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1. Introduction 
 
Financial decisions and pricing of assets are often based on process models in 
continuous time. However, the data analysis of financial time series is typically based on 
either discrete models or discrete sampling from a chosen process model. In many 
situations this choice is made by convenience, e.g. to have a simple interpretable model 
with nice analytical properties. Each model may be compared with competing models 
with respect to the fit to data, simplicity and ease of implementation. However, we often 
have vague ideas of a suitable model and the aim of the data analysis is to explore the 
data in order to reveal some aspects of the dynamics of the underlying process. The 
objects of study are essentially functions of time, and this should ideally also be the 
context of the data analysis. Such a context is developed during the 1990’s by Ramsey 
and Silverman, among others. 
 
In the common multivariate context the object under study is a data matrix  
 

{ }JjIixij ,...,2,1,,...,2,1; ==  
 
while, in the functional context, the object under study is a set of functions defined over 
an interval, say [0, T]. 
 

{ }TtIitxi ≤≤= 0;,...,2,1);(  
 
In finance we may consider prices of I assets observed at J instances or over continuous 
time. In multivariate analysis the two subscripts typically refers to I repeats of J 
variables, where the order of the variables does not matter. If order matters, as with time, 
more structure is added and common multivariate methods are not necessarily adequate. 
In problems involving time the label “repeat” will depend on the context. If the focus is 
on the correlation between prices of various assets, then repeats are observed through 
time to get better estimates of this correlation, and the possible correlation over time is 
then a nuisance, which has to be accounted for by choosing an appropriate 
(multivariable) time series model. On the other hand, if focus is on the dynamics of the 
financial market, then we may regard the observation of several price series through 
time as repeats to get a better insight to the dynamics, say by using some kind of 
functional principal component method. This is in fact one of the new developments in 
functional data analysis, which we will return to in the sequel. 
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Software for functional data analysis is developed by Ramsay and Silverman and freely 
available on the net from http://www.psych.mcgill.ca/faculty/ramsay/fda.html. They 
provide functions for R, S-PLUS versions 3.4, 5, and 6 (Unix) and S-PLUS 2000 and 6 
(Windows 98/2000/NT), and also for MATLAB, versions 5 and 6. They also provide 
written programs for various examples in their book, which can easily be modified to 
accommodate own needs.  
 
 
2. Theory 
 
We will subsequently imagine the functions under study as processes in continuous time 
over an interval, [0, T]. In practice they are observed at discrete instants  tj ; j = 1, 2, . . . , 
J. We will here assume that all processes are observed at the same instants, but in 
principle they can be different, i.e. at instants tij depending on i. Our observations are 
therefore 

{ }JjIitx ji ,...,2,1;,...,2,1);( ==  
 
which can be organized in an I × J matrix. 
 
The first step in a functional data analysis is to convert the data to functional form, so 
that each function can be evaluated for all values of t in the interval in question. The 
functions thus obtained are usually referred to as functional data objects. This 
conversion is done by representing the data by interpolation or smoothing in a number of 
different ways, most notably by choosing a set of basis functions appropriate for the 
problem at hand. The functions are then expressed by 

( )∑
=

=
K

k
kiki tctx

1

)( φ  

where ( ){ }tkφ  is the set of basis functions. The conversion of data into a functional data 
object amounts to compute and store the coefficients { }ikc  of the basis representation in 
an I x K matrix. The most common basis functions are 
 

- Fourier basis 
- B-spline basis 
- Monomial basis 
- Exponential basis 
- Wavelet-basis 
- Constant basis 
 

The first two are the most frequently used, the Fourier basis being appropriate for 
periodic data. A basis is specified by four elements 
 

- Type of basis 
- Range of argument values [ ]10 T,T  
- Number of basis functions    (K) 
- Basis parameters (depend on basis) 

 
The range is the interval over which we want the functional object to be evaluated. 
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The Fourier basis for periodic data consists of the functions 1, sin ωt, cos ωt, sin 2ωt, 
cos 2ωt, ... where S/2πω =  and S is the period. For instance, S=12 for data observed 
on a monthly time scale with yearly periodic variation, like temperature. The B-spline 
basis consists of piecewise polynomials and requires specification of the order O and the 
location of break points (knots), often chosen at the sampled points of the data. Here O = 
2 corresponds to line segments and O = 3 quadratic segments etc. To some extent the 
basis representation is a compromise between interpolation and smoothing of the 
original data. However the variability in the raw data should be transferred to the 
functional data object. If smooths are needed, say for modelling or prediction purposes, 
this comes in the later steps of the functional data analysis. 
 
More specifically if { }ijx  represents the observation of the i ´th function at instant tj we 
may obtain the basis representation of ( )txi  by a least squares criterion, that is 
minimization for each i   
 

( )∑ ∑
= =









−

J

j

K

k
jkikij tcx

1

2

1
φ  

 
with respect to the cik’s (Here JK ≤  ). The smoothness of fit is determined by K, a 
small/large K gives smooth/less smooth fit respectively. 
 
Given a functional data object 
 

( ) ( )∑
=

=
K

k
kiki tctx

1

φ  

we can modify this to ( )tx i
~  by smoothing. This can be done by a least squares criterion 

with an added roughness penalty, that is, by minimization for each i 
 

( ) ( ) ( )





+






 −∫ txgdttxtx iii

~~
2

λ  

 
where g (x) is a measure of roughness and λ is the weight to be put on smoothness, more 
smooth for increasing λ. A common measure of roughness is based on the second 
derivative function of the functional object and given by 
 

( ) ( )( ) dttxxg
2"∫=  

 
often referred to as the total curvature of x(t). The smoothed objects can be in the span 
of the same basis (of high dimension wanted) or another basis (if wanted). The penalty 
function can typically be expressed as a quadratic form involving the basis coefficients 
and the minimization is within the realm of linear algebra. 
 
Note that by representing the function as a functional data object, we can easily compute 
derivatives. However, even if the object itself is reasonably smooth, the derivative may 
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be erratic, unless we do additional smoothing, taking second order derivatives into 
account. 
 
In some situations it is advantageous to use two sets of basis functions that complement 
each other, a small set { }kφ of 1K elements able to capture the large-scale features in 
the data and a larger set { }kψ of 2K elements that can capture local and specific 
features. The idea is then to smooth by penalizing only the second part in 
 

( ) ∑ ∑+=
k k

ikikkiki tdtctx )()( ψφ  

 
Again such penalizing can be expressed in matrix terms. For example if we have 
monthly data with a yearly season, it makes sense to take 31 =K with basis 
functions )(cos),(sin,1 tt ωω with .12/2πω =  A possibility is to use further Fourier 
series terms as the second set of basis functions. 9K 2 =  of them are sufficient to 
interpolate the data perfectly ( )12KK 21 =+ . 
 
An important tool in the functional data analysis toolbox is PCA, i.e. principal 
component analysis. The main idea is as for multivariable data, but contrary to this, 
principal components weight or harmonics now are functions of time. They carry the 
main features of the functional data object, so that each harmonic can, in some sense, be 
interpreted separately. Consider an integral transform of all ( ) 'ix t s  
 

( ) ( )dttxty ii ∫= ξ  
 
where the common weight function )(tξ  is determined by minimizing  

 
2

1

I

i
i

y
=
∑  

 
within a space of functions subject to the constraint ( ) 12 =∫ dttξ . The minimizing 

function is denoted )(1 tξ  and called the first principal component function (or first 
harmonic function). The corresponding minimizing yi’s are called the principal 
component scores. 
 
Consider the minimizing problem again to obtain another weight function )(2 tξ  subject 
to the added orthogonal restriction ( ) ( ) 021 =∫ dttt ξξ . This is the second principal 
component function. This process can be continued to get a sequence of principal 
component functions (or harmonics) { Kktk ,...,2,1);( =ξ } orthonormal to one another. 
Here K must be less than I. Each harmonic accounts for a certain portion of the 
variability in the original functional data objects, decreasing for increasing k. 
 
Another way to introduce functional principal components is to find least squares 
approximating functions in terms of an orthonormal basis { Kktk ,...,2,1);( =ξ }, i.e.   
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=
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)()(ˆ ξ  

 
 so that 
  

( ) ( )∑∫
=







 −

I

1i

2^

ii dttxtx   is minimized. 

 
The optimal choice of this basis is identical to the solution of the problem above. Since 
these functions are determined by the data they are often named empirical orthonormal 
functions. 
 
The principal curve determination is not unique and solutions that are just as good, but 
perhaps more easily interpreted, may be obtained by rotation. Mathematically the 
principal component problem above leads to a so-called functional eigenvalue problem 
for the covariance function 
 

( ) ( ) ( )∑
=

=
I

1i
ii txsx

I
1t,sv  

 
The numerical implementation of this is based on an approximation that brings the 
problem into the realm of standard linear algebra. The simplest approach is by 
discretization of the functional objects to a fine grid spanning the interval in question, 
leading to a standard matrix eigenvalue problem. The solution can then be brought back 
to continuous time by a suitable interpolation method, which one does not matter if the 
grid is sufficiently fine, usually much finer than the data itself. 
 
Using the basis function representation of the functional objects 
 

( ) ∑
=

=
K

k
kiki tctx

1

)(φ  

 
we can express the covariance function v(s, t) in terms of the vector of basis functions 
{ Kktk ,...,2,1);( =φ } and the matrix of coefficients C = (cik). The corresponding 
representation of the eigenfunction  
 

( ) ∑
=

=
K

k
kk tbt

1

)(φξ  

  
can be written in matrix notation as well. The functional eigenvalue problem can then be 
expressed by a matrix equation with functional elements, which simplifies to a pure 
matrix equation within the realm of standard matrix algebra. 
 
The number of eigenfunctions obtainable is limited by K. The above does not 
necessarily assume that the basis is orthonormal, but in that case the computation is just 
ordinary eigenvalue/vector computations on the matrix C’C. In some cases the harmonic 
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functions may come out fairly erratic, and it might be tempting to smooth them in order 
to get a more clear cut picture of what is going on. However, the desire to get smooth 
harmonics can alternatively be fulfilled by using the penalty approach, i.e. adding extra 
regularity condition to the minimization problem, for instance on the derivatives. This 
gives rise to a modified eigenvalue problem, which together with modified orthonormal 
conditions, can be solved by standard matrix analysis, provide we express the problem 
in terms of the chosen basis. In particular this is so for periodic situations where we 
typically use the Fourier basis. The penalty approach requires specification if a 
smoothing parameter that controls the desired smoothness. Alternatively this can be 
determined by cross validation. 
 
An alternative to the penalized harmonic approach is to start with a functional data 
object that is smoothed prior to the principal component analysis. Discussions on the 
benefits and drawbacks of each approach are given in the literature. 
 
 
3. Applications 
 
We will now give some examples of the application of functional principal component 
analysis to financial contracts in the Nordic electricity market. Our main objective is to 
illustrate the main features of the functional principal component method. We hope that 
the various plots will expose known dynamics of the market, and perhaps also raise 
some questions for discussion. The examples involve futures and forward contract. A 
forward contract is an agreement today to deliver a commodity at a future maturity date, 
in the case of electricity 1MW during a settlement period. A futures contract is similar to 
forward except that changes in value are balanced on an account over time. 
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Example 1:  Term structure for electricity base load contracts in the year 2001.  
 
The input data is a 10 by 12 matrix of monthly prices based on the following 10 contract 
categories: one future contract (GB13-01) and nine forward contracts (FWV1-02, 
FWSO-02, FWV2-02, FWV1-03, FWSO-03, FWV2-03, FWYR-02, FWYR-03, FWYR-
04). Here the coding refers to the year and season for delivery (V1=Winter-spring, 
SO=Summer, V2=Winter-fall, YR=Year). The data is average prices recorded on the 
first trading day of the month, averages taken over all contracts with the given delivery 
period. The prices of the year contracts is expected to come out as an average of the 
three seasonal ones, and will perhaps just duplicate the information.  
 
The observed (smoothed) price functions are given in Figure 1.1.  

 

 
 
Figure 1.1 Observed price functions for the electricity base load contracts year 2001.  
 
The level of individual curves reflects the seasonal patterns of the spot price, the summer 
delivery contracts having a lower value than the winter ones. The apparent common 
appearance over the year should not be taken as a periodic yearly phenomenon. The 
reason for the high prices in the middle may be due to the low reservoir fillings 
combined with less than normal snowfall in the spring of 2001. This will presumably 
affect the contracts with shorter time to maturity more than the longer ones.  
 
In Figure 1.2 we illustrate the variance-covariance structure of prices, the peak at the 
middle of the diagonal representing the largest variance of the midsummer prices. 
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Figure 1.2. Variance-covariance structure of prices. 

 
 

The principal component functions are illustrated in Figure 1.3a-c as perturbations of the 
overall mean function, by adding and subtracting a multiple of each principal component 
function. We see that the first principal component function, which accounts for 92 
percent of the variation, is essentially the common price variation over the year believed 
to be due to the hydrological balance the year in question.  The second principal 
component function, which accounts for 7 percent of the variation, is seen to pick up the 
difference between the shorter and longer contracts with respect to the height of the peak 
summer price. The third principal component function, which accounts for only 1 
percent of the variation, could be spurious and should hardly be interpreted. If anything, 
it could be connected to the revelation of the hydrological balance, i.e. snow melting, 
which may affect the contracts differently.   

 

 
Figure 1.3a  First Principal Component Function. 
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Figure 1.3b. Second Principal Component Function. 
 
 

 
 

Figure 1.3c. Third  Principal Component Function. 
 
 
In Figure 1.4 we have plotted the scores of the two first principal components. We 
recognize the approximate ordering of curves from bottom to top of Figure 1 as points 
with scores from left to right. 
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Figure 1.4. Principal Component Score Plot  
 
 
The analysis above was repeated omitting the yearly contracts. The results were almost 
indistinguishable from the above (leaving out the yearly points in Figure 1.4).  
 
For comparison we have looked at the corresponding data from year 2000 which shows 
a weak upward trend with some common fluctuation and a “bump” for some of the 
contracts in the Fall. As for the year 2001 the first principal component function is the 
common variation, which this time accounts for as much as 98 percent of the variation. 
The second component accounts for just 1 percent and accounts the contracts with extra 
bump in the Fall, which is the only future contract GB13-01 and the forward contract 
FWV1-01. This may be connected to the revelation of the supplementary rainfall that 
may affect the contracts first to be delivered. 
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Example 2 : Electricity futures monthly in year 2000 in term of weeks to maturity 
 
In this example we study the prices of electricity monthly future curves, i.e. an 
agreement today to deliver 1MWh at a future maturity date (strictly speaking during a 
settlement period). The prices of various contracts with respect to weeks to maturity are 
observed each month of year 2000, on the first trading day of the month. Since the 
marketplace cannot provide data to cover all times to maturity, practitioners construct a 
smoothed term structure using some prior harmonic assumptions. The input data 
available and used here are of this kind. The input to our fd-construction (using a B-
spline basis) is a therefore a discretized fd-object.  
 
 

 

 
 

Figure 2.1 Electricity futures monthly in year 2000 in term of weeks to maturity 
 

 
 
Figure 2.1 should be interpreted as follows: Each curve represents a functional data 
object for a specific month of 2000 as seen from the first trading day of the month, and 
gives the future prices for contracts with different number of weeks to maturity (ranging 
from 1 to 101). For each curve we see the cyclic variation over the year with highest 
prices for maturity in January to March. The year 2000 had above normal precipitation 
in the spring leading to lower prices for the contracts with short time to maturity (left 
half of figure), while the contracts with maturity the same months one year ahead are not 
affected (right part of figure).   
 
The first four principal component functions are given in Figure 2.2a-d. The first 
principal component function in Figure 2.2a accounts for 57% of the variation, and is 
seen to be similar to a harmonic variation over a one-year period. The second principal 
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component function in Figure 2.2b accounts for 38% of the variation and is also seen to 
be similar to a harmonic variation over a one year period, a quarter out of phase with the 
first, as sine versus cosine. Taken together this accounts for 95% of the functional 
variation and is able to reflect any phase translation of a curve. The third and fourth 
principal component in Figure 2.2c and d accounts for just 2% and 1% of the variation 
respectively, which raises the total to 98%. They may be seen as a higher frequency 
adjustment, which is more pronounced for maturities one year ahead. For short time to 
maturity the harmonic effect is blurred, and the adjustment tries instead to make up for 
the lower spring prices in the contracts with short time to maturity. Analysis of the year 
1999 shows the same pattern, and the first four principal components accounts for 53%, 
40%, 5% and 1% respectively, totalling 99%. 
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Figure 2.2a   First principal component function  
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Figure 2.2b   Second principal component function  
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Figure 2.2c   Third principal component function  
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Figure 2.2d   Fourth principal component function  
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In Figure 2.3a-c we see bivariate plots of the principal component scores for the first 
three principal components. In Figure 2.3a the second is plotted against the first, and we 
see that the harmonic features appear clearly, as the months appear in natural order 
along a near perfect circle. However, there is a danger that we have just rediscovered the 
harmonic assumptions used in the pre-processing of the data.  In Figure 2.3b and 2.3c 
we see a loop pattern, i.e. like the infinity symbol.   
 
It would be of interest to use data pre-processed by weaker assumptions to see how much 
the harmonic pre-processing affects the principal components and their interpretations.   
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Figure 2.3a Principal component scores of second PC vs. first PC 
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Figure 2.3b Principal component scores of third PC vs. first PC 
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Figure 2.3c Principal component scores of third PC vs. second PC 
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Example 3 : Electricity futures observed in terms of maturity date 
 
In this example each of 13 curves represent the prices on dates 4 weeks apart in the year 
1998, for 50 maturity dates (start of settlement week) 4 weeks apart starting 10.01.00 
and ending 13.10.03. The input is therefore a (13 x 50)-matrix, the upper left corner 
being   
  

 11.01.1999 08.02.1999 08.03.1999 05.04.1999 03.05.1999 31.05.1999
05.01.1998 194,02 196,71 191,41 180,86 169,41 156,83 
02.02.1998 182,99 185,34 180,55 171,50 162,54 152,21 
02.03.1998 176,59 179,90 175,43 165,94 155,78 144,31 
30.03.1998 171,69 174,02 169,49 160,99 152,88 143,45 

 
Figure 3.1 shows the 13 curves. The dominant feature is the seasonal variation with 
respect to the settlement date. Note that the variation is increasing for settlement dates 
two years ahead. and beyond. A possible explanation of this is: While the left hand part 
of the figure is based on more than one contract a year, the right hand part is constructed 
on basis of yearly contracts, i.e. contracts with settlement period of one year with 
typically time to maturity more than two years, thus providing lower resolution. We also 
see that prices tend to decrease during the sample period, e.g. the curves are 
approximately ordered from top to bottom with respect to the recording dates according 
to the legend of the figure. It is also seen that the wider swing for some dates (among 
them date 13) occur one year later than most of them. 
 

 
 

Figure 3.1    Futures Price Functions as seen from various dates of 1998 
 
 

The first three principal component functions account for 71%, 24% and 3% of the 
variation respectively, totalling 98%. Figure 3.2a-b shows the first two principal 
component functions as deviates from the overall mean function. We see that the first 
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component function mainly accounts for the differences in peak and bottom prices, as 
well as mid-winter to summer prices, mostly for settlement periods two years ahead and 
less, i.e. the left hand side of the bundle of price curves. The second principal 
component function accounts for differences in the peak and bottom for settlement dates 
more than two years ahead. Note that the extra swing at maturity date around 28 is 
represented in both. The third component, not shown, is just a minor adjustment, and 
carry no essential information.  
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Figure 3.2a    First Principal Component Function 
 
 

0  5 10 15 20 25 30 35 40 45 50 

120

140

160

180

200

220

+
++

+
+
+
+
+
+
+
+
+
+++

+
+
+
+
+

+

+

+

+

+
+
++++

+
+
+
+

+

+

+

+

+
+
+++

+
+

+

+

+

+

+

+

+

+
+++

+
+

+

+

+

+

+

+

+

+
+
+++

+

+

+

+

+

+

+

+

+

+
+++

+

+

+

+

+

+

+

+

+

+

+
++

+

+

+

+

+
-
- -

-
-
-
-
-
-
-
-
-
-
- - -

-
-
-

-

-

-

-

-

-
-
- - - -

-
-
-
-
-

-

-

-

-
-
-- -

-
-

-

-

-

-

-

-

-

-

-
- -

-
-

-

-

-

-

-

-

-

-

-
- -

-
-

-

-

-

-

-

-

-

-

-
-
- -

-

-

-

-

-

-

-

-

-

-

-
- -

-

-

-

-

-

maturity date no.

H
ar

m
on

ic
s 

fo
r C

en
te

re
d 

P
ric

e

PCA function 2 (Percentage of variability 24)

 
 

Figure 3.2b    Second Principal Component Function 
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Figure 3.3 show the principal component scores for the second component against the 
first. We see that there is a clear split between the first 9 sampling dates and the last 4. 
The first 9 dates are also well ordered with respect to the both principal components, and 
the last 4 try to return to date1, except a disorder caused by date 13.  
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Figure 3.3   Principal Component Scores Plot 
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