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Abstract

This paper complements theoretical studies on the Kelly rule in evolu-
tionary finance by studying a Darwinian model of selection and repro-
duction in which the diversity of investment strategies is maintained
through genetic programming. We find that investment strategies
which optimize long-term performance can emerge in markets pop-
ulated by unsophisticated investors. Regardless whether the market
is complete or incomplete and whether states are i.i.d. or Markov,
the Kelly rule is obtained as the asymptotic outcome. With price-
dependent rather than just state-dependent investment strategies, the
market portfolio plays an important role as a protection against severe
losses in volatile markets.
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1 Introduction

In this paper, we pursue a Darwinian approach to the study of the evolution
of investment strategies in financial markets with short-lived assets. The
model comprises the two main processes, selection and reproduction, in a
genetic programming framework. According to this approach, center stage
is occupied by the population which embodies the investment skills of many
individual strategies. Our investors are simple-minded and unsophisticated
in the sense that they follow preprogrammed behavior rules which are the re-
sult of mutations and crossovers. This simplicity is a key factor, as it opens
up the possibility of studying, in quite a realistic context, the validity of
equilibrium predictions derived from theoretical models that impose strong
assumptions on the market dynamics, as well as on individuals’ rationality
or learning behavior. Our approach complements these models by replacing
their rationality assumptions with a Darwinian selection mechanism in which
investment strategies emerge with a degree of risk aversion that is appropri-
ate for survival. This approach also provides information on the stability
properties of equilibria.

In the absence of a reproductive process that creates diversity, the market
selection dynamics for short-lived assets are well-studied from an evolution-
ary perspective (Amir et al., 2005; Evstigneev et al., 2002 and 2006), as
well as from a Bayesian viewpoint (Blume and Easley, 1992). The selection
pressure in the model considered here is provided by the wealth dynamics
which give investment strategies that accumulate more wealth than others a
stronger impact on market prices and allocations. Kelly (1956) proved that if
markets are complete and consist only of Arrow securities, the rule of “bet-
ting one’s beliefs” eventually accumulates all wealth. This rule prescribes
dividing wealth across assets according to the probability of their paying off.
In incomplete markets, the Kelly rule generalizes to the strategy of setting
portfolio weights equal to the assets’ expected relative payoffs (Hens and
Schenk-Hoppé, 2005). The Kelly rule always has a non-negative growth rate
relative to the market, and its growth rate is strictly positive if the other
investors do not hold the market portfolio, which yields zero relative growth.
Moreover, if relative asset prices are given by the portfolio weights of the
Kelly rule, this strategy corresponds to the log-optimal investment (see Al-
goet and Cover, 1988; Hens and Schenk-Hoppé, 2005). In summary, these
papers find that the Kelly rule is selected by the market, in the sense of
accumulating total market wealth in the long run. However, these results
hinge on restrictive assumptions: either there is an investor who follows the
Kelly rule from the beginning, or there is a Bayesian learner with logarithmic
preferences whose prior includes the true model of the economy.
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Related studies on market selection within general equilibrium models
provide less clear-cut results. In dynamically complete markets, the Bayesian
learner with the most accurate beliefs prevails in the long run, regardless of
risk preferences (Blume and Easley, 2006; Sandroni, 2000). Since only be-
liefs matter for survival in complete markets, the Kelly rule does not play
any prominent role in this model. For incomplete markets, even the link
between the accuracy of beliefs and survival does not hold in general. Blume
and Easley (2006) provide an example in which an agent with wrong beliefs
drives out a trader with correct beliefs, even though the latter maximizes the
logarithmic growth rate of wealth. The agent with incorrect beliefs judges
returns too optimistically in relation to the true probability measure and
“outsaves” the agent with correct beliefs. In complete markets, Pareto opti-
mality of the equilibrium allocation precludes this from happening.

Research on the performance of rational versus irrational traders, as well
as the price impact of the latter, is also closely related to this paper because
traders are characterized by rules of behavior. De Long et al. (1990 and
1992) show that noise traders can survive in markets and impact the prices
in the long run. Survival of a trader, however, is not a necessary condition
for price impact, as clearly demonstrated by Kogan et al. (2006). They find
that, even if a trader’s wealth tends to zero, he can influence prices in the
long run through his impact on the state-price density in states with low
payoffs.

None of these results can be regarded as satisfactory from an applied point
of view. First, the general equilibrium approach to market selection does
not offer robust results on asset prices and their long–run dynamics. Since a
trader with an arbitrary (standard) utility function can dominate the market
in the long term, prices are not pinned down. Second, neither the general
equilibrium approach nor the existing literature on the Kelly rule allows for
the entry of new investment strategies or the exit of unsuccessful ones. Third,
one cannot construct the Kelly rule without sufficient information about asset
payoffs and underlying probabilities. Fourth, without this information it is
not possible to construct an appropriate prior and Bayesian learning might
fail. Finally, the chances of seeing the Kelly rule emerge in a market in
which the traders do not have any knowledge of the theoretical results might
be slim.

The approach used here provides an evolutionary finance model in which
these shortcomings are overcome. We allow the set of investment strategies
to develop over time in a Darwinian fashion, using a genetic programming
algorithm (Koza, 1992; Smith, 1980) to model the evolutionary process. In-
vestment strategies are represented as computer programs, and new invest-
ment strategies are produced by genetic recombination of strategies that have
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performed well in the past. This maintains diversity in the pool of investment
strategies and occasionally produces new strategies with superior capability
to generate wealth for those investors who adopt them.

Genetic programming belongs to a tradition in computer science which
employs the principles of Darwinian evolution to breed artificially intelligent
agents who can solve complex tasks (Holland, 1975). A pioneering appli-
cation in finance is Arifovic (1996)’s analysis of exchange rate fluctuations
in an overlapping generations economy. Following Neely et al. (1997) and
Allen and Karjalainen (1999), there is a growing literature on the usage of
genetic algorithms in identifying profitable trading rules in financial mar-
kets. In a related paper, Lensberg (1999) analyzes a special case of Blume
and Easley (1992)’s investment model in a genetic programming framework
and finds that surviving behavior rules indeed act as expected log-utility
maximizers with Bayesian updating.

Our model describes a situation where investors progressively improve
their skills without Bayesian rationality or other sophisticated learning pro-
cedures. This is possible because investor skill is tacit knowledge, acquired
through imitation and repeated trial-and-error, as emphasized by Polanyi
(1967). Successful investors in our framework are like Friedman (1953)’s
billiard players who manage to get it right, but cannot explain how.

We model the financial market as a Shapley-Shubik market game (Shap-
ley and Shubik, 1977). This allows us to focus on the strategic aspects of
portfolio choice while abstracting from details of implementation. Each agent
has an investment strategy which is used to select portfolio weights. These
weights may depend on information about the current state of the economy
and on historical price information, but the agents must make their decision
without definite knowledge about the prices that prevail when their decision
is implemented in the market. Short selling is not permitted. This excludes
one influence that is capable of correcting prices, although, as shown by De
Long et al. (1990 and 1991), this does not necessarily occur. In each new
period, each agent carries over a portfolio of asset holdings from the previous
period and receives state contingent dividends. The dividends are reinvested
in fresh assets, each of which becomes available in a fixed unit supply. The
Shapley-Shubik mechanism clears the market by simply equating the market
capitalization of each asset (its price) to the total wealth invested in it.

All of this is—by and large—faithful to the original setting proposed by
Kelly (1956), and yet it is in contrast to the general equilibrium approach.
However, there is a close relation to the latter. Market game equilibria
converge to competitive equilibria as the number of traders increases (Shapley
and Shubik, 1977), and any equilibrium price sequence can be mimicked
within our framework when the portfolio weights are allowed to be time- and
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history-dependent (Amir et al., 2005).
We perform four sets of experiments in which genetic programs are sup-

plied only with information about the current state of the economy. The
experiments differ with respect to the market structure and the fundamen-
tal stochastic process. The findings are positive throughout. The Kelly
rule emerges from the population of genetic programs in all experiments.
Throughout a transitory period, however, the market is closer to the theoret-
ical equilibrium than are the individual investment strategies, an observation
that is in line with experimental findings (see Bossaerts et al., 2005). The
information spreads efficiently through the population so that, eventually,
the majority of the population follows the Kelly rule, i.e., convergence of
market and strategies prevails. In this sense the optimal investment strategy
is indeed learned. The findings are robust with respect to the level of noise
that is generated by mutation, crossovers and the inflow of wealth.

The impact of the availability of price information is studied in detail
within one of these experiments. In that setting, the Kelly rule coincides
with the growth-optimal investment, which is independent of market prices
even though it depends on the state. From a genetic programming perspec-
tive, the problem becomes considerably harder to solve because the number
of inputs to the decision problem increases from 2 (state and asset) to 5
(state, asset and three prices). Market prices and strategies still converge
to those predicted by the Kelly rule, but the transitional dynamics and suc-
cessful investment styles are qualitatively different. An analysis of wealthy
genetic programs shows that the market portfolio plays an important role.
Purchasing the market portfolio ensures that a constant share of the total
wealth is maintained and low levels of wealth are avoided. This increases a
strategy’s chance of survival by reducing the probability of being deleted by
the genetic recombination process. If state-contingent market clearing prices
are perfectly anticipated, such a strategy neither loses nor gains in the mar-
ket dynamics. In volatile markets, there is slippage, but even an approximate
market portfolio provides considerable downside protection.

This study is numerical, and one might ask whether analytical results
exist that would put more solid ground under our findings. From a mathe-
matical perspective, the major challenge—and also the main departure from
the model considered in Amir et al. (2005)—arises from endowing newly cre-
ated strategies with wealth. This process depends on the state of the market
rather than being an exogenous and purely stochastic event. Given that the
analysis in Amir et al. (2005) is quite sophisticated, analytical results do not
appear to be straightforward. Moreover, Amir et al. (2005) and related pa-
pers by Blume and Easley (1992) and Evstigneev at al. (2002) only provide
results on the asymptotic dynamics of the basic model. They neither study
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transient behavior nor provide estimates on the speed of convergence for
the short- and medium-term. Our paper, however, is particularly concerned
with these two issues. Particular emphasis is placed on the properties of the
wealthiest investment strategy where little or nothing is known, in general,
because of its highly path-dependent nature.

The remainder of the paper is organized as follows. Section 2 presents
the Darwinian model of a financial market in three steps: wealth dynamics,
2.1, investment strategy dynamics, 2.2, and implementation of the genetic
algorithm, 2.3. The experiments are presented in Section 3: General results
are given in 3.1, and a detailed analysis of the complete market with Markov
states is provided in 3.2. The case of price-dependent strategies is considered
in Section 4. Section 5 concludes.

2 A Darwinian Finance Model

This section introduces an evolutionary model of a financial market with
short-lived assets. The model incorporates the two Darwinian processes of
selection and reproduction. Selection is given by the wealth dynamics among
a fixed set of investment strategies, and reproduction imposes a dynamic
structure on the set of strategies itself. Both processes are captured here by
implementing the model using genetic programming.

2.1 Wealth Dynamics

We briefly recall the evolutionary finance model studied in Amir et al. (2005),
Evstigneev et al. (2002 and 2006) and Hens and Schenk-Hoppé (2005). This
model describes the wealth dynamics among a given pool of I investment
strategies that interact in a financial market. Time is discrete, t = 0, 1, 2, ....
There are K assets with random payoffs Dk(s) ≥ 0, k = 1, ..., K, with∑K

k=1 Dk(s) > 0. Here s = 1, ..., S denotes the state of nature. Each asset
is short-lived and in fixed supply of one unit. An investment strategy is a
sequence of time- and history-dependent vectors of portfolio weights λi

t =
(λi

1,t, ..., λ
i
K,t), λi

k,t ≥ 0 and
∑K

k=1 λi
k,t = 1.

The price of asset k at time t is given by qk,t := λk,twt =
∑I

i=1 λi
k,t w

i
t,

i.e., qk,t is equal to the total amount of wealth invested in asset k. Investor
i’s portfolio holdings in asset k is determined as λi

k,t w
i
t/λk,twt = λi

k,t w
i
t/qk,t

which is a fraction of the one unit supplied. Each strategy’s wealth in the
next period is determined by the total receipts of random asset payoffs which
are distributed according to the portfolio holdings.
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The evolution of the distribution of wealth wt = (w1
t , ..., w

I
t ) across in-

vestment strategies is governed by

wi
t+1 =

K∑
k=1

Dk(st+1)
λi

k,t w
i
t

λk,twt

(1)

for i = 1, ..., I. The state st+1 is randomly drawn according to a given
probability distribution.

The pricing equation qk,t = λk,twt merits a more detailed discussion.
It is the market clearing condition of the Shapley and Shubik (1977) mar-
ket game, which equates the market capitalization of an asset to the total
amount of wealth invested in it. Since each asset is in one-unit fixed supply,
this is simply the price of asset k. Thus, the Shapley-Shubik market game
simultaneously clears, with each time step, K markets and yields a unique
short-term equilibrium price vector. That is quite different from agent-based
models, where usually only one market-clearing price is needed (Hommes,
2001). From the definition, it is clear that each strategy’s impact on the
price is proportional to its wealth. Short selling is excluded to avoid bank-
ruptcy, which would be prevalent in the presence of a short-run equilibrium.
For Arrow securities, which have a positive payoff in one state of the world
and pay zero otherwise, the price determines the odds of the corresponding
bet; they are given by Dk(st+1 = k)/qk,t. In this respect, the market-clearing
mechanism corresponds to the one used in parimutuel betting markets.

Equation (1) can be interpreted as the market selection dynamics. Strate-
gies that have higher wealth than their competitors are considered to be fit-
ter. If one strategy accumulates total wealth in the long term, it is said to
be selected by the market. Since prices are a weighted combination of the
strategies with weights equal to wealth, such a strategy asymptotically ‘deter-
mines’ asset prices: relative prices are asymptotically equal to the portfolio
weights of a selected strategy.

The introduction of investment strategies, as well as the above definition
of asset prices, marks a departure from the general equilibrium approach to
market selection, where agents have demand functions and maximize util-
ity over an infinite time-horizon (Blume and Easley, 1992 and 2006; San-
droni, 2000). Notwithstanding the apparent simplicity of the model, Amir
et al. (2005) have shown that each equilibrium price path in such a general
equilibrium model can be obtained by an appropriate specification of invest-
ment strategies whose portfolio weights are, in general, time- and history-
dependent.
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2.2 Dynamics of Investment Strategies

The wealth dynamics of the standard evolutionary finance model describe
how the aggregate behavior changes over time for a fixed set of investment
strategies. Here, the set of investment strategies is changing over time as well.
This allows investigating whether the market mechanism is strong enough
for the population to discover the Kelly rule, even though each individual
investor lacks the analytical ability to do so.

The maximum number of investment strategies that can be active in the
market at any period of time is limited to a finite number I. Each investment
strategy λi = (λi

1, ..., λ
i
K) is represented by a program which is given in the

form of a function
λ̃i : S × {1, . . . , K} → R, (2)

where S is the set of potential signals σ associated with the true state s.
λ̃i

k(σ) is the non-normalized budget allocated to the purchase of asset k,
given that the last observed signal is σ. Examples of programs are provided
in Table 1. In order to compute the portfolio weights for a given function λ̃i, a
normalization is carried out as follows. First define λ̄i

k(σ) := max{0, λ̃i
k(σ)},

and then let λi
k(σ) := λ̄i

k(σ)/[
∑K

n=1 λ̄i
n(σ)]. If the denominator is zero, we set

λi
k(σ) = 1 for some randomly chosen k.

Two main cases are considered: (a) state-dependent strategies with com-
plete information about states, i.e., S = {1, . . . , S}, and (b) price-dependent
strategies where the set of signals contains the last observed price correspond-
ing to the present state, i.e., S = {1, . . . , S} × RK . In general the set could
be an indexed partition of the state space or contain other information such
as asset payoffs and their moving averages.

2.3 Implementation by Genetic Programming

Genetic programming (GP) (Koza, 1992; Smith, 1980) is a technique for
programming computers by natural selection. It addresses the challenge of
getting a computer to do what needs to be done without explaining every-
thing in detail, and it attempts to achieve this goal by breeding a population
of programs using the principles of Darwinian selection and reproduction.
The idea of mimicking evolution to simplify software design was introduced
by Holland (1975), and it has been used successfully by computer scientists
to solve problems in a variety of engineering fields. For our purpose, it is
used as a model of decision making in the presence of tacit knowledge and
bounded rationality.

GP-algorithms produce programs which consist of instructions to read or
manipulate data. Each program produces some output, which the modeler
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interprets as the action taken by the program, and this action is evaluated
to obtain a measure of the program’s fitness. In our particular context, the
action taken consists of the portfolio weights allocated to the K assets and
the natural fitness measure is the accumulated wealth of the program.

In order to find the computer program which best solves a given task, the
GP-algorithm starts by randomly generating a large population of programs.
It then continues for a large number of iterations by replacing low perform-
ing programs with a genetic recombination of high performing ones. The
standard genetic operators are crossover and mutation. These are explained
below, along with an additional operator (noise) that is used here to test the
robustness of our results.

GP-algorithms differ in the way they mimic Darwinian evolution. Here, a
steady-state algorithm with tournament selection is used. It works as follows:

1. Tournament: Randomly select four programs from the pool and rank
them according to their accumulated wealth.

2. Reproduction: Replace the two programs with lowest wealth with copies
of the other two.

3. Mutation: Each of the two programs copied undergoes a mutation with
probability µ: randomly select a single instruction from the program,
and replace it with a randomly generated instruction.

4. Crossover: With probability χ, recombine the genetic material of the
two copied (and possibly mutated) programs by swapping one randomly
selected set of instructions from both programs.

5. Noise: Each of the two newly generated programs is replaced by a
randomly selected program with probability η.

If a program has strictly positive wealth, it leaves the tournament with
the same wealth. However, if a program has zero wealth, it is endowed with
one percent of the average wealth which is given by (1/I)

∑K
k=1 Dk(st+1).

The algorithm is run for a population size of 1,000 and 250,000 iterations,
with 20 tournament selections per iteration. The mutation and crossover
probabilities are set to µ = 0.9 and χ = 0.5, respectively, and the noise
probability η is varied from 0 to 0.96 in order to check the robustness of our
results.

GP-algorithms also differ with respect to the type of building blocks they
use to construct individual programs. One typically uses a subset of el-
ementary instructions from some existing programming language, such as
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LISP, Java or machine code. In this paper, we use a machine code version
of GP, which is introduced by Nordin (1997): each program consists of a
list of machine instructions which operate on variables and constants stored
in memory, using the CPU floating point registers to store and manipulate
temporary variables.

Table 1: Example of the program structure and the crossover operation.

Instr. Before crossover After crossover
Program A Program B Program C Program D

1 R0 = s R1 = k R0 = s R1 = k
2 R1 = k R0 = R0 − 2 R1 = k R0 = R0 − 2
3 R1 = R1 ∗R0 R0 = R0 ∗R0 R0 = R0 ∗R0 R1 = R1 ∗R0

4 R0 = R0/5 R0 = R0/R1 R0 = R0/R1 R0 = R0/5
5 Return R0 R0 = min(R0, R1) R0 = min(R0, R1) Return R0

6 Return R0 Return R0

λ̃k(s) s/5 min(4/k, k) min(s2/k, k) −2/5

Table 1 illustrates some aspects of the machine code GP algorithm by
means of an example in which the maximum program length is limited to 6
instructions. In practice, the maximum program length is much larger; in our
simulations, it consists of 128 instructions. The left part of the table depicts
two programs, A and B, with 5 and 6 instructions, respectively. The right
part shows the outcome of a crossover at instruction slots 3-6, which produces
two new programs, C and D. R0 and R1 refer to floating point registers 0
and 1 of an Intel compatible CPU, which has a total of 8 such registers.
The GP algorithm clears these registers by loading them with the value 0.0
before passing a program to the CPU for execution. Input variables consist
of the state s and asset k (see Equation (2)), and the output is the content of
register R0 after all program instructions have been processed by the CPU.
The output is interpreted as the non-normalized portfolio weight λ̃k(s) for
asset k in state s. For Program A, the normalized portfolio weights λk(s)
are constant and equal to 1/K for each state and asset, while for Program
C they vary according to state and asset.

Instead of using GP to model the dynamics of investment strategies, a
genetic algorithm (GA) (Holland, 1975) could be used in the first set of ex-
periments. The main difference is that GA operates on vectors of numbers
instead of vectors of program instructions. GA is applicable as long as the
set of signals is finite (e.g. if only state and asset index are contained in
the information set). Any investment strategy can then be represented as a
vector of real numbers. Evolving such vectors with GA is simpler and com-
putationally less demanding than evolving functions with GP. If strategies
can also use past prices, the information set is a continuum and so is the
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range of strategies. For these experiments, the full generality of GP, which
provides us with functional relations, is needed to analyze the model.

3 The Experiments

Four sets of experiments are simulated to analyze the impact of a change in
the market structure, as well as in the stochastic process that determines the
state. The market is either complete (i.e., the rank of the payoff matrix is
equal to the number of states) or incomplete (i.e., there are fewer assets than
states). The state of nature is given either by an i.i.d. process or a Markov
process.

In each experiment, there are three states of nature, s = 1, 2, 3, and
K = 3 resp. K = 2 assets. The payoff matrix D is given by

Dcomplete =

 1 0 0
0 2 0
0 0 3

 and Dincomplete =

 1 1
1 1
0 3

 (3)

in the complete, resp. incomplete, market case. Note that the complete
market consists of Arrow securities. In the i.i.d. case, all states have equal
probability, i.e., πs = 1/3 for s = 1, 2, 3. In the Markov case, however, the
probability of the next period’s state depends on the current state. The
matrix of transition probabilities is given by

Π =

 .7 .2 .1
.1 .7 .2
.2 .1 .7

 . (4)

The stationary distribution of this Markov process, denoted by ρ, is given by
ρ1 = ρ2 = ρ3 = 1/3.

The Kelly rule in each of these cases is given by the expected values of
the assets’ relative payoffs:

λ∗k(s) =
S∑

u=1

ΠsuR
k(u), where Rk(u) =

Dk(u)∑K
n=1 Dn(u)

, (5)

with k = 1, ..., K and s = 1, ..., S. In the i.i.d. case, the current state
does not impact the probability of the next period’s state, i.e., Πsu ≡ πu,
and, therefore, the Kelly rule is a constant vector. Table 2 summarizes the
numerical values of the Kelly rule in the four experiments.

The investment strategy λ∗ provides the equilibrium prediction for the
long-run outcome of individual behavior, as well as for the asymptotic values
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Table 2: Kelly rule in the four experiments.
IID Markov

Complete Incomplete Complete Incomplete

λ∗ ≡
(

1
3
,
1
3
,
1
3

)
λ∗ ≡

(
1
3
,
2
3

) λ∗(s = 1) = (.7, .2, .1) λ∗(s = 1) = (.45, .55)
λ∗(s = 2) = (.1, .7, .2) λ∗(s = 2) = (.40, .60)
λ∗(s = 3) = (.2, .1, .7) λ∗(s = 3) = (.15, .85)

of (relative) asset prices. The two main questions to be investigated are (1)
whether the competitive process of genetic programming is powerful enough
to drive the population towards the Kelly rule and, if yes, (2) whether this
convergence is robust against noise.

To answer the first question, the distance between the Kelly rule and
the wealthiest investment strategy is measured, as well as the distance to
the market prices. Prices are equal to the average strategy of the popula-
tion because they correspond to the wealth-weighted average, as explained
in Section 2.1. The wealthiest strategy is defined here as the sequence of in-
vestment strategies that is provided by selecting, in any one period in time,
the strategy with the highest wealth. Two measures are applied: (a) the
Euclidean distance and (b) the expected growth rate. The latter quantity
measures the growth potential of an investment strategy relative to a bench-
mark. Two benchmarks are employed: the Kelly rule and the current state
of the market, which is given by the current price system.

The second question on the robustness of the convergence is analyzed
by comparing long-term outcomes for different values of the average num-
ber of randomly generated programs. This is achieved by varying the noise
probability η, see Step 5 of the GP-algorithm.

3.1 Simulation Results

Each experiment consists of a simulation of a population of I = 1, 000 genetic
programs. Programs are initialized by randomly chosen functions, which are
arrays of random length, filled with random draws from the instruction set.
The noise probability η is varied, in each experiment, between 0 and 0.96
with increments of 0.04. The Darwinian finance model is run for a total of
250,000 periods for each set of parameters.

The distance measures are defined as follows. The probability-weighted
Euclidean distance between a strategy λi and the Kelly rule λ∗ is given by

d∗(λi) :=
∑S

s=1 ρs

√∑K
k=1(λ

i
k(s)− λ∗k(s))

2. (6)

In the i.i.d. case, the stationary distribution ρ is given by ρs = πs.

12



The second distance measure can be defined in terms of the growth rate
of a strategy λi relative to the Kelly benchmark, g∗(λi), or its growth rate
relative to the market, gM(λi). The first one is defined as

g∗(λi) := exp

(
S∑

s=1

ρs

S∑
u=1

Πsu ln

(
K∑

k=1

Rk(u)

λ∗k(s)
λi

k(s)

))
, (7)

where the relative payoffs Rk(u) are given by (5) and ρ is the stationary
distribution of the stochastic process that determines the state of nature. In
the i.i.d. case, one has Πsu ≡ πu and λ∗k(s) ≡ λ∗k in Equation (7). Taking
the exponential allows a comparison of growth rates in terms of percentages.
The standard definition is obtained by dropping the exponential function
(see Hens and Schenk-Hoppé, 2005). One could also try to measure the dis-
tance by the relative entropy of strategy λi and the Kelly rule. In the case
of Arrow securities the relative entropy is equal to the expected logarithmic
growth rate of λi. However, if the market is incomplete, the relative entropy,
in general, provides no information about a strategy’s growth rate (see, e.g.,
Blume and Easley, 2006; Sandroni, 2005). The growth rate relative to the
market, gM(λi), is defined by replacing λ∗k(s) in (7) by the (moving) bench-
mark λM

k (s) := pk(s) = qk(s)/[
∑K

n=1 qn(s)]. pk(s) is the relative price of asset
k.

Table 3: Summary statistics for 4 sets of experiments without price information.

The table contains sample statistics across all runs and iterations for relative growth
rates and distances from the Kelly benchmark. λW denotes the wealthiest strategy and
λM denotes the market portfolio. The number of observations for each variable is 6,250
(250 samples of 25 runs).

IID Markov
Variable Mean Std.dev Min Max Mean Std.dev Min Max

Complete market
d∗(λW ) 0.001 0.022 0.000 0.817 0.054 0.048 0.003 1.128
d∗(λM ) 0.001 0.006 0.000 0.305 0.053 0.044 0.002 0.715
g∗(λW ) 0.999 0.038 0.000 1.000 0.988 0.033 0.000 1.000
gM (λW ) 0.998 0.044 0.000 1.005 0.996 0.058 0.000 1.008

Incomplete market
d∗(λW ) 0.003 0.009 0.000 0.196 0.061 0.032 0.014 0.374
d∗(λM ) 0.003 0.007 0.000 0.179 0.023 0.017 0.001 0.251
g∗(λW ) 1.000 0.000 0.990 1.000 0.999 0.001 0.959 1.000
gM (λW ) 0.999 0.031 0.000 1.009 0.989 0.098 0.000 1.010

The simulation results for these different measures are summarized in Ta-
bles 3 and 4. In both IID experiments, investment behavior converges quickly

13



to the Kelly benchmark for all noise levels. This can be seen from the small
means and standard deviations of the two distance measures d∗(λW ) and
d∗(λM) in Table 3. In the Markov experiments, the mean distances from
the Kelly benchmark are higher. Nonetheless, the wealthiest strategy per-
forms quite well relative to the market, as well as to the Kelly benchmark, as
manifested by the high relative growth rates g∗(λW ) and gM(λW ). Table 4
shows, however, that the wealthiest strategy does not possess the entire mar-
ket wealth. A substantial amount of wealth is managed by other investment
strategies (for instance nearly 50% in both Markov experiments), but those
strategies are also quite close to the Kelly rule in terms of relative growth
rates, as can be seen from the 4 rightmost columns of Table 4.

Table 4: Average wealth of 5 groups of investment strategies in the 4 sets of experiments
without price information.

This table shows the proportion of wealth owned by the wealthiest strategy (λW )
and by those strategies that are close to the Kelly rule in terms of relative growth rates
(g∗ ≥ ...). Numbers are averages taken across 6,250 observations for each experiment.

Dividend Market
λW g∗ ≥ 0.950 g∗ ≥ 0.975 g∗ ≥ 0.990 g∗ ≥ 0.999process structure

IID Complete 0.040 0.999 0.999 0.998 0.998
Incomplete 0.789 0.997 0.997 0.995 0.991

Markov Complete 0.568 0.981 0.926 0.538 0.217
Incomplete 0.528 0.996 0.994 0.988 0.625

In the Markov cases, particularly in the incomplete market setting, the
price system is closer to the Kelly benchmark than the wealthiest investment
strategy, i.e., the market is “smarter” than the most successful investor,
cf. Table 3. This finding is in line with Bossaerts et al. (2005). In ex-
periments with human subjects, they find that, while asset prices converge
quickly and agree—by and large—with those of the CAPM, the portfolio
choice predictions of this theory remain significantly off target throughout
the experiment.

We analyze the Markov experiments in more detail by regressing distances
on noise and simulation time in a panel data model with random effects and
autoregressive errors. The estimated relationship is

ln(d∗rt) = β0 + β1 ln(t/250) + β2 ln(1− ηr) + ur + εrt, (8)

where ur is a run specific error term and εrt is AR(1). d∗rt is the Euclidean
distance from the Kelly rule at iteration 1000 · t of run r and ηr is the noise
level in run r. Table 5 contains the results. Estimated parameters are given
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in Panel (A) and predicted distances for selected values of the explanatory
variables are given in Panel (B).

Table 5: Model and predicted values of Euclidean distance from the Kelly rule. Markov
dividend process.

The estimated model is ln(d∗rt) = β0 + β1 ln(t/250) + β2 ln(1− ηr) + ur + εrt, where ur is
a run specific error term and εrt is an AR(1) process. d∗rt is the Euclidean distance from
the Kelly rule at iteration 1000 · t of run r and ηr is the run r noise level. λW denotes
the wealthiest strategy and λM denotes the market portfolio. Standard errors are given
in parentheses. * and ** denote significant difference from zero at the 5% and 1% level,
respectively (two-tailed test).

Dependent (A) Parameters (B) Predicted distance
variable β0 β1 β2 R2 t\η 0.9 0.5 0.0

Complete market

d∗(λW ) −4.238** −0.585** −0.490** 0.474 5 0.439 0.200 0.142
(0.139) (0.019) (0.113) 250 0.045 0.020 0.014

d∗(λM ) −4.220** −0.541** −0.502** 0.477 5 0.387 0.172 0.122
(0.145) (0.018) (0.119) 250 0.047 0.021 0.015

Incomplete market

d∗(λW ) −3.246** −0.170** −0.190* 0.196 5 0.117 0.087 0.076
(0.109) (0.006) (0.090) 250 0.060 0.044 0.039

d∗(λM ) −4.515** −0.254** −0.323** 0.284 5 0.062 0.037 0.030
(0.073) (0.008) (0.059) 250 0.023 0.014 0.011

The negative coefficients of ln(t/250) and ln(1 − ηr) in panel (A) show
that distances from the Kelly rule decrease over time and that the process
slows down when the noise level is increased. Panel (B) gives the predicted
(shrinking) distance to the Kelly rule for noise levels 0, 0.5 and 0.9. The most
striking observation is that, in all cases, the wealthiest investment strategy,
as well as the market, converges to the Kelly rule. Even for high values of
the noise parameter, convergence prevails, though at a lower speed.

Panel (B) of Table 5 also shows that the market is closer to the Kelly
rule than the wealthiest investment strategy, in particular at the beginning
of each experiment. The effect is particularly pronounced in the incomplete
market case with Markovian states. This observation implies that there are
strategies in the market that move prices closer to the Kelly rule, though
they do not provide the wealthiest strategy in the market.

3.2 Complete Market with Markov States

This section provides a more detailed analysis of the case with a complete
market and a Markov payoff process. The goal of this exercise is to obtain
a better insight into the mechanisms that drive the Darwinian dynamics
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which give rise to the findings reported above. This particular case is chosen
because it exhibits the highest deviation of prices from the Kelly rule. The
noise probability is set to 20% throughout the following.
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Figure 1: Euclidean distance between the market prices resp. the wealthiest strategy and
the Kelly rule.

Figure 1 shows the distance between the Kelly benchmark and the mar-
ket, d∗(λM), as well as the wealthiest strategy, d∗(λW ), for one run of the
simulation, see (6). Both distance measures decrease almost monotonically,
and the descent mainly follows a step function. In this leapfrogging move-
ment towards the benchmark, the wealthiest strategy is overtaken, every
now and again, by a better performing competitor. This occurs only nine
times during the time horizon considered in Figure 1. This observation im-
plies that, most of the time, the wealthiest strategy is not the rule with the
highest growth rate. The competing strategy that eventually replaces the
wealthiest rule is typically much closer to the Kelly rule, as shown by the
size of the steps in the convergence. If the wealthiest strategy is close to the
Kelly rule, this process takes a considerable amount of time. The reason is
that genetic programming creates better, but somewhat poorer, strategies
from the genetic material of the wealthiest rule rather than improving the
currently richest strategies. After 250,000 iterations, the wealthiest strategy
is very similar to the Kelly rule, with a distance of only 0.003. This number
is in agreement with the results reported in Table 5.

The distance between market prices and the Kelly rule displays similar
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behavior though, in most periods, this measure is closer to the Kelly rule
than the wealthiest strategy. Only in the last 20,000 iterations is the market
price further away from the benchmark than the wealthiest strategy. This
particular effect is caused by the relatively small perturbation through the
noise component of the tournament, which has a stronger impact when the
population is very close to the benchmark.
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Figure 2: Relative price of Asset 1 by state and iteration. Horizontal lines correspond to
the Kelly benchmark.

On the aggregate level, interest focuses on the convergence dynamics of
asset prices. Figure 2 shows the relative price of Asset 1 for each period of
time and for each state s = 1, 2, 3 (one of which is revealed in any given
period) for a simulation of one run of 250,000 iterations. The benchmark,
which is given by the Kelly rule, is the set of relative asset prices p∗1(1) = 0.7,
p∗1(2) = 0.2 and p∗1(3) = 0.1 in states 1, 2 and 3, respectively. The simulated
prices are some distance from the benchmark in the first 150,000 iterations,
but they exhibit a clear tendency to converge to this benchmark. After
approximately 175,000 iterations, the relative prices are almost identical to
those derived from the Kelly rule. However, systematic mispricing occurs over
long time horizons. For instance, in state 1, the asset is first undervalued and
later overvalued. Moreover, the prices in all states can simultaneously be too
low compared to the benchmark. In Figure 2, this occurs during iterations
30,000-40,000. Relative prices of an asset do not necessarily sum up to one
across states, but of course, the sum across relative asset prices is equal to
one in each state.
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Figure 3: Distribution of growth rates in the population relative to the Kelly rule. (Data
are exponentially smoothed, with a parameter value of 0.2.)

A proxy for the genetic material that is present in the population is
provided by the distribution of growth rates relative to the Kelly rule. These
values are, in fact, only potential growth rates because many strategies have
zero wealth. Figure 3 reports the distribution of the individual growth rates
relative to the Kelly rule for the entire population across iterations. An
analysis of the distribution of growth rates relative to the current market
prices gives a similar picture to the one provided in Figure 3.

Programs with a zero relative growth rate (defined in (7)) consist of strate-
gies that are not fully diversified; behavior that carries a positive probability
of losing all one’s wealth. The second group consists of strategies with posi-
tive relative growth rates below 0.95. A large proportion of these strategies
have constant and equal portfolio weights, a strategy which yields a relative
growth rate of 0.7432. These programs simply return the same constant for
each asset and state. They are quite successful in the first 1,000 iterations of
the simulation, because they avoid mistakes, such as under-diversification or
extreme deviations from actual probabilities. Since the probability of gen-
erating such a strategy from scratch or by crossover is high, the population
contains a large proportion of those in the early stages of the simulation.

The distribution of relative growth rates changes significantly over time.
The number of strategies with equal weights is quickly reduced from an
initially high level. The reason is that, as the fraction of efficient strategies
increases, the equal weight strategies lose money faster, which reduces their
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chances of reproducing. Halfway into the simulation, strategies with relative
growth rates above 0.999 begin to take over and, after 250,000 iterations,
they make up about 40% of the population. This illustrates the ability of
the GP-algorithm to generate extremely efficient investment strategies.

Interestingly, the fraction of strategies with a zero relative growth rate
increases from approximately 20% to 30% during the simulation. Since these
strategies are not fully diversified, they act like gamblers who take extreme
positions in some assets. We believe this result is driven by the following
evolutionary mechanism: since wealth is a prerequisite for reproduction, the
struggle for survival is basically a struggle to get rich. As the population
becomes dominated by extremely efficient strategies, it grows harder to get
rich by investing prudently. This makes gambling for large stakes increas-
ingly attractive as it can open a window of opportunity to reproduce. By
this mechanism, competition produces not only more winners but also more
losers, which is in agreement with Figure 3.

4 Price-dependence and Market Dynamics

This section presents a generalization of the previous setting: strategies are
given access to information on past prices. The main issue is how and to what
extent genetic programs use this additional information. To obtain robust re-
sults, a case is analyzed in which the growth-optimal portfolio coincides with
the Kelly rule for all prices, but where the latter is dependent on the state
of nature. Prices should not matter for a growth-oriented investor, though
states should. We focus on the experiment with a complete market and a
Markov dividend process, studied in detail for state-dependent strategies in
Section 3.2.

The availability of price information indeed gives rise to new types of
behavior. The simulation results reported below show in particular that a
prominent role is played by the market portfolio. Its importance is due to the
fact that buying the market portfolio entails a constant share of total wealth
and hence increases its probability of survival and reproduction relative to a
strategy with more volatile payoffs.

In order to see that buying the market portfolio preserves relative wealth,
consider a strategy, denoted λM , whose portfolio weights correspond to the
relative prices pk,t (which are the market portfolio weights):

λM
k,t = pk,t :=

qk,t∑K
n=1 qn,t

. (9)

Let wM
t denote the wealth of strategy λM . The portfolio holdings of this
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strategy are equal to

θM
k,t :=

λM
k,tw

M
t

qk,t

=
wM

t∑K
n=1 qn,t

=
wM

t

Wt

= rM
t ,

where Wt :=
∑I

i=1 wi
t =

∑K
n=1 qn,t is the total wealth and rM

t is the relative
wealth of strategy λM . It holds the same amount of units of each asset
because θM

k,t is independent of k. Its payoff can be computed as

wM
t+1 =

K∑
k=1

Dk(st+1)θ
M
k,t =

K∑
k=1

Dk(st+1)r
M
t = D̄(st+1)r

M
t ,

with D̄(st+1) denoting the aggregate dividend payoff in state st+1. It follows
from (1) that D̄(st+1) = Wt+1. Thus, an investor who buys the market
portfolio has constant relative wealth, i.e., rM

t+1 = rM
t .

To introduce price dependency, an investment strategy is defined here as
a function λ̃ : {1, . . . , S} × RK × {1, . . . , K} → R, where λ̃k(s, p̂(s)) is the
(non-normalized) portfolio weight of asset k given that the current state is
s. The information set is S = {1, . . . , S} × RK . The new argument p̂(s)
denotes the most recently observed relative price vector corresponding to
the current state s. For instance, if (st−3, st−2, st−1, st) = (1, 1, 2, 1), where
st = s = 1, then p̂(s) is the vector of relative prices observed in period t− 2.
Trading is subject to slippage because strategies only have access to the last
observed price vector (i.e., for the current state) rather than the current mar-
ket clearing prices. This slippage comes from the time elapsing from order
placement to execution, which precludes the purchase of a perfect market
portfolio. However, if prices exhibit low volatility, strategy (9) delivers an
asset allocation that corresponds well with the market portfolio. In periods
of high volatility, the fit is not so good. Despite the slippage, this proxy
of the market portfolio provides an opportunity to protect one’s investment
from downside risk at the cost of missing out on its upside. Carrying out
a market portfolio investment is actually a simple task for the genetic pro-
grams: they only have to output the price of the relevant assets, whereas any
other behavior requires computation. The following shows that successful
investment strategies make skillful use of this investment opportunity.

Extending the information set from states to states and prices more than
doubles the number of input variables to any given strategy. The new data
are vectors of real numbers rather than elements of a finite set. This in-
creases the complexity faced by the GP-algorithm considerably. Since this is
likely to slow down convergence, the effect of doubling the population size to
2,000 is tested. Table 6 presents the result of applying the regression model
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Table 6: Model and predicted values of Euclidean distance from the Kelly rule for
price-dependent strategies. Markov dividend process and complete market.

The estimated model is ln(d∗rt) = β0 +β1 ln(t/250)+β2 ln(1− ηr)+ur + εrt, where ur is a
run specific error term and εrt is an AR(1) process. d∗rt is the Euclidean distance from the
Kelly rule at iteration 1000 · t of run r and ηr is the run r noise level. λW is the wealthiest
strategy and λM is the market portfolio. Standard errors are given in parentheses. * and
** denote significant difference from zero at the 5% and 1% level, respectively (two-tailed
test).

Dependent (A) Parameters (B) Predicted distance
variable β0 β1 β2 R2 t\η 0.9 0.5 0.0

Population size of 1,000

d∗(λW ) −3.354** −0.340** −0.239** 0.259 5 0.229 0.156 0.132
(0.074) (0.011) (0.060) 250 0.061 0.041 0.035

d∗(λM ) −3.360** −0.336** −0.241** 0.253 5 0.226 0.153 0.129
(0.074) (0.011) (0.060) 250 0.061 0.041 0.035

Population size of 2,000

d∗(λW ) −3.911** −0.482** −0.334** 0.392 5 0.285 0.166 0.132
(0.067) (0.013) (0.054) 250 0.043 0.025 0.020

d∗(λM ) −3.934** −0.484** −0.338** 0.388 5 0.283 0.164 0.130
(0.068) (0.013) (0.055) 250 0.043 0.025 0.020

in equation (8) to data from a simulation with 25 runs, with noise levels
between 0 and 96%, and population sizes of 1,000 and 2,000. The increase
in population size indeed compensates for the increase in complexity, cf. Ta-
ble 5. As in the corresponding base case considered in Section 3.2, the noise
probability is set to 20%.

The dynamics of the Euclidean distance between the wealthiest strategy
and the Kelly rule, reported in Figure 4, are strikingly different from the base
case depicted in Figure 1. Volatility is much higher, there is no leap-frogging
effect and, despite the variability of prices, the market is not closer to the
Kelly rule than the wealthiest rule. Moreover, there are occasional bursts of
large deviations from a generally volatile trend toward smaller distances, cf.
Table 6.

The dynamics of prices are captured in Figure 5, which depicts one time
series of 250,000 iterations’ length for the relative price of Asset 1 for each of
the states s = 1, 2, 3. The benchmark is given by the Kelly prices p∗1(1) = 0.7,
p∗1(2) = 0.2 and p∗1(3) = 0.1 in the respective states, cf. Table 2. Figure 5
shows that prices have a clear tendency to vary around their respective Kelly
benchmark levels, except for a short initial period of 2,000 iterations, during
which significant mispricing occurs. A comparison with the corresponding
case without price information (Figure 2) reveals that the availability of price
information creates a considerable amount of persistent price volatility.
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Figure 4: Euclidean distance between the Kelly rule and the wealthiest strategy resp. the
market prices (which are virtually identical here) for price-dependent strategies.
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Figure 5: Relative price of Asset 1 by state and iteration (in 1,000s) for price-dependent
strategies and corresponding Kelly benchmark (horizontal lines).

In order to obtain an understanding of the market dynamics with price-
dependent strategies, a careful analysis of the successful investment strategies
and their market shares is necessary. It turns out that good performing
strategies use price information in a sophisticated way while, at the same
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time, being composed of similar “building blocks.” In particular, usage of
the market portfolio is wide-spread. Averaging across all 250,000 iterations,
30% of the population (representing about 32% of the total wealth) buy the
market portfolio. The strategies which use some price information, without
necessarily buying the market portfolio, amount to 97.5% of the population
and represent about 99.99% of the total wealth on average. In the setting
with price-dependent strategies, it seems that price information is necessary
for survival while buying the market portfolio is not.
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Figure 6: Percentage of wealth managed by different types of price-dependent strategies.

Individual strategies can be classified according to their behavioral varia-
tion over time. Some rules follow a passive strategy and invest 100% of their
wealth in the market portfolio at all times. Others adopt an active strat-
egy by always deviating from the market portfolio. The third group of rules
applies a hybrid strategy: in some periods, they passively buy the market
portfolio, while in others they take some active risk by deviating from the
market benchmark. Figure 6 applies this classification to the observed behav-
ior of investment strategies. It shows how the proportions of wealth managed
by each of these three sets of rules varies over time. Note that active and
passive strategies may have the potential to change their behavior, even if
they did not do so in the past, because prices did not take on those values
which might trigger their latent behavior. The classification therefore sets
upper limits on the number of active and passive strategies and provides a
lower limit for the number of hybrid strategies. Figure 6 also supplies infor-
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mation on the market share of strategies that currently take active positions.
This set of strategies consists of all of the active rules and some of the hybrid
rules.

There is considerable variation in the number of hybrid strategies de-
viating from the market portfolio investment. In the early rounds, active
strategies gain and passive strategies lose in terms of market shares. Af-
ter approximately 100,000 iterations, there is a steep increase in the market
share of hybrid strategies. This occurs because a few rules, which were previ-
ously classified as active, bought the market portfolio for the first time during
a short period of severe mispricing. This is mainly due to price dynamics
because, as discussed in detail below, strategies typically have a “trigger,”
which induces a switch from passive to active investment behavior if prices
enter a certain region of the price space.

Other large jumps in the distribution of strategy types (at 130,000, 165,000
and 200,000) are preceded by periods of unusually high volatility, and large
deviations from the Kelly rule. This typically occurs when some extremely
risky (e.g. under-diversified) strategy experiences a streak of good luck and
becomes wealthy enough to have some market impact before it eventually
goes bankrupt. For normal levels of price volatility, the presence of passive
strategies amplifies its market impact and contributes to the volatility. For
high levels of volatility, information about past prices gives imprecise infor-
mation about the current market portfolio. This increases the risk for those
strategies that rely heavily on price information. The gains and losses in-
curred may change the wealth distribution, alter the aggregate behavior and
cause relative prices to settle down at new levels. The sharp decline around
period 165,000 in the market share of currently active strategies is triggered
by a change in relative price levels, following a volatility shock of the type
just described. Figure 6 indicates that the main part of this decline can be
attributed to hybrid strategies, which change their mode of behavior from
active to passive.

In order to investigate the mechanism which causes this shift in behavior,
we provide a detailed analysis of one specific strategy from the experiment—
the wealthiest strategy at the last iteration of the experiment. This strategy,
denoted λLW (s, p), is present in the population for more than the last 150,000
iterations. Because the portfolio weights of λLW are a function of the state
s and the vector of relative prices p = (p1, p2, p3), the rule is therefore of the
hybrid type. In states 1 and 2, behavior remains passive throughout, but in
state 3, it switches between active and passive modes. Figure 7 summarizes
its behavior in state 3. In the remainder of this section, we fix s = 3 and
refer to λLW (s, p) and λ∗(s) as λLW (p) and λ∗, respectively.

Figure 7 is a contour plot of the distance between the market portfolio
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Figure 7: Contour plot of δ(p) := ‖λLW (p) − p‖ for relative prices p = (p1, p2, p3) in
the unit simplex. δ(p) is the Euclidean distance between the market portfolio p and the
portfolio weights of strategy λLW in state 3. Darker areas represent larger values of δ(p),
and white areas represent those prices for which λLW is in perfect agreement with the
market portfolio, i.e., δ(p) = 0. Kelly prices and Kelly portfolio weights are given by
λ∗ = (0.2, 0.1, 0.7).

and the portfolio weights of strategy λLW in state 3. Market portfolios, which
coincide with vectors of relative prices, are represented as points in the unit
simplex. The point λ∗ = (0.2, 0.1, 0.7) is the Kelly benchmark portfolio in
state 3 (see Table 2). For each price vector p = (p1, p2, p3), λLW (p) are the
portfolio weights of strategy λLW , and δ(p) := ‖λLW (p)−p‖ is the Euclidean
distance between these two. In the figure, darker shadings corresponds with
higher values of δ(p).

Strategy λLW is in the passive mode (P ) in a subset of the simplex that
consists of two parts: (1) the line segment defined by all price vectors p
with p2 = λ∗2 = 0.1 and (2) the white triangular area along the north-east
border of the simplex, which corresponds with low prices for Asset 1. The
remaining area of the simplex constitutes the active mode (A). The switch
between active and passive modes is triggered by low prices of Asset 1. The
functional form of strategy λLW in the two modes is given by

λLW (p) =

{
(1− λ∗2 − ε(p2))

(
p1

p1+p3
,

λ∗2+ε(p2)

1−λ∗2−ε(p2)
, p3

p1+p3

)
if p ∈ A;

(p1, p2, p3) if p ∈ P .
(10)

The function ε(p2) is convex with values ε(0) = 0.008, ε(λ∗2) = 0.000 and
ε(1) = −0.016.

In the active mode, strategy λLW chooses a portfolio weight of Asset 2
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that is close to the Kelly benchmark. For p2 6= λ∗2, function ε(·) provides
an enhancement which amounts to small long or short positions in Asset 2
according to whether this asset is cheap or expensive relative to its Kelly
benchmark. The deviation from the Kelly weight λ∗2 is of the magnitude
10%. The remaining wealth is invested in the other two assets according to
their price ratio, i.e., in the corresponding market portfolio of Assets 1 and
3. Strategy λLW is discontinuous on the border between active and passive
modes (which marks the switch to passive investment for low prices of Asset
1), except along the line segment where p2 = λ∗2. However, Equation (10)
reveals that the discontinuities match up to maintain equal ratios of portfolio
weights and market prices for Assets 1 and 3.

The long-lived strategy λLW is specialized in the sense that it only takes
active positions in one particular asset and in one particular state; other-
wise it is passive and buys the market portfolio. A careful analysis of other
wealthy investment strategies shows that most of them have exactly the same
structure. They exploit mispricing in a nearly identical fashion to the strat-
egy studied in detail above, though for a different asset and a different state.
In other situations, they are passive and buy the market portfolio.

In our Darwinian model, the tournament process punishes investors with
low wealth by a high probability of deletion. Avoiding severe losses is there-
fore important for survival, a goal that can be achieved by investing part of
one’s wealth in the market portfolio. Moreover, the logarithm of strategy
λLW ’s return has a smaller variance than the Kelly rule for about 80% of
the time in the runs reported in Figures 5 and 6. The genetic recombination
process favors this type of prudent investment behavior because extinction
is more likely for rules that have a high volatility of returns.

Specializing in active investment under particular circumstances, which
would also make sense from a practical point of view, stems from the ge-
netic process that distributes trading skills across the population. The basic
building blocks, which embody particular specialization, spread throughout
the population of behavior rules. It is extremely unlikely, however, to have
them all combined in one single rule, due to the random nature of genetic
recombination in the tournament process and the lack of individual learning.
Though complete knowledge is embodied in the population, this precludes
the birth of a ‘super trader.’ Even though successful investors are more
cautious when strategies are price- rather than just state-dependent, conver-
gence to the Kelly rule prevails because of the push from the population’s
aggregate behavior towards the equilibrium prediction.
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5 Conclusion

In this paper, we studied an evolutionary model of a financial market with
short-lived assets, which comprises the two Darwinian processes of selection
and reproduction. The framework generalizes an evolutionary finance model
by applying a genetic programming approach to the creation of variety and
the dynamics of investment behavior. The well-known Kelly rule serves as the
benchmark for optimal investment and asset prices. Our findings fully con-
firm the predictions derived from the analytic results in models that neglect
the reproductive process which generates diverse behavior. In all experi-
ments, the long-run outcome shows the emergence of investment styles and
market prices in line with the Kelly rule. When price information is available
in addition to information about the current state, strategies make sophis-
ticated use of the data by employing the price information to invest part
of their wealth in the market portfolio. This wide-spread behavior provides
protection against severe losses and increases the chance of survival of the
corresponding genetic material. The combination of this type of investment
behavior with small bets on the Kelly rule eventually drives market prices to
the Kelly benchmark.
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