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Abstract

A non-traditional approach of �tting dynamic resource biomass models to data is devel-

oped in this paper. The adjoint technique is an optimal control or a variational method

for parameter identi�cation. It provides a novel and e�cient procedure for combining all

available information in the analysis of a resource system. Two alternative population

dynamics models: the Schaefer logistic and the Gompertz model are proposed for esti-

mating parameters by the method of constrained generalized least squares. A simpli�ed

feedback rule is used to tie the biology and economics of �shing. The R2 statistic is

used to evaluate the goodness of �t. Estimates of the parameters of the logistic and the

Gompertz function are plausible and can be accepted. The main inference from the work

is that the average �shing intensity rate is found to be signi�cantly above the sustainable

value.
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1 Introduction

In spite of the growing criticisms of the biomass dynamics models or the surplus growth

models (Clark, 1990; Schaefer, 1967), they remain the biological basis for most bioe-

conomic analysis. The trend in bioeconomic literature indicates that these models will

continue to be in use for some time. Parameter estimation has been the most di�cult

aspect of application of biomass dynamics models in management schemes. The bulk of

the research in this area has been done by �shery biologists in the past. Several methods

have been developed for �tting these models to observed data. Three approaches have

been commonly used to �t surplus production models to observations: e�ort averaging

methods, process-error estimators, and observation-error estimators (see Polacheck et

al., 1993). Polacheck et al. (1993) used real and simulated data to compare the ap-

proaches and concluded that the methods yield di�erent interpretations of productivity.

The method of e�ort-averaging, like many others, assumes that the stock is in equilib-

rium relative to e�ort. Ludwig et al. (1988) compared the method of total least squares

and the approximate likelihood method. They found the two methods to be consistent

with some signi�cant di�erences. Least squares methods have also been used to estimate

the Schaefer production model (Uhler, 1979).

In bioeconomics, identi�cation of model input parameters has not been accorded the

attention it so deserves. Simulations of these models have mostly been performed us-

ing hypothetical values of the model parameters. Useful qualitative insights have been

gained in a more general setting. However, issues of quantitative and operational nature

have largely been ignored. Of interest to managers of resource stocks such as �sh are
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questions about the size of the standing stock, the sustainable yield, the net growth, etc.

To better advise managers on these important issues, bioeconomists ought to develop

techniques of improving and e�ciently estimating the existing bioeconomic models.

In view of the above arguments, we introduce a novel and advanced approach of �tting

biomass dynamics models to measurements. The technique in this paper is an optimal

control (adjoint) method of model parameter estimation (Lawson et al., 1995; Smed-

stad and O'Brien, 1991). For recent applications of these techniques to biological and

ecosystem models see (Lawson et al., 1995; Spitz et al., 1997; Matear,1995). The adjoint

technique of data assimilation determines input parameters of a dynamical model using

time series of observations of the state variables of the model dynamics. A least squares

criterion is de�ned subject to the natural dynamic constraints governed by the simple

generalized population dynamics models. The adjoint technique is then used together

with a quasi-Newton algorithm (Gilbert and Lemarechal, 1991) to iteratively search for

the minimum of the loss functional. The method is very powerful and e�cient for pa-

rameter optimization. A major strength of the method is that it is highly suitable for

high dimensional problems. It can also e�ectively handle nonlinear models. We also

point out that this method does not require analytical forms of the functions estimated

which distinguishes it from existing methods.

Two functional forms of the existing biomass dynamics models (Clark, 1990) in combina-

tion with a simple proportional exploitation rule will be used to estimate the biological

and economic input parameters using real data for the Norwegian cod �shery (NCF)

stock. The bioeconomics employed in this analysis is quite simple. It combines simpli-

�ed surplus growth models with a simple linear yield or harvest function to analyze the
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data. The biological functions contain parameters that are very crucial in determining

certain important quantities of interest to �sheries management and researchers. Esti-

mates of parameters such as the intrinsic growth rate and the environmental carrying

capacity are rare for some important �sh stocks around the world. Accurate measure-

ment of these parameters are in fact very di�cult if not impossible. As a consequence,

quantities of considerable importance to management such as the maximum sustainable

yield (MSY) are unreliable.

The goals of this paper are to demonstrate the potentials of the variational adjoint tech-

nique in the analysis of natural resource systems, to apply the technique to the Norwegian

cod �shery for the two di�erent growth models and to make some inferences from the

data. The paper is organized as follows. Section 2 is a discussion of the methodology

used in the analysis. In section 3, we present the biological and economic submodels.

The biology and economics are merged by the �shing intensity factor through a simpli-

�ed yield function. In section 4 we present and discuss an empirical application of the

model and conclude the paper.

2 Data Assimilation Methods

According to Sasaki (1970), a variational inverse problem can be cast as a weak con-

straint inverse problem where the model is allowed to contain modeling errors or the

strong constraint problem (Bennett, 1992; Evensen et al., 1998), where a perfect model

is assumed. The weak constraint problem is a more general formulation with the strong

constraint problem as a simple special case where the model weight is assumed to be
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in�nitely large. It is a common practice among some researchers to assume a model

that is perfect then vary some of the free parameters such as the initial conditions of the

model in order to �nd the solution which best �t the data. Such a formulation is known

as the strong constraint problem. In this paper, the adjoint technique will be employed

to �t the dynamic resource models to the observations. Using the adjoint method the

gradients of the cost functional with respect to the control variables are e�ciently cal-

culated through the use of the Lagrange multipliers. The gradients are then used to �nd

the parameters of the model dynamics which best �t the data.

Data assimilation systems consist of three components: the forward model with a cri-

terion function, the adjoint or backward model and an optimization procedure (Lawson

et al., 1995). The forward model is our mathematical representation of the system we

are interested in studying, e.g., an open access, a regulated open access or a sole owner

�shery. The adjoint model consists of equations obtained by enforcing the dynamical

constraints through Lagrange multipliers and provide a method of calculating the gra-

dient of the cost function with respect to the control variables. The gradients are then

used in a line search using standard optimization packages to �nd the minimum of the

cost function. Most optimization routines are based on iterative schemes which require

the correct computation of the gradient of the cost function with respect to the control

variables. In the adjoint formulation, computation of the gradient is achieved through

the adjoint equations forced by the model-data mis�ts. The model equations are run

forward in time while the adjoint equations are run backward in time which are then

used to calculate the gradient of the cost function.

An important step in data assimilation is the choice of the criterion function for the good-
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ness of �t. The commonly used criterion is the generalized least squares criterion. It can

be de�ned with no a priori information about the parameters or with prior information

about the parameters incorporated as a penalty term in the criterion function. Some

researchers argue that since some information about the parameters and their uncertain-

ties are always available, adding the information is a plausible thing to do (Harmon and

Challenor, 1997; Evensen et al., 1998).

2.1 Perfect dynamics

In this paper we will assume perfect dynamics and initial condition(s). This implies that

we are neglecting modeling errors. The model dynamics will be governed by a simple

ordinary di�erential equation given by

dx

dt
= g(p; x)

x(0) = u (1)

p = p0 + p̂ (2)

where g(p; x) is a nonlinear operator, p is a parameter(s) to be estimated and is assumed

poorly known and u is the �rst or best guess initial condition of the model. The vector

p0 is the �rst guess of the parameters and p̂ is a vector of random white noise term.

Assume that we also have a set of observations of the state variable(s) which are related

to the true state in this simple linear fashion

xobs = x + v (3)
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where xobs and x are the observed and the model forecast vectors respectively, and v

is the error vector in the observed values. The additive stochastic error term is quite

general so far. In the subsections that follow, we will put some structure to the form of

the noise term. Inverse methods combine the theoretical information contained in the

model and the information about the true state from the data to optimally estimate the

model parameters.

2.2 The estimator

One of the major components of data assimilation techniques is the choice of the esti-

mator. Many estimators exist that are attractive in the literature. However, the least

squares estimator has been the popular one among researchers partly because of its

simplicity and mathematical convenience. The least squares �tting criterion is de�ned

as

J = (x� xobs)TW(x� xobs) + (p� p0)
TWp(p� p0) (4)

where x is the prediction of the model, xobs is the observed or measured quantity. The

W is the inverse measurement error covariance matrix, i.e., the weightng matrix and is

assumed to be positive de�nite and symmetric and T denotes the transpose operator.

Uncertainties in the parameters are represented by the symmetric positive de�nite co-

variance matrixW�1
p
. The �rst term in the loss function is the sum of the square of the

model-data mis�ts v = (x � xobs) and the second term is a penalty on the parameters.

If the model parameters are poorly known then greater penalty is imposed, i.e., they are

given less weight and vice versa. To simplify the calculations, we make the following as-
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sumptions about the errors and their uncertainties. The model-data and the parameter

mis�ts are assumed to be Gaussian mean zero and constant variances. That is we have

Ev = 0; EvvT =W�1 = w�1I (5)

Ep̂ = 0; Ep̂p̂T =W�1
p

= w�1
p
Ip (6)

where the capital letter E denotes mathematical expectation operator, I's are unit ma-

trices and the scalar constants w�1 and w�1
p

are the variances of the random errors in

the measurement and the parameters respectively. In view of the above assumptions,

the loss function J can be identi�ed with a normal probability distribution function.

Thus, minimizing the cost function is equivalent to maximizing the likelihood, i.e., the

best �t corresponds to the most likely outcome of the measurements.

2.3 Minimization technique

Minimization of the loss functional J subject to the dynamics is a constrained opti-

mization problem (Luenberger, 1984; Bertsekas, 1992). An e�cient technique for the

minimization of the loss functional is the adjoint method. It consists of transforming

the constrained problem into an unconstrained optimization problem via the use of the

undetermined Lagrange multipliers. It is then possible to use a gradient search method

to �nd model parameters that yield predictions which are as close as possible to the

observations. To illustrate the numerical procedure, we use the discrete equivalent of
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the continuous model dynamics

xn+1 = xn + g(p; xn)dt; (7)

x0 = u; 0 � n � N � 1 (8)

where N is the number of observations and dt is the time step. The discretization scheme

used is a simple forward di�erence scheme. The discrete form of the Lagrange functional

is constructed as follows

L = w
NX
n=1

(xn � xobs
n
)2 + wp

NpX
i=1

(pi � p̂i)
2

+
N�1X
n=1

�n(xn+1 � fxn + g(p; xn)dtg) (9)

where �n is the value of the multiplier at time step n and Np is the number of model

parameters which are the control variables of the problem. The extrema conditions for

the problem are

@L

@�n
= 0 (10)

@L

@xn
= 0 (11)

@L

@pi
= 0 (12)

From these equations, we obtain

xn+1 � fxn + g(p; xn)dtg = 0 (13)

@J

@xn
� �n(1:0 + dt

@g

@xn
) + �n�1 = 0 (14)
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�pi
L = �pi

J �
N�1X
n=1

�ndt
@g

@pi
= 0 (15)

where �pi
L is the derivative with respect to the ith parameter and @g

@xn
is the tangent

linear operator. It is immediately seen that equation (13) recovers the model dynamics,

i.e., the forward model, equation (14) gives the backward model forced by the model-data

mis�ts and equation (15) is the gradient with respect to the parameters. To �nd the

model parameters that give model forecasts that are as close as possible to the observa-

tions using the classical search algorithms, correct values of the gradients are required.

Methods of verifying the correctness of the gradient are available both numerically and

analytically where possible (see, Spitz et al., 1997; Smedstad and O'Brien, 1991). We

have in this paper checked all gradient calculations to ensure reliable parameter esti-

mates. The optimization procedure used for the minimization is the quasi-Newton pro-

cedure developed by Gilbert and Lemarechal. Implementation of the adjoint parameter

algorithm is quite straightforward and involves the following steps.

� Choose the �rst guess for the control parameters.

� Integrate the forward model over the assimilation interval.

� Calculate the mis�ts and hence the cost function.

� Integrate the adjoint equation backward in time forced by the data mis�ts.

� Calculate the gradient of J with respect to the control variables.

� Use the gradient in a descent algorithm to �nd an improved estimate of the control

parameters which make the cost function move towards a minimum.
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� Check if the solution is found based on a certain criterion.

� If the criterion is not met, repeat the procedure until a satisfactory solution is

found.

2.4 Goodness of �t measure

To examine the performance of the method we need a statistical measure of how the

predicted and the observed variables covary in time. An appropriate parameter may

be the correlation coe�cient R. For the random vectors x and xobs, the correlation

coe�cient is given by

R =

P
N

n=1(xn � �x)(xobs
n
� �xobs)

[
P

N

n=1(xn � �x)2
P

n=1(x
obs
n
� �xobs)2]1=2

(16)

where the bars denote the means or expected values of the random variables and N is the

number of observations. Notice that R is a dimensionless quantity and lies between -1

and +1 inclusive. From the R relation, another important quantity called the coe�cient

of determination R2 can be calculated. The coe�cient of determination is de�ned as

R2 = SSR=SST , where SSR is the variance explained and SST is the total variance

(see Greene, 1997). The sign of the correlation is obtained from R whiles the joint

variances are given by R2.
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3 The Dynamics of the Biomass

Management of many �sheries have often been based on the simpli�ed population dy-

namics models of the Schaefer type (Sandal and Steinshamn, 1997; Clark, 1990). It is

apparent that these models will continue to be used for some time in the management

of some of the important commercial species around the world. While e�orts are under-

way in the development of more complex models, it is appropriate to explore techniques

of identifying the inputs of the existing models. A strong biological base is a key to

good simulation and optimization analysis in renewable resource management. The sur-

plus production models, though very simple, can be quite a good approximation of the

complex dynamics. A continuous surplus biomass dynamics model is proposed for this

analysis. The basic form of the mathematical equation is

dx

dt
= g(x)� h (17)

where x(t) is the biomass at time t, h(t) is the rate of depletion of the population due

to human activities, e.g., commercial and recreational �shing, g is the natural additions

to the biomass. Two functional forms of the net growth of the population will be in-

vestigated in this paper, i.e., the Schaefer logistic and the Gompertz functions will be

used.

3.1 The net growth models

Two variants of the growth models are considered in this paper. Biological species

grow by the gift of nature. The structure of their growth is quite complicated requiring
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sophisticated mathematical functions to adequately model them. Fortunately, there are

simpler models that reasonably and approximately represent the intricate growth models.

Two of the simplest parameterizations in �sheries management are

g(x) =

8>>><
>>>:

rx(1� x

K
)

rx ln(K
x
)

where x is as de�ned previously, r is the intrinsic growth rate, K is the maximum

population level of the biological species. The �rst is the Schaefer logistic growth which

is a special case of the modi�ed logistic when the exponent is unity (Clark, 1990, Haakon,

1998) and the second is the Gompertz function.

The production function for a resource industry can be assumed to depend only on the

stock biomass and the e�ort expended in �shing. The simplest form of the exploitation

rate is the Gordon-Schaefer type of production function where the rate of removal of the

stock is assumed to be linearly related to the e�ort and stock size. The coe�cient of

proportionality q in this case is called the catchability coe�cient, i.e., h = qex, where e

is the �shing e�ort. For the present purpose, this simple linear model will be employed.

That is, we apply a proportional �shing criterion in order to analyze the �shery.

Let f = qe be the �shing intensity rate, then the simple rule takes the form

h(x) = fx (18)

which implies that at any given level of the population a fraction f will be removed.

The formula explicitly assumes exploitation of the species to the last ton of �sh. This

is an oversimpli�cation of the reality. However, it may serve as a good approximation

of the complex system. For example, in the extreme situation where �shing becomes
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economically unpro�table or if on a purely ecological or social ground a moratorium is

warranted, f is set to zero, i.e., the �shery is closed. The �shing mortality parameter

f is a policy instrument for the management authorities. It is quite simple and easy to

use formula. Once accurate and reliable methods of stock assessments are available, the

rule can be used to set quotas appropriate for the objective of the �shery.

Using the relation for h in (18) and (2), the biology of the stock is tied to the economics

by the �shing mortality f . In Figure 1 below, we show plots of the growth functions using

arbitrary values of the parameters. The values of the parameters r and K are the same

for both the functions. A straight line curve with a slope equal to 0.407 representing a

linear in stock yield function is also shown.
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Gompertz
Yield   

Figure 1: The growth models with r=.35, K = 5300.
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The graph of the logistic is symmetric about one half the carrying capacity while the

Gompertz is asymmetric and is skewed towards the left. For the same K, the for-

mer predicts lower MSY biomass (K=e), where e �= 2:7 is the exponent operator and

a corresponding higher MSY. In practical applications, the Gompertz function seems

inappropriate for less resilient species. The combination of high MSY and low MSY

biomass prescribed by this model can result in an unpardonable mistake on the side of

management in case of recruitment failures.

4 An Application to NCF

The NCF is the most important demersal species along the coast of Norway and Northern

Russia. This �shery has played an important economic role within the coastal commu-

nities for the past thousand years. The NCF has for the past half century experienced

large variations which result in a corresponding variation in the annual harvest quanti-

ties. The stock size fell from its highest level in 1946 of 4.1 million tons to the lowest in

1981 of 0.75 million tons. A time series plot of the history of the stock indicated a sign

of recovery from its worst state in the mid 90's but recent reports show that the �shery

is again in deep trouble (see Figure 2 below).
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Figure 2: Graph of actual harvest and the stock biomass.

In this study, a time series of observations from 1946 to 1996 is used. The adjoint

method is used to �t the hypothesized dynamics to the observations. The NCF provides

a good example to which the data assimilation method can be tested. To estimate

the parameters, the intrinsic growth rate is assumed fairly known by �xing its value

to 0.3499. The other parameters of the models are then estimated. The optimization

was started by randomly generating reasonable initial guesses using a uniform random

deviate intrinsic function. By seeding the generator, di�erent initial guesses were used

to check for the presence of local extrema. The performance of the algorithm is very

impressive. Convergence was obtained in a few iterations in all the runs. The best �t

parameters and the R2 values are shown in the table 1 below.
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Parameters Logistic Gompertz

r� 0.3499 0.3499

K 5268.5 5499.99

f 0.4076 0.4964

R2 0.550 0.529

Table 1: Model parameters for the biomass dynamics models.

The star in the table means those values were restricted. The Schaefer logistic and the

Gompertz functions tend to give plausible estimates. The �t to the data is quite good

for both models with the logistic model explaining about 55.0% of the data while the

Gompertz function explains about 53% of the data. It is observed that the estimates for

the latter model are relatively higher than the former.

Next, the growth functions are presented on the same graph with the actual harvest

data. The goal is to show one of the �ndings of the paper. That is, the stock is exploited

at an unsustainable rate leading to the alarming state of the �shery. Figures 3-4., show

the plots of the actual harvest and growth curves against the biomass. The plus sign

represents the actual harvest while the solid line represents the net growth curve. The

logistic growth model predicts that the harvest rate has been persistently above the net

growth curve see Figure 3 below. At the lower end of the graph, we notice that the actual

harvest is close to the growth curve and is below it on a few occasions. One interesting

observation is that several points tend to cluster around the maximum sustainable yield

(MSY). This gives a more acceptable picture of the actual �shery.
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Figure 3: The logistic growth model

The forecasts of the latter model, i.e., the Gompertz model, is quite similar to the

predictions of the logistic model but appears to point to other factors for the recent

troubles of the �shery rather than excessive harvesting of the stock (Figure 4).
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Figure 4: The Gompertz growth model.

To further discuss the results of the paper, we provide estimates that might be of con-

siderable interest to managers of the NCF. An important caveat however is that, while

these values have empirical signi�cance, a direct translation to that �shery may not be

advised.

The use of surplus growth functions implies there exist a certain level of biomass at

which natural additions to the stock are greatest. This occurs at the turning point of

the concave functions. For each model an f exists that will direct the stock to the sus-

tainable level. In the case of the Schaefer logistic, a simple algebra yields optimal �shing

mortality rate for an MSY policy equal to one half the intrinsic growth rate (f = r=2)

if the population is below the sustainable biomass level. The table below shows some

quantities of practical interest pertaining to the NCF.
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Parameters Logistic Gompertz

r� 0.3499 0.3499

K 5268.5 5499.99

xMSY 2634.25 2023.33

MSY 460.9 707.96

Table 2: Sustainable parameters for the two biomass dynamics models.

Estimates of xMSY and MSY quantities are shown in rows 3 and 4 of table 2. The

Schaefer logistic model seems to out perform its counterpart, i.e., the Gompertz model.

It gave the lowest MSY estimate but an inbetween value of optimum sustained biomass.

These estimates are quite appealing and are more acceptable than the predictions of the

Gompertz. The MSY for the Gompertz is around the values of TAC in the late 90's.

The sustainable biomass level of around 2.0 million tons may be a bit low. However,

it may not be advisable to completely discard the results from the Gompertz model

since there are other important factors that may account for the troubles of the �shery.

For instance, factors such as sea pollution and unfavorable weather conditions may be

accountable for the recent sorry state of the NCF stock.

4.1 Conclusions

The NCF �shery is analyzed using an optimal control approach of dynamic model param-

eter estimation. Two alternative growth models are proposed and used in the analysis.
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The production relation for the �shery is assumed to be linear in the biomass and consti-

tute a simple feedback rule. A quite restrictive assumption of constant �shing mortality

is made which yields a proportional �shing policy. The model dynamic equation is non-

linear in the parameters and quadratic in the stock. A least squares criterion measuring

the discrepancy between the data and its model equivalent was minimized subject to a

dynamic constraint. The adjoint method is used to e�ciently estimate the parameters.

Parameter estimates from the Schaefer logistic and the Gompertz models are plausible.

Both models have about the same explanatory power R2 = :55. This seems quite rea-

sonable since the models were able to capture the trend in the data but failed to capture

the periodic oscillations. It is obvious that the models are not sophisticated enough to

explain the random events inherent in the system. Ecosystem e�ects and environmental

variability are very important variables and ought to be included in the model. Pre-

dictions from these models are consistent with many recent experiences in �sheries and

other natural resource stocks. Both the stock biomass and the amount harvested have

been declining while �shing intensity is increasing due to technical innovations. More

powerful boats are being developed and other advanced �shing equipments are available

making the population more vulnerable to exploitation.

This paper has demonstrated the utility of the data assimilation methods in dynamic

parameter estimation for two alternative resource models. It exposes the strengths and

weaknesses of the simpli�ed biomass dynamics models and provides model parameters

that are in close agreement with the observations. The methods have numerous addi-

tional capabilities that are worth exploring in the future. Bioeconomists may �nd these

methods indispensable if questions that interest managers most have to be answered and
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if more realistic models become readily available.
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