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Abstract. Considered here are equilibria, notably those that solve
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1. Introduction
This paper has two main objects: first, to relate a crucial condition called evolutionary
stability to general equilibrium problems; second, to illustrate how such stability, when
coupled with gradient methods, may help in locating equilibria. A subsidiary purpose
is to emphasize some important links between theories of optimization and strategic
behavior.
Motivation for this endeavor stems from recurrent problems in noncooperative

games. Unlike convex programs such games often yield disconnected solution sets,
typically composed of isolated singletons. When this happens, one might like to
justify, predict or select a single Nash equilibrium among several. That problem has
attracted much interest and spurred many studies. A main line of inquiry looks at
persistence or emergence of equilibrium under perturbations. The leading idea there is
that a solution becomes more plausible, comprehensible or refined if it filters through
stability tests; see Harsanyi and Selten (1988) or van Damme (1991). Another, maybe
more fruitful direction of investigation seeks equilibrium as the asymptotic limit, if
any, of repeated play among agents who iteratively adapt to new experience; consult
e.g. Ermoliev and Uryasiev (1982), Flåm (1999), Robinson (1951), or Rosen (1965).
Evolutionary game theory - presented in Samuelson (1997), Vega-Redondo (1996),

Weibull (1996) and pioneered by Maynard Smith and Price (1973), (1982) - stands
out in accommodating features from both these strands.1 On one side, the prime con-
cept of an evolutionary stable (ES) strategy puts focus on particularly robust Nash

∗E-mail: sjur.flaam@econ.uib.no.
1In addition, it inspires and informs recent philosophy about social contracts and conventions;

see Binmore (1994,1998).
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equilibria. Loosely speaking, an ES strategy withstands moderate pressure from mu-
tation and selection. On the other side, in symmetric two-person cases such a strategy
becomes asymptotically stable under so-called replicator dynamic; see Hofbauer and
Sigmund (1998). So, the notion ES speaks for itself on two complementary grounds:
Not only will such outcomes be robust; they will also enjoy good stability properties
under an important sort of dynamic.
However, that dynamic, when Darwinian in nature, fits biology better than eco-

nomics. While biological agents are ”hard-wired” to behave in certain ways, economic
agents deliberate their choices and act intentionally. While nature selects strategists
the latter choose strategies. Economic or social dynamic should therefore reflect
not only growth or survival, but rationality or learning as well. Candidate dynam-
ics include mean-value iterates (Flåm 1998), fictitious vor-Spiel (Robinson 1951),
and adaptive play (Young 1998). Common to them, however, is the dominant role
assigned to best responses, an assignment that hardly can achieve universal accep-
tance. Some natural reserves emerge because global optimization typically requires
much competence and energy. Moreover, such behavior often induces nonsmoothness
or instability in how play unfolds. To mitigate these features - and to accommo-
date more human-like, pragmatic players - we shall assume instead that everybody,
at every stage, merely seeks to better himself - and does so in fairly myopic, local
manner. But then: Will repeated play lead to Nash equilibrium? And if so, to what
sort of equilibrium?
To come to grips with these issues Section 2 recalls and generalizes the key notion

ES. Section 3 lends that notion some legitimacy by showing that any ES point will
be asymptotically stable under gradient dynamic. This novel finding appears useful
because such dynamic not only fits deliberate self-improvement; it can also accom-
modate bounded rationality and limited knowledge. Section 4 offers some examples.

2. Evolutionary Stability
The subsequent study will be organized around a generalized notion of evolutionary
stability:

Definition 1. (Evolutionary stability) Let X be a nonempty closed convex sub-
set of some real Euclidean space E, and let π : X × X → R be continuous. We
declare x̄ ∈ X evolutionary stable, ES for short, (with respect to this π) if for all
x 6= x̄ in some vicinity V ⊆ X of x̄, the function π(·, x) is locally

concave at x: g ∈ ∂π(·, x)(x)⇒ π(x, x) + hx̄− x, gi ≥ π(x̄, x)and
superior (strictly maximal) at x̄: π(x̄, x) > π(x, x).

¾
(1)

All together (1) says that

π(x, x) + hx̄− x, gi ≥ π(x̄, x) > π(x, x)

whenever x ∈ X is distinct from but sufficiently near x̄; see Fig. 1.
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Fig. 1: Evolutionary stability.

Throughout h·, ·i denotes an inner product on the space E with associated norm
kxk := hx, xi 12 . The vector g ∈ ∂π(·, x)(x) is a partial, generalized gradient2 of π(·, ·),
taken with respect to the first variable and evaluated at the diagonal pair (x, x). Note
that π satisfies (1) iff for any numbers α > 0, β the affine transformation απ+β does
the same. Moreover, if π and π̂ both satisfy (1) for the same x̄, then so does π + π̂.
To avoid repeated statements and qualifications, any symbol X or Xi refers

henceforth to a nonempty closed, possibly unbounded convex subset of some Euclid-
ean space, and V always denotes an X-neighborhood of an ES x̄ ∈ X; that is,
{x : kx− x̄k ≤ r} ∩ X ⊆ V ⊆ X for some positive r. (X is thus endowed with the
relative topology induced by the ambient space.)
In essence (1) spells out properties that π(·, x) should satisfy in its first variable,

the point x̄ there being distinguished. The strict inequality in (1) may be interpreted
as follows: Construe the ”second variable” x as a system state that parametrizes a
”univariate” payoff function π(·, x). Then, if viewed from any prevailing state x 6= x̄,
close enough to x̄, the ”choice” x̄ is strictly preferred to the status quo. Moreover, the
somewhat myopic, linear prediction hx̄− x, gi of the resulting gain π(x̄, x)− π(x, x)
is always a positive over-estimate.
Bomze and Pötscher (1989) study instances where π is linear in the first variable.

(See Examples 8 and 9 below.) The first property in (1) then comes for free and
assumes a global character. Moreover, when π(·, x) = h·, n(x)i , the second property
in (1) says that hx− x̄, n(x)i < 0 for all x ∈ V \ x̄. This inequality points towards an
interior/strict version of the normal cone N(x̄) := {n : hx− x̄, ni ≤ 0,∀x ∈ X} that
”stretches out” of X at x̄. Bomze and Pötscher (op. cit.) explore this relation. They
deal with cases where X is a collection of probability measures on some (sigma-field
of an) underlying space of strategies.
Our main motivation for considering (1) stems from noncooperative, normal-form

games, involving a finite set I of players. Individual i ∈ I then chooses, with-

2See Clarke et al. (1998) or Rockafellar (1970).
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out collaboration, a strategy xi ∈ Xi to maximize his supposedly continuous payoff
πi(xi, x−i), the profile x−i := (xj)j 6=i being short notation for the actions of i’s rivals.
Let then X := Πi∈IXi and define π : X ×X → R by

π(x, x0) :=
X
i∈I

©
πi(xi, x

0
−i)− πi(x

0
i, x

0
−i)
ª
, (2)

this implying π(x, x) = 0. Note that x̄ ∈ X will be a Nash equilibrium iff it is an
extremal fixed point, namely: x̄ ∈ argmax {π(x, x̄) : x ∈ X} - or equivalently, iff it
satisfies the variational inequality

π(x̄, x̄) ≥ π(x, x̄) for all x ∈ X. (3)

Also note that for instance (2) the first inequality in (1) holds provided every pay-
off function πi(xi, x−i) be concave and generalized differentiable in own variable xi.
The strict inequality in (1) is admittedly somewhat demanding. Example 4 below
elaborates on its relevance for games.
Instead of (1) the reader might be familiar with the following alternative notion:

A point x̄ ∈ X is declared an evolutionary stable strategy (ESS) - in the sense of
Maynard Smith and Price (1973), (1982) - iff

∀x ∈ XÂx̄ ∃ ε(x) ∈ (0, 1] such that π(x̄, xε) > π(x, xε) whenever ε ∈ (0, ε(x)] . (4)

Here xε := (1− ε)x̄+ εx is a mixed state, and (4) says that the ”incumbent” x̄ fares
better against the modified (”contaminated”) situation xε than does the ”mutant” x.

Proposition 1. Suppose π is locally superior at x̄ and that

π(xε, xε) ≥ (1− ε)π(x̄, xε) + επ(x, xε) (5)

for any positive ε ≤ some positive threshold ε(x). Then the ESS condition (4) holds.

Proof. Pick any x ∈ X\x̄ and a positive ε ≤ ε(x) so small that xε = (1−ε)x̄+εx ∈ V
and (5) holds. Then

π(x̄, xε) > π(xε, xε) ≥ (1− ε)π(x̄, xε) + επ(x, xε),

whence (4) follows. 2
The concavity assumptions in Definition 1 and Proposition 1 are, of course, sat-

isfied when π is globally concave in the first variable. For a converse of Proposition
1 suppose X is bounded. Then, given any x̄ ∈ X define its opposite boundary obd(x̄)
as follows. For every x ∈ X \ x̄ there exists a unique number λ ≥ 1 at which the
half-ray λx + (1 − λ)x̄ leaves X. The set obd(x̄) consists of exactly these boundary
points λx+(1−λ)x̄. Clearly, when x̄ is relatively interior to X, its opposite boundary
coincides with all of bdX. If X is a polyhedron and x̄ ∈ bdX, then obd(x̄) comprises
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all of bdX less the relatively open faces to which x̄ belongs. A convenient feature of
polyhedral instances is that x̄ /∈ cl(obd(x̄)). We say that x̄ ∈ X admits a uniform
entry barrier ε̄ ∈ (0, 1] iff (4) holds for all x ∈ obd(x̄) and all positive ε ≤ ε̄. Following
Hofbauer and Sigmund (1998), when π is affine in the second variable, one may prove
that any ESS x̄ admits a uniform barrier. We declare a function f : X → R strictly
quasi-convex at x̄ ∈ X iff there exists a positive ε̃ ≤ 1 such that

ε̃ ≥ ε > 0 & f(x̄) > f(x)⇒ f(x̄) > f((1− ε)x̄+ εx).

Proposition 2. Let X be bounded. Suppose that x̄ ∈ X admits a uniform barrier
and does not belong to the closure of its opposite boundary. Then if π is strictly
quasi-convex with respect to the first variable at x̄, that point is locally superior.

Proof. Let ε̄ equal the minimum of the uniform barrier and the treshold ε̃ of strict
quasi-convexity. Since x̄ /∈ cl(obd(x̄)), the set

V := {(1− ε)x̄+ εx : x ∈ obd(x̄), 0 ≤ ε ≤ min(ε̄, ε̃)}
becomes an X-neighborhood of x̄. That is, there exists a positive radius r such that
{x ∈ X : kx− x̄k ≤ r} ⊆ V ⊆ X. Pick any xε = (1− ε)x̄+ εx ∈ V with x ∈ obd(x̄)
and 0 < ε ≤ min(ε̄, ε̃). Then (4) holds and by the strict quasi-convexity of π(·, xε) at
x̄ we get the desired inequality π(x̄, xε) > π(xε, xε). 2
Bomze and Pötscher (1989), while assuming π linear in the first variable, explore

existence of a uniform barrier. In that case x̄ is declared uninvadable.
Propositions 1 and 2 point to a possible equivalence between (1) and (4) provided

π is suitably concave in the first variable. Clearly, the implication (4) ⇒ (3) obtains
by letting ε→ 0+. But more may hold here. In fact, adding appropriate linearity, we
obtain straightforwardly the classical definition that any other best response x to the
incumbent x̄ fares worse than x̄ against itself:

Proposition 3. Suppose π is affine in the second variable. Then (4) is equivalent to

π(x̄, x̄) ≥ π(x, x̄) for all x ∈ X, and x 6= x̄,π(x, x̄) = π(x̄, x̄)⇒ π(x̄, x) > π(x, x). 2
(6)

We conclude this section by considering a special but important class of problems for
which equilibria are ES:

Definition 2. (Concave-convex functions) π : X × X → R is called concave in
the first coordinate at x̄ if for any x in some vicinity V ⊆ X of x̄ and every
ε ∈ [0, 1] , it holds with xε := (1− ε)x̄+ εx that

π(xε, x) ≥ (1− ε)π(x̄, x) + επ(x, x). (7)

π is declared convex in the second coordinate at x̄ if under the same hypothesis

π(xε, xε) ≤ (1− ε)π(xε, x̄) + επ(xε, x). (8)
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Proposition 4. (Concave-convex problems have ES equilibria) Suppose π is constant
along the diagonal and concave-convex at x̄ in the sense of (7), (8). Also suppose
that π(x̄, ·) is strictly convex at x̄, this meaning that

π(x̄, x) > π(x̄, x̄) + hx− x̄, γ̄i (9)

for all x sufficiently near but 6= x̄ and any γ̄ ∈ ∂π(x̄, ·)(x̄). Then, under (3) x̄ is ES.

Proof. With no loss of generality on may replace π by the translated version
π(·, ·) − π(x̄, x̄). So, suppose that π(x, x) = 0 for all x ∈ X. As preparation for
the main argument we claim that

−∂π(·, x̄)(x̄) ⊆ ∂π(x̄, ·)(x̄). (10)

To demonstrate (10) pick a vicinity V ⊆ X of x̄ such that both (7) and (8) hold.
Select any x ∈ V and let as before xε = (1− ε)x̄+ εx for ε ∈ (0, 1). Divide (8) by ε
and let ε& 0 to obtain

0 ≤ π(x̄, x) + lim
ε&0

[π(xε, x̄)− π(x̄, x̄)] /ε.

The concavity property (7) tells that for every ḡ ∈ ∂π(·, x̄)(x̄) it holds that

lim
ε&0

π(xε, x̄)− π(x̄, x̄)

ε
≤ hx− x̄, ḡi .

Combining these inequalities we get π(x̄, x) ≥ hx− x̄,−ḡi ≥ π(x̄, x̄) + hx− x̄,−ḡi ,
whence−ḡ ∈ ∂π(x̄, ·)(x̄). This proves claim (10). We come now to the main argument.
By assumption (3) there exists a gradient ḡ ∈ ∂π(·, x̄)(x̄) such that hx− x̄, ḡi ≤ 0 for
all x ∈ X. Via (10) we get −ḡ ∈ ∂π(x̄, ·)(x̄). Hence by the strict local convexity (9)
of π(x̄, ·) we have

π(x̄, x) > π(x̄, x̄) + hx− x̄,−ḡi ≥ π(x̄, x̄) = π(x, x).

This takes care of local superiority. The other (gradient) inequality in (1) follows
from the local concavity (7) of π(·, x) over V . 2

3. Gradient or Adaptive Dynamics
As said, we prefer to model dynamics that reflect rationality but requires neither
global perception nor much system knowledge of any concerned party. Fitting such
a philosophy is the gradient flow

dx

dt
:= ẋ ∈ PTx [∂π(·, x)(x)] , (11)

its initial point x(0) ∈ X being arbitrary. For simplicity we often write x instead
of x(t). The set Tx := clR+(X − x) denotes the tangent cone of X at x ∈ X. The
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orthogonal projection (operator) onto a nonempty closed convex set C is written PC .
It is also called the closest approximation in C.
(11) subscribes to Alfred Marshall’s opinion that adjustments are driven by mar-

gins, emerging through linearization in the vicinity of the current state.
By a solution to the differential inclusion (11) we mean an absolutely continuous

function 0 ≤ t 7→ x(t) ∈ X which satisfies (11) almost everywhere (a.e.); see Aubin
and Cellina (1984). We tacitly assume that from any x(0) ∈ X there emanates a
unique solution. In that case x(t) ∈ X for all t > 0. To appreciate (11) reconsider the
normal-form game that gives rise to instance (2). Then (11) splits into a system

dxi
dt
:= ẋi ∈ PTixi [∂πi(·, x−i)(xi)] ,∀i, (12)

having initial points xi(0) ∈ Xi which could be arbitrary or determined by historical
”accident.” Equation (12) portrays each player as steadily moving along a projected
direction of payoff ascent. In particular, when xi is interior to Xi, and πi(·, x−i)
differentiable at xi, player i proceeds in the direction of steepest ascent.
System (12) requires very little input to be kept going. Basically, it suffices that

each player persistently observes his marginal payoff. Nobody must know the game,
his rivals, their preferences or actions. Admittedly, players behaving as described by
(12) stand to be criticized: Each seemingly believes that all his rivals will stay put.
No one looks for large size improvements; nobody makes a great leap towards a best
response. But criticisms of such attitudes often appears unfair though. How could a
player form specific beliefs about his rivals if he never gets to observe their actions?
And why should he move much or swiftly - or respond optimally - if he merely knows
his own payoff function up to local, linear approximation? In spite of players knowing
little or moving slowly, system (12) enjoys remarkable stability. Indeed, as showed
next, equilibrium may be reached - and perpetuated, not by perfect rationality, but
by reasonable responses to local incentives:

Theorem 1. (Asymptotic stability of ES under gradient flows) Any solution trajec-
tory to (11) starting in a vicinity V of an ES x̄, for which (1) holds, will converge
to that point x̄.

Proof. Recall the so-called Moreau decomposition (see Aubin and Cellina 1984,
Proposition 0.6.3), saying that any vector g ∈ E can be uniquely (and orthogonally)
decomposed as a sum g = t+n where t ∈ Tx is tangent and n is normal (orthogonal)
to X at the current point x. Orthogonality means that hx0 − x,ni ≤ 0,∀x0 ∈ X. As
a result, PTx [g] = t = g − n, and any solution t 7→ x(t) to (11) makes the map
t 7→ Λ(t) := 1

2
kx(t)− x̄k2 Ljapunov. Indeed, omitting reference to time t, that map

satisfies

Λ̇ = hx− x̄, ẋi = hx− x̄, g − ni ≤ hx− x̄, gi ≤ π(x, x)− π(x̄, x) < 0 a.e.
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Using the continuity of π this shows that Λ(t)& 0, whence x(t)→ x̄. 2
This result is not entirely novel. The instance when π is linear in its first variable,

and X equals the standard simplex, appears in Hofbauer and Sigmund (1998) as
Theorem 9.6.1. Those authors also use more general gradients, derived from a local
x-dependent inner product on the tangent space to X at x. Doing so offers a double
bonus: first, one may accommodate nonconvex manifolds X; second, the class of
dynamics is much enlarged. In particular, applying the Shahshahani inner product
on the interior of the simplex, the replicator equation comes out as gradient dynamics;
see Hofbauer and Sigmund (1998, Theorem 24.3). Interesting in this regard are the
results of Hopkins (1999) that replicator-like dynamics may emerge when fictitious
play is aggregated over a heterogenous population.
We end this section by briefly considering use of discrete time in (11). For that

purpose we must first inquire about the nature of steady states:

Proposition 5. (Characterization of steady states) x̄ is a rest point for (11), i.e.,
0 ∈ PT x̄ [∂π(·, x̄)(x̄)] if

x̄ ∈ PX [x̄+ sḡ] for some ḡ ∈ ∂π(·, x̄)(x̄) and all s > 0. (13)

This happens iff for some ḡ ∈ ∂π(·, x̄)(x̄) the following variational inequality holds:
hx− x̄, ḡi ≤ 0 for all x ∈ X. (14)

Finally, when π(·, ·) is concave in the first variable, x̄ is a steady state iff it satisfies
(3).

Proof. Let ḡ ∈ ∂π(·, x̄)(x̄) satisfy (13). Then 0 = lims&0 { PX [x̄+ sḡ]− x̄} /s =
PT x̄ [ḡ] , this being a general result of Zarantonello (1971). (13) says that

x̄ = argmin

½
1

2
kx̄+ sḡ − xk2 : x ∈ X

¾
and (14) is the associated (necessary and sufficient) optimality condition. (3) follows
from standard convex analysis (Rockafellar 1970). 2
We now cast (11) into the following, more realistic, discrete-time process: Itera-

tively, at stages k = 0, 1, . . . let

xk+1 = PX
£
xk + skg

k
¤
, (15)

the initial point x0 ∈ X being arbitrary or accidental. Here gk ∈ ∂π(·, xk)(xk) is
a partial gradient of π(·, ·) with respect to the first variable at (xk, xk). The posi-
tive sequence (sk)∞k=0 of step sizes is chosen a priory subject to limk→∞ sk = 0 andP∞

k=0 sk = +∞. Evidently, (15) is a dynamic version of the fixed point condition
(13). In the particular setting (2) system (12) assumes the form

xk+1i = PXi
£
xki + skg

k
i

¤
for all i, (16)
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where gti ∈ ∂πi(·, xt−i)(xti) is agent i’s marginal payoff. Game theoretic studies of (12)
or (16) include Ermoliev and Uryasiev (1982), Flåm (1998), Rosen (1965).

Theorem 2. (Convergence to ES) Suppose the partial gradient g ∈ ∂π(·, x)(x)
is unique and depends continuously on x ∈ X. Also suppose that (1) holds for some
ES x̄ and vicinity V. Then, if the sequence (xk) generated by (15) is bounded and
enters infinitely often into V, we have xk → x̄.

Proof. It is known from Zarantonello (1971) that for any vector x ∈ X, and di-
rection g we have lims&0 {PX [x+ sg]− x} /s = PTx [g] . Consequently,

PX [x+ sg] = x+ sPTx [g] + o(s)

where o(s) denotes a vector satisfying ko(s)k
s
→ 0 as s& 0. This means that (15) can

be rewritten on the format

xk+1 − xk = sk
©
h(xk) + bk

ª
with h(x) := PTx [∂π(·, x)(x)] and limk→∞ bk = 0. Recall that by assumption the
continuous vector field ẋ = h(x) has unique solutions. The conclusion now follows
from Proposition 3.1 in Benaim (1996). 2
In the interest of a more global statement than Theorem 2 we introduce some

additional notions, these presuming that solutions t 7→ x(t) to (11) be extended to
all t ∈ R. The alfa and omega limit of an initial point ξ ∈ X, denoted α(ξ) and ω(ξ),
equals the set of all accumulation points of the solution trajectory x(t), starting in ξ,
when t tends to −∞ and +∞, respectively. We say that (11) yields simple dynamics
if both α(ξ) and ω(ξ) are rest points for every ξ ∈ X.
A rest point e1 of (11) is said to go to another rest point e2 via a connecting orbit

O if for some ξ ∈ O we have e1 = α(ξ) and e2 = ω(ξ). A cycle is a finite set of such
points e1, . . . , en, (en+1 = e1) together with orbits O1, . . . ,On such that Ok connects
ek to ek+1. Now invoking Corollary 3.7 in Benaim (1996) we get:

Theorem 3. (Convergence to a discrete limit set) Assume that (11) has isolated
rest points, simple dynamics and no cycle. Then a bounded sequence (xk) generated
by (15) converges toward a steady state. 2
A finite collection of Nash equilibria is generic in games. For such instances it

remains a challenge to explore whether the dynamic (16) is simple with no cycles.

4. Examples
To illustrate and justify the concept ES, introduced above, this section offers several
examples. The first four are concerned with noncooperative games, Example 4 being
of main importance.

Example 1. (Two-person, zero-sum games) Let there be merely two players i ∈
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I := {+1,−1} . When individual i selects his strategy xi ∈ Xi, he derives continuous
payoff πi(xi, x−i) which is concave in own choice xi. Suppose payoffs sum to zero and
define π : X ×X → R by

π(x, x0) := π1(x1, x
0
−1)− π1(x

0
1, x−1). (17)

Then x̄ = (x̄1, x̄−1) is Nash equilibrium iff (3) holds, or equivalently, iff x̄ is a max-min
saddle point of π1. When π1 is affine in its second variable, a point x̄ will be ES in
the sense of (4) if it is a strict Nash equilibrium, i.e., if

x̄ = argmax {π(x, x̄) : x ∈ X} . 2 (18)

Example 2. (Two-person, finite-strategy, symmetric games) Consider a two-person,
symmetric game with a finite set S of pure strategies. Denote then by X := ∆(S)
the simplex consisting of all probability measures x := (x(s))s∈S on S. The payoff
π(x, x0) to a player who uses the mixed strategy x ∈ X in front of his rival’s choice
x0 ∈ X, is given in terms of an already specified function π : S×S → R by its bilinear
extension π(x, x0) :=

P
s,s0∈S x(s)π(s, s

0)x0(s0). The interpretation of (4) goes in terms
of random pair-wise matching of players from a single population. Equilibrium x̄ is
then seen as standard, common behavior prior to the appearance of a ”mutation ”
x 6= x̄. Specifically, one envisages that a population percentage ε starts to employ
a new strategy x. Biological intuition behind (4) says that incumbent individuals,
maintaining their pre-entry choice x̄, fare better against the post-entry population mix
xε = (1− ε)x̄+ εx, 0 < ε ≤ ε(x), than does any entering mutant x 6= x̄. Naturally, in
this example symmetric equilibria are of particular interest. We emphasize, however,
that the more general definition (1) makes no hypothesis about symmetry.
Besides (1) and (4) there is a third equivalent characterization, due to Hofbauer,

Schuster and Sigmund (1979):

Proposition 6. (Local superiority of ESS) x̄ is ES of a two-person, finite-strategy,
symmetric game iff it is locally superior. 2

Example 3. (Two-person, two-strategy, symmetric games) This example continues
and specializes the preceding one. Consider a two-person, two-strategy, symmetric
game where player i = ±1 assigns probability xi to his first (either upper row or left
column) action. The 2× 2 payoff matrix may, without loss of generality, be assumed
diagonal with entries a1, a2. Thus (16) reads

xk+1i = P[0,1]
£
xki + sk

©
(a1 + a2)x

k
−i − a2

ª¤
, i = ±1. (19)

A well studied setting accommodates one homogeneous population of players. The
initial point then naturally lies on the diagonal, and instead of (19) we could just as
well have used the one-dimensional system xk+1 = P[0,1]

£
xk + sk

©
(a1 + a2)x

k − a2
ª¤
,

evolving in [0, 1] . A more general scenario admits two populations, starting maybe at
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different levels and moving in the state space [0, 1]2 . In any case, assuming a1a2 6= 0,
there are three cases to consider: First, when a1a2 < 0, a Prisoner’s Dilemma emerges
with one strict equilibrium whence ES. Second, when both a1 and a2 are positive, a
Coordination Game comes on stage, having three Nash equilibria, all symmetric. The
two pure ones are ES whereas the mixed one xi = a2/(a1 + a2) is not. Third, if both
a1 and a2 are negative, we get an antagonistic Hawk-Dove Game, having two strict,
pure, asymmetric Nash equilibria and a symmetric, mixed one xi = a2/(a1 + a2).
Given merely one population, the mixed equilibrium is the only ES. Present two pop-
ulations, that equilibrium is no longer ES.

Example 4. (Noncooperative games in strategic form) Extending the preceding ex-
amples we now come to the setting which provided our principal motivation. Let the
set I of noncooperative players be finite and have at least two members. Inequality
(4) applied to (2) yields the following condition, introduced by Taylor (1979):

x ∈ X \ x̄, 0 < ε ≤ ε(x)⇒
X
i∈I

πi(x̄i, x
ε
−i) >

X
i∈I

πi(xi, x
ε
−i).

To insist on local superiority certainly shrinks the class of fitting games. (There are
games for which no ES strategy exists; see Weibull (1996, page 39). Nonetheless,
these conditions hold more often than might first be believed. Included are the in-
stances for which (2) is concave-convex - as brought out by Proposition 4. As one
example we advocate games with bilinear interaction:

Proposition 7. (Games with bilinear interaction have ES equilibria) Suppose each
individual i ∈ I has a utility function of the form

πi(xi, x−i) = Ui(xi) +

*
xi,
X
j∈I\i

Aijxj

+
+ U−i(x−i),

Ui being concave, twice differentiable, and Aij a dimxi×dimxj matrix. If the grand
matrix, featuring Aij in block entry ij and ∇2Ui(xi) in diagonal block entry ii, is
negative semi-definite, then the game is concave-convex in the sense of (7) and (8).
When moreover, the said block matrix is negative definite, the strict convexity condi-
tion (9) holds, and every Nash equilibrium is ES.

Proof. (2) assumes the form

π(x, x0) =
X
i

Ui(xi)− Ui(x0i) +
*
xi − x0i,

X
j∈I\i

Aijx
0
j

+ .
Evidently, this π is concave in its first variable x, and (strict) convexity in its second
variable x0 obtains by the fact that ∇2π(x, ·) is negative semi-definite (definite). 2
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The setting of Proposition 7 does not imply uniqueness of Nash equilibrium: Con-
sider a concave single-agent optimization problem with linear constraints. The set of
saddle points need then not reduce to a singleton.
The last result was stated in a global fashion, appropriate, for example, in Cournot

type oligopolies with affine inverse demand and strictly convex production costs. More
generally, we believe that bilinear, local approximation around equilibrium often sat-
isfies the curvature assumptions mentioned in Proposition 7.

Example 5. (Single-agent optimization, concave programming) In the simple situa-
tion of a single decision maker, say Robinson Crusoe, isolated from the intricacies of
strategic interaction, let Π : X → R be his payoff function and define π(x, x0) := Π(x).
If Π is strictly concave and super-differentiable on X, then evidently, x̄ ∈ X is ES iff
x̄ = argmaxΠ. More generally, suppose Π is twice continuously differentiable with
negative definite Hessian ∂2

∂x2
Π at every local maximum. Then x̄ ∈ X will be ES iff

it is a strict local maximum.

Example 6. (Variational inequalities) Let here π(x, x0) := hx− x0,m(x0)i for some
continuous mappingm : X → E. Then π is affine in its first variable, and (3) amounts
to the variational inequality hx− x̄,m(x̄)i ≤ 0,∀x ∈ X. Local superiority holds if m
is strictly monotone decreasing near x̄, that is, if hx− x̄,m(x)−m(x̄)i < 0 for all
x ∈ V \ x̄.

Example 7. (Equilibrium problems, Blum and Oettli (1994), Flåm and Antipin
(1997), Konnov and Schaible (2000)) Many instances make π nil along the diagonal.
So, in view of the important instance (2) assume here that π(x, x) = 0,∀x ∈ X.
Then, (3) is called a (primal) equilibrium problem. Associated to the latter is a dual
equilibrium problem: namely, to find x̄ ∈ X such that π(x̄, x) ≥ 0,∀x ∈ X. De-
note by XP , XD the two corresponding solution sets. One declares π monotone if
π(x, x0)+π(x0, x) ≥ 0 for all pairs x, x0 ∈ X - and pseudo-monotone if π(x, x0) ≤ 0⇒
π(x0, x) ≥ 0. Pseudo-monotonicity straightforwardly implies XP ⊆ XD. If π(x, ·)
is lower semicontinuous from the right along any ray, and π(·, x) is strictly quasi-
concave, then XD ⊆ XP ; see Bianchi and Schaible (1996). Note that a solution x̄
to (3) becomes locally superior under strict local pseudo-monotonicity, that is, when
π(x, x̄) ≤ 0⇒ π(x̄, x) > 0,∀x ∈ VÂx̄.

Example 8. (Competitive equilibrium, Flåm and Sandvik (2000)) Let the vector
x record prices of various goods, produced and/or consumed by price-taking (com-
petitive) economic agents. Those agents presumably generate (single-valued, contin-
uous, 0-homogeneous) excess demand E(x). By Walras law x ·E(x) = 0. Define here
π(x, x0) := x ·E(x0) and choose X as a suitable part of the non-negative orthant. For
example, let X equal the standard unit simplex. Then, if (3) holds, or equivalently,
if E(x̄) ≤ 0, we call x̄ a (free disposal) equilibrium. The first inequality in (1) holds
trivially, and x̄ becomes locally superior if excess demand generated by x ∈ VÂx̄ is
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too costly under x̄, i.e., if x̄·E(x) > 0. Process (11) amounts to the classical Walrasian
tâtonnement.

Example 9. (Malthusian dynamics) When π(x, x0) := x · F (x0) for some contin-
uous mapping F : X → E, the concavity requirement in (1) has no bite. Friedman
(1991) discusses such instances when X is the finite product of standard simplices
Xi ⊂ Ei, i ∈ I. Let then Di(xi) be the diagonal matrix formed by xi ∈ Xi and set
Fi(x) := Di(xi) [fi(x)− xi · fi(x)1i] where 1i := (1, 1, ..) has appropriate dimension.
Since the force Fi(x) so defined belongs to the tangent cone of Xi at xi, the dynamics
(11) simplify to a coupled set of replicators: ẋi = Fi(x), i ∈ I, called Malthusian by
Friedman (op. cit.). Local superiority means here that

x̄ · F (x) > x · F (x) (20)

for all x ∈ XÂx̄ sufficiently near x̄. For frequency-dependent stability of two interact-
ing species condition (20) has been studied in more general form by Cressman (1992,
1996).
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