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Abstract

In this paper we examine the problem of finding investors’ reserva-
tion option prices and corresponding early exercise policies of American-
style options in the market with proportional transaction costs us-
ing the utility based approach proposed by Davis and Zariphopoulou
(1995). We present a model, where investors have a CARA utility, and
derive some properties of reservation option prices. We discuss the
numerical algorithm and propose a new formulation of the problem in
terms of quasi-variational HJB inequalities. Based on our formulation,
we suggest original discretization schemes for computing reservation
prices of American-style option. The discretization schemes are then
implemented for computing prices of American put and call options.
We examine the effects on the reservation option prices and the corre-
sponding early exercise policies of varying the investor’s ARA and the
level of transaction costs. We find that in the market with transaction
costs the holder of an American-style option exercises this option earlier
as compared to the case with no transaction costs. This phenomenon
concerns both put and call options written on a non-dividend paying
stock. The higher level the transaction costs is, or the higher risk avers
the option holder is, the earlier an American option is exercised.
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1 Introduction

The break-trough in option valuation theory starts with the publication of
two seminal papers by Black and Scholes (1973) and Merton (1973). In both
papers authors introduced a continuous time model of a complete friction-
free market where a price of a stock follows a geometric Brownian motion.
They presented a self-financing, dynamic trading strategy consisting of a
riskless security and a risky stock, which replicate the payoffs of an option.
Then they argued that the absence of arbitrage dictates that the option
price be equal to the cost of setting up the replicating portfolio.

In the presence of transaction costs in capital markets the absence of ar-
bitrage argument is no longer valid, since perfect hedging is impossible. Due
to the infinite variation of the geometric Brownian motion, the continuous
replication policy incurs an infinite amount of transaction costs over any
trading interval no matter how small it might be. A variety of approaches
have been suggested to deal with the problem of option pricing and hedg-
ing with transaction costs. We maintain that the utility based approach,
pioneered by Hodges and Neuberger (1989), produces the most “optimal”
polices. The rationale under this approach is as follows: Since entering
an option contract involves an unavoidable element of risk, in pricing and
hedging options one must consider the investor’s attitude toward risk. The
other alternative approaches are mainly preference-free and concerned with
the “financial engineering” problem of either replicating or super-replicating
option payoffs. These approaches are generally valid only in a discrete-time
model with a relatively small number of time intervals.

The key idea behind the utility based approach is the indifference argu-
ment. The writing price of an option is defined as the amount of money that
makes the investor indifferent, in terms of expected utility, between trading
in the market with and without writing the option. In a similar way, the
purchase price of an option is defined as the amount of money that makes the
investor indifferent between trading in the market with and without buying
the option. These two prices are also referred to as the investor’s reservation
write price and the investor’s reservation purchase price. In many respects
a reservation option price is determined in a similar manner to a certainty
equivalent within the expected utility framework, which is a well grounded
pricing principle in economics.
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The starting point for the utility based option pricing approach is to
consider the optimal portfolio selection problem of an investor who faces
transaction costs and maximizes expected utility of terminal wealth. The
introduction of transaction costs adds considerable complexity to the utility
maximization problem as opposed to the case with no transaction costs. The
problem is simplified if one assumes that the transaction costs are propor-
tional to the amount of the risky asset traded, and there are no transaction
costs on trades in the riskless asset. In this case the problem amounts to a
stochastic singular control problem that was solved by Davis and Norman
(1990). Shreve and Soner (1994) studied this problem applying the theory
of viscosity solutions to Hamilton-Jacobi-Bellman (HJB) equations (see, for
example, Fleming and Soner (1993) for that theory).

First, the utility based option pricing approach was applied to the pricing
and hedging of European-style options assuming that the investor’s utility
function exhibits constant absolute risk aversion (CARA investor). Hodges
and Neuberger (1989) introduced the approach and calculated numerically
optimal hedging strategies and reservation prices using a binomial lattice,
without really proving the convergence of the numerical method. Davis,
Panas, and Zariphopoulou (1993) rigorously analyzed the same model, showed
that the value function of the problem is a unique viscosity solution of a fully
nonlinear variational inequality. They proved the convergence of discretiza-
tion schemes based on the binomial approximation of the stock price, and
presented computational results for the reservation write price of an op-
tion. Clewlow and Hodges (1997) extended the earlier work of Hodges and
Neuberger (1989) by presenting a more efficient computational method, and
a deeper study of the optimal hedging strategy. Andersen and Damgaard
(1999) and Damgaard (2000b) computed the reservation prices of European-
style call options for an investor with a constant relative risk aversion (CRRA
investor).

Davis et al. (1993) suggested that the utility based option pricing ap-
proach could be also applied to the pricing of American-style options. The
problem of pricing American-style options using this approach is both in-
teresting and tricky. This problem is interesting from a stochastic control
point of view in that it combines singular control and optimal stopping. The
problem is tricky, because it is the buyer of option who chooses the opti-
mal exercise policy. Therefore, the writer’s problem must be treated from
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both the writer’s and the buyer’s perspective simultaneously. The prob-
lem of pricing American-style options using the utility based option pricing
approach was for the first time treated in Davis and Zariphopoulou (1995).
The main technical result of that work is that the value function of the singu-
lar stochastic control problem with optimal stopping is the unique viscosity
solution of the corresponding HJB equation. This means that the solution
can be computed by standard discretization methods. Damgaard (2000a)
was the first to calculate the reservation purchase prices of American-style
call options for the case of a CRRA investor and proportional transaction
costs. The problem of finding the reservation purchase price is simpler than
that of reservation write price, since it suffices to consider the buyer’s prob-
lem alone. Unfortunately, using the CRRA utility the calculations are highly
time-consuming and were implemented for a 20-period model only. The au-
thor studied only the difference between reservation purchase prices of an
American call option and its European counterpart for different levels of the
investor’s initial wealth and found that it is sometimes optimal to exercise
a call option prior to maturity. The analysis of the early exercise policy was
not given.

In this paper we extend the works of Davis and Zariphopoulou (1995)
and Damgaard (2000a) in a number of ways. First, we formulate the op-
tion pricing problem for the CARA investor in the market with proportional
transaction costs. For this type of investor, the option price and exercise pol-
icy are independent of the investor’s holdings in the risk-free asset and the
computational complexity is dramatically reduced. This allows to increase
the precision of calculations considerably and to interpret the early exercise
policy much more easily. We consider both the buyer’s and the writer’s prob-
lems and derive some properties of the reservation prices of American-style
options. Then we suggest discretization schemes for computing reservation
prices of American-style options. Our numerical schemes differ from those
suggested first in Davis et al. (1993) and further used by Damgaard (2000a).
We argue that the variational HJB inequalities of a singular stochastic con-
trol problem with a nature similar to those of Davis and Norman (1990)
cannot be implemented in a numerical method for the computation of reser-
vation option prices of American-style options. We prove that the investor’s
value function can alternatively be characterized as the unique viscosity so-
lution of quasi -variational HJB inequalities, with a nature similar to those
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used in stochastic impulse controls theory (see, for example, Øksendal and
Sulem (2002)), and maintain that these inequalities provide the most nat-
ural way to construct numerical schemes upon. The discretization schemes
were implemented for computing reservation purchase and write prices of
American-style put options and reservation purchase prices of American-
style call options. We examine the effects on the reservation option prices
and the corresponding optimal exercise policies of varying the investor’s level
of absolute risk aversion (ARA) and the level of transaction costs. We find
that in the market with transaction costs the holder of an American-style
option exercises this option earlier as compared to the case with no transac-
tion costs. This phenomenon concerns both put and call options written on
a non-dividend paying stock. We carry out the detailed analysis of the early
exercise policy. In short, the main result of our analysis can be expressed
as follows: The higher level the transaction costs is, or the higher risk avers
the option holder is, the earlier an American option is exercised.

It is known that in the presence of proportional transaction costs the
investor’s portfolio space, in the utility maximization problem without op-
tions, is divided into three disjoint regions, which can be specified as the Buy
region, the Sell region, and the no-transaction (NT) region. The boundaries
of the NT region are reflecting barriers, such that the investor refrains from
transactions as long the portfolio lies inside the NT region. If a portfo-
lio lies in the Buy or Sell region, then the investor performs the minimum
transaction required to reach the closest NT boundary1. Our numerical
calculations show that the optimal strategy of the buyer of an American
option is rather complicated as compared to the case without options. Gen-
erally, every region (Buy, Sell, and NT) consists of two sub-regions, and not
all the boundaries of the NT sub-regions are reflecting barriers. When a
non-reflecting barrier is hit, the investor performs the minimum transaction
required to reach the closest boundary of the other NT sub-region.

Moreover, in contrast to the case with no transaction costs where the
early exercise boundary depends on the stock price and time, the option
holder exercise policy generally depends on his holdings in the stock. How-
ever, two bounds on the early exercise boundary could be provided (in the
two dimensional space: stock price - time): the upper bound and the lower

1The same description of the optimal strategy applies for the buyer/writer of a Euro-
pean option and the writer of an American option.
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bound. These two bounds split the option buyer’s exercise space into three
disjoint regions, which could be specified as the Exercise region, the Keep
region, and the region where the exercise policy is not uniquely defined. The
Exercise region is the region where the exercise policy clearly dominates the
keep policy, and the Keep region is the region where the keep policy dom-
inates the exercise policy for any holdings in the stock. In the remaining
region the exercise policy depends on the option holder’s holding in the
stock.

The rest of the paper is organized as follows. Section 2 presents the
continuous-time model and the basic definitions. In Section 3 we derive
some important properties of the reservation option prices. Section 4 is
concerned with the reformulation of the model and the construction of a
discrete time approximation of the continuous time price processes used in
Section 2, and the solution method. The numerical results for American-
style put and call options are presented in Section 5. Section 6 concludes
the paper and discusses some possible extensions.

2 The Formulation of the Model

Here we formulate the continuous time problem within the stochastic sin-
gular control framework presented in Davis and Zariphopoulou (1995). We
consider a continuous-time economy with one risky and one risk-free asset.
Let (Ω,F , P ) be a probability space with a given filtration {Ft}0≤t≤T . The
risk-free asset, which we will refer to as the bank account, pays a constant in-
terest rate of r ≥ 0, and, consequently, the evolution of the amount invested
in the bank, xt, is given by the ordinary differential equation

dxt = rxtdt. (1)

We will refer to the risky asset to as the stock, and assume that the price of
the stock, St, evolves according to a geometric Brownian motion defined by

dSt = µStdt + σStdBt, (2)

where µ and σ are constants, and Bt is a one-dimensional Ft-Brownian
motion.

The investor holds xt in the bank account and the amount yt in the stock
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at time t. We assume that a purchase or sale of size ξ of the stock incurs
transaction costs λ|ξ| proportional to the transaction (λ ≥ 0). These costs
are drawn from the bank account.

If the investor has the amount xt in the bank account, and the amount
yt in the stock at time t, his net wealth is defined as the holdings in the bank
account after either selling of all shares of the stock or closing of the short
position in the stock and is given by

Xt(x, y) =





xt + yt(1− λ) if yt ≥ 0,

xt + yt(1 + λ) if yt < 0.
(3)

We suppose that at any time the investor can decide to transfer money
from the bank account to the stock and conversely. The evolution equations
for the system (xt, yt) are

dxt = rxtdt− (1 + λ)dLt + (1− λ)dMt,

dyt = µytdt + σytdBt + dLt − dMt,
(4)

where Lt, Mt represent cumulative purchase and sale, respectively, of the
stock up to time t. Both Lt and Mt are right-continuous with left-hand
limits (RCLL) nonnegative and nondecreasing {Ft}-adapted processes. By
convention, L0 = M0 = 0.

We consider an investor with a finite horizon [0, T ] who has utility only
of terminal wealth. It is assumed that the investor has a constant absolute
risk aversion. In this case his utility function is of the form

U(γ, W ) = − exp(−γW ); γ > 0, (5)

where γ is a measure of the investor’s absolute risk aversion, which is inde-
pendent of the investor’s wealth.

2.1 Utility Maximization Problem without Options

The investor’s problem is to choose an admissible trading strategy to max-
imize Et[U(γ, XT )], i.e., the expected utility of his net terminal wealth,
subject to (4). We define the value function at time t as

V (t, x, y) = sup
(L,M)∈A(x,y)

Ex,y
t [U(γ, XT )], (6)
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where A(x, y) denotes the set of admissible controls available to the investor
who starts at time t with an amount of x in the bank and y holdings in the
stock.

It is known (see Davis and Norman (1990) and Shreve and Soner (1994))
that in the presence of proportional transaction costs the investor’s portfolio
space is divided into three disjoint regions, which can be specified as the Buy
region, the Sell region, and the no-transaction (NT) region. If a portfolio
lies in the Buy region, the optimal strategy is to buy the risky asset until the
portfolio reaches the boundary between the Buy region and the NT region,
while if a portfolio lies in the Sell region, the optimal strategy is to sell the
risky asset until the portfolio reaches the boundary between the Sell region
and the NT region. If a portfolio lies in the no-transaction region, it is not
adjusted at that time.

Now, by giving heuristic arguments, we intend to characterize the value
function and the associated optimal strategy: If for some initial point (t, x, y)
the optimal strategy is to not transact, the utility associated with this strat-
egy is V (t, x, y). The necessary conditions for the optimality of the no trans-
action strategy is Vy ≤ (1 + λ)Vx and Vy ≥ (1 − λ)Vx. That is, it is not
possible for the investor to increase his indirect utility function by either
buying or selling some amount of the stock at the expense of lowering or
increasing, respectively, the holdings in the bank account. One of these in-
equalities holds with equality when it is optimal to rebalance the portfolio.
The set of (x, y) points for which Vy = (1 + λ)Vx defines the Buy region.
Similarly, the equation Vy = (1− λ)Vx defines the Sell region. Moreover, in
the NT region, the application of the dynamic programming principle gives
LV (t, x, y) = 0, where the operator L is defined by

LV (t, x, y) =
∂V

∂t
+ rx

∂V

∂x
+ µy

∂V

∂y
+

1
2
σ2y2 ∂2V

∂y2
. (7)

The subsequent theorem formalizes this intuition.

Theorem 1. The value function V defined by (6) is a unique viscosity
solution of the Hamilton-Jacobi-Bellman inequalities:

max
{
LV, −(1 + λ)

∂V

∂x
+

∂V

∂y
, (1− λ)

∂V

∂x
− ∂V

∂y

}
= 0 (8)
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with the boundary condition

V (T, x, y) = U(γ,XT ).

The proof can be made by following along the lines of the proofs of
Theorems 2 (the existence result) and 3 (the uniqueness result) in Davis
et al. (1993).

The amount of xT is given by

xT =
x

δ(T, t)
−

∫ T

t

(1 + λ)
δ(T, s)

dLs +
∫ T

t

(1− λ)
δ(T, s)

dMs, (9)

where δ(T, t) is the discount factor defined by

δ(T, t) = exp(−r(T − t)). (10)

Note that the net wealth at time T could be written as

XT = xT + h(yT ), (11)

where h(·) is some function. Therefore, taking into consideration the in-
vestor’s utility function defined by (5), we can write

V (t, x, y) = sup
(L,M)∈A(x,y)

Ex,y
t [− exp(−γXT )]

= sup
(L,M)∈A(x,y)

Ex,y
t [− exp(−γ(xT + h(yT )))] = exp(−γ

x

δ(T, t)
)Q(t, y),

(12)

where Q(t, y) is defined by Q(t, y) = V (t, 0, y). It means that the dynamics
of y through time is independent of the total wealth. In other words, the
choice in y is independent of x. This representation suggests transformation
of (8) into the following HJB for the value function Q(t, y):

max
{
DQ(t, y),

γ(1 + λ)
δ(T, t)

Q +
∂Q

∂y
, −γ(1− λ)

δ(T, t)
Q− ∂Q

∂y

}
= 0, (13)

with a proper boundary condition and where the operator D is defined by

DQ(t, y) =
∂Q

∂t
+ µy

∂Q

∂y
+

1
2
σ2y2 ∂2Q

∂y2
. (14)
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This is an important simplification that reduces the dimensionality of the
problem. Note that the function Q(t, y) is evaluated in the two-dimensional
space [0, T ]× R.

For fixed values of µ, σ, r, γ, and λ the NT boundaries are functions of
the investor’s horizon only and do not depend on the investor’s holdings in
the bank account, so that a possible description of the optimal policy may
be given by

y = yl(t)
y = yu(t).

(15)

The equations describe the lower and the upper no-transaction boundaries
respectively. If the function Q(t, y) is known in the NT region, then

Q(t, y) =





exp
(
−γ (1−λ)(y−yu)

δ(T,t)

)
Q(t, yu) ∀y(t) ≥ yu(t),

exp
(
−γ (1+λ)(y−yl)

δ(T,t)

)
Q(t, yl) ∀y(t) ≤ yl(t).

(16)

This follows from the optimal transaction policy described above. That is,
if a portfolio lies in the Buy or Sell region, then the investor performs the
minimum transaction required to reach the closest NT boundary.

2.2 Utility Maximization Problem for a Buyer of

American Options

Now, in addition to the risk-free asset and the risky stock, we introduce
a new asset, a cash settled American-style option contract with expiration
time T and exercise payoff g(Sτ ) at time τ when the option is exercised.
For the sake of simplicity, we assume that these options may be bought only
at (initial) time t. This means that there is no trade in options thereafter,
between times t and T .

Consider an investor who trades in the riskless and the risky assets and,
in addition, buys θ > 0 options (θ is a constant) at time t. This investor we
will refer to as the buyer of options. We assume that if the buyer chooses
to exercise, he is required to exercise all of his θ options simultaneously. If
the buyer chooses to exercise the options, he receives the exercise payoff and
then faces the utility maximization problem without options. That is, his
value function, given he exercises the options in the state (τ, x, y, S), is given
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by

V b
ex(τ, x, y, S, θ) = V (τ, x+θg(S), y) = sup

(L,M)∈A(x+θg(S),y)
Ex+θg(S),y

τ [U(γ, XT )].

(17)
The buyer’s problem is to choose an admissible trading strategy and a

time of exercise to maximize (17) subject to (4). We define his value function
at time t as

Jb(t, x, y, S, θ) = sup
(L,M)∈Ab

θ(x,y),τ

Ex,y
t [V b

ex(τ, xτ , yτ , Sτ , θ)], (18)

where Ab
θ(x, y) denotes the set of admissible controls available to the buyer

who starts at time t with an amount of x in the bank and y holdings in the
stock, and τ is a stopping time in [t, T ]. If the buyer never exercises the
options before T , we set τ = T .

Definition 1. The unit reservation purchase price of θ American-style op-
tions is defined as the price P b

θ such that

V (t, x, y) = Jb(t, x− θP b
θ , y, S, θ). (19)

In other words, the reservation purchase price, P b
θ , is the highest price

at which the investor is willing to buy options, and where the investor is
indifferent between the two alternatives: (i) a utility maximization prob-
lem where he trades in the riskless and risky assets only, and (ii) a utility
maximization problem where the investor, in addition, buys options at price
P b

θ .

Theorem 2. The value functions J defined by (18), assuming it is contin-
uous, is a unique viscosity solution of the Hamilton-Jacobi-Bellman varia-
tional inequalities:

max
{

Vex − J, LJ, −(1 + λ)
∂J

∂x
+

∂J

∂y
, (1− λ)

∂J

∂x
− ∂J

∂y

}
= 0, (20)

where the operator L given by

LJ =
∂J

∂t
+ rx

∂J

∂x
+µy

∂J

∂y
+µS

∂J

∂S
+

1
2
σ2y2 ∂2J

∂y2
+σ2yS

∂2J

∂y∂S
+

1
2
σ2S2 ∂2J

∂S2
. (21)

The heuristic arguments for this, as well as the proof of the Theorem, is
given in Davis and Zariphopoulou (1995) (The existence result is proved in

11



Theorem 4.1, and the uniqueness result is proved in Theorem 4.2). Note that
if Jb = Vex then the value function satisfies the variational HJB inequalities
(8). Furthermore note that the variational HJB equation for the buyer of an
American option is similar to that of the buyer of a European option (see,
for example, equation (4.20) in Davis et al. (1993)) except for the obstacle
constraint, Vex − J ≤ 0.

As in the case of the optimal portfolio selection problem without options,
we can show that the dynamics of y through time is independent of the total
wealth, and, in particular, of the initial x. Indeed, the amount of xT is given
by

xT =
xt

δ(T, t)
+

θg(Sτ )
δ(T, τ)

−
∫ T

t

(1 + λ)
δ(T, s)

dLs +
∫ T

t

(1− λ)
δ(T, s)

dMs. (22)

Therefore
Jb(t, x, y, S, θ) = exp(−γ

x

δ(T, t)
)Hb(t, y, S, θ), (23)

where Hb(t, y, S, θ) is defined by Hb(t, y, S, θ) = Jb(t, 0, y, S, θ). This also
suggests transformation of (20) into the following HJB for the value function
Hb(t, y, S, θ) (we suppress the superscript b for the easy of notation):

max
{

exp
(
−γ

g(S)
δ(T, t)

)
Q−H, DH,

γ(1 + λ)
δ(T, t)

H +
∂H

∂y
, −γ(1− λ)

δ(T, t)
H − ∂H

∂y

}
= 0,

(24)
where the operator D is defined by

DH =
∂H

∂t
+ µy

∂H

∂y
+ µS

∂H

∂S
+

1
2
σ2y2 ∂2H

∂y2
+ σ2yS

∂2H

∂y∂S
+

1
2
σ2S2 ∂2H

∂S2
. (25)

Thus, we have reduced the dimensionality of the problem by one. Note that
the function Hb(t, y, S, θ) is evaluated in the three-dimensional space [0, T ]×
R × R+. Consequently, after all the simplifications, the unit reservation
purchase price of θ options is given by (follows from (12), (19), and (23))

P b
θ (t, S) =

δ(T, t)
θγ

ln
(

Q(t, y)
Hb(t, y, S, θ)

)
. (26)

Clearly, the unit reservation purchase price depends somehow on the initial
holdings in y. In practical applications one usually assumes that the investor
has zero holdings in the stock at the initial time t. The solution to equation
(19) provides the unique reservation purchase price P b

θ , and the buyer’s
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optimal stopping time τ∗.
The numerical calculations show that, in contrast to the no transaction

costs case where the exercise policy depends on (t, S), in the presence of
transaction costs the buyer’s exercise policy depends on (t, y, S). That is,
the exercise policy generally depends on the holdings in the stock account.
However, in the (t, S) plane we can provide two bounds on the early exercise
boundary: the upper bound Su(t) and the lower bound Sl(t). Generally,
these two bounds split the option buyer’s exercise space2 into three disjoint
regions, which could be specified as the Exercise region, the Keep region, and
the region where the exercise policy is not uniquely defined. The Exercise
region is the region where the Exercise policy dominates the Keep policy
for any y. For a put option, the Exercise region lies below Sl(t). The Keep
region is the region where the Keep policy dominates the Exercise policy
for any y. For a put option, the Keep region lies above Su(t). Figure (1)
illustrates the early exercise policy for a buyer of an American put option.

6
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T

r
0

K

S

t

Exercise region

Keep region

Su(t)

Policy depends on y
Sl(t)

Figure 1: Two bounds on the early exercise policy for a buyer of American put
option with strike K.

Moreover, the numerical calculations show that the buyer’s optimal strat-
egy is rather complicated as compared to the case without options. Roughly,
at any time t the buyer has two alternatives: either to follow the Exercise

2In fact, this is a projection of the three-dimensional space (t, y, S) into the two-
dimensional space (t, S).
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strategy or to follow the Keep strategy. In either of the two strategies, the
portfolio space is divided into three disjoint regions: the Buy, the Sell, and
the NT region. The Exercise strategy is described by the two NT bound-
aries: yex

u - the upper boundary, and yex
l - the lower boundary of the NTex

region. Similarly, the Keep strategy is described by the following two NT
boundaries3: ykeep

u - the upper boundary, and ykeep
l - the lower boundary

of the NTkeep region. The buyer’s problem is to choose the strategy which
gives the highest expected utility.

To illustrate the optimal trading strategy, let’s consider the buyer of an
American put option. In this case, the NTkeep region is located above the
NTex region. If these two NT regions do not overlap, we have five possible
situations:

1. The Keep strategy dominates the Exercise strategy for all y. Thus,
the buyer’s optimal strategy is divided into three disjoint regions: the
Buy, the Sell, and the NT, and the optimal strategy is described by
ykeep

u and ykeep
l , such that

Sell =
{
y : y ∈ (∞, ykeep

u )
}

NT =
{
y : y ∈ [ykeep

u , ykeep
l ]

}

Buy =
{
y : y ∈ (ykeep

l ,−∞)
}
.

2. There is no dominant strategy. Instead, there is a boundary y∗ such
that if y > y∗ then the Keep strategy dominates the Exercise strategy,
and if y < y∗ then the Exercise strategy dominates the Keep strategy.
The boundary y∗ lies in between the NTkeep region and the NTex

region, i.e., ykeep
l < y∗ < yex

u . In this case every region (Buy, Sell, and
NT) consists of two sub-regions. That is,

Sell =
{
y : y ∈ (∞, ykeep

u ) ∪ (y∗, yex
u )

}

NT =
{
y : y ∈ [ykeep

u , ykeep
l ] ∪ [yex

u , yex
l ]

}

Buy =
{
y : y ∈ (ykeep

l , y∗] ∪ (yex
l ,−∞)

}
.

In between the two NT sub-regions, the strategy depends on whether
the investor’s y lies above or below y∗. If y > y∗, the optimal strategy

3The real description of the Keep strategy is more complicated, see Section 4. For
illustration purposes we simplify things a bit.
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is to buy the risky asset until the portfolio reaches ykeep
l . On the

contrary, if y < y∗, the optimal strategy is to exercise the option and
sell the risky asset until the portfolio reaches yex

u . Figure (2) illustrates
this case.

3. The same as the previous case, but here the boundary y∗ lies inside
the NTkeep region, i.e., ykeep

u < y∗ < ykeep
l . In this case the Sell and

the NT region consist of two sub-regions such that

Sell =
{
y : y ∈ (∞, ykeep

u ) ∪ (y∗, yex
u )

}

NT =
{
y : y ∈ [ykeep

u , y∗] ∪ [yex
u , yex

l ]
}

Buy =
{
y : y ∈ (yex

l ,−∞)
}
.

Note that in this case y∗ is not a reflecting boundary of the upper NT
sub-region. As soon as this boundary is hit, the optimal strategy is
to exercise the option and sell the risky asset (we can interpret it as
liquidating the hedge) until the portfolio reaches the closest boundary
of the lower NT sub-region. Figure (3) illustrates this case.

4. The same as the previous case, but here the boundary y∗ lies inside
the NTex region, i.e., yex

u < y∗ < yex
l . In this case the Buy and the

NT region consist of two sub-regions such that

Sell =
{
y : y ∈ (∞, ykeep

u )
}

NT =
{
y : y ∈ [ykeep

u , ykeep
l ] ∪ [y∗, yex

l ]
}

Buy =
{
y : y ∈ (ykeep

l , y∗) ∪ (yex
l ,−∞)

}
.

5. The Exercise strategy dominates the Keep strategy for all y. There-
fore, the buyer’s optimal strategy is described by yex

u and yex
l , such

that

Sell =
{
y : y ∈ (∞, yex

u )
}

NT =
{
y : y ∈ [yex

u , yex
l ]

}

Buy =
{
y : y ∈ (yex

l ,−∞)
}
.

If the two NT sub-regions, the NTkeep and the NTex, overlap, then we
have four possible situations. They are similar to ones described above
except the second case, where the boundary y∗ lies in between the NTkeep

15



6

-r

y

x0

ykeep
u

ykeep
l

yex
u

yex
l

NT Keep

NT Exercise

.......................................................................................y∗ r

S
S
Sw

S
S
Sw

r
Sell

Sell

Buy

Buy

Z
Z

ZZ}

rZ
Z

Z
Z}

Figure 2: Illustration of the optimal transaction strategy when the division bound-
ary lies in between NTkeep and NTex regions.

region and the NTex region.
We define the outer lower boundary y∗l by

y∗l = min{yex
l , ykeep

l }, (27)

and the outer upper boundary y∗u by

y∗u = max{yex
u , ykeep

u }. (28)

The reason to introduce these definitions is the following claim:

Proposition 1. If one of the two possible strategies (keep, exercise) does
not dominate the other for all y, then the division boundary y∗ could lie only
in between the outer boundaries, that is

y∗l < y∗ < y∗u. (29)
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Figure 3: Illustration of the optimal transaction strategy when the division bound-
ary lies inside NTkeep region.

Proof. First we prove that the division boundary cannot lie below the
outer lower boundary.

Consider a point (x, y) such that y < y∗l . The Keep strategy mandates to
transact to (x−(1+λ)(ykeep

l −y), ykeep
l ), and the Exercise strategy mandates

to exercise the option and to transact to (x + g(St)− (1 + λ)(yex
l − y), yex

l ).
We write the latter as (x + g(St)− (1 + λ)((yex

l − ykeep
l ) + (ykeep

l − y)), yex
l ).

This means in particular

V ex(t, x, y) = e−
γ

δ(t,T ) (x−(1+λ)(ykeep
l −y))e−

γ
δ(t,T ) (g(St)−(1+λ)(yex

l −ykeep
l ))Q(t, yex

l )

Jkeep(t, x, y) = e−
γ

δ(t,T ) (x−(1+λ)(ykeep
l −y))H(t, ykeep

l ).

It is easy now to see that the inequality relation between these two value
functions does not depend on a particular value of y as long as it lies below
the outer lower boundary. In other words, their ratio for any y < y∗l ,

V ex(t, x, y)
Jkeep(t, x, y)

=
e
− γ

δ(t,T )
(g(St)−(1+λ)(yex

l −ykeep
l ))

Q(t, yex
l )

Hkeep(t, ykeep
l )

,
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does not depends neither on y nor on x.
Similarly we can prove that the division boundary cannot lie above the

outer upper boundary. 2

Proposition 1 is very useful for numerical calculations as it precisely
defines the region where a division boundary could be located.

2.3 Utility Maximization Problem for a Writer of

American Options

Consider now an investor who trades in the riskless and the risky assets and,
in addition, writes θ > 0 (recall that θ is a constant) American-style options.
This investor we will refer to as the writer of options. The problem of finding
the reservation write price of an American-style option is somewhat tricky,
because it is the buyer of options who chooses the optimal exercise policy.
Therefore, the writer’s problem must be treated from both the writer’s and
the buyer’s perspective simultaneously. Here we assume that the buyer’s
problem has already been solved and the writer knows the buyer’s optimal
stopping time τ∗, or, equivalently, the buyer’s optimal exercise policy. If
the buyer chooses to exercise the options, the writer pays him the exercise
payoff and then faces the utility maximization problem without options.
That is, his value function, given the buyer exercises the options in the state
(τ∗, x, y, S), is defined by

V w
ex(τ∗, x, y, S, θ) = V (τ∗, x− θg(S), y) = sup

(L,M)∈A(x−θg(S),y)

E
x−θg(S),y
τ∗ [U(γ, XT )].

(30)

The writer’s problem is to choose an admissible trading strategy to maxi-
mize (30) subject to (4) and the buyer’s optimal stopping time τ∗. We define
his value function at time t as

Jw(t, x, y, S, θ) = sup
(L,M)∈Aw

θ (x,y)
Ex,y

t [V w
ex(τ∗, xτ∗ , yτ∗ , Sτ∗ , θ)], (31)

where Aw
θ (x, y) denotes the set of admissible controls available to the writer

who starts at time t with an amount of x in the bank and y holdings in the
stock. Note that if the buyer never exercises the options before T , we set
τ∗ = T .

Definition 2. The unit reservation write price of θ American-style options

18



is defined as the compensation Pw
θ such that

V (t, x, y) = Jw(t, x + θPw
θ , y, S, θ). (32)

That is, the reservation write price, Pw
θ , is the lowest price at which

the investor is willing to sell options, and where the investor is indifferent
between the two alternatives: (i) a utility maximization problem where he
trades in the riskless and risky assets only, and (ii) a utility maximization
problem where the investor, in addition, writes options at price Pw

θ .
The solutions to problem (32) provide the unique reservation write price

and the optimal trading strategy.

Theorem 3. The value functions J defined by (31), assuming it is contin-
uous, is a unique viscosity solution of the Hamilton-Jacobi-Bellman varia-
tional inequalities:

max
{
LJ, −(1 + λ)

∂J

∂x
+

∂J

∂y
, (1− λ)

∂J

∂x
− ∂J

∂y

}
= 0, (33)

where the operator L given by (21).

The heuristic arguments for this, as well as the proof of the Theorem,
are similar to that of Theorem 2. Note that this value function is defined in
the region where the option buyer’s Keep strategy dominates the Exercise
strategy. Outside of this region the value function satisfies the variational
HJB inequalities (8). Furthermore note that the variational HJB equation
for the writer of an American option is completely similar to that of the
writer of a European option. As to numerical computations of a reservation
write price of an American option, they are only slightly more difficult than
those of its European counterpart: instead of a single ”exercise” time T we
have a known exercise boundary τ∗.

Again we can show that the dynamics of y through time is independent
of the investor’s total wealth. Therefore

Jw(t, x, y, S, θ) = exp(−γ
x

δ(T, t)
)Hw(t, y, S, θ), (34)

where Hw(t, y, S, θ) is defined by Hw(t, y, S, θ) = Jw(t, 0, y, S, θ). This also
suggests transformation of (33) into the following HJB for the value function
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Hw(t, y, S, θ) (here we suppress the superscript w):

max
{
DH,

γ(1 + λ)
δ(T, t)

H +
∂H

∂y
, −γ(1− λ)

δ(T, t)
H − ∂H

∂y

}
= 0, (35)

where the operator D is defined by (25). Consequently, the unit reservation
write price is given by (follows from (12), (32), and (34))

Pw
θ (t, S) =

δ(T, t)
θγ

ln
(

Hw(t, y, S, θ)
Q(t, y)

)
. (36)

The qualitative description of the writer’s optimal policy is similar to
that without the options. That is, the writer’s portfolio space is always
divided into three disjoint regions: the Buy, the Sell, and the NT region. If a
portfolio lies either in the Buy or in the Sell region, the optimal strategy is to
transact to the nearest NT boundary. Therefore, if the function H(t, y, S, θ)
is known in the NT region, then

Hw(t, y, S, θ) =





exp
(
γ−(1−λ)(y−y∗u)

δ(T,t)

)
Hw(t, y∗u, S, θ) ∀y(t, S) ≥ yu(t, S),

exp
(
γ

(1+λ)(y∗l −y)

δ(T,t)

)
Hw(t, y∗l , S, θ) ∀y(t, S) ≤ yl(t, S),

(37)
where yu(t, S) and yl(t, S) are the upper and the lower boundaries of the
writer’s NT region.

3 Properties of the Reservation Option Prices

The purpose of this section is to derive some properties of the reservation
option prices.

Theorem 4. In a complete and friction-free market the reservation option
prices coincide with the no-arbitrage price.

If it is not true, an arbitrage opportunity is available in the market.

Conjecture 1. For an investor with exponential utility function we have
that

1. The unit reservation purchase price, P b
θ (t, S), is a decreasing function

of γ.
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2. The unit reservation write price, Pw
θ (t, S), is an increasing function of

γ.

The above conjecture is quite intuitive. When there are transaction
costs in the market, holding options involves an unavoidable element of risk.
Therefore, the more risk avers investor is, the less he is willing to pay per
an option. Similarly, the seller of an option will demand a unit price which
increases as the seller’s risk aversion increases.

Remark 1. The proof of the conjecture seems to be rather difficult and
problematic, because there are no closed-form solutions for the investor’s
indirect value functions that enter into formulas for reservation option prices
(see (26) and (36)). The statements in the conjecture rely solely on the
results of numerical calculations of reservation option prices for different
sets of model parameters.

Let’s for the moment write the investor’s value function of the util-
ity maximization problem without options as V (t, γ, x, y), and the corre-
sponding value function of the utility maximization problem with options
as J(t, γ, x, y, S, θ) (here we suppress the superscripts b and w). By this we
want to emphasize that both of the value functions depend on the investor’s
coefficient of absolute risk aversion.

Theorem 5. For an investor with the exponential utility function and an
initial endowment (x, y) we have

V (t, γ, x, y) = V (t, θγ,
x

θ
,
y

θ
), (38)

J(t, γ, x, y, S, θ) = J(t, θγ,
x

θ
,
y

θ
, S, 1). (39)

Proof. Both these relationships can be easily established from the
form of the exponential utility function. In particular, the portfolio pro-
cess {xs

θ , ys

θ ; s > t} is admissible given the initial portfolio (xt
θ , yt

θ ) if and
only if {xs, ys; s > t} is admissible given the initial portfolio (xt, yt). Fur-
thermore, the amounts in the bank and in the stock accounts at time T for
the value function V is given by the following integral versions of the state
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equations (4):

xT = xt +
∫ T

t
rxsds− (1 + λ)

∫ T

t
dLs + (1− λ)

∫ T

t
dMs

yT = yt +
∫ T

t
µysds +

∫ T

t
σysdBs +

∫ T

t
dLs −

∫ T

t
dMs.

(40)

For the value function Jb the evolution of the amount invested in the bank
is given by

dxt = rxtdt− (1 + λ)dLt + (1− λ)dMt

xτ = xτ− + θg(S),
(41)

where τ is the stopping time when the buyer chooses to exercise the options.
The integral version of the system (41) can be written as equation (22).
Similar equations can be written for the amount in the bank account for the
value function Jw. The amount in the stock account at time T for both the
value functions Jb and Jw is given by the same integral equation as for the
value function V . Clearly, for any value function U(γ,XT ) = U(θγ, XT

θ ). 2

Corollary 6. For an investor with the exponential utility function and an
initial holding in the stock y we have

Q(t, γ, y) = Q(t, θγ,
y

θ
), (42)

H(t, γ, y, S, θ) = H(t, θγ,
y

θ
, S, 1). (43)

Proof. This follows from Theorem 5 and the definitions of the value
functions Q and H. 2

Theorem 7. For an investor with exponential utility function we have that

1. An investor with an initial holding in the stock y and ARA coefficient
γ has a unit reservation purchase price of θ options equal to his reser-
vation purchase price of one option in the case where he has an initial
holding in the stock y

θ and ARA coefficient θγ. That is,

P b
θ (t, S) =

δ(T, t)
γ

ln
(

Q(t, θγ, y
θ )

Hb(t, θγ, y
θ , S, 1)

)
. (44)
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2. An investor with an initial holding in the stock y and ARA coefficient γ

has a unit reservation write price of θ options equal to his reservation
write price of one option in the case where he has an initial holding in
the stock y

θ and ARA coefficient θγ. That is,

Pw
θ (t, S) =

δ(T, t)
γ

ln
(

Hw(t, θγ, y
θ , S, 1)

Q(t, θγ, y
θ )

)
. (45)

Proof. This follows from Theorem 5, the definitions of the value func-
tions Q and H, Corollary 6, and equations (19) and (32). 2

As mentioned above, in the practical applications of the utility based
option pricing method one assumes that the investor has zero holdings in
the stock at the initial time t, i.e., y = 0, hence y

θ = 0 as well. In this
case Theorem 7 says that the resulting unit reservation option price and
the corresponding optimal trading strategy4 in the model with the pair of
parameters (γ, θ) will be the same as in the model with (θγ, 1). That is,
instead of calculating a model with θ options we can calculate a model with
1 option only. All we need is adjusting one parameter for θ: the absolute
risk aversion from γ to θγ.

Corollary 8. For an investor with exponential utility function and an initial
holding in the stock y = 0 we have that

1. The unit reservation purchase price, P b
θ (t, S), is decreasing in the num-

ber of options θ.

2. The unit reservation write price, Pw
θ (t, S), is increasing in the number

of options θ.

Note that the unit reservation option price in the model with a pair of
parameters (γ, θ) is equal to the unit reservation option price in the model
with (θγ, 1). In other words, an increase in the number of options from 1 to θ

is completely equivalent to an increase in the investor’s level of risk aversion
from γ to θγ. The consequence follows from Conjecture 1. Again, the result
in Corollary 8 is quite intuitive. When there are transaction costs in the
market, holding options involves an unavoidable element of risk. Therefore,
the greater number of options the investor holds, the more risk he takes.

4Here, the trading strategy per option. For θ options the strategy must be re-scaled
accordingly.
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Consequently, the more options the risk averse investor has to buy, the less
he is willing to pay per option. Similarly, the seller of options will demand a
unit price which is increasing in the number of options. Note, in particular,
that the linear pricing rule from the complete and frictionless market does
not apply to the reservation option prices.

4 Numerical Procedure

4.1 Reformulation of the Problem

The main objective of this section is to present numerical procedures for
computing the investor’s value functions and the corresponding optimal
trading policies. The starting point for our numerical calculations is the
variational HJB inequalities (8). In this subsection we first argue that these
inequalities of a singular stochastic control problem with a nature similar to
those of Davis and Norman (1990) cannot be implemented in a numerical
method for the computation of reservation option prices of American-style
options. Then we prove that the investor’s value function can alternatively
be characterized as the unique viscosity solution of quasi -variational HJB
inequalities, with a nature similar to those used in stochastic impulse control
theory (see, for example, Bensoussan and Lions (1984) for that theory), and
maintain that these inequalities provide the most natural way to construct
numerical schemes upon.

As a beginning of the argument, we would like to mention that when it
comes to the numerical computation of the value function and the associated
optimal policy, the two inequalities in (8), which describe the Buy and the
Sell region, cannot be implemented explicitly in a numerical method. The
catch is that these two inequalities5 describe how the value function should
behave provided we know the value function at, say, times t and t + dt. On
the contrary, any numerical method, either a finite-difference or a Markov
chain approximation, implements a dynamic programming algorithm where
the unknown values at time t is found by using the known values at the
next time instant t + dt. Thus, these inequalities provide only an implicit
indication on how to compute the value function.

Assume we know the value function V at time t+dt. How do we proceed
5These inequalities may alternatively be called as gradient constraints.
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to find the value function at time t? An obvious start is to solve the partial
differential equation LV (t, x, y) = 0 between times t and t + dt to find a
lower6 estimate for the value function. Then one finds the no transaction
region where both −(1+λ)Vx +Vy < 0 and (1−λ)Vx−Vy < 0 are satisfied.
Outside the no transaction region the value function is recomputed by using

V (t, x, y) =





V (t, x + (1− λ)(y − yu), yu) if (x, y) ∈ Sell region,

V (t, x− (1 + λ)(yl − y), yl) if (x, y) ∈ Buy region,

where yu and yl are points on the upper and lower boundaries, respectively,
of the no transaction region. This follows from the optimal transaction pol-
icy which mandates to transact to the nearest boundary of the no transaction
region if the portfolio lies outside this region.

A serious problem with such an algorithm is that there might be several
regions where both −(1 + λ)Vx + Vy < 0 and (1 − λ)Vx − Vy < 0 are sat-
isfied. This could happen in the case when the lower estimate of the value
function, after solving the partial differential equation LV (t, x, y) = 0, has
multiple local maxima7 which, in their turn, produce multiple maxima as
one transacts along the Buy or Sell direction. In this situation we face the
problem of choosing true NT sub-regions and transaction policy. The only
way to do it is to perform a search for a global maximum along the direc-
tion of transaction. Fortunately, in the optimal portfolio choice problem
with either no options or only European-style options this does not hap-
pen. However, this is the case for the optimal portfolio choice problem with
American-style options.

Let us elaborate on this more specifically. Consider now the value func-
tion J (we suppress the superscript b for the ease of notation) of the buyer
of American-style options, defined by (20). It is tempting to implement the
numerical algorithm using the same sequence of steps as described above:
First, we start from the final date and solve LJ(t, x, y, S) = 0 to find the
lower estimate of the value function at the preceding time instant. Then for
every (x, S) we find yl and yu such that in the points (x, yl, S) and (x, yu, S)

6That is, we find the expectation of the value function at the next time instant. Gen-
erally, the value function must be not less than its expectation. That is, V (t, x(t), y(t)) ≤
E{V (t + dt, x(t + dt), y(t + dt))}.

7Note that the conditions −(1+λ)Vx +Vy = 0 and (1−λ)Vx−Vy = 0 are nothing else
than the first order conditions of a local extremum as one transacts along the Buy or Sell
direction, respectively.
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the following conditions are satisfied:

−(1 + λ)Jx(t, x, yl, S) + Jy(t, x, yl, S) = 0,

(1− λ)Jx(t, x, yu, S)− Jy(t, x, yu, S) = 0.
(46)

We expect that the first equation give us the lower boundary of the NT
region, and the second one gives the upper boundary of the NT region.
Afterwards we recompute the value function outside the NT region. Then
we repeat the previous steps for the remaining time instants backwards to
the initial date.

However, due to the obstacle constraint Vex − J ≤ 0, the resulting value
function often has two local maxima (see the description of the optimal pol-
icy of the buyer of an American put option in Section 2). One of them
corresponds to the Exercise policy, and the other to the Keep policy. After
solving LJ(t, x, y, S) = 0, the picture remains essentially the same (see Fig-
ure (4)). Now we fix (x, S) and implement the search for the first condition
in (46) starting from y = 0 (assuming it lies in the Buy region) and going
upward to some y = ymax (assuming it lies in the Sell region). We see that
this condition is satisfied in two points, namely in y1 and y2. Moreover,
it is clearly seen that the second condition in (46) will be also satisfied in
two points. That is, it looks like the value function J has two NT sub-
regions where the gradient constraints in (20) are satisfied. One is tempted
to keep the value function inside these NT sub-regions and recalculate the
value function outside of them. But generally this is not a correct solution.
To understand it, let’s take a look at the problem from another angle. We
formulate the question as follows: how do we chose the proper point y to
where to transact to if we start from y = 0? An obvious answer (recall that
the investor’s problem is to maximize his expected utility) is to choose the
point which maximizes the value function, that is

y := arg max
{
J(t, x− (1 + λ)y1, y1, S), J(t, x− (1 + λ)y2, y2, S)

}
. (47)

In other words, we explicitly have to search for a point where the value
function attains its maximum.

The inequalities for the Buy and the Sell regions in either (8) or (20) tell
us that it is impossible to increase the value function by either buying or
selling some amount of the stock at the expense of lowering or increasing,
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Figure 4: A schematic sketch of the case where the value function
J(t, x(t), y(t), S(t)) = E[J(t + dt, x(t + dt), y(t + dt), S(t + dt))] has two
local maxima along the direction of transaction.

respectively, the holdings in the bank account. An alternative and more ex-
plicit numerical procedure to solve the optimal portfolio selection problem
with proportional transaction cost is analogous to that used to solve the
optimal portfolio selection problem with both fixed and proportional trans-
action costs8. Consider again the optimal portfolio choice problem without
options: As before, we start with solving the partial differential equation
LV (t, x, y) = 0 for the no-transaction problem. Then we need to compare
the value function at each point (x, y) with the maximum attainable values
from either buying or selling some amount of the stock. Mathematically this

8The solution to the optimal portfolio selection problem where each transaction has
a fixed cost component is based on the theory of stochastic impulse controls (see, for
example Øksendal and Sulem (2002)).
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procedure is described by the maximum utility operator M:

MV (t, x, y) = sup
(x′,y′)∈A(x,y),(x′,y′)6=(x,y)

V (t, x′, y′), (48)

where A(x, y) denotes the set of admissible controls available to the investor
who starts at time t with an amount of x in the bank and y holdings in the
stock, and x′ and y′ are the new values9 of x and y after transaction. In
other words, MV (t, x, y) represents the value of the strategy that consists
in choosing the best transaction.

Remark 2. Note that in the definition of the maximum utility operator we
require that (x′, y′) 6= (x, y). That is, in finding the best possible transac-
tion we do not consider the initial point and require a non-zero (probably
infinitesimal) transaction size.

Now, by giving heuristic arguments, we intend to characterize the value
function and the associated optimal strategy by using the notion of the max-
imum utility operator: If for some initial point (t, x, y) the optimal strat-
egy is to not transact, the utility associated with this strategy is V (t, x, y).
Choosing the best transaction and then following the optimal strategy gives
the utility MV (t, x, y). The necessary condition for the optimality of the
first strategy is V (t, x, y) ≥ MV (t, x, y). This inequality holds with equal-
ity when it is optimal to rebalance the portfolio. Moreover, in the no-
transaction region, the application of the dynamic programming principle
gives LV (t, x, y) = 0.

The subsequent theorem formalizes this intuition.

Theorem 9. The value function V defined by (6) is the unique viscos-
ity solution of the quasi-variational Hamilton-Jacobi-Bellman inequalities
(QVHJBI, or just QVI):

max
{
LV, MV − V

}
= 0 (49)

with the boundary condition

V (T, x, y) = U(γ,XT ).

The proof can be made by following along the lines of the proofs of The-
9That is, y′ = y +∆y and x′ = x−k−∆y−λ|∆y|, where ∆y is the size of transaction.
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orem 3.7 (the existence result) and Theorem 3.8 with subsequent Corollary
(the uniqueness result) in Øksendal and Sulem (2002).

Moreover, we can prove that the two different formulations of the same
problem, (8) and (49), yield the same result. It suffices to prove the following
theorem.

Theorem 10. For the optimal portfolio selection problem with proportional
transaction costs,

−(1 + λ)Vx + Vy ≤ 0,

(1− λ)Vx − Vy ≤ 0,
(50)

if and only if
MV − V ≤ 0. (51)

Proof. The first part. Assume (50) holds. Chose any point (x0, y0).
Suppose that the maximum along the Buy line starting in (x0, y0) is attained
at the point (x0 − (1 + λ)α, y0 + α), and that the maximum along the Sell
line starting in (x0, y0) is attained at the point (x0 +(1−λ)β, y0−β). Then
for the maximum along the Buy line we have that

V (t, x0 − (1 + λ)α, y0 + α) = V (t, x0, y0)

+
∫ α

0

[− (1 + λ)Vx(t, x0 − (1 + λ)s, y0 + s) + Vy(t, x0 − (1 + λ)s, y0 + s)
]
ds

≤ V (t, x0, y0).

Similarly, for the maximum along the Sell line we have that

V (t, x0 + (1− λ)β, y0 − β) = V (t, x0, y0)

+
∫ β

0

[
(1− λ)Vx(t, x0 + (1− λ)s, y0 + s)− Vy(t, x0 − (1− λ)s, y0 + s)

]
ds

≤ V (t, x0, y0).

Consequently, MV (t, x0, y0)− V (t, x0, y0) ≤ 0. Since the point (x0, y0) was
chosen arbitrary, this holds for every point (x, y) in the domain of V .

The second part. Assume (51) holds. Chose any point (x0, y0). Then
for any point along the Buy line starting in (x0, y0) we have that

V (t, x0 − (1 + λ)h, y0 + h) ≤ V (t, x0, y0),
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and for any point along the Sell line starting in (x0, y0) we have that

V (t, x0 + (1− λ)h, y0 − h) ≤ V (t, x0, y0),

where h is an arbitrary positive real number. Allowing h → 0 we obtain
that

lim
h→0

1
h

[
V (t, x0 − (1 + λ)h, y0 + h)− V (t, x0, y0)

]

= −(1 + λ)Vx(t, x0, y0) + Vy(t, x0, y0) ≤ 0

lim
h→0

1
h

[
V (t, x0 + (1− λ)h, y0 − h)− V (t, x0, y0)

]

= (1− λ)Vx(t, x0, y0)− Vy(t, x0, y0) ≤ 0

Again, since the point (x0, y0) was chosen arbitrary, this holds for every
point (x, y) in the domain of V . 2

Even though the two different formulations of the same problem, (8) and
(49), yield the same result, the latter has direct implications for the practical
realization of a numerical procedure. Similarly, as for the investor’s problem
(8), we propose an alternative formulation of the buyer’s problem described
by (20)

max
{

Vex − J, LJ, MJ − J
}

= 0, (52)

and an alternative formulation of the writer’s problem described by (33)

max
{
LJ, MJ − J

}
= 0. (53)

Consequently, the two following theorems can be proved:

Theorem 11. The value functions J defined by (18) is a unique viscosity
solutions of the QVI (52).

Theorem 12. The value functions J defined by (31) is a unique viscosity
solutions of the QVI (53).
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4.2 A Markov Chain Approximation of the

Continuous Time Problem

In this subsection we turn on to the specific discretization and the solution
of the investor’s problems applying the method of the Markov chain ap-
proximation. The Markov chain approximation method for the solution of
continuous-time continuous-space stochastic control problems was suggested
by Kushner (see, for example, Kushner and Martins (1991) and Kushner and
Dupuis (1992)). First, according to this method, one constructs discrete
time approximations of the continuous time price processes used in the con-
tinuous time model. Then the discrete time program is solved by using
the discrete time dynamic programming algorithm (i.e., backward recursion
algorithm).

Consider the partition 0 = t0 < t1 < . . . < tn = T of the time interval
[0, T ] and assume that ti = i∆t for i = 0, 1, . . . , n where ∆t = T

n . Let ε be
a stochastic variable:

ε =





u with probability p,

d with probability 1− p.

We define the discrete time stochastic process of the stock as

Sti+1 = Stiε, (54)

and the discrete time process of the risk-free asset as

xti+1 = xtiρ. (55)

If we choose u = eσ
√

∆t, d = e−σ
√

∆t, ρ = er∆t, and p = 1
2

[
1 + µ

σ

√
∆t

]
,

we obtain the binomial model proposed by Cox, Ross, and Rubinstein
(1979). An alternative choice is u = e(µ− 1

2
σ2)∆t+σ

√
∆t, d = e(µ− 1

2
σ2)∆t−σ

√
∆t,

ρ = er∆t, and p = 1
2 , which was proposed by He (1990). As n goes to in-

finity, the discrete time processes (54) and (55) converge in distribution to
their continuous counterparts (2) and (1). This is what is called the local
consistency conditions for a Markov chain.

The following discretization scheme is proposed to find the value function
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V (t, x, y) defined by (49)

V ∆t(ti, x, y) = max
{

max
m

V ∆t(ti, x− (1 + λ)mδy, y + mδy),

max
m

V ∆t(ti, x + (1− λ)mδy, y −mδy),

E[V ∆t(ti+1, xρ, yε)]
}

,

(56)

where m runs through the positive integer numbers (m = 1, 2, 3, . . .), and

V ∆t(ti, x− (1 + λ)mδy, y + mδy)

= E
{
V ∆t(ti+1, (x− (1 + λ)mδy)ρ, (y + mδy)ε)

}
, (57)

V ∆t(ti, x + (1− λ)mδy, y −mδy)

= E
{
V ∆t(ti+1, (x + (1− λ)mδy)ρ, (y −mδy)ε)

}
, (58)

as at time ti we do not know yet the value function. In this case we find
expectation using the known values at the next time instant ti+1. Here we
have discretized the y-space in a lattice with grid size δy, and the x-space
in a lattice with grid size δx10. This scheme is a dynamic programming for-
mulation of the discrete time problem. The solution procedure is as follows:
Start at the terminal date and give the value function values by using the
boundary conditions as for the continuous value function over the discrete
state space. Then work backwards in time. That is, at every time instant
ti and every particular state (x, y), by knowing the value function for all
the states in the next time instant, ti+1, find the investor’s optimal policy.
This is carried out by comparing maximum attainable utilities from buying,
selling, or doing nothing.

Theorem 13. The solution V ∆t of (56) converges weakly to the unique
continuous viscosity solution of (49) as ∆t → 0.

For a rigorous treatment of a proof of this type of convergence theorems,
we refer the reader to, for example, Kushner and Martins (1991), Davis et al.
(1993), and Davis and Panas (1994). Instead of presenting a cumbersome
proof of Theorem (13), we want to prove a simple proposition:

10It is supposed that lim∆t→0 δy → 0, and lim∆t→0 δx → 0, that is, δy = cy∆t, and
δx = cx∆t for some constants cy and cx.
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Proposition 2. Assuming lim∆t→0 V ∆t = V , the solution of discrete time
program (56) converges to the solution of continuous time quasi-variational
inequalities (49) as ∆t → 0.

Proof. We choose the choice of u, d, ρ, and p which was proposed by He
(1990). This choice clearly satisfies the local consistency conditions. In this
case we can approximate the dynamics of the controlled processes as

y(t + ∆t)− y(t) = y(t)µ∆t± y(t)σ
√

∆t,

x(t + ∆t)− x(t) = x(t)r∆t.

Consider the term E
{
V ∆t(t + ∆t, x(t + ∆t), y(t + ∆t))

}
. Assuming that

V ∆t is differentiable (in the viscosity sense), using the Taylor expansion of
V ∆t around (t, x, y), and taking the expectation we get

E
{
V ∆t(t + ∆t, x(t + ∆t), y(t + ∆t))

}

= V (t, x, y)∆t + (V ∆t
t + rxV ∆t

x + µyV ∆t
y +

1
2
σ2y2V ∆t

yy )∆t + o(∆t),

where o(∆t) are error terms containing ∆t of order higher than one. Allow-
ing ∆t → 0 we obtain

lim
∆t→0

E
{
V ∆t(t + ∆t, x(t + ∆t), y(t + ∆t))

}
= V (t, x, y) + LV (t, x, t)dt.

(59)
Moreover, as ∆t → 0,

lim
∆t→0

max
m

V ∆t(ti, x−(1+λ)mδy, y+mδy) = sup
∆y>0

V (t, x−(1+λ)∆y, y+∆y), (60)

lim
∆t→0

max
m

V ∆t(ti, x+(1−λ)mδy, y−mδy) = sup
∆y>0

V (t, x+(1−λ)∆y, y−∆y). (61)

Note here that ∆y can take any positive real value but zero. Allowing ∆y to
take both positive and negative values, we can combine (60) and (61) and,
thus, get

sup
∆y 6=0

V (t, x−∆y − λ|∆y|, y + ∆y)

= lim
∆t→0

max





maxm V ∆t(ti, x− (1 + λ)mδy, y + mδy),

maxm V ∆t(ti, x + (1− λ)mδy, y −mδy).

(62)

By definition (48), the left hand side of (62) is nothing else than the maxi-
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mum utility operator, that is

sup
∆y 6=0

V (t, x−∆y − λ|∆y|, y + ∆y) = MV (t, x, y). (63)

Therefore in the limit as ∆t → 0 the discrete time program (56) converges
to (using (59), (62), and (63))

V (t, x, y) = max{V (t, x, y) + LV (t, x, t)dt, MV (t, x, y)},

which can be rewritten as

max{LV (t, x, t), MV (t, x, y)− V (t, x, y)} = 0.

This completes the proof. 2

We now suggest a Markov chain approximation of the problem of the
buyer of an American option. The basic idea here is that the buyer needs to
compare the maximum attainable expected utilities from keeping the option
and exercising the option. That is, the value function in the state (ti, x, y, S)
is given by

Jb,∆t(ti, x, y, S) = max{Jb,∆t
keep(ti, x, y, S), V b,∆t

ex (ti, x, y, S)}. (64)

This means that if

Jb,∆t
keep(ti, x, y, S) < V b,∆t

ex (ti, x, y, S),

then it is optimal to exercise the option in the state (ti, x, y, S). Otherwise,
it is optimal to keep the option. The discretization scheme for the value
function V b,∆t

ex is similar to that of the value function V ∆t and is given by
the discrete time version of the equation (17):

V b,∆t
ex (ti, x, y, S) = V ∆t(ti, x + g(S), y). (65)

The following discretization scheme is proposed for the value function
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Jb,∆t
keep

Jb,∆t
keep(ti, x, y, S) = max

{
max

m
Jb,∆t

keep(ti, x− (1 + λ)mδy, y + mδy, S),

max
m

Jb,∆t
keep(ti, x + (1− λ)mδy, y −mδy, S),

E{Jb,∆t(ti+1, xρ, yε, Sε)}
}

,

(66)

where m runs through the positive integer numbers, and

Jb,∆t
keep(ti, x− (1 + λ)mδy, y + mδy, S)

= E
{

Jb,∆t(ti+1, (x− (1 + λ)mδy)ρ, (y + mδy)ε, Sε)
}

,

Jb,∆t
keep(ti, x + (1− λ)mδy, y −mδy, S)

= E
{

Jb,∆t(ti+1, (x + (1− λ)mδy)ρ, (y −mδy)ε, Sε)
}

.

The principle behind this scheme is the same as for the discretization scheme
(56). As before, we have discretized the y-space in a lattice with grid size
δy, and the x-space in a lattice with grid size δx. In addition, we use a
binomial tree for the stock price process.

Theorem 14. The solution Jb,∆t of (64) converges weakly to the unique
viscosity solution of the continuous time problem characterized by (52) as
∆t → 0.

The proof follows along similar arguments as in Theorem (13).
We now suggest a Markov chain approximation of the problem of the

writer of an American option. His value function in the state (ti, x, y, S) is
given by

Jw,∆t(ti, x, y, S) =





Jw,∆t
keep (ti, x, y, S) if the buyer keeps the option,

V w,∆t
ex (ti, x, y, S) if the buyer chooses to exercise.

(67)
The discretization scheme for the value function V w,∆t

ex is similar to (56) and
is given by

V w,∆t
ex (ti, x, y, S) = V ∆t(ti, x− g(S), y). (68)
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The following discretization scheme is proposed for the QVI (53):

Jw,∆t
keep (ti, x, y, S) = max

{
max

m
Jw,∆t

keep (ti, x− (1 + λ)mδy, y + mδy, S),

max
m

Jw,∆t
keep (ti, x + (1− λ)mδy, y −mδy, S),

E{Jw,∆t(ti+1, xρ, yε, Sε)}
}

,

(69)

where m runs through the positive integer numbers, and

Jw,∆t
keep (ti, x− (1 + λ)mδy, y + mδy, S)

= E
{
Jw,∆t(ti+1, (x− (1 + λ)mδy)ρ, (y + mδy)ε, Sε)

}

Jw,∆t
keep (ti, x + (1− λ)mδy, y −mδy, S)

= E
{
Jw,∆t(ti+1, (x + (1− λ)mδy)ρ, (y −mδy)ε, Sε)

}
.

The principle behind this scheme is the same as for the discretization schemes
described above. The following theorem can be proved:

Theorem 15. The solution Jw,∆t of (69) converges weakly to the unique
viscosity solution of the continuous time problem characterized by (53) as
∆t → 0.

All the discretization schemes described above are valid for any type of
utility function. Note that for a general utility function we need to perform
the calculations first in a three-dimensional space (t, x, y) and then in a four-
dimensional space (t, x, y, S), and the amount of computations is very high.
For the negative exponential utility function the dynamics of y through time
is independent of the total wealth in the continuous time and in the discrete
time framework as well. Therefore the discrete space equivalents of (12),
(23), and (34) can be written as follows:

V ∆t(t, x, y) = exp(−γ x
δ(T,t))Q

∆t(t, y),

Jb,∆t(t, x, y, S, θ) = exp(−γ x
δ(T,t))H

b,∆t(t, y, S, θ),

Jw,∆t(t, x, y, S, θ) = exp(−γ x
δ(T,t))H

w,∆t(t, y, S, θ).

(70)

Thus, the dimensionality of the problem is reduced by one. This dramati-
cally decreases the amount of computations. The discretization scheme for
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the function Q∆t(t, y) is derived from (56) and (70) to be

Q∆t(ti, y) = max
{

max
m

exp
(

γ
(1 + λ)mδy

δ(T, ti)

)
Q∆t(ti, y + mδy),

max
m

exp
(

γ
−(1− λ)mδy

δ(T, ti)

)
Q∆t(ti, y −mδy),

E{Q∆t(ti+1, yε)}
}

.

(71)

As in the continuous time case, if the value function Q∆t(ti, y) is known in
the NT region, then it can be calculated in the Buy and Sell regions by using
the discrete space version of (16):

Q∆t(ti, y) =





exp
(
γ−(1−λ)(y−yu)

δ(T,ti)

)
Q∆t(ti, yu) ∀y(ti) ≥ yu(ti),

exp
(
γ (1+λ)(yl−y)

δ(T,ti)

)
Q∆t(ti, yl) ∀y(ti) ≤ yl(ti).

(72)

The practical implementation of the numerical scheme for Q∆t is based
on the qualitative knowledge of the form of the optimal trading strategy.
That is, at every time t the optimal strategy is completely described by the
two numbers: yl(t) - the lower boundary of the NT region, and yu(t) - the
upper boundary of the NT region. Assuming we know the value function at
ti+1 and that (yl(ti), yu(ti)) ∈ (ymin, ymax), the following sequence of steps
is performed at time ti:

1. Starting from ymin and going up to ymax we perform the search for a
maximum along the Buy line:

yl(ti) = arg max
y

E

{
exp

(
γ

(1 + λ)(y − ymin)
δ(T, ti+1)

)
Q∆t(ti+1, yε)

}
,

where y = ymin + mδy, m = {1, 2, . . . , M}, and M = ymax−ymin
δy .

2. Similarly, starting from ymax and going down to ymin we perform the
search for a maximum along the Sell line:

yu(ti) = arg max
y

E

{
exp

(
γ
−(1− λ)(ymax − y)

δ(T, ti+1)

)
Q∆t(ti+1, yε)

}
.

3. Having determined the boundaries of the NT region, we proceed by
computing and storing in the memory11 the value function inside the

11We need to keep the value function at time ti for at lest one period in order to use it
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NT region for every grid step y = yl + mδy, y ∈ (yl(ti), yu(ti)):

Q∆t(ti, y) = E{Q∆t(ti+1, yε)}.

Outside of the NT region, we can compute the function applying equa-
tion (72). Note that we do note require that yε lies exactly in a node
of the grid for y-space. We estimate Q∆t(ti+1, yε) on a set of points
(ti+1,mδy) using some form of interpolation.

In the same manner we can derive from (64), (69), and (70) the discretiza-
tion schemes for the value function Hw,∆t(t, y, S, θ) of the option writer.
The option buyer’s strategy is more complicated than that of the writer,
but, anyway, we can describe his transaction policy by a list of some simple
rules.

5 Numerical Results

In this section we present the results of our numerical computations of reser-
vation purchase and write prices and the corresponding exercise policies for
American put and call options. In most of our calculations we used the
following model parameters: the risky asset price at time zero S0 = 100, the
strike price K = 100, the volatility σ = 20%, the drift µ = 10%, and the
risk-free rate of return r = 5% (all in annualized terms). The options expire
at T = 1 year. The proportional transaction costs λ = 1%. The discretiza-
tion parameters of the Markov chain, depending on the investor’s ARA, are:
n ∈ [100, 250] periods of trading, and the grid size δy ∈ [0.001, 0.1]. When
we calculate the prices of call options for investors with high ARA, we can-
not increase the number of periods of trading beyond some threshold, as the
values of the exponential utility are either overflow or underflow. However,
this is not an issue for calculating the prices of put options.

The number of options is always 1 in all our calculations. Recall that,
according to Theorem 7, the resulting unit reservation option price and the
corresponding exercise policy in the model with the pair of parameters (γ, 1)
will be the same as in the model with (γ

θ , θ). This means if, for example, we
choose γ = 1 and θ = 1, then we get the same unit reservation option price
as in the model with γ = 0.01 and θ = 100.

for the computation of the value function at the preceding time ti−1.
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In the case with no transaction costs and a put option, the exercise
policy depends on (t, S) and can be easily drawn in the (t, S) - plane as an
early exercise boundary S∗(t). Recall that the option buyer’s exercise policy
generally depends on his holdings in the stock account, that is, it depends
on (t, y, S). This results in a couple of complications: First, it is rather
cumbersome to depict and interpret the early exercise boundary in three
dimensions. Second, as we use a recombining binomial tree for representing
the evolution of the stock price, in some nodes of the tree, on the basis of
knowing only (t, S), we do not know whether the buyer chooses to exercise
the option or not to exercise. This means that we cannot uniquely define
the exercise policy on this type of tree for the computation of a reservation
option price for the writer. We could overcome this problem by using a non-
recombining (bushy) tree, but in this case the computations would be highly
time consuming and could be implemented for a model with maximum 20-25
periods of trading12.

We suggest a simple resolution of these complications. Recall that in the
(t, S) plane we can provide two bounds on the early exercise boundary, the
upper bound Su(t) and the lower bound Sl(t). Consequently, we provide two
bounds on the reservation write price. In the computation of the first one
we use the exercise policy Su(t), and in the computation of the second one
we use the exercise policy Sl(t). Note that the reservation purchase price is
unique.

5.1 Numerical Results for American Put Options

In this subsection we present the results of our numerical computations of
reservation option prices and exercise policies for American put options.
We begin our presentation with the study of how reservation option prices
depend on the level of the investor’s absolute risk aversion γ. The results
of the numerical computations are presented in Figure (5). On the basis of
studying the Figure, we can make the following observations concerning the
reservation option prices: The reservation purchase price is always below
the option price in the model with no transaction costs and is a decreasing
function of γ. The reservation write price is an increasing function of γ. For

12This algorithm grows quadratically in complexity as the number of periods increases,
meaning that the calculation of the optimal policy for period n + 1 takes approximately
the same time as the calculation of the optimal policies for all n previous periods.
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Figure 5: Reservation prices of American options as functions of the level of abso-
lute risk aversion.

high values of γ, the average (of the two bounds) reservation write price is
located above the option price in the model with no transaction costs. As γ

decreases, all the reservation option prices approach a horizontal asymptote
located below the option price in the model with no transaction costs. Here,
for low values of γ, the reservation option prices are virtually independent
of the choice of γ and are very close to each other.

Now we present the intuition behind the observed dependence of the
reservation option prices on the parameter γ.

In the presence of transaction costs the hedging of options is costly.
The amount of hedging transaction costs increases when the option holder’s
risk aversion increases (a more risk avers option holder hedges options more
often). These hedging transaction costs reduce the reservation purchase
price and increase the reservation write price. That is, the more risk avers
the option buyer is, the less he is willing to pay per an option. Similarly, the
writer of an option will demand a unit price which increases as the writer’s
risk aversion increases.

On the other hand, as the option holder’s risk aversion decreases, he
invests more wealth in the risky stock. At the same time, the frequency of
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trading caused by hedging decisions decreases, and, eventually, the highly
risk tolerant option holder implements mainly a so-called static hedge, re-
gardless of how high risk tolerant he is. That is why a reservation option
price approaches a horizontal asymptote as γ decreases. Now we turn on to
explain why this horizontal asymptote located below the option price in the
market with no transaction costs.

In particular, to implement the static hedge of a long option position,
the option buyer needs to buy additional number of shares of the stock at
time zero and sell them when he chooses to exercise the option. He deducts
these extra transaction costs from the price he is willing to pay for the
option. On the contrary, to hedge a short option position, the option writer
needs to sell short some number of shares of the stock at time zero and
liquidate the short position in the stock when the buyer chooses to exercise
the option. Consequently, selling options causes the writer to invest less in
the stock. Thus, it reduces transaction costs payed in the stock market, and
these savings reduce the reservation write price.

It turns out that, for the option holder with low value of γ, the discrep-
ancy between a reservation option price and the option price in the model
with no transaction costs is roughly equal to the round trip transaction
costs of buying some number (required by the optimal hedge) of shares of
the stock. Here, the reservation option price can be approximately calcu-
lated using the formula13

P = PBS − 2∆BS(0)S0λ, (73)

where PBS and ∆BS(0) is the option price and the option delta at time
zero, respectively, in the model with no transaction costs (Black-Scholes
price and delta), and S0 is the stock price at time zero. Note that the
level of proportional transaction costs fully explains the magnitude of the
discrepancy between the option prices with and without transaction costs.

We now turn to the analysis of how the early exercise boundary depends
on the level of the option holder’s absolute risk aversion γ. Figures (6)
and (7) show the two bounds on the early exercise boundary for an option
holder with γ = 0.001 and γ = 1 respectively. The obvious conclusion here
is that the more risk avers the option holder is, the earlier he exercises the

13This is a conjecture which is confirmed by comparison with the numerically calculated
reservation option prices.

41



option. The similar effect on the early exercise boundary has the level of
transaction costs. That is, the higher the transaction costs are, the earlier
the option holder exercises the option. The explanation for this is quite
intuitive and can also be done in terms of hedging transaction costs. Recall
that the amount of transaction costs caused by hedging decisions increases
when either the level of transaction costs increases or the option holder’s
risk aversion increases. When the expected amount of hedging transaction
costs becomes greater than the difference between the option value and the
exercise payoff, the option does not worth further hedging. That is why
options are exercised earlier in the market with transaction costs.

In the region where the exercise policy is not uniquely defined on the
basis of knowing only (t, S), there is a simple rule of thumb: The buyer of
an option is the more inclined to exercise the option, the less holdings in
the stock he has as compared to the optimal hedging position in the stock
in a friction-free market. The intuition behind this is as follows: Instead of
buying additional number of shares of the stock, in order to bring the hedg-
ing position in the stock in correspondence with the optimal amount (thus
paying some transaction costs), it is better to exercise the option. Again,
this happens when the discrepancy between the option value and the exer-
cise payoff becomes less than the expected amount of hedging transaction
costs.

Figures (8) and (9) show the bounds on reservation option prices versus
the price of the underlying stock for an option holder with γ = 0.001 and
γ = 1 respectively. For the option holder with γ = 0.001, the reservation
purchase price and the two bounds on the reservation write price are almost
coincide. We observe that the reservation option prices are always below
the corresponding prices in the market with no transaction costs. Moreover,
the deviation of a reservation option price from the corresponding price
in the market with no transaction costs almost does not depend on the
underlying stock price (or the moneyness of the option), at least in the
chosen interval of the stock prices. For the option holder with γ = 1, the
reservation purchase price is below, and the average of the two bounds on
the reservation write price is generally above the corresponding price in the
market with no transaction costs. As the option becomes more out-of-the-
money, the reservation purchase and write prices converge, because such
options tend to be exercised very soon.
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Figure 6: Bounds on the early exercise boundary for an American option holder
with γ = 0.001.
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Figure 7: Bounds on the early exercise boundary for an American option holder
with γ = 1.
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Figure 8: Bounds on reservation prices of American options versus the price of the
underlying stock for an option holder with γ = 0.001.
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Figure 9: Bounds on reservation prices of American options versus the price of the
underlying stock for an option holder with γ = 1.
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5.2 Numerical Results for American Call Options

Our numerical calculations for American call options agree with the findings
presented in Damgaard (2000a). That is, in the market with transaction
costs the premature exercise of an American call written on a non-dividend
paying security may, under some circumstances, be optimal.

Damgaard (2000a) studied the difference between reservation purchase
prices of an American call option and its European counterpart for different
levels of initial wealth of a CRRA investor. He found that for low levels of
wealth the American call option is of more value to the investor than the
European call option, whereas for wealth above a certain level the investor
perceives the European call option as being just as valuable as its American
counterpart. Moreover, he found that the higher level of transaction costs
is, the more the holder of an American call option is inclined to exercise
the option before maturity. A lower wealth for a CRRA utility corresponds
to a higher ARA. This suggests that it is the level of ARA, together with
the level of transaction costs, that influence the option holder decision to
exercise the option before maturity.

Our results of computing the reservation purchase prices of an American
call option and of its European counterpart for different levels of absolute
risk aversion are reported in Figure (10). From the Figure we observe that
for high levels of absolute risk aversion the price of the American call option
is higher than the price of its European counterpart, whereas for low levels
of absolute risk aversion the prices of the two options coincide. Furthermore,
we found that the discrepancy in the prices of the two options increases as
the level of transaction costs increases. Again, as in the case of put options,
the premature exercise can be explained in terms of hedging transaction
costs: The presence of transaction costs makes hedging expensive. Moreover,
the amount of hedging transaction costs increases when either the level of
transaction costs increases or the option holder’s risk aversion increases.

When the investor with a long position in an American call option wants
to hedge away the risk of the option, he faces the tradeoff between the ex-
pected amount of hedging transaction costs and the loss in the expected
wealth caused by premature exercise. When the expected amount of hedg-
ing transaction costs becomes greater than the expected gain from holding
the option until maturity, it is optimal for the option holder to exercise.
The analysis of the option holder’s exercise policy reveals that an Ameri-
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Figure 10: Reservation purchase prices of an American call option and its Euro-
pean counterpart as functions of the level of the buyer’s absolute risk aversion.

can call option is exercised at a time close to maturity (see Figure (11)).
The intuition here is in that, as time passes, a call option tends to become
less valuable (the option theta is negative). Thus, when the discrepancy
between the option value and the intrinsic option value becomes less than
the expected amount of hedging costs, the option does not worth hedging.
Moreover, the option buyer is the more inclined to exercise the option, the
higher holdings in the stock he has as compared to the optimal hedging
position in the stock in a friction-free market. The intuition behind this is
as follows: Instead of selling some number of shares of the stock, in order to
bring the hedging position in the stock in correspondence with the optimal
amount (thus paying some transaction costs), it is better to exercise the
option.

6 Conclusions and Extensions

In this paper we examined the problem of finding investors’ reservation op-
tion prices and corresponding early exercise policies of American-style op-
tions in the market with proportional transaction costs. We formulated the
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Figure 11: A schematic sketch of the early exercise policy for a buyer of American
call option with strike K.

continuous time option pricing problem for the CARA investor with finite
horizon. We considered both the buyer’s and the writer’s problems. Then
we derived some important properties of the reservation prices of American-
style options. We discussed the numerical algorithm and proposed a new
reformulation of these problems in terms of quasi-variational HJB inequali-
ties. Based on our formulation, we suggested original discretization schemes
for computing reservation prices of American-style option. The discretiza-
tion schemes were then implemented for computing reservation purchase and
write prices of American-style put options and reservation purchase prices
of American-style call options.

We examined the effects on the reservation option prices and the cor-
responding optimal exercise policies of varying the investor’s ARA and the
level of transaction costs. We found that in the market with transaction
costs the holder of an American-style option exercises this option earlier as
compared to the case with no transaction costs. This phenomenon concerns
both put and call options written on a non-dividend paying stock. We car-
ried out the detailed analysis of the early exercise policy and found that
the higher level the transaction costs is, or the higher risk avers the option
holder is, the earlier an American option is exercised.

It is known that in the presence of proportional transaction costs the

47



investor’s portfolio space, in the utility maximization problem without op-
tions, is divided into three disjoint regions, which can be specified as the Buy
region, the Sell region, and the no-transaction (NT) region. The boundaries
of the NT region are reflecting barriers, such that the investor refrains from
transactions as long the portfolio lies inside the NT region. If a portfolio lies
in the Buy or Sell region, then the investor performs the minimum transac-
tion required to reach the closest NT boundary. Our numerical calculations
showed that the same description of the optimal policy applies to the op-
tion writer, but the option buyer’s optimal strategy is rather complicated:
Generally, every region (Buy, Sell, and NT) consists of two sub-regions, and
not all the boundaries of the NT sub-regions are reflecting barriers. When
a non-reflecting barrier is hit, the investor performs the minimum trans-
action required to reach the closest boundary of the other NT sub-region.
Moreover, in contrast to the case with no transaction costs where the early
exercise boundary depends on the stock price and time, we found that the
option holder exercise policy generally depends on his holdings in the stock.

As an important concluding remark, we shall now shortly discuss the ro-
bustness of the utility based option pricing approach to the input parameters
of the model. It seems that for the investors with low level of (re-scaled for
the number of options) absolute risk aversion the reservation option prices
are very robust to all the model parameters. However, we should point out
that the reservation option prices generally depend on the initial holdings in
the stock (see (26) or (36)). For practical applications one usually assumes
that the investor starts with zero holdings in the stock. This implies that
the investor’s initial stock inventory lies in the Buy region. In this situ-
ation a buyer of options will, for example, value a put option less14 than
that one who wishes to sell the stock. The opposite pattern will be ob-
tained if the investor’s initial stock inventory lies in the Sell region. That
is, the sign of the bias in (73) will be the opposite (this phenomenon was
closely studied in Monoyios (2003) for European-style options). Moreover,
the reservation option prices depend on the measure of risk aversion for the
investors with high level of absolute risk aversion. It should be emphasized,
however, that one of the most attractive features of the utility based option
pricing approach is that the hedging and early exercise strategies depend
almost entirely on the option holder’s measure of risk aversion. If we are

14Note that hedging of a long put requires buying some number of shares of the stock.
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able to specify it, the risk management part of the problem will be solved.
There are several directions in which our work could be extended.

1. Nonexponential utilities. There is no issue of principle here, but only
of increase of computational load, since the reduction from four to
three dimensions is no longer available. However, as it was conjectured
by Davis et al. (1993) and showed in Andersen and Damgaard (1999),
the reservation option prices are approximately invariant to the specific
form of the investor’s utility function, and mainly only the level of
absolute risk aversion plays an important role. As a result, it seems
to be of a little practical interest to calculate the reservation option
prices and optimal hedging and early exercise strategies using other
utility functions besides the exponential one. These calculations will
be very time consuming, and, moreover, the optimal hedging and early
exercise strategies will be difficult to interpret because of their four-
dimensional (t, x, y, S)-form.

3. Incomplete market. The utility based option pricing approach can be
generalized to cover the case of incomplete market with transaction
costs. In particular, this approach could be extended to include jumps
in the price of the risky asset.

4. American options with fixed transaction costs. Clearly, we can ex-
tend our work to price American options in market with both fixed
and proportional transaction costs. There is no issue of principle here,
just the increased load of computations.

5. Optimal exercise of several American options. Recall our assump-
tion: if the buyer of several American options chooses to exercise, he
is required to exercise all of his θ options simultaneously. We can re-
move this assumption and solve the problem of optimal exercise of θ

American options through time. Again, there is no issue of principle
here, just the addition of one more dimension which will result in an
increased computational load.

6. Asymptotic analysis for American options. It would be interest-
ing to see if the asymptotic expansion methods pioneered by Whalley
and Wilmott (1997) for European options could also be applied for
the American options.
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