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Abstract

In this paper we solve an optimal stopping problem with an infinite time
horizon, when the state variable follows a jump-diffusion. Under certain con-
ditions our solution can be interpreted as the price of an American perpetual
put option, when the underlying asset follows this type of process.

The probability distribution under the risk adjusted measure turns out to
depend on the equity premium, which is not the case for the standard, con-
tinuous version. This difference is utilized to find intertemporal, equilibrium
equity premiums.

We apply this technique to the US equity data of the last century, and find
an indication that the risk premium on equity was about two and a half per
cent if the risk free short rate was around one per cent. On the other hand, if
the latter rate was about four per cent, we similarly find that this corresponds
to an equity premium of around four and a half per cent.

The advantage with our approach is that we need only equity data and
option pricing theory, no consumption data was necessary to arrive at these
conclusions.

Various market models are studied at an increasing level of complexity,
ending with the incomplete model in the last part of the paper.

KEYWORDS: Optimal exercise policy, American put option, perpetual op-
tion, optimal stopping, incomplete markets, equity premiums, CCAPM.

1 Introduction.

In the first part of the paper we consider the perpetual American put option when
the underlying asset pays no dividends. This is known to be the same mathematical
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problem as pricing an infinite-lived American call option, when the underlying asset
pays a continuous, proportional dividend rate, as shown by Samuelson (1965).

The market value of the corresponding European perpetual put option is known
to be zero, but as shown by Merton (1973a), the American counterpart converges
to a strictly positive value. This demonstrates at least one situation where there is
a difference between these two products in the situation with no dividend payments
from the underlying asset.

We analyze this contingent claim when the underlying asset has jumps in its
paths. We start out by solving the relevant optimal stopping problem for a general
jump-diffusion, and illustrate the obtained result by several examples.

It turns out that in the pure jump model the probability distribution under the
risk adjusted measure depends on the equity premium, which is not the case for the
standard, continuous version. This difference is utilized to find equity premiums
when the two different models are calibrated to yield the same perpetual option
values, and have the same volatilities.

We utilize this methodology to the problem of estimating the equity premiums in
the twentieth century. This has been a challenge in both finance and in macro eco-
nomics for some time. The problem dates back to the paper by Mehra and Prescott
(1985), introducing the celebrated ”equity premium puzzle”. Closely related there
also exists a so called ”risk-free rate puzzle”, see e.g., Weil (1989), and both puzzles
have been troublesome for the consumption-based asset pricing theory.

The problem has its root in the small estimate of the covariance between equities
and aggregate consumption, and the small estimate of the variance of aggregate
consumption, combined with a large estimate of the equity premium. Using a
representative agent equilibrium model of the Lucas (1978) type, the challenge
has been to reconcile these values with a reasonable value for the relative risk
aversion of the representative investor (the equity premium puzzle), and also with
a reasonable value for his subjective interest rate (the risk free rate puzzle). Mehra
and Prescott (1985) estimated the short term interest rate to one one cent, and the
equity premium was estimated to around six per cent.

McGrattan and Prescott (2003) re-examine the equity premium puzzle, taking
into account some factors ignored by the Mehra and Prescott: Taxes, regulatory
constraints, and diversification costs - and focus on long-term rather than short-
term savings instruments. Accounting for these factors, the authors find that the
difference between average equity and debt returns during peacetime in the last
century is less than one per cent, with the average real equity return somewhat
under five per cent, and the average real debt return almost four per cent. If these
values are correct, both puzzles are solved at one stroke (see e.g., Aase (2004)).

From these studies it follows that there is some confusion about the appropriate
value of the equity premium of the last century, at least what numerical value to
apply in models. It also seems troublesome to agree on the value of the short term
interest rate for this period.

Our results for the US equity data of the last century indicate an equity premium
of around 2.5 per cent if the risk free short rate has been about one per cent. If
the latter rate has been around four per cent, on the other hand, we find that this
corresponds to an equity premium of around 4.4 per cent. Both these values are
somewhat in disagreement with the two above studies. Our value of around 2.5 per
cent equity premium yields a more reasonable coefficient of relative risk aversion
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than the one obtained by Mehra and Prescott (1985). If, on the other hand, the
average real debt return was around 4 per cent during this time period, our 4.4 per
cent risk premium differs somewhat from the 1 per cent estimate in McGrattan and
Prescott (2003).

The estimates we present in Section 7 are based on a rather simple model, and
should be considered with some care. However, the methodology to produce these
estimates is the innovative part. An advantage with our approach is that we do
not need consumption data to obtain equilibrium intertemporal equity premiums,
as the quality of these data has been questioned.

Another candidate to produce intertemporal risk premiums without consump-
tion data is the ICAPM of Merton (1973b). This model, on the other hand, requires
a large number of state variables to be identifiable, which means that empirical test-
ing of the ICAPM quickly becomes difficult.

Further attempts to overcome the inaccuracies in consumption data include
Campbell (1993) and (1996). Briefly explained, a log-linear approximation to the
representative agent’s budget constraint is made and this is used to express unan-
ticipated consumption as a function of current and future returns on wealth. This
expression is then combined with the Euler equation resulting from the investor’s
utility maximization to substitute out consumption of the model. As is apparent,
our approach is rather different from this line of research.

The paper is organized as follows: Section 2 presents the model, Section 3 the
American perpetual option pricing problem, Section 4 the solution to this problem
in general, Section 5 treats adjustments to risk, Section 6 compares the solutions to
this problem for the standard, continuous model and a pure jump model, and also
presents comparative statics for this latter model, Section 7 applies the theory to
infer about historical equity premiums, Section 8 presents solutions for a combined
jump diffusion, Section 9 discusses a model where there are different possible jump
sizes, Section 10 combines the latter case with a continuous component, and Section
11 treats the incomplete model, where jump sizes are continuously distributed.
Section 12 concludes.

2 The Model

First we establish the dynamics of the assets in the model: There is an underlying
probability space (Ω,F , {Ft}t≥0, P ) satisfying the usual conditions, where Ω is the
set of states, F is the set of events, Ft is the set of events observable by time t,
for any t ≥ 0, and P is the given probability measure, governing the probabilities
of events related to the stochastic price processes in the market. On this space is
defined one locally riskless asset, thought as the evolution of a bank account with
dynamics

dβt = rβtdt, β0 = 1,

and one risky asset satisfying the following stochastic differential equation

dSt = St−[µdt+ σdBt + α

∫
R

η(z)Ñ(dt, dz)], S0 = x > 0. (1)

Here B is a standard Brownian motion, Ñ(dt, dz) = N(dt, dz) − ν(dz)dt is the
compensated Poisson random measure, ν(dz) is the Lévy measure, and N(t, U)
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is the number of jumps which occur before or at time t with sizes in the set U
of real numbers. The process N(t, U) is called the Poisson random measure of
the underlying Lévy process. The function αη(z) ≥ −1 for all values of z. We
will usually choose η(z) = z for all z, which implies that the integral is over the
set (−1/α,∞). The Lévy measure ν(U) = E[N(1, U)] is in general a set function,
where E is the expectation operator corresponding to the probability measure P . In
our examples we will by and large assume that this measure can be decomposed into
ν(dz) = λF (dz) where λ is the frequency of the jumps and F (dz) is the probability
distribution function of the jump sizes. This gives us a finite Lévy measure, and
the jump part becomes a compound Poisson process.

This latter simplification is not required to deal with the optimal stopping prob-
lem, which can be solved for any Lévy measure ν for which the relevant equations
are well defined. The processes B and N are assumed independent. Later we will
introduce more risky assets in the model as need arises.

The stochastic differential equation (1) can be solved using Itô’s lemma, and the
solution is

S(t) = S(0) exp
{
(µ− 1

2
σ2)t+ σBt

− α

∫ t

0

∫
R

η(z)ν(dz)ds+
∫ t

0

∫
R

ln(1 + αη(z))N(ds, dz)
}
,

(2)

which we choose to call a geometric Lévy process. From this expression we imme-
diately see why we have required the inequality αη(z) ≥ −1 for all z; otherwise the
natural logarithm is not well defined. This solution is sometimes labeled a ”stochas-
tic” exponential, in contrast to only an exponential process which would result if
the price Y was instead given by Y (t) = Y (0) exp(Zt), where Zt = (Xt − 1

2σ
2t),

and the accumulated return process Xt is given by the arithmetic process

Xt := µt+ σBt + α

∫ t

0

∫
R

η(z)Ñ(ds, dz). (3)

Clearly the process Y can never reach zero in a finite amount of time if the jump
term is reasonably well behaved 1, so there would be no particular lower bound for
the term αη(z) in this case. We have chosen to work with stochastic exponential
processes in this paper. There are several reasons why this is a more natural model
in finance. On the practical side, bankruptcy can be modeled using S, so credit
risk issues are more readily captured by this model. Also the instantaneous return
dS(t)
S(t−) = dXt, which equals (µdt + ”noise”), where µ is the rate of return, whereas
for the price model Y we have that

dY (t)
Y (t−)

=
(
µ+

∫
R

(eαη(z) − 1− αη(z))ν(dz)
)
dt+ σdBt +

∫
R

(eαη(z) − 1)Ñ(dt, dz),

which is in general different from dXt, and as a consequence we do not have a simple
interpretation of the rate of return in this model. 2

1i.e., if it does not explode. The Brownian motion is known not to explode.
2If the exponential function inside the two different integrals can be approximated by the two

first terms in its Taylor series expansion, which could be reasonable if the Lévy measure ν has

short and light tails, then we have
dY (t)
Y (t−)

≈ dXt.
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3 The optimal stopping problem

We want to solve the following problem:

φ(s, x) = sup
τ≥0

Es,x
{
e−r(s+τ)(K − Sτ )+

}
, (4)

where K > 0 is a fixed constant, the exercise price of the put option, when the
dynamics of the stock follows the jump-diffusion process explained above. By Es,x

we mean the conditional expectation operator given that S(s) = x, under the given
probability measure P .

For this kind of dynamics the financial model is in general not complete, so in
our framework the option pricing problem may not have a unique solution, or any
solution at all. There can be several risk adjusted measures Q, and it is not even
clear that the pricing rule must be linear, so none of these may be appropriate for
pricing the option at hand. If one is, however, the pricing problem may in some cases
be a variation of the solution to the above problem, since under any appropriate Q
the price S follows a dynamic equation of the type (1), with r replacing the drift
parameter µ, and possibly with a different Lévy measure ν(dz). Thus we first focus
our attention on the problem (4).

There are special cases where the financial problem has a unique solution; in
particular there are situations including jumps where the model either is, or can be
made complete, in the latter case by simply adding a finite number of risky assets.
We return to the the different situations in the examples.

4 The solution of the optimal stopping problem

In this section we present the solution to the optimal stopping problem (4) for jump-
diffusions. As with continuous processes, there is an associated optimal stopping
theory also for discontinuous processes. For an exposition, see e.g., Øksendal and
Sulem (2004). In order to employ this, we need the characteristic operator Ā of the
process S when r > 0. It is

Āϕ(s, x) =
∂ϕ(s, x)
∂s

+ xµ
∂ϕ(s, x)
∂x

+
1
2
x2σ2 ∂

2ϕ(s, x)
∂x2

− rϕ(s, x)

+
∫

R

{ϕ(s, x+ αxη(z))− ϕ(s, x)− α
∂ϕ(s, x)
∂x

xη(z)}ν(dz).

With a view towards the verification theorem - a version for jump-diffusion processes
exists along the lines of the one for continuous processes - we now conjecture that
the continuation region C has the following form

C =
{
(x, t) : x > c

}
,

where the trigger price c is some constant. The motivation for this is that for
any time t the problem appears just the same, from a prospective perspective,
implying that the trigger price c(t) should not depend upon time. See Figure 1.
In order to apply the methodology of optimal stopping, consider the vector process
Z(t) = (s+ t, S(t)), where the first component is just time, the process Z starting
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Figure 1: Continuation Region

Time

τ*

c

Price

Continuation region of the perpetual American put option.

in the point (s, x). We only need to consider the characteristic operator A of the
process Z, which is

A = Ā+ rϕ.

In the continuation region C, the relevant variational inequalities reduce to the
partial integro-differential-difference equation Aϕ = 0, or

∂ϕ

∂s
+ µx

∂ϕ

∂x
+

1
2
x2σ2 ∂

2ϕ

∂x2

+
∫

R

{ϕ(s, x+ αxη(z))− ϕ(s, x)− α
∂ϕ

∂x
xη(z)}ν(dz) = 0.

Furthermore we conjecture that the function ϕ(s, x) = e−rsψ(x). Substituting this
form into the above equation allows us to cancel the common term e−rs, and we
are left with the equation

− rψ(x) + µx
∂ψ(x)
∂x

+
1
2
x2σ2 ∂

2ψ(x)
∂x2

+∫
R

{ψ(x+ αxη(z))− ψ(x)− α
∂ψ(x)
∂x

xη(z)}ν(dz) = 0
(5)

for the unknown function ψ.
Thus we were successful in removing time from the PDE, and reducing the

equation to an ordinary integro-differential-difference equation.
The equation is valid for c ≤ x < ∞. Given the trigger price c, let us denote

the market value ψ(x) := ψ(x; c). The relevant boundary conditions are then

ψ(∞; c) = 0 ∀c > 0 (6)
ψ(c; c) = K − c (exercise) (7)

We finally conjecture a solution of the form ψ(x) = a1x + a2x
−γ for some

constants a1, a2 and γ. The boundary condition (6) implies that a1 = 0, and the
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boundary condition (7) implies that a2 = (K − c)cγ . Thus the conjectured form of
the market value of the American put option is the following

ψ(x; c) =

{
(K − c)

(
c
x

)γ
, if x ≥ c;

(K − x), if x < c.
(8)

In order to determine the unknown constant γ, we insert the function (8) in the
equation (5). This allows us to cancel the common term x−γ , and we are left with
the following nonlinear, algebraic equation for the determination of the constant γ:

−r − µγ +
1
2
σ2γ(γ + 1) +

∫
R

{(1 + αη(z))−γ − 1 + αγη(z)}ν(dz) = 0 (9)

This is a well defined equation in γ, and the fact that we have successfully been
able to cancel out the variables x and s, is a strong indication that we actually have
found the solution to our problem.

If this is correct, it only remains to find the trigger price c, and this we do by
employing the ”high contact” or ”smooth pasting” condition (e.g., McKean (1965))

∂ψ(c; c)
∂x

∣∣
x=c

= −1.

This leads to the equation

(k − c)cγ(−γc−γ−1) = −1,

which determines the trigger price c as

c =
γK

γ + 1
, (10)

where γ solves the equation (9). See Figure 2.

Figure 2: Perpetual American put option value

Stock price

Put value

Market value of a perpetual American put option as a function of stock
price.

We can now finally use the verification theorem of optimal stopping for jump-
diffusions (see e.g. Øksendal and Sulem (2004)) to prove that this is the solution to
our problem.
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If, instead, we had used the exponential pricing model Y defined in Section 2,
where Y (t) = Y (0) exp(Zt), Zt = (Xt − 1

2σ
2t) and the the accumulated return

process Xt is given by the arithmetic process in equation (3), this problem also has
a solution, the above method works, and the corresponding equation for γ is given
by

− r − γ
(
µ+

∫
R

(eαη(z) − 1− αη(z))ν(dz)
)

+
1
2
σ2γ(γ + 1) +

∫
R

(
e−γαη(z) − 1 + γ(eαη(z) − 1)

)
ν(dz) = 0.

(11)

5 Risk adjustments

While the concept of an equivalent martingale measure is well known in the case
of diffusion price processes with a finite time horizon T < ∞, the corresponding
concept for jump price processes is less known. In addition we have an infinite time
horizon, in which case it is not true that the ”risk neutral” probability measure Q
is equivalent to the given probability measure P .

Suppose P and Q are two probability measures, and let Pt := P |Ft and Qt :=
Q|Ft

denote their restrictions to the information set Ft. Then Pt and Qt are equiv-
alent for all t if and only if σP = σQ and the Lévy measures νP and νQ are
equivalent.

We now restrict attention to the pure jump case, where the diffusion matrix
σ = 0. Let θ(s, z) ≤ 1 be a process such that

ξ(t) := exp
{∫ t

0

∫
R

ln(1− θ(s, z))N(ds, dz) +
∫ t

0

∫
R

θ(s, z)ν(dz)ds
}

(12)

exists for all t. Define Qt by

dQt(ω) = ξ(t)dPt(ω)

and assume that E(ξ(t)) = 1 for all t. Then there is a probability measure Q on
(Ω,F) and if we define the random measure ÑQ by

ÑQ(dt, dz) := N(dt, dz)− (1− θ(t, z))ν(dz)dt,

then ∫ t

0

∫
R

ÑQ(ds, dz) =
∫ t

0

∫
R

N(ds, dz)−
∫ t

0

∫
R

(1− θ(s, z))ν(dz)ds

is a Q local martingale.
This result can be used to prove the following version of Girsanov’s theorm for

jump processes:

Theorem 1 Let St be a 1-dimensional price process of the form

dSt = St−[µdt+ α

∫
R

η(z)Ñ(dt, dz)].

8



Assume there exists a process θ(z) ≤ 1 such that

α

∫
R

η(z)θ(z)ν(dz) = µ a.s. (13)

and such that the corresponding process ξt given in (12) (with θ(s, z) ≡ θ(z) for
all s) exists, and having E(ξt) = 1 for all t. Consider a measure Q such that
dQt = ξ(t)dPt for all t. Then Q is a local martingale measure for S.

Proof. By the above cited result and the equality (13) we have that

dSt = St−[µdt+ α

∫
R

η(z)N(dt, dz)− α

∫
R

η(z)ν(dz)dt]

= St−[µdt+ α

∫
R

η(z){ÑQ(dt, dz) + (1− θ(z)ν(dz)dt} − α

∫
R

η(z)ν(dz)dt]

= St−[α
∫

R

η(z)ÑQ(dt, dz) + {µ− α

∫
R

θ(z)η(z)ν(dz)}dt]

= St−
[
α

∫
R

η(z)ÑQ(dt, dz)
]
,

which is a local Q-martingale. �
We will call Q a risk adjusted probability measure, and θ the market price of risk

(when we use the bank account as a numeraire). The above results can be extended
to a system of n-dimensional price processes, see e.g., Øksendal and Sulem (2004) for
results on a finite time horizon, Sato (1999), Chan (1999) and Jacod and Shiryaev
(2002) for general results, and Huang and Pagès (1992) or Revuz and Yor (1991))
for results on the infinite time horizon.

Recall that the computation of the price of an American option must take place
under a risk adjusted, local martingale measure Q in order to avoid arbitrage pos-
sibilities. Under any such measure Q all the assets in the model must have the
same rate of return, equal to the short term interest rate r. Thus we should replace
the term µ by r in equation (5). However, this may not be the only adjustment
required when jumps are present. Typically another, but equivalent, Lévy measure
νQ(dz) will appear instead of ν(dz) in equation (5). We return to the details in the
following sections.

6 Two different models of the same underlying
price process.

In this section we illustrate the above solution for two particular models of a financial
market. We start out by recalling the solution in the standard lognormal continuous
model, used by Black and Scholes and Merton.

6.1 The standard continuous model: α = 0.

Since the equation (9) has to be solved under a risk adjujsted, local martingale
measure Q in order for the solution to be the price of an American put option, we
know that this is achieved in this model by replacing the drift rate µ by the interest
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rate r, and this is the only adjustment for Q required in the standard model. The
equation for γ then reduces to

−r − rγ +
1
2
σ2γ(γ + 1), (14)

which is a quadratic equation. It has the two solutions γ1 = 2r/σ2 and γ2 = −1.
The solution γ2 is not possible, since the boundary condition ψ(∞; c) = 0 for all c,
simply can not hold true in this case. Thus the solution is γ = 2r

σ2 , as first obtained
by Merton (1973a).

Comparative statics can be derived from the expression for the market value in
(8). The results are directly comparable to the results for the finite-lived European
put option: The put price ψ increases with K, ceteris paribus, and the put price
decreases as the stock price x increases. Changes in the volatility parameter have
the following effects: Let v = σ2, then

∂ψ

∂v
=

{
c
v

(
c
x

)γ ln
(

x
c

)
, if x ≥ c;

0, if x < c.
(15)

Clearly this partial derivative is positive as we would expect.
Similarly, but with opposite sign, for the interest rate r:

∂ψ

∂r
=

{
− 2c

γv

(
c
x

)γ ln
(

x
c

)
, if x ≥ c;

0, if x < c.
(16)

The effect of the interest rate on the perpetual put is the one we would expect, i.e.,
a marginal increase in the interest rate has, ceteris paribus, a negative effect on the
perpetual put value.

Notice that we have used above that

∂ψ

∂γ
=

{
− c

γ

(
c
x

)γ ln
(

x
c

)
, if x ≥ c;

0, if x < c,
(17)

in other words the price is a decreasing function of γ when x := St ≥ c, a result we
will make use of below.

From the derivation in Section 4 we notice that the relationship (17) is true also
in the jump-diffusion model, and because of this property, one can loosely think of
the parameter γ as being inversely related to the ”volatility” of the pricing process,
properly interpreted.

6.2 A discontinuous model: The jump component is propor-
tional to a Poisson process.

In this section we assume that ν(dz) is the frequency λ times the Dirac delta function
at z0, i.e., ν(dz) = λδ{z0}(z)dz, z0 ∈ R\{0} so that all the jump sizes are identical
and equal to z0 (which means that N is a Poisson process, of frequency λ, times z0).
First we consider the pure jump case (σ2 = 0). We choose the function η(z) ≡ z in
this part, and the range of integration accordingly changes from R := (−∞,∞) to
(−1/α,∞).
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Using the results of Section 5, we find by Theorem 1 the market price of risk
θ(z) from equation (13) after we have used the risk free asset as a numeraire. Thus
θ must satisfy the equation

α

∫ ∞

−1/α

zθ(z)ν(dz) = µ− r, (18)

Due to the form of the Lévy measure ν(dz), this equation reduces to

θ(z) =

{
µ−r
αz0λ , if z = z0;
0, otherwise.

(19)

This could be compared to the familiar Sharpe ratio µ−r
σ in the standard lognormal

case. Here the term α2z2
0λ is the variance rate corresponding to the term σ2 in the

geometric Brownian motion model. This model is complete, and there is only one
solution to the above equation (18).

Consider the risk adjusted probability measure Q. If we derive the dynamics of
the discounted process S̄t := e−rtSt, this process has drift zero under the measureQ,
corresponding to the market price of risk in (18), or equivalently, S has drift r under
Q. Thus we must replace µ by r in the equation (9). It turns out that this is not
the only adjustment to Q we have to perform here: Consider two Poisson processes
with intensities (frequencies) λ and λQ and jump sizes z0 and zQ

0 corresponding to
two measures P and Q respectively. Only if z0 = zQ

0 can the corresponding Pt and
Qt be equivalent. This means that changing the frequency of jumps amounts to
”reweighting” the probabilities on paths, and no new paths are generated by simply
shifting the intensity. However, changing the jump sizes generates a different kind
of paths. The frequency of a Poisson process can be modified without changing the
”support” of the process, but changing the sizes of jumps generates a new measure
which assigns nonzero probability to some events which were impossible under the
old one. Thus z0 = zQ

0 is the only possibility here.
Turning to the frequency under λQ under Q, recall that ν(dz) = λδ{z0}(z)dz so

we have here

ÑQ(dt, dz) := N(dt, dz)− (1− θ(z))λδ{z0}(z)dzdt.

Since the term (1 − θ(z)) = (1 − θ0) where θ0 := (µ − r)/αλz0 is a constant, we
must interpret the term λ(1−θ0) as the frequency of jumps under the risk adjusted
measure Q, or

λQ := λ(1− θ0) = λ+
r − µ

αz0
. (20)

Here we notice an important difference between the standard continuous model
and the model containing jumps. While it is a celebrated fact that the probability
distribution under Q in the standard model does not depend on the drift parameter
µ, in the jump model it does. This will have as a consequence that values of options
must also depend on µ in the latter type of models. For the American perpetual
put option we see this as follows: The equation for γ is

λQ(1 + αz0)−γ = (r − λQαz0)γ + λQ + r. (21)
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This equation is seen to depend on the drift parameter µ through the term λQ given
in equation (20). Thus the parameter γ depends on µ, and finally so does the option
value given in equation (8).

Let us briefly recall the argument why the drift parameter can not enter into the
pricing formula for any contingent claim in the standard model: If two underlying
asset existed with different drift terms µ1 and µ2 but with the same volatility
parameter σ, there would simply be arbitrage. In the jump model different drift
terms lead to different frequencies λQ

1 and λQ
2 through the equation (20), but this

also leads to different volatilities of the two risky assets, since the volatility (under
Q) depends upon the jump frequency (under Q). Thus no inconsistency arises when
the drift term enters the probability distribution under Q in the jump model.

Let us denote the equity premium by ep := (r−µ). We may solve the equations
(20) and (21) in terms of ep. This results in a linear equation for ep, and the solution
is

ep = αz0

{
r(γ + 1)

(1 + αz0)−γ − (1− αz0γ)
− λ

}
. (22)

Although this formula indicates a very simple connection between the equity pre-
mium and the parameters of the model, it is in some sense circular, since the
parameter γ on the right hand side is not exogenous, but depends on all the pa-
rameters of the model. We will demonstrate later how this formula may be used to
infer about historical risk premiums.

Let us focus on the equation (21) for γ. This equation is seen to have a positive
root γd where the power function to the left in equation (21) crosses the straight
line to the right in (21). If z0 > 0, there exists exactly one solution if r < λQαz0 for
positive interest rate r > 0. If r ≥ λQαz0 > 0 there is no solution. If −1 < z0 < 0,
the equation has exactly one solution for r > 0, provided αz0 > −1.

Example 1. Here we illustrate different solutions to the equations for γ, first
without risk adjustments, but where we calibrate the variance rates of the two
noise terms. Here we recall that the variance of a compound Poisson process Xt is
var(Xt) = λtE(Z2), where Z is the random variable representing the jump sizes.
We can accomplish this by choosing α = λ = σ = 1, when the jump size parameter
z0 = 1, noticing that z2

0 here corresponds to E(Z2). Fixing the short term interest
rate r = .06, we get the solution γd = .20 of equation (21), while the corresponding
solution to the equation (14) is γc = .12. Suppose the exercise price K = 1. Then
we can compute the trigger price cc = .11 in the continuous model, while cd = .17
in the discontinuous model. This means that without any risk adjustments of the
discontinuous model, it is optimal to exercise earlier using this model than using
the continuous model, at least for this particular set of parameter values. �

Using the respective formulas for the prices of the American put option in the two
cases of Example 1, by the formula for the price ψ(x, c) in equation (8) of Section 4 it
is seen that the price ψc based on the continuous model is larger then the price ψdu

based on the discontinuous model with no risk adjustments, or ψc(x; cc) > ψdu(x; cd)
for all values x > cc of the underlying risky asset, ψc(x; cc) = ψdu(x; cd) for x ≤ cc.
According to option pricing theory, this ought to mean that there is ”less volatility”
in the jump model without risk adjustment than in the continuous counterpart.
Thus risk adjustments of the frequency λQ must mean that λQ > λ, when z0 > 0.

Example 2. Consider on the other hand the case where z0 < 0, and let us
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pick z0 = −.5. Now γd = .29 for the same set of parameter values as above. In
order to properly calibrate the variance rates of the two models, we compare to the
continuous model having σ2 = λz2

0 = .25 or σ = .50. This yields γc = .48, which
means that the situation is reversed from the above. The price commanded by the
continuous model has decreased more than the corresponding price derived using
discontinuous dynamics, without risk adjustments. Thus risk adjustments of the
frequency λQ must now (z0 < 0) mean that λQ < λ. �

From these numerical examples it seems like we have the following picture:
When the jumps are all positive (and identical) and we do not adjust for risk, the
jump model produces put option values reflecting less risk than the continuous one.
When the jump sizes are all negative (and identical), and we continue to consider
the risk neutral case, the situation is reversed. These conclusions seem natural
for a put option, since price increases in the underlying tend to lower the value
of this insurance product. In Example 1 only upward, sudden price changes are
possible for the underlying asset, whereas the downward movement stemming from
the compensated term in the price path is slower and predictable. Thus a put option
that is not adjusted for risk ought to have less value under such dynamics, than in
a situation where only negative, sudden price changes can take place.

In Section 7 we consider numerical results after risk adjustments of the jump
model. This leads to some interesting results. Next we consider two examples.

6.3 A calibration exercise: Two initial examples.

We would like to use the above two different models for the same phenomenon to
infer about equity premiums in equilibrium. In order to do this, we calibrate the two
models, which we propose to do in two steps. First we ensure that the martingale
terms have the same variances in both models, just as in examples 1 and 2 above.
Second, both models ought to yield the same option values.

Example 3. Let us choose σ = .165 and r = .01. The significance of these
particular values will be explained below.

Our calibration consists in the following two steps: (i) First, the matching of
volatilities gives the equation z2

0α
2 = σ2 = .027225. We set the parameter α =

1, and start with z0 = .01, i.e., each jump size is positive and of size one per
cent. The compensated part of the noise term consists of a negative drift, precisely
”compensating” for the situation that all the jumps are positive. Then means that
λ = 272.27 which is a roughly one jump each trading day on the average, where the
time unit is one year.

(ii) Second, we calibrate the prices. Because of the equation (8), this is equivalent
to equating the values of γ. Thus we find the value of λQ that yields γd as a solution
of equation (21) equal to the value γc resulting from solving the equation (14) for
the standard, continuous model. For the volatility σ = .165, the latter value is
γc = .73462. By trying different values of λQ in equation (21), we find that the
equality in prices is obtained when λQ = 274.73.

Finally, from the equation (20) for the risk adjusted frequency λQ we can solve
for the equity premium ep = (r − µ), which is found to be .0248, or about 2.5 per
cent..

Equivalent to the above is to use the formula for the equity premium ep in
equation (22) directly, using γ = γc in this equation and the above parameters
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values of α, z0, r and λ.
Is this value dependent of our choice for the jump size z0? Let us instead choose

z0 = .1. This choice gives the value of the frequency λ = 2.7225, the risk adjusted
frequency λQ = 2.9700 and the value for the equity premium (r − µ) = .0248, or
about 2.5 per cent again. Choosing the more extreme value z0 = 1.0, i.e., the upward
jump sizes are all 100 per cent of the current price, gives the values λ = .0272, the
risk adjusted frequency λQ = .0515 and the equity premium (r− µ) = .0248, again
exactly the same value for this quantity. �.

In the above example the value of σ = .165 originates from an estimate of the
volatility for the Standard and Poor’s composite stock price index during parts of
the last century. Thus the value of the equity premium around 2.5 per cent has
independent interest in financial economics and in macro economics.

Notice that µ < r in equilibrium. This is a consequence of the fact that we are
analyzing a perpetual put option, which can be thought of as an insurance product.
The equilibrium price of a put is larger than the expected pay-out, because of risk
aversion in the market. For a call option we have just the opposite, i.e., µ > r, but
the perpetual call option is of no use for us here, since its market value is zero.

Notice that in the above example we have two free parameters to choose, namely
z0 and α. The question remains how robust this procedure is regarding the choice
of these parameters. The example indicates that our method is rather insensitive
to the choice of the jump size parameter z0. In the next section, after we have
studied the comparative statics for the new parameters λQ, z0 and α, we address
this problem in a more systematic way, but let us just round off with the following
example.

Example 4. Set σ = .165 and r = .01, and consider the case when z0 < 0. First
choose z0 = −.01 (and α = 1). i.e., each jump size is negative and of size one per cent
all the time. The compensated part of the noise term will now consist of a positive
drift, again ”compensating” for the situation that all the jumps are negative. Then
we get λ = 272.27 and the risk adjusted frequency is now λQ = 269.78. This gives
for the equity premium (r − µ) = .0247, or again close to 2.5%.

The value z0 = −.1 gives λ = .0273, the risk adjusted frequency λQ = 2.473 and
an estimate for the equity premium is (r − µ) = .0251. The more extreme value
of z0 = −.5, i.e., each jump results in cutting the price in half, provides us with
the values λ = .1089, λQ = .0585 and (r − µ) = .0252. This indicates a form of
robustness regarding the choice of the jump size parameter. �

6.4 Comparative statics for the pure jump model

In this section we indicate some comparative statics for the pure jump model con-
sidered above. We have here three new parameters λQ, α and z0 to concentrate on.
In addition we have the drift parameter µ. Since we do not have a closed form solu-
tion, we have to rely on numerical methods. Here the result (17) is useful, since we
only have to find the effects on the parameter γ in order to obtain the conclusions
regarding the option values.

First let us consider the jump size parameter z0, and we start with negative
jumps. The results are reported in tables 1 and 2.

We notice from these that when the jump sizes are large and negative, the
parameter γ is small and close to zero, meaning that the corresponding option value
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z0 -.999 -.99 -.90 -.80 .-70 - .60 -.50 -.40 -.30
γ 9.9 · 10−3 .016 .0412 .071 .113 .179 .290 .495 .941

Table 1: The parameter γ for different negative values of the jump sizes z0: λQ = 1,
α = 1, r = .06

z0 -.20 -.10 -.05 .-.03 -.02 -.01 -.001 -.0001
γ 2.18 8.19 27.36 62.27 115.40 311.35 5882.94 85435.51

Table 2: The parameter γ for different negative values of the jump sizes z0: λQ = 1,
α = 1, r = .06

is close to its upper value of K, regardless of the value of the underlying stock St.
As the jump sizes become less negative, the parameter γ increases, ceteris paribus,
meaning that the corresponding option values decrease. As the jump sizes become
small in absolute value, γ grows large, reflecting that the option value decreases
towards its lowest possible value, which is ψl(x,K) = (K − x)+ when c = K.
Notice that there exists a solution γ to equation (21) across the whole range of
z0-values in (−1, 0), which follows from our earlier observations.

For positive values of the jump size z0 parameter, we have the following:

z0 .0600003 .060005 .061 .062 .065 .07 .10 .30 .50
γ .353 · 107 .212 · 106 1060 530 212 106 24 1.86 .693

Table 3: The parameter γ for different positive values of the jump sizes z0: λQ = 1,
α = 1, r = .06

From tables 3 and 4 we see that small positive jump sizes have the same effect on
γ as small negative jump sizes, giving low option values. As the jump size parameter
z0 increases, the value of the option increases towards its upper value of K.

These tables show that increasing the absolute value of the jump sizes, has the
effect of decreasing the values of γ, which means that the values of the option
increase. Here the jump size can not be decreased lower than −1, which is a
singularity of the equation (21) when α = 1. Notice from Table 3 that equation
(21) only has a solution when .06 < z0, which is consistent with the requirement
r < λQαz0 in this situation.

Turning to the risk adjusted frequency parameter λQ, under Q, we have the
following. Tables 5 and 6 show that as the risk adjusted frequency λQ increases, the
parameter γ decreases. Increasing the frequency means increasing the ”volatility”
of the underlying stock and this should imply increasing option prices, which is
also the conclusion here following from the result (17). Note from Table 5 how the
requirement r < λQαz0 comes into play: There is no solution γ of the equation (21)
for z0 ≤ .06 for these parameter values, in agreement with our earlier remarks.

From these latter two tables we are also in position to analyze how the option
price depends on the drift parameter µ. Suppose µ decreases. Then, ceteris paribus,
λQ increases, and the tables indicate that the parameter γ decreases and accordingly
the put option value increases. Thus a decrease of the (objective) drift rate µ makes
the put option more valuable, which seems reasonable, since this makes it more likely

15



z0 .80 1 2 6 10 20 100 10 000
γ .299 .204 .068 .015 .0079 .0035 .63 · 10−3 .60 · 10−5

Table 4: The parameter γ for different positve values of the jump sizes z0: λQ = 1,
α = 1, r = .06

λQ .0600003 .060005 .061 .062 .070 .10 .80 .90
γ 4.0 · 105 .2.4 · 103 121.00 61.00 13.00 3.82 .26 .23

Table 5: The parameter γ for different values of the risk adjusted jump frequency
λQ: z0 = 1, α = 1, r = .06

that the option gets in the money. Notice that this kind of logic does not apply to
the standard model, which may be considered a weakness.

Finally we turn to the parameter α. From the dynamic equation of the stock (1)
one may be led to believe that this parameter plays a role similar to the parameter σ.
Also from the equation (21) for γ it appears only in the product αz0. In the present
model the variance rate of the jump model is λα2z2

0 , so in this situation this product,
after multiplication by λ, corresponds to the parameter σ2 in the continuous model.
However, when we consider jumps of different sizes the parameters α and z0 can be
disentangled.

It is not common to allow the parameter α to have negative values, unlike for
the jump size z0-parameter. Here we think of α as playing a role similar to σ, and
this latter parameter is by convention positive. If we were to make a table of γ for
varying values of α, we would confine ourselves to positive values, in which case the
table would be identical to the corresponding table for z0 (if z0 = 1) by the above
remarks, so we omit it here. In general α affects the support of the jump sizes, a
matter we return to in the last section of the paper.

The conclusion for the parameter α is that as α increases, ceteris paribus, the
option value increases, and approaches in the end, uniformly in x, its upper value
of K.

6.5 Related risk adjustments of frequency

Risk adjustments of the frequency has been discussed earlier in the academic lit-
erature, in particular in insurance, see e.g., Aase (1999). This type of adjustment
is, however, often referred to as something else in most of the actuarial literature;
typically it is called a ”loading” on the frequency. The reason for this is that in
part of this literature there is no underlying financial model, and prices of insurance
products are exogenous. In life insurance, for instance, the mortaliity function used
for pricing purposes is usually not the statistically correct one, i.e., an estimate λ̂ of
λ, but a different one depending on the nature of the contract. For a whole life in-
surance product, where the insurer takes on mortality risk, the employed frequency
is typically larger than λ̂, while for an endowment insurance, such as a pension or
annuity, it is typically smaller.

One way to interpret this is as risk adjustments of the mortality function, in-
creasing the likelihood of an early death for a whole life product, and increasing
the likelihood of longevity for a pensioner. Both these adjustments are in favor of
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λQ 1 1.5 2 3 10 100 1000 10000
γ .2042 .1341 .1000 .0661 .0196 .0019 .0002 2 · 10−5

Table 6: The parameter γ for different values of the risk adjusted jump frequency
λQ: z0 = 1, α = 1, r = .06

the insurer, making the contract premiums higher, but must at the same time also
be accepted by the insured in order for these life insurance contracts to be traded.
Thus one may loosely interpret these adjustments as market based risk adjustments,
although this is not the interpretation allowed by most traditional actuarial models,
for reasons explained above.

A different matter is hedging in the present model. This is not so transparent
as in the standard model, and has been solved using Malliavin calculus, see Aase,
Øksendal, Ubøe and Privault (2000) and Aase, Øksendal and Ubøe (2001), for
details.

7 Implications for equity premiums.

7.1 Introduction

In this section we turn to the problem of estimating the premium on equity of the
twentieth century mentioned in the introduction. As indicated in examples 3 and
4, we suggest to use the results of the present paper to infer about the equity risk
premium. The situation is that we have two complete financial models of about the
same level of simplicity. We adapt these two models to the Standard and Poor’s
composite stock price index for the time period mentioned above, and compute
the value of an American perpetual put option written on any risky asset having
the same volatility as this index. Since the two models are both complete, and at
about the same level of sophistication, we make the assumption that the theoretical
option prices so obtained are approximately equal. Now we use the fact that the
standard continuous model provides option prices that do not depend on the actual
risk premium of the risky asset, but the jump model does. Exactly this difference
between these two models enables us to find an estimate, based on calibrations,
of the relevant equity premium. This corresponds to a no-arbitrage value, and
since both the financial models are complete, these values are also consistent with
a financial equilibrium, and can alternatively be thought of as equilibrium risk
premiums.

7.2 The calibration

We now perform the calibration indicated in examples 3 and 4. Starting with the
two no-arbitrage models of the previous section, we recall that this is carried out
in two stages. First we match the volatilities in the two models under the given
probability measure P : This gives the equation σ2

S = z2
0α

2λ. (We set α equal to
one without loss of generality.) This step is built on a presumption that there is a
linear relationship between equity premiums and volatility in equilibrium.
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The consumption based capital asset pricing model (CCAPM) is a general equi-
librium model, different from the option pricing model that we consider, where
aggregate consumption is the single state variable. As a consequence, the instanta-
neous correlation between consumption and the stock index is equal to one for the
continuous model, and this leads to a linear relationship between equity premiums
and volatility. As noted by several authors, there is consistency between the op-
tion pricing model and the general equilibrium framework (e.g., Bick (1987), Aase
(2002)). For the discontinuous model this linear relationship is not true in general
(e.g., Aase (2004)), but holds with good approximation for the model of Section 6,
a point we return to at the end of this section.

Second, we calibrate the prices. Because of the equation (8), this is equivalent to
equating the values of γ. This will make our comparisons independent of the strike
price K, as well as of the maturity of the option, since we consider a perpetual.
Thus we find the value of λQ that yields γd as a solution to equation (21) equal to
the value γc resulting from solving the equation (14) for the standard, continuous
model.

Finally we infer ep from equation (20) for the risk adjusted frequency λQ. Since
λQ = λ + (r − µ)/z0α, this procedure only depends on the value of the jump
size z0 that we have chosen. As noticed before, the required computations may be
facilitated by using the formula (22) for the equity premium ep, where we substitute
the value γ = γc.

The following tables indicate that the procedure is rather insensitive to the
choice of z0. We start with the short rate equal to one per cent:

z0 - 0.9 - 0.7 - 0.5 - 0.3 - 0.1 - 0.01 - 0.001
λ .03361 .05556 .10890 .30250 2.7225 272.25 27225
λQ .00461 .01912 .05847 .21911 2.4737 269.77 27200
ep 0.0261 0.0255 0.0252 0.0250 0.0249 0.0248 0.0250

Table 7: The equity premium ep, the jump frequency λ and the risk adjusted jump
frequency λQ for various values of the jump size parameter z0. The short term
interest rate r = .01, and γc = γd = .73462.

z0 0.001 0.01 0.1 0.5 1.0 10 100
λ 27225 272.25 2.7225 .10890 .02723 .00027 .27225·10−5

λQ 27249 274.73 2.9700 .15810 .05157 .00266 .23927·10−3

ep 0.0240 0.0248 0.0248 0.0246 0.0245 0.0239 0.0237

Table 8: The equity premium ep, the jump frequency λ and the risk adjusted jump
frequency λQ for various values of the jump size parameter z0. The short term
interest rate r = .01, and γc = γd = .73462.

From tables 7 and 8 we notice that the value of the equity premium is rather
stable, and fluctuates very little around .025. Even for the extreme values z0 = −.9,
−.7 and −.5 the values of the equity premium is rather close to 2.5 per cent. These
latter values of z0 correspond to a crash economy, where a dramatic downward
adjustment occurs very rarely. (For a related, but different, discrete time model of
a crash economy, see e.g., Rietz (1988)).
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Also the extreme values of z0 at the other end, 1.0, 10 and 100 corresponding
to a bonanza economy with sudden upswings of 100, 1000 and 10, 000 per cent
respectively, provide values of the equity premium of around 2.4 per cent. We
conclude that the values of the equity premium found by this method is robust
with respect to the jump size parameter z0 at the level of accuracy needed here.
This holds for the short interest rate r = .01.

Tables 9 and 10 give a similar picture for the interest rate r = .04, but now the
equity premium has changed to about 4.4 per cent.

z0 - 0.9 - 0.7 - 0.5 - 0.3 - 0.1 - 0.01 - 0.001
λ .03361 .05556 .1089 .30250 2.7225 272.25 27225
λQ .00018 .00503 .030321 .1623 2.2821 267.78 27181
ep 0.0301 0.0354 0.0393 0.0421 0.0440 0. 0447 0.0436

Table 9: The equity premium ep, the jump frequency λ and the risk adjusted jump
frequency λQ for various values of the jump size parameter z0. The short term
interest rate r = .04, and γc = γd = 2.93848.

z0 0.001 0.01 0.1 0.5 1.0 10 100
λ 27225 272.25 2.7225 .10890 .02723 .00027 .27225·10−5

λQ 27270 276.75 3.1774 .20379 .07615 .00555 .53796·10−3

ep 0.0452 0.0449 0.0455 0.0474 0.0489 0.0528 0.0535

Table 10: The equity premium ep, the jump frequency λ and the risk adjusted
jump frequency λQ for various values of the jump size parameter z0. The short
term interest rate r = .04, and γc = γd = 2.93848.

Table 11 gives the connection between the short interest rate and the equity
premium in our approach. Although we have only performed the calculations for
the jump size value z0 = −.01, we get an indication of this relationship.

r 0.00001 0.001 0.01 0.02 0.03 0.04 0.05 0.06
ep 1.8% 1.9% 2.5% 3.1% 3.8% 4.5% 5.2% 5.8%

Table 11: The equity premium ep, as a function of the short term interest rate.
z0 = −.01, α = 1.

The tables are consistent with the CCAPM for this particular jump process, a
fact we now demonstrate. To this end let us recall an expression for the CCAPM
for jump-diffusions (eq. (29) in Aase (2004)):

ep =(RRA)
(
σc · σR + λ

∫ ∞

−1

∫ ∞

−1

zRzcF (dzr, dzc)
)

− λ(RRA)(RRA+ 1)
∫ ∞

−1

∫ ∞

−1

zRz
2
cF (dzr, dzc) + · · ·

(23)

Here (RRA) stands for the coefficient of relative risk aversion, assumed to be a con-
stant, σR is the volatility of the stock index, σc the standard deviation of aggregate
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consumption, and F is the joint probability distribution function of the jumps in
the stock index and aggregate consumption. If there are no jump terms, we notice
that ep is proportional to the volatility parameter σR. The next term inside the
parenthesis is the jump analogue of the first term, and then higher order terms fol-
low. Neglecting the latter for the moment, we notice that for the pure jump model
of this section, equation (23) can be written

ep = (RRA)
(√

λz2
0,R ·

√
λz2

0,c

)
(where we have set α = 1). Also here we see that ep is proportional to (λz2

0,R)1/2,
the volatility of the stock index, neglecting higher order terms. Thus our assumption
that this is the case, holds approximately in the model at hand, and the results of
this section are accordingly seen to be consistent with the CCAPM.

7.3 The relation to the classical puzzles.

From our results we can say something about the two puzzles mentioned in the
introduction. We may reexamine the two puzzles using the above model, and find
values for the parameters of the representative agent’s utility function for different
values of the equity premiums and short term interest rates, calibrated to the first
two moments of the US consumption-equity data for the period 1889-1978. Below
we present the results without going into details.

Consider first the case where r = .01 and the equity premium is 2.5 per cent.
(This is, as noted above, not consistent with the Mehra and Prescott (1985) study,
where r = .01 and the equity premium was 6 per cent.) The jump model can explain
a relative risk aversion coefficient of 2.6, which must be considered as a plausible
numerical value for this quantity. Turning to the Mehra and Prescott (1985)-case,
this value is estimated to 10.2 using the continuous model, which is simply a version
of the equity premium puzzle.

For the reexamined values presented in the McGrattan and Prescott (2003)
study, the short term interest rate was estimated to be four per cent, with an
equity premium of only one per cent. This is not consistent with our approach,
which gives the equity premium of about 4.4 per cent in this situation. Our case
corresponds to a relative risk aversion of around 3.3, estimated using a jump model.

In both situations above we still get a (slightly) negative value for the subjective
interest rate.

8 A combination of the standard model and a Pois-
son process

We now introduce diffusion uncertainty in the model of the previous section. We
choose the standard Black and Scholes model as before for the diffusion part. Taking
a look at the equation (9) for γ, at first sight this seems like an easy extension of
the last section, including one more term in this equation. But is is more to it than
that. First we should determine the market price of risk. We have now two sources
of uncertainty, and by ”Girsanov type” theorems this would lead to an equation of
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the form
σθ1 + αz0λθ2(z0) = µ− r,

where θ1 is the market price of diffusion risk and θ2(z) is the market price of jump
size risk for any z. This constitutes only one equation in two variables, and has
consequently infinitely many solutions, so this model is not complete. The problem
is that there is too much uncertainty compared to the number of assets. In the
present situation we can overcome this difficulty by introducing one more risky
asset in the model. Hence we assume that the market consists of one riskless asset
as before, and two risky assets with price processes S1 and S2 given by

dS1(t) = S1(t−)[µ1dt+ σ1dB(t) + α1

∫
A

z1Ñ(dt, dz)], (24)

where S1(0) = x1 > 0 and

dS2(t) = S2(t−)[µ2dt+ σ2dB(t) + α2

∫
A

z2Ñ(dt, dz)], (25)

where S2(0) = x2 > 0. Here the set of integration A = (−1/α1,∞) × (−1/α2,∞),
and z = (z1, z2) is two-dimensional. We now choose the following Lévy measure:

ν(dz) = λδz1,0(z1)δz2,0(z2)dz1dz2

meaning that at each time τ of jump, the relative size jump in S1 is z1,0 units
multiplied by α1, and similarly the percentage jump in S2 is z2,0 units times α2.
(One could perhaps say that the jump sizes are independent, but since there is
just one alternative jump size for each ”probability distribution”, we get the above
interpretation.)

These joint jumps take place with frequency λ. These returns have a covariance
rate equal to σ1σ2 from the diffusion part and λα1α2z1,0z2,0 from the jump part, so
the risky assets display a natural correlation structure stemming from both sources
of uncertainty. This gives an appropriate generalization of the model of the previous
section.

In order to determine the market price of risk for this model, we are led to
solving the following two equations:

σ1θ1 + α1

∫
A

z1θ2(z)ν(dz) = µ1 − r,

and
σ2θ1 + α2

∫
A

z2θ2(dz)ν(dz) = µ2 − r.

Using the form of the Lévy mesure indicated above, the market price of jump size
risk θ2(z) = θ2 a constant when z = z0 := (z1,0, z2,0) and zero for all other values
of z. The above two functional equations then reduce to the following set of linear
equations

σ1θ1 + λα1z1,0θ2 = µ1 − r,

and
σ2θ1 + λα2z2,0θ2 = µ2 − r,
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which leads to the solution

θ1 =
(µ1 − r)α2z2,0 − (µ2 − r)α1z1,0

σ1α2z2,0 − σ2α1z1,0

for the market price of diffusion risk, and

θ2 =
(µ1 − r)σ2 − (µ2 − r)σ1

λ(σ2α1z1,0 − σ1α2z2,0)
(26)

for the market price of jump size risk, where θ2(z) = θ2I{z0}(z), the function IB(z)
being the indicator function of the set B. Here (σ2α1z1,0 − σ1α2z2,0σ2) 6= 0, and
the constant θ2 ≤ 1 . This solution is unique, so the model is complete provided
the parameters satisfy the required constraints.

Consider the risk adjusted probability measureQ determined by the pair (θ1, θ2(z))
via the localized, standard density process for the infinite horizon situation of Sec-
tion 5. If we define ÑQ(dt, dz) := N(dt, dz) − (1 − θ2(z))ν(dz)dt, and BQ(t) :=
θ1t+B(t), then

∫ t

0

∫
A
ÑQ(dt, dz) is a local Q-martingale and BQ is a Q-Brownian

motion. The first risky asset can be written under Q,

dS1(t) = S1(t−)[rdt+ σ1dB
Q(t) + α1

∫
A

z1Ñ
Q(dt, dz)], (27)

and thus S̄1(t) := S1(t)e−rt is a local Q-martingale. A similar result holds for the
second risky asset.

We are now in the position to find the solution to the American put problem.
Consider the option written on the first risky asset. It follows from the above that
the equation for γ can be written

λQ(1 + α1z1,0)−γ = (r − λQα1z1,0)γ −
1
2
σ2

1γ(γ + 1) + λQ + r, (28)

where λQ := λ(1 − θ2), and θ2 is given by the expression in (26). Again we have
dependence from the drift term(s) µ on the risk adjusted probability distribution.
Here both of the parameters of the second risky asset enter into the expression for
the risk adjusted frequency λQ, which means that the market price of jump risk
must be determined in this model from equation (26) in order to price the American
perpetual put option.

In the case when z1,0 > 0 (and α1 > 0), this equation can be seen to have one
positive solution for r > 0. (When r ≤ 0 there is a range of parameter values where
the equation has two positive solutions, then one solution, and finally no solutions.)
When −1 < z1,0 < 0, there is exactly one solution when r > 0 (and no positive
solutions when r ≤ 0).

Example 5. In order to compare this situation to the two pure models considered
in examples 1 and 2, let us again choose the parameter values such that the variance
rates of all three models are equal, but we do not risk adjust the pure jump model,
neither do we risk adjust the jump part of the model of this section. This means
that we have set θ0 = 0 and θ2 = 0. This is accomplished, for example, by choosing
α = 1 and λ = .7, σ = .55 and z0 = 1. For r = .06, we get the solution γd,c = .17
to the equation (28), while the solution to the equation (21) is γd = .20, and the
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corresponding solution to the equation (14) is γc = .12. Thus the present solution
lies between the two first numerical cases considered in Example 1.

Considering the situation when z0 < 0, we now calibrate to the situation of
Example 2. Then we can choose α = λ = 1 and σ2 + λα2z2

0 = .25, which is
accomplished, for example, by choosing σ2 = .125 and z0 = −.35355. This gives
the solution γd,c to the equation (28) equal to γd,c = .3989, while the solution to
the equation (21) is γd = .29, and the corresponding solution to the equation (14)
is γc = .48, still using the same value for the short interest rate. Thus the present
solution also lies between the two pure cases in Example 2. �

As a preliminary conclusion to this example we may be led to consider a com-
bined jump-diffusion model as a compromise between the two pure counterparts.

Turning to calibration, with two risky assets we quickly get many parameters,
and it is not obvious that we can proceed as before. We choose to equate both the
drift rates and the variance rates, but use different characteristics for the latter.
This way the market price of risk parameters will be well defined. According to the
CCAPM for jump-diffusions we may then get different equity premiums, but the
discrepancies will be small if the jump sizes are small, so we shall ignore them here.
This may lead to a small discrepancy from the results obtained in Section 6.

Example 6. We choose α1 = α2 = 1, and consider the two equations σ2
c =

σ2
1 + λz2

1,0 = .027225 and σ2
c = σ2

2 + λz2
2,0 = .027225, where we choose σ1 = .01

(σ1 ≤ .165 is the obvious constraint here), and z1,0 = .1, z2,0 = .01. This leads to
λ = 2.7125 and σ2 = .1642. Then we calibrate the solution γc,d to the equation (28)
to the value for the standard continuous model γc = .73462 for the US data, and
find that this corresponds to the risk adjusted frequency λQ = 2.9593. Assuming
that (µ1 − r) ≈ (µ2 − r) := (µ − r), the relationship λQ = λ(1 − θ2) can now be
written, using the expression (26) for the market price of jump risk θ2:

λQ ≈ λ+ (r − µ)

(
σ2 − σ1

σ2α1z1,0 − σ1α2z2,0

)
.

The only unknown quantity in this equation is the equity premium, which leads
to the estimate (r − µ) = .0261 when r = .01. The market price of diffusion risk
θ1 = −.14, and the market price of jump risk is θ2 = −.09.

The same procedure when r = .04 leads to λQ = 3.1658, and the estimate
(r−µ) = .048. This confirms the results of the previous section, within the expected
margin of error. Now the market prices of risk are θ1 = −.26 and θ2 = −.17. �

9 Different jump sizes.

We now turn to the situation where several different jump sizes can occur in the
price evolution of the underlying asset. Suppose the Lévy measure ν is supported
on n different points a1, a2, · · · , an, where −1 < a1 < a2 < · · · < an < ∞, ai 6= 0
for all i. In our interpretation we may think of the jump size distribution function
F (dz) as having n simple discontinuities at each of the numbers a1, a2, · · · , an with
sizes of the discontinuities equal to p1, p2, · · · , pn, pi being of course the probability
of the jump size ai, i = 1, 2, · · · , n.
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A purely mechanical extenison of the model in section 6.2 leads to an incomplete
model, since by proceeding this way we end up with one equation of the type

αλ
n∑

i=1

aiθ(ai)pi = µ− r,

containing n unknown market price of risk parameters θ(a1), θ(a2), · · · , θ(an). In-
stead we consider the following market. A riskless asset exists as before, and n risky
assets exist having price processes S(t) = (S1(t), S2(t), · · · , Sn(t)) given by

dSi(t)
Si(t−)

= µidt+
n∑

j=1

αi,j

∫ ∞

−1/αi,j

zÑj(dt, dz), i = 1, 2, · · · , n. (29)

Here Nj is a Poisson process, of frequency λj , times aj , independent of Ni for
i 6= j, and Ñj is the corresponding compensated process. If we define the re-
turn rate process Ri of asset i by dRi(t) = dSi(t)

Si(t−) , this means that the jump
distribution of Ri is αi,1a1 with probability p1 := λ1Pn

j=1 λj
, αi,2a2 with probabil-

ity p2 := λ2Pn
j=1 λj

, · · · , αi,nan with probability pn := λnPn
j=1 λj

. The covariance rate

between returns Ri and Rj is given by (
∑n

k=1 αi,kαj,kλka
2
k), which can vary freely

because of the relatively large freedom of choice of the parameters αi,j . Also note
that jumps occur in any of the price processes with frequency λ :=

∑n
i=1 λi.

This model gives us the following n equations to determine the market price of
risk processes θ(z):

n∑
k=1

αi,kλk

∫ ∞

−1/αi,k

zθk(z)δ{ak}(z)dz = µi − r, i = 1, 2, · · · , n. (30)

Since δ{ak}(z) are the Dirac delta distributions at the points {ak}, this system of
equations reduce to the following system of n linear equations in n unknowns

n∑
k=1

αi,kakλkθk = µi − r, i = 1, 2, · · · , n, (31)

where

θi(z) =

{
θi(ai) := θi, if z = ai;
0, otherwise.

(32)

This system of equations has a unique solution if the associated coefficient de-
terminant is non-vanishing. The solution to the system (31) is

θ = A−1(µ− r) (33)

where θ is the vector of θi’s, A−1 is the inverse of the matrix A with element
ai,j = αi,jλjaj , i, j = 1, 2, · · · , n, and (µ− r) is the vector with i-th element equal
to (µi − r), i = 1, 2, · · · , n. A unique solution exists when det(A) 6= 0, which is
equivalent to det(α̃) 6= 0, where α̃ is the matrix with (i, j)-th element αi,j . As an
illustration, if n = 2 this means that the requirement is (α1,1α2,2 − α2,1α1,2) 6= 0.
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We now turn to the density process associated with the change of probability
measure from P to Q. It is given by

ξ(t) := exp
{ n∑

i=1

n∑
j=1

∫ t

0

∫ ∞

−1/αi,j

[ln(1− θj)Nj(ds, dz) + θjλjδ{aj}(z)dzdt]
}
. (34)

This means that the restriction Qt of Q to Ft is given by dQt(ω) = ξ(t)dPt(ω) for
any given time horizon t, where Pt is the restriction of P to Ft, and Eξ(t) = 1 for all
t, then Pt and Qt assign zero probability to the same events in Ft. As before we call
Q the risk adjusted measure for the price system S in the infinite time horizon case.
This means that if we define the processesNQ

i (dt, dz) := Ni(dt, dz)−(1−θi)νi(dz)dt,
i = 1, 2, · · · , n, the processes

∫ t

0

∫∞
−1/αi,j

ÑQ
i (ds, dz) are local Q-martingales for

j = 1, 2. · · · , n, where the risky assets have the following dynamics under Q:

dSi(t)
Si(t−)

= rdt+
n∑

j=1

αi,j

∫ ∞

−1/αi,j

zÑQ
j (dt, dz), i = 1, 2, · · · , n, (35)

implying that S̄i(t) := Si(t)e−rt is a zero drift local Q-martingale for all i.
This model is accordingly complete provided θi ≤ 1 for all i = 1, 2, · · · , n, and

pricing e.g., the perpetual American put option written on, say, the first asset, is a
well defined problem with a unique solution. The equation for γ for this option can
be written

−r − rγ +
n∑

j=1

λQ
j [(1 + α1,jaj)−γ − 1 + α1,jajγ] = 0, (36)

where λQ
j = λj(1− θj), j = 1, 2, · · · , n. Note that this equation follows from equa-

tion (9) after the appropriate risk adjustments of the various frequecies, if we set
α1,j = α for all j, and Lévy measure ν(dz) = λQF (dz), where the probability distri-
bution function F has discontinuities at the points a1, a2, · · · , an with probabilities
pq
1, p

q
2, · · · , pq

n, where pq
i = λQ

i

λQ and λQ is the frequency of the jumps under the prob-
ability Q (λQ =

∑
i λ

Q
i ). Thus our model captures the general situation, under P ,

with a frequency of jumps equal to λ and a pdf of jump sizes F with support on n
different points. Here is an example:

Example 7. We consider the case of n = 2, where we do not adjust for risk. The
parameters α1,1 = α1,2 = 1, and a1 = −.5, a2 = 1 so that each price jump either
cuts the price in half, or doubles the current price of the underlying asset. We let
λ1 = λ2 = 1 so that the two different jump sizes are equally probable under P , and
the total frequency λ of jumps equals two per time unit.

Fixing r = .06 as before, we get the solution γ2d = .12 to the equation (36). In
order to compare to the standard model and the model with only upward jumps
of the same size (= 1) of Example 1, we find the corresponding γ-values adjusted
so that the various variance rates are equal. They are γc = .10 for σ2 = 5/4 and
γd = .16 for λ = 5/4, α = 1, and z0 = 1 in the jump model. Since γc < γ2d < γd,
the corresponding American perpetual put option prices are ranked ψc > ψ2d > ψd.

In this situation, when both upward and downward sudden jumps are possible
in the price paths of the underlying asset, the corresponding put price is between
the polar cases of only continuous movements or only upward jumps.
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Comparing to the situation with only downward jumps of size −.5 of Example
2, this is calibrated to have the same variance by choosing z0 = −.5, λ = 5, α = 1
which gives γd = .06. Thus we get ψd > ψc > ψ2d, so here the situation with two
jumps reflects the ”least risky” situation. �

We notice that also in the situation with several jumps prices of contingent claims
depend on the drift rates µi of the basic risky assets. In addition to requiring a
risk adjustment of the frequencies λi, the probabilities pi of the different jump sizes
must also be risk adjusted under Q. Thus the system (31) of n linear equations in n
unknowns for the market prices of jump risk θi must be solved in order to correctly
price options and other contingent claims in this model.

9.1 Calibration when n = 2

Suppose we want to calibrate this model to the data from the Standard and Poor’s
composite stock index during the time period 1889-1979, as we did in Section 7.
Since we only have estimates of the short time interest rate and the stock index
volatility, we are left with too many parameters to estimate from too few data
points, and can not expect to get the type of results as we did before. Nevertheless,
below we present a numerical example when n = 2. For the model to be complete,
we need one risky asset in addition to the index, so we assume the model consists
of the two following risky assets:

dS1(t)
S1(t−)

= µ1dt+ α1,1

∫ ∞

−1/α1,1

zÑ1(dt, dz) + α1,2

∫ ∞

−1/α1,2

zÑ2(dt, dz), (37)

and

dS2(t)
S2(t−)

= µ2dt+ α2,1

∫ ∞

−1/α2,1

zÑ1(dt, dz) + α2,2

∫ ∞

−1/α2,2

zÑ2(dt, dz). (38)

From the solution (33) of the system of equations (31) when n = 2, we get for the
market prices of risk parameters θ1 and θ2 the following two expressions:

θ1 =
α2,2(µ1 − r)− α1,2(µ2 − r)
λ1a1(α1,1α2,2 − α1,2α2,1)

, (39)

and

θ2 =
α2,1(µ1 − r)− α1,1(µ2 − r)
λ2a2(α1,2α2,1 − α1,1α2,2)

. (40)

From the equations λQ
i = λi(1− θi), i = 1, 2, we find the risk adjusted frequencies,

λQ
1 = λ1 +

α2,2(r − µ1)− α1,2(r − µ2)
a1(α1,1α2,2 − α1,2α2,1)

, (41)

and

λQ
2 = λ2 +

α2,1(r − µ1)− α1,1(r − µ2)
a2(α1,2α2,1 − α1,1α2,2)

. (42)
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We must choose the constants in the matrix α̃ such that the determinant (α1,1α2,2−
α1,2α2,1) 6= 0. Choosing the first risky asset similar to the composite stock index,
its variance rate must satisfy

α2
1,1λ1a

2
1 + α2

1,2λ2a
2
2 = σ2, (43)

where σ2 = 0.027225 as for the index. The variance rate of the second risky asset
is given by

α2
2,1λ1a

2
1 + α2

2,2λ2a
2
2. (44)

In equilibrium there is sometimes a connection between the equity premiums and
the standard deviation rate, which we now wish to utilize. By the CCAPM for
jump-diffusions, while a linear relationship is almost exact for the model of Section
7, for the present model this is no longer the case. By Schwartz’s inequality this
linear relationship is at the best approximately true when the jump sizes are small
and different in absolute value, as can be deduced from the result (23). Assuming
we can use this approximation here, we get the following:

(µ2 − r) ≈ (µ1 − r)

√
α2

2,1λ1a2
1 + α2

2,2λ2a2
2

α2
1,1λ1a2

1 + α2
1,2λ2a2

2

. (45)

We are now in position to derive an approximate expression for the equity pre-
mium ep = (r−µ1). Using (45) in the expressions (41) and (42), we get λQ

1 = λ1+k1e

and λQ
2 = λ2 + k2e, where

k1 =
α2,2 − α1,2

√
α2

2,1λ1a2
1+α2

2,2λ2a2
2

α2
1,1λ1a2

1+α2
1,2λ2a2

2

a1(α1,1α2,2 − α1,2α2,1)
,

and

k2 =
α2,1 − α1,1

√
α2

2,1λ1a2
1+α2

2,2λ2a2
2

α2
1,1λ1a2

1+α2
1,2λ2a2

2

a2(α1,2α2,1 − α1,1α2,2)
.

Inserting these expressions in the equation (36) for γ when n = 2, we get a linear
equation for ep, which solution is

ep =
[
r(γ + 1) + λ1

(
(1− a1α1,1γ)− (1 + a1α1,1)−γ

)
+ λ2

(
(1− a2α1,2γ)− (1 + a2α1,2)−γ

)]
/
[
k1

(
(1 + a1α1,1)−γ − (1− a1α1,1γ)

)
+ k2

(
(1 + a2α1,2)−γ − (1− a2α1,2γ)

)]
.

(46)

A numerical example is the following.
Example 8. Choosing the parameters α1,1 = α2,2 = α1,2 = 1 and α2,1 = 2,

the absolute value of the determinant |α̃| equals one, so the risk premiums are well
defined. We choose a1 = 0.02 and a2 = −0.01, and p1 = 0.5, and consider first
the case where the short term interest rate r = 0.01. Since p1 = λ1/(λ1 + λ2), we
obtain that λ1 = λ2 = 54.45 from equation (43). From the relation (45) we find
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that (r − µ2) = 1.84(r − µ1), and this enables us to compute the market price of
risk parameters θ1 and θ2, and hence the risk adjusted frequencies, which are

λQ
1 = 54.45 + 42.16(r − µ1), λQ

2 = 54.45− 15.69(r − µ1)

in terms of the equity premium (r − µ1) of the index. By inserting these values in
the equation (36) for γ2d, we can find the value of the risk premium that satisfies
γ2d = γc, where γc is the corresponding solution for the standard model. For r =
0.01 this value is γc = 0.73462. This calibration gives the value (r − µ1) = 0.0226,
or 2.26 per cent equity premium for the composite stock index. The forgoing can
alternatively (and computationally less requiring) be accomplished by using γ = γc

in the expression for e given in (46), together with the other parameter values
indicated.

A similar procedure for the spot rate r = 0.04 calibrates γ2d to γc = 2.93848,
and this gives (r − µ1) = 0.041, or an equity premium of 4.1 per cent for the stock
index. Both these values are reasonably close to the values obtained in Section 7.
�

In the above example the expected return per incident is λ(α1,1a1p1+α1,2a2p2) =
.5445. While there is nothing pathological about this since the compensator secures
that the noise term has zero expected value per unit time, we would nevertheless
like to control the input to the equation (46). We calibrate the frequencies λ1 and
λ2 using equations (I) and(II) as follows

(I) λ(α1,1a1p1 + α1,2a2p2) = Re,

(II) λ(α2
1,1a

2
1p1 + α2

1,2a
2
2p2) = σ2

c = 0.027225.

for various values of Re. Using the parameter values for αi,j as in Example 8, some
results are the following.

a1 .015 .02 .025 .03 .006 .002 .002 .002
a2 - .007 - .006 - .004 -.002 - .02 - .03 - .04 - .05
ep 0.0211 0.0227 0.0239 0.0244 0.0285 0.0256 0.0254 0.0253

Table 12: The equity premium ep when r = 0.01 and Re = 0.001 for various values
of the parameters.

The left half of Table 12 has a1 > |a2| in which case ep is smaller than the value
.025 of Section 7, in the second half a1 < |a2| in which case the equity premiums are
larger than .025. By varying the parameters, we find considerably more variation in
the values of ep than for the simple model of Section 7 (not shown in the table). This
seems natural since the present model is more complex, and it is not reasonable that
a single quantity like the variance rate is sufficient to determine the equity premium.
This can also be confirmed by consulting the CCAPM for this model.

Turning to the case when the interest rate r = 0.04 we have the following. When
the absolute values of a1 and a2 differ the most, we get a situation similar to the one
in Section 7 in which case our assumption (45) becomes reasonable, and the equity
premiums are close to those obtained earlier. In general we can obtain a wide range
of different risk premiums here, by varying the parameters, simply confirming that
our assumptions are not valid for this model in general.
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a1 .012 .012 .012 .04 .007 .005 .003 .002
a2 - .008 - .008 - .008 -.002 - .015 - .02 - .03 - .04
Re - 0.1 - 0.001 0.001 0.025 0.025 0.025 0.025 0.025
ep 0.0315 0.0326 0.0336 0.0445 0.0570 0.0500 0.0468 0.0456

Table 13: The equity premium ep when r = 0.04, for various values of the parame-
ters.

The above example mainly serves to illustrate how to proceed in the general
case. For a particular choice of jump size parameters ai one would need estimates
of the corresponding jump probabilities pi, or frequencies λi. The next step is to
estimate volatilities, and connect the various equity premiums using the CCAPM.
This is subsequently used to compute the market prices of risk, using the solution in
(33), which then yield risk adjusted frequencies λQ

j = λj(1−θj) necessary as inputs
for the equation (36). By leaving the risk premium of the first risky asset as a free
parameter, one can finally calibrate the resulting model to the standard one, for
example, and thus obtain option based estimates of the equity premiums, without
the use of consumption data. This would be the procedure to follow if the assumed
linear relationship between the equity premium and the standard deviation rate is
reasonably accurate.

However, since our results for the present model indicate that this linear rela-
tionship does not hold, the calibration to the continuous, standard model becomes
less interesting. Instead one could proceed as follows: (a) Observe option prices in
the market. (b) Estimate the parameters of the index from historical observations.
From this one could find a market estimate of γ. Then the correct version of the
CCAPM should be used to improve the approximation (45), and finally use the
corresponding expression to (46) to compute ep. This procedure would presumably
need some consumption data when using the CCAPM.

10 A combination of the standard model and the
jump model with different jump sizes.

By introducing also diffusion uncertainty in the model of the previous section, there
will be ”too much uncertainty” compared to the number of assets, but again we may
use the method of Section 8 to enlarge the space of jumps and add one risky asset.
This will lead to a complete model, and our valuation problem again becomes well
defined. The equation for γ is now

−r − rγ +
1
2
σ2

1γ(γ + 1) +
n∑

j=1

λQ
j [(1 + α1,jaj)−γ − 1 + α1,jajγ] = 0, (47)

where σ1 is the volatility parameter of the continuous part of the first risky asset.
Example 9. We compare the combined model of this section, not adjusted for

jump risk, with the purely discontinuous model of the previous section, also not risk
adjusted, and the standard, continuous model. Using the same parameter values
as in the first part of Example 7, we again obtain γ2d = .12, and γc = .10 from
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the standard model having the same variance rate. Choosing α1,1 = α1,2 = .9 and
σ2 = .2375, the combined model of this section has the same variance as the other
two models. This gives the solution to equation (47) equal to γ2d,c = .11. Thus
γc < γ2d,c < γ2d, or ψ2d > ψ2d,c > ψc so that the combined model fits in between
the two pure models, as we also saw in Example 5. �

11 The model with a continuous jump size distri-
bution.

Finally we consider the situation with a continuous distribution for the jump sizes,
and for simplicity we only consider the jump part of the model. In this case the
model is incomplete as long as there is a finite number of assets, since there is ”too
much uncertainty” compared to the number of assets.

The case with countably many jump sizes in the underlying asset could be
approached as in Section 9, by introducing more and more risky assets. In order
for the market prices of risk θ1, θ2, · · · to be well defined, presumably only mild
additional technical conditions need to be imposed. One line of attack is to weakly
approximate any such distribution by a sequence of discrete distributions with finite
supports. This would require more and more assets, and in the limit, an infinite
number of primitive securities in order for the model to possibly be complete.

Here we will not elaborate further on this, but only make the assumption that
the pricing rule is linear, which would be the case in a frictionless economy where
it is possible to take any short or long position. This will ensure that there is some
probability distribution and frequency for the jumps giving the appropriate value
for γ, corresponding to a value for the American perpetual put option.

Below we limit ourselves to a discussion of the prices obtained this way for two
particular choices of the jump distribution, where the risk adjustment is carried out
mainly through the frequency of jumps.

The model is the same as in Section 2 with one risky security S and one locally
riskless asset β. The risky asset has price process S satisfying

dSt = St−[µdt+ α

∫ ∞

−1/α

zÑ(dt, dz)], (48)

where the density process of S is given by

ξ(t) = exp{
∫ t

0

∫ ∞

−1/α

ln(1− θ(z))N(ds, dz) +
∫ t

0

∫ ∞

−1/α

θ(z)λF (dz)ds}, (49)

Here θ(z) is the market price of risk process and F (dz) is the distribution function
of the jump sizes, assumed absolutely continuous with a probability density f(z).
According to our results in Section 5, if the market price of risk satisfies the following
equation ∫ ∞

−1/α

zθ(z)f(z)dz =
µ− r

λα
, (50)

then the risk adjusted compensated jump process can be written

ÑQ(dt, dz) = N(dt, dz)− (1− θ(z))λf(z)dzdt. (51)
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This means that the term

λQfQ(z) := λ(1− θ(z))f(z) (52)

determines the product of the risk adjusted frequency λQ and the risk adjusted
density fQ(z), when θ satisfies equation (50). If the market price of risk θ is a
constant, there is no risk adjustment of the density f(z). The densities f(z) and
fQ(z) are mutually absolutely continuous with respect to each other, which means
in particular that the domains where they are both positive must coincide.

Clearly the equation (50) has many solutions θ, so the model is incomplete.
In solving the American perpetual put problem for this model, it follows from

our previous results that the equation for γ is given by

−r − rγ +
∫ ∞

−1/α

{(1 + αz)−γ − 1 + αγz}λQfQ(dz) = 0, (53)

where we have carried out the relevant risk adjustments. We now illustrate by
considering two special cases for the jump density f(z).

11.1 The truncated normal case

Here we analyze normally distributed returns. In our model formulation, where we
have chosen the stochastic exponential, we observe from the expression (2) for S
that we can not allow jump sizes less than −1/α, so the domain of F is the interval
[−1/α,∞). In this case we choose to consider a truncated normal distribution at
−1/α. By and large we restrict our attention to risk adjustments associated with
a constant θ only. In the present case the most straightforward risk adjustments of
the normal density f(z) having mean m and standard deviation s would be another
normal density having mean mQ and standard deviation sQ, with a similar adjust-
ment for the truncated normal distribution. Here we only notice that a joint risk
adjustment of the jump distribution f to another truncated normal with parameters
mQ and sQ, and of the frequency λ to λQ, means that the equity premium can be
written

ep = α
(
λQEQ{Z|mQ, SQ} − λE{Z|m, s}

)
, (54)

where the expectations are taken of the truncated normal random variable Z with
respect to the parameters indicated. The above formula then follows from (50) and
(52). Notice that α does not change under the measure Q, since the supports of f
and fQ must coincide.

The exponential pricing model with normal jump sizes was considered by Mer-
ton (1976). In that case the probability density of the pricing model St is known
explicitly. In contrast to Merton, who assumed that the jump size risk was not
priced, or, he did not adjust for this type of risk, we will risk adjust precisely the
jump risk, and our model is the stochastic exponential, not the exponential.

Below we have calibrated this model to the continuous one using the same tech-
nique as outlined above. Since the equity premium is not proportional to the volatil-
ity of S in this model, we can not expect to confirm the simple results of Section
7. For Z a random variable with a truncated normal distribution at −1/α, we first
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solve the equation λα2E(Z2) = σ2
c = .027225, or

λα2

∫∞
−1/α

z2 1√
2πs

e−
1
2

(
z−m

s

)2
dz∫∞

−1/α
1√
2πs

e−
1
2

(
z−m

s

)2
dz

= σ2
c

for various values ofm and s, and find the frequency λ. Then we solve equation (53),
using the relevant values for r and γ = γc(r), to find the risk adjusted frequency λQ,
and finally we use equation (50) to find the equity premium ep = (r−µ), assuming
θ is a constant, so that λQ = λ(1 − θ) and f = fQ. Some results are summarized
in tables 14 and 15.

α 1 1 1 .01 .8 3
(m, s) (.1, .1) (.4, .7) (.4, 2.0) (10, 10) (.01, .01) (.01, .01)
λ 1.36 .042 0.0065 1.36 212.70 15.13
λQ 1.60 .079 .019 1.60 215.78 15.94
ep 0.024 0.026 0.025 0.024 0.025 0.024

Table 14: The equity premium ep when r = 0.01 and γ = 0.73462, for various values
of the parameters. The jumps are truncated normally distributed.

By decreasing the parameter α we notice from the above equation that this has
the effect of increasing the frequency of jumps λ. Alternatively this can be achieved
by decreasing the values of m and s, as can be observed in Table 15, where the spot
rate is equal to 4 per cent. A decrease in the standard deviation s, within certain
limits, moves the present model closer to the one of Section 7.

α 1 1 1 .9 2 10
(m, s) (.1, .1) (-.01, .01) (1.0, 0.1) (.01, .01) (.011, .01) (.01, .01)
λ 1.36 136.13 0.027 136.06 30.80 1.36
λQ 1.79 131.62 .076 173.01 32.91 1.79
ep 0.043 0.045 0.049 0.045 0.046 0.043

Table 15: The equity premium ep when r = 0.04 and γ = 2.93848, for various values
of the parameters. The jumps are truncated normally distributed.

11.2 Exponential tails

In this model the distribution of the jump sizes is an asymmetric exponential with
density of the form

f(z) = pae−a|z|I[−∞,0](z)/(1− e−a/α) + (1− p)be−bzI[0,∞](z)

with a > 0 and b > 0 governing the decay of the tails for the distribution of
negative and positive jump sizes and p ∈ [0, 1] representing the probability of a
negative jump. Here IA(z) is the indicator function of the set A. The probability

32



distribution of returns in this model has semi-heavy (exponential) tails. Notice
that we have truncated the left tail at −1/α. The exponential pricing version of
this model, without truncation, has been considered by Kou (2002).

Below we calibrate this model along the lines of the previous section. Also
here we restrict attention to risk adjusting the frequency only. We then have the
following expression for the equity premium:

ep = α(λQ − λ)
(
p
( e−a/α

α(1− e−a/α)
− 1
a

)
+ (1− p)

1
b

)
, (55)

where the frequency is risk adjusted, but not f . A formula similar to (54) can
be obtained if also the density f is to be adjusted for risk. The simplest way
to accomplish this here is to consider another probability density fQ of the same
type as the above f with strictly positive parameters pQ, aQ and bQ. This would
constitute an absolutely continuous change of probability density, but there are of
course very many other possible changes that are allowed. In finding the expression
(55) we have first solved the equation (50) with a constant θ, and then substituted
for the market price of risk using the equation λQ = λ(1− θ).

Proceeding as in the truncated normal case, we first solve the equation λα2E(Z2)
= σ2

c = 0.027225, which can be written

λα2

(
p
(
1− e−a/α

)−1( 2
a2

− e−a/α(
1
α2

+
2
aα

+
2
a2

)
)

+ (1− p)
( 2
b2
))

= σ2
c . (56)

Then we determine reasonable parameters through the equation αE(Z) = Re for
various values of Re. This equation can be written:

Re := α

(
p

(
e−a/α

α(1− e−a/α)
− 1
a

)
+ (1− p)

1
b

)
. (57)

In order to arrive at reasonable values for the various parameters, we solve the two
equations (56) and (57) in a and b for various values of the parameters α, p and R,
where we have fixed the value of λ = 250. Then for the spot rates r = 0.01 and
r = 0.04 with corresponding values of γ = γc(r) respectively, we solve the equation
(53) to find the value of λQ. Finally we compute the value of the equity premium
from the formula (55). Some results are the following:

(α, p) (1, .45) (1, .55) (1, .60) (.01, .40) (.01, .45) (.01, .60)
Re .004 -.004 -.004 .0045 .004 .0035
a 350.23 104.07 110.34 3.76 3.50 5.54
b 140.07 350.23 278.21 1.08 1.04 .87
λQ 255.92 243.92 244.55 255.85 252.71 257.41
ep 0.024 0.024 0.022 0.026 0.024 0.026

Table 16: The equity premium ep when r = 0.01 and γ = .73462, for various
values of the parameters, where λ = 250. The jumps are truncated, asymmetric
exponentials.
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(α, p) (1, .40) (1, .45) (1, .60) (.01, .40) (.01, .45) (.01, .60)
Re - .0035 -.0035 -.0035 .0045 .004 .0035
a 87.29 93.62 113.58 3.76 3.50 5.54
b 554.30 420.88 224.41 1.08 1.04 .87
λQ 236.24 237.53 241.29 260.54 260.67 263.38
ep 0.048 0.044 0.048 0.047 0.043 0.047

Table 17: The equity premium ep when r = 0.04 and γ = 2.93848, for various
values of the parameters, where λ = 250. The jumps are truncated, asymmetric
exponentials.

Since the equity premium is not proportional to the volatility of S in this model,
we can not expect to obtain the simple and unique results of Section 7. As in the
case of several jumps in Section 9 and the truncated normal case of the previous
section, we typically get a wide variety of equity premiums for a given standard
deviation of the price process, as the parameters vary. There is simply too much
freedom in these models to obtain the unique results of Section 7. The volatility of
the stock is not a sufficient statistic for its risk premium in these models.

The tables 14-17, as well as tables 12 and 13, all identify parameters that are
consistent of the simple results obtained in Section 7, and are not meant to be
representative of the variation one may obtain for ep. Obviously there is a large
amount of parameter values that satisfy this. These tables primarily illustrate
numerical solutions of the basic equation (9) for γ.

12 Conclusions

In this paper we have solve an optimal stopping problem with an infinite time
horizon, when the state variable follows a jump-diffusion. Under certain conditions,
explained in the paper, our solution can be interpreted as the price of an American
perpetual put option, when the underlying asset follows this type of process.

The probability distribution under the risk adjusted measure turns out to depend
on the equity premium for this type of model, which is not the case for the standard,
continuous version. This difference is utilized to find intertemporal, equilibrium
equity premiums in a simple model, where the equity premium is proportional to
the volatility of the asset.

We applied this technique to the US equity data of the last century, and found
an indication that the risk premium on equity was about two and a half per cent if
the risk free short rate was around one per cent. On the other hand, if the latter
rate was about four per cent, we similarly find that this corresponds to an equity
premium of around four and a half per cent.

The advantage with our approach is that we needed only equity data and option
pricing theory, no consumption data was necessary to arrive at these conclusions.

Various market models were studied at an increasing level of complexity, ending
with the incomplete model in the last part of the paper. In these models the equity
premiums are no longer proportional to the volatility of the assets, and further
econometric analyses would be needed to test our simple results obtained is Section
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7 of the paper. The relevant computations needed in such an analysis are explained
and illustrated.
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