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Abstract

Estimation of parameters in the drift and diffusion terms of stochastic differential equations
involves simulation and generally requires substantial data sets.  We examine a method that
can be applied when available time series are limited to less than 20 observations per
replication.  We compare and contrast parameter estimation for linear and nonlinear first-
order stochastic differential equations using two criterion functions: one based on a Chi-
square statistic, put forward by Hurn and Lindsay (1997), and one based on the Kolmogorov-
Smirnov statistic.  The estimates generated appear to be precise for all models examined,
especially when using the Kolmogorov-Smirnov criterion function.
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1. INTRODUCTION

Stochastic differential equations (SDEs) are used in the modelling of many physical,

biological and economic systems.  Estimating the parameters of both the drift and diffusion

terms of these linear and nonlinear models is an interesting topic in itself, especially when

assessing the relative importance of deterministic and stochastic components of the process

under study.  We focus on estimation methods that are particularly suitable for applications

when few data points are available, such as when one attempts to characterise the dynamics of

fish populations, although these methods are also appropriate for large data sets.  We first

make use of a criterion function based on the Chi-square statistic and then examine the

usefulness of a criterion function based on the Kolmogorov-Smirnov statistic.

2. THE SDE MODELS EXAMINED

The SDEs we examine take the general form

t)dw(t)g(x,  t)dt f(x,dx(t) += (1)

where x(t)  is the state variable of interest )f(⋅  and )g(⋅  are arbitrary functions and w(t)  is a

standard Wiener process.  A standard Wiener process is continuous and Gaussian with

independent increments such that 000  E[w(t)]  ,)w( ==  and s-t  w(s)] - [w(t) var =  for

ts ≤≤0 . The SDE is, therefore, analagous to an ordinary differential equation perturbed by

white noise and has a solution incorporating stochastic integrals.  Kloeder et al. (1994)

provide a very useful introduction to SDEs and their numerical solution.

Using subscripts to denote the time index, the specific equations that we examine are

tttt dwxdx  dx β+α= t (2)

t
2
tttt dwx  )dtx-(x  dx β+= 1 (3)

ttttt dwx  )dtx-(x  dx β+α= 1 (4)
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ttttt )dwx-(x  )dtx-(x  12.01dx t β+α= (5)

t
2
ttt dwx  dt)x-(x  βα += 5.01dx t (6)

where α  and β  are constant coefficients to be estimated as parameters.

These equations were chosen because they are of the form used frequently for modelling

renewable resource systems.  Obtaining point and interval estimates of the drift and diffusion

parameters of such models is important in applied work because these estimates provide a

means of testing hypotheses about the state of the system and the relative importance of

stochastic influences on it.

Observed data for stochastic processes are recorded for discrete time intervals, regardless of

whether the system is described best by a continuous or discrete model.  One advantage of

using a continuous model is that its solution can, in principle, be used for any time interval,

without altering the meaning or interpretation of the model parameters.

Estimation of the SDE parameters requires the solution or an approximation to it.  Given the

difficulty associated with finding closed-form solutions for many nonlinear SDE’s, we

concentrate on two methods for finding discrete-time approximations to the solution of

Equations 2-6; namely the strong Euler scheme that attains convergence of order 0.5 (Kloeden

et al. 1994, pp. 140-2) and the strong Taylor scheme that attains convergence of order 1.5

(Kloeden et al. 1994, pp. 162-3).

2.1 Parameter Estimation Using a Chi-square Criterion Function

Hurn and Lindsay (1997) put forward a method, based on the Chi-square statistic, for

estimating both the drift and diffusion coefficients of linear SDE’s.  This method relies on the

existence of observed replicated time-series data and replicated simulation of time series

realisations from a specified SDE.  Parameter-estimation is then possible by optimising the fit

between the observed and simulated data over a plausible continuous interval for each of the
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SDE parameters.  The parameter estimates are chosen to optimise the goodness of fit between

the observed and simulated data.  Classical least squares and maximum likelihood are

inadequate for simultaneous estimation of the drift and diffusion parameters, so Hurn and

Lindsay adopted a criterion function based on the Chi-square statistic for testing the null

hypothesis that the observed and simulated data are drawn from the same distribution.

The method proposed involves placing the m observed data points in each time period into

bins, as one would for a standard goodness-of-fit test.  Then, using the model proposed for the

stochastic process and initial parameter values, simulate n realisations of the process and

allocate these data to the bins specified in each time period for the observed data.  For each

time period, t, one enumerates the statistic

∑
+

= +
−

=χ
1r

1j tjj

2
tjj2

t )n(m

)n(m
(7)

where jm  is the number of observed data points in bin j, jn  is the (expected) number of

simulated data points in bin j and there are r+1 bins in total.  This statistic is assumed to be

distributed as 2
(r)χ  where r is the number of degrees of freedom.  A small value of this statistic

lends support to the null hypothesis that the observed data are drawn from the same

distribution as are the simulated data.  Using the gamma function )(⋅Γ  and the product

operator Π , and assuming timewise independence, this leads to the criterion function
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which is maximised with respect to the SDE drift and diffusion parameters.

2.2 Parameter Estimation Using a Criterion Function Based on the Kolmogorov-

Smirnov Statistic

The Kolmogorov-Smirnov statistic adapted to a two-sample problem provides the basis for

another goodness-of-fit method for SDE parameter estimation.  As with the 2χ  test the two-

sample Kolmogorov-Smirnov goodness-of-fit test is used to compare the empirical



5

distribution functions of two samples.  In the present paper one of these samples is generated

as if observed from a fully-specified SDE and the other is generated from the same SDE but

with the assumption that the coefficients are unknown.  Parameter estimation in practice

requires one of the samples to be observed and the other to be generated by the SDE that is

used to model the data-generating process.

Following Gibbons (1985, pp. 127-31), the empirical distribution functions, denoted by

(n) S (n)S nm and , are defined as
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The Kolmogorov-Smirnov two-sample test statistic

(x)S(x)SmaxD nm
x

*
nm, −= (9)

is the maximum absolute difference between the two empirical distributions.  This statistic

can be used to test the (null) hypothesis that the population distributions are identical and,

therefore, that both samples have been drawn from the same population.  The two-sample

Kolmogorov-Smirnov statistic has an asymptotic null distribution given by

L(D)D)D
nm

mn
P(lim nm,

nm,
=≤

+∞→
(10)
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A large value of D, and therefore a small value of L(D), indicates that the null hypothesis is

unlikely to be true, whereas small D values support the null hypothesis.

In the present paper we are concerned with replicated time series data.  This provides the

opportunity to evaluate the Kolmogorov-Smirnov statistic for each time period, tD .  Because

we are dealing with a stochastic process that we assume to be modelled adequately by an

equation of the general form of Equation 1, we must estimate the drift and diffusion

parameters so that the entire time series is taken into account.  We do this in the first instance

by analogy with maximum-likelihood estimation, taking as our criterion function the product

of Kolmogorov-Smirnov statistics computed at each time step.  Using the asymptotic null

distribution, this yields

∏
=

=Φ
T

t
t )L(D

1

(11)

Given a set of observations or simulated observations giving rise to (x)Sm , this criterion

function is maximised with respect to the drift and diffusion parameters of an SDE that is

used in the evaluation of (x)S n
1.

3. EMPIRICAL RESULTS

Estimation of the drift and diffusion parameters of Equations 2-6 was conducted using the

above criterion functions.  Fifty realisations of eleven ‘observed’ data points (i.e.

1150 == T  ,m ) were generated for each model using the initial value 5.0)0( =x  and true

parameters 0.1=α  and 5.0=β .  The derivative-free simplex method of Nelder and Mead

(1965) was then used to estimate α and β using start values of 3.1ˆ =α  and 4.0ˆ=β , initial

value 1.0)0( =x , number of simulated replications 50=n , and time-series length 11=T .

Both the Euler and Taylor SDE solver schemes referred to above were used.  Parameter

                                               
1 It is worth pointing out that the likelihood analogy should not be taken too far.  We are not assuming
independence here, as is the case with the 2χ -based criterion function.  Rather, we are formulating a
distance measure that allows weight to be given to each of the Kolmogorov-Smirnov statistics that we
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estimation was carried out 500 times for each equation and solver scheme.  The mean and

standard deviation of parameter estimates are reported in Table 1.

                                                                                                                                                  
evaluate in each time period.  As discussed below, we also evaluate an alternate criterion function
based on the Kolmogorov-Smirnov statistic.
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Table 1:  Mean and standard deviation of 500 parameter estimates

Criterion function Mean value Standard deviation

Linear model:  [ ]ωβ+α= ddtxdx   Equation 2

Based on 2χ 0468.1=α 0407.0=σα
(Taylor) 5466.0=β 0374.0=σβ

(Euler) 0420.1=α 0371.0=σα
5412.0=β 0345.0=σβ

Based on Kol. Smir. 0189.1=α 0335.0=σα
(Taylor) 5224.0=β 0324.0=σβ

(Euler) 0152.1=α 0313.0=σα
5192.0=β 0299.0=σβ

Nonlinear model 1:  ωβ+= dxx)dt-x(dx 21   Equation 3

Based on 2χ  (Taylor) 5130.0=β 0279.0=σβ

Based on Kol. Smir.
(Taylor)

5189.0=β 0211.0=σβ

Nonlinear model 2:  ωβ+α= xdx)dt-x(dx 1   Equation 4

Based on 2χ 1257.1=α 0933.0=σα
(Taylor) 5832.0=β 0564.0=σβ

Based on Kol. Smir. 0552.1=α 0447.0=σα
(Taylor) 5353.0=β 0270.0=σβ

Nonlinear model 3:  [ ]ωβ+α= ddtx)-x(dx 1   Equation 5

Based on 2χ 0237.1=α 0267.0=σα
(Taylor) 5615.0=β 0404.0=σβ

Based on Kol. Smir. 9906.0=α 0103.0=σα
(Taylor) 5155.0=β 0219.0=σβ

Nonlinear model 4:  ω+= βα dxdtx)-x(dx 25.01   Equation 6

Based on 2χ 0897.1=α 0847.0=σα
(Taylor) 5150.0=β 0170.0=σβ

(Euler) 0823.1=α 0873.0=σα
5125.0=β 0168.0=σβ

Based on Kol. Smir. 0319.1=α 0455.0=σα
(Taylor) 5099.0=β 0145.0=σβ

(Euler) 0290.1=α 0455.0=σα
5087.0=β 0152.0=σβ

True parameter values are α=1 and β=0.5.
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It should be noted that, because of the heavy computational burden associated with

enumerating L(D), in Equation 10, we used the approximation

22-1 De-L(D) ≈ (12)

which is the asymptotic distribution of the one-sided two-sample test outlined by Gibbons

(1985, pp. 130-1).  This approximation halved the computation time taken when using either

the formulation of L(D) from Equation 10 or the 2χ -based criterion function given by

Equation 8.

The results presented in Table 1 reveal a small bias in the estimates of α and β over the 500

repeats of parameter estimation.  In all cases, however, the mean of the point estimates is well

within 1½ standard deviations of the true value.  Interestingly the lower order of convergence

Euler scheme is associated with smaller bias and standard deviation estimates for Equations 2

and 6.  This is likely to be a result of the use of intermediate time steps with the equation

solver to improve the SDE simulations.  Also of note is the systematically smaller bias and

standard error estimates associated with the Kolmogorov-Smirnov criterion function, as

compared to the 2χ -based criterion function, which could be due in large part to the need for

binning the data for the 2χ  method.

Further results, not reported in the present draft, relate to alternative Kolmogorov-Smirnov

criterion functions and the use of the form of L(D) of Equation 10.  A criterion function made

up of the sum of tD  over the time series (as opposed to the product given in Equation 11) and

used for estimating the parameters of Equation 6, gave mean and standard deviation of 1.011

and 0.057 for α̂ , and of 0.505 and 0.015 for β̂  using the Euler scheme.  This represents a

reduction in the bias.  The ‘exact’ form of L(D) from Equation 10 applied to estimation of the

parameters of Equation 6 yielded mean and standard deviation of 0.998 and 0.038 for α̂  and

of 0.499 and 0.013 for β̂ : an apparent further reduction in bias, as well as an improvement in

precision.  On the basis of these results there is room for further investigation of the form of

criterion function used for parameter estimation.
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4. CONCLUSION

Estimation of the parameters of five linear and nonlinear SDE’s using criterion functions

based on Chi-square and Kolmogorov-Smirnov statistics has been examined.  Although the

methods used are demanding computationally, the results are satisfactory with respect to both

point and interval estimation.  Given the bias evident from 500 repeated estimations and the

potential improvements evident with the Kolmogorov-Smirnov criterion function, further

work using the methods outlined above is both justified and desirable.
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