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1 Introduction

In a contest or a tournament, rewards are based on the relative performance of the con-

testants. Contests serve two different purposes. First, tournaments among workers can

mitigate incentive problems when the effort of workers is unobservable. Second, tourna-

ments serve as a selection mechanism. For example, since employers do not necessarily

know which workers are the most able, promotions are often based on a comparison of the

observed productivity of the workers; the firm promotes the top-ranked worker.

In this paper we focus on the selection aspect of contests, in the case where risk taking

is the strategic variable of the contestants. Employees involved in a promotion process or

tenure process, for example, may choose tasks that differ in risk profile to show off their

abilities. Or even simpler, the task may be fixed but employees choose between a ’safe’

working method (e.g., working thoroughly) and a ’risky’ working method (e.g., working

hastily).

We investigate the selection efficiency of contests in which the contestants optimize

their choice of risk, given the risk taking of others. Who will come out on top, bad types or

good types? In what way will the selection efficiency depend on, for example, the quality

of the contestant pool? We view answering such questions as important to understand

the efficiency of promotion processes in firms. Another example is the selection of fund

managers in financial markets. Empirical studies show that investors tend to select fund

managers with the highest rate of return previous year. Furthermore, these studies show

that competition for prospective investments has impact on fund managers’ risk taking

(Chevalier and Ellison (1997)).

Although the case where agents choose both risk and effort seems realistic for many
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applications, we confine ourselves to the case where risk taking is the only strategic vari-

able. We focus on the selection efficiency of contests along two dimensions: the number of

contestants and the quality of the pool of contestants. Two natural conjectures are the fol-

lowing: Selection efficiency improves with the quality of the contestant pool, and selection

efficiency improves with the number of contestants. Tougher competition makes tougher

winners. Our two main results are negative; we show that, in our simple model, neither

conjectures necessarily holds true. In a separate section, we discuss whether introduction

of several prizes or several contests can solve the selection problem.

The model we work with has two types of agents, a low type and a high type, each

with two possible pure strategies, safe and risky. The risky strategy induces a (not

necessarily mean preserving) spread in the probability distribution of individual output

compared to the safe strategy. For a given risk level, the high type’s output dominates

the low type’s output.

We focus on what seems to be the most natural measure of selection efficiency of a

contest; the probability of a high type agent winning it. We denote this probability by Π.

We show that Π may decrease with a pool of agents of higher quality, i.e., an increase in

the share of high ability agents in the pool. To see the underlying intuition, notice that

increasing the quality of the pool has two effects. The first is the statistical effect: a higher

quality of the pool increases Π, holding the strategies of the types fixed. The second effect

is the equilibrium effect: increasing the quality of the pool shifts the equilibrium of the

game to one with increased risk taking. The latter effect may decrease Π. Thus we show

that the statistical effect’s positive influence on Π may be dominated by the equilibrium

effect’s negative influence on Π. An implication is that a firm may discriminate against

2



agents who are likely to be highly skilled by not allowing them to take part in the contest.1

A similar intuition can be applied to our discussion of the effect on Π of increasing the

number of contestants, n. If n increases, the probability of a high type agent being included

in the contest increases (a positive statistical effect). However, increasing the number of

contestants also implies more risk taking in equilibrium (the equilibrium effect), which

may harm to selection efficiency. We show that the positive statistical effect of increasing

the number of contestants may be weaker than the negative equilibrium effect. Thus a

firm may improve selection efficiency by limiting competition for higher-rank positions.

Although it has often been argued that contests serve both motivation and selection

functions (see e.g., Lazear and Rosen (1981), Schlicht (1988)), the tournament literature

has mostly focused on the case with homogenous agents, where selection problems in the

sense discussed here do not arise. Papers that do consider the case with heterogeneous

agents restrict the discussion to how a tournament reward structure may motivate agents to

work hard. An exception is Rosen (1986) (section V), which considers both the motivation

function and the selection function of contests. The present paper complements Rosen

(1986) in considering selection efficiency when risk taking rather than effort is the choice

variable. Also, since Rosen confines attention to the case where there is purely public

information about types, our aim is in that sense broader in scope.

Harrington (1998, 1999) consider a promotion game where agents with the highest

output are promoted to a higher level in an organization. Harrington (1998) shows that

if agents are endowed with simple behavior rules, agents with rules that are unresponsive

to changes in the environment reach the top of the organization. Harrington (1999), on

1Baye et al. (1993) reports a related exclusion result in a complete information setup for all-pay auctions.
Auction revenue may increase if agents with high valuations are excluded.
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the other hand, allows agents to act strategically and shows that the ”rigidity” result of

Harrington (1998) can be reversed. While Harrington (1998) does not consider strategic

actions and Harrington (1999) assumes that agents are homogenous, the present paper

considers heterogenous agents that act strategically.2

The efficiency of various selection procedures is a main topic in the statistical decision

theory (see e.g., Gibbons et al. (1977)). By focusing on selection efficiency as the measure of

the success of a contest, instead of e.g., aggregate output, our work is in that sense closer

to statistical decision theory than to the tournament literature. However, the strategic

element makes the noise in the selection process we study endogenous, while the noise

in the selection processes studied by statistical decision theory is exogenous. Thus, the

statistical decision theory literature only considers statistical effects, while we consider the

interaction between statistical and equilibrium effects.

The remainder of the paper is organized as follows. Section 2 describes the model.

Section 3 performs the analysis. Section 4 considers design issues, and Section 5 concludes.

2 The Model

A principal arranges a contest in order to identify a talented agent. We assume that the

principal can only observe the rank of the agents, and awards a prize to the agent with

the highest rank, or output.3 There are n risk-neutral agents competing for the prize,

2Using tools from evolutionary game theory Dekel and Scotchmer (1999) find an evolutionary pressure
towards risk loving preferences provided that those who breed in a population is determined by a contest
(and where a child inherits the risk preferences of its parents). The focus of Dekel and Scotchmer (1999)
is very different from our focus (there is e.g., no discussion of selection efficiency in Dekel and Scotchmer
(1999)), but the models applied are similar.
A patent race is a kind of contest in which there is only one prize — the patent. Selection issues in patent

races have to our knowledge not been analyzed.
3As pointed by e.g., McLaughlin (1988), cases where the principal mainly has ordinal information on

individual output, or where only ordinal information is verifiable (Malcomson (1984)), are common in
practice. If cardinal information on individual output is available and verifiable, an interesting question,
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whose value is normalized to 1. The individual output space Z consists of four elements;

Z := {z1, z2, z3, z4}, where z1 < z2 < z3 < z4 (tied winners have an equal chance of

obtaining the prize). There are two types of agents, low (l) and high (h), with θ denoting

the share of the h type in the pool from which the n agents are drawn. Both types have

an opportunity cost of participation equal to zero, and hence the group of contestants is

a true random sample from the pool. Agents of each type have two pure strategies, safe

(s) and risky (r). If an l type agent chooses s then her output is z2 with certainty. If an

h agent chooses s then her output is z3 with certainty. If a l type agent chooses r then her

output is z1 with probability 1 − x, and z4 with probability x. If an h type agent plays

r then her output is z1 with probability 1 − y, and z4 with probability y, where y > x.

We do not exclude mixed strategies, and thus the (mixed) strategy space has the usual

continuity properties. Outputs are assumed to be statistically independent. We assume

that there are no costs associated with risk taking, and hence expected utility for an agent

equals her win probability.4

Notice that the discrete output space restricts the possible risk taking, in that risk

can only be increased by putting more probability weight on the endpoints z1 and z4,

something that would not be the case with a continuous output space. In Appendix B,

we consider the case where output is normally distributed, and where agents can choose

the level of variance of their output. The results here show that our main results hold also

when the output space is continuous.

that goes beyond the aims of the present paper, is whether such cardinal information can make schemes
where the prize goes to an agent with an output in the ’middle’ optimal. (Notice that such non-monotonic
schemes have the weakness that they give agents incentives to dispose with parts of their output in
equilibrium. For example, fund managers have an incentive to inflate trading costs.)

4The case when the distribution of output under r is a mean preserving spread of the distribution of
output under s is a special case of the model.
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3 Equilibrium Analysis

We consider the incomplete information game Γ(n, θ), where an agent does not know the

type of the other contestants, but she knows n and θ and her own type. A strategy is a

mapping from the type space T , where T := {l, h}, to the action space C, where C :=

{s, r}. We denote the set of symmetric pure strategies S, where S := {(s, s), (s, r), (r, s),

(r, r)}, with the l type’s action written first. We confine our attention to symmetric Bayes-

Nash equilibria (BNE), i.e., strategy tuples where all agents maximize their probability

of winning given the strategy of the other agents, and where all agents of the same type

play the same strategy. The key endogenous variable is the probability of a h type agent

winning the prize in a BNE, denoted by Π(Γ).

3.1 Quality of Contestant Pool

To see the effect of increasing the quality of the contestant pool,5 we start out by consid-

ering the case n = 2. Straightforward calculations reveal that there are unique equilibria,

and moreover that all four elements of S can be equilibrium strategies depending on the

values of the parameters (θ, x, y).

Remark 1 All four pure strategy combinations are possible symmetric BNE of Γ(2, θ).

Furthermore, if there exists a symmetric pure strategy BNE, then it is unique.

Proof. See Appendix A.

Recall that x (y) is the probability of a l (h) agent obtaining the highest outcome if

she plays r. With both x and y large, (r, r) is the equilibrium, which is natural. In the

5For example, an investor can use a professional evaluation firm in order to hire more highly skilled
fund managers. Almost all large investors pay professional firms to evaluate fund managers (Heinkel and
Stoughton (1994)).
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case where both x and y are small, (s, s) is the equilibrium. That seems counterintuitive

since in that equilibrium a l agent loses with certainty if the other agent is a h type. The

intuition behind the (s, s) equilibrium is that the probability of a l type winning against

a h type (by playing r) is sufficiently small for the l type to rather care about her best

chance of winning were she to play against another l type agent.6

A first guess might be that it is advantageous to improve the expected ability of the

contestants (i.e. to increase θ), as long as there are no intrinsic costs associated with

doing it. However, Proposition 1 shows that this conjecture can be false if increased

ability among the contestants induces more risk-taking.

Proposition 1 Contestant Quality.

i) In a low-quality pool a marginal increase in contestants’ average quality improves selec-

tion efficiency.

ii) In a medium-quality pool a marginal increase in contestants’ average quality may have

non-monotone effect on selection efficiency.

iii) In a high-quality pool a marginal increase in contestants’ average quality improves

selection efficiency.

Proof. We first prove i) and iii) and then prove ii). i) From the proof of Remark 1,

we have that for θ < min [1− 2x, 2− 2y], (s, s) is a unique equilibrium strategy. As can

easily be verified, Π(s, s) = 1− (1− θ)2, increases with θ. iii) From the proof of Remark

1, we have that for θ > 1−2x
y−x , (r, r) is a unique equilibrium. As can be easily verified,

Π(r, r) = θ2 + 2 (1− θ) θ ¡y (1− x) + 1
2xy +

1
2 (1− x) (1− y)

¢
, increases in θ. ii)We show

that if min [1− 2x, 2− 2y] < θ < 1−2x
y−x , Π can decrease in θ. Consider θ = 1−2x < 2−2y.

6Of course, this equilibrium disappears as θ goes to zero.
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In this case, (s, s) is the equilibrium. A small increase in θ induces the equilibrium to

switch to (s, r), and Π decreases, as can easily be verified.

In situations in which risk taking is very attractive (case iii) or very unattractive (case

i) quality improvements would only lead a positive statistical effect Π. The contestants

does not change their equilibrium strategies. In contrast, in cases in which a quality

improvement implies that contestants’ increased fear of facing a contestant of the high

ability type switch to a the high risk strategy (case ii), quality improvement may imply a

significant negative equilibrium effect which exceeds the positive statistical effect.7 Figure

1 illustrates the results in Proposition 1.

C

θ

A

( )ss,Π

( )sr,Π

Π

B

0θ 1θ

Fig. 1: Improved contestant quality and increased risk taking.

7 In cases in which expected output depends on the risk of the project (i.e., the non-MPS case), selection
efficiency as well as aggregate output may be of importance for a principal. Our analysis can straightfor-
wardly be extended to analyze the trade off between aggregate output and selection efficiency. Examples
in which both selection efficiency and aggregate output decrease in θ can easily be constructed.
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Figure 1 depicts a typical example of Π as a function of θ, given by the bold line. For

a low θ, (s, s) is the equilibrium and increases in θ only induces a statistical effect on Π,

implying that Π increases with θ. For a higher θ, (r, s) is the equilibrium, and the same

argument applies. In the intermediate range, however, Π can decrease with θ due to a

negative equilibrium effect. The movement A−→C is the total effect on Π from increasing

θ from θ0 to θ1. The total effect can be decomposed into the statistical effect A−→B,

which is positive, and the equilibrium effect B−→C, which is negative.

3.2 Number of Contestants

To improve Π it seems natural to increase the number of contestants in order to increase

the probability of a good agent participating.8 Proposition 2 shows that increasing com-

petition, through increasing the number of contestants, can be a two-edged sword, because

increased competition increases the equilibrium risk taking.

Proposition 2 Number of Contestants. Π may decrease when the number of contestants

increases from 2 to 3.

Proof. Note that if n = 2, θ = 1
2 , x =

1
5 , y =

1
4 , then from the proof of Remark 1, (s, s)

is the unique BNE. That gives Π(2, 12) = θ
2 + 2θ(1− θ) = 3

4 =
150
200 . Now increase n to 3.

In that case, (s, s) is no longer a BNE since

UL(s, s) =
1

3
(1− 1

2
)2 =

1

12
< U 0L(s, s) =

1

5

8For example, if an investor is uncertain about the investment skill of various potential mutual fund
managers, it might be tempting to invite a large number to engage in the management of its investment
portfolio.
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However, (r, s) is indeed the BNE since a)UL(r, s) = 67
300 > U 0L(r, s) =

48
300 .While on

the other hand, b) UH(s, r) = 532
1200 > U

0
H(s, r) =

319
1200 . Thus Π decreases

Π(3,
1

2
) = θ3 + 2θ2(1− θ)(1− x) + 2θ(1− θ)2(1− x)2 = 97

200
<
150

200
.

Proposition 2 shows that the increase in noise resulting from increasing n may harm

the selection efficiency more than the benefits of the greater likelihood of having at least

one h-type agent participating in the contest. The equilibrium effect may dominate the

statistical effect.9

Note also that if a switch from a safe to a risky strategy yields a sufficiently large

reduction in expected output, an increase in the number of contestants (which induce

more risk taking) may reduce expected aggregated output.

When the number of agents is already large, then adding a player presumably has no

equilibrium effect since both types play risky already. Intuitively, Π may decrease for a

small increase in n, but must increase for a large increase in n.10 But, as Proposition 3

shows, this intuition is false. The proposition builds on a useful result from Dekel and

Scotchmer (1999).

9Notice that in contrast to the case of increasing θ, the statistical effect on Π of increasing n is ambiguous.
To see why, assume that the (r, s) equilibrium is played for some n. Then, keeping the strategies fixed, Π
clearly approaches zero as n increases, and thus the statistical effect is negative for the (r, s) equilibrium.
On the other hand, the statistical effect on Π of increasing n, given the (s, r) equilibrium, is clearly positive.
Thus the statistical effect on Π of increasing n is ambiguous, since it depends on the equilibrium strategies
played.
10Notice that this intuition holds for the quality of contestants. A very high contestant pool quality (θ

close to 1) certainly gives at least as good value of Π as low values of θ.
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Proposition 3 Π may be larger for 2 contestants than for an infinite number of contes-

tants.

Proof. From Dekel and Scotchmer (1999), Proposition 3, we know that there exists a finite

n, denoted n*, such that for all n larger than n∗, (r, r) is the unique equilibrium. It follows

that (r, r) is the only equilibrium for an infinite number of contestants. Consequently, with

an infinite number of contestants, the winner has output equal to z4, with probability 1.

By the law of large numbers, the share of h agents that achieve z4 is just y, and the share

of l agents that achieve z4 is equal to x. Thus Π(∞) = θy

θy + (1− θ)x . Now consider

θ = 1
2 , x =

1
5 , y =

1
4 . With those parameter values, we have Π(∞) = 5

9 <
3
4 = Π(2).

To sum up, we have shown that Π can be non-monotone in n and in θ, due to the

equilibrium effect of increases in n or θ. These results were shown for n = 2, and where

merely examples. Since the non-monotonicity in θ is the most surprising result, we would

like to generalize it. In the following we show that non-monotonicity of Π(θ) holds for all

n.

Proposition 4 For all n and θ there exists (x,y) such that Π is non-monotonic in θ.

Proof. See Appendix A.

The result generalizes the insight from the examples, by showing that non-monotonicity

can occur for all n and θ. This is a rather strong possibility result, but is mute on the

magnitude of non-monotonicity. We now use numerical analysis to assess how large the

downward movement in Π associated with increases in θ (and consequent shift of equilib-

rium) can be.11

11The program generating the numbers in the table is available from the authors.
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n θ0 θ1 yl(θ0) Π(θ0) Π(θ1) Π(θ1)−Π(θ0)

2 .25 .25 .87 .44 .39 -.05

3 .25 .28 .77 .58 .51 -.07

4 .25 .30 .68 .68 .60 -.08

5 .25 .33 .61 .76 .67 -.09

10 .25 .45 .38 .94 .84 -.10

20 .25 .65 .20 1.0 .94 -.06

Table 1: Reduction in selection efficiency (Π) when θ increases from θ0 to θ1.

In a row, the first two columns are our choices of n and θ0. yl(θ0) is the highest

y that is consistent with (s, s) being an equilibrium given n and θ0. Π(θ0) is equal to

Π(s, s) computed for (x = 0, y = yl(θ0), θ0). The column θ1 is the smallest θ that

makes (s, r) an equilibrium, given that (x = 0, y = yl(θ0)). Π(θ1) is Π(s, r) computed for

(x = 0, y = yl(θ0), θ1). Notice that Π(θ1)−Π(θ0) is negative for all the (n,θ0) combinations

in the table even if θ increases significantly in some of the cases.12

4 Design Issues

In this section we discuss whether a principal can modify the contest to solve the selection

problem. We consider two possible modifications. First, we consider the case where the

principal constructs several different contests, to induce agents of different types to self-

select into different contests, and hence solve the selection problem right away.13 Second we

12 It can be noted that since we compute Π(θ1)−Π(θ0) for an increase in θ that is just sufficient to make
(s, r) an equilibrium, the computed Π(θ1) − Π(θ0) is an upper bound on the magnitude of the reduction
in Π from an increase in θ that induces a switch in pure equilibria.
13The classic paper in the tournament literature, Lazear and Rosen (1981), also considers the possibility

of multiple contests. Their purpose is to study how multiple contests can generate efficient levels of effort.
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consider that the principal limits attention the competition to one contest, but increases

the number of prices, in order to reduce the amount of risk taking in the contest.

4.1 Multiple Contests

For illustration, we confer to discuss implementation in the n = 2 game. We ask under

what conditions constructing two contests can make agents of different types voluntarily

choose different contests, and hence solve the self-selection problem directly.14

Suppose that the principal lets each agent decide whether to enter either contest 1 or

contest 2. The principal sets the prizes in the contests to C1 and C2, respectively. After

choosing which contest to enter, the agent observes whether there is a rival in the contest

and of which type the rival is. Thereafter the agent chooses to play r or s. Since an agent

in a contest can observe the rival’s type he can also detect a rival’s deviation from the ”self-

selection-equilibrium” before r or s is chosen. By allowing agents to respond to deviations

from the ”self-selection-equilibrium” we make deviating less attractive and self-selection

easier to achieve.15 Since only the ratio between C1 and C2 matters for equilibrium, we

can restrict attention to considering ζ, where ζ =
C1
C2

and ζ ∈ [0, 1], and consider ζ as the

only choice variable of the principal. Consider the case in which h agents self-select into

contest 1 and l agents self-select into contest 2.

In a contest in which a h type faces competition from a l type, (s, r) is the equilibrium

strategies if (1 − x) ≥ y and (r, r) if the converse holds. we focus on the low risk (s, r)

equilibrium in case one of the types deviate from intended contest (i.e. (1− x) ≥ y).

14When there are more types T than two, implementation is generally made more difficult, since there
will be T (T −1) incentive restrictions to take care of, instead of only 2. We therefore consider a case when
implementation should be relatively simple.
15 Since deviating from the self-selection equilibrium is more attractive when a rival cannot observe the

type of the other agents entering the same contest, it is straightforward to show that also in this case
self-selection can be achieved only for a limited set of parameter values.
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Remark 2 For θ sufficiently high, self-selection is not feasible.

Proof. Self-selection can only be achieved if the following two conditions hold (none of

the types will deviate from the ”correct” contest)

h type :

·
1

2
θ + (1− θ)

¸
C1 ≥ [θ + (1− θ) (1− x)]C2

l type :

·
1

2
(1− θ) + θ

¸
C2 ≥ [(1− θ) + θx]C1

Both conditions holds only if θ ∈
h

1
2(1−2x)

³
5− 2x−p(17− 4x+ 4x2)´ , 1i (since the h

type chooses strategy s, y does not enter into the condition).

The intuition for the result is as follows. For low θ the l type will be tempted to choose

the contest for the h type since it is a low probability for facing a h type in that contest.

Moreover, the principal cannot reduce the prize in the h contest since this will induce a

potential h type to choose the l contest.

This result is related to Lazear and Rosen (1981). They study ”effort” contests and

show that a principal arranging a contest with homogenous agents can induce efficient

effort. They extend their analysis to heterogenous agents and study whether self-selection

into different contest can ensure that efficient effort still can be induced. In line with our

analysis they show that self-selection cannot be achieved.

4.2 Multiple Prizes

In some cases, it is possible for the principal to increase the number of prizes, to avoid the

risk taking problems outlined. The idea behind increasing the number of prizes is to make

the prize structure less convex, and hence decrease the amount risk taking and make the

ranking of agents more informative. There is a trivial sense in which this can be obtained,
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as shown in the following remark.

Remark 3 Suppose there are n participants in the contest, and that the prize structure

is (1/n, 1/n, ..., 1/n). Then Π = 1 in equilibrium

Proof. Since the agents face no incentives at all, it is trivial to see that (s,s) is indeed

an equilibrium, and hence the agents reveal their type.

A practical problem with increasing the number of prizes is financial constraints. For

example, in the race between vice presidents to become the CEO of a firm, it may put a

harsh financial strain on the firm to pay the runner up a wage that is close to the CEO

wage. Another problem with increasing the number of prizes is that effort may decrease:

A central insight from the effort strand of the tournament theory is that equilibrium effort

is an increasing function of the prize spread (see Lazear and Rosen (1981)). Hence the

direct effects of increasing the number of prizes could be to imply less risk taking, but

also less effort, and the optimal number of prizes would involve some trade-off between

these two effects.16 A third problem with increasing the number of prizes arises if the h

type agents have higher participation constraints than the l type agents. In the context

of a one-prize contest, there is no tension between selection efficiency and participation

constraints since in any (symmetric) equilibrium, selection efficiency and the utility of a

h type agent will be in a one-to-one relation. However, with more than one prize, this

relation breaks down, because although the selection efficiency can increase, the expected

payments to an agent of the h type can decrease. This point can easily be seen from the

following example.

Example 2

16The trade-off is complicated by the fact that the indirect effect of less risk taking on effort would be
to increase effort (see Lazear and Rosen (1981)).
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Suppose n = 2, and it is common knowledge between the contestants and the principal

that only one of the agents is the h type. Each contestant knows his own type. Furthermore

assume that x = 1/2 and y = 3/4. With the price structure (1, 0), the unique equilibrium

induces both agents to play r, and Π = UH = 11/16. Suppose now that the prize structure

is altered to (1/2, 1/2). Then, by indifference, (s, s) is an equilibrium and Π = 1. However,

with the latter prize structure, UH = 1/2 < 11/16. Hence if the participation constraint

is between 1/2 and 11/16, the h agent will not participate.

5 Conclusion

Contests are used both to induce agents to work hard and to solve selection problems.

It is therefore surprising that the tournament literature has almost exclusively considered

the former function. In this paper, however, we have mainly considered how well contests

select talented agents when risk taking is the decision variable of the agents.

We have used promotion decisions in firms and the selection of mutual fund managers

as examples of situations where fiercer competition may lead to more risk taking and

reduced selection efficiency. However, the insights from our analysis can be applied to other

contexts also. For instance, governments and private firms often sponsor tournaments to

induce research on specific topics. The reward structure and selection issues of these

tournaments is close to what we have discussed in this paper: there is usually only one

large prize and selection of a high-quality firm is essential since the winner is going to

take care of prospective production. Our results indicate that an organizer of a research

tournament may want to restrict the number and quality of contestants in a research

tournament.
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We have two main results. We show that although increasing the number of firms

participating in a contest makes it more likely that the pool of contestants includes a

high-quality firm, it might make it less likely that a high-quality firm will be awarded the

prize. We also show that an increase in the expected ability or quality of the contestants

may make it less likely that a high-quality firm will be selected. The intuition behind

the results is that a more competitive tournament — more contestants or higher expected

abilities among the contestants — induces firms to adopt riskier strategies, which may harm

the selection of high-quality firms. Riskier projects create more noise in the selection

contest, and thereby reduce the informativeness of the rank.

6 Appendix A: Proofs

Proof of Remark 1: We use the following convention: Ui(j, k) denotes the win probability

of an agent of type i when agents of her own type (including herself) play strategy j and

agents of the other type play strategy k. For example, UH(s, r) denotes the win probability

of an h agent when all h agents (including herself) play s, and all l agents play r. The

individual payoffs in the symmetric tuples (when all agents of the same type choose the

same strategies) are:

UH(r, r) =
1
2(1+ (1− θ)(y − x)) UL(r, r) =

1
2(1+ θx− θy)

UH(s, r) = 1− 1
2θ − x+ θx UL(s, r) =

1
2(1+ θ)− θy

UH(r, s) =
1
2θ + (1− θ)y UL(r, s) =

1
2(1− θ) + xθ

UH(s, s) = 1− 1
2θ UL(s, s) =

1
2(1− θ)

For individual deviations, we use the following convention: U 0i(j, k) denotes the win

probability of an agent of type i when she plays strategy −j, other agents of her own type
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play strategy j, and agents of the other type play strategy k. Since the payoff from letting

−j be a mixed strategy is a convex combination of playing s and playing r, we only need

to consider pure strategy deviations . For example, U 0H(s, r) denotes the win probability

of an h agent playing r, when all other h agents play s, and all l agents play r. The

individual payoffs from individual deviation are:

U 0H(r, r) = θ(1− y) + (1− θ)(1− x)

U 0H(s, r) = θy + (1− θ)(12xy + y(1− x) + 1
2(1− x)(1− y))

U 0H(r, s) = θ(1− y) + (1− θ)

U 0H(s, s) = y

U 0L(r, r) = θ(1− y) + (1− θ)(1− x)

U 0L(s, r) = θ(
1
2xy + x(1− y) + 1

2(1− x)(1− y)) + (1− θ)x

U 0L(r, s) = (1− θ)(1− x)

U 0L(s, s) = x

First consider equilibrium (r, r). Notice that the payoff from individual deviation is the

same for an h agent and an l agent, and moreover that UH(r, r) > UL(r, r). Thus we only

have to check a deviation from an l agent. An l agent follows the supposed equilibrium

strategy if 12(1 − θy + θx) > θ(1 − y) + (1 − θ)(1 − x), which implies that y > 1+θx−2x
θ .

Now consider equilibrium (s, s). An l agent follows the supposed equilibrium strategy if

x < 1
2(1− θ). The condition for an h agent is y < 1− 1

2θ. Now consider equilibrium (r, s).

An l agent follows the supposed equilibrium strategy if 12(1−θ)+xθ > (1−θ)(1−x), which

implies that x > 1
2(1−θ). The condition for the h type is 12(1+(1−θ)(y−x)) > θy+(1−

θ)(12xy+y(1−x)+ 1
2(1−x)(1−y)), which implies that y < 1

2 . Finally, consider equilibrium

(s, r). An l agent sticks if 12(1+θ)−θy > θ(12xy+x(1−y)+ 1
2(1−x)(1−y))+(1−θ)x, which

implies that x < 1−θy
2−θ . The condition for the h type is

1
2θ+ (1− θ)y > θ(1− y) + (1− θ),

18



which implies that y > 1 − 1
2θ. The uniqueness of BNE, given (x, y, θ), follows directly

from the argument.

Proof of Proposition 4: The idea of the proof is to consider a small increase in θ that

induces equilibrium to switch from (s, s) to a mixed strategy equilibrium, and to show

that the total effect on Π from increasing θ is negative. To limit the equilibrium effects

to changes in the strategy of h agents, we assume for convenience that x = 0, so that s is

a dominating strategy for the l agents. Suppose that the h agents play r with probability

α, and s with probability (1-α). If α is played,

Π (θ,α) = 1−
n−1X
m=0

(α (1− y))m θm (1− θ)n−m
µ
n

m

¶
(1)

where the second expression on the right is the probability that an l agent wins the contest

given that α is played, and where y is fixed. The event that an l agent wins occurs only

when all m agents of the h type obtain z1 (which occurs with probability (1 − y)mαm).

Equation (1) is clearly differentiable, and provided that ∂α(θ,y)∂θ exists, increasing θ has a

direct and an indirect effect on Π,

dΠ

dθ
=
∂Π

∂θ
+
∂Π

∂α

∂α

∂θ
(2)

The first term on the right side is the statistical effect of increasing θ and the second term

is the equilibrium effect. We wish to show that that dΠdθ < 0 for a suitably defined value

of y, which implies that Π is non-monotone on some interval of θ.

Denote by U iH (s,α) [U
i
H (r,α)] the utility of an h agent playing s [r], given that the

other h agents play r with probability α, and s with probability (1-α). Let the probability
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of there being m agents of the h type given that there are n− 1 agents participating be

denoted by Ψ, where Ψ =
¡n−1
m

¢
θm (1− θ)n−1−m. Then,

U iH (s,α) =
n−1X
m=0

Ã
mX
k=0

¡m
k

¢
(1− y)m−k (1− α)k αm−k

k + 1

!
Ψ (3)

By playing s, the agent will beat all l agents, but can only win if all the h agents playing

r obtain z1. Moreover, k is the number of other h agents that play s and (m− k) is the

number of h agents that play r.

U iH (r,α) = (1− y)
θn−1 (α (1− y))n−1

n
+ y

n−1X
m=0

(
mX
k=0

¡
m
k

¢
(αy)k (1− αy)m−k

k + 1
)Ψ (4)

The first term on the right side is the win probability conditional on obtaining z1 and the

second term is the win probability conditional on obtaining z4. Moreover, k is the number

of other h agents that obtain z4. The mixed strategy α is an equilibrium if

F ≡ U iH (s,α)− U iH (r,α) = 0 (5)

Equation (5) determines implicitly a function α(θ, y(θ)). Now define yl as the value of

y that makes an h agent indifferent between playing s and r, given that all the other h

agents play s. In other words, yl := sup(y : (s, s) ∈ NE). We suppress notation by simply

writing α instead of α(θ, y(θ)).

yl = {y : U iH (s,α)α=0 = U iH (r,α)α=0} = {y :
n−1X
m=0

Ψ

m+ 1
= y} = (6)

n−1X
m=0

Ψ

m+ 1
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Notice that by construction, α(θ, yl(θ)) = 0, which will be several times later. The strategy

now is to find the derivatives on the right hand side of equation (2), and to evaluate

at y = yl, where the α-terms drop. We begin by deriving ∂α(θ,y)
∂θ y=yl

and then derive

∂Π(θ,α)
∂θ y=yl

and ∂Π(θ,α)
∂α y=yl

.

F = U iH (s,α)− U iH (r,α)

=
n−1X
m=0

Ã
mX
k=0

¡m
k

¢
(1− y)m−k (1− α)k αm−k

k + 1

!
Ψ

−(1− y) θ
n−1 (α (1− y))n−1

n

−y
n−1X
m=0

(
mX
k=0

¡m
k

¢
(αy)k (1− αy)m−k

k + 1
)Ψ (7)

To find ∂α(θ,y)
∂θ y=yl

we use the implicit function theorem, i.e., ∂α∂θ = −Fθ
Fα
, and then evaluate

at y = yl. First find Fα =
∂U iH(s,α)

∂α − ∂U iH(r,α)
∂α .

∂U iH (s,α)

∂α
=

n−1X
m=0

 mX
k=0

¡
m
k

¢
(1− y)m−k

³
(m− k)αm−k−1 (1− α)k − k (1− α)k−1 αm−k

´
k + 1

Ψ
(8)

When y = yl, the inner sum is zero except for at k = m− 1 and at k = m. Therefore,

∂U iH (s,α)

∂α y=yl
=

n−1X
m=0

"¡ m
m−1

¢ ¡
1− yl¢ (1)
m

+

¡
m
m

¢
(−m)

m+ 1

#
Ψ

=
n−1X
m=1

m
¡
1− yl¢
m

Ψ−
n−1X
m=0

mΨ

m+ 1

=
n−1X
m=1

³
1− yl

´
Ψ−

n−1X
m=0

mΨ

m+ 1
(9)
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Moreover,

∂U iH (r,α)

∂α
=

(1− y) θn−1(n− 1)(1− y) (α (1− y))n−2
n

+

y
n−1X
m=0

(
mX
k=0

¡m
k

¢
ky (αy)k−1 (1− αy)m−k

k + 1
−¡m

k

¢
(αy)k (m− k)y (1− αy)m−k−1

k + 1
)Ψ (10)

For y = yl, the first term drops, since n > 2. The inside sum in the second term drops

except for at k = 1 and at k = 0. Hence we have,

∂U iH (r,α)

∂α y=yl
= yl

n−1X
m=0

Ã¡m
1

¢
yl

2
−
¡m
0

¢
myl

1

!
Ψ

= yl
n−1X
m=0

µ
myl

2
−myl

¶
Ψ = −(yl)2

n−1X
m=0

mΨ

2
= −(n− 1)

2
θ(yl)2 (11)

And moreover,

Fα|y=yl =
n−1X
m=1

³
1− yl

´
Ψ−

n−1X
m=1

mΨ

m+ 1
+
n− 1
2
θ(yl)2 (12)

Now find Fθ =
∂U iH(s,α)

∂θ − ∂U iH(r,α)
∂θ . Define Φ =

Pn
k=0

(mk )(1−y)m−k(1−α)kαm−k
k+1 , which is

independent of θ, and notice that Φy=yl =
1

m+1 . Hence,

∂U iH (s,α)

∂θ y=yl
=

n−1X
m=0

(Φ
∂Ψ

∂θ
)y=yl =

n−1X
m=0

1

m+ 1

∂Ψ

∂θ y=yl
(13)
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Furthermore, we have that,

∂U iH (r,α)

∂θ
=
(1− y) (n− 1) θn−2 (α (1− y))n−1

n
− y

n−1X
m=0

Ã
mX
k=0

µ
m

k

¶
(αy)k (1− αy)m−k

!
∂Ψ

∂θ

(14)

Notice that for y = yl, the first term on the right hand side is zero for n > 1. FurthermorePn−1
m=0

∂Ψ
∂θ = 0 since

Pn−1
m=0Ψ = 1, which implies that also the second term drops, since

the term inside the brackets just equals 1. Hence we have that,

∂U iH (r,α)

∂θ y=yl
= 0 (15)

It follows that Fθ|y=yl =
Pn−1
m=0

∂Ψ
∂θ
m+1 . Hence we get,

∂α

∂θ y=yl
= −Fθ

Fα y=yl
= −

Pn−1
m=0

∂Ψ
∂θ
m+1Pn−1

m=1 (1− yl)Ψ−
Pn−1
m=1

mΨ
m+1 +

n−1
2 θ(y

l)2
(16)

where Fα|y=yl > 0. Now find ∂Π
∂θ y=yl

.

∂Π

∂θ
= −

n−1X
m=0

µ
n

m

¶
(α (1− y))m θm (1− θ)n−m (17)

Substituting for y = yl, we have that α = 0 and all terms drop except for at m = 0,

∂Π

∂θ y=yl
= −

µ
n

0

¶³
−nθ (1− θ)n−1−0

´
= n (1− θ)n−1 (18)
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Now find ∂Π
∂α y=yl

.

∂Π

∂α
= −

n−1X
m=0

µ
n

m

¶
θm (1− θ)n−mm (α (1− y))m−1 (1− y) (19)

For y = yl, all terms drop except for at m = 1,

∂Π

∂α y=yl
= −

µ
n

1

¶
θ (1− θ)n−1 (1− yl) = −nθ (1− θ)n−1

³
1− yl

´
(20)

Hence for y = yl, we get that,

dΠ

dθ y=yl
= n (1− θ)n−1 + nθ (1− θ)n−1 (1− yl)Pn−1

m=0

∂Ψ
∂θ
m+1Pn−1

m=1 (1− yl)Ψ−
Pn−1
m=1

mΨ
m+1 +

n−1
2 θ(y

l)2
(21)

To show that non-monotonicity is possible for all n and θ, we need to show that this

expression is negative. Hence dΠ
dθ y=yl

< 0 if,

Λ = (1− yl)θ
n−1X
m=0

∂Ψ
∂θ

m+ 1
+

n−1X
m=1

³
1− yl

´
Ψ−

n−1X
m=1

mΨ

m+ 1
+
n− 1
2
θ(yl)2 < 0 (22)

By standard summation rules, we can simplify this expression, observing that,

yl =
n−1X
m=0

Ψ

m+ 1
=
1− (1− θ)n

nθ

n−1X
m=1

mΨ

m+ 1
=

θn− 1+ (1− θ)n
nθ

= 1− yl

∂yl

∂θ
=

(1− θ)n−1(nθ + 1− θ)− 1
θ2n

(23)
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Using eq. (23) and simplifying we obtain,

Λ =
2− θ(1+ n) + (1− θ)n[(1− θ)n(nθ + 2− θ)− 2(2− θ)]

(nθ)2
(24)

It suffices to show that the top of this expression, labeled Λ1, is always negative. Suppose

that
∂Λ1
∂n

< 0. It then suffices to show that Λ1(n = 2) < 0. But, as can easily be verified,

Λ1(n = 2) = −θ4(2− θ) < 0. It then only remains to show that is negative. As can easily

be verified,
∂Λ1
∂n

, is negative

1

θ

∂Λ1
∂n

= −1+ (1− θ)2n[ln(1− θ) + 1] (25)

Notice that if the expression on the right should be positive for any value of n, it must

be positive for n = 1 (since if the second term on the right hand side is positive, it is

decreasingly so in n). However, substituting in for n = 1 it can easily be verified that the

right hand side of (25) is negative. Hence
∂Λ1
∂n

< 0. That completes the proof.

7 Appendix B: Numerical Analysis

The discrete output space, {z1, z2, z3, z4}, places tight restrictions on the type of risk

taking allowed. Specifically, the only way for an agent to increase risk is by putting more

probability weight on the endpoints z1 and z4. With a continuous output space, say the

interval [z1, z4], increased risk does not necessarily imply more weight at the endpoints. In

this appendix we use simulation techniques to consider the case with a continuous output

space and three different ability levels: High (H), Medium (M), and Low (L). The results
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of this section show that our main results also hold when the output space is continuous.17

As before, the agents maximize the probability of being selected by choosing between

safe and risky projects. To conduct the simulation analysis we make the following assump-

tions.

1. The outcomes of the agents’ projects are normally distributed with expected out-

comes L = 0, M = 3 or H = 6.

2. The agents choose between a safe and a risky project with the same expected out-

come. The safe project is assumed to have a standard deviation of 1. The risky

project has a standard deviation of σ, where σ ∈ [3, 7].

3. The probability of being of a particular type is:

L M H

Probability 1
2 − θ 1

2 θ

An increase in θ implies that it is more likely for any agent to meet an opponent

with high ability.

7.1 Quality of the Contestants

In this section we show that Π may decrease with an increase in the quality of the contes-

tants (θ).

Consider the case with two contestants. It is simple to verify that there exists an

equilibrium in dominant strategies where the H type always chooses a safe strategy and

17The MapleV programs used in this section can be obtained from the authors. We have experimented
with different parameter values and obtained similar results, so the results seem robust.
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the L type always chooses a risky strategy.18 Let us now focus on the M type. If θ is

small, then the likelihood of facing a better contestant is small and theM type behaves as

if she is best and, hence, chooses the safe strategy. But if θ is high then theM type is more

likely to face a better contestant and, hence, chooses the risky strategy. In Figure B-1,

the curve G shows the critical values for θ, such that the M type is indifferent between

choosing a safe and a risky strategy.
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Figure B-1: Higher quality (θ) of contestants

The shaded area represents the possibility that an increase in θ reduces Π. Moving

northwards from a point on the G line into the shaded area, causes a decrease in Π.

To illustrate further, take two points on the diagram and label them A and B. Then Π

18To see why, first note that for type L the high risk strategy dominates the low risk strategy. If she is
facing a better type, she will always increase her probability of winning by choosing the riskier strategy.
If she is facing another L type she is indifferent about the choice between a high and low risk strategy.
Hence, a high risk strategy is a dominant strategy for the L type. Second, note that the low risk strategy
is the dominant strategy for the H type. A high risk strategy will increase the probability of low outputs
and hence increase the likelihood of less able contestants achieving a higher output. Furthermore, the H
type will be indifferent to the choice between low and high risk strategy facing another H type.
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increases from A to B if B lies further north than A, as long as we do not cross the G line.

If A is below the G line and B is above, as illustrated in Figure 2, then Π may decrease.

An increase in the quality of the contestants makes it more likely that one of the

contestants is a H type. But higher quality induce theM types to choose a risky strategy,

which may decrease Π.

7.2 Number of Contestants

In this section we illustrate that Π may decrease as a result of adding one contestant

to a group of two contestants. For simplicity, we focus on the case in which adding a

contestant induces the M type to change strategy, but not the L type or the H type. It

is straightforward to show that (risky, risky, safe)n=3 is a unique equilibrium for θ < 1
5 ,

which is the case we consider in the following figure.
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Figure B-2: Adding one more contestant

In Figure B-2, the line P gives the points where Π is identical for n = 2 and n = 3.
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In the shaded area of Figure B-2, Π decreases when the number of contestants increases

from two to three.
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