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Abstract

We discuss the traditional hierarchical approach to production planning and

scheduling, emphasizing the fact that scheduling constraints are often either ignored

or considered in a very crude way. In particular, we point out that how sheduling

is carried out is part of the capacity constraints on the lotsizes. Usual methods to

handle capacity in theory or in practice are reviewed. Finally, we present an ap-

proach that tries to overcome these drawbacks by capturing the shop-oor capacity

through scheduling considerations.

1 Introduction

The traditional hierarchical approach in production management has long been recognized
and accepted in practice. It consists of multiple decision levels (usually three: strategic,
tactical and operational) with di�erent characteristics. In particular,

� The higher in the hierarchy the more strategic are the decisions,

� The higher in the hierarchy the more aggregate are the models and the longer the
time horizon,
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� The decision at some level becomes a constraint or an objective to be satis�ed at
lower levels,

� And each decision level has its own decision models and solving procedures.

These considerations can be found in most textbooks on Production Management (cf.
e.g. [29] and the references therein). In addition, these hierarchical decision levels often
coincide with specialized decision-makers in the companies, which makes this framework
even more appealing. This is accentuated by the fact that di�erent departments in a
company often have di�culty sharing information, for structural (or more often personal)
reasons. This latter phenomenon tends to disappear with the arrival of ERP (Enterprise
Resource Planning) systems such as SAP, BAAN or others. These systems force infor-
mation sharing because, by de�nition, information is available from one single database.
We found a typical example of such a hierarchical decision process in a factory of a big
French mobile phone company. The marketing department in charge of collecting cus-
tomer and forecast demands, establishes a Master Production Schedule of the �nished
products after discussion (weekly meetings) with the material management department.
This department, using an MRP approach, manages the input and output inventories of
the factory, sends purchase orders to the suppliers, and determines the production or-
ders. These orders are then tentatively sequenced in the various shops by the scheduling
department whose output is sent to every shop manager, who in turn tries to follow the
proposed schedule as closely as possible.

A rationale behind this hierarchical approach is to simplify the overall decision pro-
cess. In particular, the decision-making procedure of some level does not have to consider
\details" that are unnecessary at this level and, furthermore, only the relevant decision
variables are required. Of course, for the overall decision process to be coherent, the
decisions taken at some level must make sense. When transmitted to the lower levels
as constraints to satisfy or objective to attain, one must be able to provide subsequent
\good" decisions, i.e., compatible with the (higher levels) decisions already taken. The
compatibility is measured (or evaluated) via some criterion, and some emergency proce-
dures may exist in case this compatibility is not satis�ed. When an inconsistency has been
detected at some decision level, some higher level decisions have to be re-evaluated ac-
cording to the new conditions on the system at that time. If those emergency procedures
are activated too frequently, it is a sign that the decision process is not coherent.

In Hierarchical Production Planning (HPP), the consistency between di�erent decision
levels has been investigated by several authors and the reader is referred to [3] for a detailed
survey. One may note that, in this case, the two (aggregate and detailed) decision levels
are of the same type, i.e., both consider ows of products in the workshop.

In this paper, we consider the usual hierarchical approach for planning and scheduling,
i.e., we consider the (two) planning and scheduling decision levels. In contrast to HPP,
these two decision levels are very di�erent in nature. On the one hand and as in HPP,
the planning (or lotsizing) level determines ows of products. On the other hand, the
scheduling level determines sequences of products on the machines. In the planning level,
typical models involve continuous variables whereas, in the sheduling level, the models
include discrete variables and are primarily combinatorial in nature.

We want to show that, in many cases, the standard hierarchical procedure described
above, is not coherent and we underline some important reasons why this is so. This lack
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of consistency between planning and scheduling decisions has been recognized for some
time. For instance, to cite a few authors:

� in [20] \There appear to be good opportunities for research on the interface bewteen
scheduling and inventory theory. Both .. have been developed in complete mutual
isolation."

� in [28], \..the lack of appropriate support for managers to produce good master
schedule is a major weakness of MRP, and probably the biggest source of disap-
pointment in the performance of such systems."

� in [1], \Nevertheless, there are several key weaknesses in the basic MRP framework.
These relate to lot sizes, capacity, planned lead times, and uncertainty .... It would
be desirable to recognize capacity constraints while building the MPS.... Planned
lead times are treated as given .... It would be desirable to treat lead times as
dependent on product mix, shop load, and capacity: in short as dynamic .... They
should be viewed not as inputs to a scheduling procedure but rather as part of the
ouput."

� in [31] \A salient point emerging from this review has been problem areas have
been compartmentalized, resulting in interrelated problems being considered in iso-
lation...... A key factor in linking production planning and shop-oor control deci-
sions is the development of accurate methods of modelling manufacturing capacity".

Moreover, it is recognized that \planning and scheduling are the two most essential
modules of the supply chain" ([25] and [26]). Hence, a lot of attention has been devoted
to optimizing problems at the two decision levels, but not enough to the interactions
between them.

The most common approach used in production planning remains MRP (Material
Requirements Planning, see for instance [33]). The most well-known limitation of this
approach is that it works with in�nite capacity. Moreover, it is unrealistic to use lead
times (time required to complete a lot of a given item) that do not depend on the size
of the lots and on how the lots are processed in the shop-oor. Obviously, the size of a
given lot inuences the time the lot will spend on the machines. As discussed in [16] and
[17], and this is often ignored, the overall amounts of di�erent items to produce also have
a direct impact on the lead times of the products. In the next paragraph, we will discuss
the inuence of shop scheduling on lead times. However, it should be noted that stating
that MRP considers in�nite capacity is a bit too naive. In practice, capacity is somehow
incorporated in the lead time, since it is well-known that often more than 80% (although
this �gure decreases with just-in-time approaches) of the lead time corresponds to idle
time of jobs waiting to be processed or transferred. This idle time illustrates the fact that
there is only �nite capacity. Even though capacity is taken into account in an aggregate
way in MRP II (Manufacturing Resource Planning) approaches, it is far from enough to
ensure consistency between planning and scheduling decisions (see example in Section 3).

For illustration purposes, we briey sketch in a simple example how scheduling in-
uences the time a lot requires to be completed. If a simple scheduling rule such as
SPT (Shortest Processing Time) is used in the shop-oor, i.e., when several lots can be
processed on a machine, priority is given to the lot which requires the least processing
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time on the machine. For a given set of lots sent to the shop-oor at a given time, the
product associated to the lot with the lowest required processing times on the machines
will probably be processed before the others, and thus faster. Its lead time will then be
rather small. On the opposite, if the size of the lot of this product increases signi�cantly,
while the others remain constant, its lead time can become very large. Note that the
LPT (Longest Processing Time) priority rule would give the opposite result. In an MRP
approach, the same lead time is used, independently of the production quantities and the
scheduling policy.

We claim that, in many production contexts, the scheduling decision level should not
be considered as a \lower" (or slave) level in comparison to the planning (or lotsizing)
decision level. This is particularly true when the production is by lots (a large class
of production environments). The quality of the scheduling policy is as much part of
production capacity than the speed or available times of the ressources. It is well-known
that e�cient scheduling heuristics can lead to reduction of more than 20% of the job
completion times. For instance, when manual scheduling is performed, expert schedulers
will often much better be able to meet due dates than inexperienced ones. This should
be taken into account in some way when computing the production plan.

The \naive" capacity constraints in most lotsizing models make sense when the in-
dividual items are treated in \isolation", i.e., when the \transfer lot" is a single item.
Indeed, in this case, compared to the length of the planning horizon, the duration of an
elementary operation on an item is negligible, and the transfer time to the next machine
is almost \instantaneous". Roughly speaking, the lotsizing model is a "uid" model ap-
proximation, consistent with the ow of items through the workshop. The total workload
on the machines is then a good variable to consider for the capacity restrictions. When
the production is by lots, the duration of an elementary operation on a lot may not be
negligible anymore, depending on the size of the lot. The \uid" approximation is no
longer valid, and the total workload on the machines is not the only relevant variable to
consider for capacity restrictions. The sequencing of lots on the machines comes into play
and should not be ignored at this decision level. Here, one should distinguish between
sequencing (determining an ordering of operations on the resources) and scheduling

(determining a sequence and start times of operations on the resources). Indeed, in view
of the (even minor) disturbances that will occur, determining, at the beginning of the
horizon, the exact start times (a complete schedule) of all the operations that will be
processed over the whole horizon does not make sense. On the other hand, \sequencing"
may be regarded as a relevant decision at the planning level, whereas the exact start times
may be considered as a \detail" that can be �xed \later" as time passes and disturbances
occur.

In other words, and at least in the context of production by lots, the sequencing deci-
sions cannot be considered as \less important" than the lotsizing decisions, or a \detail"
to �x after the lotsizes are determined. In this paper, some alternative approaches are
presented, and we show that an integrated approach that we have proposed and extended,
tries to overcome the inconsistency between planning and scheduling decisions.
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2 The problem

We consider the production of a set of N di�erent items (�nished and/or semi-�nished)
in a general multi-stage system, where the subset of �nished products or end items is
denoted N0. Production is carried out in one or several shops, that can be located on
one or several production sites. Planning is performed on a horizon of T periods, and
the objective is to determine a production plan, i.e., productions quantities at every
period, that optimizes a given economic critetion, usually the minimization of the sum
of production, inventory and backlog costs. Moreover, we would like the production plan
to be feasible, i.e., production quantities, that correspond to lots (or jobs in scheduling
theory) sent in the shop-oor, need to be completed by the end of their associated period.
Let (i; l) denote the lot (job) of item i that needs to be completed before the end of period
l. The following notation will be used.

Variables:

Xil: quantity of item i available at the end of period l.
I+il : positive inventory level (surplus) of item i at the end of period l.
I�il : negative inventory level (backlog) of item i at the end of period l.
to: start time of operation o of job (i(o); l(o)).

Parameters:

Dil: demand of item i at the end of period l.
DS(i): set of the direct successors of item i in the gozinto tree.
gij: gozinto factor, i.e., the number of units of item i required to produce one
unit of item j (gij = 0 if j =2 DS(i)).
cpi : production cost per unit of item i.
cinvi : inventory cost per unit of item i in a period.
cbacki : backlog cost per unit of item i at the end of a period.
cl: length of period l (available capacity).
O: set of operations.
A: set of pairs of operations in the routings of the products.

((o; o0) 2 A means that operation o precedes operation o0 in the routing).
L: set of last operations in the routings.
F : set of �rst operations in the routings.
i(o): item associated to operation o.
m(o): resource on which operation o has to be performed.
l(o): period associated to operation o.
puo : processing time of operation o per unit of item i(o).
Li: lead time of item i.
E: set of pairs of operations that needs to be performed on the same machine.

((o; o0) 2 E means that m(o) = m(o0)).
S(y): sequence of operations associated to the sequence y ((o; o0) 2 S(y) means
that o precedes o0 in the sequence of a resource).

For the sake of simplicity, we suppose that only end items have external demands.
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3 Standard planning and scheduling approaches

In the standard hierachical approach, the planning decision level �rst determines an ag-
gregate production plan and then a Master Production Schedule (MPS), i.e., quantities
of �nished products to produce for every item and every period of some (mid-term)
time-discretized horizon. It may happen that the MPS is built on a di�erent (shorter)
discretized horizon.

The usual MPS models are described in many textbooks. For instance, a typical
capacitated lot sizing model is the following Capacited LotSizing Problem (CLSP) (cf.
[24])

8>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>:

min
NX
i=1

TX
t=1

siYit + cinvi I+it + cpiXit (1)

I+it�1 +Xit �Dit = I+it 8i; t (2)

NX
i=1

biXit � ct 8t (3)

Xit � (
TX

k=1

Dik)Yit 8i; t (4)

Xit; I+it � 0 8i; t (5)

Yit 2 f0; 1g 8i; t (6)

where Yit is a Boolean variable equal to 1 if production of item i takes place in period t
(i.e., if Xit > 0), si is the setup cost of item i, and bi is the per unit of item i capacity
absorption. Various extensions (with backlogging, setup times, ...) can be found in e.g.
[24].

Once computed, this MPS becomes an input of some MRP-like procedure that trans-
lates the MPS into planned orders with a release date and a due date, which in turn
becomes an input to some scheduling module (perhaps on a shorter time horizon).

As already mentioned, the sequencing of elementary operations on the machines is
ignored, i.e., it is not considered as a decision of the same level of importance as the
lotsizing decision. A \rationale" for doing so is typically that If the duration of a period
is, say, one week, one should ignore the \detail" of the time spent by one item on some
machine if this time is \negligible", say, a few minutes. For capacity restriction, only the
total workload on the machine needs to be considered at this stage. Also, a convincing
argument is that, in view of the many disturbances that occur in the production system,
it is useless and even unrealistic to determine in advance an exact schedule for all the
operations, e.g., to determine on Monday morning of the �rst week of the horizon, the
exact start time of an elementary operation that \should" take place on Wednesday of
the third week at 9:30 a.m.

Another explanation behind this division between planning or lotsizing problems and
scheduling problems is that the research community tends to be divided between re-
searchers investigating planning or lotsizing problems, mostly based on the use of linear
programming involving continuous variables and some binary variables modeling setups,
and researchers interested in scheduling problems, that are pure combinatorial optimiza-
tion problems.
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In recent years, some e�ort has been made to bridge the gap between the two research
communities. A new class of scheduling problems have emerged by considering that a job
is a lot, and can be divided into sublots (see for instance [21], [5], [15], or [4]) like the
lot streaming problem (see for instance [2], [7], [14], [30], or [32]). Researchers working in
lotsizing have started to incorporate more realistic scheduling constraints in their model
(see [24], [18], or [12]). Drexl and Kimms [10] survey some recent advances on di�erent
problems like the DLSP (Discrete Lotsizing and Scheduling Problem), CSLP (Continuous
Setup Lotsizing Problem), PLSP (Proportional Lotsizing and Scheduling Problem), and
GLSP (General Lotsizing and Scheduling Problem). As noted by the authors, these
problems consider only a single machine, i.e., one production stage. They also use small
time buckets, which usually very quickly leads to untractable problems when the number
of items or the period length increases. An important drawback of these approaches, if
one wants to implement them in a real-world setting, is that they are monolithic. They
assume that both planning and scheduling decisions are taken at the same level, and will
be implemented as such. However, as already discussed, lot sizes will often be sent as input
to the scheduling level, which has its own internal decision procedures (often manual).
These procedures might not be optimal, and will have to integrate speci�c constraints
ignored in the models discussed in [10] (routing exibility, multi-resource, ...). Hence,
\optimal" production plans will actually be infeasible.

Therefore, in most capacitated lotsizing models, the \aggregate" capacity constraint
(3) is considered to be enough (necessary and su�cient). It states that the total workload
on the machines is less than the capacity available on the machines. For this to be true,
an implicit assumption has to hold. This assumption is that the transfer lot is very
small (in fact, ideally, \in�nitesimal"). When it is true, the time spent by one item on a
machine is almost negligible and it goes immediatly on the next machine in the routing.
The machines are treated like \parallel". Thus, an abstract model with in�nitesimal
transfer lots, is in fact a \uid" model with the inventory balance di�erence equations
replaced by an ordinary di�erential equation dIit=dt = x(t)�d(t), with x and d now being
\rates" of production and demand respectively. The \instantaneous" constraint capacity
on machine m is just

P
i bimxit � 1. For more details on such production models, the

reader is referred to [13] (see also [27] or [34]).
However, this small transfer lot assumption is not satis�ed in many practical situations

where the production is by lots, i.e., when the lot is an indivisible entity. Indeed, when
the production is by lots of signi�cant size, the time spent on each machine by a lot (not
an item) is not negligible compared to the total time the machines are available in one
production period (a day for instance). If the routing of a product consists of n elementary
operations, with pui being the per-unit processing time on a machine at stage i, the total
time spent on one machine by a lot of q items is q�pui , and the total minimum time spent
by a lot in the workshop is just q

P
i p

u
i .

Illustrative Example: Consider the production of two items A and B in a owshop
(with no setup time) over a discretized horizon. The routing consists of three machines
M1, M2, and M3. The per-unit processing times are as follows : puA1 = 2, puA2 = 1,
puA3 = 1, puB1 = 3, puB2 = 1, and puB3 = 2. Then, the production quantities (lots) at some
period t of 60 time units, XAt and XBt, should satisfy the capacity constraints (3):

2XA + 3XB � 60; XA +XB � 60; XA + 2XB � 60

on each of the three machines M1, M2, and M3, respectively.
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For instance, let XAt and XBt be equal to 10. The capacity constraints are not even
saturated, so that one may think that some safety capacity is left. The per-unit capacity
consumption coe�cients, i.e., 1, 2, and 3 time units are rather small compared to the 60
time units available in period t. In isolation, a unit of item A can be completed in 4 time
units, whereas one unit of item B requires 6 time units. Suppose now that, in period t,
one sequences the lot of item A before the lot of item B, and no preemption is allowed.
It takes at least 80 time units to complete both lots (see Figure 1). This schedule can be
improved, and the completion time decreased to 70 time units, by sequencing the lot of
item B before the lot of item A (see Figure 2). However, in both cases, the completion
time is well above the 60 time units that are avilable in the period.

Time

M3

M2

10 20 30 40 50 60

A

B

70 80

M1 B

B

A

A

Figure 1: Item A sequenced before item B

Time

M3

M2

10 20 30 40 50 60

A

B

70 80

M1 B

B

A

A

Figure 2: Item B sequenced before item A

Our claim is that, in this case, the sequencing of operations on the machines cannot
be ignored when de�ning the lot sizes. Indeed, the exact capacity restriction (i.e., the
constraints on the lot sizes) depends very much on the sequencing. There is a complex
interplay between lotsizing and sequencing to achieve a good makespan. Di�erent studies
have demonstrated the impact of lot sizes on the makespan. (e.g. cf. [16]).
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This is why the MRP-like procedures (originally uncapacitated) are not satisfactory.
The more sophisticated procedures like MRP-II, even if they partly recognize this fact, are
still far from being satisfactory. Indeed, a more than questionable concept in those MRP
procedures is the notion of lead time considered as an external input data, whereas it is
precisely a consequence of the scheduling procedure that will be used (cf. several remarks
in [1]). The reader is also referred to [16] for an analysis of the impact of lotsizing on lead
times and [17] (and the references therein) for the discussion on new research directions
on models incorporating lead times.

Being procedures that do not (and do not want to) consider the sequencing of opera-
tions since it occurs before any scheduling decision has been taken, those MRP procedures
su�er from a fundamental misunderstanding. The lead time concept is a \detour" that
has been introduced partly to avoid considering the sequencing of operations.

4 Some alternatives

4.1 Underestimating the aggregate capacity

In this approach, one still uses a classical lotsizing model as in Section 2, but one deliber-
ately underestimates ct in (3), i.e., the amount of time where the machines are available.
The overlooked impact of sequencing is compensated by replacing, in (3), ct by �ct for
some scalar � (0 < � < 1) modeling the capacity lost through sequencing. However, �
may be much less than 1 before the resulting MPS is feasible. Another serious drawback
of this approach is that one supposes in advance that the machines are working at no
more than 100� (1� �)% of their capacity. This is a problem because one would like to
keep the bottleneck machines as busy as possible.

Practitioners using CAPM (Computer-Aided Production Management) softwares, and
after a CRP (Capacity Requirements Planning) analysis is performed, advance or postpone
production orders proposed by MRP. This is generally done based on machine availability
reduced by a given percentage. This percentage is usually attributed to uncertainty in the
production system that needs to be accounted for, and not to the sequencing constraints
that are predictable.

We came accross a similar type of approach in one of the assembly factories of an
important car manufacturer. This factory assembles small and medium-size cars. At
the top management level, the overall amount of cars to be produced over the year is
decided for each car type. These quantities are �rst re�ned on a time horizon of several
months, and then allocated to the various factories on a time horizon of several weeks.
These quantities correspond to detailed products, i.e., a car type with all its options
(color, type of engine, electronic equipment, ...). In the factory, from experience, they
knew that the requested amount of cars to be assembled could not be performed on the
line. Hence, they were removing 25% out of the requested amount of every �nished item.
The common belief was that this factor of 25% was due to randomness in the system,
mostly scrap problems induced by re-work. At the �nal assembly level, an optimization
software is used to solve the car sequencing problem, i.e., how to sequence cars on the
line so that capacity constraints are satis�ed. These sequencing constraints are mostly
human constraints related to the fact that e.g., given the speed of the assembly line
and safety constraints, an operator cannot perform a given type of operation on more
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than two cars out of �ve. We could show them that in fact the main reason for their
factor of 25% was the combined e�ect of the sequencing constraints. Although we did not
directly participate, they conducted a more thorough study to analyze the impact of the
sequencing constraints, and how they could specify a factor on every car type, instead of
the common factor they were using. It was not possible to convince them that production
quantities and the car sequence had to be determined simultaneously, or at least in a
more consistent way.

4.2 An integrated model

In this approach, one directly considers the sequencing decisions while computing the
lot sizes. By building an integrated model, one may derive exact (detailed) capacity
constraints on the lot sizes. To every \lot" of size Xil corresponds a \job" Jil that has
to be completed by the end of period l (but may be started in earlier periods). The lead
time Li can be either strictly positive, which indicates that job Jil cannot start before
period l � Li, or equal to 0, meaning that no direct constraint is imposed on the start of
Jil and thus its overall processing time. We shall discuss at the end of this section the
di�erence between how we use lead time, and how it is used in MRP.

Ideally, an integrated model has to consider the sequencing constraints associated to
the scheduling problem, and is of the form:

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

min
X
i;l

cpiXil +
X
i;l

(cinvi I+il + cbacki I�il ) (7)

I+il � I�il = I+il�1 � I�il�1 +Xil �
P

j2DS(i) gijXjl+Lj
�Dil 8i;8l (8)

to0 � to + puoXi(o)l(o) 8(o; o0) 2 A (9)

to0 � to + puoXi(o)l(o)

or
to � to0 + puo0Xi(o0)l(o0) 8(o; o0) 2 S(y) (10)

to + puoXi(o)l(o) �
l(o)X
l=1

cl 8o 2 L (11)

to + puoXi(o)l(o) �
l(o)�1X
l=1

cl 8o 2 L (12)

to �

l(o)�Li(o)X
l=1

cl 8o 2 F such that Li(o) > 0 (13)

Xil;X
�

il ; I
+
il ; I

�

il � 0 8i; l (14)

to � 0 8o (15)

Constraint (8) is the classical inventory balance equation. Constraint (9) are the
conjunctive constraints between operations in the routings, and Constraint (10) are the
disjunctive constraints between operations that have to be sequenced on the resources.
Constraint (11) makes sure that the production quantity Xil is completed before the end
of period l, and Constraint (12) that it is not completed before the start of period l.
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Finally, if a lead time is imposed on item i, Constraint (13) guarantees that production
of Xil is performed between periods l � Li and l, and does not start before.

When the lead time Li of a given item i is stricly positive, then the availability of the
necessary components, when starting production of Xil, is ensured through the inventory
balance equation (8) and the capacity contraint (11). On the other hand, when Li = 0,
it becomes necessary to complete lots Xjl, of items j such that gji > 0, before lot Xil in
order to ensure that the necessary components are available. This is done through the
routing constraints (9). Namely, the following constraint needs to be considered:

to0 � to + puoXi(o)l(o) 8(o; o0) such that o 2 L; o0 2 F ; gi(o)i(o0) > 0 and Li(o0) = 0

which ensures that the �rst operation of lot Xi(o0)l starts after the last operations of lots
Xi(o)l such that gi(o)i(o0) > 0 (i.e., i(o) is a component of i(o0)) are completed. This is done
by adding the corresponding pairs of operations (o; o0) in the set A. This information
needs to be fed into the scheduling module of the iterative procedure described in the
sequel.

Note that Constraint (11) is not necessary for item i if it is the component of an item
j (i.e., gij > 0) such that Lj = 0, since the constraint is redundant with Constraint (9)
between i and j, and Constraint (11) on j.

Note that, in our model, the lead time is used in a very di�erent way than in MRP.
It does not correspond to an estimated time of production for an item, but it acts as a
capacity constraint since Constraints (11) and (13) make sure that processing of the lot
of an item will not last more than its lead time. The drawback is that the corresponding
number of periods is \reserved", even if production lasts less than the lead time. In
our model, lead times can be useful when one wants to closely follow the inventory of
semi-�nished products, since the time windows in which they are produced are perfectly
de�ned.

5 The iterative procedure

Because of the disjunctive constraints (10), it is very di�cult to solve the above problem,
even for small size instances. However, note that, for a �xed sequence of operations on
the machine, Constraints (10) simplify and reduce to simple linear constraints, as (9).
This observation led to an iterative procedure that alternates between two independent
modules (see Figure 3).

� The lotsizing module that solves the model for a �xed sequence y of operations
on the machines. Hence, the optimal production plan is computed for the sequence
y. When setup times or costs can be ignored, or are always counted, it is a \simple"
linear programming problem, for which many e�cient standard packages (OSL,
CPLEX, XPRESS-MP, ...) are available and can solve very large instances.

� The scheduling module that solves the scheduling problem for �xed sizes of the
lots. With the production plan X(y) computed in the planning module, there is
at least a capacity constraint that is tight (otherwise, the plan is globally optimal
and the procedure stops), i.e., the last operation of a lot of an item of a period l
ends exactly at the end of period l. To improve the production plan, we need to
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�nd a sequence y0 better than y, i.e., such that all jobs ends on time and that the
operation ends strictly before the end of period l. Some time will be available to
produce more in l. This problem is equivalent to a scheduling problem with the
makespan criterion (see [6]).

Module 1

Planning

X(y)

Module 2

Scheduling

y(X)

Routings, processing
 times, ...

Horizon, demands, ...

Figure 3: The iterative procedure

This procedure has been tested on a sample of test problems ([6]). It has been ex-
tended to production environments more complex than the job-shop (assembly, multi-
stage, multi-site, etc ... [22], [23]).

The procedure has some attractive features:

� It is numerically robust when starting from di�erent initial solutions.

� It provides very good results in a few iterations.

� Each module ignores the internal procedure of the other module. The output of
the lotsizing module is the input of the sequencing module and, in turn, the output
of the sequencing module (the sequence) is the input of the lotsizing module (i.e.,
is used to build the constraints that describe the sequencing of operations on the
machines).

� The scheduling procedure can be any scheduling package (a simulation with some
priority rules, or any ad-hoc heuristic) and, therefore, can be adapted to the tools
used in each particular manufacturing environment.

The e�ciency of the overall procedure relies on the e�ciency of the sequencing module,
for the lotsizing module is just a linear program. However, as shown in Figure 4, the
procedure is intented to be used at the planning level. The ultimate goal is not to
optimally solve the integrated model introduced in Section 4.2, i.e., to �nd an optimal
plan and schedule, but to determine an optimal feasible production plan, considering
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the capacity of the scheduling level. Hence, to ensure consistency between the planning
and scheduling decision levels, it is crucial to ensure the consistency of the scheduling
procedures used in the scheduling module of our iterative procedure (and at the planning
level), and the ones used at the scheduling level. The scheduling module should represent
as closely as possible the actual capacity of the workshop, and the scheduling techniques
are part of that capacity. The better the jobs can be sequenced in the shop-oor, the
higher is the capacity.

Module 1
Planning

Module 2
Scheduling

SCHEDULING

Planning level

Scheduling level

Feasible plan

Figure 4: Using the iterative procedure

Hence, if a sophisticated algorithm is used in the scheduling module, and very simple
priority rules are used at the shop-oor, the actual capacity will be overestimated in our
procedure. Larger quantities than what can actually be produced might be sent in the
workshop, and due dates of the jobs will not be met. On the other hand, if simple priority
rules are used in the scheduling module, and a very e�cient operator schedules the jobs
at the scheduling level, the actual capacity will be underestimated in our procedure. The
workshop might be idle because not enough quantities are sent, and unnecessary holding
and backlog costs will be paid.

However, note that, although similar techniques (or with similar e�ciency) should be
used in our scheduling module and at the scheduling level, the objectives are di�erent. The
scheduling module wants to ensure that the production quantities can be done on time,
and the scheduling level might want to consider other qualitative constraints. An e�cient
way of applying our approach in practice would be to send the schedule determined by
the scheduling module to the scheduling level, which could modify it according to its
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internal objectives and constraints. In addition, as mentioned in the introduction, if the
sequencing is important for capacity considerations, the exact schedule determined in the
scheduling module is just an indication valid at the time the algorithm is run. Even minor
disturbances will make this schedule unrealistic. However, if the disturbances are indeed
minor, implementing the \sequence" may be realistic, the exact start times being adjusted
as time passes.

Our approach naturally encompasses the actual capacity of the shop-oor, including
the e�ciency with which scheduling is performed. It does not, as the solving procedures
used for the monolithic models surveyed in [10], suppose that planning and scheduling
decisions are taken simultaneously, or that lots are optimally scheduled in the shop-oor.

Another important remark which supports the validity of our approach is that only one
iteration of our procedure is necessary to outperform the standard hierarchical approach.
This is because, by plugging the sequence determined at the scheduling module (and that
would be used in the shop-oor) into our integrated model and running the latter, an at
least equally good or better production plan is obtained.

In our implementation, the engine used in the scheduling module is based on a rather
sophisticated algorithm proposed in [8] and extended in [9]. The interested reader is
referred to [22] for more details.

Our solving procedure has been implemented in a Decision Support System developed
on Borland C++ Builder, where linear programming problems are solved using the IBM
OSL version 2 library. This DSS, developed at Ecole des Mines de Nantes, allows the
various data to be entered in a user-friendly way: products, resources, bill-of-materials,
routings, costs, demands, ... Various multi-period scheduling policies can be selected
(period by period, semi-global or global, see [6]), together with the maximum number
of iterations, before starting the iterative procedure. The resulting production plan and
associated inventory levels can be vizualized on a �gure. The associated schedule can also
be seen and modi�ed on a Gantt chart.

6 Conclusion

We have tried in this paper to show the limitations of traditional approaches to production
planning and scheduling. Because only aggregate capacity constraints are taken into
account, decisions taken at the planning level are often inconsistent with the scheduling
decisions. A more recent trend (see [10]) consists in incorporating more detailed and thus
more exact capacity constraints in mathematical programming models used to determine
lot sizes. However, because solving these models means determining both an optimal
production plan and an optimal production schedule, they fail to capture the scheduling
performance of the shop-oor. Moreover, the rapidly increasing complexity of such models
limits the size of the problems that can be solved. In practice, planning and scheduling
decisions are still often taken independently. Therefore, we think that planning models
should incorporate considerations on how scheduling is performed in the shop-oor, rather
than assume that planning and scheduling can be done simultaneously at the same decision
level.

The approach we propose is an attempt to overcomedrawbacks of previous approaches.
Our two-step iterative procedure can handle very complex multi-stage manufacturing
environments, by leaving the complexity of scheduling to a speci�c module. Moreover, this
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module does not have to (and often will not) determine the optimal schedule, but should
reect how sequencing is performed at the scheduling level. Consistency of the production
plan is then ensured. Research on our approach is clearly far from being completed. In
particular, specialized procedures to handle setup costs need to be developed.

Acknowledgements: we would like to thank William Roux for helping us clarifying
our ideas through many discussions, and Atle Nordli for his helpful comments.
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