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Abstract: We examine the question of how the ranking between di�erent distributions with

respect to a one-parameter family of weight functions depend on the parameter. We argue that

in this context sign regularity of the family of weight functions is a natural condition to consider.

Several classical economical examples are shown to satisfy this condition. We use sign regularity

to obtain results on the possible rankings similar to well-known bounds on the number of internal

rates of return on an investment project, either in continuous or discrete time.

1. Introduction

Several problems in economics and social sciences can be regarded as trying to order a
�nite set of distributions. In the continuous case, we might have a number of functions
f1; : : : ; fN de�ned on some common interval, whereas in the discrete case the objects to
order might be �nite or in�nite sequences a1; : : : ; aN given by aj = (aj0; a

j
1; a

j
2; : : :). In the

case which initially motivated our investigations, there were given income distributions for
a number of societies (or for the same society at di�erent times), and the problem was to
order them according to the prevalence of poverty. Another classical problem of the same
kind is to order a number of investment projects according to their pro�tability.

Common to the problems above is that in most cases there is no unequivocal solution.
How do we compare a small number of abject poor in one society against a larger number
of moderately poor in another? Investment projects are often ranked according to their net
present value, but it is well known that di�erent levels of discounting can lead to di�erent
rankings.

A common \solution" to this enigma is to choose some weight function w(t) � 0, and
to rank the functions f1; : : : ; fN according to the value of the integral

Z
I

fj(t)w(t) dt: (1:1)
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The integral is taken over the common domain of de�nition I for the functions f1; : : : ; fN .
In the discrete case, the weights are given by a sequence c = (c0; c1; c2; : : :), and the
sequences a1; : : : ; aN are ranked according to the value of the sum

P
k cka

j
k.

The main problem with this approach is that in general it is di�cult to argue persua-
sively for one given weight function w(t). In the investment case there might be di�erent
expectations about the interest rate, or there might be di�erent preferences regarding how
to distribute consumption between di�erent periods of time in an optimal manner. This
could lead to legitimate disagreement about which weight function to use. It is, however,
often possible to argue that any reasonable weight function has to belong to some rather
broad class of functions. The class of nonincreasing and nonnegative functions might be
such a natural candidate, both in the investment problem and the poverty measurement
problem. In the �rst case it reects a weakly positive preference for time, whereas in
the second case it corresponds to giving weak preference, ceteris paribus, to severely poor
people before less poor people.

Narrowing down the choice to some large classW of weight functions might not seem to
yield any substantial advantage. Nevertheless, in a su�ciently large number of cases to be
of interest, it is possible to conclude that the ranking between two functions f; g will be the
same for all choices of weight functions w 2 W. Such results are called dominance results.
In this manner one obtains a partial order on any given family of functions f1; : : : ; fN . As
this partial order is quite uncontroversial, much e�ort has been made to get the most out
of these methods. See, e.g., Whitmore and Findlay (1978), Ekern (1981), and Ravallion
(1994).

However, in many cases the dominance approach will not support any complete rank-
ing of the alternatives, which implies that the choice of weight function will be of de�nite
importance. In the study of investment projects, a response to this problem has been to
report on internal rates of return, and we argue that this strategy can be adopted more
generally. In the following, let us de�ne a generalized internal rate of return to be a weight
function which implies that two alternatives are considered equal along some dimension.
For instance, two investment projects may be equally pro�table, or two social states may
have the same amount of poverty. As illustrated in Tungodden (1998), it is easy to pro-
vide an interpretation of the generalized internal rate of return in the context of poverty
measurement.

The advantage of this approach is that we avoid taking a stand on an issue where there
might be legitimate disagreement. For example, in the poverty measurement problem, the
weight function speci�es how to resolve conicts within the poor group. This is a normative
problem on which people di�er in opinion, and thus by reporting on generalized internal
rates of return we avoid incorporating any normative position in the analysis. We simply
clarify the relationship between various normative positions and ordinal conclusions in
poverty measurement.

However, it is well-known in corporate �nance that there might be a complex landscape
of internal rates of return. Thus we should not in general assume that this approach gives
us a two-edged story, where the conclusion depends on whether you defend a position
above or below a unique generalized internal rate of return. In many cases, there will be
a number of generalized internal rates of return, and it is therefore of importance to get a
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better understanding of the bounds of the number of these rates of return. In corporate
�nance, there exist several results on bounding the number of internal rates of return of an
investment project. Descartes' rule of signs (see, e.g., Borwein and Erd�elyi, 1995) implies
that this number cannot exceed the number of sign changes in the cash ow. Norstr�m's
rule (see Norstr�m, 1972) considers the cumulative of the cash ow, i.e., the cash balance,
and says that if the cash balance changes sign exactly once and does not end at zero, then
there is a unique internal rate of return. Subsequent work by Pratt (1979) and Pratt and
Hammond (1979) consider higher cumulatives and relate the number of internal rates of
return to the number of sign changes in these cumulatives.

In this paper we generalize these results, and thereby make them relevant for a broader
spectrum of problems in the social sciences. Consider a family of weight functions with one
free parameter. We show that under the condition of sign regularity, we can give bounds
on the number of generalized internal rates of return completely analogous to the classical
bounds on the number of (ordinary) internal rates of return. This shows not only that the
number of generalized internal rates of return is easily estimated for sign regular families
of weight functions, but more importantly that the concept of generalized internal rate of
return is robust and behaves well theoretically. Several classical examples of one-parameter
families of weight functions are shown to be sign regular, and thus falling within the scope
of this theory.

The plan of the present paper is as follows. In Section 2 we clarify the concept and
give some examples of one-parameter families of weight functions. In Section 3 we argue
that as the free parameter traverses its domain of de�nition, the weight should shift from
one side of the spectrum to the other in a smooth and even manner, and we relate this to
a certain variation diminishing property. This property is equivalent to the bounds on the
number of generalized internal rates of return described above. In Section 4 we introduce
sign regularity and show how this is related to the variation diminishing property. Finally,
in Section 5 we consider numerous examples which show both that sign regularity is a
natural context for studying the classical bounds on the number of internal rates of return,
and that these methods are applicable in other contexts, previously unconnected with the
concepts and methods traditionally used in the analysis of investment projects.

Sign regularity was introduced by Schoenberg (1930), and has since been studied by
many people, e.g., in the USSR by Gantmacher and Krein (1960), and in the west by
Schoenberg and by Karlin (1968). It has found important applications in several di�erent
areas, including statistical decision theory, stochastic di�usion processes, and oscillating
mechanical systems. Numerous references can be found in Karlin (1968). The mathemat-
ical results in this paper are thus not new, except possibly the formulation of Theorems 2
and 3, but we believe that the applications to rather well-known examples in economics
might nevertheless be of some interest. We have not included the most general results
possible, but have been satis�ed with versions su�ciently strong to apply to examples of
the kind that one typically encounters in economics. Proofs of most results are included,
making the present paper almost self-contained. Our reasons for this were that these proofs
are not so easily found in the literature, and that in the context of the present paper it
was possible to give a somewhat simpli�ed presentation.
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2. One-Parameter Families of Weight Functions

We restrict our attention to parametrized families of weight functions w�(t), de�ned on an
interval I, with only one free parameter �, ranging over another interval J . In practise,
as � traverses the interval J , one normally would like more and more weight to shift from
one side of the interval I to the other. Typically, one extreme case will be where only one
end of the distribution matters, e.g., if there is some � > 0 such that f(t) < g(t) for all
0 � t < � then f is ranked lower than g with respect to w� for all su�ciently large �.
The other extreme, with the parameter at the other end of its domain of de�nition, might
have been with all attention focused at the other end of the distribution; nevertheless,
in practice it seems often to be a uniform weight function with constant unit weight. A
typical case would be to let � range over the interval J = [0;1) and to have w0(t) = 1 for
all t. As � increases from 0 towards 1 one gradually shift emphasis towards one end of
the interval I.

We can also consider, with practically no extra complications, and with completely
analogous results, the case where one or both variables are discrete. In fact, assertions
about the continuous case, such as Theorem 1 in Section 4 below, are frequently proved
by reducing them to the discrete case by an approximation argument. In order to obtain
a uni�ed approach to the di�erent cases, it is possible to use measure theoretic arguments
(Karlin, 1968). We have chosen not to do this, and use only elementary arguments from
analysis and linear algebra. Instead of giving detailed arguments in all cases, we have
concentrated on the continuous case, but felt free to give examples where one or both
variables are discrete when we believe such examples to be of interest.

We give some economical examples of one-paramter families of weight functions which
behave in the manner described above.

Example 2.1. The net present value of a continuous income stream f(t) is given by

Z 1

0

f(t)e�rt dt; (2:1)

where r is the interest rate, often assumed to be constant. Here the weight function is
wr(t) = e�rt. With r = 0 all moments of time are given equal weight. As r increases,
more and more weight is given to the immediate future.

In the discrete case, the income stream is given by the sequence a = (a0; a1; : : :), where
ak is the income in period k, and the net present value is given by

P1

k=0 ak(1+ r)�k. The
behavior of the weight function (1 + r)�k on the parameter r is similar to the continuous
case.

Example 2.2. A common poverty measure, discussed in Foster et. al. (1984), is given
by Z z

0

f(x)
�
1�

x

z

��
dx: (2:2)

Here f(x) is an income distribution, so that
R b
a
f(x) dx gives the proportion of the popu-

lation with income between a and b. The parameter z is called the poverty line (people are
poor if and only if they have income not above z), and � is a parameter which indicates
how to weigh interests between di�erent groups of poor. The weight function is given by
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w�(x) = (1�x=z)� for x � z and by w�(x) = 0 for x > z. We consider z to be more �xed
than �, in the sense that one �rst decides upon a poverty line z and then let the parameter
� determine how di�erences within the group of poor people should be weighted. With
�xed poverty line z we have a one-parameter family of weight functions w�(x). Often the
condition � � 1 is imposed to make each w�(x) convex with respect to x, but we could
just as well allow � � 0. The choice � = 0 would then give equal weight to all poor, and
as � increases, more and more emphasis would be put on the abject poor relative to other
groups of poor people.

Example 2.3. There is another method of poverty measurement which can be put
under the same umbrella. The head count index simply adds up the proportion of the
population under some poverty line z. This amounts to computing

Z 1

0

f(x)wz(x) dx; (2:3)

where

wz(x) =
n
1 if x � z,
0 if x > z.

(2:4)

Note, however, that here small values of the parameter z 2 (0;1) indicate more emphasis
on the poorest segment of the population.

Example 2.4. For a similar example, which nevertheless does not belong to the same
family as the examples above, we may consider Hannah{Kay indices, also known as gen-
eralized Her�ndahl indices (see Hannah and Kay, 1977). Here one considers an econom-
ical sector consisting of k companies. The relative size of these companies is given by
s = (s1; : : : ; sk), where each sj � 0 and

P
sj = 1. The Hannah{Kay index is de�ned as

p�(s) =
�X

s�j

�1=(1��)
; (2:5)

where � is a parameter satisfying � > 0. (For � = 1, the expression (2.5) is not well

de�ned, and is replaced by lim�!1 p�(s) = exp (�
P
sj log sj) =

Q
s
�sj
j .) Small values of

p�(s) indicate a high degree of concentration with one or a few dominant companies in the
given sector, and, conversely, large values of p�(s) indicate a low degree of concentration
with several companies of similar size sharing the market. In the continuous case, the
discrete distribution s is replaced by a function f(x) � 0 such that

R
R
f(x) dx = 1, and

the index
�P

s�j
�1=(1��)

by �Z
R

f(x)� dx

�1=(1��)

: (2:6)

Note, however, that this functional is not of the form
R
R
f(x)w(x) dx, just as (2.5) is not

of the form
P
c�;jsj . In particular, the Hannah{Kay index is nonlinear as a functional of

f(x), and as such it is less tractable mathematically than the examples given above. The
results in this paper does not pertain to indices of this kind, and we will not consider them
here.
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3. The Variation Diminishing Property

We now wish to be more precise about the manner in which the weight is supposed to
shift from one extreme to the other as the parameter � traverses the interval J . Consider
the ranking of two distributions f(t) and g(t) with respect to the weight function w�(t)
for various values of �. Let h(t) = f(t)� g(t), then this ranking depends only on the sign
of
R
I
h(t)w�(t) dt. If this integral is positive then f(t) is ranked above g(t), and if it is

negative then the ranking is reversed. If the integral is equal to zero then f(t) and g(t)
are given the same ranking, and the weight function w�(t) with this particular value of �
is then called a generalized internal rate of return for h(t).

Assume now that weight in some sense shifts from right to left on the interval I as
� increases, and that large values of � indicate that almost all weight is concentrated
on the left end of I. Let h(t) = f(t) � g(t) be as described in Figure 1. In this caseR
I
h(t)w�(t) dt > 0 for large values of �. As � decreases, the area A1 will receive relatively

less weight and A2 will receive more. It might be the case that that A1 will dominate over
A2 for all �, or that A2 will dominate over A1 for su�ciently small �. In any case, we
expect the integral

R
I
h(t)w�(t) dt to change sign at most once as � traverses its domain

of de�nition, and hence to get at most one generalized internal rate of return in this case.

h(t) = f(t)� g(t)

A1

t

A2

Figure 1

Consider now the case where h = f � g changes sign twice, as in Figure 2. The area
A3 will receive largest relative weight for small �, and it might well be that for such �
su�cient weight will be concentrated on A1 and A3 to cause f to be ranked above g. As
now � increases from these small values, weight will shift from A2 to A1, and from A3 to
A2. It could be the case that we would �rst see a signi�cant transfer of weight from A3

to A2, tipping the balance in favor of g above f , followed by a shift of weight from A2 to
A1, leaving f on top again. If we would now see a new shift from A3 to A2 with little
change for A1, the ranking between f and g could change for the third time (with a fourth
change coming when A1 receives almost all weight). This would be a rather uneven shift of
weight, however, where the region seeing the largest shifts is moving back and forth several
times. Inversely, more than two changes in the ranking between f and g as � traverses the
interval J would seem to indicate an uneven shift of weight.
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h(t) = f(t)� g(t)

A1 A3

t

A2

Figure 2

Generalizing, if the weight shifts nicely and if h = f � g changes sign n times on
the interval I, we would expect at most n changes in the ranking between f and g as �
traverses J , and hence at most n generalized internal rates of return. In the literature this
is called the variation diminishing property of the transformation

f � g 7!

Z
(f � g)w� dt; (3:1)

as the right hand side of (3.1) has no more \variation about zero," i.e., changes of sign,
than the left hand side (see Schoenberg (1930) and Karlin (1968)). Observe that in (3.1)
the right hand side is a function of �, whereas the left hand side is a function of t.

Before considering in the next section how to verify whether a one-parameter family
satis�es the variation diminishing property, we give some examples which do not have this
property.

Example 3.1. The following trivial example shows that a one-parameter family of
weight functions may have several desirable properties without being variation diminishing.
Let three weight functions w1(t), w2(t), and w3(t) be given as in Figure 3, and let h(t) =
f(t)�g(t) be as in Figure 4. Consider now how the choice of weight function will a�ect the
ranking of f and g. Both w1 and w3 give somewhat more weight to the area A1 where f > g
than to the area A2, but the di�erence is not su�cient to compensate for the smaller size
of A1. Hence they will rank g above f . On the other hand, w2 gives much more weight to
the area A1 than to the area A2, and, as a result, use of w2 will lead to ranking f above g.1

The result is that the ranking between f and g changes twice, and hence that any family
w�(t) which interpolates continuously between w1(t), w2(t), and w3(t) will have at least
two generalized internal rates of revenue, even though f � g changes sign only once.

We observe that in this example, each weight function is positive, decreasing, and con-
vex. Also, each wi(t) has the same �xed end points wi(0) = 1 and wi(T ) = 0. Nevertheless,

1 Numerical integration gives
R
1

0
h(t)wi(t)dt = �0:007; 0:013;�0:001 for i = 1; 2; 3; respectively.
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0

1

w1(t)

w2(t)

w3(t)

a b T

Figure 3

h(t) = f(t)� g(t)

A1

A2

Figure 4

it is not di�cult to �nd faults with the family wi(t). Let a < b be as in Figure 3, and

consider the fraction wi(a)
wi(b)

. This expression measures to what degree we give more weight

to a than to b. If weight shifts from right to left in a nice manner as i increases, we would

expect wi(a)
wi(b)

to increase as i increases. But this is not the case in this example, which

shows that w3(t) gives less emphasis on some small values than w2(t). In the terminology
of Section 4, it follows that this family of weight functions is not sign regular of order 2.

Example 3.2. In this example the irregularities of the shifts in relative weight is not
so easily observed. It is cast in the language of an investment project, but could of course
just as easily be applied to, e.g., poverty measurement. We have also chosen a discrete
framework, simplifying the necessary computations.

Consider an investment project spanning over three periods of time, with cash ow

a0 = �8; a1 = 22; a2 = �13 (3:2)
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in period 0, 1, and 2, respectively. Let the following four di�erent discounting schemes be
given:

Period 0 Period 1 Period 2

Alternative 1 1 1 1
Alternative 2 1 1/2 1/4
Alternative 3 1 4/9 1/9
Alternative 4 1 0 0

(3:3)

The number in each cell gives the present value under a given discounting scheme of
one unit obtained in a given period. Here Alternative 1 involves no discounting at all,
and Alternative 4 is given by in�nite discounting, putting all emphasis on the present
moment. Alternative 2 and 3 are in between, with Alternative 3 giving a heavier dis-
counting, reecting higher rates of interest than Alternative 2. The weights in the table
above come from quite explicit and elementary functions, drawn in Figure 5 below. We
note that each weight function is decreasing and convex. We assume that there are other
weight functions of similar nature varying continuously and spanning the gaps between
the four given weight functions. To construct Figure 5, we have chosen the one-parameter
family wr(t) given by wr(t) = r�t for 1 � r � 2, wr(t) = (1 � t=3)r for r � 3, and
wr(t) = (3� r)w2(t) + (r � 2)w3(t) for 2 < r < 3. The argument is independent of these
choices, however, as we will only use the numbers in the table above.

0

1

1 2 3t

w1(t)

w1:4(t)

w2(t)

w5(t) w3(t)

Figure 5

Computing the net present value c0a0+c1a1+c2a2 of the project given above for each
of the four di�erent discounting schemes, we get the results

1; �
1

4
;

1

3
; �8; (3:4)

respectively. In each case the net present value changes sign when we pass from one
alternative to the next. This implies that between for instance the �rst and the second
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weight function there must be at least one generalized internal rate of return. Since there
are three changes of signs in the list of net present values above, we must have at least
three generalized internal rates of return in this example, instead of the two solutions we
would normally expect to �nd.

It will be clear from the subsequent discussion that there are no fundamental prob-
lems per se with the concept of generalized internal rate of return with respect to a one-
parameter family of discounting functions. However, such a generalized internal rate of
return may behave badly unless the family of discounting functions satisfy the condition of
sign regularity, introduced in the following section. The present example is a demonstration
of what \badly" means in this context.

We notice that the weights in (3.3) satisfy the condition that wi(a)
wi(b)

is increasing in

i whenever a < b, showing that this desirable property introduced in Example 3.1 is
nevertheless not su�cient for a nicely behaved generalized internal rate of return.

4. Sign Regularity

There is an explicit determinant criterion which is very closely related to the variation
diminishing property.

De�nition. A function K(x; y) de�ned on a rectangle I � J is called sign regular
of order n if the following condition is satis�ed. For any choice of x1 < : : : < xk and
y1 < : : : < yk with 1 � k � n, the sign of the determinant�������

K(x1; y1) : : : K(x1; yk)
...

. . .
...

K(xk; y1) : : : K(xk; yk)

�������
(4:1)

should depend only on k, and not on the choice of the points xi and yj . Here we allow
the determinant (4.1) to be equal to zero. If K(x; y) is sign regular of order n and the
determinant (4.1) is never equal to zero, then K(x; y) is called strictly sign regular of
order n.

A function which is (strictly) sign regular of order n for all n = 1; 2; : : : is called
(strictly) sign regular.

A special case of sign regularity occurs when each determinant (4.1) is nonnegative.
The function K(x; y) is then called totally positive. If each determinant (4.1) is strictly
positive then K(x; y) is called strictly totally positive.

In order to discuss sign regularity of a family w�(x) of weight functions, we make the
formal de�nition K(x; �) = w�(x). The meaning of total positivity, etc., of the family
w�(x) is then clear.

Example 4.1. The family wi(t) of weight functions described in Example 3.1 is not
sign regular of order 2. In this case,����w1(a) w1(b)

w2(a) w2(b)

���� < 0;

����w2(a) w2(b)
w3(a) w3(b)

���� > 0; (4:2)

contradicting the requirement that such matrices should have the same sign. In fact,���� wi(a) wi(b)

wj(a) wj(b)

���� < 0 precisely when wi(a)
wi(b)

< wj(a)
wj(b)

, which was the property considered in

Example 3.1.
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Proposition 1. If K(x; y) is sign regular on I � J , and if �;  are increasing or de-
creasing functions of one variable taking values in I and J , respectively, then K(�(x);  (y))
is sign regular on ��1(I)�  �1(J).

Proposition 2. If K(x; y) is sign regular and �(x), �(y) are any functions of one
variable which do not change sign on their domains of de�nition, then

K1(x; y) = �(x)�(y)K(x; y) (4:3)

is sign regular.

The proof of Proposition 1 is trivial. To prove Proposition 2, observe that

�������
K1(x1; y1) : : : K1(x1; yk)

...
. . .

...
K1(xk; y1) : : : K1(xk; yk)

�������

= �(x1) : : : �(xk)�(y1) : : : �(yk)

�������
K(x1; y1) : : : K(x1; yk)

...
. . .

...
K(xk; y1) : : : K(xk; yk)

�������
;

(4:4)

whence the di�erence in sign between the two determinants only depend on k, and not on
the choice of x1; : : : ; xk and y1; : : : ; yk.

If K(x; 0) and K(0; y) never are equal to zero, we may in Proposition 2 choose
�(x) = 1

K(x;0) and �(y) = 1
K(0;y) . We then get K1(x; 0) = K1(0; y) = 1 for all x; y.

This normalization is often used in practice.

In order to describe the relation between sign regularity and the variation diminishing
property, we must �rst be more speci�c about how to count the number of sign changes of
a sequence or a function. Counting the number of sign changes of a sequence (a1; : : : ; am),
we �rst eliminate all zeros. We further de�ne the number of sign changes of a function h(t)
de�ned on some interval to be the maximal value, assuming that it exists, of the number
of sign changes of the sequence (h(t1); : : : ; h(tm)), where m � 1 and t1 < : : : < tm are all
arbitrary.

Example 4.2. The sequence (�1; 0; 1; 0; 1) and the function h(t) = t(t� 1)2 both have
one change of sign.

Theorem 1. If K(x; y) is continuous and sign regular on the rectangle I � J , u(x) is
any continuous function de�ned on the interval I, and v(y) is de�ned by

v(y) =

Z
I

u(x)K(x; y) dx; (4:5)

then v has no more sign changes on J than u has on I.
If the interval I is unbounded, we only consider functions u(x) such that the integral

in (4.5) is absolutely convergent for each y in J .

11



In other words, for a sign regular function K(x; y), the transformation (4.5) has the
variation diminishing property.

In the discrete case, the function K(x; y) is replaced by a rectangular matrix C =
(cij), and instead of (4.5) one considers the linear transformation v = Cu. If C is sign
regular, meaning that the sign of any subdeterminant only depends on the dimension of
the subdeterminant, then the vector v cannot have more sign changes than the vector u.
If questions of convergence are handled properly, one could let the matrix C be in�nite.

We are also interested in the mixed case, where one variable varies over a countable set
and the other over an interval. For an example of this kind, consider an investment project
with discrete time and continuous interest rate. Another example is given by Descartes'
rule, which compares the number of positive zeros of a polynomial to the number of sign
changes among the coe�cients of the polynomial.

For a full discussion of Theorem 1, together with full proofs of several variants, see
Karlin (1968). We have included an outline of a proof in an Appendix to the present paper.

The bound on the number of sign changes in v(y) given by Theorem 1 is quite weak,
and in many particular cases it is possible to improve this bound. This is usually done
by cumulating the function u(x). In the present context we get quite easily the following
theorem:

Theorem 2. Let u(x) be de�ned on the interval I = [a; b]. Let u0(x) = u(x)
and de�ne inductively uk+1(x) =

R x
a
uk(�) d�, so that uk(x) is the kth cumulative of u(x).

Assume that K(x; y) is su�ciently di�erentiable on some rectangle I�J 0 (meaning that all
expressions which appear are well de�ned and continuous), that @nK

@xn (x; y) is sign regular

on I � J 0, and that @kK
@xk

(b; y) = 0 for k = 0; 1; : : : ; n. Let

v(y) =

Z b

a

u(x)K(x; y) dx: (4:6)

Then v(y) has no more sign changes on J 0 than un(x) has on I.

Note that cumulating a function will never increase the number of sign changes, but
it can often decrease this number. In typical applications, K(x; y) will be sign regular on
some rectangle I�J , and the interval J 0 will be contained in J . Often J 0 = J , but J 0 may

be strictly smaller than J , as in Example 5.6 below. In practise, @kK
@xk

(x; y) will usually be
sign regular on I�J 0 for all k = 0; 1; : : : ; n, but this is actually not required by Theorem 2.

The proof of Theorem 2 is by an n-fold integration by parts, obtaining

v(y) = (�1)n
Z b

a

un(x)
@nK

@xn
(x; y) dx; (4:7)

followed by appealing to Theorem 1.
If the interval I is given as [0;1), as it often is in applications, we only consider

functions u(x) with the property that uk(x)
@kK
@xk

(x; y) is absolutely integrable with respect
to x and approaches zero as x!1 for all y 2 J 0 and all k = 0; 1; : : : ; n: The same result
then follows as above.
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Discrete versions of Theorem 2 follow in the same manner as the discrete versions of
Theorem 1. We state one such version explicitly, which seems su�cient to cover most cases
of interest.

Theorem 3. Given a family ci(r) of weights, where i = 0; 1; : : :, and where r may be
either a discrete or a continuous parameter. Consider the transformation

v(r) =
1X
i=0

ci(r)ui: (4:8)

Let u0i = ui for each i, and de�ne inductively uk+1i = uk0+ : : :+u
k
i for each i and k, so that

the sequence (uk0; u
k
1 ; : : :) is the kth cumulative of (u0; u1; : : :). Let c

0
i (r) = ci(r) for each

i, and de�ne inductively ck+1i (r) = cki+1(r)� cki (r) for each i and k, so that the sequence
(ck0(r); c

k
1(r); : : :) is the kth di�erence of the sequence (c0(r); c1(r); : : :). Assume that there

is some n such that cni (r) is sign regular with respect to i and r, and that ckN (r)u
k+1
N ! 0

as N !1 for each k = 0; 1; : : : ; n� 1 and for each r. Then v(r) has no more sign changes
with respect to r than the sequence (un0 ; u

n
1 ; : : :).

The proof is this time by an n-fold summation by parts, using each time the summation
formula

NX
i=0

cki (r)u
k
i = ckN (r)u

k+1
N �

N�1X
i=0

ck+1i (r)uk+1i : (4:9)

Letting N !1, we obtain

v(r) = (�1)n
1X
i=0

cni (r)u
n
i ; (4:10)

and the result follows from the discrete version of Theorem 1.

Note that even if only �nitely many ui are nonzero, all u
k
i with k � 1 will typically be

nonzero. Hence we need the conditions on the behavior at in�nity, even in the cases with
�nite sequences. See Example 5.2 below.

5. Examples

We now consider again the examples given earlier in this paper, and we give some other
constructions of sign regular one-parameter families of weight functions.

Example 5.1. The family fertg is strictly totally positive. To show this, we must
demonstrate that for any choice of r1 < : : : < rk and t1 < : : : < tk, the inequality

�������
exp(r1t1) : : : exp(r1tk)

...
. . .

...
exp(rkt1) : : : exp(rktk)

�������
> 0 (5:1)

is satis�ed. This is a classical result in mathematical analysis, but for the convenience of
the reader we have included a proof. We proceed by induction on k. For k = 1 we observe
that er1t1 > 0. Assume that the claim (5.1) is correct whenever k = ` � 1. Let k = `,

13



and consider the determinant as a function of t`. Expanding this determinant by the last
column, we obtain

g(t`) = c1e
r1t` + : : :+ c`e

r`t` : (5:2)

Here c` is positive by the inductive hypothesis, and since r` > r1; : : : ; r`�1, it follows that
the determinant will be positive for su�ciently large t`. It thus su�ces to show that it
is nonzero for all t` > t`�1. An inductive argument, using Rolle's theorem on g(t`)e

�r`t` ,
shows that g(t`) has at most ` � 1 zeros when t` is allowed to vary over the whole real
line. Since g(t`) = 0 for t` = t1; : : : ; t`�1, it follows that there cannot be any zeros when
t` > t`�1. This shows that if (5.1) is correct for k = ` � 1, then (5.1) is correct also for
k = `. Induction now gives that the claim (5.1) is correct for all k.

It now follows from Proposition 1 that the family fe�rtg is strictly sign regular. As a
consequence we obtain the familiar upper bound on the number of internal rates of return
of a continuous time investment project given by the number of sign changes in the cash
ow. We note that @n

@tn e
�rt = (�1)nrne�rt, and by Proposition 2 this function is strictly

sign regular for r > 0. We also have limt!1 rne�rt = 0 for r > 0, and hence Theorem 2
applies. We can thus obtain better bounds on the number of internal rates of return of a
continuous time investment project by considering cumulatives of the cash ow. See also
Pratt and Hammond (1979, p. 1238) for a brief description of similar results.

Example 5.2. Observe that 1
(1+r)t = e��(r)t with �(r) = log(1+ r). Since � is strictly

increasing, it follows from the preceeding example and Proposition 1 that K(r; t) = 1
(1+r)t

is strictly sign regular. By the discrete version of Theorem 1, we obtain the classical rule
that the number of internal rates of return of a discrete time investment project cannot
exceed the number of sign changes in the cash ow.

We now consider di�erences of this family of weight functions. Using the notation
from Theorem 3, we let ci(r) = c0i (r) =

1
(1+r)i . Then c

1
i (r) = ci+1(r)� ci(r) =

r
(1+r)i , and

inductively we obtain that the kth di�erences are given by cki (r) =
rk

(1+r)i . Since 1
(1+r)i

is sign regular, it follows from Proposition 2 that rn

(1+r)i is sign regular with respect to i

and r for r > 0. Note also that if ui is nonzero for only �nitely many i, as is the case in
a �nite-time investment project, then the kth cumulatives ukN are bounded by a constant
multiple of Nk as N !1, whereas the kth di�erences ckN (r) tends to zero exponentially
with respect to N as N ! 1. Hence ckN (r)u

k+1
N (r) ! 0 as N ! 1 for each k and

r. Theorem 3 now applies, and it follows that the number of internal rates of return of a
�nite discrete time investment project is bounded by the number of sign changes in the nth
cumulative of the income stream. Norstr�m's rule (Norstr�m, 1972) now follow directly
as a special case of n = 1, whereas the case n � 1 is the main rule given by Pratt (1979)
and Pratt and Hammond (1979). We believe it should not be di�cult to obtain the other
versions of this rule given in Pratt (1979) and Pratt and Hammond (1979) by the methods
of the present paper.

Example 5.3. It should not come as a surprise that Descartes' rule of signs follows
from Theorem 1. Let f(x) = a0 + a1x+ : : :+ anx

n, and let 0 < x1 < : : : < xm be given.
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Then 0
B@
f(x1)
...

f(xm)

1
CA =

0
B@
1 x1 : : : xn1
...

...
...

1 xm : : : xnm

1
CA
0
@
a0
...
an

1
A : (5:3)

Since the xi are all strictly positive, any k � k subdeterminant of the matrix in (5.3) can
be written on the form (5.1). Hence the transformation (5.3) has the variation diminishing
property, which means that the number of positive zeros of f(x) is bounded above by the
number of sign changes in (a0; : : : ; an).

Example 5.4. If �(t) is any positive function, then we can construct a one-parameter
family of weight functions �r(t) = e�rt�(t). Example 5.1 and Proposition 2 show that this
family is strictly sign regular.

Example 5.5. Given w(t) with w(t) > 0 for all t. De�ne wr(t) = w(t)r. We claim
that if w(t) is (strictly) monotone then the family fwr(t)g is (strictly) sign regular. De�ne
�(t) = logw(t). Then � is (strictly) increasing or decreasing as w is (strictly) increasing
or decreasing, and wr(t) = er�(t). The claim now follows from the previous example and
Proposition 1.

Example 5.6. As a special case of the previous example, we get that the family
f(1 � x=z)�g with z �xed is sign regular with respect to x and �, with 0 � x � z and
�1 < � < 1. This family will of course also be sign regular if � is restricted to any
smaller interval, such as � � 0 or � � 1.

With K(x; �) = (1� x=z)�, we get

@kK

@xk
(x; �) =

(�1)k

zk
�(�� 1) : : : (�� k + 1)

�
1�

x

z

���k
; (5:4)

which by Proposition 2 is sign regular for � > k � 1. Note that here each cumulation
reduces the interval on which we can use Theorem 2 to get information on the number of
sign changes. See also Tungodden (1998).

Example 5.7. Given

K(x; y) =

�
1 if x � y,
0 if x > y,

(5:5)

and choose x1 < : : : < xk and y1 < : : : < yk. Consider the matrix
0
B@
K(x1; y1) : : : K(x1; yk)

...
. . .

...
K(xk; y1) : : : K(xk; yk)

1
CA : (5:6)

Counting from the left, in each row there will be an initial number of zeros (maybe none)
followed by only ones. The number of ones cannot increase as we pass to a lower row. The
only way for such a matrix to be nonsingular is to be upper triangular with only ones on
and above the main diagonal. This happens i�

x1 � y1 < x2 � y2 < : : : < xk � yk: (5:7)
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In particular, the determinant is either 1 or 0, and hence never negative. It follows that
K(x; y) is sign regular. A direct consequence of this is that the head count index (Exam-
ple 2.3) is sign regular, and hence satis�es the variation diminishing property.

As K(x; y) is not everywhere di�erentiable, Theorem 2 cannot be applied here.

Example 5.8. Given two weight functions w0(t) and w1(t) with w0(t) � w1(t) for all t.
We might be interested in interpolating between w0(t) and w1(t), and it is natural to do so
by convex combinations. We therefore de�ne wr(t) = (1� r)w0(t) + rw1(t) for 0 � r � 1
(or even for all real r). A computation shows that if � < � then���� (1� �)w0(s) + �w1(s) (1� �)w0(t) + �w1(t)

(1� �)w0(s) + �w1(s) (1� �)w0(t) + �w1(t)

���� = (�� �)

����w0(s) w0(t)
w1(s) w1(t)

���� : (5:8)

It follows that if the two-element family fw0; w1g is (strictly) sign regular of order two,
then the whole family fwrg will also be (strictly) sign regular of order two. Of course,
any n � n-matrix (4.1) with n > 2 will have zero determinant by linear dependence. In
particular, wr(t) cannot be strictly sign regular of any order k > 2.

We observe that Example 3.2 was constructed by choosing a sign regular family
fwr(t)g for r � 1, another sign regular family fwr(t)g for r � 2, and joining them by
taking convex combinations of w1(t) and w2(t). Apparently, the idea was not good in that
case, at least not if we expected to keep the properties ensured by sign regularity.

Example 5.9. Another method for interpolation between two positive functions is
to use geometric averages. Let again w0(t) and w1(t) be given with w0(t) > w1(t) > 0
for all t, and assume that the two-element family fw0(t); w1(t)g is strictly sign regular.
De�ne wr(t) = w0(t)

rw1(t)
1�r for 0 � r � 1. We claim that wr(t) is strictly sign regular

for all r. Note that the strictly sign regular property of fw0; w1g implies that w0(t)
w1(t)

is a

strictly monotone function of t. By Example 5.5, (w0=w1)
r is strictly sign regular, and by

Proposition 2 we now get that wr(t) = w1(t)(w0(t)=w1(t))
r is strictly sign regular.

Example 5.10. The family wr(t) given in Example 3.2 will violate the criterion of sign
regularity. This family does not shift weight smoothly to the left with increasing r, at least
not if we consider \second order" e�ects. This can be seen by computing������

1 1 1
1 1=2 1=4
1 4=9 1=9

������ =
1

36
> 0 (5:9)

and ������
1 1 1
1 1=2 1=4
1 0 0

������ = �
1

4
< 0; (5:10)

which shows that wr(t) is not sign regular of order three.1

1 In fact, when we pass to continuous time this family is not even sign regular of order two. A computation

shows that for small positive t the value of w2(t) is in fact larger than w1(t). The di�erence is very minute,

however, and hardly visible from the graphs of w1 and w2. This defect could easily be removed at the cost

of slightly more complicated expressions.
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6. Appendix

For the convenience of the reader, we here present a proof of Theorem 1 based on the
expositions in Borwein and Erd�elyi (1995) and Karlin (1968).

Proof of Theorem 1. (Outline.) We only need to consider the case where u has a
�nite number of sign changes. Choose y1 < : : : < yn arbitrarily with v(yj) 6= 0 for each j.
Choose � > 0 so small that for any partition a = x0 < : : : < xN = b of I = [a; b] with mesh
size max1�i�N (xi � xi�1) < �, v(yj) and

cj =
NX
i=1

u(xi)K(xi; yj)(xi � xi�1) (6:1)

will have the same sign for each j = 1; : : : ; n. This is possible since each such sum converges
to v(yj) as the mesh size of the partition approaches zero, and since we have only a �nite
number of points y1; : : : ; yn.

Take any such partition, and let

A =

0
B@
K(x1; y1) : : : K(xN ; y1)

...
...

K(x1; yn) : : : K(xN ; yn)

1
CA ; b =

0
B@

u(x1)(x1 � x0)
...

u(xN )(xN � xN�1)

1
CA : (6:2)

De�ne c = Ab. By assumption, the matrix A is sign regular. By re�ning the partition of
I, if necessary, we may assume that b has as many sign changes as u(x). It thus su�ces
to show that c does not have more sign changes than b.

Let b have p sign changes. Partition b = (b1; : : : ; bN)
T , where the superscript T

denotes transpose, into p+ 1 segments

(b1; : : : ; bi1); (bi1+1; : : : ; bi2); : : : ; (bip+1; : : : ; bip+1); (6:3)

with ip+1 = N , where nonzero coe�cients of consecutive segments have opposite sign, and
some but not all coe�cients of a segment may be equal to zero. Without loss of generality,
we may assume that the coe�cients of the �rst segment are all � 0. Let

dk = jbik�1+1jAik�1+1 + : : :+ jbik jAik ; k = 1; : : : ; p+ 1; (6:4)

where Aj is the j-th column of the matrix A. We then have

c = d1 � d2 + : : :+ (�1)pdp+1 = De; (6:5)

where D is the matrix with columns d1; : : : ; dp+1 and where e is the column vector
(1;�1; : : : ; (�1)p)T .

The matrix D is sign regular, since one can show that any k� k subdeterminant of D
can be written as a linear combination with positive coe�cients of k� k subdeterminants
of A. Sign regularity is thus inherited from A to D, and if A is strictly sign regular then
D will be strictly sign regular as well.
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We consider �rst the case where the matrix D is strictly sign regular. Assume that c
has more than p sign changes. Choose i1 < : : : < ip+1 such that ci1 ; : : : ; cip+1 are nonzero
and alternate in sign. Consider the determinant

�������
di11 : : : di1p ci1
...

. . .
...

...
dip+11 : : : dip+1p cip+1

�������
: (6:6)

The last column is a linear combination of the p �rst columns, so the determinant (6.6) is
equal to zero. Expanding the determinant by the last column, we obtain

0 =

p+1X
j=1

(�1)p+jcij�j ; (6:7)

where �j is the subdeterminant obtained from (6.6) by deleting row j and the last column.
Each term in the sum has the same nonzero sign, and thus cannot sum to zero. This
contradiction shows that c cannot have more than p sign changes. The theorem is thus
proven in the case where D is strictly sign regular.

If D is sign regular and of full rank, but not strictly sign regular, we let F� = (fij) be

the matrix given by fij = e(i�j)
2=�, and approximate D = (dij) by D� = F�D. This matrix

can be shown to be strictly sign regular for all � > 0, and D� ! D as �! 0. Let c� = D�e,
then c� has at most p sign changes, and c� ! c as � ! 0. It follows that c cannot have
more than p sign changes in this case.

The case where D does not have full rank is a little more complicated, and we refer
to Karlin (1968, p. 221).
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