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Abstract

Optimal risk sharing is considered from the perspective of the risk
sharing model introduced by Karl Borch in the late 50ies.

First we introduce, in a modern setting, the main concepts from
this theory. These we apply on the risk sharing problem between an
insurer and an insurance customer. We motivate the development
through a simple example, illustrating some fine points of this theory.

In order to explain deductibles, we separately introduce (i) costs,
and (ii) moral hazard in the neoclassical model, the latter case also
illustrated by an example.

KEYWORDS: Reinsurance Exchange, Equilibrium, Pareto Opti-
mality, Representative Agent, Core Solution, Individual Rationality,
Deductibles, Costs, Moral Hazard.

Introduction

We first study the following model: Let Z = {1,2,... I} be a group of I
reinsurers, simply termed agents for the time being, having preferences >;
over a suitable set of random variables. These preferences are represented
by expected utility, meaning that there is a set of Bernoulli utility functions
u; : R — R, such that X »; Y if and only if Eu;(X) > Fu;(Y). We assume
smooth utility functions; here u}(w) > 0, u(w) < 0 for all w in the relevant
domains, for all 7 € 7.

Each agent is endowed with a random payoff X; called his initial portfolio.
Uncertainty is objective and external, and there is no informational asymme-
try. All parties agree upon the space (€2, F, P) as the probabilistic description



of the stochastic environment, the latter being unaffected by their actions.
Here Q is the set of states of the world, F = F* := o(X{, Xy,..., X)) is
the set of events, and P is the common belief probability measure. It will be
convenient to posit that both expected values and variances exist for all the
initial portfolios, which means that all X; € L?(Q, F, P), or just X; € L? for
short.

We suppose the agents can negotiate any affordable contracts among
themselves, resulting in a new set of random variables Y;,7 € Z, representing
the possible final payout to the different members of the group, or final
portfolios. The transactions are carried out right away at “market prices”,
where 7(Y") represents the market price for any Y € L? i.e., it signifies the
group’s valuation of the random variable Y relative to the other random
variables in L?. The essential objective is then to determine:

(a) The market price 7(Y) of any “risk” Y € L? from the set of preferences
of the agents and the joint probability distribution F(z,xs,...,x) of the
random vector X = (X1, Xy, ..., X)).

(b) For each i, the final portfolio Y; most preferred by him among those
satisfying his budget constraint 7(Y;) < m(X;).

Equilibrium

Unless the functional m on L2 is linear, arbitrage would be possible. Since we
allow all kinds of contract formation (complete market), and the agents prefer
more to less, we require that there should not be any arbitrage (i.e., contracts
with positive payouts that cost nothing). Hence linearity of = follows. Also,
the pricing functional = should be positive, meaning simply that 7(Z) > 0
for any Z > 0 P-a.s. We know that a linear and positive functional on an
LP—space is continuous, 1 < p < oo, so by the Riesz representation theorem
there exists a unique random variable £ € L? such that

m(Z) = E(Z¢) for all Z € L.

An allocation Z = (71, Zs, ... , Z7) is called feasible if

The problem each agent is supposed to solve is the following:

sup Fu;(Z;) subject to w(Z;) < w(X5). (1)
Z;eL?



Definition 1 A competitive equilibrium is a collection (m; Y7, Ys, ..., Y]) con-
sisting of a price functional ™ and a feasible allocation Y = (Y1,Ys, ..., Y])
such that for each i, Y; solves the problem (1) and markets clear; Y I_| Y; =

21‘[:1 Xi.

We close the system by assuming rational expectations. This means that
the market clearing price m implied by agent behavior is assumed to be the
same as the price functional 7 on which agent decisions are based. The main
analytic issue is then the determination of equilibrium price behavior. We
have the following

Theorem 1 Suppose the preferences of the agents are strictly monotonic and
convez, i.e., u; > 0 and v <0 for alli € I, and assume that a competitive
equilibrium ezists, where w(X;) > 0 for each i. The equilibrium is then
characterized by the existence of positive constants «;, © € I, such that for
the equilibrium allocation (Y1,Ya, ... ,Y])

ui(Y;) = aié, a.s. forall 1€TI, (2)
where & s the Riesz representation of the pricing functional .

The random variable & € L?, here the dual space, is called the state price
deflator.

A modern proof of this theorem, as well as many results to follow, can
be found in Aase (2002), where also an extensive bibliography is given. A
proof can be built on the Kuhn-Tucker Theorem and directional derivatives
in function space.

Existence of equilibrium in infinite dimensional economies was dealt with
by Bewley (1972). In many spaces, like L?, the positive cone has an empty
interior, creating problems with standard separating methods. A key concept
here is properness, introduced by by Mas-Colell (1986). This was used in
Aase (1993a) to give a set of sufficient conditions for equilibrium in the
reinsurance model. Typically, the relevant conditions must restrict both
preferences and the joint probability distribution F(z) of X.

Pareto Optimality

Next we introduce the concept of (strong) Pareto optimality of an allocation.

Definition 2 A feasible allocation Y = (Y1, Y, ... ,Y]) is called Pareto op-
timal if there is no feasible allocation Z = (Zy, Zs, ... , Z;) with Eu,(Z;) >
Eu,(Y;) for all i and with Eu;(Z;) > Eu;(Y;) for some j.
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An important neoclassical result is that any competitive equilibrium is Pareto
optimal.

In order to properly formulate our next fundamental result, consider for
each nonzero vector A € RY of agent weights the function uy(-) : R — R
defined by

1

I
uy(v) =: sup Z)\zuz(zz) subject to ZZZ <. (3)

(214...521) i1 i=1

As the notation indicates, this function depends only on the variable v, mean-
ing that if the supremum is attained at the point (yi,...,ys), all these
yi = yi(v) and uy(v) = .1 Nui(yi(v)). Tt is a consequence of the Im-
plicit Function Theorem that under our assumptions, the function wuy(-) is
two times differentiable in v. The function wuy(v) is often called the supcon-
volution function, and is typically more ”"well behaved” than the individual
functions u;(-) that make it up.

Now we are in the position to present the announced fundamental charac-
terization, which can be proved using the Separating Hyperplane Theorem:

Theorem 2 Suppose u; are concave and increasing for all i. Then Y is a
Pareto optimal allocation if and only if there exists a nonzero vector of agent
weights A € RY such that Y = (Y1,Ys,...,Y]) solves the problem

I I
sup Z NiEui(Z;) subject to Z Z; < X (4)
i=1

(Z1,...,Z]) j— =1

Next we characterize Pareto optimal allocations under the above condi-
tions. This result is known as Borch’s Theorem:

Theorem 3 A Pareto optimum Y is characterized by the existence of non-
negative agent weights A1, Ao, ..., A\; and a real function A : R — R, such
that

My (Yr) = Aaug(Ya) = o= Apulp(Y7) := M X ) a.s. (5)

We may identify the reciprocals of the Lagrangian multipliers o; ' in Theorem
1 with the above agent weights \;, i.e., 041-_1 = );, in which case the state price
deflator £(X) = M(X ) a.s.

In proving the above theorem we have used the Saddle Point Theorem
and directional derivatives in function space.

Existence of Pareto optimal contracts has been treated by DuMouchel
(1968). The requirements are, as we may expect, very mild.
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Representative Agent

We are now in a position to introduce our last building block, the represen-
tative agent. To this end, let us recall the sup-convolution function:

1 I
uy(v) == sup Z)\lul(zz) subject to Zzz < . (6)
i=1

(#15---521) =1

Having this function spelled out, we consider the following problem:

1 I
Eux(V):= sup Y NEui(Z)  subjectto Y Z;<V. (7)
(Z1,..21) 755 Py

where V and Z; € L? for all i.

Theorem 4 Assume u; > 0,u; <0 for all i, and suppose (7;Y1,Ys,...,Y])
18 a competitive equilibrium. Then there exists a nonzero vector of agent
weights A = (A, ..., A1), A\i >0 for all i such that

(i) the equilibrium allocation (Y1,Ys, ... ,Y7) solves the allocation problem
(7) atV =Xy =31, Xi in which case Euy(Xy) = 321, NiBuy(V;).

(1) the collection (m; Xyr) is an equilibrium in the single-agent economy
(ux; Xnr)-

The linear pricing functional w is then given by

m(Z)=E(W\(Xy)-Z) VZ €L
that is, u\ (X)) = € a.s.

Here we see clearer why A(X)) = £(X), as noted after Theorem 3, since
E(Xy, ..., X1) =&(Xy) as. follows from Theorem 4.

The function E(uy(Xys)) may be considered as a welfare function when
the aggregate risk is is endogenous. Notice that this welfare function is
endogenous by construction.

Risk tolerance and aggregation

The risk tolerance function of an agent p(z) : R — R, is defined by the
reciprocal of the absolute risk aversion function R(z) = —Z,((;C)), or p(z) =

1/R(zx). Let us consider the following nonlinear differential equation:

] _ R)\(LE)
Y= rm)y

2

x € B, (8)



where R)(z) = —Z;Eg is the absolute risk aversion function of the represen-
A

tative agent, and R;(Y;(z)) = —Z;,/((;((;)))) is the absolute risk aversion of agent
i at the Pareto optimal allocation function Yi(xz), i € Z. There is a neat
result connecting the risk tolerances of all the agents in the market to the
risk tolerance of the representative agent in a Pareto optimal allocation. It

goes as follows:

Theorem 5 (a) The risk tolerance of the market px(Xyr) equals the sum of
the risk tolerances of the individual agents in a Pareto optimum, or

n(X) =3 X)) as )
i€z
(b) The real, Pareto optimal allocation functions Yi(x) : R — R, i € T satisfy
the nonlinear differential equations (8).

The result in (a) was found by Borch (1985); see also Biithlmann (1980) for
the special case of exponential utility functions.
We round off this section with the following characterization:

Theorem 6 The Pareto optimal sharing rules are affine if and only if the
risk tolerances are affine with identical cautiousness, i.e., Y;(x) = A;+ Bz for
some constants A;, B;, i € T, Zj A; =0, Zj B; =1, & pi(z;) = a; + B,
for some constants 3 and a;, 1 € T.

This result can be found, among other places, in Wilson (1968).

The risk exchange between an insurer and a
policy holder

Consider a policy holder having initial capital wy, a positive real number,
and facing a risk X, a non-negative random variable. The insured has utility
function w;, where v} > 0,4} < 0. The insurer has utility function wus,
uh, > 0,u5 < 0, and initial fortune wq, also a positive real number. These
parties can negotiate an insurance contract, stating that the indemnity 7(x)
is to be paid by the insurer to the insured if claims amount to = > 0. It
seems reasonable to require that 0 < I(z) < z for any x > 0. Notice that
this implies that no payments should be made if there are no claims, i.e.,
I(0) = 0. The premium p for this contract is payable when the contract is
initialized.

We recognize that we may employ our established theory for generating
Pareto optimal contracts. Doing this, Moffet (1979) was the first to show the
following:



Theorem 7 The Pareto optimal, real indemnity function I: Ry — R, sat-
1sfies the following nonlinear, differential equation
oI (x) Ri(wy —p—x+ I(x))

Ox :Rl(wl—p—x—l—l(z))—l—Rg(wg +p—I(x))’ (10)

"

"
where the functions Ry = —Z—}, and Ry = —Z—? are the absolute risk aversion
1 2
functions of the insured and the insurer, respectively.

In our setting this result is an immediate consequence of Theorem 5 (b).

Example 1: Let us consider the following approach to risk sharing. Con-
sider a potential insurance buyer who can pay a premium ap and thus receive
insurance compensation I(x) := ax if the loss is equal to x. He then obtains
the expected utility (v’ > 0,u” < 0)

U(a) = E{u(w — X —ap+ [(X))}

where 0 < o < 1 is a constant of proportionality. It is easy to show that
if p > EX, it will not be optimal to buy full insurance (i.e., a* < 1) (see
Mossin (1968)).

The situation is the same as in the above, but now we change the premium
functional to p = («EX +c¢) instead, where ¢ is a non-negative constant. It is
now easy to demonstrate, for example using Jensen’s inequality, that o* =1,
i.e., full insurance is indeed optimal, given that insurance at all is rational
(see e.g., Borch (1990)). O

The seeming inconsistency between the solutions to these two problems
has caused some confusion in the insurance literature, and we would now like
to resolve this puzzle. In the two situations of Example 1 we only considered
the insured’s problem. Let us instead take the full step and consider both the
insurer and the insurance customer at the same time, and then “optimality”
simply means Pareto optimality. In doing this we want to use the above
presented general risk exchange theory.

From Theorem 7 we realize the following: If uj < 0, we notice that
0 < I'(x) < 1 for all z, and together with the boundary condition I(0) = 0,
by the mean value theorem we get that

0<I(z)<ux, forall x>0,

stating that full insurance is not Pareto optimal when both parties are strictly
risk averse. We notice that the natural restriction 0 < I(z) < z is not binding
at the optimum for any x > 0, once the initial condition 7(0) = 0 is employed.

We also notice that contracts with a deductible d can not be Pareto optimal
when both parties are strictly risk averse, since such a contract means that
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Ij(z) =2 —d for x > d, and I;(x) = 0 for z < d for d > 0 a positive real
number. Thus either I, = 1 or I, = 0, contradicting 0 < I'(x) < 1 for all x.

However, when u) = 0 we notice that I(z) = x for all > 0: When the
wnsurer is risk neutral, full insurance is optimal and the risk neutral part, the
insurer, assumes all the risk. Clearly, when Rs is uniformly much smaller
than R, this will approximately be true even if Ry > 0.

This gives a neat resolution of the above mentioned puzzle. We see that
the premium p does not really enter the discussion in any crucial manner
when it comes to the actual form of the risk sharing rule I(x), although this
function naturally depends on the parameter p.

We could now use the theory of competitive equilibrium to find p. It is
given as

b BU0(X)
M T

(see e.g. Aase (2002), (1993a)). We could also use elements of cooperative
game theory and determine the core in the present situation (see e.g., Lemaire
(2003), this volume). The largest premium p, that the insured will accept is
given by

(11)

Euy(wy —py — X + 1,,(X)) = Buy(wy — X),

while the smallest premium p;, that the insurer will accept in this situation
is given by

Euy(wy + pp — I, (X)) = ug(ws).

Both these follow from applying individual rationality. Between these two
prices the price p. must lie, i.e., if p.. exists, then p.. € [py,ps]. Thus we
here have a situation where the core can be parameterized by the premium
p. This is illustrated by examples in Aase (2002).

For a treatment of cooperative game theory in the standard risk sharing
model, see Baton and Lemaire (1981). For a characterization of the Nash
bargaining solution in the standard risk sharing model, see Borch (1960a)
and (1960b).

Deductibles I: Administrative Costs

In the rather neat theory demonstrated above we were not able to obtain
deductibles in the Pareto optimal contracts. Since such features are observed
in real insurance contracts, it would be interesting to find conditions when



such contracts result. The best explanation of deductibles in insurance is,
perhaps, provided by introducing costs in the model. Intuitively, when there
are costs incurred from settling claim payments, costs that depend on the
compensation and are to be shared between the two parties, the claim size
ought to be beyond a certain minimum in order for it to be Pareto optimal
to compensate such a claim. Technically speaking, the natural requirement
0 < I(z) < z will be binding at the optimum, and this causes a strictly
positive deductible to occur.

Following Raviv (1979), let the costs ¢(I(x)) associated with the contract
I and claim size x satisfy ¢(0) =a >0, ¢(I) > 0 and ¢'(I) > 0 for all I > 0;
in other words, the costs are assumed increasing and convex in the indemnity
payment I. We then have the following:

Theorem 8 In the presence of costs the Pareto optimal, real indemnity func-
tion I: Ry — R, satisfies

I(z)=0 for  x<d

0<I(z)<cx for x> d.

In the range where 0 < I(x) < x it satisfies the differential equation

0I(x) _ Ri(wy — p—a+I(z)) )
T Rl == T+ R+ U + 3Ty

where A =wy+p—I(x) — c(I(x)).
Moreover, a necessary and sufficient condition for the Pareto optimal
deductible d to be equal to zero is ¢(-) =0 (i.e., ¢(I) = a for all I).

If the cost of insurance depends on the coverage, then a nontrivial deductible
is obtained. Thus Arrow’s (1970, Theorem 1) deductible result was not a con-
sequence of the risk-neutrality assumption (see also Arrow (1974)). Rather it
was obtained because of the assumption that insurance cost is proportional
to coverage. His result is then a direct consequence of Theorem 8§ above:

Corollary 1 If ¢(I) = kI for some positive constant k, and the insurer is
risk neutral, the Pareto optimal policy is given by

I(x) 0, if v < d;
T) =
x—d, ifx>d.

where d > 0 if and only if kK > 0.



Here we obtained full insurance above the deductible. If the insurer is strictly
risk averse, a nontrivial deductible would still obtain if ¢'(I) > 0 for some
I, but now there would also be coinsurance (further risk sharing) for losses
above the deductible.

Risk aversion, however, is not the only explanation for coinsurance. Even
if the insurer is risk neutral, coinsurance might be observed, provided the
cost function is a strictly convex function of the coverage I. The intuitive
reason for this result is that cost function nonlinearity substitutes for utility
function nonlinearity.

To conclude this section, a strictly positive deductible occurred if and
only if the insurance cost depended on the insurance payment. Coinsurance
above the deductible d > 0 results from either insurer risk aversion or cost
function nonlinearity. For further results on costs and optimal insurance, see
e.g., Spaeter and Roger (1995).

Deductibles I1: Moral Hazard

A situation involving moral hazard is characterized by a decision taken by
one of the parties involved (the insured), that only he can observe. The other
party (the insurer) understands what decision the insured will take, but can
not force the insured to take any particular decision by a contract design,
since he can not monitor the insured.

The concept of moral hazard has its origin in marine insurance. The
old standard marine insurance policy of Lloyd’s - known as S.G. (ship and
goods) policy - covered “physical hazard”, more picturesquely described as
“the perils of the see”. The “moral hazard” was supposed to be excluded, but
it seemed difficult to give a precise definition of this concept. Several early
writers on marine insurance (e.g., Dover (1957), Dinsdale (1949), Winter
(1952)) indicate that situations of moral hazard were met with underwriters
imposing an extra premium.

The following idea was initiated by Holmstrom (1979). In order to explain
this, let, as in the above, us(z) and w, denote the insurer’s utility function
and initial wealth, u,(z), v(a), wy, are similarly the corresponding utility
function and initial wealth of the insured. In the latter case v(a) denotes
disutility of effort a, effort designated to minimize or avoid the loss. Only
the insured can observe a. The loss facing the insured is denoted by X, having
probability density function f(x,a). Notice that here we deviate from the
neoclassical assumption that uncertainty is exogenous, since the stochastic
environment is now effected by the insured’s actions.
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The problem may be formulated as follows:

max EUQ(’U)Q - I(X) + p)
I(z),a,p

subject to I(z) € [0,z], p > 0, and subject to
Euy(wy — X +I(X) —p) —ov(a) > h
and
a € argmax, { Euy(w; — X + I[(X) — p) —v(d')}

The first constraint is called the participation constraint (individual ratio-
nality), and the last one is called the incentive compatibility constraint. We
illustrate by an example presented in Aase (2002):

Example 2: Consider the case with us(z) = =z, ui(z) = /x,v(a) = a?
and the probability density of claims f(z,a) = ae™®" is exponential with
parameter a (effort). Notice that P(X > z) = e * decreases as effort a
increases: An increase in effort decreases the likelihood of a loss X larger
than any given level x.

We consider a numerical example where the initial certain wealth of the
insurer w; = 100, and his alternative expected utility ~ = 19.589. This
number equals his expected utility without any insurance. In this case the
optimal effort level is a* = 0.3719.

In the case of no moral hazard, we solve the problem without the incentive
compatibility constraint, and obtain what is called the first best solution. As
expected, since the insurer is risk neutral, full insurance is optimal: I(x) = z,
and the first best level of effort a’'? = .3701, smaller than without insurance.

The expected utility of the representative agent we may denote the welfare
function. Here it is:

Fus(ws +p —I(X)) + AM(Fup(wy —p— X + I1(X)) — v(a))

= wy + 195.83,

since A = M'B = 9.8631. Here pI'? = 2.719. Moving to the situation with
moral hazard, full insurance is no longer optimal. We get a contract with a
deductible d, and less than full insurance above the deductible:

0, if0<x<d,
I(z)=Sz+p—w+\+L4—pur)?, ifd<z<2+l
x4+ p— w, ifx>%+é.

11



Here the deductible d = 11.24, the second best level of effort a = a°? = .368]1.
Notice that this is lower that a”?. The Lagrangian multipliers of the two
constraints are: A8 = 9.7214 and ;= 0.0353. The second best premium in
this case is p°P = 0.0147.

Due to the presence of moral hazard there is now a welfare loss: The
expected utility of the representative agent has decreased:

Bus(ws + p — I(X)) + XP(Buy (w — p— X + I(X)) — v(a®F))

= wy + 187.73,

implying a welfare loss of 8.10 compared to the first best solution. Notice
that the premium p°? is here lower than for the full insurance case of the first
best solution, due to a smaller liability, by the endogenous contract design,
for the insurer in the situation with moral hazard. U

In the above example we have used the first order approach, justified in
Jewitt (1988).

Again we see that deductibles may result, and also coinsurance above
the deductible, when the classical model predicts full insurance and no de-
ductible.

A slightly different point of view is the following: If the insured can gain
by breaking the insurance contract, moral hazard is present. In such cases the
insurance company will often check that the insurance contract is observed.
Note, in the above model the insurance company could not observe the action
a of the insured. This was precisely the cause of the problem in Example
2. Here, checking is possible, but will cost money, so it follows that the
mere existence of moral hazard will lead to costs. This is a different type
of costs from those of Example 2, but has the same origin - moral hazard.
The present situation clearly invites analysis as a two-person game - played
between the insurance company and its customer.

Borch 1980 takes up this challenge, and finds a Nash equilibrium in mixed
strategies. In this model the insured pays the full cost of moral hazard
through the premium.

It seems to have been Karl Borch’s position that moral hazard ought to
be met by imposing an extra premium. !

From the above example we note that increased premiums may not really
be the point in dealing with this problem: Here we see that the premium p°?
is actually smaller that the premium p”®2. The important issue is that the

LStiglitz (1983) presented a model where the premium per units of insurance offered
increases under moral hazard. He deals with loss distributions that can only take two
values, so this concept does not have any direct counterpart in our model.
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contract creates incentives for the insured to protect his belongings. This
is brought out very clearly in the above example if the first best solution
is implemented when moral hazard is present. Then the insured will set
his level of effort a = 0, i.e., to its smallest possible level, since he has no
incentive to avoid the loss, resulting in a very large loss with high probability
(a singular situation with a Dirac distribution at infinity). Since the second
best solution #s the best when moral hazard is present, naturally this leads
to a low welfare, in particular for the insurer.
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