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%FWXVEGX�  Some tally methods for preferential elections are discussed from the following point of view: how well
do they respect a wish from the voter that subsidiary votes in the ballot cannot hurt the chances of the ballot’s top-
ranked candidate? The tally method of Single Transferable Votes, STV, is constructed to obey this principle
without exception, but other defects show up, in particular nonmonotonicity, premature eliminations, and free rides.
Various modifications of the STV are suggested to reduce the election method’s weaknesses without losing too
much of its strengths.  

/I]�[SVHW   Election systems, Single Transferable Votes, monotonicity. 

%17�WYFNIGX�GPEWWMJMGEXMSR  90A28

-RXVSHYGXMSR� � The STV, defined in (1.3) and used in many political elections, is one of the
election methods which allow voters to express their opinions by ranking the candidates. Is the
STV truly democratic? It is nonmonotonic. Thus there may be situations where a voter, i, may
hurt candidate x by giving top-rank to x rather than to z. Similarly the supporters of x may help
x to be elected by a temporary sacrifice of top-ranks, giving some of them to z instead of x. The
nonmonotonicity is linked to eliminations of candidates that occur in the tally procedure of
STV. Voter i hurts x by causing z to be eliminated instead of a third candidate y. The smart
supporters of x will recover their sacrifice by having y eliminated. It is an understandable
thought that the nonmonotonicity casts doubt upon the method’s democratic character. 

The purpose of eliminating a candidate, who is considered chanceless, is to allow the voters who
support this candidate to transfer their support to their second-ranked candidates. One main idea
behind STV is to avoid wasting of votes. It is equally understandable that this purpose is
considered truly democratic.  

Moreover, in comparison with other elections, it is known to be very hard for a voter group to
manipulate the result of an STV-election by exploiting the nonmonotonicity (Nurmi 1992),
because this requires accurate knowledge of the preference profile and accurate execution, as
illustrated below (Example 3).  This is linked to another main idea behind STV: it is designed
to take the ballot rankings very seriously.   

The STV may be seen as a modification of the wide-spread plurality method. The Jenkins
Commision recommends to replace the plurality method in British elections by a new system
with STV in single-seat constituencies as the main component. Presumably the over-all effect
of a change was considered to improve the voting system’s democratic character, despite the
nonmonotonicity. 

The democratic process does not start with the formal election; it starts long before and includes
nomination processes. Also in other election systems, e.g. the Borda count, it may well happen
that a race with candidates A, B and C will be won by A, while a race with A, B and D will be
won by B. Both C and D may be quite chanceless. Nevertheless, if a small party has to decide
between eliminating C or eliminating D in its nomination process, that decision does in fact
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decide between A and B in the election. This gives a manipulative power which may also cast
doubt upon the democratic character of the combined process of nomination and election. 

The frame of reference must be even wider when the task is to choose an election system. The
performance of various voting systems should be compared on background of the entire
political landscape and tradition where the systems are supposed to serve. The recommendation
of STV in the Jenkins report (Jenkins 1998) is based on such considerations. Another example
may be the approval voting (Example 2) with very special ballots; it appears that the main type
of arenas for this method is elections of officers in large professional organizations (Brams and
Fishburn 1992). 

Also in such a wide frame of reference,  shortcomings of the method used in the final formal
election may be relevant. In this broader view, however, the worst consequence of the
nonmonotonicity of STV may well be on the psychological level; it does not sound too good
that a voter does not necessarily support his favorite candidate the best possible way by giving
that candidate top-rank. 

STV is indeed a theme that allows many "embellishments and modifications" (Saari 1994,
p.278). Although many such exist, it should still be worth looking for variations of STV that
avoid or reduce some obvious weaknesses in the standard procedure.   

Section 1 has another look at the classical methods of Borda, Condorcet and Nanson. These
methods are naturally defined in a domain allowing all reflexive relations as ballots. The
election theory deals mainly with their properties when they are restricted to linear (transitive,
complete, and antisymmetric) or to complete and transitive ballots, but in itself such a restriction
is quite artificial. They differ from the STV-variations in the way they treat linear ballots. In
contrast, the STV is designed just for linear ballots, and the tally is governed by the ballot
rankings. The standard STV is seen as very strict in its respect for the voters’ rankings.  

This strictness may cause more weaknesses than necessary. Section 2 suggests to reduce some
recognized weaknesses at the cost of some theoretical relaxation of the strictness. The tax-cut
method, in particular, is designed to reduce a free-riding problem which is ubiquitous in
standard STV. 

In some multi-seat elections there is an additional requirement to fill specified minima of seats
with candidates from specified candidate subsets. A situation with 3 seats to be filled with at
least one "A-candidate" and one "B-candidate" is illustrated with data from an opinion poll; it
raises the problem of how to elect without unnecessarily distorting the political composition of
the 3-seat bench. The method of "intermediate tallies with tax-cuts" also gives a way to arrange
an STV-election with such a restriction.  

The method of "intermediate tallies with tax-cuts" may also be used on the reversed ballot
rankings. Then only candidates who get elected leave the race. By avoiding other eliminations
at least the main source of nonmonotonicity is removed. This STV-variation may also be run
with a single tally, because the transfer mechanism will channel surplus voting power towards
the strongest candidates, and moreover, it can be modified (with "dummy candidates") so that
the monotonicity axiom is satisfied.   
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Let λ be a reflexive binary relation in a set C and define  

P(λ,x,y) = 1 if x λ y,  P(λ,x,y) = 0 otherwise,   x, y  C.                      (1)

The associated binary relations  λ og  λο are defined by 

x λο y if P(λ,x,y) = 1 and P(λ,y,x) = 0,  x λ y if P(λ,x,y) = 1 and P(λ,y,x) = 1         (2)

Consider an election where voter i, i=1, 2, ... , v submits a ballot which is a binary relation φi in
the set C of candidates 1, 2, ... , p.  The tallying procedure defines a map Φ which determines
the electorate’s final binary relation φ in C: 

φ = Φ (φ1, ...., φv)                                                              (3)

The interpretations of P(φi,x,y) = 1, P(φi
o,x,y) = 1, P(φi,x,y) = 1  are, respectively, that voter i

assesses candidate x to be at least as good as, strictly better than, equally good as candidate y in
their pairwise comparison or encounter.  In election theory it is usually assumed that each φi is
one of the p! linear orderings of the candidate set, but other situations may occur. 

([DPSOH��� An election with p candidates is arranged through a series of p.(p-1)/2 debate duels;
after the debate between x and y there is a vote on who was best, or if it was a draw. For all
debates together, a voters reactions give one of 4p(p-1)/2 possible ballots.  3p(p-1)/2 ballots are
complete [i.e. P(φi,x,y) +P(φi,y,x)>0 for all i and for each duel x vs y], which means that all
voters expressed an opinion on all duels.   3p(p-1)/2  ballots are antisymmetric [i.e. P(φi,x,y)
+P(φi,y,x)<2 for all i and for each duel x vs y], which means that no voter assessed any duel as
drawn. 2p(p-1)/2  ballots are both antisymmetric and complete. A ballot φi which contains a cycle
does not necessarily indicate a confused voter.

([DPSOH� �� In approval voting voter i partitions the candidate set, C = Gi Hi, and votes

P(φi,x,y)=1  if and only if   x = y   or    x Gi ,  y Hi ,   otherwise P(φi,x,y) = 0. With p candidates
there are 2p possible ballots. 

����1IXLSHW�[LMGL�EPPS[�EPP�FEPPSXW�� 

Some tallying procedures are naturally restricted to certain types of binary φi. However, the
Condorcet pairing and the Borda count are naturally defined in the most general setting. 
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&RQGRUFHW    Set C(x,y) = Σi P(φi
o,x,y). The Condorcet procedure determines φ = γ where  

x γ y   if and only if   C(x,y) C(y,x)                                                 (4)

The possibility of the Condorcet paradox, i.e. that γ may become nontransitive even if each φi
is chosen as a linear ordering (transitive, complete, antisymmetric) is still central to much work
on election theory.  In order to call a Condorcet cycle  

x1 γ x2,  x2 γ x3, ... ,  xk γ x1  

a paradox, it may be natural to demand that at least one γ can be replaced by γo. Define the
equivalence relation σ by  x σ y  if and only if x=y or if x and y occur together in a Condorcet
cycle. Let (x) be the σ-equivalence class of x. The relation γ induces a well defined linear
ordering γ∗  among these equivalence classes:  then  (x) γ∗ (y)  if and only if  x’ γ y’ for some
x’ (x) and y’ (y). If the Condorcet principle is approved, and a complete and transitive φ is
required, the best one can hope for is a Condorcet extension, i.e. a relation φ such that  

(x) γ∗ (y) and  (x) (y) implies x φo y.  

The IIA-axiom, �,QGHSHQGHQFH�RI�,UUHOHYDQW�$OWHUQDWLYHV�, means that whether x φ y or not is
well defined by the two voter sets {i | x φi y} and {i | y φi x}. The Condorcet pairing is only
slightly generalized by the IIA-axiom. When restricted to linear φi any other non-constant Φ
satisfying the IIA-axiom would have to violate at least one of three other conditions:

PRQRWRQLFLW\ (if x φ y and candidate x is moved upwards on a ballot, we still have x φ y),
QHXWUDOLW\ (switching candidates x and y in all ballots φi leads to switching them in the final
relation φ),  and 
DQRQ\PLW\ (if voters i and j switch ballots, the final relation φ remains unchanged). 

Although IIA generalizes γ, the new possibilities are of limited interest. A method for general
political elections will hardly be accepted unless it is neutral and anonymous. The IIA-axiom
codifies a certain respect for individual ballots; P(φ,x,y) depends precicely on the ballot
statements about x and y: x φi y or y φi x.  Therefore the axiom has didactic value, but for most
practical uses society must search among election methods which violate the IIA. 

Methods that violate monotonicity are actually in common use, although they are sometimes,
and understandably, criticized for this shortcoming (Brams and Fishburn 1991).
Nonmonotonicity gives rise to effects which are considered undemocratic, and also may be
exploited for manipulation. Instead of the IIA one may try other ways to pay reasonable respect
to the ballot statements. How can the tallying procedure respect the individual ballots and still
achieve monotonicity?   

%RUGD    Set B(i,x) = Σz P(φi
o,x,z). The Borda count determines φ = β where  

x β y   if and only if   Σi B(i,x) Σi B(i,y)                                           (5)
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Hence β is necessarily transitive and complete, no matter how the voters choose their φi.  The
same is true of any point-awarding method defined by a nondecreasing function F, i.e. a ranking
of the candidates according to the values of Σi F(B(i,x)). The wide-spread plurality method
corresponds to F(p-1) = 1, F(k)=0 for k<p-1, i.e. giving candidate x 1 point for each ballot where

x φi
o

 y for every other candidate y.  The Borda count is determined by the C(x,y) because 

Σi B(i,x) = Σi Σz P(φi,x,z) = Σz Σi P(φi,x,z) = Σz C(x,z)                              (6)

Usually the Borda count is combined with a demand that each φi is chosen as a linear ordering.
By ranking x as no. 1 and y as no. 2 a voter may unwillingly contribute to the outcome y βο x,
while ranking y as no. 5 (say) instead would suffice to ensure x βο y. It may well be called an
abuse of a ballot when the tallying procedure lets it contribute towards a result contrary to what
the ballot expresses. The incentive to vote "strategically", and to suspect that others do so, is
also obvious. The Borda count obviously satisfies monotonicity, but also in other ways there is
a clear need to protect against ballot abuse and associated strategic voting.

The Borda count was used in figure skating contests (for linear φi),  but according to rule 371
of the International Skating Union from 1994 the contestants are now ranked by the median
B(i,x) over the judges i=1, ..., v (supplemented by various tie-break rules), which is more robust
to strategic voting. The median principle is compared with other principles by Truchon (1998),
who advocates  the Condorcet extension due to Kemeny (1959). 

1DQVRQ    The well-known method of Nanson (1882) is another Condorcet extension. It makes
use of another fundamental idea: HOLPLQDWLRQ of a candidate who comes last according to some
criterion.  Nanson’s method defines φ = ν as follows: eliminate a candidate x with

Σi B(i,x) Σi B(i,z) for all z (a tie-break may be necessary). Recalculate the B(i,z) for the
remaining z, and eliminate again, etc. The last remaining candidate (u) is the (Nanson) winner.
Remove u and do the whole procedure over again to get no. 2 in the Nanson ranking, etc. Clearly
ν is linear. 

Nanson’s method is a compromise between the Borda count and the Condorcet pairing when all

ballots are antisymmetric and complete. Then P(φi
o,x,y)+P(φi

o,y,x) = 1 and C(x,y)+C(y,x) = v

for x y. Hence w is a Condorcet winner (w γ z for all z)  if and only if C(w,z) v/2 for all
z w. Then 

Σi B(i,w) = Σz C(w,z) v.(p-1)/2                                                   (7)

Under our assumption v.(p-1)/2 is the average Borda sum. Hence by (7) w can never be
eliminated unless  Σi B(i,x) = v.(p-1)/2 for all x. In that case assume the tie-break does not
eliminate a unique Condorcet-winner. If γ does not determine a unique (Condorcet) winner,
there is a class (x) winning under γ∗ . All members of (x) cannot be eliminated, because the last
of them would become a unique Condorcet-winner.  

It is known that in the p=3 case, the Borda count is the only member of a family of point-
awarding methods which guarantees that a Condorcet-winner is not bottomranked  (Saari 1994,
p.192). 

≤
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7DOO\LQJ�PHWKRGV�ZKLFK�GLVUHJDUG�EDOORW�WUDQVLWLYLW\    The tallies of Borda, Condorcet and
Nanson are naturally defined for the most general setting with 2p(p-1) possible ballot types. Borda
and Nanson always define complete and transitive relations, but they are usually studied for
elections where all ballots are linear. That does not mean that they are well designed to
interprete and respect a linear ballot as any kind of voter instruction, e.g. that the ballot
statement x φi

o y should be treated as an instruction not to reckon voter i as supporting candidate
y at the cost of candidate x. 

The Borda count is based on a higher aggregation of the ballot data than the Condorcet pairing
(double sums compared to single sums) and it obliterates more of the profile structure. As a
ranking-by-points system, the Borda count cannot be sensitive enough to pick up a cyclical
preference in situations like example 1 even if an overwhelming majority shares it. It is
remarkable that the Borda count preserves enough profile information to define a Condorcet
extension, and that it does so even under weaker assumptions on ballots than in standard theory
(antisymmetry, completeness, but not neccesarily transitivity).    

In normal political elections with a large electorate, Condorcet cycles are rare, so Nanson’s ν
will mostly coincide with Condorcet’s γ and therefore avoid the mentioned abuse of ballots. By
stating x φi y in the ballot, a voter has then done as much as practically possible to avoid the
result y φ x.  However, with a small number of voters or voter blocks as in a committee or a
political assembly, it will happen more often that γ is nontransitive. 

A very different philosophy is behind election methods with the following property: 

5HVSHFW�IRU�EDOORW�UDQNLQJV    If φi ranks candidates c1, c2, c3, ... as no. 1, 2, 3, ... , then for all
r the tallying procedure decides the final ranking of candidate cr before it takes into
consideration the further rankings cr+1, cr+2, ... of  φi. 

Such a tally may be done by an official who puts one candidate at a time on the first or the last
vacant place in the final list. The official asks each voter to name the candidate ranked first
among those not yet listed,  then places one candidate on the final list, and repeats the question. 

����8EPP]MRK�QIXLSHW�JSV�PMRIEV�FEPPSXW

Consider an election with candidates from two equally strong  political wings and from a small
center. Condorcet’s method, and therefore also Nanson’s, will generally let a candidate from the
political center win over any wing candidate with subsidiary support from the opposite wing.
This, of course, is not necessarily a good property; the widespread acceptance of plurality in
single-seat constituencies in elections for political assemblies is certainly based on its ability to
create an assembly with a majority fit for government and a minority fit to oppose it. 

However, even in a multiseat constituency the Condorcet/Nanson methods let a dominant voter
group grab much more than its proportional share of seats. In addition to respecting ballot
rankings as formulated above, an election method should also give an acceptable distribution of
the seats in a multiseat constituency. 
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The STV-tally (Single Transferable Vote, often called Hare’s method) is designed to fill s seats
in a roughly proportional way. Unlike Condorcet’s method, or the derived methods of Borda
and Nanson, STV requires each ballot φi to be a linear ordering of the candidates. The STV-tally
is performed in several rounds. Each round either ends with the election of a candidate who
satisfies a specified  election criterion or, if no candidate satisfies the criterion, ends with the
elimination of a candidate who is ranked last according to some specified elimination criterion. 

STV, as defined below, respects ballot ranking. It has the elimination idea in common with
Nanson’s method, but it also adopts another fundamental idea: 

7KH�EDOORW�ZHLJKW   The weight w(i,r) defines the influence of voter i in round r. It is reduced
whenever voter i is reckoned as having received some satisfaction by the election of a candidate
the voter supported. The voters who gave top rank in round r to a candidate that left the race,
transfer their support w(i,r+1) to their new top ranked candidate in round r+1. Thus   

1 = w(i,1) w(i,2)  .... w(i,r)  ... 0,                                   (8)
  Σi w(i,r) = v - t.v/(s+1),    i=1, 2, ..., v                                        (9)

where t is the number of candidates elected in previous rounds. Round r consists of 3 steps: 

1) Define V(x,r) = {i|xφiy for all remaining candidates y}  and calculate 
W(x,r) = Σi w(i,r),    i V(x,r) 

2) Choose two remaining candidates x and y so that 
W(x,r) W(z,r) W(y,r) for all remaining z. 

3a) If W(x,r) v/(s+1),   elect candidate x to seat no. t+1 and calculate the new weights: 
w(i,r+1) = w(i,r).[1-W(x,r)-1.v/(s+1)]    if    i V(x,r), 
w(i,r+1) = w(i,r)    if    i V(x,r) .  

3b) If W(x,r) v/(s+1),   eliminate candidate y from the race and keep the weights: 
w(i,r+1) = w(i,r) for all i.

Since all φi are linear, each voter belongs to a unique set V(x,r) in round r. By (9), the weight
reductions sum up to v/(s+1). They may be distributed among the voters in other ways. The idea
of 3a  is to impose a "tax" with the same tax rate W(x,r)-1.v/(s+1) for all voters in V(x,r). These
voters  have received a satisfaction in round r by having their top ranked x elected. The taxation
idea turns out to be advantageous in dealing with the free rider problem discussed below. 

Other elimination criteria than 3b may be contemplated. Coomb’s elimination criterion
eliminates the candidate with the highest number of bottom-rankings instead of y.  It favors
compromise candidates. A controversial candidate with 49% topranks, 2 % secondranks and 49
% bottomranks is likely to win a single-seat standard STV election after 3b-eliminations of
other candidates, but is also likely to be the first one eliminated under Coomb’s criterion.  The
Coomb’s STV does not respect ballot ranking, but it does give a weaker protection against ballot
abuse, equivalent to an election official who may ask voters for their top-ranked and bottom-
ranked candidate.  

With multiseat constituencies weight reductions tend to give a roughly proportional
representation for voter groups with sufficiently high weight sums, i.e. size, even if a group’s
first-ranks may be split on several candidates. In a situation as described above, STV will tend

≥ ≥ ≥ ≥ ≥
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to eliminate candidates from the small center, but compensate for this by giving the center
voters influence on the choice between the two wings.  

One essential difference between STV and plurality in single-seat constituencies is that a split
majority does not lose to a united minority, and another that the voters who supported a
candidate in vain still may count through their further rankings. By and large however, the
methods lead to similarly composed assemblies. It is understandable that the Jenkins
Commission recommends single-seat STV (in the report called AV - the Alternative Vote) in
combination with other remedies to avoid too large underrepresentation of smaller groups. The
committee states in section 81 of the report about the AV: "It would fully maintain the link
between between MPs and a single geographical constituency. It would increase voter choice in
the sense that it would enable voters to express their second and sometimes third or fourth
preferences, and thus free them from a bifurcating choice between realistic and ideological
commitment or, as it is sometimes called, voting tactically. There is not the slightest reason to
think that AV would reduce the stability of government; it might indeed lead to larger
parliamentary majorities."

The Jenkins report gives the impression that strict obedience to axioms like IIA, respect for
ballot linearities, or monotonicity, is a lesser concern for politicians than for election theorists. 

��:EVMEXMSRW�SR�XLI�78:�XLIQI

����78:�[MXL�MRXIVQIHMEXI�XEPPMIW�

Pragmatic politicians aside, election theorists will look at the elimination rule 3b as a mixed
blessing. There are two interrelated problems:
 

7KH�SUREOHP�RI�QRQPRQRWRQLFLW\    STV is actually non-monotonic, and it is easy to concoct
examples where strategic voting based on nonmonotonicity may succeed:  

([DPSOH��  Consider an election with candidates A, B, C for a single seat, with profile 
A>B>C : 20, A>C>B : 12, C>A>B : 20, C>B>A : 3+u, B>C>A : 2, B>A>C : 43-u,

where > means "strictly preferred to". A, B and C have, respectively, 32, 45-u and 23+u
topranks. No candidate passes 50% support if u<28. For u=0, ..., 8,  C is eliminated and A wins
52 - 48 against B. For u=10, 11, 12,  A is eliminated and B wins (65-u) - (35+u) against C. For
u=14, ... , 27 B is eliminated and the runoff score is (75-u) - (25+u) for A against C. Increasing
u from 8 to 10 means reduces the support for B but still turns B into a winner, which shows the
nonmonotonicity.   

Suppose that initially u=0. Then the B>A>C voters may discover that they can make B a winner
by letting 10, 11 or 12 of them vote C>B>A instead of B>A>C.  B becomes a winner instead of
A. By making C stronger than A they exploit rule 3b to get A eliminated instead of C, and
prevent A from getting 20 new votes transferred from C. 
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A non-monotonic φ  creates the possibility for strategic voting in example 3. Unfortunately,
such  a possibilitiy is a consequence of the method of eliminations and vote transfer. The
scenario is that the voters supporting candidate x see that x may get elected after a large transfer
of votes from y if y is eliminated, while y may get elected with a large transfer from z if z is
eliminated. The supporters of x may therefore temporarily sacrifice some x-votes to keep z in
the race and capture the support from the y-voters (example 3). 

Strategic possibilities may occur in all nondictatorial systems, but in the case of STV they are
unlikely to occur and are hard to exploit. Investigations of how robust various voting methods
are to strategic voting, gives the best marks to STV (Nurmi 1992). Still the STV may be
improved. The non-monotonicity in example 3 is linked to a 3b elimination in one of the tally
rounds. This particular mechanism can be avoided through eliminating the need for 3b
eliminations. The use of intermediate tallies explained below eliminates the need for 3b-
eliminations. 

7KH�SUREOHP�RI�SUHPDWXUH�HOLPLQDWLRQV    One of the good intentions behind STV is that votes
should not be wasted; a group of voters who is split on several candidates will gradually
concentrate their support on a compromise candidate who gets elected if the group is not too
small. However, STV does not always function as intended, because the strongest compromise
candidate may be eliminated prematurely: 
 
([DPSOH���� With 7 candidates and 100 voters,  assume 

u voters say  a>c> ... ;   40-u voters say  a>b> ... ;   
t voters say  b>c> ... ;  26-t voters say  b>a> ... ;  
2 voters say  c> ... ;  10 voters say  d>c>b> ... ;  9 voters say  e>c>b> ... ;  
7 voters say  f>c>b ... ;  6 voters say  g>c>b> ... .

There are 3 main voter groups; 40 voters support candidate a, 26 support candidate b, and 34
are split on candidates c, d, e, f, g but have c as a strong compromise candidate. Depending on
u and t, candidate c may also appear as a good compromise between a and b. 

In an election for a single seat the election criterion is to obtain  >50 votes.  In round 1 none is
elected, and c is eliminated before the 34-voter group is allowed to concentrate their votes on c.
In the following rounds subsequent eliminations of g, f, e, d transfer votes to b. Finally b is
elected with at least 26+6+7+9+10=58 topranks.  

In an election for two seats the election criterion is to obtain >100/3 votes. In round 1 a is elected
to the first seat with a surplus of 40 - 100/3 = 40/6 votes; voter i for candidate a keeps a weight
w(i,2)= 1/6 for round 2, making the supports for b, c and g, respectively, (196-u)/6, (12+u)/6
and 36/6. None are elected. If u<24, then c is eliminated, and in round 3 or 4 b will get enough
support to be elected.  If u>24, then g is eliminated, and in the following rounds f, e, and d get
eliminated too, transferring all their support to c. Finally c is elected to the second seat.

The pairwise encounter c vs a tallies at (34+t)-(66-t). For t>16 c actually defeats a, who is
elected ahead of c in a two-seat election. 

Notice moreover that a candidate who wins in a single-seat election is not necessarily elected in
a two-seat election.  



Page 10

With lower s, the election criterion v/(s+1) is raised, and a premature elimination of a strong
compromise candidate will occur more often. There will also be more opportunities for strategic
exploitation of nonmonotonicity because a higher stake in the elimination game justifies a
higher initial sacrifice. These weaknesses of the standard STV will be reduced in STV with
intermediate tallies:  

()*-2-8-32���679�ZLWK�LQWHUPHGLDWH�WDOOLHV      If the purpose is to choose s candidates out of
p, then run a sequence of p-s intermediate tallies. Tally first for p-1 seats, among the p-1
successful candidates tally for p-2 seats and so on until s candidates remain. Then each round
within an intermediate tally ends with a 3a (temporary) gain of a seat, a weight reduction and
transfer of the surplus. After p-s intermediate tallies s candidates remain. To get a linear
ordering of the s elected candidates, one may continue as for s=1. The candidate left behind after
intermediate tally no. t is the one who could not get past the v/(s+2-t)-mark of 3a even with a
maximum length of 3a type vote transfers. This candidate is then eliminated in what may be
called a 3a elimination, and a new intermediate tally is done with one candidate less, and with
all initial voter weights reset at 1. 

Let STV with intermediate tallies for s1 and s2 seats choose candidate sets C1 and C2

respectively. Since the tally sequence for s1 seats begins with the tally sequence for s2 seats, it
is clear that

if s1 < s2 , then  C1 C2. 

As example 4 shows, this property is not shared by the standard STV. 

In order to see how STV with intermediate tallies may handle the problems of nonmonotonicity
and premature eliminations, take another look at the profiles of examples 3 and 4: 
 
([DPSOH��    With the profile of example 3, the intermediate 2-seat tally for u= .. ,7, 8, 9, 10,
11, 12, 13, 14, 15, ..  leads to elimination of .. ,C, C, C, C, A, A, B, B, B,  .. respectively. The
right hand column in Table 1 shows the support of the eliminated candidate. The opportunity to
exploit the non-monotonicity is clearly reduced. The set of u-values for successful strategic
voting for B is reduced from {10, 11, 12} (with ties at u=9 and u=13) to {11, 12}.   

([DPSOH��     With the profile of example 4, the intermediate tallies start with election criterion
>100/7.  Candidates a and b are assured "temporary seats" which spend 200/7 votes, leaving a
surplus of 40+26 - 200/7 for  c who gets 39 + 3/7 votes. In subsequent rounds the transfer after
eliminations from g, f, e, d gives candidate c sufficient compensation for the reduced surplus
from a and b. When a, b and c remain, the profile has become: 
40-u: a>b>c ; u: a>c>b ; h: c>a>b ; 34-h: c>b>a ; 26-t: b>c>a ; t: b>a>c       with h=0,1, or 2.  
By now the election criterion has become >100/3 votes, and so a and c are elected for all
parameter values h, t, u. For t>16 candidate c will even win a single-seat election.   

Until candidate z is eliminated the order of the candidates after z in any ballot has not yet
influenced the tallying process. This is true for the standard STV and for the STV with
intermediate tallies. In the intermediate tally STV the elimination of z has been influenced by
the information in the values of P(φi,x,z) for all x. The true spirit of STV, however, is to pay full
attention also to a ballot’s full ranking after candidate z in the race between the other contenders,
including those who would have left the race (through election or elimination) before z under

⊂



Page 11

standard STV. That is done in the intermediate tally STV by running another intermediate tally
with the reduced candidate set, resetting all initial weights as 1.  

����78:�[MXL�XE\�GYXW�

With the technical meaning of "respecting ballot ranking" introduced above, ballot ranking is
clearly respected within each intermediate tally, but not in the total tallying process. On the
other hand, the problems of nonmonotonicity and premature eliminations seem to be reduced in
STV with intermediate tallies. 

Nonmonotonicity is, however, still possible. A precice definition of what is a premature
elimination may be a matter of opinion, but the examples 4 and 6 indicate that the barriers to
succesful gathering of a voter group around a compromise candidate are much reduced. But
another problem still remains: 
     
7KH�SUREOHP�RI� IUHH� ULGLQJ�    An obvious weakness of the STV is a free rider problem.
Consider two voters: voter i ranks x as no.1 and y as no.2,  voter j ranks y as no.1 and x as no.2.
Suppose x is "elected" first in an intermediate tally, then y. Voter i gets his weight reduced
twice, and voter j only once. After two rounds they have obtained the same satisfaction; their
two top ranked candidates are among those succesful in the intermediate tally, but
w(i,3)<w(j,3). Voter j has become a free rider, receiving the same satisfaction as voter i, but the
weight of j is taxed less than the weight of i, and voter j has more influence in the next round.  

The taxation of the voters’ weights in STV obviously brings up a more general free riding
problem. Suppose voter i sincerely would give candidate x toprank, but x is very popular and
will be elected anyway. Voter i may well get the idea that it is better to rank x very low, in order
to avoid unneccesary taxation and to keep more weight for other candidates. 

Free riding can be reduced with the tax-cut variation of STV introduced below. 

()*-2-8-32����78:�[MXL�XE\�GYXW      This method is also a sequence of intermediate tallies,
and each intermediate tally ends with the elimination of one candidate. It is, however, not
performed round by round. Assume there are n candidates in an intermediate tally, n p, and
that B(i,j) is candidate no.j in the ranking of voter i.  Let T(x) (0,1] and set 

S(B(i,k)) = T(B(i,k)) � [1-T(B(i,j))]                                            (10)

S(B(i,k)) is the support from voter i to candidate B(i,k) after the candidates B(i,1), ... , B(i,k-1)
have collected their taxes; T(x) is the tax rate used by candidate x.  The total support for
candidate x is 

S(x) = S(B(i,k))                                                 (11)

There exist unique tax rates which make S(x) = v/n for all x. These tax rates are determined
iteratively, starting at T(x)=1 for all x. Thus at the start S(x)=W(x,1) = the number of firstranks
for x.  If S(x)>v/n, then  x will cut the tax so that S(x) := v/n, i.e.

≤
∈

j 1=

k 1–

∏

B i k,( ) x=
∑
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T(x) := T(x)�S(x)-1�v/n                                                  (12)
Unless all candidates have support v/n, at least one of them will have to make a tax cut. When
candidate x cuts the tax, any other candidate y gets increased or unchanged support.

7+(25(0 1    Consider a process which involves infinitely many tax cuts given by (12) from
all candidates. The process converges:

S(x) v/n for all x and T(x) T*(x) 
and the limit tax rate vector [T*(x)] does not depend on the order in which the candidates cut
their taxes.

Proof: No candidate can afford a tax rate below 1/n, so the convergence is obvious. To see the
uniqueness, it is convenient to include tax cutting processes where a smaller tax cut is allowed
provided the candidate later brings the tax down as far as indicated by (12). Let process I start
with x cutting tax from T(x)1 to T(x)2  and process II with y cutting tax from T(y)1 to T(y)2.  The
tax cut by x from T(x)1 to T(x)2 allows y to follow up with the  cut from T(y)1 to T(y)2. (or even
a larger cut), and vice versa. After the opening cut of one process it is therefore still possible to
break off and reach a stage in the other process. Repeated application of this shows that after
any finite number of steps in one process one may still reach a stage of the other process.
Therefore the two processes cannot have different limit tax rate vectors. 

Let T*(y) T*(x) for all x; then T*(y)=1.  Except for rare cases where a tie-break is needed,
y is uniquely determined. Unless a tie-break is needed y appears as the unique candidate whose
support never passes the v/n - mark despite collecting all transferred surpluses from all other
candidates. The intermediate tally ends with the elimination of y. In practice it suffices to do the
iterations until only one candidate is left with tax rate 1.      

The following table illustrates with the constructed data from examples 3 and 5 how the
eliminations depend on the parameter u for standard STV, STV with intermediate tallies, and
its tax-cut variety. 

Table 1
4VSJMPIW�JVSQ�I\EQTPIW���ERH����IPMQMREXIH�GERHMHEXI�YRHIV�ZEVMSYW�78:�ZIVWMSRW

u A’s limit tax   B’s limit tax   C’s limit  tax eliminated, 
tax-cut STV

eliminated, 
standard STV

eliminated, 
intermed.  STV

 7    .866    .819  1.000     C     C C (30 14/57)

 8    .898    .854  1.000     C     C C(31 32/111)

 9    .937    .894  1.000     C tie A-C C(32 4/27)

10    .986    .944  1.000     C     A C(33 2/21)

11  1.000    .972    .978     A     A A(32 32/51)

12  1.000    .988    .952    A     A A (32 20/21)

13    .995  1.000    .924     B  tie A-B B(32 5/27)

14    .977  1.000    .894     B     B B (32 76/111)

15    .962  1.000    .867     B     B B (32 4/19)

→ →

≥
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The set of u-values which correspond to successful strategic voting is reduced from the standard
STV-case (ties at u=9 and u=13) to much shorter intervals. The last column also shows the
support for the eliminated alternative. 
Clearly each intermediate tally in the tax-cut STV satisfies a weaker version of the "respect for
ballot ranking" axiom: 

:HDN�UHVSHFW�IRU�EDOORW�UDQNLQJV     If φi ranks candidates c1, c2, c3, ... as no. 1, 2, 3, ... , the
tallying procedure must have decided that candidate cr will not be eliminated before it takes into
consideration the further rankings cr+1, cr+2, ... of  φi .

'XPP\�FDQGLGDWHV This version of tax-cut STV include a number of dummy candidates.  We
make the technical assumption, in the proof of theorem 2, that at least half of the candidates are
dummies, and that they come after all real candidates in every ballot. With the limit tax rate
vector [T*(x)] each voter has been taxed at most 50% before coming to the dummy candidates.   

$�PRQRWRQLFLW\�SURSHUW\��If voter i decides to interchange two consecutive candidates x and
y, originally ranked as no. j and no. j+1 in ballot φi ,  y will collect more tax whatever the tax-
rates are. However, it is not obvious that this transposition never can hurt y in the end, because
most likely all the limit tax-rates will change as a consequence of this neighbor transposition in
a single ballot. Fortunately, the natural result is true, at least under the mentioned condition:

8,)36)1���  Let at least half of the candidates be dummies, ranked after the real candidates in
every ballot. Then each intermediate tax-cut tally is monotonic on the real candidates.        
  
Proof: Consider first a situation where real candidate q has total support v/n + ∆, dummy
candidate k has v/n - ∆, and all others have v/n. Assume ∆ is small, so that the tax-cuts are
negligible in comparison to the tax-rates. Consider a "basic step" where q starts with a maximal
tax-cut to keep a support of v/n and then all candidates except q and w, w being a real candidate
different from q, are allowed to cut taxes. In the limit 

q has accumulated a new surplus α∆ and w has β∆ with α + β < 1, 
whereas  (1- α - β)∆ has been used to reduce the deficit of candidate k.

After q’s initial tax-cut at least ∆/2 will become additional support for the dummies, and tax
reduction from a dummy candidate can give increased support only to other dummy candidates.
Therefore the inequality is sharpened to 

    1 - α - β > 1/2,  i.e.  α + β < 1/2 

Consider next a process consisting of basic steps where q through tax-cuts get rid of the surplus
∆. This process transfers to w an additional support of 

and candidate q has been able to cut taxes corresponding to a surplus amounting to

If instead w has a surplus v/n + ∆’, k has v/n - ∆’, and all others have v/n, then there is a similar
basic step after which q has v/n + δ∆’, and w has accumulated a new surplus γ∆’, γ + δ < 1/2.
After a process of such basic steps 

q has additional support , and w has cut taxes corresponding to a surplus  

Consider finally a sequence of processes which shuffles a diminishng surplus back and forth
between q and w, thus gradually transferring ∆ from q to k. After the first process w has surplus

∆’ = , after the second q has  etc. During the sequence q and w have cut

taxes corresponding to total surpluses of

1 α α 2 α3 …+ + + +( ) β ∆⋅ ⋅ β
1 α–
------------ ∆⋅=

1 α α 2 α3 …+ + + +( ) ∆⋅ 1
1 α–
------------ ∆⋅=

δ
1 γ–
----------- ∆’⋅ 1

1 γ–
----------- ∆’⋅

β
1 α–
------------ ∆⋅ δ

1 γ–
----------- β

1 α–
------------ ∆⋅ ⋅
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   and

 , respectively.

Observe that candidate q, who posesses the initial surplus ∆, has an advantage over w: during
the final sequence candidate w gets rid of surplusses adding up to β/(1-γ) times the surplus total
that candidate q gets rid of, and because   β + γ  < α + β + γ + δ <1,  we have

β/(1-γ) < 1. 

Assume now the theorem is false. Then there exists a profile where voter 1 (say) ranks x [y] as
no. j [j+1] and y defeats z, but transposing x and y in ballot 1 makes z defeat y. Allow voter 1
to give weight 1-s [s] to the original ballot [the ballot after transposition], . At the "s-
profile",  for an arbitrary tax vector [T(c)]  voter 1 supports 

x with  (1-s).T(x).P + s.T(x).[1-T(y)].P = T(x).P - s.T(x).T(y).P       and 
y with  (1-s).T(y).[1-T(x)].P + s.T(y).P = T(y).[1-T(x)].P + s.T(x).T(y).P

where P = Π[1-T(B(1,u))], u=1..j-1. For (i,c) {(1,x,),(1,y)} the support from i to c does not
depend on s. 

Choose s (0,1) to make a tie between y and z, i.e. so that T*(y)=T*(z) at the s-profile, and
choose a small ε so that  

T*(y)<T*(z) at s-ε/2   while   T*(z)<T*(y) at s+ε/2 .

We want to derive a contradiction to these inequalities. Modify first the tax-cut process so that
the support for x [y] is calculated at s+ε/2 [s-ε/2], i.e. in the least favorable way. For ε small
enough, the limit tax vector [T(c)] of the modified process is as close as one wants to the limit
tax vector [T*(c)] at s, and we may assume that 

at  s-ε/2   x has total support v/n + ε.T(x).T(y).P   while   y has v/n  (situation L1),   and
at  s+ε/2  y has total support v/n + ε.T(x).T(y).P   while   x has v/n  (situation L2);

here n is the number of candidates in the intermediate tally and P is similar to P above.
Moreover,

any other candidate c with limit tax rate T*(c)<1 at s has T(c)<1 and total support v/n. 

The surplus support ∆ = ε.T(x).T(y).P that must be removed by further tax-cuts is the same at s-
ε/2 and at s+ε/2, but we shall see that it benefits y most to be the one who possesses the surplus. 

In order to do this comparison, treat the situation L1 at profile s-ε/2 as follows: Candidate x
starts with a tax-cut that gets rid of the surplus ∆, and thereafter all candidates except y and z
are allowed to cut taxes. In the limit situation (L3 say), y [z] posesses a surplus Α∆ [Β∆] with
A+B < 1, and no other candidate has a surplus.  

In the final pairwise tax-cut contest between y and z, they start at tax-rates T(y) and T(z)
respectively, as close to T*(y)=T*(z) as we like. 

In L2 at profile s+ε/2,  y [z] has surplus ∆ [0], and 
in L3 at profile s-ε/2,   y [z] has surplus Α∆ [Β∆] with A+B < 1 .   

From L2 y cuts tax more than z in getting rid of ∆; from L3 y gets a smaller advantage from
getting rid of Α∆, at the same time as z has an advantage in getting rid of Β∆. So we have the
desired contradiction.  

1
1 α–
------------ 1 β δ⋅

1 α–( ) 1 γ–( )⋅
-------------------------------------- β δ⋅

1 α–( ) 1 γ–( )⋅
-------------------------------------- 

  2
…+ + + 

  ∆⋅ ⋅ 1
1 α–
------------ 1 α–( ) 1 γ–( )

1 α–( ) 1 γ–( ) βδ–
---------------------------------------------- ∆⋅ ⋅=

1
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5HPDUN    It is not clear if one can drop an assumption of dummy candidates in theorem 2. It
has only been used to derive the inequalities  α + β < 1/2 or γ + δ < 1/2, and they are only used
to establish the inequality β + γ  < 1.�Dummy candidates may actually make a difference in an
almost even pairwise contest; in the intermediate tally 1 of table 2 below, FrP beats Krf with 0,
1 or 2 dummies added at the end, while KrF beats FrP with 3 or more dummies. 

����$Q�DSSOLFDWLRQ�RQ�UHDO�GDWD

174 students at the author’s institution ranked 8 parties at the election day 1993. Aspects of these
data have been analyzed by B-D. H. Syversten and the author (Stensholt 1996). Taking the data
as the profile in an election with one imagined candidate from each party, we get the following
result, where the limit tax rates are given in % : 

 Table 2
2,,�HEXE�������%T��*V4��,��/V*��6:��7T��7:��:���8E\IW�GLEVKIH�MR�IEGL�VSYRH�EVI�KMZIR�MR���

The parties may, in this order, be briefly characterized as social democrat, market liberalist,
conservative, christian, socialist, agrarian, socialist, and liberal. H has much higher support in
this particular student group than in the nation as a hold. The imagined candidates leave the race
in the order RV, Sp, V, SV, KrF, FrP, Ap, and H emerges as the winner. FrP’s strength comes
mainly from nr. 2-rankings after H. In a multiseat election with several candidates from each
party FrP would hardly do as well as it appears because H might gain more seats before
transferring any remaining surplus to FrP.

The final ranking is H>Ap>FrP>KrF>SV>V>Sp>RV.

Tables 3a-c show how the support from three selected ballots are distributed on the candidates
in each intermediate tally, with the limit taxes of Table 2. Voters 10, 11, and 118 have the
preference orders

H>FrP>Ap>V>KrF>SV>Sp>RV,
FrP>H>Ap>KrF>V>Sp>SV>RV,   and
RV>SV>V>KrF>Sp>Ap>H>FrP,  respectively.

Voter 10 is a main-stream voter; except in intermediate tally no. 3 the support from voter 10
trickles down the line to the last candidate. Voter 118 is an anti-establishment voter, frequently
putting all weight behind the last candidate.  

Voters 10 and 11 both have Ap in third place, after H and FrP; their support for Ap is therefore
always the same even though voter 10 says H>FrP and voter 11 says FrP>H. Similarly their
supports for KrF and V together is the same as long as both parties remain in the race. 

taxes     Ap    FrP      H  KrF    RV    Sp    SV    V

int.tal.1   18.754   30.641   15.773   32.633 100.000   42.853   43.042   34.966

int.tal.2   26.814   49.618   20.109   66.431 100.000   84.033   73.056

int.tal.3   32.402   61.482   23.167   86.029   95.353 100.000

int.tal.4   37.613   73.956   27.967   91.018 100.000

int.tal.5   46.971   99.477   34.059 100.000

int.tal.6   59.846 100.000   44.114

int.tal.7 100.000   73.109
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Table 3a
2,,�HEXE�������%T��*V4��,��/V*��6:��7T��7:��:���(MWXVMFYXMSR�SJ�XLI�WYTTSVX�JVSQ�ZSXIV��� 

Table 3b
2,,�HEXE�������%T��*V4��,��/V*��6:��7T��7:��:���(MWXVMFYXMSR�SJ�XLI�WYTTSVX�JVSQ�ZSXIV���

Table 3c
2,,�HEXE�������%T��*V4��,��/V*��6:��7T��7:��:���(MWXVMFYXMSR�SJ�XLI�WYTTSVX�JVSQ�ZSXIV����

8E\�GYX�78:�[MXL�GSRWXVEMRXW     Assume the candidate set is partitioned, C = A B  (e.g. in
male and female candidates) and that the task for an STV election is to fill s seats so that both
A and B obtain at least a guaranteed number of seats.  With the data from above,  let A = {Ap,
FrP, H, KrF}, B = {RV, Sp, SV, V}. Let s=3 and assume both A and B must be represented.  

voter 10 3) Ap 2) FrP 1) H 5) KrF 8)RV 7) Sp 6) SV 4) V

int.tal.1 .109557 .258078 .157730 .100727 .067685 .050756 .089502 .165961

int.tal.2 .107927 .396401 .201087 .052727 .004254 .022390 .215211

int.tal.3 .095892 .472383 .231673 .000000 .000000 .200050

int.tal.4 .070570 .532711 .279667 .106537 .010513

int.ele.5 .001618 .655968 .340585 .001827

int.tal.6 .000000 .558862 .441137

int.tal.7 .268907 .731092

voter 11 3) Ap 1) FrP 2) H 4) KrF 8) RV 6) Sp 7) SV 5) V

int.tal.1 .109557 .306408 .109400 .154884 .067685 .089111 .051147 .111803

int.tal.2 .107927 .496176 .101312 .195694 .026644 .000000 .072244

int.tal.3 .095892 .614821 .089235 .172102 .000000 .027948

int.tal.4 .070570 739535 .072843 .106537 .010513

int.tal.5 .001618 .994774 .001779 .001827

int.tal.6 .000000 1.00000 .000000

int.tal.7 .268907 .731092

voter 118 6) Ap 8) FrP 7) H 4) KrF 1) RV 5) Sp 2) SV 3) V

int.tal.1 .000000 .000000 .000000 .000000 1.00000 .000000 .000000 .000000

int.tal..2 .000000 .000000 .000000 .028580 .014442 .840326 .116651

int.tal.3 .000000 .000000 .000000 .000000 .953534 .046465

int.tal.4 .000000 .000000 .000000 .000000 1.00000

int.tal.5 .000000 .000000 .000000 1.00000

int.tal.6 .598464 .224403 .177132

int.tal.7 1.00000 .000000

∪
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If the constraint is disregarded, H, Ap and FrP are elected in this order. To obey the constraint,
one may eliminate FrP. However, it is not clear that SV, i.e. the B-candidate who stayed longest
in the race, should be elected instead of FrP. That might change the political character of the
election result more than necessary. The favorite B-candidate among the voters who supported
FrP in vain may well have been eliminated prematurely, i.e. before SV. 

Instead one may run a new single-seat election with all B-candidates, and let each voter keep
the weight w(i,3) after the ranking of H and Ap ahead of FrP in a 3-candidate race. In particular,
voters 10, 11 and 118 start with weights 0.558862,  1.0000,  0.224403, respectively. All voters
start with one of these weights or with 0.401535 (= 1 - .59846); the latter being the weight of
those with ranking Ap>FrP>H. The weight sum is v/3 = 58, and in the new intermediate tallies
the successive criteria are 58/4, 58/3, 58/2.  

The elected B-candidate will, according to the voters’ opinion, be the best possible political
replacement for FrP. Applying tax-cut STV on this 4-candidate the tally is as follows:

Table 4
4IVGIRXEKIW�GLEVKIH�F]�XLI�&�GERHMHEXIW�[LIR�XLI�ZSXIVW�GEVV]�[IMKLXW�JVSQ�XLI�QEMR�XEPP]��

Candidate V emerges as the clear winner, and the 3 seats go to H, Ap and V. 

6IZIVWIH� XE\�GYX� 78:    The nonmonotonicity in the STV variations discussed above is
caused by eliminations. The idea behind the associated strategic voting was to obtain transfer of
votes to a candidate x by the elimination of a candidate y, who most likely will be politically
close to x. Such eliminations are avoided when the tally is based on the reversed rankings for
each voter, because then only elected candidates disappear from the race. Table 5 illustrates this
on the real data discussed above. 

Table 5
2,,�HEXE�������%T��*V4��,��/V*��6:��7T��7:��:���6IZIVWIH�XE\�GYX�78:�

taxes     RV    Sp    SV    V

int.tal.1 100.000 44.301 52.159 35.477

int.tal.2 78.028 100.000 58.328

int.tal.3 100.000 81.966

taxes     Ap    FrP      H  KrF    RV    Sp    SV    V

int.tal.1   73.076  28.907 100.000  34.474  15.054  25.207  23.459  31.122

int.tal.2 100.000  38.673  49.837  17.724  32.922  29.918  43.532

int.tal.3  59.202 100.000  22.429  51.351  45.561  76.744

int.tal.4  74.920  27.495  68.298  62.296 100.000

int.tal.5  96.995  36.512 100.000  90.077

int.tal.6 100.000  45.282  86.958

int.tal.7  58.389 100.000
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The final ranking becomes H>Ap>KrF>V>Sp>FrP>SV>RV. Now a high limit tax-rate is better
than a low one. The reversed tax-cut STV gives higher priority to avoid the "worst" candidate
than to elect the "best". Table 5 indicates that it favors candidates in the political center, as is
also the case with the Coombs variation of STV. The results in Table 5 may be compared to
those of Table 2. The candidates KrF, V, Sp, generally recognized as the political center, move
up 1+2+2 steps, the right wing candidate FrP and the left wing candidate SV move down 3+2
steps. 

Starting from the bottom of the ballot, a voter gives "anti-support" to the candidates, and a
candidate x starts to cut the tax (i.e. reject more anti-support) when the criterion S(x) = v/p is
reached. 

As shown in table 5, only elected candidates leave the race; after intermediate tally no. 1 H
emerges as the winner, and is removed from the further contest. The strategy of example 3 is
not possible with the reversed STV. The main cause for nonmonotonicity has been removed and
associated opportunity strategic voting reduced, because when a candidate leaves the race, it is
by being elected, and one more seat becomes occupied.  

An obvious idea for strategic manipulation is to give a candidate too many bottomranks to
remain until the end. A determined avoid-H-group of more than 1/8 of the voters can achieve
their goal by strategically ranking H last; that forces H to reduce the tax below 100%, and some
other candidate will get first place in the final ranking. Generally, with p candidates and v
voters, a group of more than v/p voters could prevent the election of a candidate. 

There are also some obvious protective measures. In a single-seat constituency the party H may
enter several candidates; it is hard for the conspirators to hit several targets simultaneously,
because their voting power gets reduced every time they succeed in preventing the election of
one H-candidate. 

One may also consider running intermediate tax-cut tallies "from the top" until the number of
remaining candidates is small enough to make such manipulation unrealistic, and then pass to
the reversed rankings. 

8VLQJ�D�VLQJOH�WDOO\   In a muliti-seat constituency, the individual candidate would get some
protection against strategic bottom-ranking if there was only the first of the planned
intermediate tallies, i.e. so that the final ranking would be H>Ap>KrF>V>FrP>Sp>SV>RV. It
would take a larger anti-H group to make H’s limit tax-rate so low that H does not gain anyone
of several seats. 

Finally we remark that the first intermediate tally alone, in comparison with standard STV,
avoids premature eliminations, reduces free riding, but still transfers unused voting power, and
it can be made monotonic: 

'36300%6=�83�8,)36)1���   A reversed tax-cut-STV with a single tally is monotonic on the
set of real candidates if at least one half of the candidates are dummies, and each ballot starts
with the dummies. 
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:HLJKW�UHGXFWLRQV     In a constituency with s>1 seats it is also possible to incorporate the idea
of weight reductions in the reversed tax-cut STV, electing one candidate at a time. Let w(i,t) be
the initial weight of voter i in tally no. t, and let w*(i,t) be the antisupport from voter i to the
candidate elected in the tally. Then 

Σi w*(i,t) = [p+1-t]-1 . Σi w(i,t)                                                         (13)

where p is the number of candidates. The initial weights are normalized to give the same sum
as before election to seat no. t in the standard STV. Then 

Σi w(i,t) = v . [1-(t-1)/(s+1)]                                                             (14)

where v is the number of voters. New initial weights will be assigned by means of a formula,

w(i,t+1) = a(t) . w*(i,t) + b(t)                                                           (15)

with nonnegative a(t) and b(t). The term a(t) . w*(i,t) should be interpreted as a compensation to
voter i proportional to the frustration the election in tally t caused voter i; it will have an effect
on the distribution of seats similar to the weight reductions through taxation in standard STV.  

Summation over i in (15), substitution of (13) and (14), and multiplication with (s+1)/v yield

1 - t/(s+1) = a(t) . [1 - (t-1)/(s+1)].[p+1-t]-1  +  b(t)                               (16)

Letting the maximal weight be 1, as in standard STV, we get by (15)

1 = a(t) . 1 + b(t)                                                               (17)

From (15) and (17) we have 

1 - w(i,t+1) = a(t) . (1 - w*(i,t))                                                       (18)

while (16) and (17) determine

a(t) =                                                             (19)

As in standard STV the average w(i,t) decreases by 1/(s+1) when t increases by 1, but it happens
that w(i,t+1)>w(i,t). This is the case when w*(i,t) = w(i,t) < 1, i.e. when the bottomranked
candidate in ballot i was elected in tally no. t.  

In table 6 the same data are used again to elect s=3 candidates with reversed tax-cut STV and
weight reductions. 

Table 6
2,,�HEXE�������%T��*V4��,��/V*��6:��7T��7:��:�����WIEXW��6IZIVWIH�VEROMRKW�ERH�[IMKLX�VIHYGXMSRW�

taxes     Ap    FrP      H  KrF    RV    Sp    SV    V

int.tal.1   73.076  28.907 100.000  34.474  17.909  25.207  23.459  31.122

int.tal.2 100.000  37.679  49.957  19.110 33.705  30.709  44.146

int.tal.3  57.923 100.000  22.687 52.316  45.694  77.294

t p 1 t–+( )⋅
s p 1 t–+( )⋅ p s– 1–+
----------------------------------------------------------
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In the second tally the voting power increases with the voter’s level of frustration after the
election of H in the first tally. Maximal frustration is experienced by a voter i who ranked H last:
then w*(i,1)=1 in (15). The election of H in the first tally strengthens the opposition to candidate
FrP. In the second tally FrP is forced to cut taxes from 38.673 % in Table 5 to 37.679 % in Table
6, and in the third tally from 59.202 % to 57.923 %. All the other candidates are somewhat better
off. The example indicates that weight reductions are not likely to change the results in a multi-
seat reversed tax-cut STV unless there are two or more candidates with almost equally strong
electoral support.   
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