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Abstract

A new approach of model parameter estimation is used with simulated measurements

to recover both biological and economic input parameters of a natural resource model.

The procedure e�ciently combines time series of observations with a simple bioeconomic

�sheries model to optimally estimate the model parameters. Using identical twin exper-

iments, it is shown that the parameters of the model can be retrieved. The procedure

provides an e�cient way of calculating poorly known model parameters by �tting model

results to observations. In separate experiments with exact and noisy data, we have

demonstrated that the adjoint technique of parameter estimation can be an e�cient

method of analyzing bioeconomic data. Results of sensitivity analysis of the model

parameters show that the environmental carrying capacity (e.g., habitat) is the most

important input parameter in the model.
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1 Introduction

In this paper we use a very simple bioeconomic �sheries model to introduce a new

technique of optimally estimating the parameters of a dynamic �sheries model and to

demonstrate its potential usefulness. The approach is known as data assimilation. In

data assimilation mathematical or numerical models are combined with available mea-

surements in order to improve the model itself or to improve the model forecasts. The

former application is known as model �tting (Smedstad and O'Brien, 1991; Yu and

O'Brien, 1991; Lawson et al., 1995; Spitz et al., 1997). A variety of these techniques

such as the Kalman Filter (Kalman, 1960; Gelb, 1974), the Extended Kalman Filter

(Gelb, 1974; Evensen, 1994), Optimal Interpolation (Lorenc, 1986) and the Variational

Data Assimilation (Smedstad and O'Brien, 1991) are already in common use. These tech-

niques have extensively been used in areas such as groundwater hydrology and petroleum

reservoirs (see for example Carrera and Neuman, 1986(a,b,c); Yeh, 1986) and more re-

cently in ecosystem models (Spitz et al., 1997; Matear, 1995). The technique in this

paper is the so called adjoint parameter estimation. This method minimizes a precon-

structed loss or criterion function which is de�ned by the di�erences between the data

and the model forecasts. The optimal or best �t parameters are obtained by minimizing

the loss function subject to the dynamical constraints via the so called adjoint equations

which map the prede�ned loss function into the gradient with respect to the control pa-

rameters (Lawson et al., 1995; Spitz et al., 1997). The gradients are then used iteratively

in a descent or Newton type of algorithm in order to search for the minimum of the loss

function.
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Application of these techniques is spreading very rapidly to many areas such as physical

and biological systems (Spitz et al., 1997). Lawson et al., (1995) applied the technique

of data assimilation to the well known and extensively studied predator-prey model in

biology. In another application, Gauthier, (1992) applied data assimilation with an ad-

joint model technique to the Lorenz model. Other techniques of data assimilation are

the simulated annealing (Kirkpatrick et al., 1983; Kruger, 1992) and the hybrid Monte

Carlo techniques (Harmon and Challenor, 1996). These are stochastic in nature and

may be very costly to implement. Data assimilation is also widely used in meteorology

and oceanography to estimate initial and boundary conditions. For reviews of these

methods in meteorology and physical oceanography refer to (Bengtsson, 1981; Navon,

(1986, 1997)).

Research in bioeconomics of �sh stocks has been based on simple aggregated biological

models (Schaefer, 1954). Classical growth models such as the logistic and the exponential

functions are the commonly employed models in the qualitative analysis of �sh stocks

(Sandal and Steinshamn, 1997(a,b,c); Clark, 1990).

The reality of these models has not yet been rigorously tested. Data assimilation gives

us the opportunity to test these models using the available data which is assumed to

be more realistic than the models themselves. More realistic bioeconomic models of

renewable resource stock may be multidimensional and highly complex. They may con-

tain many parameters such us the intrinsic growth rate, the catchability coe�cient, the

environmental carrying capacity, etc, whose values are extremely di�cult to measure.

Parameterization of the models become mathematically untractable and impractical. As

a consequence, biologists and bioeconomists have found it necessary to introduce simpler
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models. The issue of identi�cation, i.e., the problem of estimating parameters so that

the model predictions are more realistic and useful, has been raised by many natural re-

source economists (Clark, 1990). However, adequate attention has not been given to the

problem. Instead, economists have focused on the analytical considerations leading to

a neglect of most of the vital questions resource managers/�shers are mostly concerned

about, e.g., what is the safe biomass level (Deacon et al., 1998), etc.

Due to the progress in data collection and processing in recent times from both the �sh-

eries biologists and economists and the advances in computer technology, techniques of

data assimilation which are both data and computer intensive have good future prospects.

The assimilation technique introduced in this paper has some advantages compared to

the conventional techniques. First it is very attractive and computationally e�cient to

implement. Second, it can be used for more realistic and complex dynamical models of

bioeconomic systems. Third, it can be used to adjust both the initial conditions and the

parameters of the model. Fourth, it can also be used to estimate the variables of the

dynamical model.

An adjoint variational formulation will be used in this paper as an alternative approach

to the widely used regression analysis in economics. It is a more general formulation

than the traditional regression. It can be used for linear and nonlinear models and is

highly suitable for more realistic models where closed form solutions are unattainable.

The methods can be used to simultaneously estimate a large number of parameters. It

can also be used to perform sensitivity analysis of the input parameters of the model.

Most of the optimization algorithms used in adjoint parameter estimation are iterative.

Parameter estimation in dynamical systems is generally nonlinear even if the model is
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linear (Evensen et al., 1998). Consequently, the loss function may contain multiple ex-

trema. Notice that as with all iterative techniques, one should expect problems with

convergence to the global optimum due to at regions in the domain of search.

The technique introduced in this paper provides a more general and novel approach of

incorporating information from �eld measurements into bioeconomic models. Primarily,

the focus of the paper is to demonstrate the applicability of the methods in natural

resource economics. The plan of this paper is as follows. First, the technique of data

assimilation will be introduced and discussed. Second, the adjoint \strong constraint"

(Sasaki, 1970) method will be presented and the solution algorithm outlined. Third,

the bioeconomic �sheries model will be presented and a sensitivity analysis performed

to investigate the importance of the input parameters to the response. Fourth, identical

twin experiments with clean and noisy data will be performed and the result discussed.

Finally, we discuss and summarize the work. The mathematical details are relegated to

the Appendix.

2 Data Assimilation

Variational adjoint technique determines an optimal solution by minimizing a loss func-

tion that measures the discrepancy between the model counterparts to the data and

the available measurements. The method leads to the solution of the model equations

that best �ts the available measurements throughout the assimilation interval in a least

squares sense. Data assimilation systems consist of three components: the forward model

with a criterion function, the adjoint or backward model and an optimization procedure
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(Lawson et al., 1995). The forward model is our mathematical representation of the

system we are interested in studying, e.g., an open access, a regulated open access or a

sole owner �shery.

The adjoint model consists of equations obtained by enforcing the dynamical constraints

through Lagrange multipliers and provide a method of calculating the gradient of the

loss function with respect to the control variables. The gradients are then used in a line

search using standard optimization packages to �nd the minimum of the loss function.

Most optimization routines are based on iterative schemes which require the correct

computation of the gradient of the loss function with respect to the control variables.

In the adjoint formulation, computation of the gradient is achieved through the adjoint

equations forced by the model-data mis�ts. The model equations are run forward in time

while the adjoint equations are run backward in time which is then used to calculate the

gradient of the loss function.

An important step in data assimilation is the choice of the criterion function for the good-

ness of �t. The commonly used criterion is the generalized least squares criterion. It can

be de�ned with no a priori information about the parameters or with prior information

about the parameters incorporated as a penalty term in the criterion function. Some

researchers argue that since some information about the parameters and their uncertain-

ties are always available, adding the information is a plausible thing to do (Harmon and

Challenor, 1997; Evensen et al., 1998).

6



3 The Penalty Function

In adjoint parameter estimation a loss functional which measures the di�erence between

the data and the model equivalent of the data is minimized by tuning the control variables

of the dynamical system. The goal is to �nd the parameters of the model that lead to

model predictions that are as close as possible to the data. A typical penalty functional

takes the more general form

J [X; �] =
1

2

Z Tf

0

(X� X̂)TW(X� X̂)dt

+
1

2Tf

Z Tf

0

(�� �0)
TW�(�� �0)dt (1)

where X̂ is the observation vector, X is the model equivalent of the data, �0 is �rst

or best guess of the parameter vector and � is the parameter vector to be estimated.

The period of assimilation is denoted by Tf and T is the transpose operator. The W0s

are the weight matrices which are optimally the inverses of the error covariances of the

observations. They are assumed to be positive de�nite and symmetric. The second term

in the penalty functional represents our prior knowledge of the parameters and ensures

that the estimated values are not too far away from the �rst guess. It may also enhance

the curvature of the criterion function by contributing a positive termW� to the Hessian

(second order derivatives) of J (Smedstad and O'Brien, 1991).

For this analysis, it will be convenient to assume that the errors are not serially correlated.

This implies that the covariance matrices are now diagonal matrices with the variances

along the diagonal. We further assume that the variances are constant. Then the weight

matrices can be written as W = wI and W� = w�I� where the I0s denote unit matrices
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and the small lettered w
0
s are the weights. The discretized loss function becomes

J = w

NX
n=1

(Xn � X̂n)
T (Xn � X̂n) + w�

PX
p=1

(�p � �0p)
T (�p � �0p) (2)

where P is the number of parameters and N is the number of observations. One special

case is the choice of the weights equal to unity which leads to the least-squares procedure.

The frequently made statistical assumption about the errors in the literature is that of

normality. If this assumption is satis�ed, then the optimal least squares estimators are

the maximum likelihood estimators.

3.1 The adjoint method

Construction of the adjoint code is identi�ed as the most di�cult aspect of the data

assimilation technique (Spitz et al., 1997). One approach consists of deriving the con-

tinuous adjoint equations and then discretizing them (Smedstad and O'Brien, 1991).

Another approach is to derive the adjoint code directly from the model code (Lawson

et al., 1995; Spitz et al., 1997). For this analysis, it might be instructive to derive the

adjoint equations using the �rst approach. Consider the forward model equation

@X

@t

= F (X; �)

X(0) = X0

� = �0 + �̂ (3)

where X is a scalar or vector of model variables, �̂ represents vector of model parameter

errors, F is a linear or nonlinear operator, and X0 is the vector of initial conditions.
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Formulating the Lagrange function by appending the model dynamics as a strong con-

straint

L[X; �] = J +
1

2

Z Tf

0

M(
@X

@t

� F (X; �))dt (4)

whereM is a vector of Lagrange multipliers which are computed in determining the best

�t. The original constrained problem is thus reformulated as an unconstrained problem.

At the unconstrained minimum the �rst order conditions are

@L
@X

= 0 (5)

@L
@M

= 0 (6)

@L
@�

= 0 (7)

It is observed that equation (5) results in the adjoint or backward model, equation (6)

recovers the model equations while (7) gives the gradients with respect to the control

variables. Using calculus of variations or optimal control theory (see Appendix), the

adjoint equation is

@M

@t

+ [
@F

@X
]TM = W(X� X̂)

M(Tf ) = 0 (8)

and the gradient relation is

��J = �
Z Tf

0

[
@F

@�

]
T

Mdt +W�(�� �0) (9)
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The term on the RHS of (8) is the weighted mis�t which acts as forcing term for the

adjoint equations. It is worth noting here that, we have implicitly assumed that data

is continuously available throughout the integration interval. Equations (3) and (8)

above constitute the Euler-Lagrange (E-L) system and form a two-point boundary value

problem. For details of the derivation see the Appendix.

The implementation of the adjoint technique on a computer is straightforward. The

algorithm is outlined below.

� Choose the �rst guess for the control parameters.

� Integrate the forward model over the assimilation interval.

� Calculate the mis�ts and hence the loss function.

� Integrate the adjoint equation backward in time forced by the data mis�ts.

� Calculate the gradient of L with respect to the control variables.

� Use the gradient in a descent algorithm to �nd an improved estimate of the control

parameters which make the loss function move towards a minimum.

� Check if the solution is found based on a certain criterion.

� If the criterion is not met repeat the procedure until a satisfactory solution is found.

The optimization step is performed using standard optimization procedures. In this

paper, a limited memory quasi-Newton procedure (Gilbert and Lemarechal, 1991) is

used. The success of the optimization depends crucially on the accuracy of the computed

gradients. Any errors introduced while calculating the gradients can be detrimental and
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the results misleading. To avoid this incidence from occurring, it is always advisable to

verify the correctness of the gradients (see, Smedstad and O'Brien, 1991; Spitz et al.,

1997). Veri�cation of the adjoint code is performed by a simple Taylor series expansion

of the penalty functional about a certain vector of the control variable x, i.e.,

J (x+ u) = J (x) + uT�xJ (x) +O(2) (10)

where  is a small scalar, u is an arbitrary vector (see, Smestad and O'Brien, 1991;

Lawson et al., 1995). De�ning a function �() and rewriting (10) we have

�() =
J (x + u)� J (x)

uT�xJ (x)
= 1 +O() (11)

Hence, in the limit as  approaches zero, the value of �() approaches unity. If the

scalar  is small, the values of the function �() will be approximately equal to one.

4 The Bioeconomic Model

This section presents the bioeconomic �sheries model. It is an aggregated or lumped

parameter model of a single cohort or year-class (Clark, 1990). The population dynamics

of the �shery will be modeled as

dx

dt

= f(x)� h (12)

where h(t) is the harvest rate from the stock, x(t) is the stock biomass, f(x) is the

growth function which for this analysis we will use the simple logistic model. That is
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f(x) = rx(1 � x=K) where r and K are positive constants called the intrinsic growth

rate and the environmental carrying capacity respectively. The biological model speci�ed

above depends on two parameters (r;K). These parameters are little known in the

scienti�c community for most �sh stocks around the world. Accurate measurements of

their values are di�cult if not impossible. Statistical estimation methods were devised

by (Schaefer, 1967). This paper has similar goals of devising mathematical methods of

estimating the parameters of the model equations (di�erential equations), testing the

realism of the models against the observational data and subsequently improving the

models.

The economics is also simple in this analysis. A hypothetical sole owner is envisaged.

The goal of the management is to maximize a given discounted net economic function

max

Z Tf

0

e
��t

�(h)dt (13)

where h(t) is the control variable, Tf is the time horizon which may be �nite or in�nite

and �(h) is a rescaled or normalized economic function given by

� = ah� h
2 (14)

where a is an economic parameter to be estimated. The objective function is assumed

to depend explicitly only on the harvest rate from the stock. This could be commercial,

social or even political. For a commercially managed �shery, the objective may be

maximization of discounted rents accruing from the exploitation of the biological species.

A socially oriented manager may optimize the total utility or aim at conserving the stock.

As oppose to these two objectives, a politically motivated goal may be to protect peoples
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jobs.

In the above formulation, � is the discount rate which has been commonly set to the

current interest rate. It may however be plausible to estimate the value of the discount

rate from available data. That is instead of pre-setting the value, we allow the data to

tell us what its value is for the �shery we are modeling. Theoretically, the optimum

equilibrium conditions are met if the marginal productivity of the resource in question

is equal to the discount factor or the social time-preference. However, this may not be

the case in a real-world scenario. There are many convincing reasons why one will think

that the managers time-preference is signi�cantly di�erent than the market interest rate.

Another important input in the analysis of resource models is the time horizon. In this

paper, the time horizon is a free parameter. It can be preset exogenously or it can be

determined as an endogenous parameter in the problem. Hence, in spite of the quite

restrictive form of the performance index in this paper the control problem is to some

extent quite general. Various special cases can be formulated and discussed. The case

considered here is a �xed horizon control problem.

Maximizing the above problem (13) subject to the natural constraint is a nonlinear

optimal control problem (Clark and Munro, 1970). The technique has been discussed by

several authors (e.g., Kamien and Schwartz, 1981)

Application of maximum principles to the above problem yields the following two system

of coupled nonlinear ODEs (see Clark, 1990; Appendix).

dx

dt

= rx(1� x

K

)� h (15)

dh

dt

= �0:5(a� 2h)(� � r(1� 2x

K

)) (16)
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Analytical solutions of the system of nonlinear ODEs are in general unobtainable. How-

ever, approximate numerical solutions of these equations are easy to obtain if the neces-

sary initial and boundary conditions are speci�ed. In reality however, the initial condi-

tions that lead to the separatrix solution are not precisely known a priori. Given a set of

data, a solution could be found by either manually or automatically tuning the poorly

known initial and/or boundary conditions as well as the free parameters of the model

until a satisfactory solution is obtained. This could easily and e�ciently be achieved by

the use of the data assimilation technique introduced in this paper.

Identical twin experiments will be used throughout the analysis. That is data will be

generated from the model itself using Monte Carlo simulations. This guarantees that

the model and the data are consistent and serves as a good test of the adjoint algorithm.

A moderate objective of the paper is to demonstrate the usefulness of this approach in

resource modeling, hence the use of this simple model which is fairly known and used

in bioeconomic �sheries analysis. To carry out the experiments, reasonable parameter

values will be chosen for the model and an adjoint parameter estimation technique will

be used to recover the parameters.

4.1 Equilibrium analysis

The equilibrium behavior of the simple �shery model in this paper is studied. For an

in�nite horizon problem, the optimal path for the dynamics is the separatix leading to the

equilibrium point. At the optimal equilibrium, the following conditions hold: dx
dt
= 0 and

dh
dt

= 0 which implies that rx�(1� x�

K
)� h

� = 0 and �0:5(a � 2h�)(� � r(1� 2x�

K
)) = 0.

This gives rise to these equilibrium points: ( h� = a=2 , h� = rx
�(1 � x

�
=K)) and (
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� = r(1� 2x�=K), h� = rx
�(1�x

�
=K)). Notice that the �rst equilibrium is a bliss point

(i.e., point at which the bene�ts are maximum) and most rewarding from the economic

viewpoint if achievable. It is the theoretical optimum for the quadratic bene�t function

de�ned above.

� Case 1. For the case of the bliss point the optimal equilibrium harvest and stock

are h
� = a=2 and x

� =
2r�
p

4r2� 8ar
K

4r=K
, where the term under the square root sign

is restricted to be nonnegative. Many interesting observations are made here.

Notice here that when the term under the square root sign is zero, we recover the

maximum sustainable yield (MSY) optimum x
� = K=2. If the square root term is

large compared to 2r, we have a single equilibrium. However, if the square root

term is small compared to 2r two di�erent values exist for the equilibrium stock

and the larger may be preferred. A larger standing equilibrium stock leads to

higher sustained yield for the capital asset.

� Case 2. This case leads to the equilibrium biomass x� = K(1� �=r)=2. The term

�=r, i.e., the ratio of the discount factor to the growth rate, is what is referred to

as the bionomic growth ratio (Clark, 1990). Setting � = 0 yields the MSY policy

as usual. The optimal equilibrium harvest h� is obtained by simply substituting

the x� into the equilibrium stock-harvest relation above. The second case seems to

be embedded in case one if � =
q
r
2 � 2ar=K.

To illustrate the technique, we use the population dynamic model with the popular

logistic growth function as in Sandal and Steinshamn (1997) and Homans and Wilen

15



(1997). We choose the biological parameters based on the views of some scientists for

the Norwegian cod �sheries (NCF) stock. For this biological species a value between

0.2 and 0.5 per year for the growth rate and between 5000 and 7000 Kilo-tons for the

carrying capacity are considered reasonable. Immediately after World War II, biologists

have estimated the stock biomass for NCF to be at about 4230 Kilo-tons which is believed

to be greater than the xMSY .

For the ensuing analysis, we assume that r = :35 per year and K = 6000 Kilo-tons. We

also assume that the management objective is the maximum sustainable yield (MSY)

policy in most parts of the paper. Using these values the xMSY = K=2 = 3000 Kilo-tons

and the corresponding yMSY = rK=4 = 525 Kilo-tons. From case one, a = 2y implies

a = 1050 Kilo-tons. To get simulation results which are of the same order of magnitude

as in the case of Norwegian cod �shery stock values, we use the hypothetical stock values

of 2300 Kilo-tons and 10% of the stock for the harvest rate as the initial conditions of

our model.

4.2 Scaling

The performance of an optimization algorithm generally depends on the particular choice

of the variables of the problem. Change of variables is usually recommended in practical

applications (Luenberger, 1984; Yu and O'Brien, 1995). To study the e�ect of di�erent

choices of the parameter scales we rescale the variables by introducing the following

transformation: Let x = �z and substituting in
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dx

dt

= rx(1� x

K

)� h

dh

dt

= �0:5(a� 2h)(� � r(1� 2x

K

))

yields :

dz

dt

= rz(1� z

k

)� y (17)

dy

dt

= �0:5(a0 � 2y)(� � r(1� 2z

k

)) (18)

where: z = x=�, y = h=� and a
0 = a=�. The scaling factor � will be allowed to vary and

the e�ect studied later in the paper. The small k is the normalized carrying capacity

given by k = K=�. It must be noticed that the quantities are now nondimensional. It

may easily be checked by dimensional analysis.

4.3 Sensitivity analysis

Models of physical, biological and economic systems have input parameters on which

their predictions depend. Some of these parameters are more important than others.

Sensitivity is a measure of the e�ect of changes in the given input parameter on a model

solution. It quanti�es the extent that uncertainties in parameters contribute to uncer-

tainties in the model results (Navon, 1997). Several analytical techniques of sensitivity

analysis exist. The approach here is numerical method of calculating sensitivity of model

response to input parameters. Let the quantity X depend on a parameter �. Then the
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absolute Sa and relative Sr sensitivities with respect to � can be de�ned respectively as

Sa =
@X(�)

@�

(19)

and

Sr =
@X(�)

@�

�

X(�)
(20)

Sr is a nondimensional quantity which has the interpretation of percentage change in the

output due to 1 percent change in the input parameter. To economists, equation (20) is

an equivalent measure of elasticity. Input parameters will be perturbed from their true

values and the model integrated over a given time horizon. Sensitivity of the output to

the discount factor has not been studied in this paper. Its e�ect has previously been

studied by, among others, (Sandal and Steinshamn, 1997c). The results are graphed and

discussed.

Figure 1. is a plot of the unperturbed solution and the solutions with each of the

parameters reduced by 1% of their values. Results of the sensitivity analysis show that

the model solution is sensitive to all the biological and economic parameters. The growth

rate appears to have least e�ect on the model outputs while the carrying capacity has

most inuence (see Figure 1.).
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Figure 1: Phase plane plots of the sensitivity analysis.

It is observed that perturbing the parameter by larger values (10%) results in large

distortion of the solution. Hence, care must be taken when choosing the initial guesses

in a parameter estimation.

5 The Twin Experiments

As a �rst step we use arti�cially generated data (twin experiments) to test the perfor-

mance of the data assimilation method. This will avoid any inconsistencies between the

data and the model. First clean or exact data, i.e., data without measurement errors,

will be simulated by integrating the model equations from known initial conditions and

the parameters whose values are to be recovered. Second, stochastic errors will be in-

troduced using random number generators from standard packages. The model will be
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solved and a certain level of noise added to the \true" solution. The data is assumed

to be related to the model in a linear fashion, i.e, x̂n = xn + �n where �n denotes the

stochastic error term. In all the experiments to be carried out, we assume that data is

available at every grid point. This might not be the case however in practice as data is

sparse in time. For an actual �shery, biological and economic time series of observations

may be available only on an annual basis.

5.1 Experiment with clean data

Several experiments were performed using data without any type of errors. That is, the

exact solution of the model is used as the measurements. We investigate the e�ects of

adding a priori knowledge of the parameters in the formulation of the penalty functional.

Two results are shown here. Figure 2. is the plot of the parameters against the num-

ber of simulations for the case where we assume no a priori information, i.e., complete

ignorance about the parameters. In Figure 3., we incorporated some information about

the parameters and their uncertainties. Recovery of the model parameters was achieved

in a few iterations depending on the initial guess. The convergence of the minimization

procedure did not seem to depend very much on the initial guess of the parameters as

long as they are fairly reasonable guesses. The graph of the normalized loss function

shows a sharp decrease in its value. In about 2 iterations the value of the loss function

fell to about 5% of the initial value. Not surprisingly, its value vanished at the optimum.

This is expected in a twin experiment with a perfect data.
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Figure 2: Plot of the parameters and the normalized loss function vs. no. of simulations:

No penalty on parameters.
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Figure 3: Plot of the parameters and the normalized loss function vs. no. of simulations:

With penalty on parameters.

The conclusion drawn from the two cases with penalty and without is that, once the

penalty is included, it becomes incumbent to have reasonably good prior (best) guesses of

the parameters or their uncertainties or both. In fact, in this experiment, we encountered

problems with recovering the parameters if our best guesses were a bit away and the

weights relatively close to the data weights. If the weights were correctly chosen, the

gains compared to the �rst case with no information on penalty were not very substantial.

An initial best guess of 10% from the true parameters required data-to-parameter weight

ratio of at least 106 for convergence.
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5.2 Experiment with noisy data

For this experiment, the data is contaminated with normally or Gaussian mean zero

and constant �2 variance N(0; �2) distributed random errors. Similar experiments as

in the case with perfect data were performed. We have made several runs to study

various e�ects of adding di�erent level of random noise to the solution of the model

equations. With no penalty on the parameters, estimates were relatively further away

from the \true" ones. Convergence to the \true\ solution was quite di�cult signifying the

existence of local minima as the level of noise becomes signi�cant. Very accurate initial

guesses were required. This does not, however, indicate any serious setback in the adjoint

parameter estimation. The aim of the assimilation is to adjust the free parameters such

that the model predictions are as close as possible to the data. What happens is that

the data is given large weight if there is no penalty on the parameters. Including prior

information on the parameters results in better recovery of the parameters if the best

guesses were quite good. The most troubling aspects of the experiment with a penalty

on the parameter is the choice of the weights. Plots of the experiments are shown in

the �gures below. Figure 6. shows the simulated data and the best �t solutions. The

level of noise added to the model solution to some extent a�ects the rate at which the

parameters are recovered as well as the accuracy of the estimates.
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Figure 4: Plot of the parameters and the normalized loss function vs. no. of simulations:

No penalty on parameters.
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Figure 5: Plot of the parameters and the normalized loss function vs. no. of simulations:

With penalty on parameters.
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Figure 6: Plot of the harvest rate vs. biomass.
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6 Summary and Conclusion

This work to our best knowledge represents the �rst attempt to explore the highly ad-

vanced and attractive method of parameter estimation in resource economics. It serves

as a link between data and the model formulation. The basic idea is to �nd parameters

of a dynamic �sheries model which yield model results that are as close as possible to the

observed quantities. To achieve this goal a loss function measuring the distance between

the model results and the data was prede�ned and the parameters estimated through

an iterative process using the adjoint method. In the adjoint technique the model is

assumed to hold exactly \strong constraint formalism" and the free parameters of the

model are adjusted until the model predictions are as close as possible to the observa-

tions. A gradient search technique was used to iteratively explore the parameter space

in order to �nd the minimum of the loss function.

In a few experiments we have demonstrated the utility of the adjoint technique in recover-

ing model parameters such as the growth rate of a bioeconomic model. These parameters

are vital in understanding the dynamics of the exploited species which can lead to a more

accurate and realistic management policies. The results of the dual experiments show

that model parameter sets can easily be estimated using both the information from mea-

surements and the model formulation. In the experiment with clean data, parameters

were recovered to within several orders of magnitudes in a few iterations.

The outcome of the sensitivity studies shows the relative importance of the input pa-

rameters. It is observed that the environmental carrying capacity is the most important

parameter, i.e., small uncertainty in its value leads to large uncertainty in the output
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of the model. For an e�ective MSY policy, it is important to know very precisely the

value of K. For most animal species around the world, the carrying capacity has been

diminishing overtime. Implementation of MSY policy will require accurate and revised

estimates of K regularly. It may thus be tempting to think that one of the reasons

why MSY policy has not been very fruitful is due to lack of knowledge of the K, which

means our estimate(s) of the sustainable stock biomass is not dependable and hence the

MSY. From the little experience gathered, it may be advised that a sensitivity analysis

be performed prior to parameter estimation.

To conclude, the paper has accomplished the following. A novel approach to dynamic

model parameter estimation method has been introduced with reasonable degree of suc-

cess using a simple bioeconomic model. The idea here is quite unique in a sense that both

biological and economic theory were combined in the modeling of the resource system.

In this case the parameter estimates are optimal compared to the situation where either

a biological or an economic theory alone is used. Its potential in handling nonlinear

models is also demonstrated and thus it is important to explore more of the capabilities

of the method in future.

APPENDIX A

A.1 Mathematical Derivations

This section is reserved for the more technical aspects of the paper. First, it will present

the mathematical formulation of the bioeconomic model pertaining to the optimal man-
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agement of the stock in a sole owner context. Second, derivation of the adjoint model

code will be presented in detail.

A.2 Derivation of the bioeconomic model

Amore general bioeconomic model is formulated. The objective and the growth functions

are assumed to depend on the stock biomass, the harvest and explicitly on time. This

will allow us to derive several special cases as they apply to di�erent �sheries. Consider

the problem

max

Z Tf

0

�(x; h; t)dt (A.1)

subject to

dx

dt

= F (x; h; t) (A.2)

x(0) = x0 (A.3)

De�ning the current value Hamiltonian function H(x; h;m; t)

H = �(x; h; t) +mF (x; h; t) (A.4)

where m(t) is the current value multiplier. Assuming an inner solution, the �rst order

conditions are:

dH

dh

= �h +mFh = 0;

dm

dt

= �m�Hx (A.5)
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From (A.3) we have

dm

dt

= ��hh
_
h + �hx _x + �ht

Fh

+
�h(Fhh _h+ Fhx _x + Fht)

F
2

h

(A.6)

equating (A.3) and (A.4), and rearranging yields

dh

dt

=
��hFh � (�x + (��h

Fh
)Fx)F

2

h

�hhFh � �hFhh

� (�hxFh � �hFhx)(F � h) + (�htFh � �hFht)

�hhFh � �hFhh

(A.7)

Equations (A.2) and (A.7) constitute an n-dimensional dynamical systems.

APPENDIX B

B.1 Derivation of the adjoint model

The adjoint equations are derived by forming the Lagrange functional via the undeter-

mined multipliers. The Lagrange function is

L[X; �] = J +
Z Tf

0

M(
@X

@t

� F (X; �))dt (B.1)

Perturbing the function L

L[X+ �X; �] = J [X+ �X; �]

+
Z Tf

0

M(
@(X + �X)

@t

� F (X+ �X; �))dt (B.2)

L[X+ �X; �] = J +�XJ �XT +
Z Tf

0

M(
@X

@t

� F (X; �))dt
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�2
Z Tf

0

M(
@�X

@t

� @F

@X
�XT )dt+O(�X2) (B.3)

Taking the di�erence (L[X+ �X; �]� L[X; �])

�L = �XJ �XT � 2
Z Tf

0

M(
@�X

@t

� @F

@X
�XT )dt+O(�X2) (B.4)

Requiring that �L be of order O(�X2) implies

�XJ �XT � 2
Z Tf

0

M(
@�X

@t

� @F

@X
�XT )dt = 0 (B.5)

By integrating the second term of the LHS by parts and rearranging, we have

@M

@t

+ [
@F

@X
]TM =W(X� X̂)

M(Tf) = 0 (B.6)

which are the adjoint equations together with the boundary conditions.
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