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Abstract 
This paper analyses coordination in a supply chain consisting of a supplier and a retailer, where 

the retailer has the opportunity to return products at midlife and end-of-life. The paper examines 

particularly the coordination problem when the supplier has the opportunity to realise a limited 

amount of overstock items at a higher price than the retailer at midlife. In this paper return 

options are introduced in the channel, where an option gives the holder the right to return a 

product at midlife in exchange for a pre-specified amount of money. It is shown that the supplier 

must, to achieve coordination, determine one exercise price of the options and two return 

rebates, where the latter guarantee the retailer an amount of money for each product returned, at 

midlife and end-of-life, without a corresponding option. Conditions for pricing of return options 

and conditions for wholesale prices are derived as well. A numerical study shows that the supplier 

is better off when the number of return options increases. The numerical study also shows that 

the coordinating option price is relatively unaffected by the return rebate in the second period, 

but is more dependent on the exercise price and return rebate at midlife, which in turn are 

dependent on the production costs. 
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1 Introduction 
This paper presents a model and principles, which coordinate a single supplier - single retailer 

channel where the supplier has the opportunity to extract higher values than the retailer from 

excess inventory. Specifically, the case when the supplier has two different recovery modes, one 

of higher value but limited and one of lower value but unlimited, is highlighted. In order to 

achieve coordination a return policy is used and return options are introduced since another 

degree of freedom is required. Return policies as such is nothing new but have been treated 

earlier as a potential way to e.g. achieve coordination, mitigate risk between supplier and retailer, 

and safeguard the brand (Pasternack 1985, Padmanabhan and Png 1995). During the last decade 

the issue of return has also become a matter at the management’s agenda for another reason, 

namely due to environmental legislation and its being as an economic driver. These have also led 

to extensive activities both among researchers and practitioners, and many of the questions are 

collected under the reverse logistics subject. Following Thierry et al (1995), the recovery options 

available for returned products can be distinguished between, direct reuse (resale), product 

recovery management, and waste management. The most suitable option will be a question of 

priorities between aspects such as product condition and the product’s life cycle stage. In 

businesses such as fashion or commercial electronics where life cycles are countered in months 

the alternative uses of returned products and the possibility to recover value are deteriorating in a 

rapid pace over time. This fact is highlighted in Souza et al (2003) and Blackburn et al (2004). 

Blackburn et al exemplify this by pointing at the fact that personal computers may lose value at 

rates excess of 1 % per week during its life cycle, and that the rate increases as the product nears 

the end of its product life cycle. Under such circumstances rapid return and recovery is a must in 

order to achieve profitability out of returned products. 
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The possibility to use e-commerce has significantly increased the flora of opportunities available 

to the manufacturers and suppliers to recover values from returned items. Products and 

components can for example, after have been checked, reconditioned or refurbished, either be 

sold through the company’s own distribution channels or be sold to other external distributors, 

who may e.g. auction them on the Internet (see e.g. www.liquidation.com, www.overstock.com, 

www.qxl.com). Other alternatives are that components may be used as spare parts (see e.g. 

Fleischman et al 2003), or reused in new products. The direct economic gains from reverse 

logistics are less input materials, reduced costs, and so-called value added recovery (i.e. repair and 

remanufacture), see e.g. de Brito and Dekker (2004). From a management point view all this 

implies that there are opportunities, where the value of products and components can be 

recovered if it is shown that sales through the regular market channels has not been as successful 

as expected. 

 

Because of the fact that many products do have short lifecycles and long production lead times, 

production takes place before the selling season begins. In a competitive environment with 

frequent introduction of new products and radical price reduction during a product’s life cycle, it 

is critical to companies’ profitability to quickly identify alternatives to recover value out of 

products that are expected to be unsold at their present location. It is also critical that the 

products return quickly to the supplier, or to another facility which handles return, where its 

alternative use may be decided upon. Moreover, to the supplier, and the supply chain as a whole, 

uncontrolled return may not be desirable because of high transportation costs and capacity 

constraints in handling and inventory. Higher costs and constraints result in lower profit margin 

and in order to avoid uncontrolled return incentives should be introduced in the relationship 

between the supplier and the retailer. In order to achieve an efficient return handling process it is 

desirable that the uncertainties regarding; point in time when returns arrive, quality of returned 
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products, and the quantity of return, are reduced. Guide (2000) gives evidence that companies 

control quantity, quality and timing.  

 

Due to loss in value over time it is desirable to be as fast as possible in the recovery activities. 

However, capacity limitation in recovery activities may cause an unwanted loss in recovered value 

in that products may not be returned to its alternative market place, or use, as fast as wanted. In 

practice this will be a continuous process, but in this paper a simplified model is developed in 

order to analyse coordination. In this paper it is assumed that we have two different salvage 

values for return at midlife and one salvage value at end-of-life. The two different salvage values 

at midlife represent the higher value from the products recovered before the capacity hits its 

limitations and the second value represents the value of those products recovered after that 

capacity has become available again. The salvage value at end-of-life is assumed to be 

undifferentiated because of its position in the product life cycle where difference in recovered 

value is assumed to be insignificant. The return at midlife can be seen as a commercial return in 

that the products are still in their current production life cycle, whereas end-of-life returns may be 

a generation or more removed from the latest products, features and technologies, cf Souza et al 

(2003). 

 

In order to control the return, with respect to point in time, quantity, quality, and to have the 

possibility to achieve coordination, options are introduced in the chain. An option gives the 

retailer the right to return a new product, or an as-good-as new, in exchange for a pre-specified 

amount of money, at a pre-specified point in time. Thus, there will also be clear financial 

incentive to return products, cf. Guide and van Wassenhove (2001)  

 

In this paper two models have been developed, one where decisions in the centralised system are 

modelled, and one which models the decision in the decentralised system where the supplier is 
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the leader in a Stackelberg game. From there, conditions on wholesale prices, exercise prices, 

return rebates have been derived and a principle for determining option prices is presented, in 

order to achieve a coordinated decentralised chain under the condition with piece-wise linear 

salvage value. 

 

The organisation of the paper is as follows. First there is a literature review on related works. 

Second, notations and assumptions are given. Third, the optimal decisions at midlife are treated 

with respect to the dynamics in demand and the differences in salvage values in the channel. 

Forth, the coordination issue is treated and conditions for coordination are derived. Fifth, a 

numerical analysis is performed and commented. Finally, there are a summary and ideas for 

further research. 

2 Literature review 
A model often used when analysing return policies and inventory decision is the extended 

newsvendor model. In the newsvendor model optimal order quantities are determined from a 

trade-off between sales price, cost of acquiring a product, inventory holding cost, penalty costs 

for not satisfying demand, and the salvage value of overstock items. Even though the basic 

model is simple it is widely used in order to highlight and analyse different aspects and 

perspectives of decisions concerning inventory and optimal order quantities, see e.g. Petruzzi and 

Dada (1999). In the literature on coordination it is often assumed that the supply contract is a 

model based on a Stackelberg game where the supplier is the leader. The supplier is thereby the 

party that determines the space of possible outcomes of the chain. Under these circumstances the 

retailer faces a newsvendor problem where the supplier is in charge of setting at least the 

wholesale price. Dependent on the types of clauses in the contract the supplier may also have the 

power to affect salvage values and this is the case when there is a return policy. 
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Return policies are not the only aspects that have been considered in order to achieve 

coordinating contract. Monahan (1984), Lee and Rosenblatt (1986), and Jeuland and Shugan 

(1983) analyse how quantity discounts can be used to achieve coordination. Moorthy (1987) 

suggests that a two-part tariff should be used instead of quantity discounts to achieve 

coordination since optimal decisions are separated from profit sharing. Later, Weng (1995) 

analyses coordination by means of quantity discount and a franchise fee. An extensive review of 

supply contract modelling is found in Tsay et al (1998). 

 

Pasternack (1985) analyses return policies from a channel coordinating perspective in a single 

period model. It is assumed that retailer and supplier have identical salvage values and that 

returns are frictionless, i.e. there are no costs associated with the return. Pasternack examines the 

pricing decision of the supplier, who is the Stackelberg leader, and analyses for which prices and 

returns rebates coordination is achieved. The retailer is assumed to be a price-taker since it has no 

opportunity to affect neither wholesale prices nor market prices. The main results are that i) 

unlimited return and full refund, i.e. rebate is equal to wholesale price, is suboptimal to the 

system in that coordination is not achieved, ii) not to offer any return at all is not optimal to the 

system, iii) unlimited return to partial rebate is optimal given a correct combination of wholesale 

price and rebates, iv) there exists a continuum of combination of return policies, i.e. 

combinations, of wholesale price and rebate, which coordinates the channel and are independent 

of the distribution of demand, v) coordination can be achieved in a single period model when 

returns are limited but a precondition is that the retailer and the supplier dispose the products at 

identical values. Kandel (1996) extend Pasternack to incorporate the effect of price-sensitive end 

customers, i.e. the retailer has influence on end customers’ demand. Emmons and Gilbert (1998) 

also examine a single period model with possibility to return unsold products and where the 

retailer determines both optimal order quantity and price paid by the customer. Like Kandel they 

come to the conclusion that coordination cannot be achieved unless the supplier determines the 
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resale price. However, Emmons and Gilbert show that there exists a range of wholesale prices 

where both the supplier and the retailer are better off compared to the case of no policy, i.e. 

return is not allowed. 

  

Donohue (2000) analyses incentive contracts for coordination in a two period setting but, 

however, under a single point demand occurrence. As well as in Pasternack, it is assumed that 

retailer and supplier are equally effective in liquidating overstock. Donohue’s model considers a 

situation where demand information is upgraded during the time until demand is realised. Two 

production modes are available, the first is a cheaper mode with longer lead time and the second 

is more expensive but is on the other faster since lead time are shorter. The existence of the more 

expensive and faster mode allows for fine-tuning of ordered quantity as information regarding 

demand is updated. After that demand is realised there is also an opportunity to the retailer to 

return unsold products to the supplier. Donohue analyses coordination using three parameters, 

i.e. wholesale prices for the first and second production mode and return rebate, and shows like 

Pasternack that there will be several contracts that implies coordination. 

 

Tsay (1999) models quantity flexibility contracts, which can be interpreted as a kind of return 

contracts. The retailer guarantees not to go below a given percent from the forecast given to the 

supplier. On the other hand the supplier promises to deliver products up to a given percent 

above the forecast. One of Tsay’s objective is to describe how different control parameters 

affects the economic outcome but he also shows that under certain conditions this quantity 

flexible contract is enough to achieve coordination. 

 

Barnes-Schuster et al. (2002) build a general framework in order to study options in supply 

contracts and establish sufficient conditions for channel coordination. A two-period model is 

examined and stochastic demand, unaffected of market prices, occurs at two points in time and 
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demand may be correlated. At the beginning of the horizon the retailer places firm orders, which 

are products to be delivered in period one and two. In addition the retailer also determines, at the 

same point in time, how many options to reorder a product that should be acquired. An option 

gives the holder the right to reorder an extra product at the same time as demand for the first 

period is realised. Barnes-Schuster et al. extend the work of Pasternack (1985) and Donohue 

(2000) since they allow for different salvage values between a retailer and a supplier, and 

generalise the results of Donohue and Pasternack to the two-period case with arbitrary demand 

correlation. They also show that if return is not frictionless then this will prevent arbitrary 

distribution of profit between agents in the channel, which in turn may result in violations of the 

individual rationality conditions. Barnes-Schuster et al find that, in general, channel coordination 

will only be achieved if the exercise price of the options are allowed to be piecewise linear. The 

reason for that is to be found in the fact that the supplier has two different production modes, 

one expensive and one cheap, which thus may result in different marginal costs for same type of 

product.  

 

Taylor (2001) examines coordination of a channel in a two-period setting where there are 

possibilities to return products at midlife as well as end-of-life when salvage values are identical 

between supplier and retailer. In addition the case of return policies combined with price 

protection if market prices fall is considered.  The model allows for unrestricted return and 

considers two order occasions, midlife and end-of-life. Thus, if the inventory level is too low 

replenishment is done and if it is too high products are returned. Taylor shows that if market 

prices are falling then, under proper wholesale prices and return rebates, mid- and end-life return 

achieve coordination but win-win is not guaranteed. However, if midlife and end-of-life returns 

and proper prices are used together with price protection then coordination as well as win-win is 

achieved. If market prices are constant over the periods, midlife and end-of-life returns with 

proper prices and rebates is enough to achieve channel coordination as well as win-win.  
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Compared to Barnes-Schuster et al (2002), this paper differs in that it is assumed that the 

produced quantity and order quantity will not differ and two occasions of product return are 

examined; midlife and end-of-life. Barnes-Schuster at al. consider reorder, and to some extent, 

midlife return, but this paper focus on coordination when the supplier has two different salvage 

values of midlife returns. Compared to Taylor (2001) reorders at midlife are not considered but 

Taylor's analysis is restricted to the case when the salvage values of the supplier and retailer are 

identical. No such assumptions are made in this paper but prices, costs, and salvage values are 

allowed to vary to the extent that the conditions allow. 

3 Notations and assumptions 
This paper considers a system consisting of a retailer and a supplier in a two-period model where 

returns of product are allowed at midlife and end-of-life. It is assumed that the supplier and the 

retailer act according to a Stackelberg game, where the supplier is the leader. In the general case, 

which allows for limited return possibilities, the supplier determines five different prices for each 

decision point in time, in the beginning of the horizon. The supplier determines the unit 

wholesale prices, iw , for products to be delivered in period i=1, 2;  the option price, Γ , for the 

right to return a product at midlife in exchange for the exercise price, 1x ; the return rebate 1r , 

for those returned at midlife without a corresponding option, and the return rebate, 2r , for those 

which are returned at end-of-life. Then, from these prices, the retailer decides in the beginning of 

the horizon, how many products, iq , to order for delivery in period i, and how many return 

options im  to buy. This implies that the retailer faces a single buying occasion where order 

quantities as well as options are determined for the whole product life cycle of the product. The 

supplier is obliged to deliver the amount ordered by the retailer and the quantity produced equals 

the ordered quantity. The cost to the supplier of producing an item to be delivered in period i, is 

denoted ic . 1
hs denotes the higher unit salvage value at midlife, and 1

ls  denotes the corresponding 
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lower salvage value. 2s  denotes the salvage value at end-of-life. In practice, products subject to 

be returned at midlife can, in the first place, be netted against the quantity ordered for the second 

period. However, it is assumed that other costs will appear in those cases leaving no difference in 

cost between a physical return and netting. The retailer sells the product to consumers at a retail 

price ip , in period i, and it is assumed that the retailer has no possibility to affect prices in such a 

way that it will affect the demand probability distribution. This assumption is well motivated if 

e.g. a highly competitive market is considered since under such conditions there will be no 

possibilities to any retailer to have impact on market prices, i.e. the retailers is a price taker. It is 

assumed that holding costs, ih , and shortage costs, ik , only affect the retailer. In this case it can 

be motivated by the fact that if the supplier makes to order no inventory is built at the location of 

the supplier. 

 

Moreover it is assumed that demand not met in the first period is transferred and met in the 

second period, like in Barnes-Schuster et al (2002). However, demand, which cannot be met, is 

penalised with a cost of shortage and is sold at the prevailing price in the second period. Penalty 

cost of demand in the second period is assumed to be zero, k2=0, and is motivated by the reason 

that it is in the end of a product life cycle thus causing a minor loss in goodwill. 

 

Regarding the statistical demand distributions at midlife and end-of-life, it is assumed that they 

follow lognormal distributions. This gives that two different approaches can be used in order to 

evaluate the cash-flow from the contract.  In the first case it is assumed that a process 

representing demand information, D, evolves according to a geometric Brownian motion, and 

with an initial condition this can be expressed as 

β σ= +
=0 0

dD Ddt DdW
D d

 
(1)
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D can be seen as representing a forecast for a period’s demand, based on accumulated orders and 

forecast for the remaining time in the period. As time passes by during a period the uncertainty 

reduces and at the end of the period demand is known. In equation (1) β  denotes the drift rate 

of the process, σ denotes the volatility rate and dW denotes the Wiener increment which follows a 

normal distribution with mean equal to zero and variance equal to the time increment dt. The 

geometric Brownian motion gives that the cumulative probability density function for D is given 

by a lognormal distribution. If it is then assumed that there exists a security or a portfolio or 

securities at the financial markets which perfectly tracks the stochastic movements in D, then we 

can use option pricing theory, i.e. adjusting the drift of D and discount the resulting expected 

cash flow using ρ , i.e. the risk free rate of return. The other approach is to assume that demand 

is distributed according to a lognormal distribution, without assuming that D follows a geometric 

Brownian motion, and assume that the retailer and the supplier are risk neutral. This implicates 

that cash flows are discounted using the risk free rate of return as well but the expected value is 

not affected, as it is in case of the option pricing approach. Throughout this paper all formulas 

are written as if D follows a geometric Brownian motion and as if it is possible to find a tracking 

portfolio. However, using the option pricing approach may require that the drift rate must be 

adjusted to account for a difference between the drift rate of the security portfolio and the drift 

rate of the parameter D. This issue is however beyond the scope of this paper and not further 

dealt with. 

4 Optimal decision at midlife 

4.1 Modelling the optimal exercise strategy 

In this paper the decision at midlife basically concerns what level of inventory that should be kept 

in the beginning of the second period. The problem that the decision maker faces at midlife has 

similarities to the classical newsvendor problem but in this case the question concerns how many 
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options that should be exercised. This implies that the question is how the optimal exercise 

strategy looks like when there is a limited amount that can be returned at a higher value.  

 

In this paper, only the case of return is of interest whereas the reorder is ruled out due to the fact 

that it is assumed that lead times are as long such that reordering is no option. In general, the 

present value of the second period can be written as  

( ) ( )ρ ρπ − −= − + + − − + −∫2 1 1 2 2 2 2
0

( ) ( )  
I

t t
DI s I I e p I e p h s I d f dD  

(2)

 

when ≥1I I . 1I  and I denote the current and dispose-down-to level, respectively, and f denotes 

the probability density function of the demand distribution. Like the standard single period 

newsvendor model equation (2) is concave in I  and differentiating (2) with respect to I  and 

solving for the optimal dispose-down-to level gives that the optimal level I*  is determined from 

the cumulative density function  of the demand distribution, F, and equation (3). 

( )
ρ

ρ⎛ ⎞−
= > −⎜ ⎟+ −⎝ ⎠

* 2 1
1 2

2 2

              where    
t

tp s eF I s e s h
p h s

 
(3)

 

If ≤ *
1I I , then the optimal action is to do nothing since there is no opportunity to reorder. 

Furthermore, in this paper the decision maker will face two different salvage values at midlife, the 

exercise price x, and the return rebate s1. Lower salvage value implies higher inventory levels and 

vice versa and the optimal action is stated in theorem 1.  

Theorem 

Let >x s  and let the present value of the retailer ( )xπ be a concave function such that  

( )
ρ⎛ ⎞−

= ⎜ ⎟+ −⎝ ⎠
* 2

2 2

tp xeF I
p h s

 

solves the optimal dispose-down to level for salvage value equal to x. Then realising overstock at an exercise price x 

down to a level *I  maximises present value. 
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Proof: 

If π ( , )x I is concave in q, then differentiating π ( , )x I with respect to I, and solves *I  for 

π∂ ∂ =*( , )/ 0x I I  gives that any ≠ *I I  implies π π≥*( , ) ( , )x I x I . Since >x s  then 

π π>( , ) ( , )x I s I  for any I. This implies π π>*( , ) ( , )x I s I . 

 

This implies that if return is unlimited then the retailer should return overstock according to what 

is optimal determined from the exercise prise x, which is according to intuition. Since the number 

of return possibilities at a higher salvage value is limited it must be considered that its associated 

optimal level can not be reached in some cases. If the inventory level, after exercising all options 

lies between the two dispose-down-to inventory levels then nothing more should be done. If the 

inventory level, after exercising the options is above the dispose-down-to level determined from 

the lower salvage value, then one should continue to realise overstock items at the lower salvage 

value until the dispose-down-to level, determined from the lower salvage value, is reached. This 

type of problem shows similarities to the more common order-up-to and dispose-down-to levels, 

where items can be reordered at a higher price than the return rebate and where optimal actions 

are basically the same. Order-up-to and dispose-down-to are used and briefly described in e.g. 

Taylor (2001) and these issues can also be found in e.g. Zipkin (2000). 

4.2 Conditional optimal inventory level at midlife 

Because the demand variable is assumed to evolve according to a geometric Brownian motion the 

realisations of tD , i.e. td  follows a lognormal distribution for any t. The expectation and the 

conditional expectation of D can be written as 

[ ] ( )
0     and          t T t

t T t t tE D D e E D D d d e T tρ ρ −= = = >⎡ ⎤⎣ ⎦  
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For reasons of convenience the logarithm of D, which follows a normal distribution, is used. Let 

y=lnD. Ito’s formula gives 

2

( )
2

dy dt dW tσρ σ
⎛ ⎞

= − +⎜ ⎟
⎝ ⎠

 

 

Similar to equation Error! Reference source not found., the dispose-down-to level in case of 

fixed salvage prices, centralised system, and lognormal distribution can be expressed as 

( )
ρ

ρ⎛ ⎞−
= > −⎜ ⎟+ −⎝ ⎠

* 2 1
1 2

2 2

              where    
t

t
Log CS

p s eF I s e s h
p h s

 

 
where LogF  is the cumulative density function of a lognormal distribution and whose inverse 

determines the optimal dispose-down-to level. Adjusting the mean and the volatility levels 

accordingly the optimal level can be expressed in terms of the cumulative density function of the 

normal distribution, F, whose inverse gives the dispose-down-to level in terms of the logarithms 

of the absolute level, i.e.  

( )
ρ

ρ⎛ ⎞−
= > −⎜ ⎟+ −⎝ ⎠

* 2 1
1 2

2 2

ln               where    
t

t
CS

p s eF I s e s h
p h s

 

 

The nature of the process implies that the optimal dispose-down-to-level will be affected by the 

realisation of demand at midlife, which is unknown at the beginning of the horizon. Using the 

same approach as Barnes-Schuster et al (2002), but modified in order to work for stochastic 

variables driven by geometric Brownian motions, enables a desired separation between the 

realisation of future demand and optimal dispose-down-to levels. Let γ=*ln CSI , then the optimal 

level γ can be written as 

σγ ρ τ σ τ
⎛ ⎞

= + − +⎜ ⎟
⎝ ⎠

2
*ln

2
d l  

(5)

 

where  
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ρ
ρ⎛ ⎞−

Φ = > −⎜ ⎟+ −⎝ ⎠
* 2 1

1 2
2 2

( )               given    
t

tp s el s e s h
p h s

 
(6)

 

where Φ *( )l  is a standard normal distribution and τ  is the time between two points in time 

when returns can take place. The first two terms in (6) is the conditional expectation of the 

logarithm of the demand if demand d is realised at midlife, and the last term is the level *l  and 

the conditional standard deviation σ τ . However, due to the fact that a geometric Brownian 

motion drives demand and that the logarithms of demand are considered there is no explicit 

relationship between the realised demand and the conditional standard deviation. 

5 Coordination with return limitation at midlife 

5.1 Centralised chain with return limitations 

In this section the problem of coordination with return limitations at midlife is analysed. The 

introduction of limitations in the amount that the supplier can salvage at a higher value 

complicates the problem a bit compared to the unlimited case.  

 

Using the fact that demand and the dispose-down-to level can be expressed in terms of 

exponential functions gives that Dt and I can be expressed as 

( )σ σρ σ ρ σ
⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞

= − + = − +⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠

2 2
*

0 1exp     and   exp  
2 2tD d t W t I d t l t . 

 

In turn tD can be expressed in terms of a stochastic variable Z, which is a normal distributed 

variable with mean μ ρ σ= − 2( /2)t  and standard deviation tσ σ= and expressed as  

( )
0

Z t
tD d e=  
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If the return possibilities are limited then Lagrange optimisation must be used in order to 

determine optimal order quantities on products and options to return. The constraints in the 

problem are  

( )≤ ≤ ≤2,  exp ,  0m M m Q m  (7)
 

The expression for the present value in terms of unconditional distributions of 1Z  and 2Z , and 

the constraints above in (7) gives that the its associated Lagrangean for the centralised system 

with return limitations can be expressed as in (8). The parameter 1Q  denotes the logarithm of the 

number of products ordered to cover demand in the first period and 2Q  denotes the logarithm 

of the aggregate order quantity over both periods. 

( ) ( )

( ) ( )

( )

ρ ρ

ρ ρ

ρ ρ

λ − −

−∞

∞
− −

−∞

− −

= − + − − −

− − + − − −

+ − − − −

∫

∫ ∫

∫

1

6

1

2

7

1 2 1 1 1 1 1 1 0 1 1 1

**
1 0 1 1 1 1 1 2 0 1 1 1

*
1 2 0 1 1 1 2 2

( , , , ) ( )exp( ) exp( ) exp( )

exp( ) exp( ) exp( ) exp( )

exp( ) exp( ) exp( ) ex

a
CS t t

a
t t l

a

a
t h t

a

L Q Q m p e c Q e p h Q d z f dZ

e k d z Q f dZ e s Q I d z m f dZ

e s Q I d z f dZ e c Q( )

( ) ( )

( )

( )

ρ

ρ ρ

ρ ρ ρ

−

−∞

− −

− − −

−∞

∞

+

+ − + −

+ + − − +

+ −

+

∫

∫ ∫
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∫

7

3 3

2 1
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6 7

3

1 1 1 1

2 2
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2 ** 2 2 *
2 1 1 2 2 0 1 1 1 2 1 1

2 2 1 1 1

p( )

exp( ) exp( ) exp( ) exp( )

exp( ) exp( )

exp( ) exp( )

a
t h

a a
t t

a a

a a a
t t t

a a

a

Q e s mf dZ

e p Q d z f dZ e p d z Q f dZ

e p I f dZ e p Q d z m f dZ e p I f dZ

p Q Q f dZ

( ) ( )

( ) ( )
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where 
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The two inventory levels that are of interest are determined from the following expression, which 

can be compared to equation (6). Adjusting for the assumption that penalty cost in the end of the 

second period is equal to zero the expression in case of the higher salvage value is 

ρ
ρ⎛ ⎞−

Φ = > −⎜ ⎟+ −⎝ ⎠
* 2 1

1 2
2 2

( )               given    
h t

h tp s el s e s h
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and in case of the lower salvage value the expression is given by  

ρ
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2 2
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Before deriving the Kuhn-Tucker conditions to the problem in equation (8) it is necessary to 

highlight the issue of the existence of a maximum of the goal function. In order to assure that 

there exist at least a local optimum the first and second order derivative of the goal function with 

respect to Q1, Q2 and m are derived. These are almost identical to the corresponding derivatives 

of the Lagrangean with respect to Q1, Q2 and m, except from that all λ-terms are excluded. In 

order to check for quasiconcavity of the goal function the determinants of the bordered Hessian 

are numerically determined for different values of Q1, Q2 and m, and for all checked values the 

determinants shows to have the features, which are necessary for a quasiconcave function. In 

addition the constraints are quasiconvex and thus the necessary conditions are fulfilled in order 

to use Kuhn-Tucker conditions to find a local maximum. Below the Kuhn-Tucker conditions 

determined from the Lagrangean in equation (8) are derived, and the second order derivatives of 
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the goal function, which are used when the determinants are determined, can be found in 

appendix. 
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( ) ( )λ λ λ− = − = = ≥2

1 2 30,  0,  0,  0CS CS Q CS CSm M m e m λ . (12)

 

Considering the case when m is bounded by the total order quantity 2exp( )Q , there should be 

no reason to acquire more opportunities to return products than the total order quantity. It 

should be noted that equation (9) is independent of 2Q  and m, equation (10) and (11) are 

independent of 1Q . It can also be seen that the number of products ordered for the first period 

is independent of salvage values but is dependent on the value of the price and cost in the second 

period. The number of ordered items in the first period is unambiguously affected by the 

production cost of the second period giving that the number of items produced in the first 

period increases as the production cost of the second period increases and vice versa. 
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5.2 Coordination of the decentralised chain with return limitations 

In case of decentralising the chain the problem shows great similarities to the problem described 

by (8) but since there are options to return products at midlife in the chain some additional term 

and parameters must be added. Since the retailer buys m options, at a price Γ , a term mΓ  must 

be introduced in order to account for the cost that might appear if the retailer determines to buy 

options. In addition, the salvage values 1
hs , 1

ls  and 2s   must be exchanged for their respective 

counterpart, 1x , 1r and 2r . 

 

Since the decentralised retailer optimises its actions from the same control parameters as the 

decision maker in the centralised chain there is also great similarities between the Kuhn-Tucker 

conditions in the centralised and decentralised chain. Formulating the Lagrangean for the retailer 

in the decentralised system with return limitations (DS), 1 2( , , , )DS DSL Q Q m λ , and determining 

partial derivatives with respect to 1Q , 2Q  and m gives 
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t t t t
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L Q
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Q
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(13)

 

Compared to the corresponding partial derivative in the centralised case it is almost identical but 

production costs are exchanged for the associated wholesale prices, and is, just like in the 

centralised case, independent on the total order quantity. 

  

Considering the Kuhn-Tucker condition with respect to the total order quantity it can be seen 

that it is dependent on total order quantity and number of return options. In order to achieve 

coordination there must be internal consistencies between the exercise price and the return 

rebates to replicate the behaviour of the centralised chain. 
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The Kuhn-Tucker condition for m in equation (14) gives that the optimal number of options to 

purchase is also dependent on the total order quantity which implies that these two must be 

considered at the same time when making the ordering decision. 

 

Determining the optimal value for Q1 is straightforward using equation (13) and the 

corresponding condition can be written as  

( ) ( ) ( )
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=
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given that ρ> −2 1
th w w e  and that the nominator is bigger or equal to zero. This implies that 

increasing wholesale prices are ruled out for positive values of h. However, for those types of 

products that are of interest in this paper the situation is reversed, i.e. retail and wholesale prices 

are typically decreasing over time. Thus, this is not an important constraint in this setting. 
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5.3 Necessary conditions for coordination in the decentralised system 

From the Kuhn-Tucker conditions on the first period order quantity in the centralised and 

decentralised chain, i.e. equation (9) and (13), the necessary condition on the relationship between 

the wholesale prices and production costs can be achieved and is given by   

2 1 2 1
t tw w e c c eρ ρ− −− = −  

 

In order for the decentralised retailer to replicate the decision of the centralised decision maker at 

midlife the retailer must face the identical critical fractile as the centralised decision maker. The 

condition which assures that the retailer adjusts inventory to the optimal level is given by  

ρ ρ⎛ ⎞ ⎛ ⎞− −
⎜ ⎟ ⎜ ⎟+ − + −⎝ ⎠ ⎝ ⎠

2 1 2 1

2 2 2 2

 = 
h t tp s e p x e

p h s p h r
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ρ ρ⎛ ⎞ ⎛ ⎞− −
⎜ ⎟ ⎜ ⎟+ − + −⎝ ⎠ ⎝ ⎠

2 1 2 1

2 2 2 2

= 
l t tp s e p r e

p h s p h r
 

(16)

 

If it should be the case that the number of return possibilities are smaller than the optimal total 

order quantity then (11) and (12) gives that the system benefits from getting as many return 

opportunities that it possibly can get, i.e. m=M. This has also implications to the pricing of the 

return options. In order to determine the value of the options price, Γ, it is possible to use the 

information that is given from the Lagrange multipliers, λ1
DS ,λ2

DS and λ3
DS . Regarding λ2

DS it can 

be found out that it must be equal to zero since if its associated constraint is not binding then it is 

equal to zero, and if it is binding then  λ2
DS  must be equal to zero as well. The latter is due to the 

fact that the value of having an extra opportunity to return a product is zero since no further 

products can be returned. Consider now equation (14) and (15) and the case when M=0, which 

gives that m=0 and two constraints are binding, i.e. λ λ ≥1 3, 0DS DS . Due to the structure of the 

problem, and that x1>r1, one of them will be equal to zero. In equation (14) the option price, Γ,  

will determine which one of them that is equal to zero and in order to achieve a feasible contract 

it must be the case that λ =3 0DS , if not, the option price is too high and that the retailer wants to 

“buy” a negative number of options. If the option price is too low this will give that λ >1 0DS  and 
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in turn that the retailer would gain from buying more options. However, at a specific price 

λ =1 0DS  andλ =3 0DS , and at this price the retailer gains nothing from buying or “selling” any 

option.  

 

In case of M>0 the supplier wants to induce the retailer to make the decision where m=M. In this 

case λ =3 0DS  is zero and only λ1
DS needs to be considered. The same line of reasoning can be 

used in this case in that for a specific value of the option price, Γ, λ =1 0DS  and this option price 

will induce the retailer to buy m=M options. Thus it is possible to use this information in that if 

the supplier wants to induce the retailer to buy M options then it should set the option prices 

such that all λ = 0DS   for the M:th options. That will also imply that the option price is set such 

that the net present value of the last option bought is equal to zero, but that the other options 

add present values to the retailer. 

6 Numerical illustrations and analysis 

In this chapter a study is performed in order to illustrate the implications of the conditions that 

are derived previously in the paper. In the study the parameters, which are unchanged throughout 

the study, are 1 2 1p p= = , = =1 2 0.5c c , h=0.02, 1 0.1k = , 2 0k = , =1 0.4hs , =1 0.3ls , =2 0.2s , 

0.05ρ = ,  and each period is set to be equal to 0.5t =  years. The starting value of the demand 

variable 0d , is equal to 10000 and the volatility rate 25%σ = .  

 

In order to achieve coordination in the channel a number of conditions must be fulfilled and this 

is also shown in the previous chapter. In this section the relationships between prices are studied 

in order to take the analysis a step further. In figure 1 coordinating exercise and wholesale prices 

are illustrated when the return rebate in the second period is set to be equal to the wholesale price 

of the second period, which is determined in the beginning of the horizon. In detail the figure 
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shows the exercise price, which the retailer receives for up to M returned products, and also the 

return rebate for those items above M, which are returned. Since these are constrained by 

expression (16) and there are certain rules how these are set in order to achieve coordination. 

 

Another observation is that the exercise price that implies coordination is higher than the 

wholesale price in the first and the second period. This might seem like there are arbitrage 

opportunities in the chain but this is not the case since all decisions are made in the beginning of 

the horizon, i.e. there is no opportunity for the retailer to reorder any products at midlife, return 

them and extract the exercise price. The only function that the exercise price and return rebates 

have at midlife is to certify that optimal decisions seen from the system-wide performance 

objective are made. This explanation can also be seen in equation (16), implying that the first 

period’s exercise price and return rebate, respectively, must be higher than the return rebate in 

the second period minus the holding cost. In addition the retailer has to pay to get the option to 

return at the higher value. 
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Figure 1: Coordinating w1, x1 and r1, as a function of M. 

 
Figure 2 presents the option prices, which implies that the number of options that the retailer 

finds it optimal to buy coincides with optimality seen from the system-wide performance 

objective. Considering the retailer’s Kuhn-Tucker condition for m gives that at a certain option 



 24

price the present value increases to the retailer if another option is bought and this is the case 

until the M:th option is bought. The implies that acquiring an option has a positive net present 

value except for the last M:th option, which has a net present value equal to zero. So in case of 

M=0, i.e. there is no opportunity to the supplier to realise overstock at a higher value than the 

retailer, the option price for M=0 in figure 2 implies that the retailer finds that the net present 

value of acquiring an option to return is equal to zero, and no option is bought.  
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Figure 2: Coordinating option prices as a function of M when r2=0.6. 

 

The fact that a certain relationship between the exercise price and return rebates in the first and 

second period must be preserved, in order to achieve coordination, gives implications to the price 

of the options. The option prices in figure 2 are based on a return rebate in the second period, 

which is equal to 0.6. However, performing the same numerical analyses, in case of return rebates 

equal to 0.3 and 0.9, reveal that the option prices only differ to a small amount, i.e. the sizes of 

the deviations are in the range between 0 and 0.008, and lower return rebates result in slightly 

higher option prices.  

 

In figure 3, the aggregated present value of the coordinated chain and how it is divided between 

the supplier and the retailer in a coordinated decentralised chain is shown. Figure 3 illustrates the 
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values under the condition that the wholesale price in the second period is equal to the return 

rebate in the second period. 
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Figure 3: Present values of coordinated chains and the retailer’s and supplier’s share of the 
contract for different values of M. 

 
As one could expect the present value of the chain increases as the number of possible return 

increases, since this implies that the number of products that can be disposed at a higher value 

increases. The fact that the supplier’s present value increases as M increases can be explained by 

considering figure 1, which shows that the coordinating wholesale prices increase, thus increasing 

the positive cash-flow of the supplier. The exercise price and return rebates increase as well, but 

since the number of return most likely is smaller than the order quantity the net effect on the 

present value of the supplier is positive.  
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Figure 4: Present values of the retailer’s and supplier’s share of the contracts as a function of M 

and for r2=0.6 and r2=0.9, respectively. 
 

Figure 4 presents the individual present values of the retailer and the supplier when the condition 

that the return rebate in the second period must be equal to the corresponding wholesale price is 

relaxed. As shown, the present value of the supplier increases as the exercise price increases and 

as the number of possible return at higher salvage value increases. A reason for the increase in 

the present value of the supplier can be seen in figure 5, which illustrates the wholesale prices, 

which implies coordination, for different values of the return rebate in the second period and for 

different values of M. 

 

Figure 5: Coordinating w1 and x1 as a function of M, and for r2=0.6 and r2=0.9, respectively. 
 

As can be seen the wholesale prices in the first period increase for increasing values on the return 

rebate and the number of possible returns. In turn, the value of the wholesale price in the second 
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period will also increase since the conditions on the relationship between the wholesale prices 

and the actual production cost specify how large the difference between the two wholesale prices 

is allowed to be. An increasing wholesale price in the first period must always be followed by an 

increase in the wholesale price in the second period in order to preserve coordination. In figure 5 

it can also be seen that M does not affect the exercise prices, but these are only affected by return 

rebates. This must also be the case in order to determine optimal dispose-down-to levels.  

7 Summary and future research 

This paper deals with the coordination problem in a two-period setting. The problem analysed is 

when the supplier has the opportunity to realise a higher salvage value than the retailer, and 

especially when this opportunity is limited, due to e.g. capacity constraints. Conditions on 

wholesale prices, exercise price, and return rebates are derived in order to achieve coordination. 

In addition, conditions and an explanation how option prices can be determined in order to 

achieve coordination in the chain are also presented. It is shown that the supplier is better off if 

the return rebate in the second period increases and if the number of return option increases. 

This support and extend the finding of Pasternack (1985), which shows that the supplier is better 

of if the return rebates are increased. 

 

The paper also shows that the option price is almost unaffected by changes in the exercise price 

and return rebate. This derives from the fact that in order to preserve coordination a certain 

relationship between exercise price, return rebates and salvage values must exist. This implies that 

the supplier must introduce a return rebate, which is paid to the retailer for those items, which 

are returned even though all return options are utilised. The relationship between the exercise 

price on those items that are returned against the option contract and those, which are returned 

at the lower return rebate, is affecting the price of the option. The difference between these tends 
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to be almost unchanged for the same value of M, which implies that the option price is almost 

unaffected.  

 

This paper deals with limitation in return possibilities at midlife and a natural extension of the 

problem would be to analyse the effect of limited return in at the end-of–life decisions. In this 

paper it is assumed that returns at end-of-life are an unlimited opportunity and this enables the 

inventory decision at midlife to be analysed in a general newsvendor framework. Pricing of 

options, and coordination in case of limited return at both midlife and end-of-life requires more 

complex models in order to determine optimal actions at midlife. Another issue for further 

research is concerning the effect that differences in market prices and production costs between 

periods cause on coordinating wholesale prices, exercise price, return rebates, and option prices. 

The models developed and the conditions derived in this paper allow for such analysis to some 

extent.
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Appendix – Second order derivatives 

Let 1 2( , , )G Q Q m  denote the goal function which is subject to be maximised. In this appendix 

the second order derivatives of G with respect to 1 2,Q Q and m are derived, in order to be able 

to determine the bordered Hessian and analyse quasiconcavity of G.  
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