
Using Lagrangean Relaxation to Minimize
the (Weighted) Number of Late Jobs

on a Single Machine

St�ephane Dauz�ere-P�er�esa� Marc Sevauxb

a Department of Finance and Management Science

Norwegian School of Economics and Business Administration

Helleveien 30

N-5035 Bergen-Sandviken, Norway

b Department of Automatic Control and Production Engineering

Ecole des Mines de Nantes

La Chantrerie, BP 20722

F-44307 Nantes Cedex 03, France

E-mail: fStephane.Dauzere-Peres, Marc.Sevauxg@emn.fr

June 28, 1999

Abstract

This paper tackles the general single machine scheduling problem, where jobs

have di�erent release and due dates and the objective is to minimize the weighted

number of late jobs. The notion of master sequence is �rst introduced, i.e., a se-

quence that contains at least an optimal sequence of jobs on time. This master

sequence is used to derive an original mixed-integer linear programming formula-

tion. By relaxing some constraints, it is possible to design a Lagrangean relaxation

algorithm which gives both lower and upper bounds. The special case where jobs

have equal weights is analyzed. Computational results are presented and, although

the duality gap becomes larger with the number of jobs, it is possible to solve

problems of more than 100 jobs.

1 Introduction

A set of n jobs fJ1; ::; Jng, subject to release dates ri and due dates di, have to be scheduled

on a single machine. The processing time of jobs on the machine is denoted by pi, and

�on leave from IRCyN/Ecole des Mines de Nantes

1

a weight wi is associated to each job. The machine can only process one job at a time.

A scheduled job completed before its due date is said to be early or on time, and late

otherwise. The objective is to minimize the weighted number of late jobs, or equivalently

to maximize the weighted number of early jobs. A well-known and important remark is

that there is always an optimal schedule in which late jobs are sequenced after all the

early jobs.

This single-machine scheduling problem, noted 1jrjj
P
wjUj in the standard classi�ca-

tion, is strongly NP-Hard [8]. When all weights are equal (1jrjj
P
Uj), the problem re-

mainsNP-Hard, but becomes polynomially solvable if all release dates are equal (1jj
P
Uj)

[9] (O(n log n)), or if release and due dates are similarly ordered (ri < rj) di � dj

8(Ji; Jj)) [6] (O(n2)), [7] (O(n log n)). However, some exact approaches have recently

been proposed for this problem [1] [5]. Lawler [7] showed that the Moore's algorithm ([9])

could be applied when processing times and weights are aggeeable, i.e., pi < pj) wi � wj

8(Ji; Jj). Finally, branch-and-bound procedures have been developed to solve the case

where all release dates are equal (1jj
P
wjUj) in [12] and [11]. To our knowledge, no

algorithm has been proposed to solve the general problem 1jrj j
P
wjUj.

In this paper, based on the notion of master sequence i.e., a sequence from which

an optimal sequence can be extracted, a new mixed-integer linear programming formula-

tion is introduced. Using this formulation, a Lagrangean relaxation algorithm is derived.

Lagrangean relaxation is a powerful optimization tool from which heuristic iterative al-

gorithms can be designed, where both upper and lower bounds are determined at every

iteration. It is thus possible to always know the maximum gap between the best so-

lution found and the optimal solution, and stop the algorithm when this gap is small

enough. One condition that is often associated to the e�ciency of Lagrangean relaxation

approaches is to relax as few constraints as possible, in order to obtain good bounds when

solving the relaxed problem. This is why our formulation compares very favorably to

other known ones (see [4] for a study of classical formulations for this problem). Only

one constraint type, coupling variables of di�erent jobs, needs to be relaxed to obtain an

easily solvable problem, that can be solved independently for each job.

The master sequence is introduced in Section 2, and the resulting mixed-integer linear

programming formulation is given and discussed in Section 3. Section 4 shows how the

size of the master sequence, and thus the size of the model, can be reduced. Section 5

presents the Lagrangean relaxation algorithm, and Section 6 improves the algorithm. The

non-weighted case is studied in more details in Section 7. Numerical results on a large

set of test instances are given and discussed in Section 8. Finally, some conclusions and

perspectives are drawn in Section 9.

2

2 The master sequence

In the remainder of this paper, because we are only interested in sequencing jobs on time

(late jobs can be set after the jobs on time), the sequence of jobs will mean the sequence

of early jobs. Many results in this paper are based on the following theorem.

Theorem 1 There is always an optimal sequence of jobs on time that solves the problem

1jrjj
P
wjUj , in which every job Jj is sequenced just after a job Ji such that either condition

(1) di < dj , or (2) di � dj and rk � rj 8 Jk sequenced before Jj , holds, or equivalently

condition (3) di � dj and 9 Jk sequenced before Jj such that rk > rj is not satis�ed.

Proof: The proof goes by showing that, by construction, it is possible to change any

optimal sequence into an optimal sequence that satis�es the conditions (1) or (2).

Suppose that we have a sequence in which some (or all) ready jobs do not satisfy one of

the conditions. Starting from the beginning of the sequence, �nd the �rst pair of jobs

(Ji; Jj) in the sequence that does not satisfy the two conditions, i.e., for which condition

(3) holds. If ti and tj denote the start times of the two jobs, the latter condition ensures

that, after interchanging the two jobs, Jj can start at ti (since 9 Jk sequenced before Jj

such that rj < rk � ti). Hence, Ji will end at the same time than Jj before the interchange

(ti + pi + pj), and thus will still be on time (since ti + pi + pj � dj � di).

The interchange should be repeated if Jj and the new job just before it do not satisfy

conditions (1) or (2), until one of these conditions is satis�ed for Jj and the job just before

it, or Jj is sequenced �rst.

The procedure is repeated for all jobs until the conditions are satis�ed for all jobs. Because

once a job has been moved, it will never go back again, one knows that the procedure will

not be repeated more than n times, i.e., takes a �nite amount of time. 2

We will denote by S the subset of sequences in which jobs satisfy the conditions in

Theorem 1. In the sequel, we will only be interested in sequences in S, since we know

that it always contains an optimal sequence.

Proposition 1 If, in a sequence of S, job Jj is after jobs Ji such that rj < ri, then there

is at least a job Ji such that di < dj .

Proof: By contradiction, if all jobs Ji before Jj such that rj < ri verify di � dj , then

none of the conditions (1) and (2) is satis�ed. Thus, the sequence is not in S. 2

Corollary 1 If, for every job Ji such that rj < ri, condition dj � di holds, then, in every

sequence of S (i.e., in an optimal sequence), job Jj is sequenced before all jobs Ji.

3

Corollary 2 If, for every job Jj such that dj < di, condition rj � ri holds, then, in every

sequence of S (i.e., in an optimal sequence), job Ji is sequenced after all jobs Jj .

We want to show that it is possible to derive what will be called a master sequence

and denoted by �, and which \contains" every sequence in S. Corollary 1 implies that

there is only one position for Jj in the master sequence, and Corollary 2 that there is only

one position for Ji.

Example 1 Let us consider a 5-job problem with the data of Table 1.

Jobs J1 J2 J3 J4 J5

ri 0 5 8 12 14
pi 8 6 5 6 10
di 16 26 24 22 32

Table 1: Data for a 5-job problem

Considering sequences in S, and because of Corollary 1, one knows that J1 is set before

all jobs (conditions r1 < ri and d1 < di are satis�ed for every job Ji 6= J1), and all jobs

are set before J5 (conditions ri < r5 and di < d5 are satis�ed for every job Ji 6= J5).

Hence, in the master sequence �, job J1 will be set �rst and job J5 last.

The master sequence has the following form:

� = (J1; J2; J3; J2; J4; J3; J2; J5)

Every sequence of jobs in S can be constructed from �. In this example, they are

numerous sequences or early jobs (more than 40). For instance, the subset of sequences

containing 5 jobs is:

f(J1; J2; J3; J4; J5); (J1; J2; J4; J3; J5); (J1; J3; J2; J4; J5); (J1; J3; J4; J2; J5); (J1; J4; J3; J2; J5)g

One can check that each of these sequences is included in S.

Proposition 2 In the master sequence, if ri < rj and di > dj, then there is a position

for Ji before Jj and a position for Ji after Jj .

Proof: Because ri < rj, Condition (2) in Theorem 1 is satis�ed for the pair of jobs

(Ji; Jj), and because di > dj , Condition (1) is satis�ed for the pair (Jj; Ji). Hence, there

is a position in the master sequence for Ji before and after Jj . 2

Hence, there must be a position in the master sequence for Ji after every job Jj such

that ri < rj and di > dj. This shows that there will be at most n(n+1)
2

positions in the

master sequence.

4

Corollary 3 If, for every job Jj such that ri < rj, the condition di � dj holds, then there

is only one position for job Ji in the master sequence.

Corollary 3 shows that, when release and due dates are similarly ordered (as in Kise

et al. [6]), the master sequence will be the sequence of jobs in increasing order of their

release dates (or due dates if some jobs have equal release dates). In the non-weighted case

(wi = 1, 8Ji), the problem is then polynomially solvable using the algorithm proposed in

[6] (in O(n2)) or in [7] (in O(n log n)).

An interesting and important property of the master sequence is a kind of transitivity

property. If job Ji is set before and after Jj in the master sequence because either

Condition (1) or (2) of Theorem 1 holds, and if Jj is set before and after Jk in the

master sequence because either Condition (1) or (2) holds, then either Condition (1) or

(2) of Theorem 1 holds and Ji is set before and after Jk in the master sequence.

The algorithm to create the master sequence � is sketched below. We suppose that

the jobs are pre-ordered in non-decreasing order of their release dates, and J denotes the

set of jobs already sequenced. Moreover, to speed up the algorithm, jobs added in J are

ordered on non-decreasing order of their due dates.

FOR every job Ji 2 J DO

� � [Ji

J J [Ji

FOR every job Jj 2 J such that dj � di DO

� � [Jj

The algorithm has a time complexity of O(n2). The job set at position k in � is

denoted �(k). The number of positions in the master sequence is denoted by P . Recall

that P � n(n+1)
2

. Actually, P will only be equal to its upper bound if the job with the

smallest release date has also the largest due date, the job with the second smallest release

date has the second largest due date, and so on (see Proposition 2). This is clearly a very

special case and, in practical experiments, P will be much smaller than n(n+1)
2 .

3 A new mixed-integer linear programming formula-

tion

Based on the master sequence, one can derive the following model:

5

8>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>:

c� = min c =
nX
i=1

wiUi (1)

tk � tk�1 � p�(k�1)uk�1 � 0 k = 2; ::; P (2)

tk � r�(k)uk � 0 8k (3)

tk + p�(k)uk � d�(k) �Dk(1� uk) � 0 8k (4)
PX
k=1

�(k)=i

uk + Ui = 1 8i (5)

uk 2 f0; 1g 8k (6)

Ui 2 f0; 1g 8i (7)

where Dk is chosen big enough to not constrain the jobs sequenced before k, for instance

Dk = max
r=1;::;k�1
d�(r)>d�(k)

(d�(r) � d�(k)) (= max
r=1;::;k�1

(0; d�(r) � d�(k))):

By Constraint (2) we ensure that, if the job at the kth position in the master sequence

is set on time (uk = 1), then the job at position k + 1 cannot start before the completion

of the job at position k. If uk = 0, the constraint only ensures that tk+1 � tk. Constraint

(3) speci�es that, if the job is scheduled on time, it cannot start before its release date.

By Constraint (4), if the job at position k is set on time (uk = 1), then it has to be

completed before its due date. If uk = 0, the constraint is redundant. Finally, Constraint

(5) ensures that at most one position is used for each job, or the job is late (Ui = 1).

In the previous model, it is possible to replace Constraint (3) by tk � r�(k) � 0 (or

equivalently to remove uk from Constraint (3)). The new constraint is numbered (3').

Theorem 2 will proove the validity of the resulting model.

In the non-weighted case (wj = 1, 8Jj), if Constraint (4) is replaced by tk + p�(k)uk �

d�(k) � 0 (or equivalently Dk = 0 in Constraint (4)), then the resulting formulation

still provides an optimal solution to the problem. The new constraint is numbered (4').

Although the non-weighted case will be studied in more details in Section 7, the following

theorem is introduced here because its also useful for the weighted case.

Theorem 2 In the non-weighted case, there is always an optimal sequence of S that

satis�es Constraints (2), (3'), (4'), and (5)-(7).

Proof: The proof goes by showing that the only case where there is a problem is when

Jj can be sequenced before and after Ji in the master sequence, and rj < ri and dj > di,

and Ji is not sequenced in the optimal sequence. It can be shown that Constraints (2),

(3), and (4) prevent job Jj to start between di � pj (Constraint (4)) and ri (Constraint

6

(3)). This is only a problem if di � pj < ri. If this is the case, then pi < pj (since Ji is

not late if started at its release date ri). Hence, in an optimal solution where Jj starts in

the interval [di� pj; ri], i.e., ends in the interval [di; ri+ pj], Jj can be replaced by Ji, and

the sequence will remain optimal since Ji starts after ri and ends before di. 2

The proof of Theorem 2 is based on equal weight for jobs. In the weighted case,

following the proof of Theorem 2, Dk can be chosen as follows :

Dk = max
r=1;::;k�1;
d�(r)>d�(k)

(0; r�(r) � d�(k))

Hence, the case where di � pj < ri, discussed in the proof of Theorem 2, is avoided. In

numerical experiments, Dk is very often equal to zero.

4 Reducing the master sequence

Because the size of the model is directly linked to the length of the master sequence, it is

interesting to remove as many positions as possible from �. Not only solution procedures

will be more e�cient, but the model will be tighter and will give better lower bounds by

Lagrangean relaxation.

Because of Constraints (2) and (3), tk � maxr=1;::;k�1 r�(r). Hence, the �rst reduction

will be done by removing positions k such that maxr=1;::;k�1 r�(r) + p�(k) > d�(k).

Several dominance rules are proposed in [5] for the non-weighted case. However, if

parameter Dk is changed according to Theorem 2, all of them do not apply. This is

because, in the resulting formulation, when job Jj is before and after Ji in the master

sequence and Ji is late, the position of Jj after Ji might need to be occupied in an

optimal solution. One could show that this is not the case with the initial formulation.

Our preliminary numerical experiments showed that reducing parameter Dk was more

important than using the lost dominance rules.

We will describe here the dominance rules that still apply to our formulation, and

which have been modi�ed for the weighted case (see [5] for details).

In the master sequence, if Conditions (1) ri < rj , (2) ri+pi � rj+pj, (3) ri+pi+pj > dj ,

(4) rj + pj + pi > di, (5) di� pi � dj � pj, and (5) wj � wi hold, then Jj dominates Ji and

all positions of job Ji can be removed from the master sequence. Because of Conditions

(3) and (4), only one of the two jobs can be scheduled on time. In an optimal solution,

either both jobs are late, or it is always possible to �nd a solution in which job Jj is on

time and the total weight of late jobs is as small than a solution with job Ji on time.

Another dominance rule is based on the fact that, if there is a position l and a job

Jj (Jj 6= �(l)) such that Conditions (1) r�(l) + p�(l) � rj + pj , (2) p�(l) � pj , (3) r�(l) +

7

p�(l) + pj > dj , (4) rj + pj + p�(l) > d�(l), (5) d�(l) � p�(l) � dj � pj, and (6) w�(l) � wj

are satis�ed, then Jj dominates position l, and thus the latter can be removed. This is

because, if there is an optimal solution in which position l is occupied (i.e., job J�(l) is on

time), then, by Condition (3), Jj is late. The solution can be changed to another optimal

solution in which J�(l) is replaced by Jj.

5 A Lagrangean relaxation algorithm

Following Theorem 2 and remarks from Section 3, the mixed-integer linear programming

formulation is now:8>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>:

c� = min c =
nX
i=1

wiUi (8)

tk � tk�1 � p�(k�1)uk�1 � 0 k = 2; ::; P (9)

tk � r�(k) � 0 8k (10)

tk + p�(k)uk � d�(k) �Dk(1� uk) � 0 8k (11)
PX
k=1

�(k)=i

uk + Ui = 1 8i (12)

uk 2 f0; 1g 8k (13)

Ui 2 f0; 1g 8i (14)

By relaxing Constraint (9) using Lagrangean multipliers �k (k = 2; ::; P), the model

becomes: 8>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>:

max
�k�0

min
tk;uk;Ui

"
nX
i=1

wiUi �
PX
k=2

�k
�
tk � tk�1 � p�(k�1)uk�1

�#
(15)

tk � r�(k) � 0 8k (10)

tk + p�(k)uk � d�(k) �Dk(1� uk) � 0 8k (11)
PX
k=1

�(k)=i

uk + Ui = 1 8i (12)

uk 2 f0; 1g 8k (13)

Ui 2 f0; 1g 8i (14)

To use Lagrangean relaxation, one needs to solve the previous model for given values

of �k (k = 2; ::; P). The objective function can be written:

min
tk;uk ;Ui

"
nX
i=1

wiUi +
PX
k=2

�kp�(k�1)uk�1 + �2t1 +
P�1X
k=2

(�k+1 � �k)tk � �P tP

#
(16)

Because Constraint (9) has been relaxed, variables tk are now independent and bounded

through Constraints (10) and (11). Hence, if the coe�cient of tk (�k+1 � �k) is pos-

itive, tk will be chosen as small as possible to minimize the cost, i.e., r�(k) (because

8

of (10)), and if the coe�cient is negative, tk will be chosen as large as possible, i.e.,

d�(k) +Dk � (p�(k) + Dk)uk (because of (11)). Moreover, using (12), Ui can be replaced

by 1 �
PP

k=1
�(k)=i

uk in the criterion. Hence, (16) becomes:

min
uk

2
664

nX
i=1

wi(1�
PX
k=1

�(k)=i

uk) +
PX

k=2

�kp�(k�1)uk�1 + �2r�(1) +
P�1X
k=2

(�k+1��k)�0

(�k+1 � �k)r�(k)+

P�1X
k=2

(�k+1��k)<0

(�k+1 � �k)(d�(k) +Dk � (p�(k) +Dk)uk)� �P (d�(P) +DP � (p�(P) +DP)uP)

3
775

Note that the minimization now only depends on variables uk. Since ri and di are

data, several terms of the previous expression can be ignored in the optimization:

min
uk

nX
i=1

2
664

PX
k=1;�(k)=i

(�k+1��k)�0

(�k+1pi � wi)uk +
PX

k=1;�(k)=i
(�k+1��k)<0

(�k+1pi � (�k+1 � �k)(pi +Dk � wi)uk

3
775

or, after simpli�cation,

min
uk

nX
i=1

2
664

PX
k=1;�(k)=i

(�k+1��k)�0

(�k+1pi � wi)uk +
PX

k=1;�(k)=i
(�k+1��k)<0

(�kpi � (�k+1 � �k)Dk � wi)uk

3
775 (17)

where �1 and �P+1 are parameters such that �1 = �P+1 = 0.

To minimize the cost, and to satisfy Constraint (12), one has to determine, for every

job Ji, the position k0 such that �(k0) = i with the smallest coe�cient in (17), i.e.,

(�k+1pi �wi) or (�kpi + (�k+1 � �k)Dk �wi) depending on the sign of (�k+1 � �k). If the

coe�cient is positive, then uk = 0 8k such that �(k) = i, and Ui = 1, and if the coe�cient

is negative, then uk0 = 1, uk = 0 8k 6= k0 such that �(k) = i, and Ui = 0.

Proposition 3 Solving the relaxed problem can be done in O(P) time.

The solution would be the same, i.e., integral, if Constraints (13) and (14) were to be

deleted. Hence, the Lagrangean relaxation bound is identical to the bound obtained by

linear relaxation (see Parker and Rardin [10]). However, this bound can be determined

faster, because every subproblem can be trivially solved. Actually, before implementing

our Lagrangean relaxation algorithm, we performed some preliminary testing using linear

relaxation with a standard and e�cient LP package. The quality of the bound was better

than all other formulations we had tested before (see [4]).

9

It is relatively easy to interpret the impact of the values of �k, pi, or wi. Increasing

�k will force the associated Constraint (9) to be satis�ed, i.e., tk to be chosen as large as

possible and equal to d�(k) +Dk � (p�(k) +Dk)uk (uk to 0), and tk�1 as small as possible

and equal to r�(k�1). Intuitively, a job with a large processing time that is set on time

might force more jobs to be late than a job with a smaller processing time. Hence, it is

natural to favor jobs with small processing times. This is consistent with (17), where the

coe�cient of uk will increase with p�(k), and has then more chances to become positive,

thus inducing uk = 0, i.e., job J�(k) is not set in position k. The exact opposite can be

said about the weight, since the larger its weight, the more you want to sequence a job.

Again, this is in accordance with (17), where the coe�cient of uk will decrease with w�(k),

and has then more chances to become negative, thus inducing uk = 1, i.e., job J�(k) is set

in position k.

The following algorithm is proposed to solve our problem using Lagrangean relaxation

and subgradient optimization (see Parker and Rardin [10]).

Step 1 - Initialization of the Lagrangean variables �k: �0k = f
p�(k)

n�pmax�wmax�w�(k)
8k, (where

pmax (resp. wmax) is the largest processing time (resp. weight) among all jobs, and

f a parameter), and r = 0.

Step 2 - Initialize the various parameters: Ui = 1, coef(i) = 1 and pos(i) = �1 8i,

uk = 0 8k, r = r + 1, and �r1 = �rP+1 = 0.

Step 3 - Solve the relaxed problem:

Step 3.1 - For k = 1; ::; P , if �rk+1 � �rk � 0 then coef = �rk+1pi � wi, else coef =

�rkpi � (�rk+1 � �rk)Dk � wi.

If coef < coef(�(k)), then coef(�(k)) = coef and pos(�(k)) = k.

Step 3.2 - For i = 1; ::; n, if coef(i) � 0 then upos(i) = 1 and Ui = 0.

Step 4 - Compute the lower bound:

LB =
nX
i=1

2
6664wi +

PX
k=1;�(k)=i

(�r
k+1

��r
k
)�0

�
(�rk+1 � �rk)ri + (�rk+1pi � wi)uk

�

+
PX

k=1;�(k)=i
(�r
k+1

��r
k
)<0

�
(�rk+1 � �rk)(di +Dk �Dkuk) + (�rkpi � wi)uk

�
3
7775

Step 5 - Compute an upper bound by sequencing as many jobs as possible among the

jobs Ji that are set on time in the solution associated to the lower bound, i.e., such

that Ui = 0.

10

Step 6 - Update the lagrangean variables �k:

�r+1k = max

0; �rk � �r

tk � tk�1 � p�(k�1)uk�1

jjtk � tk�1 � p�(k�1)uk�1jj

!

where tk = r�(k) if (�rk+1 � �rk) � 0, and tk = d�(k) +Dk � (Dk + p�(k))uk otherwise.

Update �r+1.

Step 7 - If no stopping conditions are met, go to Step 2.

We use a simple and fast greedy algorithm to determine the upper bound in Step 5.

From k = 1 to k = P , job J�(k) is added to the sequence of early jobs if uk = 1 and J�(k)

is on time. The �nishing time of the current sequence is updated each time a new job is

added.

Various parameters have to be initialized and adjusted to ensure the best convergence

of the algorithm for di�erent types of instances. After sd iterations without improvement,

the parameter �r is decreased by a factor of 100�(1�red�)%. Various stopping conditions

are checked: maximum number of iterations IterMax, step � smaller than or equal to

�min, and of course if the optimum is found, i.e., the lower and upper bounds are equal.

The parameters chosen here could be adjusted to improve the results on some instances,

but we decide to use generic parameters instead. After some preliminary testing, we

chose the following values: f = 0:4, �1 = 1:6, sd = 40, and red� = 0:9. For the stopping

conditions, we used IterMax = 100 000 and �min = 10�5. Actually, in our numerical

experiments, the number of iterations is never larger than 20 000.

As already shown, every relaxed problem in Step 3 are solved very quickly, in O(P)

time where P is not larger than n(n+1)
2

. Hence, many iterations can be performed, even

for large instances.

6 Improving the algorithm

Several improvements are proposed. The �rst one is based on a rewriting of the formula-

tion. In the model, because of Constraint (9), Constraint (10) can be rewritten

tk � rrk � 0 8k

where rrk = maxr=1;::;k r�(r) are release dates per position. To include this change in the

algorithm, it su�ces to replace r�(k) by rrk.

A similar rewriting can be performed for Constraint (11) in the non-weighted case,

where Dk = 0 8k, as follows

tk + p�(k)uk � ddk � 0

11

where ddk = minr=k;::;P d�(r) are due dates per position.

Although they do not improve the lower bound obtained by linear relaxation, and thus

by Lagrangean relaxation, these changes often considerably speed up the algorithm by

better updating the Lagrangean multipliers in Step 6. This is because the positions for

a job are better di�erentiated whereas, in the original formulation, they all have similar

Constraints (10). Hence, the algorithm will more quickly choose the best position(s) for

a job, and will require less iterations to converge to the lower bound.

Another improvement uses the following property to tighten Constraint (9) in the

model.

Proposition 4 If, in the master sequence, Ji is before and after Jj , then there is an

optimal schedule in which either the position k of Ji after (and generated by) Jj is not

occupied or is occupied and such that tk � dj � pi.

Proof: We want to prove that if, in an optimal schedule S, the position k of Ji after

Jj is occupied and tk � dj � pi then this schedule can be transformed into an equivalent

optimal schedule S0 in which Ji is sequenced before Jj (i.e., position k is not occupied).

Since Ji is before and after Jj , we know that ri < rj and di > dj. Hence, moving Ji

before Jj will just translate Jj and the jobs between Jj and Ji in S by pi and, because

tk � dj � pi in S, the completion time of the translated jobs will not be larger than dj .

By de�nition of the master sequence, and because position k is generated by Jj, the due

dates of the jobs between Jj and Ji in S are larger than or equal to dj . Thus, the schedule

S 0 is feasible. 2

Following Proposition 4, Constraints (10) can be tightened (the added term is positive)

as follows:

tk � rrk �RRkuk � 0 8k

where RRk = max(0;minr=1;::;k�1 d�(r) � p�(k) � rrk).

The relaxed problem in the Lagrangian relaxation changes accordingly by adding the

new term in the objective function, and by considering the coe�cient (�k+1pi + (�k+1 �

�k)RRk�wi) when (�k+1��k) is positive. Strengthening the constraints helps to improve

the quality of the lower bound. Moreover, it also accelerates the algorithm by again better

di�erentiating the positions.

7 The non-weighted case

The mixed-integer linear programming model de�ned in Section 3 can be enhanced for

the non-weighted case, i.e., wi = 1 8i following Theorem 2 in Section 3. The new model

is given below:

12

8>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>:

c� = min c =
nX
i=1

Ui (18)

tk � tk�1 � p�(k�1)uk�1 � 0 k = 2; ::; P (19)

tk � r�(k) � 0 8k (20)

tk + p�(k)uk � d�(k) � 0 8k (21)
PX
k=1

�(k)=i

uk + Ui = 1 8i (22)

uk 2 f0; 1g 8k (23)

Ui 2 f0; 1g 8i (24)

Because wi = 1 8Ji and Dk = 0, 8k, the objective function (17) can equivalently be

written:

min
uk

nX
i=1

PX
k=1;
�(k)=i

(max(�k; �k+1)pi � 1) uk (25)

Remark 1 In the non-weighted case, for a given job Ji, �nding the position k0, �(k0) = i,

with the smallest coe�cient in (17) is equivalent to �nding the position with the smallest

coe�cient �k+1 or �k, depending on the sign of (�k+1 � �k).

In the Lagrangean relaxation algorithm described in Section 5, the following steps are

modi�ed:

Step 3.1 - For k = 1; ::; P , if �rk+1��
r
k � 0 then coef = �rk+1pi�1, else coef = �rkpi�1.

If coef < coef(�(k)), then coef(�(k)) = coef and pos(�(k)) = k.

Step 4 - Compute the lower bound:

LB = n+
nX
i=1

2
6664

PX
k=1;�(k)=i

(�r
k+1

��r
k
)�0

�
(�rk+1 � �rk)ri + (�rk+1pi � 1)uk

�

+
PX

k=1;�(k)=i
(�r
k+1

��r
k
)<0

�
(�rk+1 � �rk)(di � piuk) + (�rkpi � 1)uk

�
3
7775

Moreover, the Kise et al.'s algorithm [6] can be used to compute the upper bound

associated to the current value of the multipliers �r in Step 6. This is because, when the

sequence in which jobs can be sequenced is �xed, i.e., for a given permutation of the jobs,

the optimal sequence of early jobs can be found using the Kise et al.'s algorithm. In our

13

case, the set of jobs from which jobs have to be sequenced is the set of jobs Ji such that

Ui = 1, and the �xed sequence is given by the positions k such that uk = 1.

It is better to adjust the parameters for the algorithm when wi = 1, 8i. After multiple

trials, we decided to use the following for all tested instances: f = 0:4, �1 = 0:05, sd = 60,

and red� = 0:92. The same parameters are kept for the stopping conditions (IterMax =

100 000 and �Min = 10�5).

8 Computational Results

Many test problems have been generated to evaluate our algorithm. For each value of

n, the number of jobs, 160 instances have been randomly generated. The test program,

written in C, is running on a SUN UltraSparc workstation.

Random generator For each job Ji, a processing time pi is randomly generated in

the interval [1; 100] and a weight wi is generated in the interval [1; 10]. As in [3], two

parameters K1 and K2 are used, and taken in the set f1; 5; 10; 20g. Because we want

data to depend on the number of jobs n, the release date ri is randomly generated in the

interval [0;K1n], and the due date in the interval [ri + pi; ri + pi +K2n]. The algorithm

was tested for n 2 f20; 40; 60; 80; 100; 120; 140g. For each combination of n, K1, and K2,

10 instances are generated, i.e., 160 instances for each value of n.

Results on the non-weighted case The Lagrangean relaxation algorithm was �rst

ran on the 1jrjj
P
Uj problem. In Table 2, results are reported for each value of n. The

optimum is considered to be found when lower and upper bounds are equal. For n = 60,

66 out of 160 instances are optimally solved, i.e., 41.3%. The CPU time necessary to �nd

the best bounds is also reported. For n = 80, the mean CPU time is about 1 minute. To

evaluate the e�ciency of both bounds, the gap between the upper and lower bounds is

also measured and reported in the last three columns of the table. This gap is expressed

in number of jobs. For n = 100, the average gap is close to 2 jobs. The standard deviation

and maximum gap are also given in the table.

The results are good, although the average duality gap increases quickly when n is

larger than 100. This is mostly because it is large for speci�c sets of instances, as attested

by the large standard deviation. Remember that we decided to use the same parameters

for our algorithm for every test instance, independently of n, K1, or K2. The algorithm

does not perform so well when the master sequence is long. Looking at Proposition 2, this

happens when there are many pairs of jobs (Ji; Jj) such that ri < rj and di > dj. This is

the case when K2 is large, and even more when K1 is also small. The same analysis holds

for the CPU time, since the time to solve the relaxed problem at every iteration directly

14

Nb of Optimum CPU Time (sec) Gap Gap (%)
jobs Nb (%) Mean StDev Max Mean StDev Max Mean

n = 20 85 53.1% 3.06 2.45 15.62 0.54 0.67 3 2.70
n = 40 75 46.9% 13.18 9.70 49.16 0.65 0.71 3 1.63
n = 60 66 41.3% 33.48 23.41 98.88 0.85 0.99 5 1.42
n = 80 55 34.4% 66.63 49.11 216.78 1.07 1.22 6 1.34
n = 100 26 16.3% 138.57 107.73 432.17 2.34 2.99 18 2.34
n = 120 11 6.9% 226.33 182.25 663.83 6.39 7.66 37 5.33
n = 140 8 5.0% 359.49 275.53 938.01 11.57 12.96 44 8.26

Table 2: Results on the non-weighted case.

depends on the length of the master sequence P . This is why the CPU time average and

standard deviation increase with the number of jobs. Table 3 reports the results and the

length of the master sequence for n 2 f100; 120; 140g and K2 2 f1; 5; 10; 20g. Note that,

for K2 = 20, the mean CPU time and the mean gap are approximatively two times larger

than in Table 2.

Nb of Value Length of � CPU Time (sec) Gap
jobs of K2 Mean StDev Mean StDev Mean StDev

n = 100 1 147.95 53.11 29.38 18.32 2.67 1.67
5 991.80 530.18 84.27 30.61 1.00 1.11
10 1466.38 545.92 153.14 51.86 1.43 2.45
20 1877.05 429.40 287.48 71.67 4.28 4.45

n = 120 1 236.05 111.05 36.30 16.53 2.62 2.10
5 1502.25 843.39 129.89 55.72 2.00 2.74
10 2190.62 844.37 253.41 89.16 5.25 5.86
20 2793.60 654.81 485.73 88.01 15.70 8.27

n = 140 1 350.27 186.30 55.32 29.94 2.50 1.93
5 2077.15 1154.75 202.33 68.82 3.85 4.89
10 2980.35 1132.38 437.93 130.68 12.57 12.61
20 3791.62 891.07 742.39 99.50 27.38 9.75

Table 3: Sensitivity of the results to parameter K2.

In [5], we propose a branch-and-bound procedure which is only valid for the non-

weighted problem. This exact method also uses the notion of master sequence, and has

been tested on the same set of instances. In a maximum running time of one hour, more

than 95% of 140-job instances are solved to optimality. Hence, it is possible to compare

the bounds given by our Lagrangean relaxation algorithm to the optimal solution for test

instances that are optimally solved by our exact procedure. In Table 4, we compare the

two bounds for instances of more than 80 jobs with the optimal solution.

15

Lagrangean Lower Bound Lagrangean Upper Bound
Nb of Opt. Gap with optimum Opt. Gap with optimum
jobs found Mean StDev Max found Mean StDev Max

n = 80 43.3% 0.87 1.07 5 84.1% 0.20 0.50 3
n = 100 25.5% 1.85 2.40 16 68.2% 0.52 1.09 7
n = 120 15.2% 4.46 5.60 27 35.5% 2.38 3.06 12
n = 140 14.9% 9.19 10.10 38 26.9% 3.88 4.41 20

Table 4: Comparing with the optimal solution

For both the lower and upper bounds, the results are reported as follows: the �rst

column gives the percentage of cases where the bound and the optimal solution are equal,

and the next three columns give the mean, the standard deviation and the maximum

of the gap between the bound and the optimal solution. These �gures are expressed in

number of jobs. Even for the largest instances (n = 140), the upper bound is very good

on average, about 4 jobs more than the optimal solution (which corresponds to an error of

less than 3%). However, the standard deviation becomes rather large, which emphasizes

again the large variance observed on the CPU time and the duality gap.

Better results could be obtained, when the gap is very large, by adjusting the param-

eters of the Lagrangean algorithm. We did it for n = 140, K1 = 1 and K2 = 20, where

the largest gaps are observed. Using the generic parameters (f = 0:4, �1 = 0:05, sd = 60,

and red� = 0:92), the average di�erence between the lower and upper bounds for the 10

instances is 38.4. By modifying only �1 (�1 = 0:5), the mean gap is reduced to 3.4 (more

than 10 times smaller!).

Results on the weighted case Weights are randomly generated in the interval [1; 10].

Results are reported in Table 5. The Lagrangean relaxation algorithm seems to be more

e�cient than in the non-weighted case. When n is large, the bounds are obtained faster

(184.66 seconds on average vs 359.49 for n = 140), and the average gap between the two

bounds is also reduced. The last column of Table 5 give the gap between the two bounds

expressed in %. This gap can be compared to the one given in Table 2.

Results on instances of small size are better in the non-weighted case than in the

weighted case. However, it becomes the opposite when the number of jobs increases

(n = 120 and n = 140). For n = 140, the gap in the weighted case is less than 4%,

whereas it is more than 8% in the non-weighted case. Moreover, in nearly all the cases,

the CPU time is smaller in the weighted case, and the di�erence ampli�es when n increases.

We do not give a table equivalent to Table 3 for the weighted case, since it would be very

similar and would not bring much.

16

Nb of CPU Time (sec) Gap Gap (%)
jobs Mean StDev Max Mean StDev Max Mean

n = 20 4.18 2.28 12.46 4.46 3.54 20 4.07
n = 40 13.20 8.58 37.88 7.65 7.65 31 3.36
n = 60 30.66 20.39 83.28 10.26 6.37 41 3.09
n = 80 56.49 38.79 184.43 11.40 7.31 36 2.56
n = 100 86.21 58.83 231.57 14.82 8.78 47 2.70
n = 120 130.96 90.47 378.59 18.17 11.49 72 2.74
n = 140 184.66 130.34 496.85 29.18 21.46 127 3.82

Table 5: Results on the weighted case.

Let us give a tentative explanation of the better e�ciency of the algorithm in the

weighted case. Weights help to di�erentiate between two jobs that could be both se-

quenced, but not together, in an optimal solution in the non-weighted case. Hence, the

objective function will be less "at", i.e., there will be less identical solutions associated

to the same value of the objective function. The Lagrangean relaxation algorithm reaches

more quickly its lower bound, whose quality is improved.

As in the non-weighted case, better results could be obtained by adjusting the param-

eters of the Lagrangean algorithm. We did it again for n = 140, K1 = 1 and K2 = 20.

The average duality gap for the 10 instances reduces from 66.4, when using the generic

parameters (f = 0:4, �1 = 1:6, sd = 40, and red� = 0:9), to 15.8 by modifying only �1

and sd (�1 = 2:6 and sd = 80).

9 Conclusion

This paper considers a single-machine scheduling problem in which the objective is to

minimize the weighted number of late jobs. Based on the de�nition of themaster sequence,

a new and e�cient mixed-integer linear programming formulation is derived. By relaxing

some coupling constraints using Lagrangean multipliers, the resulting problem becomes

easily solvable. A Lagrangean relaxation algorithm is proposed and improved. Numerical

experiments have been performed on an extended set of test instances for the non-weighted

case, and for the weighted case, and the algorithm performs well for problems with more

than 100 jobs.

To our knowledge, our Lagrangean relaxation algorithm is the �rst method proposed

to solve the problem 1jrjj
P
wjUj. We would like to improve the algorithm, in particular

the number of iterations required to obtain the lower bound, by for instance using dual

ascent instead of subgradient optimization when updating the Lagrangean multipliers.

The master sequence has also been used in a branch-and-bound method to solve the

17

1jrjj
P
Uj problem i.e., the non-weighted case [5]. It would be interesting to investigate

other problems where the notion of master sequence could be applied. For instance, we

believe it can be used to tackle the case where jobs can be processed in batches (although

not with families, see Crauwels et al. [2]).

References

[1] Baptiste, P., Le Pape, C. and P�eridy, L. (1998), Global Constraints for Partial

CSPs: A Case Study of Resource and Due-Date Constraints. 4th International

Conference on Principles and Practices of Constraint Programming, Pisa, Italy, To

appear in Lecture Notes in Computer Science.

[2] Crauwels H.A.J., Potts C.N. and Van Wassenhove L.N. (1996). Local Search

Heuristics for Single Machine Scheduling with Batching to Minimize the Number of

Late Jobs. European Journal of Operational Research 90, 200-213.

[3] Dauz�ere-P�er�es, S. (1995). Minimizing late jobs in the general one machine

scheduling problem. European Journal of Operational Research 81, 134-142.

[4] Dauz�ere-P�er�es, S. and Sevaux, M. (1998). Various Mathematical Programming

Formulations for a General One Machine Sequencing Problem. Research report

98/3/AUTO, Ecole des Mines de Nantes, France.

[5] Dauz�ere-P�er�es, S. and Sevaux, M. (1999). An Exact Method to Minimize the

Number of Tardy Jobs in Single Machine Scheduling. Research report 99/6/AUTO,

Ecole des Mines de Nantes, France.

[6] Kise, H., Ibaraki, T. and Mine, H. (1978). A solvable case of the one-machine

scheduling problem with ready and due times. Operations Research 26(1), 121-126.

[7] Lawler, E.L. (1994). Knapsack-Like Scheduling Problems, the Moore-Hodgson

Algorithm and the `Tower of Sets' Property. Mathematical Computer Modelling

20(2), pp 91-106.

[8] Lenstra, J.K., Rinnooy Kan, A.H.G. and Brucker, P. (1977). Complexity of

Machine Scheduling Problems. Annals of Discrete Mathematics, 1 343-362.

[9] Moore, J.M. (1968). A n job, one machine sequencing algorithm for minimizing

the number of late jobs. Management Science 15(1), 102-109.

[10] Parker R.G. and Rardin R.L. (1988). Discrete Optimization, Academic Press.

18

[11] Potts, C.N., and Van Wassenhove, L.N. (1988). Algorithms for Scheduling a

Single Machine to Minimize the Weighted Number of Late Jobs. Management Sci-

ence 34(7), 834-858.

[12] Villarreal, F.J. and Bulfin, R.L. (1983). Scheduling a single machine to mini-

mize the weighted number of tardy jobs. IIE Transactions 15, pp 337-343.

19

