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Abstract

This paper combines the new and elegant technique of inverse methods and a Monte

Carlo procedure to analyze real data for the Norwegian cod �shery (NCF) stock. A

simple nonlinear dynamic resource model is calibrated to real time series of observa-

tions using the adjoint parameter estimation method of data assimilation and the Monte

Carlo technique. By exploring the e�cient features of the adjoint technique coupled

with the Monte Carlo method, optimal or best parameter estimates together with their

error statistics are obtained. Thereafter, the weak constraint formulation resulting in a

stochastic ordinary di�erential equation (SODE) is used to �nd an improved estimate

of the dynamical variable(s). Empirical results show that the average �shing mortality

imposed on the NCF stock is 16 % more than the intrinsic growth rate of the biological

species.

1Corresponding author: Department of Finance and Management Science, Norwegian School of

Economics and Business Administration, Bergen Norway. Email:ussif@hamilton.nhh.no.
2Department of Finance and Management Science, Norwegian School of Economics and Business

Administration, Bergen Norway.
3Foundation for Research in Economics and Business Administration, Bergen Norway.

1



1 Introduction

Two important sources of information to bioeconomists and other researchers are the

model on one hand and the data on the other. The model is an embodiment of the

scienti�c beliefs of the researcher. Mathematical or numerical models have been used

extensively by economists to gain useful insights in the analysis of natural resource prob-

lems (Clark, 1990; Hannesson, 1993; Sandal and Steinshamn, 1997). The other source is

the observations obtained from �eld measurements. Unfortunately, this vital source has

not been fully exploited thus far. Advanced and e�cient techniques of combining these

two sources of information need to be developed. This paper employs the technique of

data assimilation and inverse methods (Bennett, 1992) in which all the available infor-

mation is used in the analysis of the Norwegian cod �shery (NCF) stock.

Inverse methods are a set of methods employed to extract useful inferences about the

real world from measurements. In other words inverse methods can be de�ned as a set

of mathematical techniques for reducing data to acquire useful information about the

physical world on the basis of inferences drawn from observations (Menke, 1984). In

data assimilation, observations are merged together with a dynamical model in order

to determine, as accurately as possible, a description of the state of the system. It can

be used to estimate the variables of the dynamical model and/or the parameters of the

model. It also leads to the resolution of mathematically ill-posed modeling problems

(Bennett, 1992).

In general, there are two forms of assimilation, sequential assimilation and variational

assimilation. In sequential assimilation, the model is integrated forward in time and the
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model solution updated whenever measurements are available. A typical example is the

Kalman �lter (Kalman, 1960; Gelb, 1974) which is an optimal algorithm for linear dy-

namics. Variational assimilation, on the other hand aims at globally adjusting a model

solution to observations available over the assimilation time interval. Two di�erent for-

malisms exist in variational methods: the method of strong constraint popularly known

as the adjoint method and the method of weak constraint which is related to the penalty

methods (Smedstad and O'Brien, 1991). The strong constraint formulation is shown to

be the limiting case of the latter where the model is assumed to be perfect.

In this paper, a variational inverse formulation will be employed to estimate the gener-

alized inverse of the stock and the poorly known input parameter(s) of a bioeconomic

�sheries model. This technique has been applied with success in parameter estimation

in an Ekman 
ow model (See Eknes and Evensen, 1997; Yu and O'Brien, 1991).

During the last quarter of the century, many important developments have taken place

which have a�ected the structural setup of �sheries management. An important example

is the U.N. law of the sea in the late 1970s. The law resulted in the Extended Fisheries

Jurisdiction (EFJ) from maximum of 12 to 200 nautical miles, for coastal states. It

empowered, for example, Norway to manage the Barent sea cod together with Russia,

Iceland and The Faroe Islands. This calls for annual quotas being determined a priori

at the inception of each �shing season. This paper will aim at addressing the question

of quota determination. The recent in
ux of data from both �sheries biologists and

economists due to improved observational and measurement methods necessitate the de-

velopment of techniques in which as much information as possible can be extracted.

Inverse methods and data assimilation methods have broad application and a wide range
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of advantages which is demonstrated by its extensive usage in operational meteorology,

oceanography and other �elds. These advantages can be explored in bioeconomics to

a great extent. First, it can be used to analyze the incoming data to extract useful

information which will lead to important policy implications about the operation of a

�shery. This in e�ect will help answer some of the unanswered questions in this area.

Traditionally, data assimilation and inverse methods are used to estimate variables of dy-

namical models, using all the available information from the model and the information

about the true state from the data. However, these techniques have also been proposed

as a tool for parameter estimation in dynamical models (Evensen et al., 1998). The basic

idea is that it should be possible to use mathematical tools to formulate inverse problems

for parameter estimation given additional information in a form of measurement data.

Thus, one may attempt to search for model parameters resulting in a model solution that

is closest to the observations. Notice here that this technique is new and has obvious

advantages compared with the traditional methods. The technique can be applied with

equal force to both an open access �shery and the sole owner �shery. It is highly suitable

for complex and high dimensional problems. Multidimensional �sheries models are more

realistic as ecosystem e�ects may be incorporated.

Parameter estimation has been used extensively in economics and other �elds. However,

very few studies have so far been reported in which the techniques in this paper have

been used. For all we know, no such study has been made in �sheries bioeconomics. The

reason may be attributed to lack of data and computer power in the past.

The purpose of this study is threefold. First to introduce the powerful tool of data

assimilation in the management of renewable resources such as �sheries. Second, to ex-
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ploit the elegant and e�cient properties of the inverse methods in order to extract the

best information from the available measurements. Third, to estimate the parameters of

the growth and production relations and thereby estimate the stock and harvest quotas

under a dynamic constraint.

The remainder of the paper is structured as follows. Section two presents the general for-

mulation of the inverse methods and discusses the null hypotheses. In section three, the

estimator is de�ned and a comprehensive discussion of the solution method presented.

The least squares method is used to de�ne a scalar objective functional emphasizing the

link between this technique and the theory of statistical estimation. In the fourth sec-

tion, a simple bioeconomic model is de�ned. The biological base is the Schaefer growth

function. It is tied to the economics by a catch per unit e�ort type of production func-

tion. Section �ve is a historical discussion of the cod �shery and a sensitivity analysis

of the parameters of the model. Finally, the results are presented in section six with an

equilibrium analysis using the estimated parameters.

2 The Variational Inverse Formulation

A variational inverse problem can be formulated as either a strong constraint problem

where the model is assumed to be perfect, i.e., the model holds exactly or the weak

constraint formalism (Sasaki, 1970) where the model is allowed to contain errors. In

modeling a system, several assumptions are often made both for mathematical conve-

nience and tractability. Several uncertain inputs are also used in the model resulting in

a model that approximately represents the real system. Modeling errors are unavoidable
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in many situations. Thus, adding a term to the model that quanti�es the errors makes

the model more realistic. It is sometimes a common practice among some researchers

to assume a model that is perfect then vary some of the free parameters such as the

initial conditions of the model in order to �nd the solution which best �t the data (Yu

and O'Brien, 1992). Such a formulation is known as the strong constraint problem. It

is shown that the strong constraint problem is a limiting case of the weak constraint

problem (see Bennett, 1992).

In this paper, the adjoint technique will be employed to �t the dynamic model to the

observations. We then use the estimated parameters in an inverse calculation using the

weak constraint formulation. In the �rst problem the control variables are the input

parameters. Using the adjoint method the gradients of the cost functional with respect

to the control variables are e�ciently calculated through the use of the Lagrange multi-

pliers. The gradients are then used to �nd the parameters of the model dynamics which

best �t the data. In the second case however, the model variables are the control pa-

rameters. The gradients of the variables at each grid point are calculated and the values

used to search for the minimum of the cost functional (see Bennett, 1992).

2.1 The data and the model

To formulate the problem, a general nonlinear scalar dynamic model together with the

initial condition is de�ned as

dx

dt
= g(�; x) + q(t) (1)

x(0) = u+ a (2)
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� = �0 + �̂ (3)

where g is a nonlinear operator, � is a parameter(s) to be estimated and is assumed

poorly known. The terms a, �̂ and q(t) are random white noise terms and are de�ned

as the errors in the �rst or best guess of the initial condition (u), the parameter(s) (�0)

and the model formulation respectively. Such a formulation is referred to as the weak

constraint general inverse problem (Evensen et al., 1998). The task involves solving for

the optimal dynamical variables while updating the model parameters. The result is a

solution of the model that is closest to the observations and simultaneously satis�es the

model constraints approximately. If the errors in the initial condition and/or the model

formulation are assumed to vanish identically, i.e., a � 0 and q � 0, then we retrieve the

strong constraint parameter estimation problem.

The model is one source of information which in general is the physical laws governing

the system, e.g., the population dynamic model of the Schaefer (1964) type. Additional

available information is the set of observations given by

d = H[x] + � (4)

where d is the measurement vector, H is a linear operator that relates the observations

to its model counterpart and � is the vector of measurement errors. The errors may be

due to instrumental imprecision and from other sources.
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2.2 Some statistical assumptions

To describe the errors in the model, the data and the parameters, we require some

statistical hypotheses. For our purpose in this paper the following hypotheses will su�ce

�q(t) = 0; qT q = w�1

q

�a = 0; a2 = w�1

a

�� = 0; �T � = w�1

�̂
� = 0; �̂T �̂ = w�1

�

where the scalars w0s are the weights and the T denotes matrix transpose operator.

That is, we are assuming that the errors are normally distributed with zero means and

constant variances (homoscedastic) which are ideally the inverses of the optimal weights.

The assumption of unbiasedness is very common in the literature (see Bennett, 1992).

The overbar denotes the mathematical expectation operator. It will be, however, more

realistic to make the variances more general by allowing cross-variances, but this will

not be used in this paper. The linear measurement operator may be de�ned as

Hi[x] =
Z Tf

0

x(t)�(t� Ti)dt = x(Ti) (5)

where Ti is the measurement location in time, Tf is the time horizon, � is the Dirac

delta function and i denotes a component of the measurement functional which is a

vector with dimension equal to the number of observations. In the subsequent sections,

we shall present a simple but detailed discussion of the strong and the weak constraint

formalisms.
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3 The Least Squares Estimator

In data assimilation, the goal is to �nd a solution of the model which is as close as possible

to the available observations. Several estimators exist for �tting models to data. In this

paper, we seek residuals that result in model prediction that is in close agreement with

the data. Hence the �tting criterion is the least squares loss function which is the sum

of the model, data, initial residuals and parameter mis�ts. This is given by

J = w��̂T �̂ + w�T � + wq

Z Tf

0

q(t)2dt+ wa(x(0)� u)2 (6)

where w�, wq, wa and w are scalar constants. We have thus formulated a nonlinear

unconstrained optimization problem. The last two terms in (6) are penalty terms on the

dynamics and the initial condition respectively.

To derive the strong constraint problem as a special case, de�ne � = wqq and �a = waa

where q � 0 and a � 0, i.e., both the dynamics and the initial condition are perfect.

This is equivalent to assigning in�nitely large weights to the dynamics and the initial

condition. The cost functional reduces to

Js = w��̂T �̂ + w�T � (7)

where Js is the cost function for the strong constraint problem. Inserting � and �a in

(6) we obtain the Langrage functional for the adjoint method. The necessary condition

for an optimum (local) is that the �rst variations of the cost function with respect to

(wrt) the controls vanish @J = 0.

There are many e�cient algorithms for solving unconstrained optimization problems
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(Luenberger, 1984). The once used most are the classical iterative methods such as the

gradient descent, the quasi-Newton and the Newton methods. These methods require

the derivatives of the cost functional and the Hessian for the case of the Newton methods.

However, nonconventional methods could be used. For example, methods of optimiza-

tion without derivatives and statistical methods such as simulated annealing could be

used to �nd the minimum of the cost functional at a greater computational cost. Their

advantage is that a more general cost functional including discontinuous functions could

be used. The inherent problem of local solutions in the line search methods is said to be

absent in simulated annealing (see Go�e et al., 1992; Matear, 1995).

In order to make the paper accessible to more readers we avoid the mathematical and

computational details but give a comprehensive verbal explanation of the methods.

One approach of solving the inverse problem is to derive the Euler-Lagrange (E-L) sys-

tems of equations and solve them. The E-L systems derived from calculus of variations

or optimal control theory (see Kamien and Schwartz, 1980) are generally coupled and

nonlinear and require simultaneous integration of the forward and the adjoint equations.

The task easily becomes arduous and very often impractical. Such a procedure is called

the integrating algorithm. In the adjoint formulation, the assumption of a perfect model

leads to the decoupling of the E-L equations. The forward model is then integrated fol-

lowed by the backward integration of the backward equations. For the weak constraint

inverse problem, the approach here avoids solving the forward and backward models but

uses the gradient information to e�ciently search for the control variables that minimize

the loss function subject to the constraints. Given the cost functional, which is assumed

to be continuous with respect to the controls, �nd the derivatives wrt the controls and
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then use the gradients to �nd the minimum of the cost function. The second procedure

is referred to as the substituting algorithm and is generally e�cient in �nding the local

minimum. In the case of the adjoint method, the algorithm is as follows:

� Choose the �rst guess for the control parameters.

� Integrate the forward model over the assimilation interval.

� Calculate the mis�ts and hence the cost function.

� Integrate the adjoint equation backward in time forced by the data mis�ts.

� Calculate the gradient of J with respect to the control variables.

� Use the gradient in a descent algorithm to �nd an improved estimate of the control

parameters which make the cost function move towards a minimum.

� Check if the solution is found based on a certain criterion.

� If the criterion is not met, repeat the procedure until a satisfactory solution is

found.

The solution algorithm for the weak constraint inverse problem is similar except that

the gradients are not calculated from the backward integration of the adjoint equations

but are obtained directly by substitution. The procedure is outlined below.

� Choose the �rst guess for the control variables.

� Calculate the mis�ts and hence the cost function.

� Calculate the gradient of J with respect to the control variables.
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� Use the gradient in a descent algorithm to �nd an improved estimate of the control

variables which make the cost function move towards a minimum.

� Check if the solution is found based on a certain criterion.

� If the criterion is not met repeat the procedure until a satisfactory solution is found.

4 The Bioeconomics

Fisheries management and bioeconomic analysis have been given considerable attention

in the last two decades. Fisheries economists have for the past years combined biological

and economic theory to understand and address management issues concerning the most

important renewable resource stock, i.e., the �sh. Questions about e�cient exploitation

and conservation measures are being raised both in the academic literature and in the

media.

The mainstay of bioeconomic analysis is the mathematical models. In this paper we

advance a little further by combining information both from the theoretical model of

a �shery and the actual �eld observations. In formulating the bioeconomic model, we

require a reasonable biological submodel as a basis. Following the tradition in the litera-

ture, we propose an aggregated growth model of the Schaefer (1964) type. Let x denote

the total stock biomass and h denote the rate of harvesting from the stock. We represent

the dynamics of the stock as

dx

dt
= rx(1�

x

K
)� h (8)
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where r, K are the intrinsic growth rate per unit time and the environmental carrying

capacity in 103 tons respectively. The growth law for this �shery is assumed to follow

the logistic law (Schaefer, 1964). The dynamics of the stock depends on the interplay

between terms on the right hand side of the equation. The stock will increase if h is

less than the growth term and decreases if h is greater. If human predation ceases, i.e.,

h = 0:0 then the stock will increase at a rate equal to the natural growth of the stock.

The stock biomass will increase towards the maximum population size K. This simple

model describes a year-class model of the Gordon-Schaefer type. It basically describes

the dynamics of an exploited �shery by linking the biological dynamics and the economics

through the general production function h(t).

4.1 The production function h

In this paper the general Cobb-Douglas production function h(e; x) is de�ned as

h = qebxc (9)

where e is the �shing e�ort, q, b and c are constants. The production function quanti�es

the rate of production of the industry and describes how the inputs are combined in the

production process. It depends on two important inputs, the stock biomass and the level

of e�ort expended in �shing. In the �sheries economics literature it is often assumed

that harvest is linear in e�ort and stock level, i.e., b = c = 1. The harvest function then

reduces to h = qex where q is the catchability coe�cient. This results in the catch per

unit e�ort which is proportional to the biomass. Several implicit assumptions underly

the hypothesis including uniform distribution of �sh, etc. The natural way to link the
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biology and economics of �shing is through the mortality parameter or �shing intensity

rate f . Where f = qe is generally a function of time. In this paper we will specialize a

bit by assuming a nonvarying f over time. That is a constant �shing mortality rate or

proportional removal rate of the standing stock policy is applied. This yields a simple

harvest law which can be used by the management authorities to set total allowable

catch quotas (TAC).

To understand the nature and kind of policy used in the management of the NCF, we

apply a simple feedback relation to analyze the data. The assumption may be unre-

alistic, but we still hope much practical insight will be gained and will lead to better

understanding of the �shery. Thus, the harvest function for the linear case is

h = fx (10)

where f is the unknown, or poorly known economic parameter, to be estimated. This

formulation appears quite simple but may be of immense contribution to our under-

standing of the practical management of the NCF. It can be considered as a �rst order

linear approximation of the true harvest function. The function proposed is by no means

supposed to be the complete and absolute characterization of the feedback speci�cations

but is considered as a useful and practical approximation of the true one. To reiterate,

our purpose is to be simple and to construct a model that is tractable which will lead to

some important policy implications.
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4.1.1 Some remarks about the model

Linking the biology of the exploited species and the simple approximate harvesting or

TAC rule above yields

dx

dt
= rx(1�

x

K
)� fx (11)

put in another form gives

dx

dt
= 
x�

rx2

K
(12)

where 
 = (r � f) is the di�erence between the intrinsic growth rate and the �shing

mortality rate. Let us call this the residual growth rate of the species. The residual

growth rate can be positive, zero or negative at least theoretically. If no �shing mortality

is imposed on the stock (
 = r; f = 0:0) then it grows to its maximum population levelK

at a rate equal to the natural growth. If f is positive but less than r the population will

settle at a level less than K. For the critical scenario where �shing mortality balances

the intrinsic growth rate (
 = 0:0) the population is driven to extinction. This case can

be seen mathematically as

dx

dt
= �

rx2

K
(13)

It is also the case where f exceeds r and 
 becomes negative. The population will be

driven to zero even faster. The dynamics are shown as

dx

dt
= �
x�

rx2

K
(14)
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The predictions of this simple model are evident in the case of most commercial �sheries.

Many important �sheries have collapsed in recent times. An example is the Norwegian

spring spawning herring (Bjorndal and Munro, 1998).

5 The Norwegian Cod Fishery

The NCF is the most important demersal species along the coast of Norway and Northern

Russia. This �shery has played an important economic role within the coastal commu-

nities for the past thousand years. The NCF has for the past half century experienced

large variations which result in a corresponding variation in the annual harvest quanti-

ties. The stock size fell from its highest level in 1946 of 4.1 million tons to the lowest in

1981 of .75 million tons. However, the stock seems to be recovering from the depleted

state in the 1990s due to improved management strategies. In this study, a time series of

observations from 1946 to 1996 is used. The variables are the annual stock and harvest

measured in 103 tons. In what follows, we present a brief qualitative description of the

data.

Figure 1., is a plot of the stock divided by a factor of three and the harvest. The stock

and the harvest have generally a downward trend with periodic oscillations. Apart from

the �rst few years the directions of 
uctuation in both the stock and the harvest are the

same. It may be observed from the graph that there exists some proportional relationship

between the harvest rate and the level of stock.
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5.1 Sensitivity analysis

Input parameters of bioeconomic models are crucial in the analysis of the system. To

provide good simulations, precise and reasonable parameters are required. Unfortunately,

the values of these parameters are highly uncertain which translate into the output of

the models. Sensitivity is a measure of the e�ect of changes in the given input parameter

on a model solution. It quanti�es the extent that uncertainties in parameters contribute

to uncertainties in the model results (Navon, 1997). Several analytical techniques of

sensitivity analysis exist. To quantify the uncertainties of the kth parameter, we de�ne

the following sensitivity index ISk

ISk =

PT
0
(zt � zkt )

2

PT
0
z2t

(15)

where zt is the original model prediction and the zkt is the perturbed prediction. The

results of the sensitivity of the biological and economic parameters are shown below. The

parameters are each perturbed to 90 percent of their original values. These parameters

are ranked in an increasing order of importance.

The �shing intensity parameter is the most important and the growth rate is the least.

The maximum population of the species is the more sensitive biological parameter which

con�rms the results of an earlier paper (Ussif et al., 1999a). The results indicate the

�shing mortality rate is in fact very critical in the model. This outcome is used in the

subsequent experiments to guide us in regard to which parameters to vary and which to

give more attention.
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6 Results

The empirical results of the research are discussed and shown in this section. All the

results are based on actual observations of the NCF for the period from 1946 to 1996.

The results of the adjoint parameter estimation are presented. They are followed by the

weak constraint inverse results and then a steady state equilibrium analysis is performed.

6.1 Estimation of the growth and yield functions

The combined adjoint-Monte Carlo technique was used to �t the bioeconomic model

to the observations assuming that the �shery is exactly governed by the simple model.

The model contains three input parameters: the intrinsic growth, the carrying capacity

and the human predation coe�cient. These are all important to a �sheries manager.

Estimating all the parameters at the same time for this simpli�ed model may pose a

problem of identi�cation. To obviate the bottleneck, the least sensitive parameter in the

model is exogenously but randomly selected and then the other two, namely the carrying

capacity and the �shing intensity rate, are optimally determined using adjoint methods.

Relying on some physical information from experts, a range of r values between .25 and

.45 is chosen. A subsample of 3005 was randomly drawned from the population. Using

this sample, the adjoint method is used to �nd the optimal estimates of the parameters.

The statistic of choice in this paper is the mean even though there are other estimators

that are e�cient. In table 2., we show the parameter estimates and their standard

deviations.

These estimates are all reasonable and intuitively appealing. What is astounding is that
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the model has been able to capture the salient features of the NCF. The estimated rate

of capture of the stock exceeds the intrinsic growth rate of the species even when the

population was highly vulnerable.

6.2 State estimation of the stock biomass

Inverse methods and data assimilation can be used to estimate the variables of a dynam-

ical system or the parameters of a dynamical model, using all the available information

from the model formulation and the set of observations. The former embodies all the

beliefs of the modeler about the system she or he is interested in studying. They may

use economic and biological theory as well as intuitive reasoning in order to construct a

model that approximately represents the system. In the weak constraint formulation, the

model dynamics are assumed to approximately hold. The �sheries model employed in

this paper is quite oversimpli�ed. Many important variables such as the environmental

e�ects and predation from other species are disregarded. The harvest function is also a

simple �rst order approximation. All these factors make the model quite unrealistic. To

remedy this, we accept a certain unknown level of error in the model by adding a term

that quanti�es the errors and their uncertainties.

A cost functional measuring the disagreements between the data and the model predic-

tions was de�ned, and a penalty term appended which penalizes the model mis�ts. A

model prediction that is as close as possible to the data, is sought in a least squares

sense. The optimization procedure used in this paper is the classical quasi-Newton

method (Gilbert and Lemarechal, 1991). The results are shown for two cases. The �rst

case uses the solution of the adjoint method as the �rst guess solution. That is the
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parameter estimates from the �rst method were used to solve the model and the solution

is taken as the best guess to start the optimization. To show that the algorithm is robust

to the initial guess of the solution, a constant equal to the average of the �rst case is

used as the �rst guess. The results are shown in the �gures below. The circles denote

actual data, the broken line is the �rst guess which is the solution of the strong constraint

problem in case 1. The �t of the model is good in general. The algorithm is also robust

and did not depend very much on the initial guesses. However, the convergent rate is

slightly a�ected by the choice of the initial guesses.

6.3 Equilibrium analysis using the deterministic model

The use of the population dynamic equation assumes the existence of equilibrium in the

model. This section brie
y discusses this concept in this application. At the steady state

time is no longer important and the stock biomass becomes constant at a level x�. This

implies the time rate of change of the population is identically zero, i.e., the net growth

of the stock balances the rate of harvesting

dx

dt
= 0; h� = rx�(1�

x�

K
)

It follows then that for the linear harvest function we have

fx� = rx�(1�
x�

K
) (16)

where f is as de�ned previously. Hence the steady state biomass is

x� = K(1�
f

r
) (17)
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Ideally, the �shing mortality rate should not exceed the intrinsic growth rate of the

biological species, i.e, f < r for a �shery that is overexploited and is under rehabilitation.

If the �shery is unexploited and initial stock is to the right of the maximum sustained

biomass level then higher mortality rates may be applied in order to quickly adjust

it to the desired optimal state. The equilibrium stock is a function of the biological

and economic parameters. It is clear that if the carrying capacity (e.g., the aquatic

environment) increases, x� will increase and vice versa. The e�ect of small change in r is

similar. However, increasing �shing mortality will result in a decline in the equilibrium

biomass.

The concept of maximum sustainable yield has been the practical management objective

for many �sheries (Clark, 1990). The NCF is not an exception to the rule. For the

compensation model used in this paper, the xmsy = K=2, i.e., 2634.2 103 tons. The

�gure below shows the historical state of the NCF from 1946 to 1996 and the xmsy. A

careful study of the time series reveals some interesting observations. The �shery was

in 1946 at a level of about 80 percent (4231.9 103 tons) of the carrying capacity. It was

�shed down to about 50 percent (xmsy) of K by 1958. It then remained at about that

level forming a window until the late 1970s when the situation got completely out of

control. However, due to the inherent stochastic nature of the biological species coupled

with inadequate knowledge of the biology and economics of �shers/managers, the goal

failed to yield results. This occurrence might also be attributed to the shortsightedness

of the politicians and also the con
ict of interest between the two major participants

(Norway and Russia) in the exploitation of the stock.
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The state of the stock continued to dilapidate and by 1983 it was at its worst level of less

than 20 percent of the carrying capacity. The trend has, however, changed and the 1996

estimate of stock indicates a sign of recovery. Recent observations, however, indicate

that the stock is again in deep trouble.

6.4 Conclusion

This paper uses a novel approach of data assimilation into dynamical models to analyze

real data for the NCF. Model parameters were estimated by the adjoint technique in

combination with a Monte Carlo procedure. The adjoint technique provides an e�cient

way of calculating the gradients of the loss functional with respect to the control param-

eters. The estimates are as expected, the �t to the data is also good with the model

amazingly capturing the trend in the data but failing to capture the oscillations. This is

not surprising because the model is deterministic and does not have the ability to absorb

the random events in the system. The estimated parameters are then used in an inverse

calculation to �nd an improved estimate of the stock using the full information available

in the form of observations and the model dynamics. The weak constraint model however

does very well in capturing the stochasticity in the data.

The key results of the paper are that for the NCF the average intrinsic growth rate is

about 0.35 per year and the maximum population that the environment can support is

about 5.3 million tons. The �shing intensity rate is about 0.41 per year which is greater

than the intrinsic growth rate. This implies the annual harvest or production from the

�shery is consistently above the net growth curve. This is intuitively supported by the

persistent decline of the stock since 1946. It is important to be reserved in generalizing
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the �ndings in this paper. The reason is that the model used in this paper is very simple

and does not absolutely represent the �shery. Finally, the inverse and data assimila-

tion methods have proven very e�cient and can be very useful in analyzing, testing and

improving resource models.
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Parameters Original values New values ISk

r 0.450 0.405 1.50

K 6000.0 5400.0 1.68

f 0.400 0.360 5.09

Table 1: Sensitivity index of model parameters.
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Parameters r K f

Estimates 0.3499 5268.4 .4076

se (0.0578) (868.3) (0.0579)

Table 2: Estimated parameters and their standard deviations.
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Lists of graphs

1. Time series plot of the stock and harvest rates of the NCF.

2. Graph of the stock biomass: case 1.

3. Graph of the stock biomass: case 2.

4. Plot of the stock and harvest rates (tons) vs. time (yrs) .
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