing formulas in Theorem (5) an increase in θ corresponds
only to an increase in the investor’s ”pseudo” ARA = θγ. Consequently, the
more options the risk averse investor has to buy, the less he is willing to pay
per option. Similarly, the seller of options will demand a unit price which is
increasing in the number of options. When the fixed transaction fee k 6= 0,
the dependence of the unit reservation price on the number of options is not
obvious. The unit reservation write price can, for example, first decrease9

and then increase when the number of options increases. Note, in particular,
that the linear pricing rule from the complete and frictionless market does
not apply to the reservation option prices.

Corollary 7. The unit reservation option price in the market with both
fixed and proportional transaction costs converges to the price in the market
with only proportional transaction costs when the number of options goes to
infinity. That is,

lim
θ→∞

P b
θ (t, S, λ, k) = P b

θ (t, S, λ, 0) (45)

lim
θ→∞

Pw
θ (t, S, λ, k) = Pw

θ (t, S, λ, 0) (46)

9Note, that the fixed transaction fee per option is decreasing in the number of options
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We conjecture that as θ → ∞ the reservation option prices converge to
the corresponding stochastic dominance bounds that were derived in Con-
stantinides and Perrakis (2000). The utility based reservation option prices
are generally tighter bounds on option prices than the stochastic dominance
bounds which are valid for any non-decreasing and concave utility function.

4 A Markov Chain Approximation of the

Continuous Time Problem

The main objective of this section is to present numerical procedures for com-
puting the investor’s value functions and the corresponding optimal trading
policies. It is tempting to try to solve the partial differential equations (10)
and (24) by using the classical finite-difference method, but the PDEs have
only a formal meaning and are to be interpreted in a symbolic sense. Indeed,
we do not know whether the partial derivatives of the value functions are
well defined, i.e., the value functions have twice continuously differentiable
solutions. The method of solution of such problems was suggested by Kush-
ner (see, for example, Kushner and Martins (1991) and Kushner and Dupuis
(1992)). The basic idea involves a consistent approximation of the problem
by a Markov chain, and then the solution of an appropriate optimization
problem for the Markov chain model. Unlike the classical finite-difference
method, the smoothness of the solution to the HJB or QVI equations is not
needed.

First, according to the the Markov chain approximation method, we con-
struct discrete time approximations of the continuous time price processes
used in the continuous time model presented in Section 2. Then the discrete
time program is solved by using the discrete time dynamic programming
algorithm (i.e., backward recursion algorithm).

Consider the partition 0 = t0 < t1 < . . . < tn = T of the time interval
[0, T ] and assume that ti = i∆t for i = 0, 1, . . . , n where ∆t = T

n . Let ε be
a stochastic variable:

ε =





u with probability p,

d with probability 1− p.
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We define the discrete time stochastic process of the stock as:

Sti+1 = Stiε (47)

and the discrete time process of the risk-free asset as:

xti+1 = xtiρ (48)

If we choose u = eσ
√

∆t, d = e−σ
√

∆t, ρ = er∆t, and p = 1
2

[
1 + µ

σ

√
∆t

]
,

we obtain the binomial model proposed by Cox, Ross, and Rubinstein
(1979). An alternative choice is u = eµ∆t+σ

√
∆t, d = eµ∆t−σ

√
∆t, ρ = er∆t,

and p = 1
2 , which was proposed by He (1990). As n goes to infinity, the

discrete time processes (47) and (48) converge in distribution to their con-
tinuous counterparts (2) and (1).

The following discretization scheme is proposed for the QVI (10):

V∆t = O(∆t)V∆t, (49)

where O(∆t) is an operator given by

O(∆t)V∆t(ti, x, y) = max
{

max
m
V∆t(ti, x− k − (1 + λ)m∆y, y + m∆y),

max
m
V∆t(ti, x− k + (1− λ)m∆y, y −m∆y),

E{V∆t(ti+1, xρ, yε)}
}

,

(50)

where m runs through the positive integer numbers, and

V∆t(ti, x− k − (1 + λ)m∆y, y + m∆y)

= E
{
V∆t(ti+1, (x− k − (1 + λ)m∆y)ρ, (y + m∆y)ε)

}
(51)

V∆t(ti, x− k + (1− λ)m∆y, y −m∆y)

= E
{
V∆t(ti+1, (x− k + (1− λ)m∆y)ρ, (y −m∆y)ε)

}
, (52)

as at time ti we do not know yet the value function. Instead, we use the
known values at the next time instant, ti+1. Here we have discretized the y-
space in a lattice with grid size ∆y, and the x-space in a lattice with grid size
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∆x10. This scheme is a dynamic programming formulation of the discrete
time problem. The solution procedure is as follows. Start at the terminal
date and give the value function values by using the boundary conditions as
for the continuous value function over the discrete state space. Then work
backwards in time. That is, at every time instant ti and every particular
state (x, y), by knowing the value function for all the states in the next
time instant, ti+1, find the investor’s optimal policy. This is carried out
by comparing maximum attainable utilities from buying, selling, or doing
nothing.

Theorem 8. The solution V∆t of (49) converges locally uniformly to the
unique continuous constrained viscosity solution of (10) as ∆t → 0

The proof is based on the notion of viscosity solutions and can be made
in the same manner as the proof of Theorem (4) in Davis et al. (1993).

The following discretization scheme is proposed for the QVI (24):

J∆t = O(∆t)J∆t, (53)

where O(∆t) is an operator given by

O(∆t)J∆t(ti, x, y, S) = max
{

max
m
J∆t(ti, x− k − (1 + λ)m∆y, y + m∆y, S),

max
m
J∆t(ti, x− k + (1− λ)m∆y, y −m∆y, S),

E{J∆t(ti+1, xρ, yε, Sε)}
}

,

(54)

where m runs through the positive integer numbers, and

J∆t(ti, x− k − (1 + λ)m∆y, y + m∆y, S)

= E
{
J∆t(ti+1, (x− k − (1 + λ)m∆y)ρ, (y + m∆y)ε, Sε)

}
(55)

J∆t(ti, x− k + (1− λ)m∆y, y −m∆y, S)

= E
{
J∆t(ti+1, (x− k + (1− λ)m∆y)ρ, (y −m∆y)ε, Sε)

}
. (56)

10It is supposed that lim∆t→0 ∆y → 0, and lim∆t→0 ∆x → 0, that is, ∆y = cy∆t, and
∆x = cx∆t for some constants cy and cx
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The principle behind this scheme is the same as for the discretization scheme
(49). As before, we have discretized the y-space in a lattice with grid size
∆y, and the x-space in a lattice with grid size ∆x. In addition, we use a
binomial tree for the stock price process.

Theorem 9. The solution J∆t of (53) converges locally uniformly to the
unique continuous constrained viscosity solution of (24) as ∆t → 0

The proof follows along similar arguments as in Theorem (8).
Also in the discrete time framework the dynamics of y through time is

independent of x. Therefore (13) and (26) can be written as follows:

V∆t(t, x, y) = exp(−γ x
δ(T,t))Q

∆t(t, y),

Jb,∆t(t, x, y, S, θ) = exp(−γ x
δ(T,t))H

b,∆t(t, y, S, θ),

Jw,∆t(t, x, y, S, θ) = exp(−γ x
δ(T,t))H

w,∆t(t, y, S, θ).

(57)

The discretization scheme for the function Q∆t(t, y) is derived from (49) and
(57) to be

Q∆t(ti, y) = max
{

max
m

exp
(

γ
k + (1 + λ)m∆y

δ(T, ti)

)
Q∆t(ti, y + m∆y),

max
m

exp
(

γ
k − (1− λ)m∆y

δ(T, ti)

)
Q∆t(ti, y −m∆y),

E{Q∆t(ti+1, yε)}
}

.

(58)

As in the continuous time case, if the value function Q∆t(ti, y) is known in
the NT region, then it can be calculated in the Buy and Sell region by using
the discrete space version of (19):

Q∆t(ti, y) =





exp
(
γ k−(1−λ)(y−y∗u)

δ(T,ti)

)
Q∆t(ti, y∗u) ∀y(ti) ≥ yu(ti),

exp
(
γ

k+(1+λ)(y∗l −y)

δ(T,ti)

)
Q∆t(ti, y∗l ) ∀y(ti) ≤ yl(ti).

(59)

In the same manner we can derive from (53) and (57) the discretization
schemes for the value functions Hb,∆t(t, y, S, θ) and Hw,∆t(t, y, S, θ).

Davis et al. (1993) and Damgaard (2000b) used only one discretization
scheme analogous to (53) for calculating both the value functions11 Q and

11 Hodges and Neuberger (1989) and Clewlow and Hodges (1997) avoided the evaluation
of the value function V by choosing µ = r
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H (V and J in the work of Damgaard (2000b), since for the HARA utility
function one cannot reduce the dimensionality of the problem). We propose
to use different discretization schemes as the evaluation of the value func-
tion without options is a much easier task than the evaluation of the value
function with options. Consequently, our method of calculating the value
function Q is much more efficient. Moreover, the proposed discretization
schemes describe only the basic structure of the algorithm we employ. In
the practical realization, this algorithm is very time-consuming. At first,
we detect the boundaries of the NT region. Afterwards we estimate the
value function inside the NT region. Outside of the NT region, in the utility
maximization problem without options, the value function is calculated via
(59). In the utility maximization problem with options we use the discrete
space version of (34).

5 Numerical Results

In this section we present the results of our numerical computations of reser-
vation purchase and write prices and the corresponding hedging strategies
for European call options. In most of our calculations we used the following
model parameters: the risky asset price at time zero S0 = 100, the strike
price K = 100, the volatility σ = 20%, the drift µ = 10%, and the risk-free
rate of return r = 5% (all in annualized terms). The options expire at T = 1
year. The proportional transaction costs λ = 1% and the fixed transaction
fee k = 0.5. The discretization parameters of the Markov chain, depending
on the investor’s ARA, are: n ∈ [100, 150] periods of trading, and the grid
size ∆y ∈ [0.001, 0.1]. For high levels of the investor’s ARA we cannot in-
crease the number of periods of trading beyond some threshold as the values
of the exponential utility are either overflow or underflow. However, this is
not an issue for calculating the prices of put options.

The number of options is always 1 in all our calculations. Recall that,
according to Theorem (5), the resulting unit reservation option price and
the corresponding optimal hedging strategy in the model with the triple of
parameters (γ, k, 1) will be the same as in the model with (γ

θ , θk, θ). This
means if, for example, we choose γ = 1, k = 0.5, and θ = 1, then we get the
same unit reservation option price as in the model with γ = 0.01, k = 50,
and θ = 100.
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5.1 The Sensitivity to γ and µ

In this subsection we are primarily interested in how reservation option
prices depend on the measure of the investor’s absolute risk aversion γ and
the drift of the risky asset µ. Hodges and Neuberger (1989), Davis et al.
(1993), and Clewlow and Hodges (1997) operated only with γ = 1 and found
that the reservation purchase price is below, and the reservation write price
is above the corresponding Black-Sholes price. Lo, Mamaysky, and Wang
(2000) calibrated γ in their model to be between 0.0001 and 5.0. We see
that γ = 1 lies in the upper end of the interval and corresponds to a very
high risk aversion. Damgaard (2000a) and Damgaard (2000b) studied the
sensitivity of reservation option prices to the investor’s relative risk aversion
(RRA) coefficient and the level of the investor’s initial wealth. He found
that the above mentioned pattern, when the reservation purchase price is
below, and the reservation write price is above the BS-price, is valid only for
either low levels of the investor’s initial wealth or high levels of RRA. When
either the investor’s initial wealth increases or RRA decreases, both the
reservation option prices approach the horizontal asymptote located above
the BS-price. Either a higher wealth or a lower RRA for a HARA utility
corresponds to a lower ARA. This suggests that the level of ARA influences
the reservation option prices in a not straightforward manner. He also found
that reservation option prices are to some extent sensitive to the drift of the
underlying asset.

Figures (2) and (1) show the dependence of reservation option prices
on the level of the investor’s absolute risk aversion for two different stock
drifts. When the stock drift is equal to the risk-free interest rate (see Fig-
ure (1)), the reservation write price is always above the BS-price and the
reservation purchase price is always below the BS-price. The reservation
prices are located more or less symmetrically on each side of the BS-price.
The parameter γ seems to influence only the magnitude of the deviation of
reservation option prices from the corresponding BS-prices. The deviation
is greater in the model with both fixed and proportional transaction costs
than in the model with proportional transaction costs only.

As it is seen from Figure (2), when µ > r both reservation option prices
are located above the BS-price for low values of γ. Here the reservation
option prices are virtually independent of the choice of γ. Besides, the
difference between them is very small. For high values of γ the pattern of
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Figure 1: Reservation option prices versus γ for µ = r = 5%
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Figure 2: Reservation option prices versus γ for µ = 10% and r = 5%
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the reservation option prices resembles the case when µ = r. Note, that for
γ = 1 the reservation option prices are practically the same for both µ = 10%
and µ = 5%. This suggests that for high values of γ the reservation option
prices are almost independent of the drift of the underlying stock.

When the transaction costs have a fixed fee component there is an in-
terval γ ∈ (0.006, 0.014) for which the reservation purchase price is higher
than the reservation write price, P b > Pw. This situation occurs when the
optimal number of shares bought at time zero in the model without options
is close to the optimal number of shares sold12 in order to hedge the risk
of the long option position in the subsequent model with options (i.e., the
net purchase of the stock is close to zero). In this case it is optimal for the
buyer not to invest in the stock. We can interpret this situation as follows:
The buyer moves his risky investment into options and goes out of the stock
market. In this case, buying options on the stock instead of buying the
stock saves the buyer from both fixed and proportional transaction costs.
Thus, the reservation purchase price goes up, and may exceed, under certain
model parameters, the reservation write price. The maximum reservation
purchase price is attained when the optimal amount invested in the stock in
the model without options is equal to the optimal number of shares sold in
order to reduce the risk of options in the model with options. Note that in
the model with proportional transaction costs only, the reservation purchase
price seems to be always lower than the reservation write price, P b < Pw.

Figure (3), together with the study of the transactions the investor
makes, helps understand the dependence of the reservation option prices
on the drift of the underlying stock for low values of γ. The figure shows
the deviation of the reservation option prices from the BS-price versus the
drift of the underlying stock for γ = 0.001 and two levels of proportional
transaction costs.

For low µ, the investor does not invest in the stock due to the presence of
transaction costs and the short investment horizon. The price of an option
here is the discounted expected payoff from the option plus/minus some risk
premium. When µ rises above some threshold value, the investor begins to
invest in the stock. The presence of an option results in a correction for the

12Recall that we interpret the difference in the optimal amounts invested in the stock
in the model with options and in the model without options as a hedge against the risk
of options
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Figure 3: Deviation of the reservation option prices from the BS-price versus the
drift of the underlying stock for γ = 0.001

number of shares of the stock bought to offset the additional risk from the
option. Note that the level of the fixed transaction fee does not influence the
price of an option, because the investor pays the same fixed costs regardless
of the presence of an option. Both the reservation option prices are located
above the corresponding BS-price, and the reservation write price is higher
than the reservation purchase price. Figure (3) indicates that the level of
proportional transaction costs explains the magnitude of the deviation of a
reservation option price from the BS-price. The intuition behind this is as
follows. For low values of γ and sufficiently high values of µ, an option serves
as a substitute for the stock. Holding an option saves the buyer from some
transaction costs. On the contrary, the writer adds extra transaction costs13

into the option price. Both of these effects drive the reservation option price
up.

A closer look at the interaction between the investor’s absolute risk aver-
sion coefficient γ14, the drift of the risky asset µ, and the other model param-

13Note that the writer needs to buy some additional quantity of the stock to offset the
risk from the option

14Recall the interplay between the number of options and the ”pseudo” risk aversion
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eters suggests distinguishing between two major types of investors behavior
in relation to the pricing and hedging of options: the net investor and the
net hedger.

Definition 3. By net investors we mean those investors for whom the num-
ber of shares of the stock held in the utility maximization problem without
options is greater than the additional number of shares of the stock either
bought or sold in order to hedge away the risk of options in the subsequent
utility maximization problem with options.

Definition 4. By net hedgers we mean those investors for whom the number
of shares of the stock held in the utility maximization problem without
options is less than the additional number of shares of the stock either
bought or sold in order to hedge away the risk of options in the subsequent
utility maximization problem with options.

Roughly speaking, by making such a distinction between investors we
suppose that the investor’s overall portfolio problem can be separated into
an investment problem and a hedging problem15. After such a separation
it is possible to determine which problem is ”bigger” in terms of the funds
used to resolve every problem. Note that the main criterion in distinguishing
between a net investor and a net hedger is the absolute difference in the
numbers of shares of the stock in the utility maximization problems with
and without options, in relation to the number of shares of the stock in
the utility maximization problem without options. For the investor with
the number of shares of the stock held in the utility maximization problem
without options greater than the additional number of shares of the stock
either bought or sold in the subsequent utility maximization problem with
options, the ”net” behavior is investing. On the contrary, for a net hedger
the hedging problem is prevailing. In other words, a larger part of the
net hedger’s investment in the stock is devoted to hedge away the risk of
options. In either case the additional transaction costs, or possible savings
on transaction costs, are included in the option price.

Let’s elaborate on this a bit further. Recall the optimal strategies for an
investor, a writer of options, and a buyer of options. The optimal investor
policy (without options) requires selling some shares of the stock when the

15Clearly, the possibility of such a separation is obvious in the no transaction costs case.
Just look at equations (16), (31), and (32)
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stock price goes up and buying additional shares of the stock when the
stock price falls down (see equation 16). The hedging of the short option
position requires purchasing additional shares of the stock when the stock
price increases and selling some shares of the stock when the stock price
decreases. On the contrary, the hedging of the long option position requires
selling short additional number of shares of the stock when the stock price
rises and decreasing the short position in the stock when the stock price
falls.

Consider an investor who invests in the risky asset and, in addition,
writes some number of options. It is easy to see that the investing and
hedging decisions work in the opposite directions. We call this investor a
net investor if we see that his optimal overall portfolio strategy (the net of
the sum of the two strategies) requires selling some shares of the stock when
the stock price goes up and buying additional shares of the stock when the
stock price falls down. For a net investor the hedging strategy is ”absorbed”
by the investing strategy, which means that no additional transaction costs
are added to the option price except, roughly, the round trip transaction
costs to buy additional shares at time zero and sell them on the terminal
date. For a net hedger all the excessive hedging transaction costs are added
to the option price. The higher risk aversion, the more often an investor
hedges an option. This means that the reservation write price increases as
risk aversion increases.

Consider now an investor who invests in the risky asset and, in addition,
buys some number of options. For him the investing and hedging decisions
work in the same direction. We call this investor a net investor as long as his
optimal overall portfolio strategy does not require short selling of the stock.
The basic idea here is that it is optimal for an investor to take some certain
amount of risk, depending on the investor’s level of risk aversion, if the risk
is properly rewarded (again, see equation 16). We can consider an option
as another risky investment opportunity available to the investor. Since the
payoffs from a call option and the stock are positively correlated, an option
serves as a substitute for the stock. Investing in options causes the investor
to invest less in the stock in order to maintain the amount of undertaken risk
at the optimal level. Thus, it reduces transaction costs payed in the stock
market, and these savings increase the reservation purchase price. Again,
it turns out that, as in the case of a writer, the savings on options are ap-
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proximately equal to the saved round trip transaction costs of not buying
some number of shares. The rest of transactions, between the time zero and
the terminal date, are roughly the same. This is true as long as the risk
of options does not exceed the optimal level, beyond which the investor is
involved in extensive hedging by shorting the stock. These hedging trans-
action costs are subtracted from the option price. In this case, a higher risk
aversion results in a lower reservation purchase price.

To summarize: An option contract presents an additional risk to the
investor. This risk needs to be hedged away by some proper trading strategy.
All the transaction costs of the hedging strategy are either added to or
deducted from the option price. The fact is that some of the investors (we
call them net investors), either writers16 or buyers of options, can effectively
manage the risk of options in markets with transaction costs, but the others
(we call them net hedgers) cannot. Moreover, to some extent, buying options
is not just taking a risk, but an investment opportunity that might save some
transaction costs.

As a result, net investors and net hedgers have different patterns of
option pricing and hedging. Both of the net investor’s reservation option
prices are above the BS-price, and they are very close to each other. Ap-
proximately, the net investor’s reservation option price can be calculated
using the formula

P = PBS + 2∆BS(0)S0λ, (60)

where ∆BS(0) is the BS-delta of the option at time zero. Indeed, putting
into the formula the values of the terms we get P = 10.44 + 2 ∗ 0.64 ∗
100 ∗ 0.01 = 11.72, which is slightly above the reservation write price that is
equal to 11.67. To a large extent, this relationship is insensitive to the level
of absolute risk aversion and the amount of the fixed transaction fee. The
net hedger’s reservation purchase price is generally below the BS-price, and
the net hedger’s reservation write price is above the BS-price. Here the size
of the difference between the two prices depends on the level of the absolute
risk aversion and the level of transaction costs. In addition, the net hedger’s
optimal policy could easily be converted to control limits comparable to the
BS-delta. This is not true for net investors, whose optimal policy can be
considered only as an overall portfolio policy.

16Intuitively, writing a call option an a stock is not risky for those who have this stock
in their portfolios
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Figure 4: Bounds on reservation option prices versus the price of the underlying
stock for a net hedger with γ = 1

For the chosen model parameters, γ ≈ 0.01 can serve as a point of
division between the net investor’s and the net hedger’s behavior (see Figure
(2)).

5.2 Bounds on Reservation Option Prices and Optimal

Trading Strategy for Net Hedgers

Figure (4) shows the bounds on reservation option prices versus the price of
the underlying stock for a net hedger with γ = 1. Figures (5) and (6) show
the optimal strategy control limits for the buyer and the writer of options
respectively. For the sake of comparison we provide the corresponding BS-
prices and the BS-delta curves for hedging options, as well as the bounds
on reservation option prices and the corresponding optimal strategy control
limits in the model with proportional transaction costs only.

As it was described in Section 2, in the presence of both fixed and propor-
tional transaction costs, most of the time, the investor’s portfolio space can
be divided into three disjoint regions (Buy, Sell, and NT), and the optimal
policy is described by four boundaries. If a portfolio lies in the Buy region,
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the optimal strategy is to buy the risky asset until the portfolio reaches
the Buy target boundary. Similarly, if a portfolio lies in the Sell region,
the optimal strategy is to sell the risky asset until the portfolio reaches the
Sell target boundary. In Figures (5) and (6) all the four boundaries are con-
verted to control limits comparable to the BS-delta, so the numerical results
of this subsection may be considered as an extension of the results presented
in Hodges and Neuberger (1989) and Clewlow and Hodges (1997). All the
model parameters are approximately the same except for the introduction
of a fixed cost component.

We define moneyness as the ratio between the strike price and the futures
stock price, i.e., M = K

Se(T−t)r . We will refer to an option as at-the-money
if its M = 1, out-of-the-money if its M > 1, and in-the-money if M < 1.
As it is seen from Figures (5) and (6), the target average17 delta for at-
the-money options is very close to the Black-Sholes delta. The buyer of
options underhedges out-of-the-money options and overhedges in-the-money
options. On the contrary, the writer of options overhedges out-of-the-money
options and underhedges in-the-money options. These observation are also
valid for the model with proportional transaction costs only, but in that
model the degree, to which the hedger over/underhedges an option, is less.
Moreover, the target boundaries in the model with a fixed cost component
are closer to each other than the NT boundaries in the model with no fixed
cost component. Note, that the NT region and the distance between the
two target boundaries are larger for the buyer than for the writer of options.
This reflect the fact that an option is more risky for the writer than for the
buyer. Hence, the writer hedges an option more frequently, and, thereby,
charges a greater risk premium18 than the buyer.

The most remarkable features of the net hedger’s strategies are jumps
to zero in target deltas when the stock price decreases below some certain
levels. At these levels the NT regions widen. Especially the picture is clear
for the writer of options (see Figure (6)) at S ≈ 70. This behavior is fairly
easy to understand. When transaction costs have a fixed fee component, it
is not optimal to transact to some levels below a certain threshold. Instead,
it is better to liquidate the stock position. The decision ”to hedge or not

17That is, the average between Sell and Buy targets
18We interpret the notion of risk premium as the absolute value of the difference between

a reservation option price and the BS-price
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to hedge” is somewhat crucial, so it is, to some extent, better not to hurry
with a transaction, but wait and see what happens with the stock price.

5.3 Reservation Option Prices and Optimal Trading

Strategy for Net Investors

Figure (7) shows how reservation option prices depend on the price of the
underlying stock for a net investor with γ = 0.001. For the net investor the
two reservation option prices almost coincide. From the figure one can note
that both of the reservation option prices are always above the correspond-
ing BS-prices. As the underlying stock price increases, the deviation of a
reservation option price from the BS-price also increases.

Figures (8) and (9) show the NT and target boundaries as functions of
the stock price for the buyer and the writer of options respectively. For the
sake of comparison we provide the optimal strategy curve in the absence
of any transaction costs, as well as the NT boundaries in the model with
proportional transaction costs only.

We define the investor’s delta of one option of the position of θ options
as

∆θ =
y(0, θ)− y(0)

S0θ
, (61)

where y(0) and y(0, θ) are the investor’s wealths invested in the stock at time
zero in the utility maximization problem without options and with θ options
respectively. Our numerical results show that both the writer and the buyer
of options always overhedge options as compared to the Black-Sholes delta.

There has been one unresolved question in the utility based option pric-
ing framework with transaction costs: Under what circumstances will a
writer and a buyer agree on a common price for an option? Generally in the
model with only proportional transaction costs Pw

θ > P b
θ if all parameters

are the same for all the calculations. In the model with both fixed and pro-
portional transaction costs under certain model parameters there occurs a
situation when the reservation purchase price is higher than the reservation
write price. Thus, the agreement is possible. We indicate another possibil-
ity for such an agreement. It exploits the fact that the reservation purchase
price for the net investor lies above the BS-price. Note, that this possibility
exists also for the case with proportional transaction costs only.

The other possibility for the agreement might arise in the situation when
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Figure 7: Reservation option price versus the price of the underlying stock for a
net investor with γ = 0.001

a writer and a buyer, both of them being net investors in the underlying
stocks, face different transaction costs in the market. Indeed, in real mar-
kets the commissions one pays on purchase, sale, and short borrowing are
negotiated and depend on the annual volume of trading, as well as on the
investor’s other trading practices. In order to model realistic transaction
costs one usually distinguishes between two classes of investors: large and
small (see, for example, Dermody and Prisman (1993)). Large investors
are defined as those who frequently make large trades in ”blocks” (defined
as 10,000 shares or more) via the block trading desks or brokerage houses.
Large investors usually face transaction costs schedule with no minimum fee
specified. In contrast, small investors are defined as those who use retail
brokerage firms and often trade in 100-share round lots. For small investors
there is a minimum fee on any trade. The main point is that the small
investors have higher commission rates than the large ones. In other words,
the large investors have lower level of proportional transaction costs than
the small ones. In this case the reservation write price might be less than
the reservation purchase price 19, i.e., the large investors could sell options

19This situation could be easily deduced from either Figure (3) or pricing formula 60
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to the small investors at an acceptable price.

5.4 Volatility Smile, Term Structure and Bid-Ask Spread

Given the assumptions in the Black-Sholes model, all option prices on the
same underlying asset with the same expiration date but different exercise
prices should have the same implied volatility. However, the shape of im-
plied (from the market prices of traded contracts) volatility resembles either
a smile or a skew. A skew is a general pattern for equity options. The implied
volatility decreases as the strike price increases. This means, for example,
that in-the-money call options are overpriced as compared to the theoret-
ical Black-Sholes option price. In addition, the implied volatility depends
also on the maturity of the option (the so-called term-structure of implied
volatility). For equity options the implied volatility is usually an increasing
function of option maturity. The size of a bid-ask spread shows also a con-
sistent pattern: the bid-ask spread is lowest for at-the-money options. For
either out-of-the-money or in-the-money options the bid-ask spread is higher.
For both deep out-of-the-money and deep in-the-money options the bid-ask
spread is approximately two times as large as for at-the-money options (see,
for example, Peña, Rubio, and Serna (1999)). There were launched many
possible explanations for the smile and the bid-ask spread in options prices,
but in this subsection we want to reconcile the implications of the presence
of transaction costs to the forms of the volatility smile, its term-structure,
and the bid-ask spreads in the option pricing model we employ.

The presence of the bid-ask spread in option prices is an essential feature
of the utility based option pricing model. The model gives two different
option prices, one for the writer of options and the other for the buyer
of options. The reservation write price and the reservation purchase price
could be interpreted as the ask price and the bid price respectively. The ask
price is always higher than the bid price. As to the functional form of the
bid-ask spread, the utility based option pricing model implies quite opposite
dependence on the moneyness of options. In particular, the bid-ask spread
should be largest for at-the-money options. Both the net investors and the
net hedgers need to hedge at-the-money options more often, and here a
larger bid-ask spread reflects higher transaction costs. Out-of-the-money
and in-the-money options require less hedging and, thus, lower transaction
costs. Therefore, these options have lower bid-ask spread. The magnitude
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of the bid ask spread depends on the level of transaction costs and the risk
aversion of the market agents. In fact, for the model parameters we use, the
bid-ask spreads for the net investors with γ < 0.01 is actually less than the
typical empirical bid-ask spread.

To this end let’s assume that the option price in the market is the average
of the reservation write and purchase prices. This resulting option price, as
a function of the strike price, differs from the BS-price in a way that could
be interpreted in terms of the implied volatility. Figure (10) shows some
possible forms of the volatility smile. For the net hedgers the form of the
volatility smile is a standard smile. The rationale for this form is the dif-
ference in the writer’s and buyer’s behavior. The writer, namely, hedges
options more often than the buyer. The difference in frequency of hedging
is more substantial for out-of-the-money and in-the-money options. Thus,
the reservation write price drives up the average price for these options. For
the net investors the form of the implied volatility is a classical skew. As
mentioned above, for the net investors-buyers an option serves as a substi-
tute for the stock. Holding an option saves the buyer from some transaction
costs. On the contrary, the writer adds extra transaction costs to the option
price. Both of the effects increase the option price. The less the strike price,
the more the buyer saves and the writer adds. Note, that the form of the
implied volatility is determined mainly by the type of a buyer, because the
reservation write prices for both the net investor and the net hedger are
quite close to each other, especially for deep in-the-money options.

Unfortunately, the steepness of the theoretical implied volatility smile is
not high enough to explain the empirical facts20. If we take, for example, the
net investors and calculate the implied volatilities for M = 1 and M = 0.9
we get 22.4% and 24.0% respectively. The difference between them is 1.6%.
The differences among the empirical implied volatilities, however, are much
larger (up to 5− 10%) to be accounted for by transaction costs.

The form of the volatility term-structure, when it is an increasing func-
tion of option maturity, could also be accounted for by transaction costs.
The longer the maturity the more transactions are carried out in order to
hedge an option. As the writer of options hedges more often than the buyer,
the reservation write price increases more than the reservation purchase price

20Note, that we use 1% proportional transaction costs rate which is higher than the
realistic rate
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Figure 10: The possible forms of implied volatility as a function of the strike price

decreases. As a result, the average reservation option price increases when
the time to maturity increases.

Our general conclusion here is that these empirical pricing biases could
not be accounted for solely by the presence of transaction costs, even in the
presence of a fixed cost component. It seems quite clear that something else
is going on. Thus, our findings agree with those of Constantinides (1997).

6 Conclusions and Extensions

In this paper we extended the utility based option pricing and hedging ap-
proach, pioneered by Hodges and Neuberger (1989), for the market where
each transaction has a fixed cost component. We formulated the contin-
uous time option pricing and hedging problem for the CARA investor in
the market with both fixed and proportional transaction costs. Then we
numerically solved the problem applying the method of the Markov chain
approximation. The solution indicates that in the presence of both fixed
and proportional transaction costs, most of the time, the portfolio space
can be divided into three disjoint regions (Buy, Sell, and NT), and the op-
timal policy is described by four boundaries. The Buy and the NT regions
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are divided by the lower no-transaction boundary, and the Sell and the NT
regions are divided by the upper no-transaction boundary. If a portfolio lies
in the Buy region, the optimal strategy is to buy the risky asset until the
portfolio reaches the Buy target boundary. Similarly, if a portfolio lies in the
Sell region, the optimal strategy is to sell the risky asset until the portfolio
reaches the Sell target boundary. All these boundaries are functions of time
in the problem where the investor trades in the riskless and risky asset only.
And all these boundaries are functions of both time and the price of the
risky asset in the problem where the investor, in addition, writes/buys an
option.

Our examination of the effects on the reservation option prices and the
corresponding optimal hedging strategies of varying the investor’s ARA and
the drift of the risky asset suggested distinguishing between two major types
of investors behavior in relation to the pricing and hedging of options: the
net investor and the net hedger. The net investor, as well as the net hedger,
has his own pattern of pricing and hedging options. Both the net investor’s
reservation option prices are above the BS-price, and they are very close to
each other. The net investor overhedges both long and short option positions
as compared to the BS-strategy. The net hedger’s reservation purchase price
is generally below the BS-price, and the net hedger’s reservation write price
is above the BS-price. Here the difference between the two prices depends on
the level of the net hedger’s absolute risk aversion and the level of transaction
costs. Judging against the BS-strategy, the net hedger underhedges out-of-
the-money and overhedges in-the-money long option positions. When the
net hedger writes options, his strategy is quite the opposite. The net hedger
overhedges out-of-the-money and underhedges in-the-money short option
positions. The remarkable features of the net hedger’s strategy are jumps
to zero in target amounts in the stock when the stock price decreases below
some certain levels. And at these levels the NT region widens.

We pointed out on two possible resolutions of the question: Under what
circumstances will a writer and a buyer agree on a common price for an op-
tion? In the model with both fixed and proportional transaction costs under
certain model parameters there occurs a situation when the reservation pur-
chase price is higher than the reservation write price. The other possibility
arises when a writer and a buyer, both of them being net investors in the
underlying stocks, face different transaction costs in the market.
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We also tried to reconcile our findings with such empirical pricing biases
as the bid-ask spread, the volatility smile and the volatility term structure.
Our general conclusion here is that these empirical phenomena could not be
accounted for solely by the presence of transaction costs.

As it was conjectured by Davis et al. (1993) and showed in Andersen
and Damgaard (1999), Damgaard (2000a), Damgaard (2000b), the reser-
vation option prices are approximately invariant to the specific form of the
investor’s utility function, and mainly only the level of absolute risk aver-
sion plays an important role. In particular, we calculated the reservation
option prices for low levels of ARA with the same parameters as in the pa-
pers by Damgaard (2000a) and Damgaard (2000b) and obtained practically
the same values. As a result, it seems to be of a little practical interest to
calculate the reservation option prices and optimal hedging strategies using
other utility functions besides the exponential one. These calculations will
be very time-consuming, and, moreover, the optimal hedging strategy will
be difficult to interpret because of its three-dimensional (x, y, S)-form.

As it was suggested by Davis et al. (1993) and presented in Davis and
Zariphopoulou (1995), the utility based option pricing approach could also
be applied to the pricing of American-style options. The problem of finding
the reservation write price of an American-style option is somewhat tricky,
because it is the buyer of option who chooses the optimal exercise policy.
Therefore, the writer’s problem must be treated from both the writer’s and
the buyer’s perspective simultaneously. The problem of finding the reserva-
tion purchase price is simpler, since it suffices to consider the buyer’s prob-
lem alone. Damgaard (2000a) calculated the reservation purchase prices
of American-style call options for the case of the investor with HARA util-
ity and proportional transaction costs only. We believe that it is of a great
practical interest to calculate both the reservation option prices and the cor-
responding optimal hedging/exercise policies for the markets with a general
transaction costs structure, as the majority of traded option contracts are
of American-style. This is an interesting area for future research.

Another interesting extension could be the calculation of reservation op-
tion prices in economies with more than one risky asset. We conjecture that
for the CARA utility and two risky assets the problem can be solved quite
efficiently.
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